Nautilus: Implementation of an Evolution Approach for Graph
Databases

Dominique Hausler”

dominique.hausler@ur.de

University of Regensburg
Regensburg, Bavaria, Germany

ABSTRACT

Equivalent to relational databases, there is a need for an evolution
language for graph databases that describes how evolution opera-
tions such as add, rename, delete, copy, move, split and merge are
specified domain independent. Previous work proposes the graph
evolution language called GEO, which we build upon.

In this paper, we present our program called Nautilus, implement-
ing this formal language, used to define evolution and intuitively
easing the usage of graph database systems. GEO can also be used
to update implicit structures in the graph data. Users benefit not
only from an easy-to-use interface to minimize syntax errors and to
reduce the necessary knowledge of the evolution language, but also
from additional statistics on database structures which are visual-
ized in the tool. This visualization allows initial data exploration
as well as identifying the effects of the development by comparing
data versions.

Consequently, Nautilus is capable of widening the range of users
and accessibility of graph databases for interdisciplinary research
projects. Illustrating schema changes and performing schema evolu-
tion transparently builds the core of Nautilus. Complex operations
like split and transform are part of the available evolution language,
thus avoiding programming workarounds. An additional feature of
the tool is a logging components that offers the traceability of all
performed evolution operations.

CCS CONCEPTS

« Information systems; - Data management systems; » Data-
base administration; - Database utilities and tools;

KEYWORDS

Graph Databases, Property Graph, Evolution Language, Graph Data-
base Statistics, Profiles, Neo4j

ACM Reference Format:

Dominique Hausler and Meike Klettke. 2024. Nautilus: Implementation of
an Evolution Approach for Graph Databases. In ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems (MODELS
Companion 24), September 22-27, 2024, Linz, Austria. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3652620.3687781

“Corresponding author.

@000

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike International 4.0 License.

MODELS Companion '24, September 22-27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3687781

Meike Klettke
meike.klettke@ur.de
University of Regensburg
Regensburg, Bavaria, Germany

1 INTRODUCTION AND MOTIVATION

All graph databases which are used over long periods of time have
to be evolved. Changing requirements as well as a re-design of
their structures lead to changes e.g., new features may be added,
renamed or a refactoring takes place. In all these cases, an evolution
of the graph databases is necessary. Although query and update
languages [16] are currently available, there is as far as we know
no explicit evolution language. Whereas evolution approaches exist
for other data models [10, 12, 22], a similar approach for graph
databases is still missing, especially in the context of the arising
research question: How to make schema evolution in graph databases
available to a bigger group of users, ensuring good usability? We
have developed our system for graph databases in general, due to
the popularity of Neo4;j [20]. This is the first system used in our
prototype named Nautilus.
Contribution. The novelty of Nautilus consists of:

e Our evolution language GEO (Graph Evolution Operation)
from [15], using an intuitive syntax to ease the comprehen-
sion of evolution operations.

e Due to filter options, GEO can also be used to perform up-
dates for a specified part of the graph database.

o The graph-specific evolution operation transform is inte-
grated, showing the difficulties when working with highly
interconnected data.

e The integration of complex operations like split or move
which are not available in Graph Query Languages (GQLs).

e Structural Database Statistics (SDS) are used to show the
impact of evolution and to estimate the evolutionary effort.

Structure. The rest of this article is sectioned as followed: First,
preliminary and related work is analyzed. Section 3 focuses on Nau-
tilus, including the target user group (3.1), followed by an overview
over the program components (3.2) and the structural database
statistics — a hybrid approach combining schema and statistical
data (3.3). In 3.4 we discuss the realization of evolution operations,
followed by the application spectrum (3.5) and an example usage
of Nautilus in 3.6. A summary is given in Section 4, together with
some future work tasks.

2 RELATED WORK & PRELIMINARY WORK

As a result of Cypher’s popularity in research [1, 2, 9, 19] as well as
in commercial applications [13, 20], the evolution language GEO
was based on Neo4j’s query language. Moreover, standard confor-
mity to the newly released ISO GQL [16] is proposed by Neo4j [21].
Consequently, Nautilus also uses Neo4;.

Schema Extraction. Graph databases (GDB) can be schema-
less, making schema-second approaches necessary to extract schema
data from an existing database. Several extraction services for graph

https://orcid.org/0009-0004-2381-133X
https://orcid.org/0000-0003-0551-8389
https://doi.org/10.1145/3652620.3687781
https://doi.org/10.1145/3652620.3687781
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3687781&domain=pdf&date_stamp=2024-10-31

MODELS Companion "24, September 22-27, 2024, Linz, Austria

raph Evolution Operation -

addFeatures ::= ’add’ label Student ’to’ node ’with’
label Person

Schema Modification Operation — SMO-

WITH parameter AS old_label selectPattern

((CALL addLabels YIELD node)| (CALL overwritelLabelsOf
old_labelWithnew_label))

RETURN node

Graph Manipulation Operation - GMO¢

WITH $old_label AS old_label

MATCH (a) WHERE apoc.label.exists(a, $old_label)
CALL apoc.create.setlLabels(a, $list_of_new_labels)
YIELD node RETURN node

Figure 1: The Evolution Operation "add label to node" and its
Realization in Neo4j

databases are at hand [3, 9, 14]. For our approach we make use of
the Awesome Procedures On Cypher (APOC) library’s functions
to extract schema data.

Evolution. In contrast to [4-6], the novelty of our evolution
language implemented in Nautilus is the extension of the graph-
specific transform operation, illustrating the complexity of GDBs.
transform describes the process of changing the entity type e.g.,
converting a node into a relationship and vice versa.

Schema Visualisation. There are several tools to explore highly
interconnected data such as [7, 11, 17, 25]. Such visualisations help
to give a brief overview over the data already available. In the
context of evolution an available tool including a visualization is
presented in [23].

Own Preliminary Work & Theoretical Background. GEO
defines operations similar to those used in other database systems.
In relational databases, the alter table statements are applicable
to specify single-type evolution operations. For JSON databases,
many authors suggest more complex single and multi-type evo-
lution operations e.g., [8, 18, 24]. Our program focuses on graph
databases, adapting the operations to graph-specific features. In
addition to these works, we implement a first collection of filter
functions. Figure 1 shows an example for all three levels. From the
platform independent GEO! our system derives specific Schema
Modification Operations — SMO¢ - for an exact translation into
Neo4j. Platform dependency is indicated by the C index for Cypher.
At the data level, the Graph Manipulation Operation - GMO¢,
specifies what the graph query looks like. The orange box shows
the evolution language, explaining how an operation is defined
for graph databases in general. In the sample in Figure 1 the label
Student is added to all Person nodes. SMO¢ forms the theory be-
hind the precise implementation on the schema level, while GMO¢
represents the Cypher query.

LGEO file: https://zenodo.org/record/8311214

Dominique Hausler and Meike Klettke

3 NAUTILUS

Nautilus implements GEO (Graph Evolution Operation) presented
in [15]. It is able to describe evolution operations domain inde-
pendently. Due to GEO being realized through a formal language,
it eases the understanding of how evolution operations such as
add, rename, delete, copy, move, split or merge work. Nodes and
relationships are referred to as entity types whereas labels, types
and properties are called features.

3.1 Target User Group

As GEO mimics natural language, the program can be operated by
a wide range of users consisting of:

e Non-computer scientists who want to use a graph database
for storing, updating and manipulating their data.

o Computer scientists who want to realize updates and evolu-
tion operations with an intuitive language.

Consequently, the main impact emerges for interdisciplinary
projects with the benefit of significantly reducing the time to learn
a new query language. An example for bringing both user groups
together is the type field (see Figure 3 number @). Here headings
are displayed in the drop-down menus, using technical terminology
for professionals, while non-professionals are still able to use the
program without this knowledge.

3.2 Overview of Nautilus

Figure 2 illustrates how the evolution language, the SMO¢ and
the precise implementation GMOg are connected to each other in
Nautilus. Nautilus makes use of parameters to increase the perfor-
mance of the executed queries. This can be seen in Figure 1, illus-
trating how add label(s) is implemented. The program is based
on the Django-framework, using Python backend and JavaScript,
HTML and CSS for the frontend.

As already indicated, the main part of the program contains
our evolution language GEO, shown by the

in Figure 2. The eye-symbol symbolizes the direct

visibility to the user. GEO is — depending on the user’s input via 2
- composed on the platform independent level. Subsequently, with
each input the next part of the evolution language is displayed.
Either one or multiple (indicated by the 1. .n) evolution operations
can be executed sequentially at once. Additionally, for the applica-
bility of the tool, all executed GEOs are saved in a history, directly
showing GEO to the user 3.1 together with the option of a log file
3.2. The entered connection data can be remembered, making only
one intake necessary (4). To extract the initial Structural Database
Statistics — SDS;, — on the Schema Layer (6) this information is suf-
ficient to generate a scatter plot (7). After submitting the evolution
form, the associated query (GMOc) is identified. SMO¢ defines the
evolution operations by a grammar and considers graph character-
istics (9). An example, illustrating all levels with GEO, SMO¢ and
GMOc was given in Figure 1.

3.3 Structural Database Statistics — SDS

To show the impact and effects of evolution, Nautilus offers a visu-
alization showing Structural Database Statistics. Moreover, the SDS
before — SDS,, — and after - SDSp,+1 - the evolution are compared.

https://zenodo.org/record/8311214

Nautilus: Implementation of an Evolution Approach for Graph Databases

MODELS Companion "24, September 22-27, 2024, Linz, Austria

et . evolution
Interface | A |----- — output
- operation form
user |- 1.n A
[
3)
history of
GEO
Domain
Independent v \ & JTTToTTRmTITIImm
Evolution textualization last GEO whole GEO
Layer sumbited) history of session)
A
@schema& 777777 :: abstraction of precise ‘3
Schema statistics structura\l dgtabase implementation via
Layer extraction statistics SMOg
45 T """"""""""""""
- @ & j
_____________ i '
pata | ¥ : database i ' associated |
Loyt graph i connection p 7 GMO¢ by
database N o Aan K
V) A
:’"-_: = algorithm/ process D = data @ = direct visual apparance of graph B = log file containing GEO

O = part of visualization --» = user-interaction

evolution language to the user

Figure 2: Process of Executing Evolution Operations in Nautilus

SDS represent a hybrid approach combining schema and statisti-
cal information. The SDS aim to help explore the data at version n
as well as illustrating the impact of the evolution by comparing the
SDS at n and n+1. In addition, the number of affected entities can
be identified via the SDS.

Formal Description. A graph G is defined as tuple consisting
of a set of vertexes (=nodes) V and relationships (= edges) E. Like
in [14] this is extended by a database name ngj,.

G = (ngp, V. E)

From G a set of SDS for both entity types SDSy and SDSg are
extracted. As there are currently two ways of illustrating data, SDS
are defined for the tabular and the graphical visualization.

f(G) = (SDSy, SDSE)

The SDSy in the table are defined as single label [, a set of prop-
erty keys P solely limited to their names n, together with a set
of types of associated relationships T|g,. Examples are shown in
Figure 3 part @. In contrast, the diagram shows the number of oc-
currences ¢y, a set of property keys — with their name and datatype
dt, — as well as associated relationships E,. E4 are specified as a
single type t, count ¢; and direction D, defined as boolean. The
graphical illustration is shown in Figure 3 number @.

_ | {(LPln,.Tlg,)}t , table
bov = { {(Le,PEq)} . diagram
P = (np,dty)

Eq={(t,ct.D) |t #""}

In opposition, SDSE has the condition t # ' 'i.e., thata type ¢ can
not be an empty string. The tabular SDSE are defined as a boolean
for the direction D, a set of start Lsy and end node labels Lgp and
a set of property keys P limited to their names n, - analogous to
SDSy . For the scatter plot each relationship is defined as its type ¢
together with the count ¢, the direction D and the property keys
P. The SDS of the relationships are visualized through a scatter
plot and a table similar to those of the nodes in Figure 3 number @
and @.

SDSp = { {(t, D,LSN,LEN,}"!HP) e+ table

{(t,cs, D, P) | t#''} , diagram

The visualization of the SDS serves two purposes. First, to as-
sist the user in writing GEO by providing an overview over the
initial data. Second, to compare the data before and after execut-
ing evolution operations in one graphic and to demonstrate data
changes.

3.4 Realization of Evolution Operations

Table 1 demonstrates the precise realization of evolution opera-
tions at the data level (Figure 2 number 8). For some functions
subcategories are available. For instance, adding a label can be
executed in two different ways, as illustrated by SMOg in Figure 1.
Either all given labels can be added by addLabels or the old val-
ues can be overwritten. The Neo4j logo shows that the GMOg¢ can
be performed by a workaround with Cypher and the APOC li-
brary. Move labels for example has subcategories depending on
the number of labels to move while using a workaround. The check
mark inherits another difference. For instance, a delete node is

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Table 1: Realization of Evolution Operations

Single-type Multi-type

. E

S
< K A F o = & =
Node - v osn /s XN non/e@
Rel-ship |/ — v /N | — XN 0 0@
Label VAR SN — -
Type - v - - - — - —
Property | v v v N Né Nneé — —
Direction | — — — — — N — —

X Subcategories existing
— Unavailable operation for graph databases

v/ Native or non-native command
N Workaround with Cypher (and APOC)

Ny @ Combined approach enabling collection handling

conducted native, meaning with Cypher commands only, whereas
all rename operations make use of the APOC library and thus, are
called non-native.

The operation copy properties is a combined approach uti-
lizing Cypher to access the selected entities together with Python,
parsing the data. Using setProperties would result in overwriting
keys already present in the entity to copy to.

Some evolution operations are not available for graph databases
such as add type. This is due to the internal structure, only al-
lowing one type for a relationship, which has to be defined upon
their creation. Subsequently, delete type is equivalent to delete
relationship. Moreover, split and merge are only applicable for
entity types. Accordingly, rename is merely at hand for features.
Transform is exclusively for graph databases, describing how a
node is converted to a relationship and vice versa or a property to
an entity type.

3.5 Application Spectrum

Nautilus offers a range of functions and features for various appli-
cation scenarios. The three most important functions are:

(1) Execution of evolution operations without a GQL.
(2) Analysis of performed evolution operations via a log file.
(3) Visualization of the evolutionary impact through SDS.

All three components refer to the target user groups defined
in Subsection 3.1 as being either non-experts or experts making
use of an intuitive language. They further define when Nautilus is
beneficial and what this support looks like.

3.6 Example Usage/ Capabilities of Nautilus

To explore the initial data, the scatter plot with the SDS,, can be
requested. The advantages are a) getting an overview over the avail-
able data and b) simplifying the definition of GEO. To accomplish

Dominique Hausler and Meike Klettke

that, a user merely needs to connect to the database and gener-
ate the visual output displayed in Figure 3 part @. Figure 3 also
displays how an add together with a rename operation would be
shown. A delete operation would result in an identical illustration
as the rename operation when merely looking at an extract without
taking the history (Figure 2 number 3) into account.

Afterwards, several evolution operations can be executed. The
evolution operation form (Figure 3 number @) offers the ad-
vantage of displaying each operation in our formal language GEO.
Hence, users can straightforwardly read how their database will
be effected. As submit output, the SDS,11 are displayed together
with the SDS,, to visualize data changes like in Figure 3 number @.
The evolution history is displayed in the output section numbered
@. The other tabs - e.g., the tab shown in @ - contain tabular
information of the SDS;,+; separated by entity types. Besides all
GEOs being directly illustrated, recapitulating the actions taken
during the session is possible via a text file (3.2). This file contains
all performed queries and can be downloaded. In case of switching
the database, the file can be cleared.

4 CONCLUSION AND FUTURE WORK

Nautilus offers a wide range of evolution operations implemented
via the Django framework and executed on a Neo4j graph database.
Users benefit from the implementation of GEO by enabling them
to access and update their database without the knowledge of a
GQL. GEO is intuitive to use because drop-down menus automati-
cally assemble the language to describe what each operation does.
Moreover, GEO offers a first selection of filter options to perform
updates. We will add additional subcategories momentarily not
available. This, for example, includes filtering for a selected label
in combination with one or more property keys. To gain insight
into the understandability of GEO and the UI, a task-based study
using a thinking aloud approach will follow. In the long term, we
plan to implement a preview option that will allow the user to get
an overview of the impact an evolution operation has on the graph
database, along with an estimation of the time this operation will
take upon its execution.

ACKNOWLEDGMENTS

This work has been funded by Deutsche Forschungsgemeinschaft
(German Research Foundation) — 385808805. Special thanks goes
to Tanja Auge for the input during our discussions.

REFERENCES

[1] Junhua Bai and Lei Che. 2021. Construction and Application of Database Micro-
course Knowledge Graph Based on Neo4j. In The 2nd International Conference on
Computing and Data Science (Stanford, CA, USA) (CONF-CDS 2021). Association
for Computing Machinery, New York, NY, USA, Article 68, 5 pages. https:
//doi.org/10.1145/3448734.3450798

Ioannis Ballas, Vassilios Tsakanikas, Evaggelos Pefanis, and Vassilios Tampakas.
2021. Assessing the computational limits of GraphDBs’ engines - A comparison
study between Neo4j and Apache Spark. In Proceedings of the 24th Pan-Hellenic
Conference on Informatics (Athens, Greece) (PCI °20). Association for Comput-
ing Machinery, New York, NY, USA, 428-433. https://doi.org/10.1145/3437120.
3437356

Angela Bonifati, Stefania-Gabriela Dumbrava, Emile Martinez, Fatemeh Ghasemi,
Malo Jaffré, Pacome Luton, and Thomas Pickles. 2022. DiscoPG: Property Graph
Schema Discovery and Exploration. Proc. VLDB Endow. 15, 12 (2022), 3654-3657.
Angela Bonifati, Stefania Dumbrava, and Nicolas Mir. 2022. Hierarchical Cluster-
ing for Property Graph Schema Discovery. In Proc. EDBT. OpenProceedings.org,
2:449-2:453.

[2

—_
S

=

https://doi.org/10.1145/3448734.3450798
https://doi.org/10.1145/3448734.3450798
https://doi.org/10.1145/3437120.3437356
https://doi.org/10.1145/3437120.3437356

Nautilus: Implementation of an Evolution Approach for Graph Databases

<>IEvqutic:m Operation(s).

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Visualization: SDSp, & SDSp+1

GEO: | | add | | node | | with label | | PlaceofWork delete/
I it ob statistics. [N Latest db statstics add rename
Operation Type With &
add ¢ node ¢ label % PlaceOfWork
2
GEO: | | rename | | label | | Schema | | of node | | with label | | Schema | | to SchemaEvolution | €
Operation Type of With
rename v label v Schema node v label v Schema
DataEngineering
Rename to
Initial schema of entity type
Property key(s): name (STRING)
SchemaEvolution Relationship(s): MAIN_TOPIC.7.in (Y
5 Latest schema of entity type.
Evolution Language Propey eyt name (STRING) .
© Remove ‘) PO Relationship(s): MAIN_TOPIC,7,in . !
oe
Acive Data Datangineering DataEngineeringGroup Extomal Generator Inactive
Add new form Name of Entities
——
OOut ut
p Tabular SDSp+1
GEO - History Bflode Schema £ Relationship Schema all Evo Ops by Transactions Output
5 GEO - History &8 Node Schema £ Relationship Schema all Evo Ops by Transactions
Last Graph Evolution Operations executed: Current Schema of Nodes
ADD NODE with LABEL Active
Label Property Connected Relationship
Whole History (oldest to newest) Inactive linitials’, ‘role, [WORKS_FOR', ‘WORKS_ON', ‘WORKS_AT,
COPY all LABEL(s) of node with LABEL PlaceOfiork to NODE with LABEL Sponsor “firstName'] *OVERSEES_PROJECT_OF', 'IS_NEEDED_BY']
MultiModelGroup initials’, ‘role’, [WORKS_FOR, 'WORKS_ON', 'WORKSAT, ‘MAIN_TOPIC,
DELETE PROPERTY key(s) name of NODE with LABEL PlaceOfiiork “firstName'] "OVERSEES_PROJECT_OF' 'IS_NEEDED_BY']
PlaceOfWork [category’, ‘postalCode’, [WORKS_AT’, 'DOCTORATES_AT]
ADD NODE with LABEL External ‘street’, ‘name’, ‘number’,
n e z C7]
s
Log file options A

=

[10]

(11

[12]

[13]

[14

[15]

[16

Figure 3: Components of Nautilus

Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
and Hannes Voigt. 2019. Schema Validation and Evolution for Graph Databases.
In ER (Lecture Notes in Computer Science, Vol. 11788). Springer, 448-456.

Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
and Hannes Voigt. 2019. Schema Validation and Evolution for Graph Databases.
https://arxiv.org/abs/1902.06427

Enrico Giacinto Caldarola, Antonio Picariello, and Antonio M. Rinaldi. 2015.
Experiences in WordNet Visualization with Labeled Graph Databases. In IC3K
(Communications in Computer and Information Science, Vol. 631). Springer, 80-99.
Alberto Hernandez Chillon, Meike Klettke, Diego Sevilla Ruiz, and Jests Garcia
Molina. 2022. A Taxonomy of Schema Changes for NoSQL Databases. CoRR
abs/2205.11660 (2022).

Isabelle Comyn-Wattiau and Jacky Akoka. 2017. Model driven reverse engineer-
ing of NoSQL property graph databases: The case of Neo4j. In Proc. IEEE BigData.
IEEE Computer Society, 453-458.

Carlo Curino, Hyun Jin Moon, and Carlo Zaniolo. 2008. Graceful database schema
evolution: the PRISM workbench. Proc. VLDB Endow. 1, 1 (2008), 761-772.
Niels De Joung. 2013. 15 Tools for Visualizing Your Neo4j Graph Data-
base. https://neo4j.com/developer-blog/15-tools-for-visualizing-your-neo4j-
graph-database/ Accessed: 2024-07-04.

Torben Eckwert, Michael Guckert, and Gabriele Taentzer. 2022. EvolveDB: a tool
for model driven schema evolution. In MoDELS (Companion). ACM, 61-65.
Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In SIGMOD Conference. ACM, 1433-1445.

Angelo Augusto Frozza, Salomao Rodrigues Jacinto, and Ronaldo dos San-
tos Mello. 2020. An Approach for Schema Extraction of NoSQL Graph Databases.
In IRI IEEE, 271-278.

Dominique Hausler, Meike Klettke, and Uta Storl. 2023. A language for graph
database evolution and its implementation in Neo4j. In ER (Companion) (CEUR
Workshop Proceedings, Vol. 3618). CEUR-WS.org.

ISO/IEC 39075:2024 2024. Information technology— Database languages — GQL.
Standard. International Organization for Standardization, Geneva, CH.

(17]

(18

[19]

[20]

[21]

[22

[23

[24]

[25

Weihao Jiang, Li Yan, Yaofeng Tu, Xiangsheng Zhou, and Zongmin Ma. 2022. PG-
explorer: Resource Description Framework data exploration with property graphs.
Expert Syst. Appl. 198 (2022), 116789. https://doi.org/10.1016/J ESWA.2022.116789
Pavel Koupil, Jachym Bartik, and Irena Holubova. 2022. MM-evocat: A Tool
for Modelling and Evolution Management of Multi-Model Data. In CIKM. ACM,
4892-4896.

Haibo Liu, Guoyi Jiang, Linhua Su, Yang Cao, Fengxin Diao, and Lipeng Mi. 2020.
Construction of power projects knowledge graph based on graph database Neo4;.
In CITS. IEEE, 1-4.

Neodj, Inc. 2024. Graph Database Case Studies. https://neo4j.com/case-studies/
Accessed: 2024-02-27.

Neodj, Inc. 2024. Neo4j Welcomes New GQL International Standard in Major
Milestone for Database Industry. https://neo4j.com/press-releases/gql-standard/
Accessed: 2024-05-15.

Stefanie Scherzinger, Stephanie Sombach, Katharina Wiech, Meike Klettke, and
Uta Storl. 2016. Datalution: a tool for continuous schema evolution in NoSQL-
backed web applications. In QUDOS@ISSTA. ACM, 38-39.

Uta Storl and Meike Klettke. 2022. Darwin: A Data Platform for Schema Evolution
Management and Data Migration. In EDBT/ICDT Workshops (CEUR Workshop
Proceedings, Vol. 3135). CEUR-WS.org.

Pablo Suarez-Otero, Michael J. Mior, Maria José Suarez Cabal, and Javier Tuya.
2023. CoDEvo: Column family database evolution using model transformations.
7. Syst. Softw. 203 (2023), 111743.

Michael Thane, Kai M. Blum, and Dirk J. Lehmann. 2023. CatNetVis: Semantic
Visual Exploration of Categorical High-Dimensional Data with Force-Directed
Graph Layouts. In 25th Eurographics Conference on Visualization, EuroVis 2023 -
Short Papers, Leipzig, Germany, June 12-16, 2023, Thomas Hollt, Wolfgang Aigner,
and Bei Wang (Eds.). Eurographics Association, 91-95. https://doi.org/10.2312/
EVS.20231049

https://arxiv.org/abs/1902.06427
https://neo4j.com/developer-blog/15-tools-for-visualizing-your-neo4j-graph-database/
https://neo4j.com/developer-blog/15-tools-for-visualizing-your-neo4j-graph-database/
https://doi.org/10.1016/J.ESWA.2022.116789
https://neo4j.com/case-studies/
https://neo4j.com/press-releases/gql-standard/
https://doi.org/10.2312/EVS.20231049
https://doi.org/10.2312/EVS.20231049

	Abstract
	1 Introduction and Motivation
	2 Related Work & preliminary work
	3 Nautilus
	3.1 Target User Group
	3.2 Overview of Nautilus
	3.3 Structural Database Statistics – SDS
	3.4 Realization of Evolution Operations
	3.5 Application Spectrum
	3.6 Example Usage/ Capabilities of Nautilus

	4 Conclusion and future work
	Acknowledgments
	References

