
Nautilus: Implementation of an Evolution Approach for Graph
Databases

Dominique Hausler∗
dominique.hausler@ur.de
University of Regensburg

Regensburg, Bavaria, Germany

Meike Klettke
meike.klettke@ur.de

University of Regensburg
Regensburg, Bavaria, Germany

ABSTRACT
Equivalent to relational databases, there is a need for an evolution
language for graph databases that describes how evolution opera-
tions such as add, rename, delete, copy, move, split and merge are
specified domain independent. Previous work proposes the graph
evolution language called GEO, which we build upon.

In this paper, we present our program called Nautilus, implement-
ing this formal language, used to define evolution and intuitively
easing the usage of graph database systems. GEO can also be used
to update implicit structures in the graph data. Users benefit not
only from an easy-to-use interface to minimize syntax errors and to
reduce the necessary knowledge of the evolution language, but also
from additional statistics on database structures which are visual-
ized in the tool. This visualization allows initial data exploration
as well as identifying the effects of the development by comparing
data versions.

Consequently, Nautilus is capable of widening the range of users
and accessibility of graph databases for interdisciplinary research
projects. Illustrating schema changes and performing schema evolu-
tion transparently builds the core of Nautilus. Complex operations
like split and transform are part of the available evolution language,
thus avoiding programming workarounds. An additional feature of
the tool is a logging components that offers the traceability of all
performed evolution operations.

CCS CONCEPTS
• Information systems; • Data management systems; • Data-
base administration; • Database utilities and tools;

KEYWORDS
GraphDatabases, Property Graph, Evolution Language, GraphData-
base Statistics, Profiles, Neo4j

ACM Reference Format:
Dominique Hausler and Meike Klettke. 2024. Nautilus: Implementation of
an Evolution Approach for Graph Databases. InACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems (MODELS
Companion ’24), September 22–27, 2024, Linz, Austria. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3652620.3687781

∗Corresponding author.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687781

1 INTRODUCTION AND MOTIVATION
All graph databases which are used over long periods of time have
to be evolved. Changing requirements as well as a re-design of
their structures lead to changes e.g., new features may be added,
renamed or a refactoring takes place. In all these cases, an evolution
of the graph databases is necessary. Although query and update
languages [16] are currently available, there is as far as we know
no explicit evolution language. Whereas evolution approaches exist
for other data models [10, 12, 22], a similar approach for graph
databases is still missing, especially in the context of the arising
research question: How to make schema evolution in graph databases
available to a bigger group of users, ensuring good usability? We
have developed our system for graph databases in general, due to
the popularity of Neo4j [20]. This is the first system used in our
prototype named Nautilus.

Contribution. The novelty of Nautilus consists of:
• Our evolution language GEO (Graph Evolution Operation)
from [15], using an intuitive syntax to ease the comprehen-
sion of evolution operations.

• Due to filter options, GEO can also be used to perform up-
dates for a specified part of the graph database.

• The graph-specific evolution operation transform is inte-
grated, showing the difficulties when working with highly
interconnected data.

• The integration of complex operations like split or move
which are not available in Graph Query Languages (GQLs).

• Structural Database Statistics (SDS) are used to show the
impact of evolution and to estimate the evolutionary effort.

Structure. The rest of this article is sectioned as followed: First,
preliminary and related work is analyzed. Section 3 focuses on Nau-
tilus, including the target user group (3.1), followed by an overview
over the program components (3.2) and the structural database
statistics – a hybrid approach combining schema and statistical
data (3.3). In 3.4 we discuss the realization of evolution operations,
followed by the application spectrum (3.5) and an example usage
of Nautilus in 3.6. A summary is given in Section 4, together with
some future work tasks.

2 RELATEDWORK & PRELIMINARYWORK
As a result of Cypher’s popularity in research [1, 2, 9, 19] as well as
in commercial applications [13, 20], the evolution language GEO
was based on Neo4j’s query language. Moreover, standard confor-
mity to the newly released ISO GQL [16] is proposed by Neo4j [21].
Consequently, Nautilus also uses Neo4j.

Schema Extraction. Graph databases (GDB) can be schema-
less, making schema-second approaches necessary to extract schema
data from an existing database. Several extraction services for graph

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://orcid.org/0009-0004-2381-133X
https://orcid.org/0000-0003-0551-8389
https://doi.org/10.1145/3652620.3687781
https://doi.org/10.1145/3652620.3687781
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3687781&domain=pdf&date_stamp=2024-10-31

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Dominique Hausler and Meike Klettke

Graph Evolution Operation – GEO

addFeatures ::= ’add’ label Student ’to’ node ’with’
label Person

Schema Modification Operation – 𝑆𝑀𝑂𝐶

WITH parameter AS old_label selectPattern
((CALL addLabels YIELD node)| (CALL overwriteLabelsOf

old_labelWithnew_label))
RETURN node

Graph Manipulation Operation – 𝐺𝑀𝑂𝐶

WITH $old_label AS old_label
MATCH (a) WHERE apoc.label.exists(a, $old_label)
CALL apoc.create.setLabels(a, $list_of_new_labels)
YIELD node RETURN node

Figure 1: The Evolution Operation "add label to node" and its
Realization in Neo4j

databases are at hand [3, 9, 14]. For our approach we make use of
the Awesome Procedures On Cypher (APOC) library’s functions
to extract schema data.

Evolution. In contrast to [4–6], the novelty of our evolution
language implemented in Nautilus is the extension of the graph-
specific transform operation, illustrating the complexity of GDBs.
transform describes the process of changing the entity type e.g.,
converting a node into a relationship and vice versa.

SchemaVisualisation. There are several tools to explore highly
interconnected data such as [7, 11, 17, 25]. Such visualisations help
to give a brief overview over the data already available. In the
context of evolution an available tool including a visualization is
presented in [23].

Own Preliminary Work & Theoretical Background. GEO
defines operations similar to those used in other database systems.
In relational databases, the alter table statements are applicable
to specify single-type evolution operations. For JSON databases,
many authors suggest more complex single and multi-type evo-
lution operations e.g., [8, 18, 24]. Our program focuses on graph
databases, adapting the operations to graph-specific features. In
addition to these works, we implement a first collection of filter
functions. Figure 1 shows an example for all three levels. From the
platform independent GEO1 our system derives specific Schema
Modification Operations – 𝑆𝑀𝑂𝐶 – for an exact translation into
Neo4j. Platform dependency is indicated by the C index for Cypher.
At the data level, the Graph Manipulation Operation – 𝐺𝑀𝑂𝐶 ,
specifies what the graph query looks like. The orange box shows
the evolution language, explaining how an operation is defined
for graph databases in general. In the sample in Figure 1 the label
Student is added to all Person nodes. 𝑆𝑀𝑂𝐶 forms the theory be-
hind the precise implementation on the schema level, while𝐺𝑀𝑂𝐶

represents the Cypher query.

1GEO file: https://zenodo.org/record/8311214

3 NAUTILUS
Nautilus implements GEO (Graph Evolution Operation) presented
in [15]. It is able to describe evolution operations domain inde-
pendently. Due to GEO being realized through a formal language,
it eases the understanding of how evolution operations such as
add, rename, delete, copy, move, split or merge work. Nodes and
relationships are referred to as entity types whereas labels, types
and properties are called features.

3.1 Target User Group
As GEO mimics natural language, the program can be operated by
a wide range of users consisting of:

• Non-computer scientists who want to use a graph database
for storing, updating and manipulating their data.

• Computer scientists who want to realize updates and evolu-
tion operations with an intuitive language.

Consequently, the main impact emerges for interdisciplinary
projects with the benefit of significantly reducing the time to learn
a new query language. An example for bringing both user groups
together is the type field (see Figure 3 number ①). Here headings
are displayed in the drop-down menus, using technical terminology
for professionals, while non-professionals are still able to use the
program without this knowledge.

3.2 Overview of Nautilus
Figure 2 illustrates how the evolution language, the 𝑆𝑀𝑂𝐶 and
the precise implementation 𝐺𝑀𝑂𝐶 are connected to each other in
Nautilus. Nautilus makes use of parameters to increase the perfor-
mance of the executed queries. This can be seen in Figure 1, illus-
trating how add label(s) is implemented. The program is based
on the Django-framework, using Python backend and JavaScript,
HTML and CSS for the frontend.

As already indicated, the main part of the program contains
our evolution language GEO, shown by the Domain Independent
Evolution Layer in Figure 2. The eye-symbol symbolizes the direct
visibility to the user. GEO is – depending on the user’s input via 2
– composed on the platform independent level. Subsequently, with
each input the next part of the evolution language is displayed.
Either one or multiple (indicated by the 1..n) evolution operations
can be executed sequentially at once. Additionally, for the applica-
bility of the tool, all executed GEOs are saved in a history, directly
showing GEO to the user 3.1 together with the option of a log file
3.2. The entered connection data can be remembered, making only
one intake necessary (4). To extract the initial Structural Database
Statistics – 𝑆𝐷𝑆𝑛 – on the Schema Layer (6) this information is suf-
ficient to generate a scatter plot (7). After submitting the evolution
form, the associated query (𝐺𝑀𝑂𝐶) is identified. 𝑆𝑀𝑂𝐶 defines the
evolution operations by a grammar and considers graph character-
istics (9). An example, illustrating all levels with GEO, 𝑆𝑀𝑂𝐶 and
𝐺𝑀𝑂𝐶 was given in Figure 1.

3.3 Structural Database Statistics – SDS
To show the impact and effects of evolution, Nautilus offers a visu-
alization showing StructuralDatabase Statistics. Moreover, the SDS
before – 𝑆𝐷𝑆𝑛 – and after – 𝑆𝐷𝑆𝑛+1 – the evolution are compared.

https://zenodo.org/record/8311214

Nautilus: Implementation of an Evolution Approach for Graph Databases MODELS Companion ’24, September 22–27, 2024, Linz, Austria

 = log file containing GEO
 = user-interaction

 = data = direct visual apparance of graph
evolution language to the user

 = algorithm/ process

database
connection

evolution
operation form

textualization
of GEO

associated
GMOC

abstraction of precise
implementation via

SMOC

output

history of
GEO

last GEO
sumbited

whole GEO
history of session

structural database
statistics

user

1..n

1..n

1..n

1..n

1
graph

database

1

5

4

2

2

8

9

3

3

3.1 3.2

7

User
Interface

schema &
statistics
extraction

6

Domain
Independent
Evolution
Layer

Schema
Layer

Data
Layer

 = part of visualization

Figure 2: Process of Executing Evolution Operations in Nautilus

𝑆𝐷𝑆 represent a hybrid approach combining schema and statisti-
cal information. The SDS aim to help explore the data at version n
as well as illustrating the impact of the evolution by comparing the
SDS at n and n+1. In addition, the number of affected entities can
be identified via the SDS.

Formal Description. A graph 𝐺 is defined as tuple consisting
of a set of vertexes (=nodes) 𝑉 and relationships (= edges) 𝐸. Like
in [14] this is extended by a database name 𝑛𝑑𝑏 .

𝐺 = (𝑛𝑑𝑏 ,𝑉 , 𝐸)
From 𝐺 a set of 𝑆𝐷𝑆 for both entity types 𝑆𝐷𝑆𝑉 and 𝑆𝐷𝑆𝐸 are

extracted. As there are currently two ways of illustrating data, 𝑆𝐷𝑆
are defined for the tabular and the graphical visualization.

𝑓 (𝐺) = (𝑆𝐷𝑆𝑉 , 𝑆𝐷𝑆𝐸)
The 𝑆𝐷𝑆𝑉 in the table are defined as single label 𝑙 , a set of prop-

erty keys 𝑃 solely limited to their names 𝑛𝑝 together with a set
of types of associated relationships 𝑇 |𝐸𝑎 . Examples are shown in
Figure 3 part ④. In contrast, the diagram shows the number of oc-
currences 𝑐𝑙 , a set of property keys – with their name and datatype
𝑑𝑡𝑝 – as well as associated relationships 𝐸𝑎 . 𝐸𝑎 are specified as a
single type 𝑡 , count 𝑐𝑡 and direction 𝐷 , defined as boolean. The
graphical illustration is shown in Figure 3 number ②.

𝑆𝐷𝑆𝑉 =

{
{(𝑙, 𝑃 |𝑛𝑝 ,𝑇 |𝐸𝑎)} , table
{(𝑙, 𝑐𝑙 , 𝑃, 𝐸𝑎)} , diagram

𝑃 = (𝑛𝑝 , 𝑑𝑡𝑝)

𝐸𝑎 = {(𝑡, 𝑐𝑡 , 𝐷)
�� 𝑡 ≠ ' '}

In opposition, 𝑆𝐷𝑆𝐸 has the condition 𝑡 ≠ ' ' i.e., that a type 𝑡 can
not be an empty string. The tabular 𝑆𝐷𝑆𝐸 are defined as a boolean
for the direction 𝐷 , a set of start 𝐿𝑆𝑁 and end node labels 𝐿𝐸𝑁 and
a set of property keys 𝑃 limited to their names 𝑛𝑝 – analogous to
𝑆𝐷𝑆𝑉 . For the scatter plot each relationship is defined as its type 𝑡
together with the count 𝑐𝑡 , the direction 𝐷 and the property keys
𝑃 . The SDS of the relationships are visualized through a scatter
plot and a table similar to those of the nodes in Figure 3 number ②
and ④.

𝑆𝐷𝑆𝐸 =

{
{(𝑡, 𝐷, 𝐿𝑆𝑁 , 𝐿𝐸𝑁 , 𝑃 |𝑛𝑝)

�� 𝑡 ≠ ' '} , table
{(𝑡, 𝑐𝑡 , 𝐷, 𝑃)

�� 𝑡 ≠ ' '} , diagram
The visualization of the SDS serves two purposes. First, to as-

sist the user in writing GEO by providing an overview over the
initial data. Second, to compare the data before and after execut-
ing evolution operations in one graphic and to demonstrate data
changes.

3.4 Realization of Evolution Operations
Table 1 demonstrates the precise realization of evolution opera-
tions at the data level (Figure 2 number 8). For some functions
subcategories are available. For instance, adding a label can be
executed in two different ways, as illustrated by 𝑆𝑀𝑂𝐶 in Figure 1.
Either all given labels can be added by addLabels or the old val-
ues can be overwritten. The Neo4j logo shows that the 𝐺𝑀𝑂𝐶 can
be performed by a workaround with Cypher and the APOC li-
brary. Move labels for example has subcategories depending on
the number of labels to move while using a workaround. The check
mark inherits another difference. For instance, a delete node is

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Dominique Hausler and Meike Klettke

Table 1: Realization of Evolution Operations

Single-type Multi-type
A
dd

R
en

am
e

D
el
et
e

T
ra
ns

fo
rm

C
op

y

M
o v

e

Sp
li
t

M
er
ge

Node ✓✗ — ✓ ✓/ ✓✗ ✓✗/ /

Rel-ship ✓✗ — ✓ ✓/ — ✓✗/ /

Label ✓✗ ✓ ✓ — ✓ ✓✗/ — —

Type — ✓ — — — — — —
Property ✓ ✓ ✓ / / — —

Direction — — — — — — —

✓✗ Subcategories existing
— Unavailable operation for graph databases
✓ Native or non-native command

Workaround with Cypher (and APOC)

/ Combined approach enabling collection handling

conducted native, meaning with Cypher commands only, whereas
all rename operations make use of the APOC library and thus, are
called non-native.

The operation copy properties is a combined approach uti-
lizing Cypher to access the selected entities together with Python,
parsing the data. Using setPropertieswould result in overwriting
keys already present in the entity to copy to.

Some evolution operations are not available for graph databases
such as add type. This is due to the internal structure, only al-
lowing one type for a relationship, which has to be defined upon
their creation. Subsequently, delete type is equivalent to delete
relationship. Moreover, split and merge are only applicable for
entity types. Accordingly, rename is merely at hand for features.
Transform is exclusively for graph databases, describing how a
node is converted to a relationship and vice versa or a property to
an entity type.

3.5 Application Spectrum
Nautilus offers a range of functions and features for various appli-
cation scenarios. The three most important functions are:

(1) Execution of evolution operations without a GQL.
(2) Analysis of performed evolution operations via a log file.
(3) Visualization of the evolutionary impact through SDS.

All three components refer to the target user groups defined
in Subsection 3.1 as being either non-experts or experts making
use of an intuitive language. They further define when Nautilus is
beneficial and what this support looks like.

3.6 Example Usage/ Capabilities of Nautilus
To explore the initial data, the scatter plot with the 𝑆𝐷𝑆𝑛 can be
requested. The advantages are a) getting an overview over the avail-
able data and b) simplifying the definition of GEO. To accomplish

that, a user merely needs to connect to the database and gener-
ate the visual output displayed in Figure 3 part ②. Figure 3 also
displays how an add together with a rename operation would be
shown. A delete operation would result in an identical illustration
as the rename operation when merely looking at an extract without
taking the history (Figure 2 number 3) into account.

Afterwards, several evolution operations can be executed. The
evolution operation form (Figure 3 number ①) offers the ad-
vantage of displaying each operation in our formal language GEO.
Hence, users can straightforwardly read how their database will
be effected. As submit output, the 𝑆𝐷𝑆𝑛+1 are displayed together
with the 𝑆𝐷𝑆𝑛 to visualize data changes like in Figure 3 number ②.
The evolution history is displayed in the output section numbered
③. The other tabs – e.g., the tab shown in ④ – contain tabular
information of the 𝑆𝐷𝑆𝑛+1 separated by entity types. Besides all
GEOs being directly illustrated, recapitulating the actions taken
during the session is possible via a text file (3.2). This file contains
all performed queries and can be downloaded. In case of switching
the database, the file can be cleared.

4 CONCLUSION AND FUTUREWORK
Nautilus offers a wide range of evolution operations implemented
via the Django framework and executed on a Neo4j graph database.
Users benefit from the implementation of GEO by enabling them
to access and update their database without the knowledge of a
GQL. GEO is intuitive to use because drop-down menus automati-
cally assemble the language to describe what each operation does.
Moreover, GEO offers a first selection of filter options to perform
updates. We will add additional subcategories momentarily not
available. This, for example, includes filtering for a selected label
in combination with one or more property keys. To gain insight
into the understandability of GEO and the UI, a task-based study
using a thinking aloud approach will follow. In the long term, we
plan to implement a preview option that will allow the user to get
an overview of the impact an evolution operation has on the graph
database, along with an estimation of the time this operation will
take upon its execution.

ACKNOWLEDGMENTS
This work has been funded by Deutsche Forschungsgemeinschaft
(German Research Foundation) – 385808805. Special thanks goes
to Tanja Auge for the input during our discussions.

REFERENCES
[1] Junhua Bai and Lei Che. 2021. Construction and Application of Database Micro-

course Knowledge Graph Based on Neo4j. In The 2nd International Conference on
Computing and Data Science (Stanford, CA, USA) (CONF-CDS 2021). Association
for Computing Machinery, New York, NY, USA, Article 68, 5 pages. https:
//doi.org/10.1145/3448734.3450798

[2] Ioannis Ballas, Vassilios Tsakanikas, Evaggelos Pefanis, and Vassilios Tampakas.
2021. Assessing the computational limits of GraphDBs’ engines - A comparison
study between Neo4j and Apache Spark. In Proceedings of the 24th Pan-Hellenic
Conference on Informatics (Athens, Greece) (PCI ’20). Association for Comput-
ing Machinery, New York, NY, USA, 428–433. https://doi.org/10.1145/3437120.
3437356

[3] Angela Bonifati, Stefania-Gabriela Dumbrava, Emile Martinez, Fatemeh Ghasemi,
Malo Jaffré, Pacome Luton, and Thomas Pickles. 2022. DiscoPG: Property Graph
Schema Discovery and Exploration. Proc. VLDB Endow. 15, 12 (2022), 3654–3657.

[4] Angela Bonifati, Stefania Dumbrava, and Nicolas Mir. 2022. Hierarchical Cluster-
ing for Property Graph Schema Discovery. In Proc. EDBT. OpenProceedings.org,
2:449–2:453.

https://doi.org/10.1145/3448734.3450798
https://doi.org/10.1145/3448734.3450798
https://doi.org/10.1145/3437120.3437356
https://doi.org/10.1145/3437120.3437356

Nautilus: Implementation of an Evolution Approach for Graph Databases MODELS Companion ’24, September 22–27, 2024, Linz, Austria

1

2

3
4

add
delete/
rename

Visualization: SDSn & SDSn+1

Tabular SDSn+1

Evolution Language

Log file options

Figure 3: Components of Nautilus

[5] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
and Hannes Voigt. 2019. Schema Validation and Evolution for Graph Databases.
In ER (Lecture Notes in Computer Science, Vol. 11788). Springer, 448–456.

[6] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
and Hannes Voigt. 2019. Schema Validation and Evolution for Graph Databases.
https://arxiv.org/abs/1902.06427

[7] Enrico Giacinto Caldarola, Antonio Picariello, and Antonio M. Rinaldi. 2015.
Experiences in WordNet Visualization with Labeled Graph Databases. In IC3K
(Communications in Computer and Information Science, Vol. 631). Springer, 80–99.

[8] Alberto Hernández Chillón, Meike Klettke, Diego Sevilla Ruiz, and Jesús García
Molina. 2022. A Taxonomy of Schema Changes for NoSQL Databases. CoRR
abs/2205.11660 (2022).

[9] Isabelle Comyn-Wattiau and Jacky Akoka. 2017. Model driven reverse engineer-
ing of NoSQL property graph databases: The case of Neo4j. In Proc. IEEE BigData.
IEEE Computer Society, 453–458.

[10] Carlo Curino, Hyun Jin Moon, and Carlo Zaniolo. 2008. Graceful database schema
evolution: the PRISM workbench. Proc. VLDB Endow. 1, 1 (2008), 761–772.

[11] Niels De Joung. 2013. 15 Tools for Visualizing Your Neo4j Graph Data-
base. https://neo4j.com/developer-blog/15-tools-for-visualizing-your-neo4j-
graph-database/ Accessed: 2024-07-04.

[12] Torben Eckwert, Michael Guckert, and Gabriele Taentzer. 2022. EvolveDB: a tool
for model driven schema evolution. In MoDELS (Companion). ACM, 61–65.

[13] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In SIGMOD Conference. ACM, 1433–1445.

[14] Angelo Augusto Frozza, Salomão Rodrigues Jacinto, and Ronaldo dos San-
tos Mello. 2020. An Approach for Schema Extraction of NoSQL Graph Databases.
In IRI. IEEE, 271–278.

[15] Dominique Hausler, Meike Klettke, and Uta Störl. 2023. A language for graph
database evolution and its implementation in Neo4j. In ER (Companion) (CEUR
Workshop Proceedings, Vol. 3618). CEUR-WS.org.

[16] ISO/IEC 39075:2024 2024. Information technology— Database languages — GQL.
Standard. International Organization for Standardization, Geneva, CH.

[17] Weihao Jiang, Li Yan, Yaofeng Tu, Xiangsheng Zhou, and Zongmin Ma. 2022. PG-
explorer: Resource Description Framework data explorationwith property graphs.
Expert Syst. Appl. 198 (2022), 116789. https://doi.org/10.1016/J.ESWA.2022.116789

[18] Pavel Koupil, Jáchym Bártík, and Irena Holubová. 2022. MM-evocat: A Tool
for Modelling and Evolution Management of Multi-Model Data. In CIKM. ACM,
4892–4896.

[19] Haibo Liu, Guoyi Jiang, Linhua Su, Yang Cao, Fengxin Diao, and Lipeng Mi. 2020.
Construction of power projects knowledge graph based on graph database Neo4j.
In CITS. IEEE, 1–4.

[20] Neo4j, Inc. 2024. Graph Database Case Studies. https://neo4j.com/case-studies/
Accessed: 2024-02-27.

[21] Neo4j, Inc. 2024. Neo4j Welcomes New GQL International Standard in Major
Milestone for Database Industry. https://neo4j.com/press-releases/gql-standard/
Accessed: 2024-05-15.

[22] Stefanie Scherzinger, Stephanie Sombach, Katharina Wiech, Meike Klettke, and
Uta Störl. 2016. Datalution: a tool for continuous schema evolution in NoSQL-
backed web applications. In QUDOS@ISSTA. ACM, 38–39.

[23] Uta Störl andMeike Klettke. 2022. Darwin: A Data Platform for Schema Evolution
Management and Data Migration. In EDBT/ICDT Workshops (CEUR Workshop
Proceedings, Vol. 3135). CEUR-WS.org.

[24] Pablo Suárez-Otero, Michael J. Mior, María José Suárez Cabal, and Javier Tuya.
2023. CoDEvo: Column family database evolution using model transformations.
J. Syst. Softw. 203 (2023), 111743.

[25] Michael Thane, Kai M. Blum, and Dirk J. Lehmann. 2023. CatNetVis: Semantic
Visual Exploration of Categorical High-Dimensional Data with Force-Directed
Graph Layouts. In 25th Eurographics Conference on Visualization, EuroVis 2023 -
Short Papers, Leipzig, Germany, June 12-16, 2023, Thomas Höllt, Wolfgang Aigner,
and Bei Wang (Eds.). Eurographics Association, 91–95. https://doi.org/10.2312/
EVS.20231049

https://arxiv.org/abs/1902.06427
https://neo4j.com/developer-blog/15-tools-for-visualizing-your-neo4j-graph-database/
https://neo4j.com/developer-blog/15-tools-for-visualizing-your-neo4j-graph-database/
https://doi.org/10.1016/J.ESWA.2022.116789
https://neo4j.com/case-studies/
https://neo4j.com/press-releases/gql-standard/
https://doi.org/10.2312/EVS.20231049
https://doi.org/10.2312/EVS.20231049

	Abstract
	1 Introduction and Motivation
	2 Related Work & preliminary work
	3 Nautilus
	3.1 Target User Group
	3.2 Overview of Nautilus
	3.3 Structural Database Statistics – SDS
	3.4 Realization of Evolution Operations
	3.5 Application Spectrum
	3.6 Example Usage/ Capabilities of Nautilus

	4 Conclusion and future work
	Acknowledgments
	References

