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Abstract: Background/Objectives: Inflammatory bowel disease (IBD) is a chronic immune-mediated
pathology associated with the dysregulation of lipid metabolism. The administration of nervonic
acid, a very long-chain fatty acid, has been shown to improve colonic inflammation in a mouse
model of colitis. Our study aimed to quantify fecal levels of nervonic acid, as well as the very long-
chain fatty acids, lignoceric acid, and pentacosanoic acid, to identify associations with IBD activity.
Methods: Stool samples were collected from 62 patients with IBD and 17 healthy controls. Nervonic
acid, lignoceric acid, and pentacosanoic acid were quantified by gas chromatography coupled with
mass spectrometry (GC-MS). Lipid levels, normalized to the dry weight of fecal homogenates,
were used for calculations. Results: Patients with IBD exhibited elevated fecal nervonic acid levels
compared to healthy controls, with no significant differences observed between ulcerative colitis and
Crohn’s disease. A fecal nervonic acid concentration of 0.49 µmol/g distinguished IBD patients from
controls, achieving a sensitivity of 71% and a specificity of 82%. Fecal nervonic acid levels showed a
positive correlation with both C-reactive protein and fecal calprotectin and increased proportionally
with rising fecal calprotectin levels. IBD patients treated with corticosteroids or interleukin-12/23
antibodies had higher levels of fecal nervonic acid than those in other therapies, with no difference in
serum C-reactive protein and calprotectin levels between these groups. Conclusions: In summary,
this analysis indicates that fecal nervonic acid may emerge as a novel specific biomarker for IBD
diagnosis and disease monitoring.

Keywords: nervonic acid; fatty acids; biomarker; ulcerative colitis; Crohn’s disease; inflammatory
bowel disease

1. Introduction

Inflammatory bowel diseases (IBD), including the main forms of Crohn’s disease
(CD) and ulcerative colitis (UC), are chronic inflammatory diseases of the gastrointestinal
tract [1,2]. Due to the early onset and chronicity of these diseases, their global prevalence
is projected to increase to about 1% over the next few decades [3]. The precise path-
omechanisms of these multifactorial diseases are still unclear. It is hypothesized that an
environmental trigger initiates an abnormal immune response in the intestines of genet-
ically predisposed individuals [4–6]. Thus, the immunological homeostasis within the
intestinal mucosa is disturbed by self-perpetuating inflammatory processes. Maintained
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inflammation is associated with increased cell death rates in biopsy samples from patients
with CD and UC as well as in mouse models of colitis [7–11].

Fatty acids have a variety of roles in IBD, from immunoregulatory responses to the
modulation of barrier integrity. The gut microbiota ferments indigestible dietary fiber to
produce short-chain fatty acids, which have potent anti-inflammatory properties and are
thought to be important protective factors against IBD. Polyunsaturated fatty acids mostly
have anti-inflammatory properties, whereas saturated fatty acids have pro-inflammatory
effects [12–15]. Dietary supplementation with the long-chain polyunsaturated fatty acid,
eicosapentaenoic acid, for six months, reduced fecal calprotectin levels without causing
significant side effects in a placebo-controlled trial in patients with UC [16].

Very long-chain fatty acids (VLCFAs) are fatty acids with more than 22 carbon atoms
in their structure. VLCFAs have essential biological functions, including the formation
of cellular membranes, signaling processes, and the maintenance of skin barrier integrity.
In addition to being produced endogenously from long-chain fatty acids and elongated
by the elongase of the very long fatty acids family, VLCFAs can also be obtained from
food [15,17]. Linked to a sphingoid base, VLCFAs are important structural components of
sphingolipids [18].

Nervonic acid is a monounsaturated VLCFA primarily found in the white matter
of animal brains and in high concentrations in the human liver and kidney. Nervonic
acid contributes to metabolic health, regulates the immune system, and possesses anti-
inflammatory properties [19]. Moreover, recent research indicated that diets supplemented
with nervonic acid not only exert positive effects on human health in general, but also
have the potential to improve various medical conditions, including neurological diseases,
cancer, diabetes, obesity, and associated complications [19–22].

Oral administration of nervonic acid in a mouse model of colitis demonstrated anti-
inflammatory properties by suppressing NF-κB-mediated signaling and restoring intestinal
barrier function [22]. Moreover, nervonic acid-dependent reduction in epithelial damage
and pro-inflammatory cytokine production in the colon of mice with colitis was comparable
to those of eicosapentaenoic acid and dexamethasone [22].

A recent analysis observed an increase in free fatty acids in the colonic tissue of mice
with acute colitis and during early repair phases. VLCFAs were enriched, whereas the
levels of short- and long-chain fatty acids did not change. This study showed a marked
increase in free lignoceric acid and nervonic acid in the injured epithelial cells [23]. VLCFAs
were released from the injured intestine and activated peroxisome proliferator-activated
receptor (PPAR) gamma in intestinal stem cells to accelerate the repair of intestinal epithelia.
This experimental study showed that compared to other fatty acids, VLCFAs, in particular,
are enriched in the acutely injured intestine and also during early repair [23].

In the IL-10 knock-out mouse, which develops severe IBD, the increase in saturated,
very long-chain ceramides in macrophages is critical for the higher expression of inflamma-
tory genes. This study showed a decrease in most sphingomyelins and a concomitant rise
in ceramides in IL-10-null macrophages [24]. Inappropriate de novo synthesis of monoun-
saturated fatty acids was identified as the cause of the accumulation of VLCFAs. Blocking
the synthesis of very long-chain ceramides, as well as oral intake of monounsaturated fatty
acids, improved colonic inflammation in these animals [24].

However, in the feces of patients with IBD, levels of sphingolipids like sphingomyelin
were elevated compared to healthy individuals [25].

Experimental studies indicate a role for VLCFAs in IBD pathology and diagnosis [23,24].
However, current research on the role of VLCFAs in human IBD is limited and there is a
gap in our understanding of the role of VLCFAs. To our knowledge, levels of VLCFAs in
the fecal samples of patients and their association with IBD severity have so far not been
investigated. Our study aims to examine fecal levels of nervonic acid, lignoceric acid, and
pentacosanoic acid, to identify associations with clinical markers of IBD severity.
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2. Materials and Methods
2.1. Patients

Patients aged 18 years or older with IBD were randomly selected from the tertiary care
center outpatient or inpatient clinic. Recruitment for the study took place from 6 December
2021 to 31 January 2023. Diagnosis of IBD was established using histologic, endoscopic, and
clinical criteria [26]. Pregnant women and individuals with coagulopathy were excluded
from the study. Patients with primary sclerosing cholangitis were also excluded.

2.2. Bristol Stool Chart

Stools were classified according to the Bristol stool chart as follows: type 1 and 2
indicating constipation (5 patients), type 3 and 4 indicating normal stool (15 patients), type
5 and 6 indicating diarrhea (33 patients), and type 7 indicating watery stool (9 patients).

2.3. Gastrointestinal Symptom Rating Scale

The Gastrointestinal Symptom Rating Scale (GSRS) is a questionnaire used to assess
gastrointestinal symptoms [27]. It consists of questions to rate various symptoms, com-
monly associated with gastrointestinal disorders, and covers symptoms such as abdominal
pain, bloating, diarrhea, constipation, and general discomfort related to digestion. Two
patients with IBD had very severe symptoms, 36 patients had moderate symptoms, 21 pa-
tients had mild symptoms, and one patient had no symptoms. The score of two patients
was not documented.

2.4. Analysis of Fecal Fatty Acids

Stool samples from patients and healthy controls (including hospital staff, students,
and patients’ partners) were collected using 70% isopropanol. These fecal samples have
been used before to measure fecal bile acids [28]. Samples were stored at −80 ◦C until
further processing by using the gentleMACSTM Dissociator (Miltenyi Biotec GmbH, Ber-
gisch Gladbach, Germany) for homogenization. To determine the dry weight, 1.0 mL of
the homogenized mixture was dried in a vacuum centrifuge. The homogenates were then
diluted to a final concentration of 2.0 mg dry weight/mL for further examination. The
quantification of fecal fatty acids was performed using gas chromatography coupled with
mass spectrometry (GC-MS) after the derivatization of fatty acid methyl ester, as described
previously [29], with some modifications. In brief, the initial column temperature of 50 ◦C
was held for 0.75 min, increased with 40 ◦C/min to 110 ◦C, with 6 ◦C/min to 210 ◦C, with
15 ◦C/min to 250 ◦C and held for 2 min.

A calibration curve for all measured fatty acids, based on selected ion monitoring and
19-methyleicosanoate as an internal standard, was used. This approach allows quantifica-
tion via GC-MS. The details of the quantification and the method validation are described
in Ecker et al. [29]. In the current study, data were calculated for nervonic acid together
with the data of the VLCFAs lignoceric acid and pentacosanoic acid.

2.5. Analysis of C-Reactive Protein

The evaluation of C-reactive protein (CRP) levels was conducted using an improved
approach for immunoturbidimetric assays. A Cobas Pro analyzer and matching Roche
assays (Penzberg, Germany) were used for these tests.

2.6. Analysis of Creatinine and Calculation of Glomerular Filtration Rate

Creatinine was converted to glycine, formaldehyde, and hydrogen peroxide by crea-
tininase, creatinase, and sarcosine oxidase as part of the enzymatic method for measuring
serum creatinine. Using 4-aminophenazone and HTIBa as substrates, peroxidase uses the
liberated hydrogen peroxide to create a quinoneiminine dye. The concentration of creati-
nine in the reaction mixture directly correlates with the quinoneiminine dye’s color intensity.
A Cobas Pro analyzer and matching assays from Roche were used for this test. The formula
outlined by Levey et al. [30] was applied to the glomerular filtration rate calculation.
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2.7. Analysis of Fecal Calprotectin

The measurement of fecal calprotectin was conducted with the Quanta Flash Calpro-
tectin reagent (Inova Diagnostics, San Diego, CA, USA). In everyday clinical practice, fecal
calprotectin stands out as the key non-invasive indicator for assessing IBD activity, aligning
closely with endoscopic observations [31–34].

2.8. Statistical Analysis

Data are depicted as boxplots. Each box represents the interquartile range (IQR),
with the bottom and top edges corresponding to the first quartile (Q1) and third quartile
(Q3), respectively. The line inside the box represents the median (50th percentile) of the
data. Outliers in boxplots are indicated by circles or asterisks. The statistical methods
employed included the Mann–Whitney U-test, the Kruskal–Wallis test, receiver operating
characteristic curve analysis, multiple linear regression, and Spearman correlation (SPSS
Statistics 26.0 program, IBM, Leibniz Rechenzentrum, München, Germany). The tables
present data in terms of median, minimum, and maximum values. Statistical significance
was defined as a p-value < 0.05.

3. Results
3.1. Fecal Fatty Acids in Patients with Inflammatory Bowel Disease and Healthy Controls

The study cohort consisted of 62 patients with IBD, comprising 38 patients with
Crohn’s disease (CD) and 24 patients with ulcerative colitis (UC), alongside 17 healthy
controls (Table 1). The sex distribution and age of the patients and controls were similar
(Table 1).

Table 1. Characteristics of the patient and control cohort.

Characteristics IBD Controls

Number (female/male) 62 (28/34) 17 (10/7)
Age (years) 42 (19–78) 48 (23–78)

Body Mass Index (kg/m2) 24 (16–44) not determined
C-reactive protein (mg/L) 3 (0–144) not determined

Creatinine (mg/dL) 0.85 (0.51–1.25) not determined
Glomerular filtration rate (mL/min) 99 (61–136) not determined

Fecal calprotectin (µg/g) 62 (17–1616) not determined

Nervonic acid (FA 24:1), and for comparison, the VLCFAs lignoceric acid (FA 24:0)
as well as pentacosanoic acid (FA 25:0), were measured in the feces of patients with IBD
and healthy controls. Fecal levels of all three fatty acids did not differ between male and
female controls (p > 0.05 for all). Lignoceric acid (r = −0.726, p = 0.001) and pentacosanoic
acid (r = −0.726, p = 0.001) were negatively correlated with age in healthy controls, while
nervonic acid (r = 0.247, p = 0.356) showed no significant correlation in this group. In
patients with IBD, fecal levels of nervonic acid, lignoceric acid, and pentacosanoic acid did
not differ between females and males and showed no correlation with age or body mass
index (BMI) (p > 0.05 for all).

When stratified by age, lignoceric acid, nervonic acid, and pentacosanoic acid did
not change with increasing age (Table 2). Body mass index, C-reactive protein, creatinine,
and fecal calprotectin levels were similar between these groups (Table 2). As expected, the
glomerular filtration rate declined with increasing age (Table 2) [35].

Comparing patients with CD and UC, the levels of the analyzed fatty acids showed
no significant differences (p = 0.908 for lignoceric acid, p = 0.665 for nervonic acid, and
p = 0.269 for pentacosanoic acid).
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Table 2. Characteristics of the patients with IBD stratified by age.

Characteristics

Age (years) 20–30 31–40 41–50 51–60 >61 p-value

Number (female/male) 14 (6/8) 14 (8/6) 9 (2/7) 18 (10/8) 7(2/5) 0.360

Lignoceric acid µmol/g 1.95 (0.60–3.62) 1.47 (0.64–6.02) 1.86 (1.00–14.84) 1.67 (0.69–18.80) 2.24 (1.14–3.40) 0.827

Nervonic acid µmol/g 1.42 (0.27–13.70) 0.56 (0.24–2.07) 0.77 (0.27–3.78) 0.61 (0.10–2.62) 0.68 (0.25–7.32) 0.250

Pentacosanoic acid
µmol/g 0.11 (0–0.22) 0.10 (0.04–0.31) 0.13 (0.06–0.25) 0.10 (0.04–0.48) 0.15 (0.05–0.32) 0.544

Body Mass Index
(kg/m2) 23 (16–28) 26 (17–35) 23 (20–25) 24 (21–44) 24 (18–35) 0.553

C-reactive protein
(mg/L) 10 (1–57) 4 (0–18) 2 (1–11) 1 (0–144) 2 (1–55) 0.264

Creatinine (mg/dL) 0.83
(0.51–1.12)

0.82
(0.59–0.99)

0.83
(0.76–1.02)

0.85
(0.70–1.06)

0.89
(0.74–1.25) 0.389

Glomerular filtration
rate (mL/min)

112
(91–136)

112
(84–122)

106
(87–110)

92
(62–103)

83
(61–97) <0.001

Fecal calprotectin
(µg/g)

121
(17–1616)

65
(17–639)

55
(33–538)

45
(18–1543)

34
(18–883) 0.126

Lignoceric acid (p = 0.756) and pentacosanoic acid (p = 0.655) showed no significant
differences between patients with IBD and healthy controls. Of clinical relevance, we
identified significantly higher fecal levels of nervonic acid in patients with IBD (p < 0.001)
(Figure 1a–c). A receiver operating characteristic (ROC) curve analysis (Figure 1d) re-
vealed that nervonic acid at a concentration of 0.49 µmol/g discriminated IBD patients
from healthy controls with a sensitivity of 71% and a specificity of 82% (AUROC = 0.827,
p < 0.001). These data show that fecal nervonic acid is specifically elevated in IBD.
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Figure 1. Fecal nervonic acid is increased in patients with IBD. Comparison of fecal very-long chain
fatty acid levels between healthy controls and patients with IBD. (a) Concentration of lignoceric acid;
(b) nervonic acid; and (c) pentacosanoic acid in the stool of healthy controls and patients with IBD;
(d) receiver operating characteristic curve for the discrimination of patients and controls by fecal
nervonic acid levels. *** p < 0.001.
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3.2. Fecal Nervonic Acid Levels Correlate with Clinical Markers of Inflammation in Inflammatory
Bowel Disease

We aimed to analyze whether increased levels of nervonic acid are associated with
disease activity or inflammation in patients with IBD by performing correlation analyses
with clinically established markers of inflammation. Lignoceric acid and pentacosanoic acid
were not associated with serum CRP, fecal calprotectin, and parameters of renal function
(Table 3). Of note, nervonic acid positively correlated with serum CRP, fecal calprotectin,
and glomerular filtration rate in the IBD cohort (Table 3).

Table 3. Spearman correlation coefficients for the correlations of fecal fatty acids with C-reactive
protein, fecal calprotectin, creatinine, and glomerular filtration rate in patients with IBD. * p < 0.05,
** p < 0.01, *** p < 0.001.

Lignoceric Acid Nervonic Acid Pentacosanoic Acid

C-reactive protein 0.042 0.376 ** −0.217
Fecal Calprotectin 0.175 0.575 *** −0.017

Creatinine −0.035 −0.171 0.080
Glomerular filtration rate −0.021 0.267 * −0.173

To further clarify the relationship between fecal fatty acids and fecal calprotectin, we
analyzed the fecal concentration of VLCFAs in relation to fecal calprotectin levels. As
indicated by the Spearman correlation coefficients (Table 3), lignoceric acid and penta-
cosanoic acid remained unchanged regardless of the respective fecal calprotectin levels
(Figure 2a,c). Notably, fecal levels of nervonic acid increased with higher fecal calprotectin
(Figure 2b). In our cohort, twenty-five patients had fecal calprotectin levels below 50 µg/g,
twenty patients had levels between 50 and 150 µg/g, eight patients had levels between 150
and 500 µg/g, and eight patients had levels above 500 µg/g. Data for one patient were
not documented.
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Figure 2. Relation of fecal fatty acids and fecal calprotectin. (a) Concentrations of lignoceric acid;
(b) nervonic acid; and (c) pentacosanoic acid in the stool of IBD patients with fecal calprotectin
levels <50 µg/g (twenty-five patients), <150 µg/g (twenty patients), >150 µg/g (eight patients),
and >500 µg/g (eight patients); (d) receiver operating characteristic curve for the discrimination of
patients with fecal calprotectin < and ≥120 µg/g by fecal nervonic acid levels. ** p < 0.01, *** p < 0.001.
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Fecal calprotectin levels ≥ 120 µg/g are considered positive by the assay used in our
study. A receiver operating characteristic (ROC) curve analysis shows that fecal nervonic
acid at a concentration of 0.94 µmol/g discriminates IBD patients with calprotectin levels
< and ≥ 120 µg/g with a sensitivity of 78% and a specificity of 82% (area under the receiver
operating curve = 0.856, p < 0.001) (Figure 2d). Taken together, these results indicate that
fecal nervonic acid may be of value for diagnosing IBD and monitoring disease activity.

Multiple regression analysis using fecal nervonic acid as the dependent variable, and
fecal calprotectin, age, and sex as independent variables revealed that these variables were
able to predict fecal nervonic acid levels, F(3,57)18.25, p < 0.001. Here, only the effect of
fecal calprotectin was significant (p < 0.001); age (p = 0.210) and sex (p = 0.958) were not
significantly associated with fecal calprotectin levels.

3.3. Relation of Fecal Fatty Acids with Stool Consistency and Gastrointestinal Symptom
Rating Scale

In addition to laboratory parameters, we further evaluated whether levels of fecal fatty
acids were associated with stool consistency, which was documented by the patients using
the Bristol stool chart. Fecal levels of lignoceric acid (p = 0.638) and pentacosanoic acid
(p = 0.287) did not show significant associations with the Bristol stool score (Figure 3a,c).
Notably, patients with higher Bristol stool scores (types 5–7) consistently showed a non-
significant increase in nervonic acid levels (p = 0.091) (Figure 3b).
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acid in patients with constipation, normal stool, diarrhea, and watery stool; (d) fecal nervonic acid in
patients with increasing GSRS scores.

The Gastrointestinal Symptom Rating Scale (GSRS) is a clinical tool used to assess
gastrointestinal symptoms and their severity. In our cohort, the GSRS was not associated
with fecal lignoceric (p = 0.537) and pentacosanoic acid (p = 0.121). Noteworthy, fecal
nervonic acid was highest in the two patients with IBD, with very strong complaints in
comparison to those with no, minor, and moderate complaints (Figure 3d). The analysis of
other inflammatory markers revealed that fecal calprotectin increased with higher GSRS
(p = 0.014), while serum CRP did not significantly change (p = 0.096).

3.4. Effects of Medication on Fecal Fatty Acid Composition

To assess whether and how therapy affects fecal fatty acid content, we analyzed the
impact of various treatment modalities on fecal fatty acid composition and inflammatory
markers in our IBD cohort. The 22 patients who were treated with a chimeric monoclonal
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antibody against tumor necrosis factor (TNF) alpha [36] had higher fecal pentacosanoic acid
levels compared to those who did not receive anti-TNF therapy (p = 0.046) (Figure 4a), with
no significant differences in CRP and fecal calprotectin between these groups (p > 0.05 for
both). Corticosteroids were administered to 17 IBD patients, with those treated exhibiting
higher fecal levels of nervonic acid (p = 0.022) and lignoceric acid (p = 0.064) (Figure 4b,c).
The fecal calprotectin (p = 0.182) and serum CRP (p = 0.208) of patients receiving corticos-
teroids were not increased. Mesalazine (21 patients) and azathioprine (6 patients) were not
associated with altered fecal fatty acid levels. Anti-interleukin (IL)-12/23 antibody therapy
(18 patients) was related to higher nervonic acid (p = 0.014) (Figure 4d), but not with altered
serum CRP (p = 0.114) or fecal calprotectin (p = 0.114).
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corticosteroid and anti-IL-12/23 therapy. (a) Fecal pentacosanoic acid levels of patients treated or
not treated with anti-TNF antibodies; (b) fecal nervonic acid of patients treated or not treated with
corticosteroids; (c) fecal lignoceric acid of patients treated or not treated with corticosteroids; (d) fecal
nervonic acid of patients treated or not treated with anti-IL-12/23 antibodies. * p < 0.05.

4. Discussion

The present study is the first to show that fecal nervonic acid levels increase propor-
tionally with disease activity in patients with IBD.

Nervonic acid at a concentration of 0.49 µmol/g discriminated patients from controls
with a sensitivity of 71% and a specificity of 82%. In comparison, the sensitivity of fecal
calprotectin in detecting IBD at a threshold of 50µg/g was 93%, and the specificity was
62% in a clinical setting [37]. Thus, fecal calprotectin has higher sensitivity, while fecal
nervonic acid shows superior specificity. Therefore, measuring nervonic acid in addition to
fecal calprotectin may improve the diagnostic performance for IBD.

Fecal calprotectin is an established biomarker of bowel inflammation independent
of the underlying disease [31,32], and further studies are required to assess whether fecal
nervonic acid levels are specifically increased in IBD.

Our study evaluated levels of the VLCFAs nervonic acid, lignoceric acid, and pen-
tacosanoic acid in the feces of patients with IBD. To compare fecal lipid levels between
individuals, accurate normalization of the samples was required. Sample wet weight, stool
dry weight, and fecal protein concentration were used to normalize lipid levels. Patients
with IBD may have loose, watery stools [38], so in our analysis, fatty acid levels were
normalized to stool dry weight. The comparable levels of the analyzed fatty acids in the
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feces of patients with varying stool consistency indicate that this normalization method
effectively adjusts for variability in stool consistency.

Patients with a high GSRS score who also had elevated calprotectin levels displayed
a marked increase in fecal nervonic acid levels. Otherwise, fecal VLCFA levels did not
change significantly with symptoms. This clearly demonstrates that higher levels of fecal
nervonic acid in patients with active IBD are a marker of disease activity and not disease
symptoms or stool consistency.

Nervonic acid has been shown to be acetylated to sphingolipids, including sphin-
gomyelin and ceramide [20,39]. Host-derived sphingolipids are key metabolic markers
of IBD, showing a high increase in samples from patients with both UC and CD [25,40].
In patients with UC, fecal sphingomyelin levels were about 10 times higher during active
disease than during remission [40]. Moreover, this study demonstrated that distinct sph-
ingomyelin species were elevated in CD and UC patients compared to healthy controls,
whereas ceramide species were specifically increased in CD. The authors speculate that this
increase in sphingomyelins may serve as a compensatory mechanism for the deficiency of
bacterially produced sphingolipids [40].

Higher levels of fecal nervonic acid may indicate an increased production of specific
sphingomyelin species in IBD. Thus, one could hypothesize that high levels of nervonic acid
reflect the body’s attempt to counteract inflammation in IBD. However, our observational
study cannot elucidate the pathways responsible for elevated levels of fecal nervonic acid
while other fatty acids of similar length remain normal.

The oxidation of VLCFA takes place in peroxisomes, whereas fatty acids with fewer
carbon atoms are oxidized in mitochondria [41]. The number of peroxisomes in intestinal
epithelial cells of patients with CD was found to be reduced compared to controls and
further decreased with increasing inflammation [42]. In murine colitis, peroxisomes within
crypts were increased during the acute phase and early repair phase and decreased during
the late repair phase [23]. Reduced peroxisomal oxidation of VLCFA may contribute to
higher levels in feces but cannot explain the selective increase in nervonic acid. One analysis
has shown that peroxisome-deficient cells handle monounsaturated and saturated fatty
acids differently [43], but this needs further study.

The absorption of dietary VLCFAs is largely mediated by intestinal CD36 [44], and
the number of CD36-expressing cells is reduced in the inflamed mucosa of patients with
IBD [45], but impaired intestinal uptake of VLCFA will affect the levels of all VLCFAs. Thus,
the intestinal absorption and oxidation of VLCFA cannot explain the selective increase in
fecal nervonic acid levels.

Patients with IBD have been found to have similar [46] and lower daily intakes of
various fats [47]. Fish oils, which are rich in nervonic acid, also contain lignoceric acid,
and it remains to be investigated whether diet plays a role in higher fecal nervonic acid
levels [48].

In colonic tissues from mice with acute colitis and during early repair phases, accumu-
lation of VLCFAs and significant increases in lignoceric and nervonic acids were observed
in injured epithelial cells [23]. In patients with IBD, fecal nervonic acid was specifically
induced. The acute colitis in the mouse model may differ from the chronic colitis seen in
most of our patients, and studies of chronic colitis in mice may resolve this discrepancy.
Increased production and release of nervonic acid in the intestinal cells of patients with
IBD is currently the most plausible explanation for the higher levels in feces.

Nervonic acid was shown to reverse the accumulation of saturated VLCFAs and to
protect against their cytotoxic effects [49]. Thus, elevated fecal nervonic acid levels in
IBD may contribute to the normalization of other saturated VLCFA levels and may be
considered protective.

Corticosteroids are potent anti-inflammatory drugs that also have adverse effects, such
as lipid abnormalities and diabetogenic metabolic states [50,51]. Patients on corticosteroid
therapy had higher fecal levels of nervonic acid than patients not treated with these drugs.
Fecal nervonic acid levels of patients receiving interleukin 12/23 antibodies were also
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higher than those treated with other drugs. Serum CRP and fecal calprotectin levels were
similar between these groups. The observed increase in the fecal pentacosanoic acid in
patients treated with TNF antibodies was modest and requires confirmation.

To our knowledge, this is the first study to investigate associations between fecal
VLCFA and fecal calprotectin. A limitation is the collection of only a single fecal sample and
the lack of sphingolipid quantification in patients’ stools. This analysis cannot distinguish
between free and bound VLCFAs. This is a descriptive study that is not suitable for
understanding cause-and-effect relationships. Although the study is descriptive and does
not provide explanations for the observed elevated fecal nervonic acid levels, it identifies
nervonic acid as a potential novel biomarker in IBD.

5. Conclusions

This analysis showed that the monounsaturated VLCFA nervonic acid but not satu-
rated VLCFAs are higher in the feces of patients with IBD compared to healthy controls.
Elevated fecal nervonic acid levels in IBD positively correlate with fecal calprotectin lev-
els. Defined concentrations of fecal nervonic acid can distinguish patients with IBD from
healthy controls. Thus, fecal nervonic acid is a promising biomarker for diagnosing IBD and
monitoring disease activity and treatment response. Measuring nervonic acid in addition
to fecal calprotectin may improve the diagnostic performance for IBD.
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