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Abstract 

Requirements and requirement traceability play a key role in ensuring that embedded 
systems meet their goals. This article deals with improving requirements and requirement 
traceability to design artifacts in the context of embedded design. We identify a way for 
capturing decisions concerning limited resources in embedded systems. This approach 
directly integrates decision-related information with other traceability information gathered 
during requirements engineering. It relies on the concept of quantifiable budgets for 
structuring the decision information (decision model). Upon this model the prototype of a 
requirements traceability management tool has been developed reduces redundancies and 
inconsistencies in requirements management and lays the ground for improved collaboration 
and sharing of project knowledge between project members. 
 
1. Introduction 

Due to the rising complexity (cf. Chapter 2), developing reliable Embedded Control Units 
(ECUs) increasingly becomes a matter of good processes ([1]) and efficient communication 
between all partners involved. Requirements and requirement specifications are one of the 
most important means of communication between project partners. Tracing Requirements to 
design tries to ensure that design decisions (and thus the code) do not deviate from decisions 
agreed upon in former design stages. Traceability means making explicit the influence of 
requirements on all artefacts and processes in a project as well as tracing (for details cf. [2], 
[29]). 

Tracing requirements from requirement specifications to their final fulfilling designs is 
especially difficult to establish, because this transition is a complex multi-step transformation 
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process from problem (requirements) to solution (design), where different modes of 
expression (e.g. text, diagrammatic specification languages like the unified modeling 
language (UML), program code) with different levels of formality are involved ([3]). Design 
decisions involved in this transition add to the complexity of this transition process (cf. [4], 
[5] for details). However, capturing decisions and their underlying rationale is difficult ([3], 
[6]), as capturing methods interfere with the overall design process or interrupt designers in 
their way of thinking ([3], [6], [4]). 

Keeping this in mind, a key goal of our decision model approach is to lower the barriers of 
making design decision explicit as much as possible: Therefore, our decision model 
mechanisms offer designers a simple and semiformal model as a skeletal structure to easily 
add basic information1 . In the context of embedded software development for automotive 
applications, we have developed a prototype tool environment which allows designers and 
developers to add more detailed information on decisions. In [4] we presented support model 
for decision documentation. The process helps to relieve the know-how/rationale bearers from 
documentation work by shifting the effort to the rationale seekers2, thus also helping 
inexperienced rationale seekers tightening their acquired knowledge. 

In Chapter 2 we give a short analysis of current challenges concerning development of 
software-based ECUs in the automotive domain. The Automotive domain is just a typical 
example, but similar problems are also known for other domains. Chapter 3 deals with 
general problems of establishing traceability information at the transition from requirements 
to design phases and we briefly describe results of preliminary research ([4], [5]) important 
for the here introduced decision model. In Chapter 4, an additional type of decision is 
discussed: Making decisions about limited resources and their allocation in a design project 
which is a key issue for embedded applications that are extremely resource-aware (e.g. 
memory, bandwidth or computation resource usage). We use the concept of (resource) 
budgets to capture the basic rationale behind a resource-oriented design decision. An 
accompanying case study shows the practical relevance of this model. We assume that in 
comparison to other ways of modeling resource allocations, this decision model improves 
communication and collaboration between project members and allows for a simpler crossing 
of organizational boundaries in multi-party projects (ch. 5).  
 
2. Challenges in Automotive System and Software Engineering 

The proportion of software (SW) and SW-based embedded systems in everyday 
products increases exponentially ([7]) and at this increase is accompanied by a growth 
of development complexity. The following characteristics illustrate this for the 
automotive domain (cf. [7], [8], [9]) – similar problems can easily be found in other 
embedded domains: 

1. Increasing cross-linking of vehicle functional features leads to increasing 
cross-linking of ECUs3. Such features are typically realized by a 

                                                           
1 In [4] we have elaborated on the idea of providing a light weight formal structure for documenting design 
decisions. This basic information can be enriched with further information (e.g. detailed description) on demand. 
Basically, we follow the principle of putting “Put as little extra burden as possible on the bearer of rationale“([6]), 
avoiding typical usage barriers (cf. [3]) encountered when Rationale Management (i.e., the documenting of 
decisions) is used in practice. 
2 A person interested in the backgrounds of a decision at later phases of the project. 
3 A typical scenario might look like this: A car crash triggers crash sensors which activated several airbag ECUs 
and a crash management ECU (CM-ECU). The CM-ECU sends an „Unlock_Doors“ signal to all door ECUs, 
requests the position from the Global Positioning System-ECU and sends an automatic emergency call via a 
Universal Mobile Telecommunications System-ECU to local rescue organizations. 
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collaboration of several ECUs, leading to higher interdependencies between 
ECUs. 

2. The development of a strongly cross-linked car system can only take place in 
collaboration with the car manufacturers (Original Equipment Manufacturers 
(OEM)) and heterogeneous chains of suppliers. 

3. Many functions are safety-critical and require significant additional modeling 
effort for safeguards. 

4. Many ECUs have strict or at least weak timing restrictions4. 

5. Considerably higher unit quantities in comparison with the aviation domain 
raise the pressure on unit cost minimization. This leads to extremely cost-
optimized hardware with strict restrictions concerning resources and timing. 

Items one and two above imply that frictionless information exchange between all 
project members is a critical success factor and requirement documents are the 
cornerstones of this collaboration, since they are the central interfaces between 
organizational units of a project. In addition, points one and two may even urge partners 
to employ compatible development processes. A good step towards this goal are process 
standards and maturity models like SPICE (Software Process Improvement and 
Capability dEtermination, [10]), its new domain specific adoption Automotive SPICE 
(cf. [10], [11]), or CMMi (Capability Maturity Model Integration, cf. [12]). Point three 
means that additional safety mechanisms in ECUs (e.g. Fail Safe Modes, hardware 
(HW) and SW redundancies) and increasing complexity put additional stress on the 
quality of development processes ([1]). The criticality of handling timing-related issues 
(4.) increases with a rising number of cross-linked ECUs (1.) and their additional 
collaboration needs and timing information needs to be communicated throughout 
organizational boundaries of all involved ECUs. Finally, point five is in potential 
conflict with all preceding points and is particularly challenging for subcontractors. 

 
3. Traceability problems in the transition from requirements to design 

As previously stated in more detail ([4], [5]), we assume that for establishing valuable 
traceability between requirements and design models, the following two major problems 
exist: 

• Requirements evolve at all levels of different requirements engineering and design 
processes (E.g. Hatley et al. speak of „requirements derived from design 
decisions“ [13; S.37]). 

• Tracing requirements from the original requirements specification to design by 
simple bidirectional links is inaccurate as this would assume the transition from 
requirements to design to be a fairly linear and one dimensional process. We rather 
believe that this transition is more of a creative and complex mental transfer 
process performed by designers when gradually transforming the problem space 
into a solution space. 

Current approaches try to cope with this problem by using a layered process model 
(cf. [14]), where several requirement specification artefacts and design artefacts 

                                                           
4 Mostly, not all timing restrictions of hard real time systems are strict. Some functions may also have weaker or 
even no timing restrictions. 
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mutually alternate during each design cycle. For example, Systems Engineering 
processes demand a system requirement specification and result in a systems design. 
Both artefacts form the basis for the SW requirement specification leading to the SW 
design. We believe that strict obedience to this artefact model results in a high degree 
of redundant information causing consistency problems(see [4] for further details). A 
second drawback is the observation that in the course of the project requirements 
stemming from the customer and those derived from design activities tend to be mixed 
up leading to a gradual unintentional overlap between requirements specifications and 
design artefacts. To avoid these problems we propose a strict distinction between 
requirements issued by the customer and those derived from design activities, leading to 
the following taxonomy (see Fig.1):  

• A Requirement (REQ) defines requirements directly stated by the customer.  

• A DesignConstraint (DC) is a requirement resulting from design decisions. 

• The hyperonym RequirementalItem (RI) defines conjoint characteristics and 
behaviour of both types of requirements. 

 

 

 

Figure 1: A taxonomy of requiremental items ([4]). 

 
4. Resource Allocation as a Special Decision Making Case 

In design activities for embedded systems an additional decision type can be 
identified dealing with non-functional aspects of limited resources such as memory 
resources (e.g. Read Only Memory (ROM), Random Access Memory (RAM), 
Electrically Erasable Programmable Read Only Memory (EEPROM)) or timing 
restrictions. A core goal of embedded design is the effective administration and 
distribution of such resources and different strategies for handling this problem exist: 

0. The allocation is a more or less unconscious or uncontrolled process (i. e., no 
explicit strategy is established). 

1. A resource estimation is performed as part of the design and estimations are 
checked and adapted at each development cycle. 

2. Resource allocation is explicitly modeled in the design model (e.g. by using 
UML profiles such as the UML Profile for Schedulability, Performance, and 
Timing profiles [15, ch. 4] or MARTE ([16])). 

With respect to collaboration in complex development teams or organizations is 
considered, approaches 1 and 2 have limitations in the following aspects: 

• Propagation and communication of changes to all team members involved in 
the change can be cumbersome. 
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• Minimizing redundancies as a major source of inconsistencies can result in 
communication errors. 

• The seamless adoption and refinement of other designers’ design results can 
be extremely difficult. 

• Sharing project knowledge in general will become more difficult. 

The following example illustrates these shortcomings in more detail. 

 
4.1. Example Scenario for Resource Allocation Design Decision Making 

Suppose we have the following example use case (Fig.2) for a lights steering device 
in an automotive context: The system retrieves different signals from the Controller 
Area Network (CAN) bus. The lights steering task determines whether some lights must 
be activated or deactivated. The lights are steered via Pulse-width modulation (PWM) 
and diagnostic information is retrieved via analog feedback. 

 

 

 

Figure 2: Example use case of the case study. 

The corresponding ECU’s SW design is shown in (Fig. 3). 

 

 

 

Figure 3: Example SW design for use case of Fig.2. 

A high level SW architect has partitioned the SW into three subsystems (packages 
LightsManagement, Communications, and Drivers). For each subsystem a subsystem 
designer determines their subcomponents, illustrating design collaboration. This 
separation of several layers of design responsibility is common for larger projects with 
complicated application domains. The following project decisions have been made: 
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• The lights management contains an active process Light_Task with a complex 
state machine. An underlying light handler Light_hdl knows how to manage 
the underlying drivers according to the light signals to set. Both components 
are being developped in-house. 

• The drivers (PWM, ADC and CAN) are supplied by different subcontractors. 
Code size, performance and other parameters are highly dependent on their 
individual configuration. Therefore, a subcontractor manager shall monitor 
each driver for these parameters. 

• The CAN Interaction Layer depends on the types of signals relevant for the 
device. These settings are defined by the customer (OEM), because it affects 
communication. 

This leads to the following RAM consumption estimation laid down as a separate 
chapter in the design document of the high level designer: 

 
Module Light_Task Light_hdl CIL CAN-Drv PWM ADC Buffer 

RAM ( 1500 Byte 
available) 

600 Byte 250 Byte 100 
Byte 

300 Byte 100 Byte 100 
Byte 

50 Byte 

Table 1: RAM - resource estimation 

Such tables are a common format for documenting resource assignments in design 
documents (cf. [17]). The tabular format has the main advantage that it easily gives an 
overview, but it has important weaknesses when collaborative aspects are considered: 

• First of all, even though these assignments are typically called estimations, they 
should rather be treated as RIs. This implies that a mechanism must be in place to 
communicate these RIs on time to all interested stakeholders - especially if 
changes occur during project progress.  

• Further, the allocation settings are estimated at a certain design stage and thus are 
an integral part of the design documents at this stage. Therefore, further processing 
of this information by other designers is difficult. In our case study the estimations 
are made at the level of modules and included into the documentation of the high-
level design. If the module designer of the complex Light_Task wants to refine the 
resource estimation into a more detailed estimation, a problem arises. In this case 
he would have to copy the information “Light_Task == 600 Bytes” into some 
document of his responsibility. This leads to unnecessary redundancy causing 
consistency problems, when this setting changes later in the project. 

• These problems are even more critical, if some parts of the project are delivered by 
a subcontractor – as it happens to be the case in our example. In this case, all 
relevant requirements for the item to supply must be provided (as required by  
SPICE process ACQ.4 Supplier Monitoring, see [10]). In our case, the RAM 
estimations, since they are RIs, must be communicated as requirements to the 
supplier. This also leads to a high degree of redundancy with even worse effects, if 
changes are not communicated. 
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4.4 Budgeted Resource Constraints (BRC) as requiremental items 

In consideration of this problem a way to perform such resource allocation decisions in a 
handy fashion is needed which also allows for the communication of the results for each 
considered design element throughout the entire project in an efficient way. An additional 
aspect here is the fact that the results of a decision act as new RIs on the design elements they 
are assigned to. As the literature shows (cf. [18], [19], [20], [15; p.317], [21; p. 124], [17], 
[22]), most resource allocation activities consist of numerically truncating a larger resource 
amount into smaller subsets – more or less in analogy with the abstraction hierarchy of a 
system's/software's design (see ch. 5.4 and Fig. 6 / 7 below). Obviously, this can be compared 
to the process of preparing and distributing budgets in business administration or project 
management area ([23]). Therefore, we propose to enhance our taxonomy of requiremental 
items by an additional type of RI called Budgeted Resource Constraint (BRC, see fig. 4): 

 

 

 

 

Figure 4: Types of Requiremental Items with Budgeted Resource Constraints. 

BRCs are similar to Design Constraints (DCs) as they represent the results of a decision 
making process and can be assigned as RIs to any design element. However, there are the 
following differences when compared with other RIs (such as DCs): 

• BRCs represent numerical values whose associated design elements may not 
exceed the maximum value of the assigned BRC. 

• A BRC can be subdivided into sub BRCs. Thus BRCs at the same time represent a 
decision making process as well as its results. 

• As BRCs represent numerical values, whose sub BRCs divide resource amounts 
into smaller budgets for more detailed parts of the design, automatic consistency 
checks (e.g. tests for budget overruns) can avoid wrong allocations. Budget 
overruns may be detected at an early project stage.  

• Individual BRCs can be added to one design item only, whereas requirements and 
design constraints may be added to several items. 

Resuming the example described above fig. 5 illustrates the resource allocation problem 
presented using BRCs as implemented in our tool environment. The connections to the design 
elements illustrate so called satisfy-links as used in traceability models (cf. [24]) to indicate, 
that a design element must satisfy the given “requirement” (in our terminology: requiremental 
item (RI)). In this situation, the SW architecture is assigned to fit in a total budget of 1500 
bytes of RAM. This BRC is subdivided into six sub BRCs assigned to the six modules in the 
SW architecture, thus showing a more detailed partitioning of the RAM budget. 
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Figure 5: Resource Allocation Example with Budgeted Resource Constraints. 

Comparing fig. 5 with table 1, we see that both representations have an equivalent 
meaning. In fact, the idea of budgets in HW and SW engineering is not new (cf. [20], [15; 
p.317], [21; p. 124], [17], [22]). What we want to point out beyond the appealing (and well-
known) aspect of a more or less easy mathematical model enabling consistency checks are the 
advantages of the budget concept itself, when it comes to collaboration and sharing project 
knowledge between project members. In this sense we use the budget concept as a means of 
communication during software design. The following chapters will provide more details on 
this. 

 
5. BRCs - Advantages for Collaboration and Sharing Project Knowledge 

The following situations of our example project show the value of BRC for the following 
communication situations: 

• Within-project refinement,  

• communicating information over organizational boundaries, 

• change management, and 

• different views on the same problem. 

 
5.1 Within project refinement 

During the first design cycle of the “Light_hdl” (LH), the LH is forecast to have a very 
tight RAM budget. Therefore the designer identifies several specific aspects for which he 
arranges budgets according to his current information and needs (see fig. 6 below): 

• In normal mode, the module uses the settings in EEPROM mirrored to RAM for 
steering the lights. RAM consumption depends on the number of steered channels 
and the number of bytes needed for each channel.  

• The diagnostic part supervises regular checks of the electrical current between the 
ECU and the connected lights to detect malfunctions as short circuit or open drain. 
Malfunctions lead to the deactivation of a light channel. 
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• In the case of severe error conditions, e.g. loss of EEPROM data, the fail over 
mode assures that at least essential functions like brake lights and indicators work. 
The code and configurations are fixed in ROM, thus no particular portion of RAM 
is needed. 

 

 

 

 

 

Figure 6: Sub budgeting of the “Light_hdl” module 

With our proposed type of BRCs, designers of sub levels can directly continue to process 
results produced in previous design decision processes.     

 
5.2 Communicating Information across Organizational Boundaries 

Information must often be provided across organizational boundaries. Such boundaries can 
be subprojects within the same company or between different companies.  

In our case study, drivers are provided by different subcontractors. This implies that all 
requirements for the drivers must be provided throughout all parties involved. In our 
experience, functional aspects are communicated in a quite complete fashion, but such non-
functional aspects (e.g. restrictions on memory, timing, etc.) resulting from former design 
decisions are often forgotten. 

The solution described here supports exporting all types of RIs associated with a design 
element as a new requirement specification into requirements management tools like 
DOORS® that can be delivered to the subcontractor. Since our BRCs are treated as normal 
RIs, they are directly propagated to the subcontractors via automatically generated 
requirement specifications. In later development phases, these requirement specifications can 
be continuously synchronized with the settings in the design element, thus ensuring proper 
propagation of requirements to subcontractors. 
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5.3 Change Management 

During project progress changes occur that force designers to change decisions and 
assumptions. Managing those changes efficiently is essential to avoid project deviations. Two 
important heuristics should be considered: 

• Changes should be kept as local as possible to avoid unnecessary complexity. 

• Changes must be implemented in a consistent way. 

Our model supports handling changes of BRCs as local as possible. Continuing our 
example, it might happen that the “runDiagnostic” function needs more than 10 bytes of 
RAM (see fig. 6 above). In this case, the designer can first try to find an internal solution of 
the problem (e.g. find a way to cut down on some bytes in the “diagInfoTable”). If this is not 
possible, the designer can escalate the problem to a more high-level designer.  

In another situation, new requirements from the customer could make the creation of a 
new, additional module necessary. This case has effects on the design as a whole, since most 
of the modules already present might suffer a budget cut in their BRCs as a consequence. Our 
tool visualizes changed BRCs (in red color) to alert designers of sub-layers to analyze the 
impacts on their assignments.  

If the sub designer has made his changes and consistency checks (e.g. detecting budget 
overruns) pass, the designer can mark the change as implemented. After this, the BRC is 
shown in normal mode.      

 
5.4 Different Views on the same Problem 

 

In software design theory the idea that different aspects of SW can be modeled by different 
views has been proposed (cf. [25]). The same can be claimed for non-functional aspects 
modeled by BRCs.  

Besides the direct allocation view (see fig. 5 and 6 above) our tool supports creating an 
enhanced table representation. Fig. 7 shows this tabular lineup between BRCs and their 
allocated design elements. Both columns additionally show their hierarchical break down. 

 

 

 

 

 

Figure 7: Tabular View with corresponding abstraction hierarchies. 

Since the structure of the BRCs break down has a strong analogy with the break down of 
their associated design elements, design flaws of the assignment be can easily detected. Fig. 8 
shows this situation, where a wrongly associated item disturbs the analogy, helping the 
designers to detect those problems easily. 
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Figure 8: Tabular View with assignment inconsistency (exclamation mark). 

 
6. Summary 

We have argued that in embedded systems design decision situations exist that are not 
easily covered by our original decision model (cf. [4]). However, analyzing the structure of 
these kinds of decision problems and at the same time directing their decision model towards 
their structure can improve support for designers to: 

• find and document design rationale as easily as possible and 

• reuse this rationale in further decision processes just as easily 

We suggest the budget concept for dealing with limited quantifiable resources in order to 
create a specialized decision model. Thus, a semiformal decision model is introduced that can 
be handled easily and places little additional burden on rationale bearers. Our practical 
experience shows that it further improves the internal and external communication within 
project teams significantly and supports the propagation of information to other involved 
parties.  

Customer workshops at the former Micron Electronic Devices AG (now with the MBtech 
Group) have shown that the proposed models and their semantics are easily understood by 
designers. Designers express their need for such decision support, referring to examples 
where changes in resource estimations were not communicated properly in the course of the 
project which led to resource-related problems in later development phases. 

Future research will concentrate on finding additional decision models for improving 
design-time requirement traceability and connecting information. A key issue, though, is to 
make sure that these mechanisms are compatible with each other and to allow pragmatic 
usage. 
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