
Process-Aware Intrusion Detection in MQTT Networks
Philip Empl

philip.empl@ur.de
University of Regensburg

Regensburg, Bavaria, Germany

Fabian Böhm
fabian.boehm@ur.de

University of Regensburg
Regensburg, Bavaria, Germany

Günther Pernul
guenther.pernul@ur.de
University of Regensburg

Regensburg, Bavaria, Germany

ABSTRACT

Intrusion Detection Systems (IDS) allow for detecting malicious
activities in organizational networks and hosts. As the Industrial
Internet of Things (Industrial IoT) has gainedmomentum and attack-
ers become process-aware, it elevates the focus on anomaly-based
Network Intrusion Detection Systems (NIDS) in IoT. While previous
research has primarily concentrated on fortifying SCADA systems
with NIDS, keeping track of the latest advancements in resource-
efficient messaging (e.g., MQTT, CoAP, and OPC-UA) is paramount.
In our work, we straightforwardly derive IoT processes for NIDS
using distributed tracing and process mining. We introduce a pi-
oneering framework called MISSION which effectively captures,
consolidates, and models MQTT flows, leading to a heightened
process awareness in NIDS. Through our prototypical implemen-
tation, we demonstrate exceptional performance and high-quality
models. Moreover, our experiments provide empirical evidence for
rediscovering pre-defined processes and successfully detecting two
distinct MQTT attacks in a simulated IoT network.

CCS CONCEPTS

• Networks→ Peer-to-peer protocols; • Security and privacy→
Network security; Intrusion detection systems.

KEYWORDS

IDS, MQTT, Internet of Things, Distributed Tracing, Process Mining

ACM Reference Format:

Philip Empl, Fabian Böhm, and Günther Pernul. 2024. Process-Aware In-
trusion Detection in MQTT Networks. In Proceedings of the Fourteenth

ACM Conference on Data and Application Security and Privacy (CODASPY

’24), June 19–21, 2024, Porto, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3626232.3653271

1 INTRODUCTION

Intrusion detection systems (IDS) have long proven themselves as
indispensable [68]. They are applicable to many domains [15, 50, 67]
and either identify malicious patterns (signature-based IDS) or ac-
tivities deviating from statistically benign behavior (anomaly-based

IDS) on a host (HIDS) or network (NIDS) [2, 23]. With the prolifera-
tion of the Internet of Things (IoT), organizations have increasingly
integrated their operational technology (“physical processes” [47])
with their IT infrastructure, giving rise to the industrial IoT. Small
physical devices and processes shape the IoT but limit performance,

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

CODASPY ’24, June 19–21, 2024, Porto, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0421-5/24/06.
https://doi.org/10.1145/3626232.3653271

communication, and storage capabilities. Keeping the physical pro-
cesses running is desired to avoid outages [48], necessitating IDS.

Most notably, research initially focused on systems responsible
for managing physical processes. Thereby, SCADA (Supervisory
Control and Data Acquisition) systems mainly constitute an essen-
tial part of nowadays’s industrial IoT infrastructure [84]. Different
efforts on securing parts of industrial SCADA systems like Modbus
or DN3P for communication resulted in plenty of anomaly-based,
signature-based and specification-based IDS for both hosts [30, 47,
75], and networks [14, 27, 29, 41, 86]. Signature-based IDS cannot
detect unknown attacks, and HIDS may infer physical processes
as they require agents running on the host machine [47]. This
shifts the focus to anomaly-based NIDS for the Industrial IoT. Addi-
tionally, as attacks are more advanced and process-aware [51] like
Stuxnet [11] or Industroyer (2) [13, 60], physical processes became
a baseline for IDS [7, 9, 16, 17, 26, 59].

SCADA systems are well-researched. Still, these systems are
nowadays complemented by resource-efficient messaging proto-
cols like MQTT, CoAP, or OPC-UA, allowing the integration of
smaller devices throughout the process and shaping a new era of
communication [84]. Despite the benefits of these IoT messaging
protocols, their adoption has also increased security threats. Al-
most half of all organizations cannot detect IoT attacks within their
networks [28, 44]. These attacks’ increasing frequency and sophis-
tication have raised serious security concerns, but IoT messaging
protocols and corresponding communication patterns have only
been partially explored for NIDS, yet [10, 18, 45, 55].

We believe that NIDS can benefit from IoT application layer
protocols as they carry more contextual information like topic
subscriptions than the transport layer, e.g., TCP. As many MQTT
clients (such as sensors and actuators) on a single machine result
in multiple ports, attacks are unseen by traditional NIDS. The in-
creasing attack surfaces, the potential for additional contextual
information, and the lack of research motivate us to investigate the
potential of IoT-specific NIDS. However, using process-aware NIDS
with IoT messaging protocols presents two primary challenges:

• First, identifying processes, in general, is an extensive man-
ual task [41], whereby different (structured) data like spec-
ifications [8, 41], or network traffic packets [26] allow au-
tomation, e.g., creating rules or models. Besides, many IoT
devices lead to more packets and network complexity, re-
quiring novel, automatic approaches.

• Second, anomaly-based NIDS are mainly based on artificial
intelligence lacking explainability [31], failing because of ex-
pertise in training and application within organizations [34],
and IoT devices communicate via different, heterogeneous
(sub-)networks [1]. Organizations require more traceable,
distributed, and easy-to-set-up approaches.

91

https://orcid.org/0000-0002-7616-5931
https://orcid.org/0000-0002-0023-6051
https://orcid.org/0000-0003-1338-9003
https://doi.org/10.1145/3626232.3653271
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3626232.3653271
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626232.3653271&domain=pdf&date_stamp=2024-06-19


CODASPY ’24, June 19–21, 2024, Porto, Portugal Philip Empl, Fabian Böhm, & Günther Pernul

(a) MQTT connect handshake.

(b) MQTT Subscribe handshake. (c) MQTT Publish handshake.

Figure 1: Relevant MQTT handshakes.

In this paper, we aim to solve these challenges by suggesting
network monitoring techniques to automatically and passively
record IoT traffic and reduce the number of packets by building
flows without risking the physical network’s availability. We refer
to distributed tracing primarily yet used for auditing [12, 22, 32]
and threat investigation and detection [33, 35, 57, 58]. We create
explainability and reliability of physical processes as input for NIDS.
Consequently, we ask “How can distributed tracing be utilized to

automatically mine IoT processes for NIDS?” Our main research
contributions are the following:

• Weenvision a distributed and explainable framework MISSION
to mine IoT processes from network traffic. The process
model can be used as an input for NIDS.

• We implement an open-source prototype (GitHub and Dock-
erHub) that allows for real-time probing, collecting, and
storing of MQTT flows. Additionally, we provide Jupyter
notebooks to showcase the mining of MQTT processes.

• We create an MQTT simulation for research. The simulation
consists of multiple sensors and actuators.

This paper is structured as follows. We begin by elaborating on
the relevant background for MQTT, IoT network monitoring, and
distributed tracing in Section 2. Additionally, related works in this
field are discussed in Section 3. In Section 4, we demonstrate the
importance of contextual information through two MQTT attack
scenarios and the challenges that arise when identifying them. The
MISSION framework, presented in Section 5, is designed to capture,
aggregate, and mine IoT network traffic for NIDS. To evaluate the
effectiveness of the MISSION framework, we conduct experiments
on its performance, process model quality, and its ability to iden-
tify two attack scenarios using a prototypical implementation and
simulation environment in Sections 6 and 7. Finally, we discuss our
research in Section 8 and conclude the paper in Section 9.

2 BACKGROUND

2.1 Message Queuing Telemetry Transport

MQTT stands for Message Queuing Telemetry Transport. It is a
lightweight messaging protocol designed for machine-to-machine
or IoT communication. MQTT protocol was invented in 1999 by
Andy Stanford-Clark of IBM and Arlen Nipper of Arcom Control
Systems [24]. MQTT is a publish/subscribe-based protocol that uses
a client/server model. The protocol operates over TCP/IP protocol,
allowing devices to communicate over unreliable networks with
low bandwidth. MQTT is widely used in IoT applications due to
its efficiency, low power consumption, and ability to handle inter-
mittent connections. It is an open standard (ISO/IEC 20922 MQTT
3.1.1 [38] and OASIS MQTT 5.0 [21]) and is used in a wide range of
industries, including home automation and industrial automation.

The MQTT 5.0 protocol utilizes a packet structure comprising
a fixed header, variable header, and payload. The fixed header in-
cludes one of 16 control packet types, such as the Connect or
Connack, and defines relevant flags for each control type. For
instance, the Publish packet includes flags like the quality of ser-
vice (QoS) level and topic. The variable header contains a packet
identifier for request-response mapping and properties, such as the
0x08 property defining the response topic and the 0x09 property
pertaining to correlation data. The payload carries data that varies
depending on the control packet type. In Figure 1, we summarize
three key communication handshakes within an MQTT network,
with Figures 1a and 1b relying on the connection to an MQTT
broker and topic subscription. A request mostly results in an ac-
knowledgment. Figure 1c illustrates the Publish handshake that
varies based on the QoS level. A QoS of 0 is equivalent to fire-and-
forget, QoS 1 acknowledges the request, ensuring the packet arrives
at least once, and QoS 2 ensures that the packet arrives only once.

92



Process-Aware Intrusion Detection in MQTT Networks CODASPY ’24, June 19–21, 2024, Porto, Portugal

Table 1: Exemplary IPFIX fields.

ID Name Data Type

4 protocolId unsigned8
7 sourceTransportPort unsigned16
8 sourceIPv4Address ipv4Address
11 destinationTransportPort unsigned16
12 destinationIPv4Address ipv4Address
152 flowStartMilliseconds dateTime
153 flowEndMilliseconds dateTime
161 flowDurationMilliseconds unsigned32

2.2 Network Monitoring

Network monitoring is considered an effective cybersecurity mea-
sure [68]. A variety of established standards are available to enable
network monitoring. One such standard is the Simple Network
Management Protocol (SNMP), outlined in RFC 1157 [39]. SNMP
utilizes agent-based probes to gather information, which is subse-
quently forwarded to central managers for analysis. RFC 1757 [43]
describes remote network monitoring management techniques, in-
cluding proactive monitoring, offline operations, and probes that
transmit data to multiple managers. Other available standards in-
clude sFlow (RFC 3176 [65]) and Netflow’s Version 9 (v9), an open
standard developed by Cisco Systems and defined in RFC 3954 [19].
IPFIX, defined in RFC 5153 [3] and RFC 5470 [4], is an extension of
Netflow v9 and is commonly referred to as Netflow v10. Developed
by the Internet Engineering Task Force (IETF), this standard pro-
tocol enables the transfer of flow data from network devices such
as routers to a collector for analysis, surpassing the capabilities of
its predecessor, NetFlow. Table 1 provides insight into eight of the
491 pre-defined IPFIX fields, which contain information regarding
the protocol in use, IP addresses and ports, and flow length. Fields
492-32767 are unassigned, allowing for user-defined ones.

2.3 Distributed Tracing

Distributed tracing is a method (see OpenTelemetry [63] or LT-
Tng [72]) used in computer systems to monitor transactions across
multiple services. It creates a trace, or complete record, of a re-
quest’s journey through various microservices or components by
assigning a unique identifier, called a trace id, to each incoming re-
quest [64, 78]. This id is logged with any relevant metadata by each
component and sent to a centralized tracing system. Distributed
tracing helps identify bottlenecks, diagnose performance issues, and
optimize system resources in large-scale, cloud-native applications
with many interconnected services [74].

Distributed tracing is aligned with process mining [49], a popu-
lar data-driven approach using event logs to extract insights and
knowledge for discovering, analyzing, and improving business pro-
cesses [80]. Process mining employs data mining, statistics, and
visualization techniques to identify inefficiencies, bottlenecks, and
compliance issues and suggest ways to optimize them. Information
systems typically record event logs. The discovery of processes is
facilitated by three primary algorithms, the Alpha miner, Inductive
miner, and Heuristic miner, which output Petri nets or heuristic
networks that match the input event logs’ behavior [81].

Table 2: IoT network monitoring tools.

Tool Ð HTTP MQTT CoAP AMQP XMPP

F
l
o
w

nProbe [62] • •
softflowd [37] •
pmacct [70] •
nfcapd [79] •
Snort [79] •
Zeek [79] • • • • •

P
a
c
k
e
t nDPI [61] • • • • • •

Flowmon [71] • • •
mProxy [53] • •

S
u
b
s
c
r
i
p
t
i
o
n

Telegraf [36] • • • •
Zabbix [85] • • • •
Nagios Core [42] • • •
Nagios XI [42] • • •
Paessler PRTG [66] • •
ManageEngine [54] • •
Site24x7 [76] • • •
SolarWinds [77] • •

3 RELATEDWORK

Through process-aware attacks like Stuxnet [11] or Industroyer
(2) [13, 60], physical processes became a baseline for IDS [7, 9, 16,
17, 26, 59]. Besides, machine learning approaches for MQTT intru-
sion detection, e.g., [18, 45], there is to the best of our knowledge
currently no intrusion detection mechanisms for IoT messaging
protocol claiming reliability and explainability. Casola et al. [10]
design a signature-based monitoring of IoT devices’ data. Closest
to our work, Matoušek et al. [55] define a CoAP IPFIX extension
to monitor, statistically analyze, and model IoT flows for NIDS.
However, they only take TCP sessions into account and statisti-
cally analyze the flow attributes. We go beyond existing research
by investigating the MQTT protocol and automatically deriving
explainable process models using distributed tracing and process
mining for intrusion detection.

Besides, distributed tracing has yet been used for auditing [12,
22, 32] or threat investigation and detection [33, 35, 57, 58]. Espe-
cially using process mining for cybersecurity operations is a highly
influential research topic [52]. For instance, analyzing network
traffic data has already been addressed, e.g., [6]. Wakup et al. [82]
showed the transformation of TCP traffic to events logs to mine
the protocol’s behavior. They referred to this process as protocol
mining and did not further abstract the network traffic. From an
organizational context, Englberg et al. [25] use process mining in
combination with network traffic data to better inform activities
in business processes. They suggested a model that aligns network
traffic with business processes. Process mining has already been
used for analyzing IoT attacks [20]. However, Macák et al. [52]
state that real-time processing of network traffic data paired with
process mining is in its early stage. To our knowledge, we are the
first to use process mining techniques on MQTT network traffic.

Moreover, we analyze various tools for IoT network monitoring
on the application layer and categorize them based on their respec-
tive capabilities, as presented in Table 2. We identify three types
of IoT monitoring techniques, namely subscription-based, packet-
inspection, and flow-based tools. While subscription-based tools
subscribe to all topics within an IoT network, packet inspection

93



CODASPY ’24, June 19–21, 2024, Porto, Portugal Philip Empl, Fabian Böhm, & Günther Pernul

192.168.178.3

:2659

:3458

:8549

192.168.178.2

:6458

:7895

:5684

t1, t2

t2

t3

t3

t2

t1

t1

t2

t3, t1

192.168.178.1

:1986

:3215

:4568

1

2

Pub. Sub.

MQTT broker

Figure 2: Threat model considering an MQTT network and

two possible scenarios.

tools perform deep inspections of specific packet payloads. Flow-
based tools observe aggregated packets. However, subscription-
based and packet-inspection tools have limitations, especially when
dealing with large amounts of data generated by IoT devices, as they
may lead to significant performance issues. Moreover, messaging
brokers used in subscription-based tools may be vulnerable, com-
promising the data source’s authenticity. Flow-based tools for IoT
network monitoring address these challenges. They provide a more
comprehensive view of the network traffic and can detect anomalies
more effectively. Beside Zeek, we are unaware of tools that probe
and aggregate MQTT messages using the flow-based approach. To
date, Zeek only targets MQTT 3.1.1 and lacks the correlation field,
we concentrate on IPFIX-based MQTT 5.0 monitoring.

4 ADVERSARY MODEL

4.1 Attack Scenarios

This paper considers attacks on IoT networks, especially MQTT.
The following discusses the threat model within an MQTT network
(see Figure 2). An MQTT network is based on the publish/subscribe
architecture of publishers and subscribers. In our proposed net-
work, three devices with different IP addresses run three MQTT
clients, with one client publishing data to topics (192.168.178.1),
while the other two clients (192.168.178.2 and 192.168.178.3)
subscribe to these topics to receive the data. We define two possible
attack scenarios and showcase the associated risks.

The first attack scenario 1 involves an attacker gaining unau-
thorized access to an MQTT client and publishing data to different
topics through port 4568. Thismay occur due toweak access control
or insecure configurations. Attackers can conduct denial-of-service
attacks by flooding the MQTT network with MQTT Publish mes-
sages. In the second attack scenario 2 , malicious MQTT clients
subscribe to topics they are not authorized to access through port
6458 on 192.168.178.2. This attack can happen for various rea-
sons (e.g., misconfigurations in the MQTT broker’s access control),
allowing an attacker to connect successfully to a MQTT client.

Traditional NIDS based on IP address and port information fail
to detect such attacks as the attacker behaves normally and sends
messages using a valid MQTT client (IP-port combination). Though
access control measures such as constraining topic subscriptions

can be enforced, many clients publishing on many topics will re-
sult in complexity. In this context, we investigate the efficacy and
limitations of network-based graphs to detect these attacks.

4.2 Attack Detection

We look closely at an MQTT network’s structure and ordinary
modeling. We can represent an MQTT network with several com-
municating devices as a directed graph containing vertices and
edges, e.g., by automatically processing a PCAP. The vertices are
considered MQTT clients, and the edges as communication links
between these clients. We formally define an MQTT network in
adoption to Korte et al. [46] as follows:

Theorem 4.1. An MQTT network structures clients and messages

in a directed graph 𝐺 = (𝐶,𝑀), where
𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛} (1)

is a finite set of MQTT clients and

𝑀 ⊆ {(𝑥,𝑦) | (𝑥,𝑦) ∈ 𝐶2, 𝑥 ≠ 𝑦} (2)

defines messages between those clients, containing different attributes

𝑎, e.g., 𝑎(𝑚𝑡𝑦𝑝𝑒 ), 𝑎(𝑚𝑡𝑜𝑝𝑖𝑐 ), 𝑜𝑟 𝑎(𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ).

Despite its apparent simplicity, the formal definition of MQTT
communication relationships provides a valuable semantic founda-
tion for our research objectives. By leveraging this understanding,
we can construct network graphs that reveal fundamental insights
into the network’s structure. This includes the identification of
network centralities, such as brokers, and examining communica-
tion patterns between individual devices. As each communication
is directed and weighted/labeled, we can deduce the communica-
tion’s intended purpose. For example, we can discern when a client
connects to an MQTT broker and publishes data on different topics.

By utilizing this approach, we can detect attacks occurring in the
threat model. For example, if there is no link between 192.168.178.1:
4568 and theMQTT broker on topic 𝑡1 in scenario 1 , we can deduce
an anomaly, such as a denial-of-service, as 𝑡1 ∉ 𝑎(𝑚𝑡𝑜𝑝𝑖𝑐 ), where
𝑚 = (192.168.178.1 : 4568, 𝑀𝑄𝑇𝑇 𝑏𝑟𝑜𝑘𝑒𝑟 ) ∈ 𝐶 . Similarly, we can
identify the attack in scenario 2 as there is typically no connection
between 192.168.178.1:6458 and the MQTT broker on topic 𝑡2: 𝑡2 ∉
𝑎(𝑚𝑡𝑜𝑝𝑖𝑐 ), where 𝑚 = (𝑀𝑄𝑇𝑇 𝑏𝑟𝑜𝑘𝑒𝑟, 192.168.178.1 : 6458) ∈ 𝐶 .
We can detect attacks in these scenarios by inferring the MQTT
broker’s communication through Publish and Subscribe messages.

In summary, we can detect attacks using graphs or comparable
representations when the attacker is not process-aware. In these
scenarios, attack detection is successful when the attacker’s be-
havior differs from the graph’s benign behavior definition. As we
have motivated our research on attackers becoming increasingly
process-aware, we assume that the attacker is aware of the graph
structure. An attacker may flood a topic 𝑡𝑥 ∈ 𝑎(𝑚𝑡𝑜𝑝𝑖𝑐 ) where𝑚
signifies benign communication between two MQTT clients and
𝑎 is a benign attribute of𝑚, resulting in a denial-of-service attack
remaining undetected because there is no deviation from the graph.
This motivates our research, as context information is crucial for
IoT-specific NIDS. We can concatenate messages or edges in a graph
if we knowwhat occurs after client A sends a message. For example,
client A sends a message to client B: 𝑡𝑥 ∈ 𝑎1 (𝑚𝑡𝑜𝑝𝑖𝑐 ) |𝑚(𝐴, 𝐵) ∈ 𝑀 .
Client B processes the information and informs Client C with

94



Process-Aware Intrusion Detection in MQTT Networks CODASPY ’24, June 19–21, 2024, Porto, Portugal

Figure 3: MISSION framework based on CRIPS-DM [83].

𝑡𝑦 ∈ 𝑎2 (𝑚𝑡𝑜𝑝𝑖𝑐 ) | 𝑚(𝐵,𝐶) ∈ 𝑀 , resulting in a sequence, or pro-
cess 𝑃 , where 𝑝1 = 𝑎⌢1 𝑎2 | 𝑝1 ∈ 𝑃 . In the following, we elaborate
on a framework detailing how to deduce such processes.

5 MISSION FRAMEWORK

We aim to deduce IoT processes automatically, making them ex-
plainable and useful for NIDS without modifying the MQTT 5.0
standard itself. We consider this to be a complex data analysis
problem. To ensure rigor, transparency, and traceability, we adopt
the Cross Industry Standard Process for Data Mining (CRISP-DM)
methodology [83], which is highly recognized, aligned with the
complexity of the problem and is particularly well-suited for design-
ing data-intensive frameworks in the information systems area [40].
In this paper, we present our approach to mining the processes of
IoT networks, especially MQTT, for NIDS, which we call MISSION
(“Mining Semantics of IoT Networks”). Our framework comprises
six phases defined in the CRISP-DM methodology, as illustrated
in Figure 3. In the following, we detail the first four phases and
provide insights into the phases of evaluation in Section 6.

5.1 Business Understanding

First, we aim to understand the problem at hand. Our business
problem is the associated cybersecurity risk through process-aware
attacks within IoT networks. To target this problem, we mine IoT-
specific processes in network traffic. Specifically, we focus on ana-
lyzing MQTT networks, elaborating on their processes, and using
them for NIDS. We have the following requirements:

• Explainability. Models should be explainable by means
humans can reproduce their creation and structure.

• Distribution. Data should be reliably collected from differ-
ent (sub-)networks to integrate the whole network.

• Standards. Open standards allow for innovation, interoper-
ability, cost-effectiveness, and security.

We address these requirements by employing established distributed
tracing methods in combination with process mining and network
monitoring standards.

5.2 Data Understanding

In the second phase, we need to understand the data. MQTT is a pub-
lish/subscribe messaging protocol that operates on the application

Table 3: Suggested MQTT-specific IPFIX fields.

ID Name Data Type

32769 mqttQoS unsigned16
32770 mqttControlType unsigned16
32771 mqttPacketId unsigned16
32772 mqttTopic string
32773 mqttSrcClientId string
32774 mqttDstClientId string
32775 mqttCorrelationData string

layer using TCP/IP. In line with this definition, an MQTT network
consists of clients (𝐶) and messages (𝑀) with weighted attributes,
such as 𝑎(𝑚𝑡𝑜𝑝𝑖𝑐 ). MQTT handshakes are initiated through differ-
ent packet control types like Connect or Publish. A handshake
mostly comprises of a request (e.g., Connect) and an acknowl-
edgment (e.g., ConnAck). We define such handshakes as flows, a
“set of related IP packets”. In total, MQTT 5.0 has seven possible
flows: Connect, Publish, Subscribe, Unsubscribe, Disconnect,
Ping, and Authentication. The length of a flow depends on the
control packet type. For example, the Publish flow’s vary in length
depending on the QoS level. A flow with the “at most once” QoS
level is made up of one packet, and with the “at least once” QoS
level (𝑄𝑜𝑆 = 1) out of two. In contrast, a flow with the “exactly
once” QoS level (𝑄𝑜𝑆 = 2) comprises four packets. Each packet
comprises one or more header fields, additional characteristics, or
computationally derived attributes. A flow is identifiable by a key
and is unique. Each flow represents an activity within an IoT pro-
cess instance. We rely on network monitoring techniques to probe,
collect, and match related MQTT flows in IPFIX. In the following,
we detail probing, collecting, and storing MQTT flows.

Probing. We propose using an IoT network probe to capture and
aggregate MQTT network packets, enriching them with contextual
information to match related flows and storing them in a database.
To transform these packets into flows, MISSION relies on a well-
known approach based on 5-tuples, as defined in RFC 6146, which
matches packets according to the source IP address, source port,
destination IP address, destination port, and protocol:

𝑇𝑢𝑝𝑙𝑒 (𝑠𝑟𝑐𝐼𝑃, 𝑑𝑠𝑡𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡, 𝑝𝑟𝑜𝑡) (3)

The combination of IP addresses and ports is considered unique
since the MQTT broker maintains the TCP sessions of the MQTT
clients, even when multiple clients connect to the broker using
the same IP address. Hash tables (“flow tables”) match coherent
packets and reverse the flow in case of acknowledgments, e.g.,
inverting source IP and destination IP. As MQTT flows vary in size,
the required flow length depends on the packet control type and
QoS level, e.g., a Publish flow in QoS level 2 awaits a length of
four packets. To prevent collisions resulting from multiple clients’
publish requests, the packet identifier complements the 5-tuple if
available (only for 𝑄𝑜𝑆 > 0), ensuring that packets are correctly
assigned to the corresponding MQTT flow. As MQTT-specific fields
are not included in the 491 pre-defined fields of the IPFIX standard,
we complement it with user-defined ones (see Table 3). Please
note that these fields are suggestions that can be augmented with
additional data points. The definition and number of these fields

95



CODASPY ’24, June 19–21, 2024, Porto, Portugal Philip Empl, Fabian Böhm, & Günther Pernul

depends on the users’ interest and do not influence our framework.
Among these fields, correlation data is of utmost importance as
it contains the trace identifier as suggested by distributed tracing.
The correlation data should be unique and can be a UUID4 string
(an alphanumeric string of 36 characters). MQTT usage has to be
modified to transmit the trace identifier. When a client receives
correlation data, it must attach it to any potential, following Publish
message to keep the trace so that:

𝑝 = 𝑎1 (𝑚𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎)⌢𝑎2 (𝑚𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎) | 𝑝 ∈ 𝑃 (4)

Collecting & storing. It is essential to follow a set of steps to en-
sure the effective and efficient collection and storage ofMQTT flows
across multiple distributed networks. RFC 5153 provides guidelines
for IPFIX collectors, which must be capable of decoding and en-
coding information, managing templates, and utilizing a transport
protocol like UDP or TCP. When probes are widely dispersed across
the network, using SCTP as per RFC 4960 is recommended. The IP-
FIX records should be stored in a document-oriented database that
offers more flexibility than traditional relational databases. This
flexibility is crucial because flows can vary depending on the ap-
plication protocol. The data can be stored using JSON serialization
to minimize storage requirements and provide easily readable flow
records. The collector should use the same template as the probe.

5.3 Data Preparation

Once the IPFIX flows are stored in a document-oriented database,
preprocessing of the MQTT flows becomes possible. However, two
quality aspects need to be considered during preprocessing.

• MQTT flows may not contain client identifiers, especially in
Publish or Subscribe flows.

• MQTT brokers do not have client identifiers, but friendly
names must be assigned to devices without one making them
human-readable.

InMQTTnetworks, clients can decidewhether a broker retains their
sessions, and this information is transmitted via a Connect flow.
Sessions are managed through specific IP addresses and port combi-
nations within an MQTT broker. Therefore, effective preprocessing
must be capable of mapping client identifiers to IP addresses and
ports. Additionally, preprocessing must resolve and track MQTT
flows with unknown client identifiers. Each MQTT flow defines
a source and a destination client. MQTT brokers manage client
sessions but do not have client identifiers; hence, they only appear
in network traffic data with their IP addresses and ports. To account
for this, preprocessing must identify occurrences of MQTT brokers,
usually on port 1883 or 8883 (SSL), and assign them a friendly name
such as “MQTT Broker”. It is important to note that preprocessing
may vary if an MQTT broker runs on different ports. Finally, with
the collection and preprocessing of MQTT flows completed, the
next step is to model and correlate the flows semantically.

5.4 Modeling

In the realm of MQTT networks, processes and rules govern their
operation. For instance, an industrial process follows business logic
and is defined by rules using a control system. These processes may
not adhere to strict sequential order and can operate in parallel,
resulting in multiple states. Finite-state machines are unsuitable

for modeling such networks, as they are designed to model a single
client instead of an entire network. On the other hand, Petri nets
provide a dynamic model for system behavior and can replicate
concurrent processes. These directed networks, comprising vertices
and edges, are well-suited to represent MQTT networks. Hence, we
adopt the use of Petri nets for modeling MQTT networks, following
the model introduced by Petri [69]:

Theorem 5.1. MQTT processes structured as a Petri net represent

a triple 𝑁 = (𝑃,𝑇 ,𝐴), where:
𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑖 } (5)

is a finite set of places holding the MQTT clients’ state,

𝑇 = {𝑡1, 𝑡2, ..., 𝑡 𝑗 } (6)

is a finite set of transitions representing the Publish flows with at-

tributes like 𝑡1 (𝑚𝑡𝑜𝑝𝑖𝑐 , 𝑚𝑡𝑟𝑎𝑐𝑒𝐼𝑑 ), and we can define all arcs of the

Petri net as

𝐴 = (𝑃 ×𝑇 ) ∪ (𝑇 × 𝑃) (7)
whereby inputs direct to places and outputs to transitions given

weights, so that:

𝐼 : 𝑡 ↦→ 𝑝 | (𝑡, 𝑝) ∈ 𝐴 (8)
𝑂 : 𝑝 ↦→ 𝑡 | (𝑝, 𝑡) ∈ 𝐴 (9)

We consider an MQTT client a place so that 𝑐 ↦→ 𝑝 | 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃 .
We can further specify the MQTT flows gathered in the previ-
ous steps as transitions between two MQTT clients, whereby a
flow 𝐹 can be described as (𝑝, 𝑡) ∨ (𝑡, 𝑝′) | (𝑝, 𝑡) ∨ (𝑡, 𝑝′) ∈ 𝐴. A flow
may contain different contextual information depending on the
packet control type. For instance, Publish flows have fields like
𝐹𝑡𝑜𝑝𝑖𝑐,𝑡𝑟𝑎𝑐𝑒𝐼𝑑 , while other packet control types contain different
information. Since Publish flows represent the IoT process, the
remaining flows, i.e., Connect or Subscribe, are considered pre-
requisites for publishing messages as there are no Publish flows
without prior subscriptions and connections. For instance, due to
the publish/subscribe architecture, subscriptions results in Pub-
lish flows outgoing from the MQTT broker. Conversely, without
authenticating and connecting to the MQTT broker, there are no
Subscribe or Publish flows. By considering only the Publish flows,
we can deduce and address the remaining ones.

Besides, the Petri net enables the identification of flows that trig-
ger the traversal of different places, creating new markings. Each
MQTT client can concurrently hold multiple markings, describing
individual process instances in the Petri net. This is represented as
∀𝑝 : 𝑀 (𝑝), where 𝑀 (𝑝) denotes the markings held by an MQTT
client. The number of markings held by an MQTT client corre-
sponds to the number of concurrent process instances it can handle.
The markings enable the tracking of concurrent processes in the
MQTT network as they travel through the Petri net. A transition 𝑡

is activated by the function 𝐹 (𝑝, 𝑡), which involves MQTT clients
and subsequent transitions in the Petri net.

Once the formal model has been created, distributed tracing
methods, specifically process mining algorithms, can be used to
discover Petri nets automatically. These algorithms rely on event
logs containing cases or process instances, activities, and additional
details such as resources and timestamps [80]. The mapping of
IPFIX fields to the event log structure can be represented as follows:

96



Process-Aware Intrusion Detection in MQTT Networks CODASPY ’24, June 19–21, 2024, Porto, Portugal

• Timestamp: 𝑓 𝑙𝑜𝑤𝑆𝑡𝑎𝑟𝑡𝑁𝑎𝑛𝑜𝑆𝑒𝑐𝑜𝑛𝑑𝑠 (156)
• Case id:𝑚𝑞𝑡𝑡𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎(32775)
• Resource:𝑚𝑞𝑡𝑡𝑆𝑟𝑐𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝑑 (32773)
• Activity:𝑚𝑞𝑡𝑡𝑇𝑜𝑝𝑖𝑐 (32773)

Process mining discovery techniques, e.g., Alpha miner, use this
event log structure to discover a Petri net of the MQTT network.
Additionally, process mining’s conformance-checking algorithms -
used to compare the behavior of a process as recorded in an event
log to the Petri net’s behavior - identify deviations acting as NIDS.

6 EVALUATION

In this section, we conduct experiments on an implementation
based on the MISSION framework to deduce IoT processes for NIDS.
Since there are no tools and research on flow-based MQTT 5.0
NIDS, we cannot make a baseline comparison. So, we rely on the
attacker scenarios as defined in Section 6.1, and the experimental
setting defining IoT processes in Section 6.2. In Section 6.3, we aim
to rediscover the pre-defined rules, assess the quality of the Petri
nets, and detail how to detect the attacks.

6.1 Attack scenarios

Our primary objective is to evaluate the vulnerability of the net-
work to two distinct attack scenarios, as outlined in Section 4. The
attacker’s objective is to manipulate the network’s integrity and
confidentiality. The first scenario involves an eavesdropping attack,
where an infiltrator compromises network confidentiality by sub-
scribing to MQTT topics assessing the data. The second scenario
revolves around an attacker capable of deducing network traffic
and executing a Denial of Service (DoS) attack by flooding the net-
work with Publish packets. We aim to identify and analyze both of
these attacks with the MISSION framework within an experimental
setting, showcasing the power of conformance checking through
process mining. The detection of these attacks relies on previously
discovered process models. We assume the attacker can access a
single node within the network.

6.2 Experimental Setting

First, we aim to investigate the applicability of distributed tracing
and process mining on flows to derive the IoT processes of an
MQTT network. To achieve this, we define a set of rules within an
experimental MQTT network and simulate the behavior of several
industrial IoT assets derived from a real world use case. We then
capture and preprocess the resulting network traffic flows using
flow tables (hash tables) within our MQTT probe1, which exports
them to a collector for storage. After preprocessing, we apply the
remaining phases of the MISSION framework and its prototypical
implementation to unravel the underlying process model.

Our MQTT simulation is implemented using Python and the
Eclipse Paho library and is publicly available on GitHub2. We sim-
ulate an industrial environment consisting of various IoT assets,
such as sensors and actuators within different systems like a belt
circulation system or a log server, interacting with each other over
MQTT. Sensors passively sense the environment and publish data
to MQTT topics within a pre-defined value range, while actuators
1https://github.com/misssion/probe
2https://github.com/misssion/simulation

Figure 4: Experimental setting.

actively interact with the environment by subscribing to MQTT
topics and reacting to incoming events, e.g., state changes from on
to off. Status changes are recognized by a rule engine that reacts
differently on the base of predefined threshold values. Note that
industrial environments typically are static, so we do not consider
scenarios where assets join or leave the network. The simulation
is deployed on a virtual machine running Ubuntu 22.04 LTS with
six cores, 8GB RAM, and 50GB storage. The MQTT probe runs on
a separate virtual machine with Ubuntu 20.04.3 LTS (16GB RAM,
eight cores, and 80GB storage).

In our MQTT simulation, we instantiate 57 sensors and actuators,
including temperature, motion, and window sensors. Each of these
devices regularly sends packets at a fixed frequency that depends
on the category of the device. The MQTT Broker is implemented
using the open-source software Mosquitto, which is widely used
in the industry. To connect to the broker, each IoT device in our
simulation uses Eclipse Paho, an open-source MQTT client that
supports the latest MQTT specification v5 and user-defined fields.
To implement the event-driven architecture of our simulation, we
use the low-code programming software Node-RED, which acts as
an MQTT client and allows the definition of rules. We pre-define
three rules in Node-RED within in an industrial context. Note that
these rules are notional to exemplify different devices operating.

The probe is deployed within the same network as the MQTT
communication, enabling the capture of all MQTT packets. Sub-
sequently, the captured packets are transformed into flows and
exported. The collector then aggregates the MQTT flows and stores
them in a document-oriented database, MongoDB3. Preprocess-
ing of the data is performed after storing the flows. This involves
transforming the flows into an event log by mapping IPFIX fields
to event log-specific fields, such as case identifiers or timestamps.
Additionally, we filtered by Publish flows.

3https://www.mongodb.com

97

https://github.com/misssion/probe
https://github.com/misssion/simulation


CODASPY ’24, June 19–21, 2024, Porto, Portugal Philip Empl, Fabian Böhm, & Günther Pernul

(a) 1,000 events. (b) 10,000 events. (c) 100,000 events.

Figure 5: Evaluation of process mining discovery techniques using different event log sizes.

6.3 Results

The MQTT simulation was conducted over approximately 12 hours,
generating a dataset of 100,000 flows. After preprocessing and stor-
ing these flows in a MongoDB database, we perform process mining
discovery techniques to unravel the IoT processes. We test all three
process mining discovery techniques available in the PM4Py4 li-
brary to ensure a thorough comparison of the results. All of our
results are available online through a Jupyter notebook5.

Directly-follows graph. Before assessing the quality of the dis-
covered process models in our event log, we discuss using directly-
follows graphs (DFG) to generate a model encompassing all avail-
able process instances. DFGs capture all process variants and do not
aggregate or simplify process models. They can serve as a baseline
for comparison with the process mining discovery output or to
provide initial insights.

MQTT processes. After generating DFGs, we apply process min-
ing discovery techniques to our event log, demonstrating the ro-
bustness of these techniques in producing accurate process models.
Firstly, we use the Inductive miner on our event log, which excels at
identifying relationships within event logs. To exclude MQTT com-
munication that may not be pertinent, we set a noise threshold of
0.9. A high noise threshold only considers continuously occurring
and thus probable processes. Secondly, we configure the heuristic
miner, which is optimal for working with noisy and incomplete data.
The heuristic miner relies highly on a relation threshold, which we
set at 0.9. A higher relation threshold eliminates less frequent edges
in the process model. Lastly, we employ the Alpha miner, adept at
identifying parallel activities. However, selecting the process dis-
covery algorithm highly depends on the amount of distinct events
in the network. Within this model, we observe that all pre-defined
processes have been successfully re-identified. By measuring and
averaging the event log data, we determine that our experimental
scenario generates a new process instance every 0.31922 seconds
(start time) with a case dispersion ratio of 0.31922 seconds (end
time) on average. Our experimental setup can sustainably process
the received flows as the arrival and dispersion ratio remains con-
stant. The throughput time is 0.00166 seconds, indicating a near
real-time operation.
4https://pm4py.fit.fraunhofer.de/
5https://github.com/misssion/evaluation

Model quality. To assess the quality of the process models dis-
covered by the Inductive miner, Heuristic miner, and Alpha miner,
we evaluate them based on four well-established process mining
quality criteria: replay fitness, simplicity, precision, and general-
ization [5]. Figure 5 presents the evaluation results of the three
process mining techniques regarding these four criteria. Addition-
ally, we discuss the soundness of our model as an extra evaluation
criterion. It is worth noting that we evaluate the models against
three different scenarios with varying amounts of flows and process
mining discovery techniques. Note that two of our rules occur less
frequently. The first rule appears at approximately 4%, and the less
frequent rule at approximately 1.2%.

Replay fitness is a well-established quality criterion in process
mining, which quantifies the degree of accuracy with which the
discovered model can replicate the event log. It measures the per-
centage of reproduced process instances and ranges from 0% to
100%. A higher percentage indicates better fitness and a value of
100% indicates perfect fitness. Figures 5a, 5b, and 5c demonstrate
that the fitness of the discovered process models remains nearly
constant across all three process mining techniques. The Inductive
and Alpha miners show the best performance regarding fitness,
indicating that reproducing the event log would have been feasible
with only 1,000 flows. Precision is another essential criterion that
measures the overfitting/underfitting of the discovered model. If a
model involves more paths than necessary to represent an event
log, the model is overfitted. Precision is also measured in percent
and reflects the degree to which the model represents the event
log. All three models are precise, with at least 10,000 flows. Gener-
alization measures the ability of a discovered model to represent
future process instances reasonably. We can see a slight increase
in the generalization of the process model with an increase in the
number of flows available for process discovery. The simplicity of a
discovered model quantifies the maximum complexity required to
represent the event log. A higher percentage indicates less complex-
ity needed to represent the event log. We observe that the simplicity
of the discovered model stays almost constant although the number
of flows increases, except for the Heuristic miner, which shows a
substantial decrease in simplicity. Furthermore, we evaluate the
soundness of our model using Woflan algorithm, which indicates a
binary decision if the discovered model complies with all modeling
rules (e.g., start/end activities or no dead locks). In our experimental

98

https://pm4py.fit.fraunhofer.de/
https://github.com/misssion/evaluation


Process-Aware Intrusion Detection in MQTT Networks CODASPY ’24, June 19–21, 2024, Porto, Portugal

20 40 60 80 100 120 140
Request rate (flows/s)

10

20

30

40

50

60

70

80

90

Re
sp

on
se

 ra
te

 (f
lo

ws
/s

)

throughput
latency
max. CPU
max. RAM

0.00

0.01

0.01

0.01

0.02

0.03

0.03

0.04

0.04

La
te

nc
y 

l (
s)

0

20

40

60

80

100

RA
M

, C
PU

 u
sa

ge
 (\

%
)

(a) MQTT Publish flow with QoS 0.

20 40 60 80 100 120 140
Request rate (flows/s)

10

20

30

40

50

60

70

Re
sp

on
se

 ra
te

 (f
lo

ws
/s

)

throughput
latency
max. CPU
max. RAM

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

La
te

nc
y 

l (
s)

0

20

40

60

80

100

RA
M

, C
PU

 u
sa

ge
 (\

%
)

(b) MQTT Publish flow with QoS 1.

20 40 60 80 100 120
Request rate (flows/s)

10

15

20

25

30

35

40

45

Re
sp

on
se

 ra
te

 (f
lo

ws
/s

)

throughput
latency
max. CPU
max. RAM

0.00

0.05

0.10

0.15

0.20

0.25

0.30

La
te

nc
y 

l (
s)

0

20

40

60

80

100

RA
M

, C
PU

 u
sa

ge
 (\

%
)

(c) MQTT Publish flow with QoS 2.

Figure 6: Benchmarking MQTT probe running on a virtual machine.

setting, the Inductive miner produces sound models for event logs
with at least 10,000 flows. The Heuristic miner has sound models
for event logs with more than 100,000 flows. However, the Alpha
miner did not produce any sound models.

Attack detection. Conformance checking identifies anomalies
concerning the event log utilized for process discovery. Initially,
we focused on employing procedural conformance checking, e.g.,
token-based replay (TBR) and alignment checking to detect the
two attacks. However, procedural conformance checking does not
account for specific resources’ involvement in executing activities.
Consequently, we encountered challenges in detecting attacks per-
petrated by unauthorized resources following a particular process.
We attempted declarative conformance checking using a log skele-
ton as an alternative approach to examine unusual resource-activity
allocations within the event log. However, this approach lacked the
incorporation of process awareness within declarative models, but
also the resource perspective. We decided to rename activities con-
cerning resource-activity allocation to cope with this limitations.
Regarding the first attack scenario, the DoS attack, both procedural
methods (TBR and alignment) yielded anomalous results, as the at-
tacker did not behave process-aware. This was observed regardless
of whether the attacker used the same trace id for packets or unique
ones. The log skeleton approach also identified a mismatch between
the event log and the malicious traces. In the case of second attack
scenario, we successfully detected anomalous subscriptions using
procedural methods. However, the declarative method, log skeleton,
failed to identify the anomaly when comparing the benign event log
with the malicious ones. This discrepancy arose from the activity
name “MQTT Broker → mission/log_server-sensor-temperature”,
which, at first glance, appeared benign due to the publish/subscribe
architecture obscuring the client receiving the data. In summary,
using process models as a baseline for NIDS requires a well-thought
definition of input but heightens the respective process awareness.

7 PERFORMANCE EVALUATION

We conduct an assessment of the performance of our MQTT probe.
This performance assessment is paramount in determining the
probe’s ability to process real-time data. To evaluate the probe’s
performance, we employ the key performance indicators of maxi-

mum sustainable throughput and latency, as proposed by Sedlmeir

et al. [73] initially designed for blockchain to measure a node’s effi-
ciency. The performance evaluation is documented using Jupyter
Notebooks and accessible on GitHub6 to enable reproducibility.

The maximum sustainable throughput is the highest frequency
of network packets that a probe can efficiently transform to IPFIX
and export to a collector. To operate the MQTT probe, we deploy
a virtual machine running Ubuntu 20.04.3 LTS with 16GB RAM,
eight cores, and 80GB disc storage. To determine the maximum
throughput, we subject the probe to different fixed frequencies of
network packets per second. In a real MQTT network, the probe
would receive varying MQTT packets per second, depending on the
QoS level. In a network with𝑄𝑜𝑆 = 0, a probe must export as many
flows as the number of packets received. The load increases to two
packets in an MQTT network using 𝑄𝑜𝑆 = 1, and four packets
are exported for 𝑄𝑜𝑆 = 2. As a result, we create three scenarios
where the MQTT probe intends to transform all the packets re-
ceived. In each scenario, we publish MQTT messages to the MQTT
broker at a fixed frequency, beginning with ten packets/s for a
minute. The MQTT probe captures the network traffic packets,
transforms them into flows, and exports them. We then measure
the time 𝑡 taken to send a message, the export time, the latency
(𝑡𝑓 𝑙𝑜𝑤 𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑑 − 𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑒𝑛𝑡 ), and CPU/RAM usage. This process
is repeated for different frequencies (step size = 10). Upon success-
fully executing the experiments, we identify the throughput of each
run at a fixed frequency by calculating the linear regressions of
responses and requests. The throughput is deemed sustainable and
latency-free as long as these linear regressions remain parallel [73].
For instance, throughput is sustainable if the probe receives and
exports 40 packets/seconds (𝑄𝑜𝑆 = 0) with minimum latency. Addi-
tionally, we computed the average latency and CPU/RAM usage.

Figure 6 depicts the results obtained from all three scenarios. We
transform a total of 92,037 flows for 𝑄𝑜𝑆 = 0, 92,393 flows (184,786
packets) for𝑄𝑜𝑆 = 1, and 58,675 flows (234,700 packets) for𝑄𝑜𝑆 = 2.
Starting with 𝑄𝑜𝑆 = 0, Figure 6a indicates that our MQTT probe
can sustainably export 100 flows/s. After exceeding 100 flows/s, the
latency increases, and the response rate decreases. In the 𝑄𝑜𝑆 = 1
scenario (see Figure 6b), the probe can sustainably export 70 flows/s.
It is important to note that exporting 70 flows/s with 𝑄𝑜𝑆 = 1
involves a stress factor of 140 packets/s. In the last scenario (see
Figure 6c), the maximum sustainable throughput is 50 flows/s (200
packets/s). Interestingly, the RAM and CPU usage remains constant
even when the maximum sustainable throughput is achieved. This

6https://github.com/misssion/benchmark

99

https://github.com/misssion/benchmark


CODASPY ’24, June 19–21, 2024, Porto, Portugal Philip Empl, Fabian Böhm, & Günther Pernul

phenomenon occurs because our probe is implemented in Python,
which has a global interpreter lock to synchronize the execution of
threads. Multiprocessing is currently not feasible due to the shared
memory of the flow table.

Our MQTT probe performs satisfactorily in all three scenarios,
processing between 100 to 200 packets/s and 40 to 100 flows/s,
respectively. It is important to note that a collector would aggre-
gate exported flows from multiple probes in a real-world scenario.
Scaling to more than one probe would allow for meeting the re-
quirements of more extensive IoT networks. However, in smaller
networks, it may be sufficient to operate at least one probe per
sub-network to export flows. In summary, our probe, collector and
database implementation provides deployable and seamlessly inte-
grated components for existing organizational IoT networks based
onMQTT. It focuses on reliability and provides stable and consistent
performance for efficient process model discovery and conformance
checking on network data enabling security operations.

8 DISCUSSION

This section discusses key learnings and insights during our re-
search, limitations in Section 8.1, and future work in Section 8.2.

OT availability requirements vs. security modifications. The in-
dustrial IoT demands high availability to prevent financial loss
resulting from outages [48]. Our framework requires modifications
to industrial IoT communication to ensure the trace identifier is
transmitted whenever a device reacts to a request. However, this
may conflict with the high availability requirements of the indus-
trial IoT. Consequently, organizations must weigh the advantages of
improved security against the risk of potential outages, constituting
a fundamental decision-making process not limited to MISSION.

No need for a sledgehammer cracking a nut? NIDS are shaped by
machine learning algorithms that attempt to explain correlations in
the data. However, there are cases where it may not be feasible or de-
sirable, particularly in organizations that need more expertise [34]
or when models are not explainable [31]. Our more straightforward
approach creates reliable and explainable models based on network
traffic data and trace identifiers. At present, our framework only
generates boolean results for anomalies, whereas machine learning
approaches aim to classify attack types directly. Combining both
techniques could prove helpful in detecting anomalies and classify-
ing them later, as exemplified by Microsoft Security Copilot’s use
of large language models [56].

MISSION as a defensive or offensive measure? Our research re-
veals that mining processes in the industrial IoT is feasible with
minimal effort, particularly for IoT processes that support business
operations. When considering a business process view, manufac-
turers order numbers to orchestrate their machines, often using
plain text communication. These parts of order numbers can also
function as trace identifiers resulting in business processes. Our
framework, while designed for defensive purposes, could be ex-
ploited by attackers to gain insight into operations to launch attacks.
It would be interesting to see how attackers have gained process
awareness in well-known attacks such as Stuxnet [11] or Indus-
troyer [13, 60]. However, this requires either network traffic in plain
text or capabilities for decryption.

8.1 Limitations

Although our framework, MISSION, has shown effective in explor-
ing MQTT processes, several limitations should be considered.
Firstly, the scope of our paper is limited to MQTT, and other IoT
application protocols may have different messaging patterns that re-
quire a distinct data collection andmodeling approach. Secondly, we
have only estimated the flows (𝑛 = 100, 000)needed to derive sound
models. Moreover, we only model Publish flows, as they require
corresponding Subscribe or Connect flows in advance. The CPU
and RAM utilization of the probe and collector has not reached their
limits; more personnel resources could enhance their efficiency, for
example, through multi-threading or multi-processing. Addition-
ally, we could have integrated our framework into existing probes,
such as softflowd or pmacct. However, to maintain the coherence of
the framework, we refrained from doing so. Lastly, we consider net-
work traffic in plain text, which often applies to industrial networks.
If encrypted, keys must be available.

8.2 Future Work

We propose several ideas for further improving and developing
the MISSION framework. One such idea is to use business process-
relevant information (e.g., product identifiers) to reconstruct busi-
ness processes instead of using correlation data. Future research
should also focus on identifying high-level semantic information to
further abstract the process, but also to cope with encrypted traffic.
Additionally, research should delve into the alignment of resource-
based and control flow-based conformance-checking methods to
detect intrusions. While we successfully detected both attacks, the
absence of a resource perspective in existing conformance-checking
methods poses a challenge, necessitating novel aligned approaches
for NIDS. We believe the MISSION framework is getting a corner-
stone for IoT security and should be expanded to include additional
application protocols such as OPC UA, CoAP, and XMPP. Besides,
MISSION can provide proactive security monitoring and testing
and identify optimizations for IoT networks, such as mandatory
access control rights. For example, MQTT brokers could be opti-
mized based on the process model. Finally, the MISSION framework
could be implemented in open-source and commercial probes like
softflowd to increase its adoption and get production-ready.

9 CONCLUSION

Our paper uses distributed tracing for NIDS to mine IoT processes
from network traffic automatically. We found that IoT application
protocols contain contextual information relevant to NIDS and can
be captured near real-time using network monitoring techniques.
We use corresponding flows as input to derive process models using
process mining discovery techniques and conformance checking
to detect anomalies. Our prototype, including probe, collector, and
modeling, is open-source, deployable, and available on GitHub
with multi-arch images to be found on DockerHub7. We highlight
the MISSION framework as a fundamental cornerstone in creating
transparency, explainability, and enhancing cybersecurity in IoT
networks, enabling more sophisticated security operations beyond
network intrusion detection systems.

7https://hub.docker.com/u/iotmission

100

https://hub.docker.com/u/iotmission


Process-Aware Intrusion Detection in MQTT Networks CODASPY ’24, June 19–21, 2024, Porto, Portugal

REFERENCES

[1] Ala I. Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. 2015. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Communications Surveys & Tutorials 17, 4
(2015), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095

[2] Stefan Axelsson. 2000. Intrusion detection systems: A survey and taxonomy. Tech-
nical Report.

[3] B. Claise and B. Trammell and P. Aitken and S. Zseby and J. Quittek. 2008. IP
Flow Information Export (IPFIX) Implementation Guidelines. Technical Report.
https://doi.org/10.17487/rfc5153 RFC 5153.

[4] B. Trammell and E. Boschi and T. Zseby and D. Quittek and M. Stiemerling and
M. Claise. 2009. Architecture for IP Flow Information Export. Technical Report.
https://doi.org/10.17487/rfc5470 RFC 5470.

[5] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2012.
On the Role of Fitness, Precision, Generalization and Simplicity in Process Discov-
ery. In Proceedings of the On the Move to Meaningful Internet Systems (OTM 2012)

(2012), Robert Meersman, Hervé Panetto, Tharam Dillon, Stefanie Rinderle-Ma,
Peter Dadam, Xiaofang Zhou, Siani Pearson, Alois Ferscha, Sonia Bergamaschi,
and Isabel F. Cruz (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 305–322.
https://doi.org/10.1007/978-3-642-33606-5_19

[6] Javier Bustos-Jiménez, Cecilia Saint-Pierre, and Alvaro Graves. 2014. Applying
Process Mining Techniques to DNS Traces Analysis. In Proceedings of the 33rd

International Conference of the Chilean Computer Science Society, (SCCC 2014).
IEEE Computer Society, 12–16. https://doi.org/10.1109/SCCC.2014.9

[7] Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen
Huang, and Shankar Sastry. 2011. Attacks against process control systems: risk
assessment, detection, and response. In Proceedings of the 6th ACM Symposium on

Information, Computer and Communications Security (ASIACCS 2011) (2011-03),
Bruce S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong
(Eds.). ACM, 355–366. https://doi.org/10.1145/1966913.1966959

[8] Marco Caselli, Emmanuele Zambon, Johanna Amann, Robin Sommer, and Frank
Kargl. 2016. Specification Mining for Intrusion Detection in Networked Control
Systems. In Proceedings of the 25th USENIX Security Symposium (USENIX Security

2016), Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 791–806.
[9] Marco Caselli, Emmanuele Zambon, and Frank Kargl. 2015. Sequence-aware

Intrusion Detection in Industrial Control Systems. In Proceedings of the 1st ACM

Workshop on Cyber-Physical System Security (CPSS 2015), Jianying Zhou and
Douglas Jones (Eds.). ACM, 13–24. https://doi.org/10.1145/2732198.2732200

[10] Valentina Casola, Alessandra De Benedictis, Antonio Riccio, Diego Rivera,
Wissam Mallouli, and Edgardo Montes de Oca. 2019. A security monitor-
ing system for internet of things. Internet of Things 7 (2019), 100080. https:
//doi.org/10.1016/j.iot.2019.100080

[11] Thomas M. Chen and Saeed Abu-Nimeh. 2011. Lessons from Stuxnet. Computer

44, 4 (2011), 91–93. https://doi.org/10.1109/MC.2011.115
[12] Xutong Chen, Hassaan Irshad, Yan Chen, Ashish Gehani, and Vinod Yegneswaran.

2021. CLARION: Sound and Clear Provenance Tracking for Microservice Deploy-
ments. In Proceedings of the 30th USENIX Security Symposium (USENIX Security

2021), Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 3989–
4006.

[13] Anton Cherepanov. 2017. WIN32/INDUSTROYER: A new threat for industrial
control systems. White paper, ESET (June 2017) (2017).

[14] Steven Cheung, Bruno Dutertre, Martin Fong, Ulf Lindqvist, Keith Skinner, and
Alfonso Valdes. 2007. Using model-based intrusion detection for SCADA net-
works. In Proceedings of the SCADA security scientific symposium, Vol. 46. SRI
International, 1–12.

[15] Ronny Chevalier, Maugan Villatel, David Plaquin, and Guillaume Hiet. 2017. Co-
processor-based Behavior Monitoring: Application to the Detection of Attacks
Against the System Management Mode. In Proceedings of the 33rd Annual Com-

puter Security Applications Conference (ACSAC 2017) (2017-12). ACM, 399–411.
https://doi.org/10.1145/3134600.3134622

[16] Justyna J. Chromik, Anne Remke, and Boudewijn R. Haverkort. 2016. What’s
under the hood? Improving SCADA security with process awareness. In Proceed-

ings of the 2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart

Grids (CPSR-SG 2016). IEEE, 1–6. https://doi.org/10.1109/CPSRSG.2016.7684100
[17] Justyna J Chromik, Anne Remke, and Boudewijn R Haverkort. 2018. Bro in

SCADA: Dynamic intrusion detection policies based on a system model. In
Proceedings of the 5th International Symposium for ICS & SCADA Cyber Security

Research (2018-08). BCS Learning & Development, 112–121. https://doi.org/10.
14236/ewic/ics2018.13

[18] Ege Ciklabakkal, Ataberk Donmez, Mert Erdemir, Emre Süren, Mert Kaan Yilmaz,
and Pelin Angin. 2019. ARTEMIS: An Intrusion Detection System for MQTT
Attacks in Internet of Things. In Proceedings of the 38th Symposium on Reliable

Distributed Systems (SRDS 2019) (2019-10). IEEE, 369–371. https://doi.org/10.
1109/SRDS47363.2019.00053

[19] B. Claise, P. Aitken, and N. Ben-Dvora. 2004. Cisco Systems NetFlow Services

Export Version 9. Technical Report. https://doi.org/10.17487/rfc6759 RFC 3954.
[20] Simone Coltellese, Fabrizio Maria Maggi, Andrea Marrella, Luca Massarelli, and

Leonardo Querzoni. 2019. Triage of IoT Attacks Through Process Mining. In

Proceedings of the On the Move to Meaningful Internet Systems (OTM 2019) (2019)
(Lecture Notes in Computer Science, Vol. 11877). Springer, 326–344. https://doi.
org/10.1007/978-3-030-33246-4_22

[21] Richard Coppen. 2019. MQTT Version 5.0 Specification. Technical Specification.
Organization for the Advancement of Structured Information Standards (OASIS).
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[22] Pubali Datta, Isaac Polinsky, Muhammad Adil Inam, Adam Bates, and William
Enck. 2022. ALASTOR: Reconstructing the Provenance of Serverless Intrusions. In
Proceedings of the 31st USENIX Security Symposium (USENIX Security 2022) (2023),
Kevin R. B. Butler and Kurt Thomas (Eds.). USENIX Association, 2443–2460.

[23] Hervé Debar, Marc Dacier, and Andreas Wespi. 1999. Towards a taxonomy of
intrusion-detection systems. Computer Networks 31, 8 (1999), 805–822. https:
//doi.org/10.1016/S1389-1286(98)00017-6

[24] Eclipse Foundation. 2021. Eclipse Newsletter - February 2021. https://www.
eclipse.org/community/eclipse_newsletter/2021/february/1.php. Accessed: No-
vember 5, 2023.

[25] Gal Engelberg, Moshe Hadad, and Pnina Soffer. 2021. From Network Traffic Data
to Business Activities: A Process Mining Driven Conceptualization. In Proceedings
of the 22nd International Conference on Business Process Modeling, Development

and Support (BPMDS 2021) (2021) (Lecture Notes in Business Information Processing,

Vol. 421), Adriano Augusto, Asif Gill, Selmin Nurcan, Iris Reinhartz-Berger, Rainer
Schmidt, and Jelena Zdravkovic (Eds.). Springer, 3–18. https://doi.org/10.1007/
978-3-030-79186-5_1

[26] Robert Flosbach, Justyna Joanna Chromik, and Anne Remke. 2019. Architecture
and Prototype Implementation for Process-Aware Intrusion Detection in Electri-
cal Grids. In Proceedings of the 38th Symposium on Reliable Distributed Systems

(SRDS) (2019-10). IEEE, 42–51. https://doi.org/10.1109/SRDS47363.2019.00015
[27] Igor Nai Fovino, Andrea Carcano, Thibault De Lacheze Murel, Alberto Trom-

betta, and Marcelo Masera. 2010. Modbus/DNP3 State-Based Intrusion Detection
System. In Proceedings of the 24th IEEE International Conference on Advanced

Information Networking and Applications (AINA 2010). IEEE Computer Society,
729–736. https://doi.org/10.1109/AINA.2010.86

[28] Gemalto. 2019. Gemalto: State of IoT Security. Network Security 2019, 2 (2019), 4.
https://doi.org/10.1016/S1353-4858(19)30018-2

[29] Niv Goldenberg and Avishai Wool. 2013. Accurate modeling of Modbus/TCP
for intrusion detection in SCADA systems. International Journal of Critical

Infrastructure Protection 6, 2 (2013), 63–75. https://doi.org/10.1016/j.ijcip.2013.05.
001

[30] Dina Hadziosmanovic, Damiano Bolzoni, and Pieter H. Hartel. 2012. A log mining
approach for process monitoring in SCADA. International Journal of Information

Security 11, 4 (2012), 231–251. https://doi.org/10.1007/s10207-012-0163-8
[31] Dongqi Han, Zhiliang Wang, Wenqi Chen, Ying Zhong, Su Wang, Han Zhang,

Jiahai Yang, Xingang Shi, and Xia Yin. 2021. DeepAID: Interpreting and Improving
Deep Learning-based Anomaly Detection in Security Applications. In Proceedings

of the 2021 ACM SIGSAC Conference on Computer and Communications Security

(CCS 2021), Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,
3197–3217. https://doi.org/10.1145/3460120.3484589

[32] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas Moyer.
2018. Towards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs. In Proceedings of the 25th Annual Network and Distributed

System Security Symposium, (NDSS 2018) (2018). The Internet Society. https:
//doi.org/10.14722/ndss.2018.23141

[33] Wajih Ul Hassan, Mohammad A. Noureddine, Pubali Datta, and Adam Bates.
2020. OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-
layer Log Analysis. In Proceedings of the 27th Annual Network and Distributed

System Security Symposium (NDSS 2020) (2020). The Internet Society. https:
//doi.org/10.14722/ndss.2020.24270

[34] Khari Hernandez. 2022. For 1 in 4 companies, half of all AI projects fail. https:
//venturebeat.com/ai/idc-for-1-in-4-companies-half-of-all-ai-projects-fail/

[35] Tim Hübener, Michel R. V. Chaudron, Yaping Luo, Pieter Vallen, Jonck van der
Kogel, and Tom Liefheid. 2022. Automatic Anti-Pattern Detection in Microservice
Architectures Based on Distributed Tracing. In Proceedings of the 44th IEEE/ACM

International Conference on Software Engineering: Software Engineering in Practice,

(ICSE 2022). IEEE, 75–76. https://doi.org/10.1109/ICSE-SEIP55303.2022.9794000
[36] InfluxData. 2022. Telegraf: MQTT Consumer Input Plugin.

https://www.flowmon.com/en/products/software-modules/packet-investigator.
Accessed: November 5, 2023.

[37] irino. 2022. softflowd: A flow-based network traffic analyser capable of Cisco
NetFlow data export software. https://github.com/irino/softflowd. Accessed:
November 5, 2023.

[38] ISO/IEC JTC 1/SC 29/WG 11. 2016. Information technology – Message Queuing

Telemetry Transport (MQTT). International Standard ISO/IEC 20922:2016. Geneva,
Switzerland. https://www.iso.org/obp/ui/#iso:std:iso-iec:20922:ed-1:v1:en

[39] J. Case and K. McCloghrie and M. Rose and S. Waldbusser. 1990. Simple Network

Management Protocol (SNMP). Technical Report. https://doi.org/10.17487/rfc1448
RFC 1157.

[40] Joyce Jackson. 2002. Data Mining; A Conceptual Overview. Communications of

the Association for Information Systems 8 (2002), 19. https://doi.org/10.17705/

101

https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.17487/rfc5153
https://doi.org/10.17487/rfc5470
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1109/SCCC.2014.9
https://doi.org/10.1145/1966913.1966959
https://doi.org/10.1145/2732198.2732200
https://doi.org/10.1016/j.iot.2019.100080
https://doi.org/10.1016/j.iot.2019.100080
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1145/3134600.3134622
https://doi.org/10.1109/CPSRSG.2016.7684100
https://doi.org/10.14236/ewic/ics2018.13
https://doi.org/10.14236/ewic/ics2018.13
https://doi.org/10.1109/SRDS47363.2019.00053
https://doi.org/10.1109/SRDS47363.2019.00053
https://doi.org/10.17487/rfc6759
https://doi.org/10.1007/978-3-030-33246-4_22
https://doi.org/10.1007/978-3-030-33246-4_22
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://doi.org/10.1016/S1389-1286(98)00017-6
https://doi.org/10.1016/S1389-1286(98)00017-6
https://www.eclipse.org/community/eclipse_newsletter/2021/february/1.php
https://www.eclipse.org/community/eclipse_newsletter/2021/february/1.php
https://doi.org/10.1007/978-3-030-79186-5_1
https://doi.org/10.1007/978-3-030-79186-5_1
https://doi.org/10.1109/SRDS47363.2019.00015
https://doi.org/10.1109/AINA.2010.86
https://doi.org/10.1016/S1353-4858(19)30018-2
https://doi.org/10.1016/j.ijcip.2013.05.001
https://doi.org/10.1016/j.ijcip.2013.05.001
https://doi.org/10.1007/s10207-012-0163-8
https://doi.org/10.1145/3460120.3484589
https://doi.org/10.14722/ndss.2018.23141
https://doi.org/10.14722/ndss.2018.23141
https://doi.org/10.14722/ndss.2020.24270
https://doi.org/10.14722/ndss.2020.24270
https://venturebeat.com/ai/idc-for-1-in-4-companies-half-of-all-ai-projects-fail/
https://venturebeat.com/ai/idc-for-1-in-4-companies-half-of-all-ai-projects-fail/
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794000
https://www.iso.org/obp/ui/#iso:std:iso-iec:20922:ed-1:v1:en
https://doi.org/10.17487/rfc1448
https://doi.org/10.17705/1cais.00819
https://doi.org/10.17705/1cais.00819


CODASPY ’24, June 19–21, 2024, Porto, Portugal Philip Empl, Fabian Böhm, & Günther Pernul

1cais.00819
[41] Paria Jokar, Hasen Nicanfar, and Victor C. M. Leung. 2011. Specification-based In-

trusionDetection for home area networks in smart grids. In Proceedings of the IEEE
Second International Conference on Smart Grid Communications (SmartGridComm

2011). IEEE, 208–213. https://doi.org/10.1109/SmartGridComm.2011.6102320
[42] jpmens. 2022. A Nagios/Icinga plugin for testing an MQTT broker.

https://github.com/jpmens/check-mqtt. Accessed: 2022-09-27.
[43] K. McCloghrie and M. Rose and S. Waldbusser. 1995. Remote Network Monitoring

Management Information Base. Technical Report. https://doi.org/10.17487/
rfc2819 RFC 1757.

[44] Kaspersky. 2022. Pushing the limits: How to address specific cybersecurity demands

and protect IoT. Technical Report. Kaspersky.
[45] Muhammad Almas Khan, Muazzam Ali Khan, Sana Ullah Jan, Jawad Ahmad,

Sajjad Shaukat Jamal, Awais Aziz Shah, Nikolaos Pitropakis, and William J.
Buchanan. 2021. A Deep Learning-Based Intrusion Detection System for MQTT
Enabled IoT. Sensors 21, 21 (2021), 7016. https://doi.org/10.3390/s21217016

[46] Bernhard Korte and Jens Vygen. 2018. Graphs. Springer Berlin Heidelberg, Berlin,
Heidelberg, 15–51. https://doi.org/10.1007/978-3-662-56039-6_2

[47] Oualid Koucham, Stéphane Mocanu, Guillaume Hiet, Jean-Marc Thiriet, and
Frédéric Majorczyk. 2022. Cross-domain alert correlation methodology for
industrial control systems. Computers & Security 118 (2022), 102723. https:
//doi.org/10.1016/j.cose.2022.102723

[48] Tim Krause, Raphael Ernst, Benedikt Klaer, Immanuel Hacker, and Martin Henze.
2021. Cybersecurity in Power Grids: Challenges and Opportunities. Sensors 21,
18 (2021), 6225. https://doi.org/10.3390/s21186225

[49] Bowen Li, Xin Peng, Qilin Xiang, HanzhangWang, Tao Xie, Jun Sun, and Xuanzhe
Liu. 2022. Enjoy your observability: an industrial survey of microservice tracing
and analysis. Empirical Software Engineering 27, 1 (2022), 25. https://doi.org/10.
1007/s10664-021-10063-9

[50] Zhenyuan Li, Qi Alfred Chen, Chunlin Xiong, Yan Chen, Tiantian Zhu, and
Hai Yang. 2019. Effective and Light-Weight Deobfuscation and Semantic-Aware
Attack Detection for PowerShell Scripts. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security (CCS 2019), Lorenzo Caval-
laro, Johannes Kinder, XiaoFengWang, and Jonathan Katz (Eds.). ACM, 1831–1847.
https://doi.org/10.1145/3319535.3363187

[51] Yushan Liu, Xiaokui Shu, Yixin Sun, Jiyong Jang, and Prateek Mittal. 2022. RAPID:
Real-Time Alert Investigation with Context-aware Prioritization for Efficient
Threat Discovery. In Proceedings of the 38th Annual Computer Security Applica-

tions Conference (ACSAC 2022). ACM, 827–840. https://doi.org/10.1145/3564625.
3567997

[52] Martin Macák, Lukas Daubner, Mohammadreza Fani Sani, and Barbora Buhnova.
2021. Cybersecurity Analysis via Process Mining: A Systematic Literature Review.
In Proceedings of the 17th International Conference on Advanced Data Mining and

Applications (ADMA 2021) (2022) (Lecture Notes in Computer Science, Vol. 13087),
Bohan Li, Lin Yue, Jing Jiang, Weitong Chen, Xue Li, Guodong Long, Fei Fang, and
Han Yu (Eds.). Springer, 393–407. https://doi.org/10.1007/978-3-030-95405-5_28

[53] Mainflux. 2022. mProxy is an MQTT proxy. https://github.com/mainflux/mproxy.
Accessed: November 5, 2023.

[54] ManageEngine. 2022. RabbitMQ Monitoring.
https://www.manageengine.com/products/applications_manager/rabbitmq-
monitoring.html. Accessed: November 5, 2023.

[55] Petr Matousek, Ondrej Rysavý, and Matej Grégr. 2019. Security Monitoring
of IoT Communication Using Flows. In Proceedings of the 6th Conference on

the Engineering of Computer Based Systems (ECBS 2019), Maria-Iuliana Dascalu,
Ondrej Rysavý, Constanta-Nicoleta Bodea, Moshe Goldstein, and Miodrag Dukic
(Eds.). ACM, 18:1–18:9. https://doi.org/10.1145/3352700.3352718

[56] Microsoft. 2023. Introducing Microsoft Security Copilot: Empowering defenders
at the speed of AI. https://blogs.microsoft.com/blog/2023/03/28/introducing-
microsoft-security-copilot-empowering-defenders-at-the-speed-of-ai/. Accessed:
November 5, 2023.

[57] Francesco Minna, Agathe Blaise, Filippo Rebecchi, Balakrishnan Chandrasekaran,
and Fabio Massacci. 2021. Understanding the Security Implications of Kubernetes
Networking. IEEE Security & Privacy 19, 5 (2021), 46–56. https://doi.org/10.1109/
MSEC.2021.3094726

[58] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. 2019. Anomaly Detection and
Classification using Distributed Tracing and Deep Learning. In Proceedings of the

19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

(CCGRID 2019). IEEE, 241–250. https://doi.org/10.1109/CCGRID.2019.00038
[59] Jeyasingam Nivethan and Mauricio Papa. 2016. A SCADA Intrusion Detection

Framework that Incorporates Process Semantics. In Proceedings of the 11th Annual
Cyber and Information Security Research Conference (CISRC 2016), Joseph P. Trien,
Stacy J. Prowell, John R. Goodall, and Robert A. Bridges (Eds.). ACM, 6:1–6:5.
https://doi.org/10.1145/2897795.2897814

[60] Nozomi Networks. 2022. OT/IT Security Report: Cyber War Insights, Threats and

Trends, Recommendations. Technical Report. Nozomi Networks.

[61] ntop. 2022. nDPI: Open and Extensible LGPLv3 Deep Packet Inspection Library.
https://www.ntop.org/products/deep-packet-inspection/ndpi/.

[62] nTop. 2022. nProbe - An Extensible NetFlow v5/v9/IPFIX Probe for IPv4/v6.
https://www.ntop.org/products/netflow/nprobe/. Accessed: November 5, 2023.

[63] OpenTelemetry. 2023. High-quality, ubiquitous, and portable telemetry to enable
effective observability. https://opentelemetry.io/. Accessed: November 5, 2023.

[64] OpenZipkin. 2023. Zipkin. https://zipkin.io/. Accessed: November 5, 2023.
[65] P. Phaal and S. Panchen and N. McKee. 2001. InMon Corporation’s sFlow: A

Method for Monitoring Traffic in Switched and Routed Networks. Technical Report.
https://doi.org/10.17487/rfc3176 RFC 3176.

[66] Paessler AG. 2022. PRTG Manual: MQTT Subscribe Custom Sensor.
https://www.paessler.com/manuals/prtg/mqtt_subscribe_custom_sensor. Ac-
cessed: November 5, 2023.

[67] Aditya Pakki and Kangjie Lu. 2020. Exaggerated Error Handling Hurts! An
In-Depth Study and Context-Aware Detection. In Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security (CCS 2020), Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 1203–1218.
https://doi.org/10.1145/3372297.3417256

[68] Palo Alto Networks. 2022. The Connected Enterprise: IoT Security Report 2021.
Technical Report. Palo Alto Networks.

[69] Carl Adam Petri. 1966. Communication with automata. https://doi.org/10.21236/
ad0630125

[70] pmacct. 2022. pmacct is a small set of multi-purpose passive network monitoring
tools. https://github.com/pmacct/pmacct. Accessed: November 5, 2023.

[71] Progress Flowmon. 2022. Flowmon Packet Investigator: Automated PCAP capture
and analyzer. https://www.flowmon.com/en/products/software-modules/packet-
investigator. Accessed: November 5, 2023.

[72] LTTng Project. 2023. LTTng: Linux Trace Toolkit Next Generation.
https://lttng.org/. Accessed: November 5, 2023.

[73] Johannes Sedlmeir, Philipp Ross, André Luckow, Jannik Lockl, Daniel Miehle,
and Gilbert Fridgen. 2021. The DLPS: A New Framework for Benchmarking
Blockchains. In Proceedings of the 54th Hawaii International Conference on System

Sciences (HICSS 2021) (2021). ScholarSpace, 1–10. https://doi.org/10.24251/hicss.
2021.822

[74] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google,
Inc. https://research.google.com/archive/papers/dapper-2010-1.pdf

[75] Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac. 2017. 6thSense: A
Context-aware Sensor-based Attack Detector for Smart Devices. In Proceedings

of the 26th USENIX Security Symposium (USENIX Security 2017), Engin Kirda and
Thomas Ristenpart (Eds.). USENIX Association, 397–414.

[76] Site24x7. 2022. RabbitMQMonitoring. https://www.site24x7.com/plugins/rabbitmq-
monitoring.html. Accessed: November 5, 2023.

[77] SolwarWinds. 2022. RabbitMQ Monitoring Tool.
https://www.solarwinds.com/server-application-monitor/use-cases/rabbitmq-
monitoring. Accessed: November 5, 2023.

[78] Inc. Uber Technologies. 2023. Jaeger. https://www.jaegertracing.io/. Accessed:
November 5, 2023.

[79] Ubuntu Manpage Repository. 2022. nfcapd - netflow capture daemon.
https://manpages.ubuntu.com/manpages/bionic/man1/nfcapd.1.html. Accessed:
November 5, 2023.

[80] Wil Van Der Aalst. 2012. Process Mining. Commun. ACM 55, 8 (2012), 76–83.
https://doi.org/10.1145/2240236.2240257

[81] Wil Van Der Aalst. 2016. Process Mining - Data Science in Action. Springer.
https://doi.org/10.1007/978-3-662-49851-4

[82] ChristianWakup and Jörg Desel. 2014. Analyzing a TCP/IP-Protocol with Process
Mining Techniques. In Proceedings of the 2014 International Conference on Business
Process Management (BPM 2014) (2015) (Lecture Notes in Business Information

Processing, Vol. 202), Fabiana Fournier and Jan Mendling (Eds.). Springer, 353–364.
https://doi.org/10.1007/978-3-319-15895-2_30

[83] Rüdiger Wirth and Jochen Hipp. 2000. CRISP-DM: Towards a standard process
model for data mining. In Proceedings of the 4th international conference on the

practical applications of knowledge discovery and data mining, Vol. 1. Manchester,
29–40.

[84] IIoT World. 2022. 2022 Building IIoT Systems Survey Report.
https://www.iiot-world.com/wp-content/uploads/2022/10/2022-Building-
IIoT-Systems-Survey-Report.pdf Accessed: November 5, 2023.

[85] Zabbix. 2022. Zabbix + MQTT. https://www.zabbix.com/de/integrations/mqtt.
Accessed: November 5, 2023.

[86] Chunjie Zhou, Shuang Huang, Naixue Xiong, Shuang-Hua Yang, Huiyun Li,
Yuanqing Qin, and Xuan Li. 2015. Design and Analysis of Multimodel-Based
Anomaly Intrusion Detection Systems in Industrial Process Automation. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 45, 10 (2015), 1345–1360.
https://doi.org/10.1109/TSMC.2015.2415763

102

https://doi.org/10.17705/1cais.00819
https://doi.org/10.1109/SmartGridComm.2011.6102320
https://doi.org/10.17487/rfc2819
https://doi.org/10.17487/rfc2819
https://doi.org/10.3390/s21217016
https://doi.org/10.1007/978-3-662-56039-6_2
https://doi.org/10.1016/j.cose.2022.102723
https://doi.org/10.1016/j.cose.2022.102723
https://doi.org/10.3390/s21186225
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1145/3319535.3363187
https://doi.org/10.1145/3564625.3567997
https://doi.org/10.1145/3564625.3567997
https://doi.org/10.1007/978-3-030-95405-5_28
https://doi.org/10.1145/3352700.3352718
https://doi.org/10.1109/MSEC.2021.3094726
https://doi.org/10.1109/MSEC.2021.3094726
https://doi.org/10.1109/CCGRID.2019.00038
https://doi.org/10.1145/2897795.2897814
https://opentelemetry.io/
https://zipkin.io/
https://doi.org/10.17487/rfc3176
https://doi.org/10.1145/3372297.3417256
https://doi.org/10.21236/ad0630125
https://doi.org/10.21236/ad0630125
https://doi.org/10.24251/hicss.2021.822
https://doi.org/10.24251/hicss.2021.822
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://www.jaegertracing.io/
https://doi.org/10.1145/2240236.2240257
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-15895-2_30
https://www.iiot-world.com/wp-content/uploads/2022/10/2022-Building-IIoT-Systems-Survey-Report.pdf
https://www.iiot-world.com/wp-content/uploads/2022/10/2022-Building-IIoT-Systems-Survey-Report.pdf
https://doi.org/10.1109/TSMC.2015.2415763

	Abstract
	1 Introduction
	2 Background
	2.1 Message Queuing Telemetry Transport
	2.2 Network Monitoring
	2.3 Distributed Tracing

	3 Related Work
	4 Adversary model
	4.1 Attack Scenarios
	4.2 Attack Detection

	5 MISSION Framework
	5.1 Business Understanding
	5.2 Data Understanding
	5.3 Data Preparation
	5.4 Modeling

	6 Evaluation
	6.1 Attack scenarios
	6.2 Experimental Setting
	6.3 Results

	7 Performance Evaluation
	8 Discussion
	8.1 Limitations
	8.2 Future Work

	9 Conclusion
	References



