
Estimation, Impact and Visualization of Schema Evolution in
Graph Databases

Dominique Hausler
dominique.hausler@ur.de
University of Regensburg

Regensburg, Bavaria, Germany

:Project
id = Integer

name = String
projectNumber =

Integer

:HAS

:PhDStudent
:Person

id = Integer
fullName = String

enrolled =
Boolean

:OVERSEES
since = Integer

:HAS
:Professor
id = Integer

firstName = String
lastName = Stirng

:Manager
id = Integer

firstName = String
lastName = String

Multilabeling

Overlapping
Types

Scheman

:Manager
id = Integer

fullName = String

Heterogeneity :Project
id = Integer

name = String
projectNumber =

Integer

:HAS

:PhDStudent
:Person

id = Integer
fullName = String

enrolled =
Boolean

:OVERSEES
since = Integer

:HAS
:Professor
id = Integer

firstName = String
lastName = Stirng

:Professor
:Manager

id = Integer
firstName = String
lastName = String

Scheman+1

:Professor
:Manager

id = Integer
fullName = String

Evolution

copy label

Professor to
node with label
Manager

Figure 1: Impact of Schema Evolution in Graph Databases

ABSTRACT
Graph databases offer a flexible storage of interconnected data.
Due to NoSQL databases being schema-less, heterogeneous data
can occur when performing data changes. Evolution is conducted
through so-called evolution operations like add, rename, delete,
merge, copy, move or split. As a user cannot foresee the results
of the evolution operation, neither the amount of data changes
nor the possible schema violations or a relaxed schema, a system
to show the impact of evolution is essential. To ensure schema
conformity, we present an approach to close the gap of a schema
management tool for graph databases in order to estimate and
illustrate the impact of evolution on the schema level. To illustrate,
explore, evolve and change the schema, all required information
is handled through a schema management layer in the Nautilus
program. Besides extracting the schema, so-called structure profiles
are designed for an initial data exploration. The preview of the
schema and structure profiles shows the impact of evolution on the
data by comparing versions. Moreover, the system uses an intuitive
syntax to also enable the usage of graph databases for non-experts.

CCS CONCEPTS
• Information systems; • Data management systems; • Query
languages; • Query languages for non-relational engines;

KEYWORDS
Evolution language, Schema Evolution, Graph Database, Neo4j,
Schema Management, Schema Extraction, Profiles

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3688196

ACM Reference Format:
Dominique Hausler. 2024. Estimation, Impact and Visualization of Schema
Evolution in Graph Databases. In ACM/IEEE 27th International Conference
on Model Driven Engineering Languages and Systems (MODELS Companion
’24), September 22–27, 2024, Linz, Austria. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3652620.3688196

1 PROBLEM
To store highly interconnected data, graph databases are preferred.
When operating a database over a long period, data undergoes
change, manipulation or updates. This is accomplished through
single-type (add, rename, delete), multi-type (copy, move, split,
merge) and graph-specific operations (transform defined in [26]),
describing the change of entity types (nodes or relationships) into
one another. Considering context when looking at evolution is
therefore, utmost important, especially for graph databases.

As graph databases can be schema-less, heterogeneity can occur
through optional elements or structural error like in the Manager
node in Figure 1. Detecting such phenomena is necessary to provide
an overview of the current schema and statistics of the accessed
data, which must be handled through a schema management layer.
Especially for cooperative work on a database, this is a major point
to ensure transparency. Also, heterogeneity can be either intended
or causes structural errors. Consequently, our goal is to involve
users by informing them about such occurrences through structure
profiles and giving the option to make changes. Such changes can
range from using evolution operations to fix structural errors to
correcting a given input before executing an operation. A preview
option aims to prevent unintended outcomes by illustrating version
n+1 (= after the evolution) of the data beforehand. The necessity of
a preview – illustrating the schema and structure profiles – is the
consequence of not being able to predict the impact of evolution
operations on the schema, especially for large datasets. Figure 1
demonstrates the impact of evolution by copying a label, resulting

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://orcid.org/0009-0004-2381-133X
https://doi.org/10.1145/3652620.3688196
https://doi.org/10.1145/3652620.3688196
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3688196&domain=pdf&date_stamp=2024-10-31


MODELS Companion ’24, September 22–27, 2024, Linz, Austria Hausler

GMOC SMOC

Evolution Modul

Schema Language

Schema
Management Modul

Language Modul

interacts w
ith

types in connection data

starts

User

connects to

Graph
Database

Visualization Modul

scheman+1

scheman+1

Preview Modul

schem
an

DB Connection
Modul

GEO

constraint violation

Legend

          = user-interaction
          = save connection data
          = log file with download option
          = direct visual apparance to the user
          = form to by filled out

schema differences

Schema Level Schema LevelSchema Level

Data Level

Language LevelDomain Independent

scheman
Schema Extraction

Modul
Schema Level

gets schem
a data

Data Level

Figure 2: Architecture of Nautilus

in three different schema of nodes with the label Professor. Fur-
thermore, the proposed program uses our evolution language with
an intuitive syntax to conduct schema evolution.

2 EXPECTED CONTRIBUTIONS
The novelty of the proposed work lies in the following aspects
which will be integrated in the Nautilus tool:

• A Schema Management Layer (SML), on base of which the
schema and statistical information can be extracted and com-
pared.

• The detection of graph schema constraints (or conditions).
• The extraction of structure profiles to easily detect multi-
labeling, overlapping types (see Figure 1) and optional and
mandatory elements to outline heterogeneous data.

• Compare the schema before and after the evolution.
• A graph-like schema visualization including the structure
profiles to extend the use of graph databases for interdisci-
plinary research projects.

3 RELATEDWORK
Meta-ModelApproaches. [4] points out the importance of schema
when working with NoSQL databases. [5] aims to manage heteroge-
neous schema of multiple data stores within one system. Amongst
others HyDRa [23] works with cross-database integrity constraints
to handle schema evolution in polystores. As schema evolution in
single stores is already challenging, we focus on graph databases
which were not taken into account in the literature above.

Schema of Graph Databases. There already was work done
on the schema of graph databases [2] as well as for other NoSQL
databases [33, 48]. In Neo4j possible while using the PG-Schema
presented in [2]. The importance of schema and the relevance of
(key) constraints are discussed in [3]. Neo4j offers several options
to use constraints either for a schema-first or -second approach
[42] also discussed in [44]. Currently, little work has been done on
graph schema.

Schema Extraction. Schema extraction already was developed
for other database systems e.g., in [32]. As a result of graph databases
being schema-less, several schema extraction tools using a schema-
second approach are available for property graphs [9, 18, 21]. Over-
lapping types in combination with multi-labeling are a challenge
for Neo4j’s command apoc.meta.schema. Neo4j itself offers the
creation of constraints, either schema-first or -second. In both cases
users have the option of relaxing the schema by adding optional
elements [42]. We plan on building our extraction service on base
of [21] with the novelty of accurately handling overlapping types.

Updates and Evolution. In [10–12] a schema language is de-
scribed as well as the validation of graph databases against the
schema is described. We built upon this work and furthermore,
extended the evolution operations by transform to incorporate
the complexity of graph databases. Approaches on eager vs. lazy
migration are presented in [14, 28, 33]. [13] focuses on single-type
evolution operations (add, delete, rename and retype) in the context
of lazy migration and data evolution. VersionGraph on the other
hand is an example for storing graph data at different versions [15].

Even though there now is a standardizedGraphQuery Language
(GQL) [30], it does not contain an evolution language. Consequently,
the use cases differ. A real-world use case for a relational database
presented in [17], shows how the historical schema can be extracted
and visualized to reconstruct the evolutionary process. This thesis
focuses on the evolutionary process while aiming to ensure an
intuitive syntax for a platform independent evolution language to
perform, handle and visualize schema evolution in graph databases.

Data Exploration. The impact and number of entities affected
by evolution, possibly violating the schema, cannot be estimated by
a user. Consequently, informing the user is mandatory to prevent
unintended outcomes. There are a number of tools to explore a
variety of interconnected data as a graph like [31, 50]. A simple,
native schema visualization excluding e.g., multi-labeling is possible
in Neo4j. An exemplary UI based on expert interviews about how
to visualize the schema of property graphs is presented in [7]. We
plan to implement a similar schema illustration as graph and use
it to demonstrate the impact of evolution on both the schema and
data level. Additionally, the visualization will be used to highlight
changes and compare the first and latest version.

In [51] a graph-like illustration for constraints and queries is
recommended and traceability links for multi-stores are considered
in [27]. Even though the illustration of queries in a graph-like
way can be rather helpful, we believe that additionally the output
schema together with the estimated output graph data are needed
in the evolution process.

Graph Data Profiles. Profiling data provides rich insight into
the data being used for a variety of tasks [19, 20]. In [47], tuple-
generating dependencies (tgd) and similarity constraints are repre-
sented by the concept of Graph Generating Dependencies, demon-
strating the importance of constraint detection when working
with data profiles. The issue of graph dependencies is broached in
[46], too. Queries to extract graph data profiles directly from the
databases are presented in [39]. Here the functionalities of them are
compared between relational databases and property graphs. The
three major categories specified are single property tasks, graph
patterns and dependencies. Some of the data discussed in [39] such
as uniqueness or the absolute number of occurrences for entity



Estimation, Impact and Visualization of Schema Evolution in Graph Databases MODELS Companion ’24, September 22–27, 2024, Linz, Austria

types will be integrated in the proposed structure profiles. The
combination of schema and statistical information to highlight
heterogeneity and the evolutionary impact is new.

4 PROPOSED APPROACH
The visualization of the schema and data statistics, illustrating
heterogeneous parts of the dataset and showing data changes upon
their comparison, are necessary. This eases their usage to new users
[45]. All Research Questions – short RQs – will be analyzed under
the aspect of the overarching 𝑅𝑄𝑂 : How to make graph database
evolution accessible to a wider range of society while ensuring an
easy usability? In previous work [26], we answered RQ1: How
can evolution operations be described domain independent for graph
databases? (see Section 6.1). The emerging RQs are:

• RQ2:Which schema and statistical information is needed to
define and control evolution and how to align the extracted
data with a schema language?

• RQ3:How to estimate the effort (3a) and illustrate the impact
of evolution and the affected elements (3b)?

• RQ4:How to optimize𝐺𝑀𝑂𝐶 and improve the performance
if multiple evolution operations are executed?

4.1 Schema Management and Extraction
The Schema Management Layer (SML) for RQ2 is needed to illus-
trate, explore, evolve and change the schema and consequently
provides the base for the Evolution Module (RQ3) shown in Figure 2.
To accomplish the implementation of an SML and later on handle
the extracted data, a Schema Language (SL) for the LanguageModule
will be developed. The SL based on [8] is used to describe the im-
plicit schema at different versions while taking all variations, caused
by the highly interconnected data in graph databases, adequately
into account. Schema constraints of existing graph databases like
Neo4j, TigerGraph or OrientDB will be considered, too, enabling
the detection of violations.

Graph Schema - Formal Definition. A graph𝐺 can be defined
as a tuple containing a set of vertices (= node) 𝑉 , edges (= relation-
ships) 𝐸 and the databases name 𝑛𝑑𝑏 analogous to [21].

𝐺 = (𝑛𝑑𝑏 ,𝑉 , 𝐸)
From the graph 𝐺 a graph schema 𝑆𝐺 is extracted whereby 𝑓

represents a schema extraction function for graph data which has to
be developed. Similar to extraction functions for other data models
[32], it derives from the implicit structures of each data an explicit
schema of the whole graph database containing information about
nodes and relationships. 𝑆𝐺 is a tuple consisting of a schema for
both nodes 𝑆𝑉 and relationships 𝑆𝐸 .

𝑓 : 𝐺 → 𝑆𝐺

𝑆𝐺 = (𝑆𝑉 , 𝑆𝐸 )
In contrast to [21] both 𝑆𝑉 and 𝑆𝐸 include the element 𝑖𝑑 with a

uniqueness condition. 𝑖𝑑 is defined as a special kind of property as
it is automatically added by Neo4j upon the creation of any entity
and cannot be changed manually by the user. Moreover, properties
are outlined as 𝑃 with the distinction of being only the property
name 𝑛𝑝 . This limitation is due to schema evolution affecting only

the property names 𝑛𝑝 . Nodes, in addition, inherit a set of labels
𝐿 and associates edges 𝑆𝐸 , while relationships enclose a type 𝑡

which cannot be empty. 𝐿, 𝐷 , 𝐿𝑆𝑁 , 𝐿𝐸𝑁 are all of type String. Their
direction 𝐷 is defined as boolean and thus can take two states:
1) ingoing or 2) outgoing. The start node is specified by a set of its
labels 𝐿𝑆𝑁 . Same goes for the end node 𝐿𝐸𝑁 .

𝑆𝑉 = {(𝑖𝑑, 𝐿, 𝑃 |𝑛𝑝 , 𝑆𝐸 )
�� unique id}

𝑆𝐸 = {(𝑖𝑑, 𝑡, 𝐷, 𝐿𝑆𝑁 , 𝐿𝐸𝑁 , 𝑃 |𝑛𝑝 )
�� 𝑡 ≠ ' ', unique id}

Concept. The SML is the base for the extraction of the graph’s
schema and the structure profiles. This enables visualizing the initial
data and comparing 𝑠𝑐ℎ𝑒𝑚𝑎𝑛 and 𝑠𝑐ℎ𝑒𝑚𝑎𝑛+1. The schema itself is
described through the SL. Moreover, the SML will be used to handle
constraints. To illustrate the impact of evolution on the schema
via RQ3b, an interactive graph schema visualization (Visualization
Module) will be displayed. This includes showing nodes 𝑆𝑉 and their
connections 𝑆𝐸 , while the embedded entity type schema will be
shown on-click. The illustration will be graph-like like in Figure 1.

Extension in Nautilus. An algorithm to extract the initial
schema information directly from the database via Python will
be designed as described in Section 3. A JSON file will be used to
easily extract schema differences. The data will be parsed frontend
using JavaScript, for an interactive integration in the UI for the
Visualization and Preview Module (see Figure 2). Additionally, the
extracted data will be used to detect and handle schema constraints,
informing a user about violations.

4.2 Structure Profiles
Besides the schema, structure profiles will be used to visualize the
data. Structure profiles are defined as relative amount of schema
features, demonstrating whether a feature is optional or mandatory.
Features are labels, types and property keys.

Concept. Based on the SML of RQ2 a preview of the structure
profiles at version n+1 as part of the schema visualization will be
created. The profiles are utilized to show the impact together with
changes caused by evolution, in order to answer RQ3a+b. Based
on the structure profiles, schema constraints are detected by an
algorithm that searches for mandatory and optional elements. Due
to graph databases offering a schema-less environment, such infor-
mation needs to be extracted and visualized schema-second on a
given dataset. Outlining optional elements simplifies the detection
of structural errors. GEO can be used to either perform schema
evolution or to make updates via GEO’s filter functions which could
either cause or adjust heterogeneity. Figure 3 illustrates that the
creation of constraints based on 𝑠𝑐ℎ𝑒𝑚𝑎𝑛 is part of this work pack-
age. Mandatory elements play a major role because they define
whether a constraint is necessary or not. This information is for-
warded to the user upon a possible violation (e.g., actions relaxing
the schema).

Extension in Nautilus.An algorithm to calculate the frequency
for each structural component will be developed. This information
then is used for the structure profiles. Those will be displayed
frontend to inform the user of optional and required elements. For
elements with an occurrence of 100%, a constraint will automati-
cally be created. Constraints can either be saved in a separate file
or directly created on the database. In the latter case they cannot



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Hausler

db connection
form

evolution
application

schema visualization
and structural

profiles

user

1..n

1

on base of scheman

detection of
optional & reuqired

elements

scheman+1

preview option constraint
violations

DOMAIN
INDEPENDENT

LEVEL

SCHEMA LEVEL

DATA LEVEL

RQ2

USER INTERFACE

creation of
constraints1..n

RQ2

evolution
operation form1..n

compare data

checking
constraints1..n

RQ2

extraction
of schema data

schem
an

associated
GMOC1..ngraph

database

GEO

initial
scheman

scheman+1
after

evolution

abstraction via
SMOC1..n

Legend

        = user-interaction
        = save connection data
        = form to by filled out

history
of

GEO

G
EO

 for each G
M

O
C

Warning

        =  part of visualization
        =  algorithm or process
        =  UI element 

0..n 0..n

RQ3

RQ4

RQ3 RQ4

Figure 3: Schema Management Layer (RQ2) and Preview Op-
tion (RQ3) to Estimate the Impact of Evolution

be violated. This could be an issue as it might not be intended to
force a schema-first approach upon the user, but rather to make the
user aware that an action will result in a schema change. Therefore,
warnings are created, to preserve the flexibility and capabilities pro-
vided by graph databases. This approach aims to prevent structural
errors from happening while giving a better overview over the data
already available, ensuring the self-determination of the human in
the loop.

4.3 Evolution
A user cannot estimate the degree of change evolution might cause,
which is why a quantitative (through the structure profiles) and a
visual preview option (Preview Module of Figure 2) are essential.

Concept. The extracted schema and statistical data from RQ2
will be utilized to display the schema emerging after an evolution
operation (𝑠𝑐ℎ𝑒𝑚𝑎𝑛+1) in the Preview Module. The graph-like illus-
tration is part of RQ3b to show the impact of evolution. Seeing the
output before taking action is especially helpful for inexperienced
users. The impact of evolution can range from

(1) none (defined pattern not available in the database),
(2) some (required elements become optional and vice versa,

resulting in a relaxed schema)
(3) to all (e.g., split of all nodes with label x).

There will also be a display of the estimated execution time. The
structure profiles, presented in Section 4.2, are used to estimate and
display the affected elements through the Preview Module (RQ3a).
After submitting the evolution form an interactive schema graph
at version n+1 is shown – identical to the preview of the graph
schema visualization.

Extension in Nautilus. Figure 3 shows a detailed architecture
of how the preview will be integrated. As an extension, the general
schema will be displayed as a graph 𝑆𝐺 , due to the findings of [7].
Detected schema differences will be directly highlighted, to ensure a
quick overview over schema changes. A focus algorithm is planed,
to directly visualize schema changes. The data extracted by the
algorithm of Section 4.1 will be used to integrate a reusable visual-
ization of the schema before and after the evolution. The profiles are
also integrated to show required and optional elements. Moreover,
the schema visualization is planned to be interactive, allowing the
user to execute evolution operations directly by manipulating the
schema graph and returning the associated 𝐺𝑀𝑂𝐶 .

4.4 Optimization
RQ4 focuses on addressing optimization. To optimize 𝐺𝑀𝑂𝐶 , a
query optimization needs to be done. This includes relational as well
as graph specific rules [24, 38]. Work in the context of Knowledge
Graphs like [1, 6, 29] will be considered, too. Accordingly, Nau-
tilus will be extended by another graph databases system such as
OrientDB or TigerGraph. Especially, when complex workarounds
are used to perform evolution operations such as split, the execu-
tion time is higher as for single-type operations using single-line
commands. Consequently, optimizing these queries will increase
the performance. The same goes for workarounds using a paired
approach in combination with Python for collection handling. In
such cases, the performance of the Python code has to be measured
and considered additionally.

Another important point is composition, if several evolution
operations are executed in one submit [33, 40]. This helps catch
operations that are nullified like renaming a label from Student to
Person and later on back to Student, resulting in the same output
as if no evolution would have taken place.

5 PLAN FOR EVALUATION
As part of 𝑅𝑄𝑂 user studies are planed to evaluate the evolution
language and the UI as well as the functionality of Nautilus. Nautilus
strives to not only provide an easy to use UI, but also a simplified
understanding of the evolution operations through GEO. Since GEO
plays a major part, it is crucial that the description of what each
evolution operation does, is easy to comprehend. Task-based studies
are planned to evaluate the usability of the UI while a thinking aloud
approach ensures the identification of the component (GEO and UI)
causing issues [35, 37, 43]. To measure the workload the NASA-TLX
will be used [41]. Besides that, a learning and testing phase will be
integrated to identify precision and recall [36]. Testing is performed
after the implementation of each component presented in Section 4
to identify and resolve issues in a timely manner. Moreover, we
will conduct an eye-tracking study to identify any potential issues
related to GEO.

To quantitatively analyse the limitations, the time take vs. esti-
mated as well as the number of elements affected vs. estimated by
each operation will be compared. This ensures the quality of the
estimations made. To test the reliability of Nautilus’s functionalities
native graph datasets of different sizes will be used, like the Neo4j
example datasets1.
1Git repository: neo4j-graph-examples

https://github.com/orgs/neo4j-graph-examples/repositories?type=all


Estimation, Impact and Visualization of Schema Evolution in Graph Databases MODELS Companion ’24, September 22–27, 2024, Linz, Austria

6 CURRENT STATUS
We completed answering RQ1 How can evolution operations be
described domain independent for graph databases? by developing
the evolution language GEO. Moreover, we implemented GEO in a
first version of our prototype called Nautilus.

6.1 Domain Independent Evolution Language
To answer RQ1 we developed a formal language with an intuitive
syntax called GEO [26] – short for Graph Evolution Operation.
This evolution language is integrated in our tool named Nautilus
and is part of the domain independent level in Figure 2. The opera-
tions defined by GEO are similar to those of other database systems.
While the alter table statements for relational databases are
applicable to specify single-type evolution operations, for docu-
ment databases, more complex single and multi-type evolution
operations are already available showing their importance e.g.,
[16, 34, 49]. In contrast, the implementation of our evolution lan-
guage GEO in Nautilus focuses on graph databases, adapting the
operations in a graph-specific context. In addition to these works,
we implemented a first collection of filter functions. From the do-
main independent GEO derives the platform-dependent Schema
Modification Operation – 𝑆𝑀𝑂𝐶 , through which a precise imple-
mentation in Neo4j’s query language Cypher –𝐺𝑀𝑂𝐶 – is possible.
The domain independent GEO intuitively describes what each evo-
lution operation does, demonstrated in Figure 4 for copying labels.
Figure 1 showcases a concrete graph schema for the same operation.

GEO - Graph Evolution Operation

copyLabels ::= ’copy’ label Professor ’to’ node
’with’ label Manager

𝑆𝑀𝑂𝐶 - Schema Modification Operation

selectPattern (*to copy from*)
WITH LABELS(n) AS labels
selectPattern (*to copy to*)
addLabels YIELD node RETURN node

𝐺𝑀𝑂𝐶 - Graph Manipulation Operation

MATCH (n:Professor) WITH labels(n) AS labels
MATCH (n2:Manager)
CALL apoc.create.addLabels(n2, labels)
YIELD node RETURN node

Figure 4: The Evolution Operation "copy all labels" and its
Realization in Neo4j

6.2 Nautilus – Implementation of GEO
The implementation of all parts discussed above will be integrated
into our momentary program Nautilus2 [25].

Schema Management and Extraction. An APOC function is
momentarily utilized to extract the schema from a given database.
Based on the schema extraction a visualization was implemented.

2Project Website of Nautilus

In the context of 𝑅𝑄𝑂 this ensures that users can directly see the
data within the accessed database. The schema at version n+1 is
visualized shown as table – partitioned by entity types – and an
interactive diagram comparing the schema before and after the
evolution is at hand.

Structural Database Statistics. The precursor of the struc-
ture profiles are called StructuralDatabase Statistics (SDS). Theses
are a hybrid approach, using both data statistics like frequency com-
bined with schema information. The illustration of the SDS aims to
help users to built GEO as all labels, types and property keys are
displayed in the diagram, together with associated relationships
for nodes. The visualization as scatter plot shows the data before
and after the evolution, enabling users to see changes in quantity
and schema information of each entity type. On-click the SDS are
shown for each data point.

Evolution. Nautilus is based on our evolution language GEO,
being visually present at all steps. Via the formal evolution language,
an easy comprehension of each evolution operation is ensured. A
log file, containing all performed GEOs, offers the convenience of
traceability of the performed operations. Drop-down menus are
used to minimize the occurrences of syntax errors and to reduce the
necessary knowledge of GEO. The usage of evolution operations
over time is displayed accordingly to [22].

Next Step: User Study. A task-based study using a thinking
aloud approach was designed to gain first insights into the under-
standability of GEO and our UI. To evaluate our evolution language
adequately we included a questionnaire making use of true-false
statements to see how well GEO describes an operation. We will
then re-engineer each component according to the findings.

7 CONCLUSION
In order to use a system successfully over a long period changes
need to be made. Schema evolution is conducted through the evo-
lution operations add, rename, delete, copy, move, split and merge.
The benefit of graph databases enabling the storage of highly inter-
connected data, also is challenging as context is utmost important
making a transform operation necessary. Especially challenging
is the estimation of the impact of evolution on the database. To
address this challenge, we will design a schema management tool,
including a schema management layer, being the base of a schema
visualization. Moreover, structure profiles – a hybrid approach
making use of statistical and schema data – give insight into het-
erogeneous parts of the data. As query languages are complex,
making professional knowledge necessary, our approach uses an
easy-to-understand formal language called GEO. GEO is an evolu-
tion language capable of performing updates to parts of the graph
data and consequently, covering different use cases than a query
language lacking an evolution language. For the next step we will
analyse the data gained through our first evaluation and take nec-
essary steps of improvement for the UI as well as the evolution
language’s comprehensibility.

ACKNOWLEDGMENTS
This work has been funded by Deutsche Forschungsgemeinschaft
(German Research Foundation) – 385808805.

https://www.uni-regensburg.de/informatik-data-science/data-engineering/research/nautilus/index.html


MODELS Companion ’24, September 22–27, 2024, Linz, Austria Hausler

REFERENCES
[1] Christian Aebeloe, Gabriela Montoya, and Katja Hose. 2022. The Lothbrok

approach for SPARQLQueryOptimization over Decentralized Knowledge Graphs.
CoRR abs/2208.14692 (2022).

[2] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair
Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip
Murlak, Stefan Plantikow, Ognjen Savkovic, Michael Schmidt, Juan Sequeda,
Slawek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc, Mingxi
Wu, and Dusan Zivkovic. 2023. PG-Schema: Schemas for Property Graphs.
Proceedings of the ACM on Management of Data 1, 2 (June 2023), 1–25. https:
//doi.org/10.1145/3589778

[3] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W.
Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip
Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda,
Slawek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property
Graphs. In SIGMOD Conference. ACM, 2423–2436.

[4] Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo, and Riccardo Torlone. 2020. Data
modeling in the NoSQL world. Comput. Stand. Interfaces 67 (2020).

[5] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. 2014. Uniform access to NoSQL
systems. Inf. Syst. 43 (2014), 117–133.

[6] Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. 2023. Answering Complex Logical
Queries on Knowledge Graphs via Query Computation Tree Optimization. In
ICML (Proceedings of Machine Learning Research, Vol. 202). PMLR, 1472–1491.

[7] Nimo Beeren. 2022. Designing a Visual Tool for Property Graph Schema
Extraction and Refinement: An Expert Study. CoRR abs/2201.03643 (2022).
arXiv:2201.03643 https://arxiv.org/abs/2201.03643

[8] Angela Bonifati. 2023. The Quest for Schemas in Graph Databases (keynote). In
DOLAP (CEUR Workshop Proceedings, Vol. 3369). CEUR-WS.org, 1–2.

[9] Angela Bonifati, Stefania-Gabriela Dumbrava, Emile Martinez, Fatemeh Ghasemi,
Malo Jaffré, Pacome Luton, and Thomas Pickles. 2022. DiscoPG: Property Graph
Schema Discovery and Exploration. Proc. VLDB Endow. 15, 12 (2022), 3654–3657.

[10] Angela Bonifati, Stefania Dumbrava, and Nicolas Mir. 2022. Hierarchical Cluster-
ing for Property Graph Schema Discovery. In Proc. EDBT. OpenProceedings.org,
2:449–2:453.

[11] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
and Hannes Voigt. 2019. Schema Validation and Evolution for Graph Databases.
In ER (Lecture Notes in Computer Science, Vol. 11788). Springer, 448–456.

[12] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
and Hannes Voigt. 2019. Schema Validation and Evolution for Graph Databases.
https://arxiv.org/abs/1902.06427

[13] Soumaya Boukettaya, Ahlem Nabli, and Faïez Gargouri. 2018. Towards the
Evolution of Graph Oriented Databases. In ISDA (2) (Advances in Intelligent
Systems and Computing, Vol. 941). Springer, 392–399.

[14] Soumaya Boukettaya, Ahlem Nabli, and Faïez Gargouri. 2020. Data Migration in
Graph-oriented Databases. Res. Comput. Sci. 149, 10 (2020), 317–336.

[15] Arnaud Castelltort and Anne Laurent. 2013. Representing history in graph-
oriented NoSQL databases: A versioning system. In ICDIM. IEEE, 228–234.

[16] Alberto Hernández Chillón, Meike Klettke, Diego Sevilla Ruiz, and Jesús García
Molina. 2022. A Taxonomy of Schema Changes for NoSQL Databases. CoRR
abs/2205.11660 (2022).

[17] Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens H. Weber.
2015. Understanding database schema evolution: A case study. Sci. Comput.
Program. 97 (2015), 113–121.

[18] Isabelle Comyn-Wattiau and Jacky Akoka. 2017. Model driven reverse engineer-
ing of NoSQL property graph databases: The case of Neo4j. In IEEE BigData. IEEE
Computer Society, 453–458.

[19] Will Epperson, Vaishnavi Gorantla, Dominik Moritz, and Adam Perer. 2024. Dead
or Alive: Continuous Data Profiling for Interactive Data Science. IEEE Trans. Vis.
Comput. Graph. 30, 1 (2024), 197–207. https://doi.org/10.1109/TVCG.2023.3327367

[20] Besnik Fetahu, Stefan Dietze, Bernardo Pereira Nunes, Davide Taibi, and
Marco Antonio Casanova. 2013. Generating structured Profiles of Linked Data
Graphs. In Proceedings of the ISWC 2013 Posters & Demonstrations Track, Sydney,
Australia, October 23, 2013 (CEUR Workshop Proceedings, Vol. 1035), Eva Blomqvist
and Tudor Groza (Eds.). CEUR-WS.org, 113–116. https://ceur-ws.org/Vol-
1035/iswc2013_demo_29.pdf

[21] Angelo Augusto Frozza, Salomão Rodrigues Jacinto, and Ronaldo dos San-
tos Mello. 2020. An Approach for Schema Extraction of NoSQL Graph Databases.
In IRI. IEEE, 271–278.

[22] Fanis Giachos, Nikos Pantelidis, Christos Batsilas, Apostolos V. Zarras, and Panos
Vassiliadis. 2023. Parallel lives diagrams for co-evolving communities and their
application to schema evolution. In ER (Companion) (CEURWorkshop Proceedings,
Vol. 3618). CEUR-WS.org.

[23] MaximeGobert, LoupMeurice, andAnthony Cleve. 2023. Modeling, manipulating
and evolving hybrid polystores with HyDRa. Sci. Comput. Program. 230 (2023),
102972.

[24] Maxime Gobert, Csaba Nagy, Henrique Rocha, Serge Demeyer, and Anthony
Cleve. 2023. Best practices of testing database manipulation code. Inf. Syst. 111

(2023), 102105.
[25] Dominique Hausler and Meike Klettke. 2024. Nautilus: Implementation of an

Evolution Approach for Graph Databases. In MoDELS (Companion). IEEE.
[26] Dominique Hausler, Meike Klettke, and Uta Störl. 2023. A language for graph

database evolution and its implementation in Neo4j. In ER (Companion) (CEUR
Workshop Proceedings, Vol. 3618). CEUR-WS.org.

[27] Ábel Hegedüs, Ákos Horváth, István Ráth, Rodrigo Rizzi Starr, and Dániel Varró.
2016. Query-driven soft traceability links for models. Softw. Syst. Model. 15, 3
(2016), 733–756.

[28] Andrea Hillenbrand, Maksym Levchenko, Uta Störl, Stefanie Scherzinger, and
Meike Klettke. 2019. MigCast: Putting a Price Tag on Data Model Evolution in
NoSQL Data Stores. In SIGMOD Conference. ACM, 1925–1928.

[29] Sonia Horchidan. 2023. Query Optimization for Inference-Based Graph Databases.
In PhD@VLDB (CEUR Workshop Proceedings, Vol. 3452). CEUR-WS.org, 33–36.

[30] ISO/IEC 39075:2024 2024. Information technology— Database languages — GQL.
Standard. International Organization for Standardization, Geneva, CH.

[31] Weihao Jiang, Li Yan, Yaofeng Tu, Xiangsheng Zhou, and Zongmin Ma. 2022. PG-
explorer: Resource Description Framework data explorationwith property graphs.
Expert Syst. Appl. 198 (2022), 116789. https://doi.org/10.1016/J.ESWA.2022.116789

[32] Meike Klettke, Uta Störl, and Stefanie Scherzinger. 2015. Schema Extraction and
Structural Outlier Detection for JSON-based NoSQL Data Stores. In BTW (LNI,
Vol. P-241). GI, 425–444.

[33] Meike Klettke, Uta Störl, Manuel Shenavai, and Stefanie Scherzinger. 2016. NoSQL
schema evolution and big data migration at scale. In IEEE BigData. IEEE Computer
Society, 2764–2774.

[34] Pavel Koupil, Jáchym Bártík, and Irena Holubová. 2022. MM-evocat: A Tool
for Modelling and Evolution Management of Multi-Model Data. In CIKM. ACM,
4892–4896.

[35] Rebecca Krosnick, Fraser Anderson, Justin Matejka, Steve Oney,Walter S. Lasecki,
Tovi Grossman, and George Fitzmaurice. 2021. Think-Aloud Computing: Sup-
porting Rich and Low-Effort Knowledge Capture. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 199, 13 pages.
https://doi.org/10.1145/3411764.3445066

[36] Tobias Kuhn. 2013. The understandability of OWL statements in controlled
English. Semantic Web 4, 1 (2013), 101–115.

[37] Clayton Lewis. 1982. Using the "Thinking-aloud" Method in Cognitive Interface
Design. IBM Thomas J. Watson Research Division.

[38] Bingqing Lyu, Xiaoli Zhou, Longbin Lai, Yufan Yang, Yunkai Lou, Wenyuan
Yu, and Jingren Zhou. 2024. A Graph-Native Query Optimization Framework.
arXiv:2401.17786 [cs.DB] https://arxiv.org/abs/2401.17786

[39] Sofía Maiolo, Lorena Etcheverry, and Adriana Marotta. 2020. Data Profiling in
Property Graph Databases. ACM J. Data Inf. Qual. 12, 4 (2020), 20:1–20:27.

[40] Mark Lukas Möller, Dominique Hausler, Sebastian Strasser, Tanja Auge, and
Meike Klettke. 2023. Heterogeneity in NoSQL Databases - Challenges of Handling
schema-less Data. In LWDA (CEUR Workshop Proceedings, Vol. 3630). CEUR-
WS.org, 134–145.

[41] NASA. 2012. NASA-TLX - Task Load Index. https://humansystems.arc.nasa.
gov/groups/TLX/index.php Accessed: 2024-07-03.

[42] Neo4j, Inc. 2024. Constraints. https://neo4j.com/docs/cypher-manual/current/
constraints/ Accessed: 2024-05-07.

[43] Nielsen, Jakob. 2012. Thinking Aloud: The #1 Usability Tool. https://www.
nngroup.com/articles/thinking-aloud-the-1-usability-tool/ Accessed: 2024-07-
03.

[44] Jaroslav Pokorný, Michal Valenta, and Jirí Kovacic. 2017. Integrity constraints
in graph databases. In ANT/SEIT (Procedia Computer Science, Vol. 109). Elsevier,
975–981.

[45] Chandan Sharma and Roopak Sinha. 2019. A Schema-First Formalism for Labeled
Property Graph Databases: Enabling Structured Data Loading and Analytics. In
BDCAT. ACM, 71–80.

[46] Larissa Capobianco Shimomura, George H. L. Fletcher, and Nikolay Yakovets.
2023. ProGGD - Data Profiling on Knowledge Graphs using Graph Generat-
ing Dependencies. In Proceedings of the ISWC 2023 Posters, Demos and Industry
Tracks: From Novel Ideas to Industrial Practice co-located with 22nd International
Semantic Web Conference (ISWC 2023), Athens, Greece, November 6-10, 2023 (CEUR
Workshop Proceedings, Vol. 3632), Irini Fundulaki, Kouji Kozaki, Daniel Garijo,
and José Manuél Gómez-Pérez (Eds.). CEUR-WS.org. https://ceur-ws.org/Vol-
3632/ISWC2023_paper_434.pdf

[47] Larissa Capobianco Shimomura, Nikolay Yakovets, and George Fletcher. 2024.
GGDMiner - Discovery of Graph Generating Dependencies for Graph Data
Profiling. CoRR abs/2403.17082 (2024). https://doi.org/10.48550/ARXIV.2403.
17082 arXiv:2403.17082

[48] Uta Störl andMeike Klettke. 2022. Darwin: A Data Platform for Schema Evolution
Management and Data Migration. In EDBT/ICDT Workshops (CEUR Workshop
Proceedings, Vol. 3135). CEUR-WS.org.

[49] Pablo Suárez-Otero, Michael J. Mior, María José Suárez Cabal, and Javier Tuya.
2023. CoDEvo: Column family database evolution using model transformations.

https://doi.org/10.1145/3589778
https://doi.org/10.1145/3589778
https://arxiv.org/abs/2201.03643
https://arxiv.org/abs/2201.03643
https://arxiv.org/abs/1902.06427
https://doi.org/10.1109/TVCG.2023.3327367
https://ceur-ws.org/Vol-1035/iswc2013_demo_29.pdf
https://ceur-ws.org/Vol-1035/iswc2013_demo_29.pdf
https://doi.org/10.1016/J.ESWA.2022.116789
https://doi.org/10.1145/3411764.3445066
https://arxiv.org/abs/2401.17786
https://arxiv.org/abs/2401.17786
https://humansystems.arc.nasa.gov/groups/TLX/index.php
https://humansystems.arc.nasa.gov/groups/TLX/index.php
https://neo4j.com/docs/cypher-manual/current/constraints/
https://neo4j.com/docs/cypher-manual/current/constraints/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://ceur-ws.org/Vol-3632/ISWC2023_paper_434.pdf
https://ceur-ws.org/Vol-3632/ISWC2023_paper_434.pdf
https://doi.org/10.48550/ARXIV.2403.17082
https://doi.org/10.48550/ARXIV.2403.17082
https://arxiv.org/abs/2403.17082


Estimation, Impact and Visualization of Schema Evolution in Graph Databases MODELS Companion ’24, September 22–27, 2024, Linz, Austria

J. Syst. Softw. 203 (2023), 111743.
[50] Michael Thane, Kai M. Blum, and Dirk J. Lehmann. 2023. CatNetVis: Semantic

Visual Exploration of Categorical High-Dimensional Data with Force-Directed
Graph Layouts. In 25th Eurographics Conference on Visualization, EuroVis 2023 -
Short Papers, Leipzig, Germany, June 12-16, 2023, Thomas Höllt, Wolfgang Aigner,
and Bei Wang (Eds.). Eurographics Association, 91–95. https://doi.org/10.2312/

EVS.20231049
[51] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó,

István Ráth, Zoltán Szatmári, and Dániel Varró. 2015. EMF-IncQuery: An inte-
grated development environment for live model queries. Sci. Comput. Program.
98 (2015), 80–99.

https://doi.org/10.2312/EVS.20231049
https://doi.org/10.2312/EVS.20231049

	Abstract
	1 Problem
	2 Expected contributions
	3 Related Work
	4 Proposed approach
	4.1 Schema Management and Extraction
	4.2 Structure Profiles
	4.3 Evolution
	4.4 Optimization

	5 Plan for evaluation
	6 Current status
	6.1 Domain Independent Evolution Language
	6.2 Nautilus – Implementation of GEO

	7 Conclusion
	Acknowledgments
	References

