Anonymization for web, fixed line, and mobile applications

Prof. Dr. Hannes Federrath

University of Regensburg · Information Systems · Management of Information security
Anonymization for web, fixed line, and mobile applications

- **Basic concepts**
 - Who is the observer?
 - Protection ideas

- **Fixed line**
 - Unobservability and anonymity of communication relations

- **Mobile communications**
 - Protection of communication relations
 - Unobservability of locations

- **Internet/Web**

- **Conclusions**
Who is the observer?

- **Protection goals — confidentiality**
 - Protection of the **identity of a user while using a service**
 - Anonymity in counseling services
 - Protection of the **communication relations of users**
 - Users may know identity of each other

- **Outsiders**
 - ... tapping the «line»
 - ... doing traffic analysis

- **Insiders**
 - Network operator (or corrupt staff) reading e.g. billing data
 - Governmental organizations asking for log files

Anonymity is a prerequisite for identity management.
Protection ideas (selection)

- Against outsider attacks
 - Encryption — does not protect from traffic analysis
 - Use a mediator:
 - PROXY

 ![Diagram showing a browser connecting to a server via a proxy]

 - Users need to trust the proxy
 - proxy knows all communication relations
Protection ideas (selection)

• Against insider attacks
 – Goal:
 • Users need not trust the operator of anonymizing service
 – Idea:
 • Use more than one mediator from different operators
 • At least one operator must be trustworthy
 – Examples:
 • Broadcast
 • Blind message service
 • DC network
 • MIX network
DC network (Chaum, 1988)

- **Everybody**
 1. Flip a coin with each other
 2. Calculate xor of the two bits
 3. If paid xor a 1 (negate the result of step 2)
 4. Tell your result

- **Together**
 1. Calculate xor of the three (local) results
 2. If global result is Zero an external person has paid
Mixes (David Chaum, 1981)

- Basic idea:
 - Sample messages in a batch, change their coding and forward them all at the same point of time but in a different order. All messages have the same length.
 - Use more than one Mix, operated by different operators.
 - At least one Mix should not be corrupt.

- Then:
 - Perfect unlinkability of sender and recipient.
Fixed line

- **Idea**
 - Based on MIX networks
 - Pfitzmann et. al. 1989
 - All users served by a switching center communicate via a MIX cascade in front of the switch
Mobile communications

- Protection of locations (network operator cannot track users)
- Need additional MIX cascades
- Small changes in protocols

Diagram:

- HLR
 - \{VLR, P\}

- VLR
 - P: \{LAI, ImpAdr\}

- MIX cascade
 - P
 - \{LAI, ImpAdr\}

- MIX cascade
 - \{VLR, P\}

- ImpAdr
Internet/Web

• Technical background
 – MIX based unobservable transport system
 – Should withstand strong (big brother) attacks

• Information service (impossible to operate a perfect Anon system)
 – Current level of protection (Anonymity level)
 – Trade-off between performance and protection should be decided by the user

• Open source project
 – Client software: Java (platform independent)
 – Server software: C/C++ (Win/NT, Linux/Unix)

• Technical and jurisdictional knowledge to serve legal issues
Internet/Web

- JAP acts as a local proxy on the local machine
For free at www.anon-online.de
Public survey

- **Willingness to pay for anonymity**
 - ≈ 40% absolutely not
 - ≈ 50% monthly service fee of about € 2,5 ... € 5
 - ≈ 10% more than € 5 per month

- **Sample size:**
 - 1800 users of the JAP anonymizer

- **Spiekermann 2003**
Public survey

- Reasons for using an anonymizing service
 - ≈ 31% Free speech
 - ≈ 54% protect from secret services
 - ≈ 85% protect from profiling
 - ≈ 64% protect against observation by my ISP

- Do you use it for private or business?
 - ≈ 2% private only
 - ≈ 59% mainly for private things
 - ≈ 30% mainly for business things
 - ≈ 9% business only

- Why do you use the JAP system?
 - ≈ 76% free of charge
 - ≈ 56% secure against the operator
 - ≈ 51% easy to use
Conclusions

- **Economical**
 - There is a market for identity protection.
 - Users are willing to pay for it.

- **Technical**
 - Anonymity on the network is necessary as a basic technology for providing true identity management.
 - Prototypes exist at least for Internet/Web

Prof. Dr. Hannes Federrath
Lehrstuhl Management der Informationssicherheit
Universität Regensburg
D-93040 Regensburg

E-Mail: hannes.federrath@wiwi.uni-regensburg.de
WWW: http://www-sec.uni-regensburg.de

Telefon +49-941-943-2870
Telefax +49-941-943-2888
Management of information security

Information security management tries to protect the processes of organizations using information technology from intended attacks and accidental events.

- **Our research topics**
 - IT Security in distributed systems and multilateral security
 - Privacy enhancing technologies
 - Security on the Internet
 - Digital Rights Management Systems
 - Security in electronic markets
 - Security in mobile communication systems

- **More information**
 - http://www-sec.uni-regensburg.de