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1 Introduction

The formulation of the transverse-momentum dependent (TMD) factorization theorems
for Drell-Yan (DY) and semi-inclusive deep inelastic scattering (SIDIS) about a decade
ago [1–4] has driven an increasing effort towards the understanding the TMD distribution of
partons within the nucleon. The cornerstone of this program is made up by the unpolarized
transverse momentum-dependent parton distribution functions (TMDPDFs) because they
have an impact on the determination of all the other TMD distributions. For this reason,
the precise knowledge of unpolarized TMDPDFs is of utmost importance. In this work, we
perform a global analysis of the vector boson production data and determine the unpolarized
TMDPDFs. We include an extended dataset and we incorporate consistently the perturbative
QCD information from the highest available orders.
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The previous unpolarized TMDPDFs extractions [5–9] were based on the next-to-next-to-
leading logarithm (N2LL) resummation, and next-to-next-to-next-to-leading order (N3LO) of
perturbative accuracy. The perturbative ingredients for this order were computed in refs. [10–
15]. High perturbative orders are needed to meet the precision of modern experiments, mainly
ATLAS and CMS, at the LHC. The latest measurements of differential Z-boson-production
cross-section at ATLAS [16] reach an extraordinary precision of ∼ 0.1%. The progress on
the experimental side has stimulated the calculation of even higher perturbative orders in
Quantum Chromodynamics (QCD), reaching very recently the three-loop accuracy for all
terms of the factorized cross-section, and even higher for the anomalous dimensions [17–25].
All this has prompted the explicit calculation of cross-sections, including next-to-leading
logarithmic effects up to power four1 (N4LL).

The perturbative calculations, however, are just the tip of the iceberg. The TMD
distributions, the heart of the TMD factorization theorem, are essentially non-perturbative
functions. As such, they cannot be computed in perturbative QCD, but must be determined
from the data. For this task we take advantage of a well-known relation between TMDPDFs
and PDFs when the TMDPDFs are written in the transverse momentum conjugate variable
b. Then, going to the asymptotic small-b limit, one has

lim
b→0

f1,i←h(x, b;µ, ζ) ≃
∑

j

∫ 1

x

dy

y
Ci←j (y, b;µ, ζ) qj

(
x

y
, µ

)
, (1.1)

where x is Bjorken collinear momentum fraction, qj(x, µ) and fi(x, b;µ, ζ) are the collinear
PDFs and TMDPDFs respectively. These distributions depend on the factorization and
rapidity scales, µ and ζ. In the eq. (1.1), Ci←j ’s are the Wilson coefficient functions, the
subscripts i and j label the flavors of partons and we have omitted power-suppressed corrections
for simplicity. Implementing eq. (1.1) in a fit ensures a correct behavior of TMDPDFs in
the collinear limit. Simultaneously, its usage propagates all the biases of collinear PDFs into
the TMDPDFs, and extractions done using different collinear PDFs (keeping fixed all the
rest) might show significant deviations from one another, up to the point of not overlapping
the uncertainty bands. This bias is called PDF-bias [26], and it represents one of the largest
problems of modern TMD phenomenology. A way to mitigate the PDF-bias consists in
taking into account the theoretical uncertainty of the collinear PDFs along with a flexible
non-perturbative ansatz in the TMDPDF determination. The effects of PDF selection were
discussed in ref. [8] and explicitly shown in ref. [26] using four sets of collinear proton PDFs.

The main goal of this work is to update the unpolarized TMDPDFs determined within
the artemide-framework [5, 7, 8, 27]. For this reason, we name this extraction “ART23”.
Compared to the previous extraction [8] (SV19), ART23 is based on a larger dataset, which
is greater by almost 50%. It includes the recently released data [16, 28–31] on the Z-
boson production and, for the first time in the TMD phenomenology, the data on W-boson
production [32, 33]. We increase the perturbative accuracy to N4LL and include the flavor
dependence into the non-perturbative ansatz. The baseline collinear distribution that we
use is the MSHT20 PDF set [34]. We provide a critical and comprehensive treatment of

1The evolution of collinear PDFs is taken at NNLO since an extraction with the N3LO evolution is not yet
available. In this respect the N4LL order of this work is only approximate.
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uncertainties. For the first time, we consistently include the PDF uncertainty in the analysis
along with the data uncertainty obtaining a more trustful result.

This article is organised as follows. We devote section 2 to the theoretical framework
used for the computations. It includes the formulas for cross-sections, a brief description of
the ζ-prescription for the TMD evolution employed by artemide [35], and the ansätze for
the non-perturbative parts of the TMDPDFs and Collins-Soper (CS) kernel. In section 3 we
discuss the experimental data and the selection criteria employed, while section 4 contains the
details pertaining to the fitting procedure. The outcome of the fit can be found in section 5.
Finally, we present our conclusions in section 6. The plots comparing the experimental data
and theoretical predictions are presented in appendix B. In appendix A, we present the
outcome of the same analysis using the NNPDF3.1 collinear PDFs [36] as baseline.

2 Theory overview

There are several implementations of the TMD factorization framework. All of them are
based on the same evolution equations, but differ in the realization of the solution, which is
not unique. Conceptually, all realisations produce the same final result [37, 38]. Practically,
there are differences due to the truncation of the perturbative series. Also, the correlations
between non-perturbative (NP) elements are different, which could affect the results of the
extractions. In our fit we use the ζ-prescription [5, 38], which eliminates (theoretically) the
correlation between the CS kernel and the TMD distributions.

In this section, we present the relevant expressions for TMD factorization used in the
current fit, and point the reader to the original works in refs. [1–4, 37–41] for details about
their derivation.

2.1 Cross-section in the TMD factorization

The DY lepton pair production is defined by the process

h1(P1) + h2(P2) → l(l) + l′(l′) + X, (2.1)

with h1, h2 the colliding hadrons, l, l′ the final state leptons, and the symbols in parentheses
denoting the momentum of each particle. In the following, we neglect both hadron and
lepton masses, i.e., P 2

1 ≃ P 2
2 ≃ l2 ≃ l′2 ≃ 0, since the target-mass corrections are negligible

at the typical energies of DY data.
The relevant kinematic variables in DY read

s = (P1 + P2)2, qµ = (l + l′)µ, q2 = Q2, y = 1
2 ln q+

q−
, (2.2)

where q+ and q− are the components of qµ along P µ
1 and P µ

2 , correspondingly. The transverse
components of vectors are projected by a tensor gµν

T , orthogonal to P µ
1 and P µ

2 ,

gµν
T = gµν − 2

s
(P µ

1 P ν
2 + P µ

2 P ν
1 ) . (2.3)

The transverse momentum of the exchanged boson is q2
T = −q2

T = gµν
T qµqν . In the center-

of-mass frame, the components of momenta are P +
1 = P−2 =

√
s/2, and the variables x1,2

– 3 –
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are respectively

x1 =

√
Q2 + q2

T

s
e+y, x2 =

√
Q2 + q2

T

s
e−y. (2.4)

At leading power in the TMD factorization, the cross section of the DY process mediated
by a neutral boson reads

dσ

dQ2dydq2
T

= 2π

3Nc

α2
em

sQ2

(
1 + q2

T

2Q2

)
P1
∑

f

W ff
f1f1

(Q, q2
T ) (2.5)

×
[
zγγ

l zγγ
f + zγZ

l zγZ
f

2Q2(Q2 − M2
Z)

(Q2 − M2
Z)2 + Γ2

ZM2
Z

+ zZZ
l zZZ

f

Q4

(Q2 − M2
Z)2 + Γ2

ZM2
Z

]
,

where MZ and ΓZ are the mass and decay width of the Z-boson, respectively. The summation
index f runs over all active quarks and anti-quarks. The function W ff

f1f1
describes the hadronic

part of the process and is defined below in eq. (2.11). The function P1 accounts for the
modifications of the lepton phase space (fiducial cuts) and it is given in eq. (2.7). The factors
zjk

i are the combinations of Z and γ couplings to quarks and leptons:

zγγ
f = e2

f ; zγZ
f = T3 − 2ef s2

W

2s2
W c2

W

; zZZ
f =

(1− 2|ef |s2
W )2 + 4e2

f s4
W

8s2
W c2

W

, (2.6)

with sW and cW the sine and cosine of the Weinberg angle, respectively. Here zγZ
f corresponds

to the interference term in the product of amplitudes, and zγγ
f and zZZ

f corresponds to the
diagonal terms.

Some experiments do not correct the data for the detector acceptance of leptonic phase
space. In these cases, the collaborations provide the description of the fiducial regions to be
accounted for in the theoretical predictions. On the theory side, the fiducial cuts are part
of the leptonic interactions described by the leptonic tensor, and do not interfere with the
hadronic tensor. Due to this, the corrections for fiducial cuts can be incorporated exactly, as
part of the integration over the phase-space volume of the lepton pair. In the fits that we
present here, these corrections are collected in a factor P1 defined as

P1 =
∫

d3l

2E

d3l′

2E′
δ(4)(l + l′ − q)((ll′)− (ll′)T )θ(cuts)

/[π

6Q2
(
1 + q2

T

2Q2

)]
, (2.7)

where E and E′ are the energy components of the leptonic momenta l and l′, and θ(cuts)
is the Heaviside step function defining the volume of integration. Typically, the cuts on
the lepton pair are reported as

ηmin < η, η′ < ηmax, l2T > p2
1, l′

2
T > p2

2, (2.8)

where η and η′ are the pseudo-rapidity of the leptons. The derivation of eq. (2.7) can be
found in refs. [5, 8]. The factor P1 is normalized such that it is equal to unity in the absence
of cuts. The integral on the right hand side of eq. (2.7) is computed numerically.
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MZ ΓZ MW ΓW sin2 θW mc mb

91.1876 GeV 2.4942 GeV 80.379 GeV 2.089 GeV 0.2312 1.40GeV 4.75GeV

Table 1. The masses and electroweak parameters used in the present work. The CKM matrix
elements are taken from the Particle Data Group (ed. 2022) [43]. The quark masses are taken as in
the MSHT20 collinear PDF extraction [34].

In the case of W-boson production the formula eq. (2.5) changes to

dσ

dQ2dydq2
T

= 2π

3Nc

α2
em
s

Q2

(Q2 − M2
W )2 + Γ2

W M2
W

(
1 + q2

T

2Q2

)
P1
∑
ff ′

zW W
ll′ zW W

ff ′ W ff ′

f1f1
(Q, q2

T ),

(2.9)
where MW and ΓW are the mass and the decay width of the W-boson, and

zW W
ff ′ = |Vff ′ |2

4s2
W

, (2.10)

with Vff ′ either an element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix (for quarks)
or unity (for leptons). Notice that for the data considered in this work it is not necessary to
pass from the variable Q2 to the square of the transverse mass m2

T ; it is sufficient to know
that Q2

min > m2
T and one can integrate on Q2 > Q2

min (see also ref. [42]).
The hadronic function W ff ′

f1f1
is given by

W ff ′

f1f1
(Q, qT , x1, x2) = |CV (−Q2, µ2

H)|2 (2.11)

×
∫ ∞

0
db bJ0(bqT )f1,f←h1(x1, b;µH , ζ1)f1,f̄ ′←h2

(x2, b;µH , ζ2),

where f1 is the unpolarized TMD distribution, CV is the hard coefficient function (that
coincides with the vector form factor of the quark), and J0 is the Bessel function of the first
kind. The variable b is the Fourier conjugate of the transverse momentum qT , and µH is
the hard factorization scale. Finally, the argument ζ is the rapidity evolution scale, which
is typical in TMD factorization [1–4, 37–41] that prescribes ζ1ζ2 = (2q+q−)2.

Eq. (2.5) and eq. (2.9) are only the leading power terms of the TMD factorization
theorem. The power corrections scale as q2

T /Q2 and Λ2
QCD/Q2. Currently the theory of these

corrections is in a developing stage, see e.g. refs. [41, 44]. Thus, in what follows, we consider
only the data for which the power corrections are (presumably) negligible.

The values of the electroweak parameters and heavy-quark masses used in this work
are reported in table 1. For the electroweak parameters we have taken the central values
published in the Particle Data Group [43]. We do not include their uncertainties, since they
are smaller than other uncertainties involved. The strong coupling constant and the quark
masses are taken from the PDF set that we use, that is MSHT20 [34] for the main fit.

– 5 –
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2.2 TMD evolution and optimal TMD distributions

The scale evolution of TMDPDFs is essential to include high and low energy data in an
unique theoretical frame. The TMD evolution equations are

µ2 d

dµ2 f1,q←h(x, b;µ, ζ) = γF (µ, ζ)
2 f1,q←h(x, b;µ, ζ), (2.12)

ζ
d

dζ
f1,q←h(x, b;µ, ζ) = −D(b, µ)f1,q←h(x, b;µ, ζ). (2.13)

Note that these equations do not depend on the quark’s flavor. This system of equations
consists of a standard renormalization group equation, eq. (2.12), coming from the renormal-
ization of ultraviolet (UV) divergences, and a rapidity evolution equation, eq. (2.13), specific
of the TMD factorization that comes from the factorization of rapidity divergences. The
function D(µ, b) is called the CS kernel and it is a non-perturbative (NP) function. The
integrability condition (also known as Collins-Soper equation [45])

−ζ
dγF (µ, ζ)

dζ
= µ

dD(b, µ)
dµ

= Γcusp(µ), (2.14)

holds, where Γcusp(µ) is the cusp anomalous dimension. Eq. (2.14) expresses the formal
path-independent evolution in the (µ, ζ)-plane. The TMD anomalous dimension is

γF (µ, ζ) = Γcusp(µ) ln
(

µ2

ζ

)
− γV (µ). (2.15)

The perturbative expansion for γF is

Γcusp(µ) =
∞∑

n=0
an+1

s (µ)Γn, γV (µ) =
∞∑

n=1
an

s (µ)γn, with as(µ) =
g2(µ)
(4π)2 . (2.16)

In the present work we use the five-loop Γcusp [46] and four-loop γV [47].
The selection of the initial evolution scale (i.e. the scale where the NP functions are

extracted) is a key point. In our work, we use the initial scale associated with the ζ-
prescription [8, 38] so that the boundary conditions for the system in eq. (2.12), (2.13) are
given by the optimal TMD distribution [38]. This optimal TMDPDF is defined at the scale
(µ, ζµ(b)), which belongs to the special equi-potential (or null-evolution) line (of the evolution
potential introduced in ref. [38]) defined by the equation

Γcusp(µ) ln
(

µ2

ζµ(b)

)
− γV (µ) = 2D(b, µ)d ln ζµ(b)

d lnµ2 , (2.17)

with boundary conditions

D(µ0, b) = 0, γF (µ0, ζ0) = 0. (2.18)

For that reason, the optimal TMDPDF is exactly scale-independent (for any µ and b) and
it is denoted without scales,

f1,q←h(x, b) ≡ f1,q←h(x, b, µ, ζµ(b)). (2.19)

– 6 –
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Eq. (2.18) defines the (unique) saddle point (µ0, ζ0) of the evolution potential. Due to it, the
value of ζµ is finite for any µ (bigger than ΛQCD) and b. A TMDPDF at any other scale can
be obtained evolving the optimal TMDPDF along the path µ = const.,

F (x, b;µ, Q2) =
(

Q2

ζµ(b)

)−D(b,µ)

F (x, b). (2.20)

The hard factorization scale can be arbitrary since the dependence on it cancels between
factors in the factorized expression of eq. (2.11). Practically, we set it to

µH = Q, (2.21)

in order to minimize logarithms in the hard coefficient function.
Substituting eq. (2.20), (2.21) into the definition of the structure functions W f

f1f1
we

obtain,

W f
f1f1

(Q, qT ;x1, x2) = |CV (−Q2, Q2)|2 (2.22)

×
∫ ∞

0
db bJ0(bqT )f1,f←h(x1, b)f1,f̄←h(x2, b)

(
Q2

ζQ(b)

)−2D(b,Q)

.

These are the final expressions used to extract the NP functions.
The most important feature of the ζ-prescription is that it exactly removes the correlation

between the CS kernel and TMDPDF due to renormalization scales. The optimal TMDPDF
does not depend on the CS kernel because it is determined exactly at the saddle point D = 0.
Therefore, the CS kernel is treated as an independent NP function. Thus, the solution of
eq. (2.17) with boundary conditions eq. (2.18) must be found for a generic D since it will
change during the fitting procedure. This problem is solved in ref. [27]. The corresponding
solution for ζµ(b) as a functional of D is denoted as ζexact

µ [D]. The expression is rather lengthy,
and can be found in ref. [8] at N3LO, and directly in the code of artemide [35] at N4LO. In
contrast to SV19, in this work we use ζexact

µ without any modification at small values of b.

2.3 TMD distributions at small-b

As mentioned in section 1, in the regime of small-b the TMDPDF can be expressed via
the collinear PDFs with the help of the operator product expansion (OPE). The relation
between TMDPDF and PDFs reads

lim
b→0

f1,f←h(x, b) =
∑
f ′

∫ 1

x

dy

y

∞∑
n=0

an
s (µOPE)C [n]

f←f ′

(
x

y
, LµOPE

)
qf ′←h(y, µOPE), (2.23)

where q(x, µ) is the unpolarized PDF, the label f ′ runs over all active quarks, anti-quarks
and gluon, and

Lµ = ln
(

b2µ2e2γE

4

)
, (2.24)

with γE being the Euler constant. At LO the coefficient function reads C
[0]
f←f ′ = δ(1− x)δff ′

and the higher order terms are known up to N3LO [11, 13, 21, 48]. In the ζ-prescription, the

– 7 –
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expressions of the coefficient functions are different from those presented in refs. [11, 13, 21, 48],
e.g. all double-logarithm contributions disappear. Up to N3LO the expressions are

C
[1]
f←f ′(x,Lµ)=−LµP

(1)
f←f ′+C

(1,0)
f←f ′ (2.25)

C
[2]
f←f ′(x,Lµ)=

L2
µ

2
(
P

(1)
f←k⊗P

(1)
k←f ′−β0P

(1)
f←f ′

)
(2.26)

−Lµ

(
P

(2)
f←f ′+C

(1,0)
f←k⊗P

(1)
k←f ′−β0C

(1,0)
f←k

)
+C

(2,0)
f←f ′+

d(2,0)γ1
Γ0

C
[3]
f←f ′(x,Lµ)=

L3
µ

6
(
−P

(1)
f←k⊗P

(1)
k←k′⊗P

(1)
k′←f ′+3P

(1)
f←k⊗P

(1)
k←f ′β0−2P

(1)
f←f ′β

2
0

)
(2.27)

+
L2

µ

2
(
P

(1)
f←k⊗P

(2)
k←f ′+P

(2)
f←k⊗P

(1)
k←f ′+C

(1,0)
f←k⊗P

(1)
k←k′⊗P

(1)
k′←f ′

−3C
(1,0)
f←k⊗P

(1)
k←f ′β0−2P

(2)
f←f ′β0+2C

(1,0)
f←kβ2

0−P
(1)
f←kβ1

)
−Lµ

(
P

(3)
f←f ′+C

(1,0)
f←k⊗P

(2)
k←f ′+C

(2,0)
f←k⊗P

(1)
k←f ′−2C

(2,0)
f←f ′β0−C

(1,0)
f←f ′β1

+ d(2,0)γ1
Γ0

P
(1)
f←f ′−2d(2,0)γ1

Γ0
β0

)
+C

(3,0)
f←f ′+C

(1,0)
f←f ′

d(2,0)γ1
Γ0

+(d(2,0))2+d(3,0)γ1+d(2,0)γ2
Γ0

− d(2,0)γ1Γ1
Γ2

0
,

where the symbol ⊗ denotes the Mellin convolution, a summation over the intermediate
flavour index k is to be understood, and we have omitted the argument x of the Cf←f ′

on the r.h.s. for brevity. The functions P (n)(x) are the coefficients of the DGLAP kernel,
P (x) =∑

n an
s P (n)(x) and, up to three-loops, they can be found in ref. [49]. The functions

C
(n,0)
f←f ′(x) are the finite parts of the coefficient functions given in refs. [11, 13, 21, 48]. In

particular, the NLO terms are

C(1,0)
q←q (x) = CF

(
2x̄ − δ(x̄)π2

6

)
, C(1,0)

q←g (x) = 2xx̄, (2.28)

with x̄ = 1 − x.
The OPE has an internal renormalization scale, µOPE, which is not connected to the scales

of the TMD evolution, as it happens f.i. in the case of the b∗-prescription [2, 9]. Therefore,
the expansion in eq. (2.23) is independent of µOPE, and its value can be conveniently chosen
such that it minimizes the logarithmic contributions at b → 0 and, at the same time, it
avoids the Landau pole at large-b. We have decided to use the same value for µOPE as
in the SV19 extraction, i.e,

µOPE = 2e−γE

b
+ 2 GeV. (2.29)

The choice of the large-b offset of µOPE as 2 GeV is motivated by a typical reference scale
for PDFs (and lattice calculations). We remark that the factorization of the cross-section
with TMD distributions is superior to a particular realization of the TMD distributions in
terms of PDFs. Therefore, the actual choice of µOPE is a part of a TMDPDF modeling
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which (in the present case) includes the asymptotic collinear limit. Any modifications of
µOPE would be absorbed by the NP parameters.

The CS kernel is an independent NP function, defined by the vacuum matrix element of
a certain Wilson loop [50]. Analogously to TMDPDFs, the CS kernel can be computed at
small values of b using the OPE. The leading power expression has the form

lim
b→0

D(b, µ) =
∞∑

n=0
an

s (µ)
n∑

k=0
Lk

µd(n,k), (2.30)

where the explicit expressions for d(n,k) are given in [14, 15, 40] at N3LO, and in [24, 25]
at N4LO. The power corrections to eq. (2.30) have been computed in ref. [50] and they
are proportional to the gluon condensate.

The coefficients of OPE and the values of the anomalous dimensions depend on the
number of active quark flavors Nf . To treat this number we use the (naive) variable flavor
number scheme, which sets Nf = 3 for µ < mc, Nf = 4 for mc < µ < mb, and Nf = 5 for
µ > mb. In this scheme, the evolution integrals are smooth, whereas the coefficient functions
have discontinuities (steps) at some b values, those corresponding to the thresholds of µOPE(b).
These discontinuities produce tiny oscillations in Wf1f1 after the Fourier transform. The
input PDF distribution that we choose is the MSHT20 extraction ref. [34], which uses a
similar scheme. We noticed that it is important to set our threshold parameters identical to
those used in MSHT20, so that the oscillations are reduced to a negligible ∼ 0.01%. The
values of the threshold masses are reported in table 1.

2.4 Models for TMD distributions and CS kernel

We use the following phenomenological ansatz for our optimal unpolarized TMDPDFs:

f1,f←h(x,b)=
∫ 1

x

dy

y

∑
f ′

Cf←f ′ (y,LµOPE ,as(µOPE))qf ′←h

(
x

y
,µOPE

)
ff

NP(x,b), (2.31)

where the functions ff
NP accumulate the effect of power corrections to the small-b matching.

To satisfy the general structure of OPE [51], ff
NP must be a function of b2 and behave as

ff
NP(x, b) ∼ 1 + O(b2) at small b. Additionally, ff

NP must decay at large b to ensure the
convergence of the Hankel transformation. Note that, in the ansatz of eq. (2.31), the logarithm
of b in the coefficient function grows unrestricted at large-b (the so-called “local ln(b)”-setup).

There is a large freedom in the definition of the functions ff
NP. The main criterion

for their construction is to have the maximum flexibility with the smallest number of free
parameters. From our experience in previous extractions we deduce that the optimal b-profile
is the one with an exponential decay at b → ∞ and Gaussian behavior at intermediate
b [5, 7, 8]. The x-profile should distinguish large and small-x contributions [6–9]. After
several attempts we opted for the following functional form

ff
NP(x, b) = 1

cosh
((

λf
1(1− x) + λf

2x
)

b
) , (2.32)

where λf
1,2 are free parameters. In the present fit, we distinguish {u, d, ū, d̄, sea} flavors,

where sea stands for {s, s̄, c, c̄, b, b̄}-quarks. This decomposition is suggested by the data
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as they do not allow for the flavor separation of sea quarks yet. In total we have 10 free
parameters, {λu

1 , λu
2 , λd

1, λd
2, λū

1 , λū
2 , λd̄

1, λd̄
2, λsea

1 , λsea
2 }.

The novel feature of the present model is the flavor dependence. In previous determina-
tions of unpolarized TMD distributions fNP was chosen to be flavor-independent, which led
to a number of undesirable effects, see ref. [26] for a discussion. First of all, the extraction
of the TMD distribution appeared to be strongly dependent on the choice of the collinear
PDF, and often a choice of fNP valid for one PDF set was not successful for another (we call
this effect “PDF bias”). Secondly, the uncertainties of fNP were essentially underestimated.
The inclusion of flavor dependence significantly reduces these problems. Additionally, the
functional form used for each flavor f in eq. (2.32) is much simpler in comparison to SV19 [8]
or MAP22 [9]. Note that the TMD flavor dependence were also studied in refs. [52, 53].

The CS kernel reads

D(b, µ) = Dsmall-b(b∗, µ∗) +
∫ µ

µ∗

dµ′

µ′
Γcusp(µ′) +DNP(b), (2.33)

where Dsmall-b is given in eq. (2.30), and DNP provides the rest of the NP terms. The term
with the integral in eq. (2.33) performs the evolution of the CS kernel2 from the scale µ∗ to
the scale µ. Therefore, generally, eq. (2.33) does not depend on µ∗, apart from the truncation
of the perturbative series. The functions b∗ and µ∗ are

b∗(b) = b√
1 + b2

B2
NP

, µ∗(b) = 2e−γE

b∗(b) , (2.34)

with a free parameter BNP. This definition implies that Lµ∗(b∗) = 0.
Analogously to fNP, the NP part of the CS kernel must be a function of b2 to support the

structure of the OPE. At large b the CS kernel must be positive (to guarantee the convergence
of the Hankel transform in eq. (2.22)), and not grow faster than (b2)1/2−δ with δ ⩾ 0 [50].
The expression for DNP generalizes the one used in SV19 including logarithmic corrections,

DNP(b) = bb∗
[
c0 + c1 ln

(
b∗

BNP

)]
, (2.35)

where c0,1 > 0. One can easily identify three free parameters in our ansatz for the CS
kernel, namely, {BNP, c0, c1}. At large-b, the logarithmic term vanishes and the expression
for the CS kernel becomes linear in b: DNP ∼ c0BNPb. The term proportional to c1 simulates
the logarithmic dependence of the power corrections, and gives an extra flexibility to the
ansatz at b ∼ BNP. In preliminary studies, we have found that such a correction provides a
better agreement with data in comparison to other models. This fact conveys the important
message that both theory and experiment have achieved a degree of precision at which
these effects become measurable.

2In SV19 the evolution was taken into account by using the resummed version of Dsmall-b [54]. Formally, the
resummed expression is the solution of the evolution equation eq. (2.14). However, for b = b∗, the resummed
solution deviates from the exact solution at large b. For that reason, we prefer to use the explicit integral in
the present fit. On top of this, the current implementation allows us to introduce the control scale µ∗, often
discussed by other groups [6, 55, 56].
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Γcusp γV Dsmall-b Cf←f ′ CV PDF
a5

s (Γ4) a4
s (γ4) a4

s (d(4,0)) a3
s (C [3]

f←f ′) a4
s NNLO

Table 2. Summary of the perturbative orders used for each part of the factorized cross section. The
evolution of αs is provided by the LHAPDF library and comes together with the PDF set (uniformly
NNLO). In parentheses we write the last included term of the corresponding perturbative expansion
(eq. (2.16), (2.23) and (2.30)).

2.5 Definition of perturbative order and scale variation uncertainties

In the factorized cross section defined above, we encounter three perturbative inputs and
associated scales:

• The perturbative hard coefficient function CV , and associated hard factorization scale
µ, that separates CV and the TMD distributions in eq. (2.22).

• The coefficient function of the small-b operator product expansion for TMDPDF C
[n]
f←f ′

and the associated scale µOPE in eq. (2.23).

• The small-b expansion for the CS kernel Dsmall-b and the associated scale µ∗ in eq. (2.33).

Thanks to the ζ-prescription, each perturbative series can be truncated irrespectively of the
perturbative orders included in the others.

In this work, we use the highest known orders for all perturbative ingredients: the N4LO
(four-loop, ∼ a4

s) hard coefficient function CV [57], the N3LO (four-loop, ∼ a4
s) light-like-

quark anomalous dimension γV [47], the N3LO (four-loop, ∼ a4
s) expression for the CS kernel

Dsmall-b [24, 25], and the N3LO (three-loop, ∼ a3
s) expression for the matching coefficient

functions Cf→f ′ [21, 48]. The cusp anomalous dimension is taken at order (∼ a5
s) [46] (the

expression in ref. [46] is approximate, we consider the central value).
The input collinear PDFs, MSHT20 [34] (and NNPDF3.1 [36] discussed in appendix A),

were obtained at NNLO, which implies the usage of the NNLO evolution kernel P (3). As
a result, the logarithms included in the N3LO small-b coefficient functions are entirely
compensated by the PDF evolution. The value and evolution of as is provided together with
the collinear PDF. The orders of the anomalous dimensions and coefficients functions are
adjusted to each other, such that the scale-dependence is canceled at a given perturbative order.
In the resummation nomenclature this combination of orders is referred to as N4LL [6, 55]
(or N4LL− in [9], or, here, approximate N4LL). The summary of the perturbative orders
is also given in table 2.

To define the scale-variation band we multiply each scale with an independent factor
si (i = 2, 3, 4), defined by the rule{

µH → s2µH , µ∗ → s3µ∗, µOPE → s4
2e−γE

b
+ 2GeV

}
. (2.36)

The labels of parameters si follow the enumeration used in ref. [58]. The rule for µOPE is
designed such that the variation of scale does not impact the NP large-b part of the TMD
distribution. As customary, each si is allowed to vary by a factor 2, i.e. they can take the
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Figure 1. Ratio of scale variation band over theoretical cross section at different perturbative orders
for Z/γ-boson production at ATLAS at

√
s = 13TeV (left), and for the DY process at PHENIX

(right). The NP parameters and the PDF set are kept fixed. The definition of the variation band is
given in eq. (2.37).
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Figure 2. Ratio of cross sections at different orders over the one at N4LL with the corresponding
scale-variation band for the kinematics of Z/γ-boson production at ATLAS at

√
s = 13TeV, and for

DY process at PHENIX.

values {0.5, 1, 2}. In total, there are 27 combinations of {s2, s3, s4}. For each one of them we
compute the cross-section dσi. The size of the variation band is defined as the maximum
(symmetric) deviation from the central value, i.e.

∆dσ = max (|dσi − dσ|i=1...27) . (2.37)

In figure 1 we compare the sizes of variation bands for a representative sample of high
and low energy experiments for four consecutive orders, while using the same values of
the NP parameter and the same PDFs. In figure 2 the same comparison is done for the
cross-sections. As expected, we observe that the size of the bands reduces with the increasing
of the perturbative order. Each next-order curve is inside the variation band of the previous
one. We also notice that for qT > 5GeV the curves are close to each other. It indicates
that convergence of the perturbative series is better than what one could estimate from the
variation bands and that the rule in eq. (2.37) is too conservative.

For small values of transverse momentum (qT < 5GeV), the dominant contribution to
the variation band arises from the factor s4. However, in this regime the scale variation

– 12 –



J
H
E
P
0
5
(
2
0
2
4
)
0
3
6

band is still not significant, as the effects of non-perturbative parameters override those of
the perturbation theory. For qT > 5GeV, the variation band is largely determined by the
variation of s3, and in this range, it remains nearly constant. For the ATLAS experiment at√

s = 13TeV, the mean value of the variation band for 5GeV < qT < 25GeV is 1.3%. At low
energies, the variation band remains large (around 10%) even at the N4LL level, but this is
not a problem because in this range the theory prediction is largely non-perturbative.

We also note that the oscillations happen in the variation band at qT > 10GeV. Studying
this effect in detail, we have concluded that it is connected to our implementation of the flavor
variable number mass scheme in a complex way. Basically, the discontinuities in the shapes
of the distributions (due to the quark mass thresholds) change positions with the variation
of the parameters si. These discontinuities generate tiny oscillations in the cross-section.
For a natural selection of scales (that minimizes logarithms), the discontinuities (and hence
the oscillations) are negligible, but some combinations of si’s are especially oscillatory since
they generate many discontinuities. Therefore, the final shapes in figure 1 are generated
by the overlapping of the 27 curves with small oscillations in each one. We will address
this problem in future works.

2.6 Summary of inputs from theory

The cross-section of the vector boson production is computed with eq. (2.5) and eq. (2.9),
for neutral and charged EW boson, respectively. The structure function Wf1f1 is evaluated
in the TMD factorization framework and given in eq. (2.22). The evolution of TMDPDFs
is computed using the ζ-prescription, and the phenomenological ansätze for the optimal
unpolarized TMDPDFs and CS kernel are defined in eq. (2.31) and eq. (2.35). At small-
b the TMDPDFs are matched to the unpolarized PDFs, for which we use the MSHT20
extraction at NNLO [34]. In table 2 we list the perturbative orders used in each factor of the
approximated N4LL cross section. In total, there are 13 free parameters to be determined
by the fitting procedure: 3 of these describe the CS kernel, while the remaining 10 are for
the unpolarized TMDPDFs.

3 Overview of data

The factorization formulas, eq. (2.5) and eq. (2.9), are valid at small values of q2
T /Q2. This

restriction has been studied from the phenomenological point of view in refs. [5, 6, 8]. The
common conclusion is that, for qT /Q < 0.25, the power corrections remain at the level of
1%, and therefore the data can be safely included in phenomenological extractions. Above
this threshold, the deviation between the theory and the measurements grows. However,
such a rule does not work for data with precision of the order of (or better than) 1%. In
this case, the power corrections significantly affect the quality of the description, despite
being numerically small.

In this work, we use the same general strategy for selecting the data as in refs. [7, 8].
Namely, we only include in our fit a data point if it fulfils the conditions

⟨qT ⟩
⟨Q⟩

≡ δ < 0.25 and
(
δ2 < 2σ or ⟨qT ⟩ < 10 GeV

)
, (3.1)
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Figure 3. Distribution of data in the (x, Q) plane. Each data point can span large regions. The color
gradient darkens with an increasing number of data points contributing to a particular (x, Q) point.

where ⟨qT ⟩ and ⟨Q⟩ are the average values of qT and Q for the bin, and σ is the relative
uncorrelated uncertainty. The second condition is actually needed only for the high-energy
data, as it is satisfied by all the data from the lower energy experiments with Q < 40GeV.
The selection rules of eq. (3.1) allow us to keep control of the predictive power of the theory,
and still incorporate a large amount of data into the fit procedure. They are slightly softer
than the rules used in refs. [7, 8], because we plainly include all data with ⟨qT ⟩ < 10 GeV.

The bulk of the data considered here has already been used in previous extractions, such
asin refs. [5–9]. This includes the fixed-target E288, E605, E772 experiments from FermiLab
(263 data points) [59–61], the Z-boson production data from the CDF and D0 experiments at
Tevatron (107 data points) [62–66], and the LHC run-1 and run-2 measurements of Z-boson
production by the ATLAS, CMS, and LHCb collaborations (75 data points) [67–71]. Since
these datasets are well-known and have been well-studied in the past, we refer the reader
to refs. [5, 6, 8, 9] for a detailed discussion on their properties. In addition to these, we
have included the latest measurements done at RHIC [28, 72] and the LHC [16, 29–31], and
the W-boson production data from Tevatron [32, 33]. As we consider these data in the
framework of TMD factorization for the first time, we find it worthwhile to highlight the
particularities of each set in the following lines.

The PHENIX data [72] were taken at
√

s = 200GeV, which restricts the Q range
(⟨Q⟩ = 7GeV). It is the only modern DY measurement at low energy presently available,
and has already been studied within TMD factorization in refs. [6, 8, 9]. The Z/γ-boson
production measurement at STAR [28] was made at moderately high energy (

√
s = 510GeV)

during the 2018–2020 runs and the final results are currently in preparation for publication.
Here we used the preliminary data.
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In the present fit we include the recent y-differential measurements of Z-boson production
at CMS [29] and LHCb [31], at

√
s = 13TeV. These replace the corresponding integrated

measurements used in [8]. We also include the more precise (∼ 0.1% uncertainty) measurement
of the Z-boson differential cross-section by ATLAS [16]. Finally, we include the high-Q neutral-
boson production measurements by the CMS collaboration [30]. This dataset is unique, since
it spans up to Q = 1TeV (in several bins). For the interpretation of these data one should take
into account that the bin-migration effects due to final state radiation are not incorporated
in the published tables.3 Accounting for these effects is critical to confirm the agreement
between theory and measurement. Nevertheless, we are not able to describe the lowest lying
bin 50GeV< Q < 76GeV, for which we encountered a large difference in the normalization,
and therefore, we exclude this bin. We have also excluded the 76GeV< Q < 106GeV bin,
using instead the y-differential measurement from the same run [29].

For the first time in TMD phenomenology, we include W-boson production data [32, 33].
Generally, the description of this observable is problematic within the TMD factorization
framework because, usually, the data are integrated over a wide kinematic range, including
regions where the TMD factorization conditions are not fulfilled. For a detailed discussion of
this issue, see [42]. While the measurements [32, 33] are fully integrated in Q, an explicit
restriction on the transverse energy of the electron and neutrino (the missed transverse
energy) was also imposed. This permits to find the lowest limit for Q. We have restricted the
upper limit of integration to 300GeV, since the contribution of higher Q provides a negligible
correction. To estimate the cut rules of eq. (3.1) for these data we used ⟨Q⟩ = MW .

In total, the present analysis includes 627 data points, summarized in table 3. The
kinematical coverage of the datasets in the (x, Q)-plane is shown in figure 3. All the new
data (w.r.t. [6–8]) are at high energy. In fact, the new dataset totally supersedes the previous
ones in both number of points (e.g. the present fit includes 227 points from LHC, vs. 80
in [8]) and precision. Therefore, the present selection allows for a more precise determination
of the CS kernel (due to increased span in Q) and provides a finer flavor separation due
to the W-boson measurements.

4 Fit procedure

Comparing the theoretical predictions with the data, we are able to restrict the free parameters
of our ansatz for the TMD distributions, and in this way determine its NP part. This procedure
is standard, and the present implementation is generally the same as the ones used in refs. [5–
9]. However, in the present fit we treat the uncertainties more accurately and the PDF
uncertainties are taken into account. The details of the procedure are reviewed in this section.

4.1 Treatment of the experimental data

In the measurement of the cross-sections in an experiment there are several features that
should be treated accurately in order to achieve a better consistency. We point them out
one-by-one below.

3We thank Louis Moureaux and Buğra Bilin for their help with the interpretation of these data, and
especially for sharing with us their code for the computation of the bin-migration effect.
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Experiment ref.
√

s [GeV] Q [GeV] y/xF
fiducial
region

Npt
after cuts

E288 (200) [59] 19.4 4 - 9 in
1 GeV bins∗ 0.1 < xF < 0.7 - 43

E288 (300) [59] 23.8 4 - 12 in
1 GeV bins∗ −0.09 < xF < 0.51 - 53

E288 (400) [59] 27.4 5 - 14 in
1 GeV bins∗ −0.27 < xF < 0.33 - 79

E605 [60] 38.8 7 - 18 in
5 bins∗ −0.1 < xF < 0.2 - 53

E772 [61] 38.8 5 - 15 in
8 bins∗ 0.1 < xF < 0.3 - 35

PHENIX [72] 200 4.8 - 8.2 1.2 < y < 2.2 - 3

STAR [28] 510 73 - 114 |y| < 1 pT > 25GeV
|η| < 1 11

CDF (run1) [62] 1800 66 - 116 - - 33
CDF (run2) [63] 1960 66 - 116 - - 45

CDF (W-boson) [32] 1800 Q>40 - pT,e, pT,ν > 20GeV 6
D0 (run1) [64] 1800 75 - 105 - - 16
D0 (run2) [65] 1960 70 - 110 - - 9

D0 (run2)µ [66] 1960 65 - 115 |y| < 1.7 pT > 15GeV
|η| < 1.7 4

D0 (W-boson) [33] 1800 Q>50 - pT,e, pT,ν > 25GeV 7

ATLAS (8TeV) [67] 8000 66 - 116 |y| < 2.4
in 6 bins

pT > 20GeV
|η| < 2.4 30

ATLAS (8TeV) [67] 8000 46 - 66 |y| < 2.4 pT > 20GeV
|η| < 2.4 5

ATLAS (8TeV) [67] 8000 116 - 150 |y| < 2.4 pT > 20GeV
|η| < 2.4 9

ATLAS (13TeV) [16] 13000 66 - 116 |y| < 2.5 pT > 27GeV
|η| < 2.5 5

CMS (7TeV) [68] 7000 60 - 120 |y| < 2.1 pT > 20GeV
|η| < 2.1 8

CMS (8TeV) [69] 8000 60 - 120 |y| < 2.1 pT > 20GeV
|η| < 2.1 8

CMS (13TeV) [29] 13000 76 - 106 |y| < 2.4
in 5 bins

pT > 25GeV
|η| < 2.4 64

CMS (13TeV) [30] 13000
106 - 170
170 - 350
350 - 1000

|y| < 2.4
p1T > 25GeV
p2T > 20GeV

|η| < 2.4
34

LHCb (7TeV) [70] 7000 60 - 120 2 < y < 4.5 pT > 20GeV
2 < η < 4.5 8

LHCb (8TeV) [71] 8000 60 - 120 2 < y < 4.5 pT > 20GeV
2 < η < 4.5 7

LHCb (13TeV) [31] 13000 60 - 120 2 < y < 4.5
in 5 bins

pT > 20GeV
2 < η < 4.5 49

Total 627

*Bins with 9 ≲ Q ≲ 11 are omitted due to the Υ resonance.

Table 3. Summary table of the data included in the fit. For each dataset we report: the reference,
the centre-of-mass energy, the coverage in Q and y/xF , the cuts on the fiducial region (if any), and
the number of data points that survive after the cut of eq. (3.1).
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Bin integration. The expression for the cross-section in eq. (2.9) is given for a single
point in the (Q2, y, qT )-space. On the experimental side, the measurement is provided for a
volume-element of phase space, which can be obtained by averaging the theoretical expression

dσ

dQ2dydq2
T

∣∣∣
exp

= (Q2
max − Q2

min)−1(ymax − ymin)−1(q2
T max − q2

T min)−1 (4.1)

×
∫ Qmin

Qmax
2QdQ

∫ ymin

ymax
dy

∫ qT min

qT max
2qT dqT

dσ

dQ2dydq2
T

∣∣∣
th.

.

Here, the Qmax/min, ymax/min, and qT max/min are the boundaries of the phase-space volume
(bin). These integrations could not be simplified analytically, since the expression for the
cross-section is too involved (especially in the presence of fiducial cuts). Accounting for
the effect of finite bin size is of crucial importance, since for most of the experiments dσ|th.
changes significantly and non-linearly within the bin (an explicit study of this can be found
in ref. [8]). It should also be taken into account that some experiments provide integrated
(rather than averaged) data. For example, the LHCb measurements in refs. [70, 71] are given
for ∆σ, that is, the bin integrated cross-section without any weighting factors.

Normalization. In a few cases the measurement is normalized to the total cross-section, i.e.

1
σ

dσ

dQ2dydq2
T

=
(∫ ∞

0

dσ

dQ2dydq2
T

dq2
T

)−1
dσ

dQ2dydq2
T

. (4.2)

This practice helps to reduce the normalization uncertainty of the measurement. Our
formalism does not allow the computation of the weighting factor, since it includes values of
qT beyond the factorization range. In these cases we adopt the following procedure [5, 7, 8].
We compute

1
σ

dσ

dQ2dydq2
T

≃ N dσ

dQ2dydq2
T

, N =

∑
included

bins
σ−1 dσ

dQ2dydq2
T

∣∣∣
exp.∑

included
bins

dσ
dQ2dydq2

T

∣∣∣
th.

, (4.3)

i.e. we normalize to the area of included data points. Note, that the normalization is done
after the bin-integration. The numerator of N tells which part of the cross-section is included
into the fit, while the denominator gives the theoretical estimate of normalization. If the
shape of data is perfectly described by the theory, the factor N is independent on the number
of included bins. Due to it, we expect that the deviation of the normalization factor computed
with the full data set (in a framework that describes also large-qT data) from eq. (4.3) is
minimal and it cannot significantly impact the results of the fit.

The normalization procedure reduces the amount of information which can be gained
from the data and it also potentially introduces an unknown uncertainty due to eq. (4.3);
therefore, we use unnormalized data whenever available. Only the following datasets require
a normalization factor: D0 (run2) [65, 66], ATLAS (13 TeV) [16], and W-boson measure-
ments [32, 33]. The normalization factor is computed independently for each new set of
values of the NP parameters (including the PDF replicas), and for each replica of the data,
which provides the proper propagation of the fitting and data uncertainties.
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Nuclear effects. The fixed target experiments are done on nuclear targets (Cu for E288
and E605 [59, 60], and 2H for E772 [61]). To simulate the nuclear environment we perform
the iso-spin rotation of the TMD distribution. Namely, we set

f1,u←A(x, b) = Z

A
f1,u←p(x, b) + A − Z

A
f1,d←p(x, b), (4.4)

f1,d←A(x, b) = Z

A
f1,d←p(x, b) + A − Z

A
f1,u←p(x, b),

where A is the atomic number and Z is the charge of a nuclear target. The effects of heavier
mass in the TMD distribution can be ignored since they are compensated by the scaling
of the momentum fraction, as it has been shown in ref. [51]. We do not include any finer
modifications, since the fixed target data are not precise enough to distinguish them.

Artemide. The computation of the theory prediction, as well as all integrals and factors
required for comparison with the data, are done in artemide, a multi-purpose code for the
phenomenology of TMD factorization. It is based on the ζ-prescription, which allows for
many simplifications of the code and improves the speed of the computation. In particular,
the computation of the theory prediction for the full dataset (627 points) with all integrations
required for comparison with experiment consumes 20–30 seconds on the average desktop (12
cores processor) depending on the NP input. The code of artemide is written in FORTRAN95.
It is open-source and available at [35]. The values of αs and the collinear PDFs are obtained
from the LHAPDF interface [73].

The legacy of artemide is established in many previous global fits, including fits of
various unpolarized [5, 7, 8, 26, 27, 42, 74], and polarized [75–77] observables. For the present
work we have updated it with the expressions for N3LO coefficient functions and N3LO
anomalous dimensions, without further modifications of the internal structure of the code.

4.2 Definition of the χ2-test function and related quantities

The agreement of the theory prediction and the data is quantified by the χ2-test function.
We use the standard definition adopted from the fits of collinear PDFs in refs. [78, 79], to
which we refer the reader for a detailed discussion. The χ2-test function is defined as

χ2 =
∑

i,j∈data
(mi − ti)V −1

ij (mj − tj), (4.5)

where i and j run over all data points included into the fit, mi and ti are the experimental
value and theoretical prediction for point i, respectively, and V −1

ij is the inverse of the
covariance matrix. The covariance matrix is defined as

Vij = δij∆2
i,uncorr. +

∑
l

∆(l)
i,corr.∆

(l)
j,corr., (4.6)

where ∆i,uncorr. is the uncorrelated uncertainty of the measurement (if there are more than one,
they are summed in squares), and ∆(l)

i,corr. is the l-th correlated uncertainty. The normalization
uncertainty (due to the luminosity) is included in the χ2 as one of the correlated uncertainties.
This definition of the covariance matrix and the χ2-test function takes into account the nature
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of the experimental uncertainties and also provides a faithful estimate of the agreement
between data and theoretical predictions.

Additionally, this definition of χ2 allows for an one-to-one separation of correlated and
uncorrelated parts [79] for each correlated dataset. Therefore,

χ2 = χ2
D + χ2

λ, (4.7)

where χ2
D incorporates the contribution due to the uncorrelated uncertainties of the mea-

surement, while χ2
λ is the rest. The definitions of χ2

D and χ2
λ are

χ2
D =

∑
i

(mi − t̄i)2

∆2
i,uncorr.

, χ2
λ =

∑
l

λ2
l , (4.8)

with λ and t̄ defined below. Loosely speaking, χ2
D (χ2

λ) shows the agreement in the shape
(normalization) between the theory prediction and the experimental measurement.

To perform this decomposition, one should compute the “nuisance parameters” λl (l
enumerates the number of correlated uncertainties for the given dataset) [7, 79] for a given
theory prediction. Then the theory prediction is decomposed as

ti = t̄i − di, di =
∑

l

λl∆(l)
corr. . (4.9)

The terms di are interpreted as correlated shifts in the predictions which generate the χ2
λ

contribution. The terms t̄i represent the part of the theory curve that contributes solely
to χ2

D, and thus has a “perfect” normalization.
This decomposition is often useful for analysis and visualization because the correlated

(normalization) uncertainty is generally much larger than the uncorrelated one. Hence, in plots
comparing with data, we show the t̄i part of the prediction. This allows us to visually confirm
the “good” values of χ2. The average value of correlated shifts relative to the cross-section
⟨di/σ⟩ is presented in table 4. It exhibits the general disagreement in the normalization
between the predictions of TMD factorization and the measurements.

The computation of the χ2 value and further manipulations are performed with the
DataProcessor library, which is written in PYTHON and interfaced to artemide via the
standard f2py library. The code of DataProcessor, together with the collection of the
experimental data points, and all programs used for the present work, can be found in [80].

4.3 Minimisation procedure and uncertainty estimation

The ansatz for the TMD distributions contains in total 13 parameters, which we denote as −→
λ

−→
λ = {BNP, c0, c1, λu

1 , λu
2 , λd

1, λd
2, λū

1 , λū
2 , λd̄

1, λd̄
2, λsea

1 , λsea
2 }. (4.10)

To find the optimal values of −→λ we minimize the χ2 using the library iMinuit [81]. The
resulting value −→

λ center is called central value fit. The central value fit is used only as an
initial assumption for all further minimization procedures described below.

The propagation of initial uncertainties to extracted values of the TMD distributions
is both the central component and the most time-consuming step in the computation. We
employ the resampling method to perform this task, generating samples of setups distributed
according to the initial uncertainties. We distinguish two sources of uncertainties:
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• Experimental uncertainties. These are uncertainties due to experimental measurements
(statistical, systematic, etc.). To propagate these uncertainties we generate replicas
of pseudo-data. A replica consisting of pseudo-data is obtained by adding Gaussian
noise to the values of the data points. The parameters of the noise are dictated by
the correlated and uncorrelated experimental uncertainties. Here, one should account
for the nature of the correlated uncertainty in order to avoid the so-called D’Agostini
bias [82]. The detailed algorithm for the generation of pseudo-data is given in ref. [78].

• Uncertainty in collinear PDFs. To propagate these uncertainties we use the Monte-Carlo
sampling of the PDF distributions. The MSHT PDF set is given with (asymmetric)
Hessian uncertainties, and the Monte-Carlo samples are generated according to the
prescription given in ref. [83].

Other sources of uncertainties (such as uncertainties in MZ or αs, uncertainties due to missed
higher perturbative orders, etc) are considered negligible.

The initial uncertainties included in the analysis originate from different sources, and it
is not always clear how they should be combined. This is because the propagation mechanism
for each uncertainty differs. The experimental uncertainties modify the expression of χ2 (by
changing V and m), while the PDF uncertainty changes the theory expression (by changing
the boundary value of the TMD distribution). In this work, we consider them on the same
foot and generate samples by varying data and PDF simultaneously. Here, the PDF replica
is randomly selected from the pre-generated sample,4 and thus could be present in the final
ensemble several times. This method of uncertainty propagation is more accurate than any
used before. For example, in the method of ref. [26] both types of uncertainties were sampled
independently and then combined into a single uncertainty band; in refs. [6, 9] the PDF
uncertainty was introduced into the definition of χ2.

For each setup sample, we minimize the χ2-function and find a set of parameters −→
λ ,

which defines the minimum. This procedure is repeated 1000 times, giving us an ensemble
{Λi = (−→λ i, ni)}, where i = 1, . . . , 1000 and ni is the serial number of the PDF replica used
in the sample setup. The PDF replica’s serial numbers must be preserved since the values
of −→

λ are essentially correlated with it. The ensemble of Λ’s entirely describes the TMD
distributions and the CS kernel. This ensemble is used in all further manipulations. The
list of values of Λi can be found in the artemide repository [35], in the (human-readable)
format suitable for automatic processing by the DataProcessor.

Using the ensemble Λ, we can find the mean values of the parameters −→
λ 0 = ⟨

−→
λ i⟩

associated with the central PDF replica (since the averaging of PDF replicas produces the
central one by definition). The distribution is not entirely Gaussian, and this uncertainty
band is associated with the 68%-confidence interval (68%CI). The boundaries of the 68%CI
are computed using the resampling method by computing the 16% and 84% quantiles.

The central values and uncertainty bands for secondary values, such as TMD distributions,
cross-sections, χ2, etc., are computed starting from the ensemble Λ. For example, to obtain

4We use a distribution with 1000 replicas. The preservation of this ensemble is important for the future
use of extracted TMD distributions. We will provide the sample used in this work in the LHAPDF format
upon request.
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Figure 4. The histogram of the χ2 values for the full dataset. The black line marks the position of
the mean prediction, and the blue band shows the 68%CI of the χ2 distribution.

the TMD distribution we compute the ensemble Fi = F [Λi]. The central value is then the
mean ⟨Fi⟩ and the uncertainty band is 68%CI of Fi. Note, that ⟨F [Λi]⟩ ̸= F [⟨Λi⟩], due
to the correlations in-between members of Λi. The procedure described above allows to
propagate all correlations correctly.

This work presents a comprehensive analysis of error propagation in TMD phenomenology,
which is the first of its kind. The proposed procedure is expected to reduce the dependence
on PDFs as input parameters. However, the approach comes at the cost of increased
computational complexity. In the present work, we use the MSHT20 PDF set [34], which
we present as the main result. To cross check we also made an independent run (with 300
replicas) with the NNPDF3.1 PDF set [36]. The results of this run are given in appendix A.

5 Results

In this section we present the results of the fitting procedure, starting with the quality of
the data description, and finishing with the presentation of the extracted TMD distributions
and CS kernel.

5.1 Quality of data description

We find that the current setup perfectly describes the data. The central value fit results
in χ2/Npt = 0.93. For the mean prediction (i.e. ⟨dσ[Λi]⟩), χ2/Npt = 0.957, with the 68%CI
(0.950, 1.048). The histogram of χ2/Npt is given in figure 4. The complete list of the
χ2-values for all datasets is presented in table 4.

In comparison to the SV19 fit [8] we observe an overall improvement in the χ2, which
is especially significant for the description of the LHC data (χ2

LHC/Npt = 1.26+0.76
−0.15 with

Npt = 230), and the low-energy DY data (χ2
low/Npt = 0.50+0.09

−0.03 with Npt = 266). Similarly to
SV19, we observe that the low-energy DY data suffer of deficits in the normalization. This is a
known feature of TMD factorization (see e.g. the extended discussions in refs. [8, 27]). Given
that the data have very large normalization uncertainties, these deficits do not significantly
impact the value of χ2; therefore it is not clear at the moment whether the problem arises
from a shortcoming of the theory or of the measurements. Let us also mention that the
PHENIX measurement (⟨Q⟩ = 7GeV) does not show any problem with the normalization.
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dataset Npt χ2
D/Npt χ2

λ/Npt χ2/Npt ⟨d/σ⟩
CDF (run1) 33 0.51 0.16 0.67+0.05

−0.03 9.1%
CDF (run2) 45 1.58 0.11 1.59+0.26

−0.14 4.0%
CDF (W-boson) 6 0.33 0.00 0.33+0.01

−0.01 –
D0 (run1) 16 0.69 0.00 0.69+0.08

−0.03 7.1%
D0 (run2) 13 2.16 0.16 2.32+0.40

−0.32 –
D0 (W-boson) 7 2.39 0.00 2.39+0.20

−0.18 –
ATLAS (8TeV, Q ∼ MZ) 30 1.60 0.49 2.09+1.09

−0.35 4.1%
ATLAS (8TeV) 14 1.11 0.11 1.22+0.47

−0.21 2.3%
ATLAS (13 TeV) 5 1.94 1.75 3.70+16.5

−2.24 –
CMS (7TeV) 8 1.30 0.00 1.30+0.03

−0.01 –
CMS (8TeV) 8 0.79 0.00 0.78+0.02

−0.01 –
CMS (13 TeV, Q ∼ MZ) 64 0.63 0.24 0.86+0.23

−0.11 4.3%
CMS (13 TeV, Q > MZ) 33 0.73 0.12 0.92+0.40

−0.15 1.0%
LHCb (7 TeV) 10 1.21 0.56 1.77+0.53

−0.31 5.0%
LHCb (8 TeV) 9 0.77 0.78 1.55+0.94

−0.50 4.3%
LHCb (13 TeV) 49 1.07 0.10 1.18+0.25

−0.01 4.5%
PHENIX 3 0.29 0.12 0.42+0.15

−0.10 10.%
STAR 11 1.91 0.28 2.19+0.51

−0.31 15.%
E288 (200) 43 0.31 0.07 0.38+0.12

−0.05 44.%
E288 (300) 53 0.36 0.07 0.43+0.08

−0.04 48.%
E288 (400) 79 0.37 0.05 0.48+0.11

−0.03 48.%
E772 35 0.87 0.21 1.08+0.08

−0.05 27.%
E605 53 0.18 0.21 0.39+0.03

−0.00 49.%
Total 627 0.79 0.17 0.96+0.09

−0.01

Table 4. The values of χ2 for the individual datasets. The last column shows the average relative
shifts computed by eq. (4.9), which indicate the size of normalization discrepancy.

In figure 5 we present the comparison of theory vs. ATLAS 13 TeV measurement, which
is the most precise measurement at our disposal (with uncorrelated uncertainties < 0.5%).
In this plot one can see that TMD factorization works up to qT ≃ 0.2 Q (even if in this
particular case only data up to qT = 10GeV are included into the fit). At larger qT , the theory
prediction is systematically lower than the measurement: this is a signal of the necessity for
power corrections. The full collection of data plots is given in appendix B.

We emphasize that the uncertainty band obtained in this fit is larger than in previous
analyses with artemide [7, 8] because of the PDF uncertainty evaluated in the present
work. Also, since we cannot control the PDF uncertainty, the band is often larger than
the uncertainty of the measurement. It indicates that a simultaneous extraction of PDF
and TMD distributions will reduce the uncertainties of both. We also have observed that
most part of our uncertainty band is correlated. To determine the size of the correlation we
computed the covariance matrix for the full set of replicas, cov(dσ(Λi), dσ(Λj)) and fitted it
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Figure 5. Comparison of data (here, the Z-Boson production by ATLAS
√

s = 13TeV measurement
in ref. [16]) with the theoretical prediction (blue). The blue band is the 68%CI. The filled points are
included into the fit and the displayed χ2 corresponds to those only. The purple line (band) shows
the prediction (uncertainty) obtained without taking into account the PDF uncertainties.

with the form of eq. (4.6), and determined ∆th.uncorr and ∆th.corr for the theory prediction.
We found that the portions of correlated and uncorrelated parts depend on x. Generally,
the higher the value of x, the larger the uncorrelated part of the band. For example, for
the Z-boson production at

√
s = 13TeV ⟨∆th.uncorr⟩ ≃ 8.5% at |y| < 0.4, ⟨∆th.uncorr⟩ ≃ 15%

at 2.0 < y < 2.4, and ⟨∆th.uncorr⟩ ≃ 48% at 4 < |y| < 4.5.
The values of the cross-sections predicted by the TMD factorization are somewhat lower

than the experimental ones, see the last column in table 4. This is a known feature and has
been observed in many analyses (see e.g. refs. [6–9, 27]). The discrepancy is of the order
of a few percent for LHC energies (increasing for larger rapidity bins), and of the order of
∼ 40% for fixed-target experiments. These discrepancies are within the published correlated
uncertainties, and thus result in a minor increase of the χ2. The corresponding contribution
is provided in table 4 (column labeled χ2

λ/Npt). Theoretically, there could be several sources
of disagreement in normalization, f.i. power corrections, see for instance ref. [84].

Few experiments provide the normalized cross-section, which we match using the pro-
cedure described in section 4.1. The values of N provide us estimates for the integrated
cross-sections for the experiments with normalized data

σth. = N−1. (5.1)

We present these estimations in table 5, together with the experimental measurement (if
available in the publication), and the theoretical prediction by DYNNLO [85, 86] (done with
MSHT20 collinear PDFs). Clearly, the results of DYNNLO agree within errors to the ones
determined in our simplified procedure, demonstrating the consistency of the approach.
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dataset σexp. [pb] σDYNNLO[pb] σth.[pb]
ATLAS (13 TeV) 736.2± 16.7 717.7± 6.8 711.3± 14.5
CMS (7 TeV) - 397.6± 10.4 386.4± 8.2
CMS (8 TeV) 440± 14 453.4± 9.0 441.0± 8.2
D0 (run2) - 252.0± 7.3 248.1± 4.9

Table 5. Comparison of the total cross-section values for the normalized datasets. The column σexp.
shows the measured value (if available in the original publications) with uncertainties from all sources.
The column σDYNNLO shows the prediction by DYNNLO, with PDF uncertainty. The column σth.
shows the value computed by eq. (5.1), with uncertainties from TMD extraction only.

5.2 Collins-Soper kernel

The plot of the CS kernel is presented in figure 6. The values of parameters that we obtain are

BNP = 1.56+0.13
−0.09GeV, c0 = 3.69+0.65

−0.61 · 10−2, c1 = 5.82+0.64
−0.88 · 10−2. (5.2)

The parameters BNP and c0 are compatible with the ones extracted in SV19. In particular,
for the MMHT14 PDF (predecessor of MSHT20) SV19 found BNP = 1.55 ± 0.29 and
c0 = (4.7 ± 1.47) · 10−2. Nonetheless, the shape of the distributions changes significantly
due to the new logarithmic term ∼ c1 in the ansatz of eq. (2.35). This term modifies
the shape of the distribution at b ∼ 1 − 3GeV, leaving the large-b asymptotic behaviour
untouched. Removing this parameter, the fit shows worse values of χ2, χ2/Npt = 1.51 (for
central replicas of PDF and the data). The general shape and value of the CS kernel are
in good agreement with the MAP22 determination, as can be seen in figure 6, despite the
differences in the two codes.

A significative feature of the current fit is that the size of the uncertainty band for the
CS kernel is reduced, in contrast to that of the TMD distribution itself. This is correct, since
in the ζ-prescription the CS kernel is exactly decorrelated from the TMDPDF (on the theory
side), and the quality of the data has increased. We also notice that the parameter c1 is
clearly non-zero, which indicates the presence of a non-negligible logarithmic behaviour in
the next-to-leading power term of the small-b expansion of the CS kernel.

5.3 Unpolarized TMD distribution

The values of the TMDPDF parameters extracted in the fit are

λu
1 = 0.87+0.10

−0.10, λu
2 = 0.91+0.33

−0.29, (5.3)
λd

1 = 0.99+0.09
−0.12, λd

2 = 6.06+1.36
−1.34,

λū
1 = 0.35+0.23

−0.22, λū
2 = 46.6+7.9

−8.1,

λd̄
1 = 0.12+0.13

−0.11, λd̄
2 = 1.53+0.54

−0.17,

λsea
1 = 1.32+0.23

−0.24, λsea
2 = 0.46+0.13

−0.45.

Most of these parameters have reasonable sizes, and they agree (within uncertainty) with
similar ones found in ref. [26]. However, the parameters λd̄

1 and λsea
2 show some problematic

behaviour. Namely, they almost vanish at their lower boundary. For negligible values of λ’s
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Figure 6. Plot of the Collins-Soper kernel at µ = 2GeV. Different lines correspond to the independent
extractions CASCADE [87], SV19 [8], MAP22 [9], and ART23 (this work).

Figure 7. Shape of TMDs in the (x,b)-space. The color indicates the uncertainty.

the b-profile of the corresponding TMDPDF flattens. This is a clearly non-physical behavior,
which results in disturbed shapes of the uncertainty bands for d̄ and sea flavors at large-b.
Simultaneously, it does not produce any problem in the prediction for the cross-section, since
the TMDPDFs contributes in products with the evolution factors. It merely indicates that
the present observables/data are not restrictive enough for these flavor combinations.

The shapes of the TMDPDFs are shown in figure 7 for u and d quarks (other flavors show
similar behaviour). The sizes of the uncertainty bands are shown in figure 8. Generally, the
uncertainty bands are increased by an order of magnitude in comparison to the SV19 fit, and
grow faster with the increase of b. This is the result of incorporating the PDF uncertainties,
which helps to account for the PDF-bias and allows for a more realistic uncertainty estimation.
The x-shape of the uncertainties has become more involved. Their minimum is at x ∼ 10−2,
where more precise data are located. The sizes of quark- and anti-quark uncertainties are
compatible, because most part of the data depends on the product f1qf1q̄ that does not
distinguish between quarks and anti-quarks.
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Figure 8. Sizes of the full uncertainty bands in ART23 (green) in comparison to the extraction at
the central PDF replica (grey). The upper panel shows the b-dependence at x = 0.01. The lower
panel shows the x-dependence at b = 0.5GeV−1.

5.4 Impact of inclusion the PDF uncertainty

The inclusion of PDF uncertainties in an analysis of TMDPDFs inflates the uncertainty
on TMDPDFs themselves by almost an order of magnitude. This feature has been already
analysed in ref. [26] using the SV19 setup as baseline. In this subsection we present the
impact of PDF uncertainty to our analysis.

To determine this impact we have performed an independent fit of the data including
into the fit procedure only experimental uncertainties (see section 4.3). We have observed
that the central values of parameters are largely unaffected, while the uncertainty band is
essentially reduced. The quality of the data description remains high as χ2/Npt = 0.95+0.008

−0.006.
Note that the uncertainty band here is reduced by an order of magnitude, which already
tells that the largest part of the replica distribution is due to the PDF uncertainty rather
than due to the data.
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The values of the NP parameters obtained in this fit are

No PDF uncertainty

BNP = 1.51+0.03
−0.01GeV, c0 = 3.79+0.37

−0.39 · 10−2, c1 = 5.27+0.15
−0.02 · 10−2,

λu
1 = 0.87+0.04

−0.03, λu
2 = 0.80+0.10

−0.11,

λd
1 = 0.92+0.02

−0.03, λd
2 = 5.59+0.45

−0.55,

λū
1 = 0.22+0.05

−0.06, λū
2 = 44.8+5.0

−5.1,

λd̄
1 = 0.10+0.03

−0.04, λd̄
2 = 1.77+0.18

−0.17,

λsea
1 = 1.25+0.03

−0.04, λsea
2 = 0.43+0.42

−0.41.

Comparing these parameters to eq. (5.2), (5.3) we see that they stay within the uncertainty
band of the full analysis, and in most cases have practically the same central value. The
uncertainty band is reduced by a factor 2–10. There are two parameters (λu

2 and λū
1) whose

central value shifted more in comparison to the complete fit. It possibly indicates that
these parts of PDFs have some tension with TMD data. The comparison of shapes is
presented in figure 8.

The theoretical uncertainty in the cross-section also shrinks by an order of magnitude.
The central value almost coincides with the central line for the full fit, although in some cases
there are deviations in the low-qT bins. An example is shown in figure 5.

6 Conclusions

The present extraction of unpolarized TMDPDF from the global fit of Drell-Yan data (refereed
as ART23) represents a significant step forward in comparison to previous analyses. The
main improvements are a higher order perturbative input (which reaches N4LL with NNLO
evolution for the collinear PDFs), a consistent treatment of PDF uncertainties in the error
analysis, and the inclusion of additional data. We also use the flavor dependent form of the
fitting ansatz for TMDPDF. The introduction of a flavor dependence reduces the sensitivity
to the choice of PDF sets, as observed in [26]. Furthermore, the newly incorporated non-
perturbative logarithmic dependence of the CS evolution kernel, eq. (2.35), plays a crucial
role in achieving a successful fit.

We also find it particularly interesting that several groups find a reasonable agreement
on the CS kernel (see figure 6) despite somewhat different functional forms and uncertainty-
estimation procedure. The agreement with the new Z-boson data at LHC and W-boson
mediated data at Tevatron is particularly encouraging.

It is important to stress that the PDF uncertainties dominate the TMDPDF extraction,
see figure 8. For that reason, the uncertainties on TMDPDFs that we find are larger by
almost an order of magnitude in comparison to other global extractions [6–9], even though
the present dataset is about 30–40% larger and more precise than those considered earlier.
We argue that this increased uncertainty is more realistic, and previous studies are biased
in several aspects. The χ2 value that we obtain is very stable, see figure 4, and it shows
a very good agreement between the theory and the data. This observation is noteworthy
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and suggests that future improvements to the TMDPDFs determination could be achieved
by a joint fit of PDFs and TMDPDFs. These possibilities will be explored in due time
along with the inclusion of new data.

The values of ART23 unpolarized TMDPDFs, as well as, the artemide code release used
for their extraction is published in the artemide-repository [35]. The accompanying code
(for minimisation, generation of plots, etc) is presented in ref. [80]. We also release ART23
TMDPFs in the unified format of TMDlib2 [88].

Our current understanding of the TMDPDFs is summarized in figure 7, which illustrates
the shape and the uncertainty of the unpolarized TMD distributions in the (x, b) plane for
up and down quarks. An important point for future consideration is the impact of power
corrections, for which preliminary theoretical results have been obtained but are not yet
directly applicable to our present analysis [51, 89, 90]. The present extraction opens the path
to the N4LL analysis of SIDIS data, where, in addition to the unpolarized TMDPDFs and
CS kernel, one can also determine TMD fragmentation functions.
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A Fit using NNPDF3.1

In the present approach the TMDPDF suffers the PDF-bias [26], i.e. is strongly dependent
on the collinear PDF. To explore this dependence, we have performed an additional fit using
the NNPDF3.1 collinear PDF [36] with identically the same technique as presented in the
main text. In this appendix we discuss the outcomes of the fit.

The fitting procedure is described in section 4.3. In this fit we utilize the 1000-replica
distribution of NNPDF3.1, and computed 300 replicas in total. The quality of the fit with
NNPDF3.1 is worse, we obtain χ2/Npt = 1.18+0.11

−0.05. The resulting values of parameters
for the CS kernel are:

BNP = 1.82+0.37
−0.29 GeV, c0 = 5.03+1.02

−0.81 · 10−2, c1 = 1.04+0.09
−0.15 · 10−1. (A.1)

These parameters are quite different from the MSHT values eq. (5.2). The comparison of
the resulting CS kernels is given in figure 9. In particular, we observe that the value of BNP
has very large uncertanties, in contrast to the MSHT case.

1 2 3 4 5

-0.1

0.1

0.2

0.3

0.4

Figure 9. Comparison of the CS kernels extracted with the MSHT20 (solid grey curve) and NNPDF3.1
(dashed orange curve) collinear PDFs.

The parameters of the TMD distribution’s ansatz are

λu
1 = 1.11+0.15

−0.17, λu
2 = 2.69+1.79

−2.53, (A.2)
λd

1 = 0.99+0.14
−0.17, λd

2 = 3.60+4.36
−3.57,

λū
1 = 0.37+0.16

−0.15, λū
2 = 75.0+14.8

−13.2,

λd̄
1 = 0.37+0.30

−0.32, λd̄
2 = 17.7+6.91

−14.2,

λsea
1 = 1.88+0.34

−0.29, λsea
2 = 2.71+2.44

−2.69.

Generally, we observe that the NNPDF3.1-fit yields a different spread in the parameters with a
larger uncertainty. Most of the parameters are in relative agreement; however, the parameters
λu

2 , λū
2 , λd̄

2 and λsea
2 disagree, and do not overlap within the uncertainty bands. All these

parameters are responsible for the behaviour of the TMDPDF at large-x, i.e. exactly in the
region where collinear distributions differ. However, for the middle-x range (x ∼ 10−2 − 10−3)
the TMDPDFs are in general agreement, except for the sea-quark (see figure 10).

The resulting theory predictions are given in figure 11, for several bins of ATLAS at√
s = 8TeV, and LHCb at

√
s = 13TeV. Other experiments demonstrate a similar picture.

Comparing these two experiments one can see that both PDFs produce very similar results
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Figure 10. Comparison of uncertainty bands for unpolarized TMDPDFs extracted with MSHT20
(green) and NNPDF3.1 (gray) collinear distributions. The plots are normalized to the MSHT20 case.

for ATLAS (which has x ∼ 10−2 − 10−3), while for LHCb (which has x ∼ 10−1) the curves
are very different. It confirms our previous conclusion that the extractions of TMDPDFs
are very sensitive to the large-x range.

Let us stress that without the inclusion of the flavor-dependence the extractions with
MSHT20 and NNPDF3.1 diagree drastically [26]. The inclusion of the flavor-dependence
reduces the problem of the PDF-bias, but does not resolve it completely.
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Figure 11. Comparison of theory predictions based on MHST20 (blue) or NNPDF3.1 (orange)
collinear PDFs. The rapidity range is indicated above the plot. All data and uncertainties are
normalized to the blue line (MSHT20 result).
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B Comparison with data

In this appendix, we present all the data used for the fit, along with the resulting theory
prediction of our main fit (with MSHT20 PDF input). The depicted theory prediction is the
distributions (of replicas) average. The 68%CI of the theory prediction (see the discussion
in section 4.3) is shown as a blue band. For a better visual comparison of data and theory
predictions, the theory curves are shifted by a factor d (see eq. (4.9)) computed for the
central line of the prediction. In all plots, we demonstrate more data than those described by
the TMD factorization theorem. The data points used in the fit are shown by filled points,
while the rest are shown by empty points.
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Figure 12. Differential cross-section for the Z/γ∗ boson production measured by CMS, at different
values of

√
s and Q, according to the legends in the plots.
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Figure 13. Differential cross-section for the Z/γ∗ boson production measured by ATLAS, at different
values of

√
s, y, and Q. All details pertaining the values of the kinematic variables and their cuts can

be seen in the plots. The plot for comparison with ATLAS at
√

s = 13TeV can be found in figure 5 in
a larger scale.
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Figure 14. Differential cross-section for the Z/γ∗ boson production measured by LHCb, at different
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