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Multi-Arm Multi-Stage (MAMS) designs can notably improve efficiency in later
stages of drug development, but they can be suboptimal when an order in
the effects of the arms can be assumed. In this work, we propose a Bayesian
multi-arm multi-stage trial design that selects all promising treatments with
high probability and can efficiently incorporate information about the order in
the treatment effects as well as incorporate prior knowledge on the treatments. A
distinguishing feature of the proposed design is that it allows taking into account
the uncertainty of the treatment effect order assumption and does not assume
any parametric arm-response model. The design can provide control of the
family-wise error rate under specific values of the control mean and we illustrate
its operating characteristics in a study of symptomatic asthma. Via simulations,
we compare the novel Bayesian design with frequentist multi-arm multi-stage
designs and a frequentist order restricted design that does not account for the
order uncertainty and demonstrate the gains in the sample sizes the proposed
design can provide. We also find that the proposed design is robust to violations
of the assumptions on the order.
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1 INTRODUCTION

The development process of clinical trials can be lengthy and costly.1 Adaptive clinical trial designs, which allow multiple
treatment arms to be tested simultaneously,2-4 can efficiently improve this process by allowing unpromising treatments
to be dropped during the trial or by stopping the trial early for overwhelming benefit at a series of interim analyses.

Serra et al5 have recently proposed an order restricted design that extends the multi-arm multi-stage framework6-8

when an “order” (ie, a monotonic relationship) among the treatment effects can be assumed. Such an order can occur
naturally, for example, when multiple doses or administration schedules of the same treatment are tested, when nested
combinations of treatments are investigated or when different treatment durations are simultaneously compared against
a standard regimen. In their work, Serra et al5 assumed that there was no uncertainty about the order of the treatment

Abbreviations: FWER, family-wise error rate; MAMS, multi-arm multi-stage; ORD, order restricted design.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Statistics in Medicine. 2023;42:2841–2854. wileyonlinelibrary.com/journal/sim 2841

https://orcid.org/0000-0001-8431-5154
https://orcid.org/0000-0001-6810-0284
https://orcid.org/0000-0002-1096-188X
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/SIM
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.9752&domain=pdf&date_stamp=2023-05-09


2842 SERRA et al.

effects. While this assumption is highly plausible in some settings, there could be uncertainty, for example, when an
increase in side effects or compliance with the treatment (eg, for longer treatment durations) lead to reduced effects on
the treatment efficacy. Thus, methodology that is able to relax the assumption on the order of the treatment effects is
needed for such settings.

Although MAMS designs are commonly implemented using frequentist approaches, they can be extended to the
Bayesian framework.9,10 Bayesian sequential designs have been proposed by several researchers for clinical trials.11-16

These designs are more flexible compared to frequentist designs as they allow incorporation of prior information about
the efficacy of the treatment. The frequentist operating characteristics of Bayesian designs are important,17-19 especially
in confirmatory or late phase trials where it is required to control the risk of false positive results, which is the erroneous
conclusion that new experimental treatments are efficacious. There are both proposals of Bayesian designs that do not
consider control of the type I error11 and that do (e.g. Ryan et al15,16). In the Bayesian setting, the posterior probabili-
ties can be used to derive stopping boundaries, which are used to test the hypotheses and can be constructed to provide
control of the frequentist type I error rate at the desirable level 𝛼.

In this work, we propose a Bayesian multi-arm multi-stage (B-MAMS) design that incorporates the information of
the order among the treatment effects building on the frequentist framework developed by Magirr et al.3 The proposed
design can provide control of the overall type I error under specific values of the control mean and does not assume any
parametric arm-response model. The objective of the design is to identify all promising arms (eg, treatment durations,
doses or combination of treatments), including the one associated with the smallest relevant treatment effect.

The rest of the manuscript continues as follows. A case study is introduced in Section 2 before a detailed description
of the design is provided in Section 3. Section 4 revisits the case study through an extensive simulation study before a
discussion is provided in Section 5.

2 CASE STUDY SETTING

The Tiotropium add-on therapy in adolescents with moderate asthma: A 1-year randomized controlled trial
[NCT01257230]20 is a Phase III study assessing the efficacy and safety of 5 𝜇g or 2.5 𝜇g once-daily tiotropium via Respi-
mat added to inhaled corticosteroid (ICS) with or without a leukotriene receptor antagonist in adolescent patients with
moderate symptomatic asthma. The primary efficacy outcome was change from baseline in peak FEV1 within 3 hours
after dosing (peak FEV1[0−3h]) measured after 24 weeks of treatment. Serra et al5 revisited this study proposing an Order
Restricted Design (ORD) when a monotonic dose-response relationship could be assumed. However, their design effec-
tively disregarded the historical information coming from a previous study called the Tiotropium in asthmatic adolescents
symptomatic despite inhaled corticosteroids: A randomised dose-ranging study [NCT01122680].21 This Phase II study evalu-
ated the safety and efficacy of three doses—5 𝜇g, 2.5 𝜇g, 1.25 𝜇g—of once-daily tiotropium versus placebo in three 4-week
treatment periods in adolescents with asthma. The primary efficacy outcome was change from baseline in peak FEV1
within 3 hours after dosing (peak FEV1[0−3h]).

In the following section, a Bayesian design which allows incorporation of the information from the Phase II
NCT01122680 study21 for the design and analysis of the Phase III trial20 will be proposed. Moreover, the proposed Bayesian
design will be able to account for the uncertainty in the monotonic dose-response relationship.

3 BAYESIAN ORDER RESTRICTED DESIGN

Consider a clinical trial setting with K − 1 active treatment arms, T1, … ,TK−1, a control arm, T0, and J stages at which
treatment arms can be dropped or the trial could be stopped for efficacy or futility. Let tj be the proportion of the total
sample size at which the interim analysis j is done. The patients’ responses are assumed to be independent and normally
distributed at each stage j with known variances 𝜎2

k = 𝜏
−1
, k ∈ {0 (control arm), 1, … ,K − 1}. Let Y (k)

i ∼ N
(
𝜇
(k)
, 𝜎

2
k

)
, k ∈

{0, … ,K − 1}, i = 1 ∶ n(k)j , j ∈ {1, … , J} be the observation of the ith patient on treatment k and n(k)j be the number of
patients on arm k up to stage j. Define nj = (n(1)j , … ,n(K−1)

j ) as the vector of sample sizes on the active arms at stage j

and n(0)j as the sample size on the control arm at stage j. Let Y
(k)
j = (n(k)j

)−1∑n(k)j

i=1Y (k)
i , k ∈ {1, … ,K − 1} be the cumulative

outcome mean on treatment k up to stage j and the vector of outcome means up to stage j is Yj = (Y
(1)
j , … ,Y

(K−1)
j ). Denote
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the covariance matrix of the joint distribution of the active treatment responses by 𝚺, which corresponds to a diagonal
matrix with the vector (𝜎2

1 , … , 𝜎
2
K−1) on the diagonal and zero on the off-diagonal.

Let 𝜃(k) = 𝜇(k) − 𝜇(0) be the treatment effect of arm k ∈ {1, … ,K − 1} compared to control and 𝜽 = (𝜃(1), … , 𝜃
(K−1))

be the vector of treatment effects. The null hypotheses of interest are H01 ∶ {𝜃(1) ≤ 0}, … , H0K−1 ∶ {𝜃(K−1) ≤ 0} and the
global null hypothesis is defined as H0 ∶ {𝜃(1) = 𝜃(2) = · · · = 𝜃(K−1) = 0}. Let 𝜂j, 𝜖j be the upper and lower critical values at
stage j (with 𝜂J = 𝜖J) that are used for the decision-making throughout the trial (as described below).

Consider the following Bayesian model:

Y (k)
i ∼ N

(
𝜇
(k)
, 𝜏
−1) k = 0, … ,K − 1 and i = 1, … ,n(k)j

𝜇
(1) ∼ N

(
𝜇
(1)
0 , 𝜏

−1
01
)
, 𝜇

(0) ∼ N
(
𝜇
(0)
0 , 𝜏

−1
00
)

𝛿
(k) ∼ N

(
𝛿
(k)
0 ,

(
𝜏
(k)
d

)−1)
, 𝜇

(k+1) = 𝜇(k) − 𝛿(k) k = 1, … ,K − 2.

If 𝛿(k), k ∈ {1, … K − 2} are, for instance, restricted to be positive random variables, then the treatment means are
assumed to be ordered: 𝜇(1) ≥ … ≥ 𝜇(K−1). However, in this setting, we assume that there is uncertainty in the order of
the treatment means effects and we consider a normal prior distribution for 𝛿(k). This parametrization allows to corre-
late the treatment means to each other and to capture the uncertainty of the treatment means effects order through the
distribution of 𝛿(k). Alternative parametrization strategies are discussed in Section 5.

The joint distribution of the response means is normally distributed with mean 𝝁 = (𝜇(1)0 , … , 𝜇
(s)
0 , … , 𝜇

(K−1)
0 ), where

𝜇
(s)
0 = 𝜇(1)0 −

∑s−1
r=1𝛿

(r)
0 , s ∈ {2, … ,K − 1} and covariance matrix 𝛀. The covariance matrix has diagonal elements defined

as Var
(
𝜇
(s)
0

)
= 𝜏−1

01 +
∑s−1

r=1(𝜏
(r)
d )

−1
, s ∈ {2, … ,K − 1} and the non-diagonal element at row s and column t with s, t ∈

{1, … K − 1}, is Var
(
𝜇
(min(s,t))
0

)
. The posterior distribution of the treatment means given the cumulative data up to

stage j is

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜇
(1)

⋅

⋅

𝜇
(K−1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

|Yj ∼ N
(
𝚪−1

j aj,𝚪−1
j

)
,

with 𝚪j = 𝛀−1 + nj𝚺−1
, aj = 𝛀−1

𝝁 + 𝚺−1njYj.
At each interim analysis, the decision to stop the trial for efficacy or to drop the unpromising arms is based on the

evaluation of the posterior probability of the treatment effect given the data up to stage j. At each stage, the posterior
probability that the treatment effect relative to arm k is greater than zero, P(𝜃(k) > 0|Yj), is computed. If this probability
is below a pre-specified threshold, 𝜖j, that is, P(𝜃(k) > 0|Yj) < 𝜖j then treatment arm k is dropped. Arm k, instead, can be
declared as superior to control at stage j if the posterior probability of the treatment effect being greater than zero given
the observed data is larger than a specific threshold, 𝜂j, that is, P(𝜃(k) > 0|Yj) ≥ 𝜂j.

If the posterior probability falls inside the two bounds, 𝜖j ≤ P(𝜃(k) > 0|Yj) < 𝜂j, then the decision to proceed further
with arm k and control is made as there is not enough information to decide whether to stop the arm or to claim its efficacy.
Differently from the conventional frequentist MAMS design,3 the trial can still continue when an arm has crossed the
upper bound and is stopped for efficacy. In this case, all other treatment arms remaining in the trial can proceed to the
next stage. In this way, a decision on each treatment arm can be made at the end of the study, and the power to reject all
hypotheses is increased.

3.1 Family-wise error rate and power requirements

In confirmatory clinical trials, the control of the family-wise error rate (FWER) is often required.22 For the proposed
design, we ensure weak control of the FWER under the global null and it provides the control of the FWER under the
partial null hypotheses (see details below). While the design might not guarantee control of the FWER under the entire
null space, it can benefit from the Bayesian framework while still providing protection from erroneous conclusions23

under particular regions of the null space.
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The critical bounds 𝜂j, 𝜖j can be chosen in order to maintain such control at level 𝛼. The FWER under the global null
can be written as

P(rejecting at least one true H0k, k ∈ {1, … ,K − 1}|H0)

= P(P(𝜃(k) > 0|Yj) ≥ 𝜂j for some (k, j) ∈ {1, … ,K − 1} × {1, … , J}|H0). (1)

Define Ak,j = {P(𝜃(k) > 0|Yj) < 𝜖j} and Bk,j = {𝜖j ≤ P(𝜃(k) > 0|Yj) < 𝜂j}. If the event Ak,j occurs then the treatment arm
k is dropped for futility at stage j. If instead Bk,j is satisfied, the arm k can proceed to stage j + 1. The event that all
hypotheses H01, … ,H0K−1 fail to be rejected can be defined as

RK−1 =
K−1⋂

k=1

( J⋃

j=1

[{ j−1⋂

i=1
Bk,i

}

∪ Ak,j

])

.

It follows that

P(rejecting at least one true H0k, k ∈ {1, … ,K − 1}|H0) = 1 − P(RK−1|H0). (2)

The objective of the study is to identify all promising treatment arms. Thus, the design is powered to reject all
hypotheses for which the true treatment effects are different from zero: 𝜽 = (𝜃(1), … , 𝜃

(K−1)), with 𝜃
(1)
, … , 𝜃

(K−1)
> 0.

Using the definition

RK−1 =
K−1⋂

k=1

( J⋃

j=1

[{ j−1⋂

i=1
Bk,i

}

∪
{

Ak,j ∪ Bk,j
}
])

,

the power to reject all hypotheses is equal to P(RK−1|𝜽).
Below, we provide the example on what form the quantities introduced above take under the setting of the motivating

3-arm 2-stage trial.

3.1.1 3-arm 2-stage

For the 3-arm 2-stage trial, the event that all hypotheses fail to be rejected is

R2 =
{
{{P(𝜃(1) > 0|Y1) < 𝜖1} ∩ {P(𝜃(2) > 0|Y1) < 𝜖1}}

∪ {{P(𝜃(1) > 0|Y1) < 𝜖1} ∩ {𝜖1 ≤ P(𝜃(2) > 0|Y1) < 𝜂1} ∩ {P(𝜃(2) > 0|Y2) < 𝜖2}}

∪ {{P(𝜃(2) > 0|Y1) < 𝜖1} ∩ {𝜖1 ≤ P(𝜃(1) > 0|Y1) < 𝜂1} ∩ {P(𝜃(1) > 0|Y2) < 𝜖2}}

∪{{𝜖1 ≤ P(𝜃(2) > 0|Y1) < 𝜂1} ∩ {P(𝜃(2) > 0|Y2) < 𝜖2} ∩ {𝜖1 ≤ P(𝜃(1) > 0|Y1) < 𝜂1} ∩ {P(𝜃(1) > 0|Y2) < 𝜖2}}
}
.

Below, we describe how to search for the critical bounds 𝜂j, 𝜖j, j ∈ {1, … , J} and the sample size in order to satisfy the
FWER and the power requirements.

3.2 Search of the critical bounds and the sample size

To control the FWER at level 𝛼 under the global null hypothesis and to power the design at 1 − 𝛽 under the configuration
𝜽, the following inequalities need to be satisfied

1 − P(RK−1|H0) ≤ 𝛼, and P(RK−1|𝜽) ≥ (1 − 𝛽). (3)
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Firstly, consider how to compute the single probability events P(Ak,j) and P(Bk,j). It can be seen that the inequalities
P(𝜃(k) > 0|Yj) < 𝜖j and 𝜖j ≤ P(𝜃(k) > 0|Yj) < 𝜂j are satisfied if

E

[
𝜇
(k)
|Yj

]
− E

[
𝜇
(0)

|Y
(0)
j

]

√

Var
(
𝜇
(k)
|Yj

)
+ Var

(
𝜇
(0)

|Y
(0)
j

) < z𝜖j and z𝜖j ≤

E

[
𝜇
(k)
|Yj

]
− E

[
𝜇
(0)

|Y
(0)
j

]

√

Var
(
𝜇
(k)
|Yj

)
+ Var

(
𝜇
(0)

|Y
(0)
j

) < z𝜂j ,

respectively, where z𝜂j , z𝜖j are the 𝜂j, 𝜖j-percentiles of a standard normal. Given the Bayesian model described in Section 3
it follows that

E

[
𝜇
(0)

|Y
(0)
j

]
=
𝜇
(0)
0 𝜏00 + Y

(0)
j I(0)j

𝜏00 + I(0)j

, I(0)j =
n(0)j

𝜎
2
0
, Var

(
𝜇
(0)

|Y
(0)
j

)
= 1
𝜏00 + I(0)j

,

E

[
𝜇
(k)
|Yj

]
=

K−1∑

i=1
c(k)ij Y

(i)
j + 𝛾 (k)j , c(k)ij =

(
𝚪−1

j 𝚺
−1nj

)
[k, i], 𝛾

(k)
j =

(
𝚪−1

j 𝛀
−1
𝝁

)
[k], Var

(
𝜇
(k)
|Yj

)
= (𝚪−1

j )[k, k],

where the notation [k, i] indicates the element of the matrix at row k and column i, while [k] refers to the kth position in
the vector. Thus, the inequality P(𝜃(k) > 0|Yj) < 𝜖j translates into solving

K−1∑

i=1
c(k)ij Y

(i)
j −

Y
(0)
j I(0)j

𝜏00 + I(0)j

< −𝛾 (k)j +
𝜇
(0)
0 𝜏00

𝜏00 + I(0)j

+ z𝜖j

√

Var
(
𝜇
(k)
|Yj

)
+ Var

(
𝜇
(0)

|Y
(0)
j

)
,

and the distribution of the linear combination of the outcome variable means is

K−1∑

i=1
c(k)ij Y

(i)
j − c(0)j Y

(0)
j ∼ N

⎛
⎜
⎜
⎝

K−1∑

i=1
c(k)ij 𝜇

(i) − c(0)j 𝜇
(0)
,

K−1∑

i=1

(c(k)ij 𝜎i)2

n(i)j

+
(c(0)j 𝜎0)2

n(0)j

⎞
⎟
⎟
⎠
, (4)

where c(0)j =
I(0)j

𝜏00+I(0)j
.

Thus, the probability of the event Ak,j becomes P(Ak,j) = F
(
−𝛾 (k)j + 𝜇

(0)
0 𝜏00

𝜏00+I(0)j
+ z𝜖j v

k
j

)
, where vk

j =
√

Var
(
𝜇
(k)
|Yj

)
+ Var

(
𝜇
(0)

|Y
(0)
j

)
and F(x) is the cumulative density function of the normal distribution in (4). Similarly, the

probability of the event Bk,j can be computed.
When multiple arms are concurrently studied, the joint distribution of the probability events is a multivariate normal

distribution and the covariance matrix changes depending on the number of arms that have reached a particular stage.
For instance, the covariance between arms s, t at stage j and j⋆, j ≤ j⋆ is

Cov

(K−1∑

i=1
c(s)ij Y

(i)
j − c(0)j Y

(0)
j ,

K−1∑

i=1
c(t)ij⋆Y

(i)
j⋆ − c(0)j⋆ Y

(0)
j⋆

)

=
K−1∑

i=1
c(s)ij c(t)ij⋆Cov(Y

(i)
j ,Y

(i)
j⋆ ) + (c(0)j c(0)j⋆ )Var(Y

(0)
j⋆ ),

where Cov(Y
(i)
j ,Y

(i)
j⋆ ) = tjVar(Y

(i)
j ) if treatment i has reached stage j⋆ ≠ j and the interim analysis is done at tj% of the total

population, otherwise Cov(Y
(i)
j ,Y

(i)
j⋆ ) = Var(Y

(i)
j ), with Var(Y

(i)
j ) =

𝜎
2
i

n(i)j
.

In order to compute P(RK−1), for each event in RK−1, one needs to find c(k)ij , 𝛾
(k) and the covariance matrix of the mul-

tivariate normal distribution. The critical values can be expressed as a function of a parameter, p, 𝜖j = 𝜖j(p), 𝜂j = 𝜂j(p),
so that the search is restricted to a grid of values for p with 𝜖j(p), 𝜂j(p) ∈ [0, 1] and the sample size nj in order to satisfy
the inequalities in (3). Additional constraints can be considered in order to maintain control of the FWER under the
partial null hypotheses. In the 3-arm setting, we use these partial null configurations: (𝜃(1), 0) and (0, 𝜃(2)). However, it
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2846 SERRA et al.

can be observed that the FWER computed under the global null hypothesis depends on the value of 𝜇(0). As outlined
in Stallard et al,24 control of the type I error is not possible for every value of 𝜇(0). Indeed, under the hypothesis that
𝜇
(i) = 𝜇(0), i ∈ {1, … ,K − 1}, if for example 𝜇(0) →∞ and

∑K−1
i=1 c(k)ij − c(0)j > 0 then the expected value of the normal dis-

tribution in Equation (4) goes to infinity and thus in this case it is not possible to control the FWER at level 𝛼. Thus, the
critical bounds can be found for specific values of the treatment means under which the FWER is controlled. Exploratory
analyses can then be conducted in order to explore the operating characteristics of the design for different true values of
the control mean.

The description of the probability events to compute the FWER for the special case of a 3-arm 2-stage design is
described in detail in Section 1 of Data S1.

In the next section, an extensive simulation study will be performed in order to evaluate the operating characteristics
of the proposed design in the setting of the motivating trial.20

4 CASE STUDY REVISITED

4.1 Setting

We revisit the results of the clinical trial of Tiotropium add-on therapy in adolescents with moderate asthma: A 1-year
randomized controlled trial [NCT01257230]20 using prior information from the study Tiotropium in asthmatic adolescents
symptomatic despite inhaled corticosteroids: A randomised dose-ranging study [NCT01122680]21 introduced in Section 2.

In the phase III study (NCT01257230), patients were randomized in a 1:1:1 ratio to receive 5 𝜇g or 2.5 𝜇g of once-daily
tiotropium or placebo. The null hypotheses were tested in a stepwise manner to control the type I error at level 𝛼 = 0.025.
The study was powered at 80% to detect a difference of 120 mL between treatments in the change from baseline of peak
FEV1[0−3h] assuming a common standard deviation of 340 mL. It was found that 127 patients per group were needed,
resulting in a maximum sample size of 381 patients. The trial is revisited using the proposed Bayesian design and the
prior distributions are constructed using information from the previous study (NCT01122680).

In line with the Phase III trial, we assume that the change from baseline of peak FEV1[0−3h] is normally distributed
with standard deviation 𝜎k = 340, k ∈ {0, 1, 2}. For the prior distributions, we set 𝜇(0)0 = 489 and 𝜇(1)0 = 602, as these are
the estimated mean responses obtained at the end of the Phase II NCT01122680 study. We center the prior distribution
of 𝛿(1) at 0, so that a-priori we do not assume a difference between the treatment means. Given the lack of infor-
mation regarding the between-patient variability, we firstly consider uninformative priors with 𝜏00 = 𝜏01 = 𝜏 (1)d = 10−6.
Additional analyses are then conducted in order to explore how the design performs with more informative prior
distributions.

For the simulation scenarios, we set the true 𝜇(0) to be equal to the estimated mean response obtained at the end of
Phase II, that is 𝜇(0) = 489, while for the treatment arms 𝜇(k) = 𝜇(0) + 𝜃(k), k ∈ {1, 2}. As in the original study, we consider
an improvement of FEV1 of 120 of interest. The trial is then designed to achieve 80% power under the configuration
𝜽 = (120,120).

We evaluate the performance of the design under various treatment effect configurations when a monotonic order is
assumed to be true: 𝜃(1) = 120 and 𝜃(2) ∈ {0, 20, 40, 60, 80,120} and the configurations where the order is violated: 𝜃(2) =
120 and 𝜃(1) ∈ {0, 20, 40, 60, 80,120}.

The sample size and the critical bounds are found in order to reject all hypotheses at 80% when 𝜽 = (120,120) with
𝜇
(1) = 609, 𝜇(2) = 609, 𝜇(0) = 489 and to control the FWER at level 𝛼 = 0.025 under H0 = {𝜇(1) = 𝜇(2) = 𝜇(0) = 489} and

two partial nulls H01 = {𝜇(1) = 𝜇(0) = 489, 𝜇(2) = 609} and H02 = {𝜇(1) = 609, 𝜇(2) = 𝜇(0) = 489}. A single interim anal-
ysis after half of the total study population is observed and triangular25 critical bounds are used, that is 𝜂2 = 𝜖2 =
Φ
(
Φ−1(𝜂1)
(1+0.5)

2√
2

)
, 𝜖1 = Φ

(
Φ−1(𝜂1)
(1+0.5)

1
2

)
, where Φ(⋅) is the cumulative density function of a standard normal distribution. Addi-

tionally to the achieved power, the efficiency of the proposed design is measured by its expected sample size (ESS), that
is the mean number of patients recruited to the trial before it is terminated.

The proposed Bayesian design is compared to the frequentist ORD,5 developed under an order assumption among the
treatment effects, the modified MAMS design, MAMS(m),3 whose modification allows all treatment arms that have not
crossed any bounds to continue to the next stage even when one arm crossed the upper boundary, and the frequentist
design proposed by Urach and Posch26 (Urach & Posch) with separate stopping rules and futility critical boundaries which
apply the closure principle to define a sequentially rejective group sequential test.
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SERRA et al. 2847

T A B L E 1 Probability to reject at least one hypothesis (FWER), maximum sample size (Max SS) and expected sample size (ESS) for
each design under the global null hypothesis H0 with 𝜇(1) = 𝜇(2) = 𝜇(0) = 489 when all designs are powered at 80% to reject all hypotheses
under 𝜽 = (120,120).

Design u1,u2, l1, 𝝂1, 𝝂2 𝜼1, 𝜼2, 𝝐1 Max SS ESS FWER

MAMS(m) 2.482, 2.34, 0.827, -, - 612 380.85 0.025

B-MAMS(U) 0.9934, 0.9906, 0.7959 612 378.43 0.025

ORD 2.223, 2.095, 0.741, -, - 534 316.91 0.024

B-MAMS(D) 0.9927, 0.9893, 0.7921 576 355.19 0.024

Urach & Posch 2.482, 2.34, 0.827, 2.222, 2.095 552 343.12 0.025

B-MAMS(C) 0.9906, 0.9866, 0.7832 492 303.75 0.024

Notes: Results are provided using 104 simulations. Upper—uj, j ∈ {1, 2}—and lower—l1—triangular critical bounds are provided for the ORD and
MAMS(m) frequentist designs. For the Urach & Posch design uj, j ∈ {1, 2} and l1 are the upper and lower global boundaries, while 𝜈j, j ∈ {1, 2} are the
elementary boundaries.

All designs use triangular critical bounds25 and the numerical results are found using R27 and 104 replicate simula-
tions. In the simulations, the posterior distributions are estimated using MCMC samples through the package rjags.28

The critical bounds and the sample size for the Bayesian design are found computing all probabilities to reject at least
one null hypothesis under the global null and the probability to reject both hypotheses under the partial null configura-
tions as described in Sections 3.1 and 3.2, without the use of MCMC sampling for the posterior distributions. The package
mvtnorm29 is used to compute the integrals in R.27 Results using Pocock30 critical bounds are provided in Section 2 of
Data S1.

4.2 Numerical results

We start by considering the Bayesian design with no prior information for the treatment means and the treatment mean
difference, that is 𝜏00 = 𝜏01 = 𝜏 (1)d = 10−6. We refer to this version of the design as to B-MAMS(U). The obtained design
parameters and results of the simulations under the global null hypothesis for all considered approaches are given in
Table 1. One can note that all considered designs control the FWER at level 𝛼 = 0.025 as required.

The B-MAMS(U) design requires a total maximum sample size of 612 patients, which is the same maximum total
sample size required by the MAMS(m) to achieve 80% of power to reject both hypotheses. At the same time, the ORD and
the Urach & Posch designs require a total of 534 and 552 patients, respectively.

One of the advantages of using a Bayesian design is that it allows incorporating historical information. One possibility
is, for example, to include information on the treatment mean difference between the active treatment arms. Specifi-
cally, we use 𝜏 (1)d = 5.9 × 10−5 (and 𝜏00 = 𝜏01 = 10−6 as before) and refer to this design option of the Bayesian design as
to B-MAMS(D). The Bayesian design B-MAMS(D) can control the FWER at level 𝛼 under the global and partial null
hypotheses and the power to reject both hypotheses is 80%. This design requires a total maximum sample size of 576
patients, which is higher compared to the ORD and Urach & Posch designs—for these 42 and 24 fewer patients are
required respectively—but lower compared to the MAMS(m) design.

Another possibility is to include prior information on the control arm. We refer to this design as to B-MAMS(C)
and we consider a prior on control that is worth an extra 20% of data compared to the frequentist MAMS(m) design. If
𝜏00 = 0.00039, 𝜏01 = 𝜏 (1)d = 10−6, then the Bayesian design would require 82 patients per arm per stage that leads to a total
maximum sample size of 492 patients compared to 612 patients in the frequentist MAMS(m) design and 534 for the ORD
design.

The designs’ performances under the non-global null configurations are given in Figures 1 and 2 showing the proba-
bility to reject both hypotheses and the second hypothesis, respectively. Note that, when the first or the second treatment
are no different from control, 𝜃(1) = 0 or 𝜃(2) = 0, the probability to reject all hypotheses is controlled at level 𝛼 for all
considered designs.

It can be observed that the B-MAMS(U) design matches the operating characteristics of the frequentist MAMS(m)
design. Indeed, for all considered scenarios the two designs have the same probability to reject both hypotheses and the
same probability to reject the second hypothesis H02. The two designs provide also the same ESS under all considered
scenarios. Compared to the other two frequentist approaches, when the order is satisfied, the B-MAMS(U) design shows
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F I G U R E 1 Power to reject all hypotheses and expected sample sizes (ESS) under 𝜽 = (120, 𝜃(2)) and 𝜃(2) ∈ {0, 20, 40, 60, 80,120} (left)
and under 𝜽 = (𝜃(1), 120) and 𝜃(1) ∈ {0, 20, 40, 60, 80,120} (right) for the 3-arm 2-stage MAMS(m), ORD, Urach & Posch and Bayesian designs
when all designs are powered at 80% to reject both hypotheses under 𝜽 = (120,120). All designs use triangular bounds. Results are provided
using 104 replications.
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F I G U R E 2 Probability to reject H02 under 𝜽 = (120, 𝜃(2)) and 𝜃(2) ∈ {0, 20, 40, 60, 80,120} (left) and under 𝜽 = (𝜃(1), 120) and
𝜃
(1) ∈ {0, 20, 40, 60, 80,120} (right) for the 3-arm 2-stage MAMS(m), ORD, Urach & Posch and Bayesian designs when all designs are powered

at 80% to reject both hypotheses under 𝜽 = (120,120). All designs use triangular bounds. Results are provided using 104 replications.

lower power of rejecting both hypotheses—a difference up to 4.4% and 3.6% compared to the Urach & Posch and ORD
designs respectively (see the left panel in Figure 1). As shown on the left panel in Figure 2, the probability to reject
the second hypothesis is smaller for the B-MAMS(U) design when 𝜃(2) ≤ 80 compared to the Urach & Posch design—a
difference up to 4.4%—and smaller compared to the ORD when 𝜃(2) ≤ 60—a difference up to around 3%. When 𝜃(2) = 120,
the B-MAMS(U) shows an increase of around 7% in the probability to reject the second hypothesis compared to the ORD.
In terms of ESS, the B-MAMS(U) shows an increase up to 12% and 18% depending on the scenario compared to the
Urach & Posch and ORD designs, respectively, when the assumption on the treatment effect order is satisfied. When this
assumption is violated, the B-MAMS(U) has lower power—a difference up to 4.9% and 4.3% compared to the Urach &
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SERRA et al. 2849

Posch and ORD designs—to reject both hypotheses. However, the probability to reject the second hypothesis is higher for
the B-MAMS(U) design compared to the Urach & Posch and ORD designs—an increase up to 4.5% and 86%, respectively
depending on the simulation scenario (right panel in Figure 2). In terms of ESS, the B-MAMS(U) shows an increase up
to 13% and 14% depending on the scenario compared to the Urach & Posch and ORD designs, respectively.

When the order is satisfied, the probability to reject both hypotheses for the B-MAMS(D) is slightly lower—a difference
up to around 1.2% and 2%—compared to the frequentist ORD and Urach & Posch designs respectively, while it is slightly
higher compared to the MAMS(m)—an increase up to 2%. The B-MAMS(D) design shows higher probability to reject the
second hypothesis compared to the ORD when 𝜃(2) ≥ 80—an increase of around 3% and 7% when 𝜃(2) = 80 and 𝜃(2) = 120,
respectively. However, the probability to reject the second hypothesis is slightly lower compared to the Urach & Posch
design (see plot on the left in Figure 2). In addition, the B-MAMS(D) design has lower ESS compared to the MAMS(m)—a
reduction up to 6.8% depending on the simulation scenario, while it has higher ESS compared to the ORD and Urach &
Posch designs—up to 13% and 7%, respectively, depending on the scenario when the order assumption is satisfied. When
the order is reversed, the probability to reject the second hypothesis is higher for the B-MAMS(D) design: it is above
80% and slightly higher compared to the Urach & Posch design, while it is noticeably smaller for the ORD. However,
the B-MAMS(D) design shows a decrease up to around 2% and 3% compared to the frequentist ORD and Urach & Posch
designs respectively in the probability to reject both hypotheses. The increase in power for the frequentist designs is due
to the hierarchical testing procedure that is not used in the proposed Bayesian designs.

For all the considered scenarios, the probability to reject both hypotheses is almost the same for the B-MAMS(C)
and the MAMS(m) designs independently of the order assumption. However, the total maximum sample size for the
Bayesian design is 20% smaller compared to the frequentist design. The B-MAMS(C) provides advantages to reject the
second hypothesis compared to all other designs when the order assumption is reversed. Indeed, the B-MAMS(C) has the
highest probability to reject the second hypothesis and the smallest ESS compared to all other designs for all considered
scenarios—a reduction in ESS up to 14%, 19%, and 20% compared to the Urach & Posch, ORD and MAMS(m) designs
respectively.

Overall, the results suggest that the proposed Bayesian design provides benefits compared to the considered frequentist
approaches in terms of ESS—the B-MAMS(C) provides a reduction up to 14%, 19%, and 20% compared to the Urach &
Posch, ORD, and MAMS(m) designs, respectively, while the B-MAMS(D) provides a reduction up to 6.8% compared to
the MAMS(m) design—and probability to reject the second hypothesis—an increase up to around 1.3%, 4.2%, and 4.6%
for the B-MAMS(D), B-MAMS(C), and B-MAMS(U) compared to the Urach & Posch and an increase up to 86% compared
to the ORD—when the order assumption is not satisfied. Nevertheless, the proposed design shows a reduction in power
to reject both hypotheses—the B-MAMS(D) shows a difference up to around 2% and 3% compared to the ORD and Urach
& Posch designs, while the B-MAMS(C) and B-MAMS(U) provide both a difference of around 5% and 4.3% compared to
the Urach & Posch and ORD designs respectively. In addition, when historical information is disregarded, the proposed
design can match the operating characteristics of the MAMS(m) frequentist design.

4.3 Explorations of the FWER control

In the simulation studies described above, 𝜇(0) was assumed to be equal to the true value mean on control. In this section,
we investigate the robustness of the results when the true value and the prior mean on control differ.

In Figure 3, we explore the probabilities to reject at least one null hypothesis under the global null (ie, 𝜽 = (0, 0))
and the probability to reject both hypotheses under the partial null configurations (ie, 𝜽 = (120, 0) and 𝜽 = (0, 120))
for several values of the mean of the control arm (𝜇(0)). The numerical results are provided using an analytical
expression—computing all probabilities as described in Sections 3.1 and 3.2, without the use of MCMC sampling for the
posterior distributions.

It can be observed that, for the B-MAMS(U) and the B-MAMS(D), the top and the middle panel of Figure 3, respec-
tively, the FWER under the global null hypothesis is at most around 2.6% (an inflation of around 0.1%) when the true
mean is off the prior mean by a factor of 3, 𝜇(0) = 1489, whereas the probability to reject both hypotheses under 𝜽 = (0,120)
and 𝜽 = (120, 0) is controlled for both designs—it is below 2% for all values of 𝜇(0). The bottom panel of Figure 3 shows
how the probability to reject at least one or all hypotheses changes when 𝜇(0) is shifted from the true prior mean for the
B-MAMS(C) design. It can be observed that the FWER under the global null hypothesis is sharply increasing for the con-
sidered values of 𝜇(0), reaching around 27% when the true mean is off the prior mean by a factor of 1.3, 𝜇(0) = 656, whereas
the probability to reject both hypotheses under the partial null configurations is around 16% for 𝜇(0) = 656. This design
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F I G U R E 3 Probability to reject at least one H0k under 𝜽 = (0, 0) and probability to reject all hypotheses under 𝜽 = (120, 0) and
𝜽 = (0,120) for the 3-arm 2-stage Bayesian design when it is powered at 80% to reject both hypotheses under 𝜽 = (120,120). Figure at the top
refers to the B-MAMS(U) design which incorporates no prior information on the treatment means—prior of 𝜇(0) is centered in 𝜇(0)0 = 489 and
has standard deviation 𝜎 =

√
1
𝜏00
= 1000. Figure in the middle refers to the B-MAMS(D) design. Figure at the bottom refers to the

B-MAMS(C) design which incorporates prior information on the control mean—prior of 𝜇(0) is centered in 𝜇(0)0 = 489 and has standard
deviation 𝜎 =

√
1
𝜏00
= 50.63. 3-arm 2-stage designs use triangular bounds.
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F I G U R E 4 Probability to reject at least one null hypothesis when 𝜇(0) = 489,739, 1489 for different values of the treatment effects for
the 3-arm 2-stage B-MAMS(C), B-MAMS(D), B-MAMS(U) designs when they are powered at 80% to reject both hypotheses under
𝜽 = (120,120). Points in grey colour refer to probability values below 0.025. Partial null configurations—𝜽 = (120, 0) and 𝜽 = (0,120)—are
marked with red circles.

shows major inflations on the FWER because it is the one that considers an informative prior distribution on the control
mean and thus requires the least sample size compared to all other designs.

Figure 4 provides further explorations of the probability to reject at least one null hypothesis for three values of the
control mean, 𝜇(0) = 489,739, 1489, but for varying values of the treatment effects for the 3-arm 2-stage B-MAMS(C),
B-MAMS(D), B-MAMS(U) designs when they are powered at 80% to reject both hypotheses under 𝜽 = (120,120).
Specifically, we investigate how the FWER behaves for several values of the treatment effects, 𝜃(1) and 𝜃(2) ∈ (−200,200).

It can be observed that the B-MAMS(U) and B-MAMS(D) designs (top and middle panels of Figure 4) are both robust
in controlling the FWER around the global and partial null hypotheses for all the considered values of the control mean.
Under the global null hypothesis the FWER is equal to 0.025 when the control mean is 𝜇(0) = 489 or 739, while it is
slightly inflated—around 2.6%—when 𝜇(0) = 1489. The B-MAMS(D) design shows also some minor inflations—around
0.1%—when the treatment effects are close to 200.
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The B-MAMS(C) shows major inflations for all considered values of the treatment effects around the global and partial
nulls when the control mean is off by a factor between half and one standard deviation to the prior mean. These inflations
are more pronounced for all considered treatment effects when the control mean is off by a factor of 3.

Overall, these exploratory analyses have shown minor inflations on the FWER when the true control mean is differ-
ent from the prior assumption and the precision on the control mean is small. Thus, the proposed design can provide
robust results when the assumption on the value of the control mean is violated and it provides benefits in terms of
power compared to other frequentist approaches. However, there can be substantial inflation of the FWER when using
an informative prior distribution on the control mean.

Nevertheless, the analyses presented were restricted to the setting of the case study. To evaluate the operating charac-
teristics of the proposed design under different scenarios and possible misspecification of the order assumption compared
to the motivating trial, we have conducted further analyses considering two more settings: one with more treatment arms,
a 4-arm 2-stage trial, and one with more stages, a 3-arm 3-stage trial. For these settings, we have explored how the FWER
behaves under different values of the control mean.

For the 4-arm 2-stage trial, we have considered the same clinical setting as for the case study, but with one more addi-
tional arm. We investigate how the FWER behaves for several values of the treatment effects, with 𝜃(1) and 𝜃(2) varying
from −200 to 200 by steps of 40, while 𝜃(3) is varying from −200 to 200 by steps of 80. In this way, all possible misspecifica-
tions of the order effects can be explored. As for the 3-arm 2-stage setting, minor inflations (up to 0.7%) of the FWER are
shown when the true control mean is different from the prior assumption and the precision on the control mean is small
for the B-MAMS(U) and B-MAMS(D) designs. However, there can be substantial inflation of the FWER when using an
informative prior distribution on the control mean for the B-MAMS(C) design. For example, for this chosen design, it can
be observed (Figure 8 in Section 3 of Data S1) that the probability to reject at least one hypothesis is almost 1 when 𝜃(1) or
𝜃
(2) are equal to zero and 𝜃(3) = −200. In addition, for the 4-arm 2-stage design, we have also included some results to com-

pare how the design performs compared to the frequentist ordered and multi-arm multi-stage designs. The corresponding
results are presented in Section 3 of Data S1.

For the 3-arm 3-stage design, we considered other scenarios and normalized treatment effects. For this design we have
explored the probability to reject at least one null hypothesis when 𝜇(0) = 0, 0.5, 1 and with the following parameters for
the Bayesian model: 𝜏 = 1, 𝜏01 = 10−6

, 𝜇
(0)
0 = 0, 𝜇(1)0 = 0, 𝛿(1)0 = 0. In Table 3 in Data S1 we provide the sample sizes and the

critical bounds that are found to control the FWER under the global and partial nulls at level 𝛼 = 0.025 when 𝜇(0) = 0 and
the designs are powered at 80% to reject all hypotheses under 𝜽 = (0.5, 0.5). However, similar conclusions to the 3-arm
2-stage and 4-arm 2-stage designs can be drawn for all the considered variants of the proposed design. The complete
results are provided in Section 4 of Data S1.

5 DISCUSSION

The aim of this study was to develop a MAMS design that can account for historical information and incorporate an order
relationship among the treatment arms. In the proposed approach, we model the correlation among the treatment means
through the use of prior distributions for the treatment mean difference among two consecutive treatment arms. Through
simulations and theoretical results we show that the proposed approach can provide benefits compared to the frequentist
ORD5 when the order assumption is not satisfied. For specific values of the model parameters, the Bayesian design can
also match the operating characteristics of the frequentist approaches.

In the considered setting, we are interested in selecting all arms (eg, doses) that are efficacious compared to the stan-
dard one. We allow termination of one arm first (eg, for efficacy) and then continuation of the trial with the remaining
arms. Indeed, in some multiple dose settings, it is not guaranteed that higher doses lead to increased efficacy compared
to lower doses—see for example, the TAILoR study.31 Likewise, in the setting where multiple durations of the same treat-
ment arm are compared against a standard regimen, one could assume that longer treatment durations lead to higher
efficacy compared to the shortest ones. But there could be uncertainty about this assumption as the increase in side effects
or compliance with the treatment can lead to reduced effects on the treatment efficacy. So, in this case, stopping shorter
durations at interim and continuing with longer ones could be a reasonable choice. Conversely, if a monotonic order
assumption among the treatment effects is certain—that is, higher doses (or longer treatment durations) lead to higher
efficacy compared to lower doses (or shorter durations), then the order restricted multi-arm multi-stage design5 can be
implemented.
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The proposed design ensures weak control of the FWER under specific values of the control mean. While strong
control of the FWER is desirable and recommended by the Food and Drug Administration,32 this is not a must—see
for example, recent COVID-19 trials such as the Coverage study.33 Moreover, strong control in a Bayesian framework is
challenging in general as any prior distribution that give notable weight outside of the null space leads to inflation of
the FWER unless very conservative thresholds under the global null are used. We believe that ensuring weak control is
still important. It is however essential to understand how the FWER behaves under reasonable misspecifications of the
design’s assumptions through exploratory analyses. The proposed design has been shown to be robust in controlling the
FWER for several plausible values of the control mean.

Alternative approaches can be considered for modelling the ordering among the treatment arms. For example, one
could consider prior distributions on the difference between each treatment mean and the largest treatment mean, that is,
𝜇
(1). This alternative parametrization could be easily implemented and linked to the one proposed in this paper if normal

distributions are used for modelling the treatment mean differences. In addition, one could consider prior distributions
on the treatment effects and their differences. However, also in this case one needs to incorporate some prior distribution
on the control mean. The Bayesian model can also be adapted when a strict order can be assumed among the treatment
means. One could, for instance, define the prior distributions of 𝛿(k), k ∈ {1, … ,K − 2} to be lognormal distributions. In
this case, the treatment means will result ordered as 𝜇(1) ≥ … ≥ 𝜇(K−1).

In this study, we assumed that the variance of patients’ responses is known. However, in practice this might not be
true. Further work needs to be done in order to incorporate prior information about 𝜎k, k ∈ {0, … ,K − 1} into the model.
In addition, in this work, we have just considered normally distributed outcomes. Further work is needed in order to
extend this framework to non-normally distributed endpoints.
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