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Recent innovation in trial design to improve study efficiency has led to the
development of basket trials in which a single therapeutic treatment is tested
on several patient populations, each of which forms a basket. In a common
setting, patients across all baskets share a genetic marker and as such, an
assumption can be made that all patients may have a homogeneous response to
treatments. Bayesian information borrowing procedures utilize this assumption
to draw on information regarding the response in one basket when estimat-
ing the response rate in others. This can improve power and precision of
estimates particularly in the presence of small sample sizes, however, can
come at a cost of biased estimates and an inflation of error rates, bring-
ing into question validity of trial conclusions. We review and compare the
performance of several Bayesian borrowing methods, namely: the Bayesian
hierarchical model (BHM), calibrated Bayesian hierarchical model (CBHM),
exchangeability-nonexchangeability (EXNEX) model and a Bayesian model
averaging procedure. A generalization of the CBHM is made to account for
unequal sample sizes across baskets. We also propose a modification of the
EXNEX model that allows for better control of a type I error. The proposed
method uses a data-driven approach to account for the homogeneity of the
response data, measured through Hellinger distances. Through an extensive
simulation study motivated by a real basket trial, for both equal and unequal
sample sizes across baskets, we show that in the presence of a basket with a
heterogeneous response, unlike the other methods discussed, this model can
control type I error rates to a nominal level whilst yielding improved power.
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1 INTRODUCTION

Over the past decade there have been advancements in cancer genomics and refinement in diagnostic techniques,
leading to the increased interest in the field of personalized medicine in which treatments are targeted to a specific
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genetic makeup.1 It would be infeasible to test these treatments on each of their targeted biomarkers in individual
studies due to financial and time constraints. Master protocols have been proposed to tackle this problem. This term
refers to trial designs that allow the testing of multiple treatments and/or multiple disease types in parallel under a single
protocol.2

Basket trials are a form of master protocol that are usually implemented in phase II of the drug develop-
ment process within which a small number of patients are recruited to the study to determine efficacy of a treat-
ment. Such a trial tests a single therapeutic treatment on several patient population sub-groups, each of which
form a basket. Commonly, patients across all baskets share a genetic change/biomarker but each basket consists of
patients with different diseases. One benefit of this trial design is its ability to test treatments which would tra-
ditionally not warrant their own investigation for their targeted patient population, due to their rarity and limited
sample size.

As various groups in a basket trial share a common genetic aberration, a reasonable assumption can be made—known
as the exchangeability assumption—that sub-groups may have a homogeneous response to the treatment.3 Specifically,
the exchangeability assumption means that patients may be switched between exchangeable baskets without changing
the overall value of the estimated basket treatment effects.4 This exchangeability of patients across baskets implies that all
baskets can be viewed as random samples from the same model.5,6 There is some uncertainty surrounding the definition
of nonexchangeability, in this article it is utilized to describe baskets between which no information is shared (usually due
to heterogeneity in treatment effects). With this exchangeability assumption in mind, a concept known as “information
borrowing” can be used to draw on information regarding the response in one basket when estimating the response rate
in others. This has the potential to increase power and precision of estimates, especially in the presence of small basket
sample sizes. A desirable feature of such information borrowing methods is the ability to solely borrow between baskets
with similar treatment effects, but not from those which are heterogeneous, as it may bias estimates and inflate the error
rate resulting in a higher chance of a misleading conclusion. One would therefore like a method that has the ability to
improve the power and precision of estimates while having control over error rates through only borrowing between
homogeneous baskets.

Recently, numerous methods for information borrowing within the analysis of basket trials have been proposed. These
methods either borrow information across all baskets such as the Bayesian hierarchical model (BHM7) and the calibrated
Bayesian hierarchical model (CBHM8), while others borrow between subsets of baskets, for example, the exchangeabil-
ity nonexchangeability model (EXNEX9) and a Bayesian model averaging approach (BMA10). This article provides a
summary, alongside an extensive comparison of each method through simulation studies motivated by the VE-BASKET
study, which consider both equal and unequal sample sizes across baskets. The consideration of unequal sample sizes
is rare within the literature but an important aspect that needs to be considered when applying the models to clinical
trial data.

We also propose an extension to the EXNEX model, which takes into account pairwise similarity between baskets’
response rates through Hellinger distances in order to update the borrowing probability in the EXNEX model. The
extension also involves excluding baskets with sufficiently heterogeneous responses to be treated as independent. In com-
parison to the EXNEX model, this method increases the sensitivity to the level of similarity between responses in order
to borrow between homogeneous baskets with higher probabilities, whilst reducing the chance of borrowing from bas-
kets with heterogeneous response rates in order to control the type I error rate to an appropriate level. We show that this
proposed extension has the ability to increase power and precision of estimates compared to an independent/stratified
analysis whilst controlling the type I error rate in some scenarios or performing similarly to the standard EXNEX model
in others.

Although it may be clear that the performance of said information borrowing methods will depend on the homogene-
ity of the data, with methods that borrow information across all baskets outperforming those which borrow to a lesser
extent in cases of homogeneity in response rates (and vice-versa under cases of heterogeneity), it is less clear the impact
this will have on certain operating characteristics such as error control. It is also a challenge to quantify the “strength” of
borrowing. The focus on this article is to monitor how certain metrics (primarily the type I error rate) are affected based
on method used and homogeneity/heterogeneity of response data. This is explored through thorough simulation studies.

This article will be outlined as follows. In Section 1.1, we will introduce the setting of a motivating trial,
the VE-BASKET study, that forms a basis for the comparison setting. In Section 2, we describe information
borrowing models and propose the extension to the exchangeability-nonexchangeability model. In Section 3, we
conduct a simulation study and then re-analyze the results of the VE-BASKET study using borrowing methods
in Section 4.
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4394 DANIELLS et al.

F I G U R E 1 VE-BASKET trial design.

1.1 Motivating trial: VE-BASKET study

This article is motivated by the VE-BASKET trial11 which explored the effect of Vemurafenib on multiple cancer types
with the BRAFV600 mutation. From 2012 to 2014, 63 patients with the BRAFV600 mutation were enrolled and divided
into baskets based on cancer types. The baskets included were non-small-cell lung cancer (NSCLC), Erdheim-Chester
disease (ECD)/Langerhans’-cell histiocytosis (LCH), cholangiocarcinoma, colorectal cancer, anaplastic thyroid cancer
and an “all-other” group consisting of patients of different disease types with the BRAF V600 mutation. For the pur-
pose of this work, baskets were only considered if they received the same treatment (Vemurafenib), with the same
tumor criterion (solid tumor types) and thus the “all-other” basket was excluded. The arms of the trial are summarized
in Figure 1.

The primary endpoint of this study was the overall response rate (ORR) with a null response rate of 15% indicating
inactivity. The target response rate was 45% while a response of 35% was considered low but still indicative of a response.
For a stratified analysis of baskets, the planned sample size, obtained through a Simon’s two-stage design,12 was 13 per
basket based on 80% power and 10% type I error rate. However, different sample sizes were realized with the thyroid cancer
basket, for example, consisting of just seven patients. This limited sample size causes issues when drawing inference from
trial results as estimation of treatment effects will lack precision and thus any conclusions made regarding the effect of
Vemurafenib on thyroid cancer may be questionable. However, due to baskets sharing a common genetic aberration one
can utilize information borrowing techniques.

2 METHODS

2.1 Setting

Consider a basket trial consisting of K baskets. This article focuses on a single treatment arm setting and a primary binary
endpoint, in which a patient either responds positively to a treatment or does not. Denote the responses in basket k
(k = 1, … ,K) by Yk, which follows a binomial distribution, Yk ∼ Bin(nk, pk), with nk and pk indicating the sample size
and response rate in basket k respectively. Interest lies in estimating the unknown response rate, pk. Denote q0 as the null
response rate which indicates inactivity and q1 as the target response rate. The objective is to test the family of hypotheses:

H0 ∶ pk ≤ q0 vs Ha ∶ pk > q0, k = 1, … ,K.

To test these hypotheses a Bayesian framework is used. Having observed data D, at the conclusion of the trial the treatment
is deemed effective in basket k if P(pk > q0|D) > Δ𝛼 .

The decision cut-off, Δ
𝛼
, is typically calibrated under a null scenario in which the treatment effect is homogeneous

and ineffective across baskets, to control error rates at a nominal level, 𝛼. This article utilizes calibration in order to control
a basket specific type I error at the nominal level under a null scenario, however, as an alternative approach Psioda et al10

instead calibrated to control the family-wise error rate across all baskets in the trial. Despite this calibration, methods
that borrow information from heterogeneous baskets are expected to have error rates greater than 𝛼. Borrowing causes
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DANIELLS et al. 4395

a shift in the the posterior density of pk towards a common mean and thus, when borrowing from a basket with a larger
heterogeneous response, the point estimate obtained tends to increase, as does the probability P(pk > q0|D), so more
baskets are erroneously deemed sensitive to treatment. When no borrowing occurs this shift is not present as the level of
heterogeneity is irrelevant, so the same inflation is not expected.

2.2 Independent model

Independent analysis is an approach that does not borrow information between baskets and instead conducts stratified
analysis for each. As such, for each basket, only data observed from its set of patients is considered when estimating its
treatment effect. For each basket k in 1, … ,K

Yk ∼ Binomial(nk, pk),

𝜃k = log
(

pk

1 − pk

)

,

𝜃k ∼ N(logit(q0k), 𝜎2
k), (1)

where q0k denotes the null response rate in basket k. The logit transformation of the response rates is taken to avoid
boundary issues when pk is close to 0 or 1 and to align with the borrowing models to allow for a fair comparison. A
slightly informative normal prior is placed on this transformed parameter, with mean based on the null response rate but
with a large variance, 𝜎2

k . This method controls the type I error rate as the response rates do not depend on the level of
heterogeneity across baskets, but estimates lack statistical power and suffer lower precision when a basket has a small
sample size.13

2.3 Bayesian hierarchical model

The BHM, proposed by Berry et al,7 utilizes the full exchangeability assumption as all baskets share a common genetic
change. With this assumption in mind, each basket’s response to a treatment can be expected to be homogeneous and thus
information can be shared between all baskets in the trial. The BHM is specified such that the log-odds of the response
rate for each basket follows a normal distribution, centered around a common mean 𝜇 with variance 𝜎2. Hyper-priors are
placed on the parameters 𝜇 and 𝜎2.

Yk ∼ Binomial(nk, pk), k = 1, … ,K

𝜃k = log
(

pk

1 − pk

)

∼ N(𝜇, 𝜎2),

𝜇 ∼ N(logit(q0), 𝜈𝜇), 𝜎 ∼ g(⋅). (2)

The hyper-prior on 𝜇 is suggested to be slightly informative7 based on the average null response rate across the bas-
kets, with a large variance. The choice of hyper-prior on 𝜎, g(⋅), is widely debated with inverse-gamma, half-normal, or
half-Cauchy densities commonly used. An inverse-gamma prior on 𝜎2 was utilized in the original paper,7 however, as
stated by Gelman,14 this has poor behavior when 𝜎2 is close to 0 and thus a half-Cauchy prior on 𝜎 with a moderately
large scale was suggested instead.

Under the BHM, borrowing occurs between all baskets and as a result, the estimates of the response rates for each bas-
ket are shrunk towards the common mean with the degree of shrinkage controlled by the so called shrinkage/borrowing
parameter, 𝜎2. When 𝜎

2 tends to 0, borrowing moves towards the complete pooling approach in which the results of
all baskets are combined and inference is made based on a single response rate. At the other extreme, when 𝜎

2 tends
to infinity, inference is akin to an independent analysis. This pull towards the common mean can result in a bas-
ket’s treatment effect estimate being pulled away from the true value, particularly in the presence of a heterogeneous
basket.
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4396 DANIELLS et al.

2.4 Calibrated Bayesian hierarchical model

The CBHM, proposed by Chu and Yuan,8 is an extension of the BHM and as such also makes the full exchangeability
assumption. The CBHM has the same form as model (2), but rather than placing a prior on 𝜎 directly, it is defined as a
function of a measure of homogeneity across baskets: 𝜎2 = exp{a + b log(T)}, where T is the chi-squared test statistic for
homogeneity:

T =
K∑

k=1

(O0k − E0k)2

E0k
+

K∑

k=1

(O1k − E1k)2

E1k
, (3)

where O0k and O1k are the observed failures and responses in basket k respectively, while E0k and E1k are the expected
failures and responses in basket k.

The parameters a and b are tuned to calibrate the function to ensure strong borrowing through hierarchical modeling
when all baskets have a homogeneous response and treat baskets as independent otherwise. The calibration procedure is
outlined by Chu and Yuan8 as follows:

1. Generate R simulated data sets in which the treatment is effective in all baskets’ with response rate q1, for each
computing T as in (3). Let HB be the median of these T values.

2. Simulate the case in which the treatment effect is heterogeneous across baskets. To do so, let q(j) =
(q1, … , q1, q0, … , q0) be the scenario in which the treatment is effective in the first j baskets but not effective in bas-
kets j + 1 to K. For each value of j ∈ {1, … ,K − 1} generate R simulations of data, calculating the test statistic T for
each. Denote HBj as the median value of T for each value of j. Finally, define HB = minj(HBj).

3. Let 𝜎2
B = 1 under which strong borrowing occurs and 𝜎2

B
= 80 under which little to no information borrowing takes

place. Noting that 𝜎2 = g(T) = exp{a + b log(T)}, solve a and b for 𝜎2
B = g(HB) and 𝜎2

B
= g(HB). This results in:

a = log(𝜎2
B) −

log
(

𝜎

2
B

)

− log
(
𝜎

2
B
)

log
(

HB
)
− log (HB)

log(HB), b =
log

(

𝜎

2
B

)

− log
(
𝜎

2
B
)

log
(

HB
)
− log (HB)

.

A benefit of such a tuning procedure is the increased certainty in estimates produced by the CBHM in comparison
to the BHM in the case where all baskets are homogeneous. However, with a and b tuned in this way, the method takes
on a ‘strong’ definition of heterogeneity such that if the response rate in one basket is heterogeneous, then all baskets
are deemed heterogeneous, and as a result no borrowing occurs. The “strong” definition of heterogeneity can be relaxed
through a less stringent tuning procedure but this comes at the cost of the error control.

The original calibration procedure for the CBHM, proposed by Chu and Yuan,8 was based on equal sample sizes
for each basket. In practice it is unlikely that all baskets will recruit exactly the same number of patients, so the cali-
bration outlined above may not be adequate. When the sample sizes differ, Step 2 in the calibration does not cover all
possibilities of heterogeneity as the ordering of response rates matter. We propose altering this step for unequal sample
sizes to consider all permutations of q1 and q0 in which at least one basket has response rate q0 and at least one has
response rate q1.

2.5 Exchangeability-nonexchangeability model

The full exchangeability assumption is often violated in the presence of heterogeneous baskets. The exchangeability-
nonexchangeability (EXNEX) model, proposed by Neuenschwander et al,9 incorporates a nonexchangeability component
to the standard BHM, within which no borrowing occurs. The model then has two components:

1. EX (exchangeable component): with prior probability 𝜋k, basket k is exchangeable and a BHM as in model (2) is
applied. Information borrowing is therefore conducted between all baskets assigned to the exchangeable component.

2. NEX (nonexchangeable component): with prior probability 1 − 𝜋k, 𝜃k is nonexchangeable with any other basket, and
as a result, basket k is treated independently.
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DANIELLS et al. 4397

Yk ∼ Binomial(nk, pk), M1k ∼ N(𝜇, 𝜎2), (EX)

𝜃k = log
(

pk
1−pk

)

, 𝜇 ∼ N(logit(q0), 𝜈𝜇),

𝜃k = 𝛿kM1k + (1 − 𝛿k)M2k, 𝜎 ∼ g(⋅),

𝛿k ∼ Bernoulli(𝜋k), M2k ∼ N(mk, 𝜈k). (NEX).

(4)

As information is borrowed only between baskets assigned to the EX component but not from those in the NEX
component, this model provides more flexibility compared to the previous methods as information can be borrowed
between just some of the baskets and not all of them.

Careful consideration is needed in this model when it comes to the selection of 𝜋k values. It is uncommon
to have strong prior information on the probability of exchangeability, so it is suggested to fix these prior to
the trial at 𝜋k = 0.5 for all baskets. This prior probability is updated to a some degree based on the homogene-
ity of the data but is not sensitive enough to the heterogeneity/homogeneity of responses and thus it is antici-
pated that the probability of borrowing from a heterogeneous basket will be too high, which in turn will inflate
the type I error rate. Ideally the prior probability of assigning homogeneous baskets to the exchangeability com-
ponent should increase, while those for heterogeneous baskets decreases as opposed to fixing these probabilities
at 0.5 each.

Note that a Dirichlet prior could be placed on 𝜋k, however, as stated by Neuenschwander et al,9 this does not
have a substantial effect on inference in comparison to fixing the weights a priori. The EXNEX model can also be
easily extended to have more than one exchangeability component, allowing us to borrow between different subsets
of baskets.

2.6 Proposed modified EXNEX model

In the original EXNEX model, the prior probability values, 𝜋k, do not dependent on the similarity of the data.
We propose a modification to the EXNEX model, denoted mEXNEXc, which sets these 𝜋k values to account for
the homogeneity of the response in basket k compared to that in all other baskets. A similar concept of updating
prior weights based on homogeneity of responses was proposed by Haiyan and Hampson15 but in the dose-finding
setting. The purpose of this is to increase the sensitivity to the heterogeneity of response data compared to the
EXNEX model.

The Hellinger distance is an ideal metric that quantifies the similarity between two probability distributions parame-
terized by probability density functions. In the mEXNEXc model it is used to compare the distance in responses between
baskets. The Hellinger distance gives values on the [0, 1] range, equating to 0 when densities are identical and increasing
values as the distance between the densities becomes greater and as such, they can be easily translated into probability
values.

The mEXNEXc model is a two-step procedure, the first step removes baskets with a clearly heterogeneous response
rate. A pre-specified cut-off value, c, is chosen to indicate that a basket is sufficiently heterogeneous to exclude from
borrowing and treat as independent. Denote p̂k = Yk∕nk. If the minimum pairwise difference in response rate between
basket k and all other baskets is greater than c,

min
k′
{|p̂k − p̂k′ |} > c, k ≠ k′,

then basket k is treated as independent and its mixture weight, 𝜋k, in the EXNEX model is set to 0.
In the second step, denote S as the set of all baskets not excluded for heterogeneity. For all baskets in S, pro-

duce posterior densities for pk by fitting a beta-binomial model with prior pk ∼ Beta(1, 1), which has form pk|Yk ∼
Beta(ak, bk) where ak = Yk + 1 and bk = nk − Yk + 1. The Hellinger distance between posteriors of basket k and k′ is
computed as
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4398 DANIELLS et al.

hk,k′ =

√
√
√
√
√1 −

B
(

ak+ak′

2
,

bk+bk′

2

)

√
B(ak, bk)B(ak′ , bk′ )

, (k, k′ ∈ S), (5)

where B(⋅, ⋅) is the Beta function. The probability, 𝜋k, is then calculated as

𝜋k =
∑

k′

1 − hk,k′

|S| − 1
for k, k′ ∈ S, k ≠ k′.

Once obtained, these 𝜋k values are used as the prior borrowing probabilities in model (4). For the mEXNEXc model, a
slight alteration is made to model (4), in that, a prior is placed on 𝜎2 as opposed to 𝜎 in order to have less mass concentrated
around 0.

This method is expected to reduce the probability of heterogeneous baskets being assigned to the EX component as
a heterogeneous basket will have larger Hellinger distances and thus lower 𝜋k values. As such, the mEXNEXc model is
expected to possess better error control than the standard EXNEX model that assigns fixed 𝜋k values irrespective of the
homogeneity of responses.

The specification of the cut-off c to define a basket as sufficiently heterogeneous to remove requires careful consid-
eration. When defining c prior to the trial, the clinician must weigh up the trade-off between achieving higher power of
estimates while maintaining an adequate error rate. A larger c value will result in higher power at the cost of inflation of
error rates, whilst lower, more conservative values control error rates but provide a smaller increase in power. A cut-off
is chosen such that this trade-off is considered acceptable.

A proposed method for this specification is through a pre-trial simulation study in which the null and target response
rate and planned samples sizes are used to compute operating characteristics for different values of c, withΔ

𝛼
re-calibrated

for each. The planned sample sizes are obtained as in the trial protocol, using a Simon two-stage design based on stratified
analysis on each basket for a targeted type I error rate and power. Generally, consider cut-off values of c = i∕max nk for
i = 0, 1, 2, … ,nk and k = 1, … ,K and scenarios that cover all combination of insensitive and sensitive baskets. To guide
the selection of c, it is chosen such that:

c = arg max
c
{xPowerc + (1 − x)(1 − Errorc)}, x ∈ [0, 1], (6)

where Powerc and Errorc are the mean power and type I error rate for cut-off c across all considered scenarios. The value
of x is chosen to balance the trade-off between power and error-rate control.

2.7 Bayesian model averaging

Psioda et al10 proposed a BMA approach that allows for both exchangeability and nonexchangeability, but in place of
applying a single model to the data, the average over all considered models is taken. To do so one averages over the
posterior distribution under each model, weighted by their posterior model probability.16

Consider the case where only a single exchangeability component is allowed. Define j as model j representing a
permutation of basket allocation to the EX group or NEX group. Rather than applying a hierarchical model to borrow
between baskets in the EX group, results are pooled and baskets have one shared response rate pSi,j , where Si,j is a subset
i of the baskets’ given modelj. Therefore, pk = pSi,j when k ∈ Si,j.

A weakly informative Beta prior is placed on the response rates, while a prior on each model, f (j), is also required.
The posteriors f (pk|j) and f (j|D) are computed after observing response data D and are used to implement a BMA
procedure to obtain the efficacy decision for basket k at the conclusion of a trial by computing P(pk > x|D) =

∑
j P(pk >

x|j,D)f (j|D).
This method is potentially advantageous as it accounts for all possible borrowing subsets in place of applying a

single model. This allows for uncertainty in the model selection, as the specification of an incorrect model may lead
to misleading inference. Also, as a result of pooling within exchangeability groups, closed-form solutions of poste-
riors can be found. This is computationally appealing as it can be implemented quickly even for a large number
of baskets.
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3 SIMULATION STUDY

In order to assess the performance of the described methods in terms of estimation, type I error and power, a simulation
study was conducted. Motivated by the VE-BASKET trial, the conducted simulation study consists of five baskets. Two
settings are considered:

(i) Sample size in each basket being equal to the planned sample size of 13 patients,
(ii) Sample sizes in the baskets being the realized sample sizes in the trial (ie, 20, 10, 8, 18, and 7).

Set q0 = 0.15 and q1 = 0.45 as the null and target response rates respectively. A basket is deemed sensitive to a treat-
ment at the conclusion of a trial, having observed data D, if P(pk ≥ 0.15|D) > Δ

𝛼
, whereΔ

𝛼
is calibrated to obtain a type I

error rate of 𝛼 = 10% under the null scenario. Note that Δ
𝛼

is calibrated for each method separately and follows the same
procedure for both the proposed and existing methods—for the mEXNEXc model, c is selected through calibration but
is then taken as fixed when calibrating Δ

𝛼
. This is done based on the planned sample size nk = 13 for all baskets k and

the null response rate q0 = 0.15. The calibrated Δ
𝛼

values for each method are given in Table S1 of the supplementary
material.

Several scenarios with varying numbers of baskets sensitive to treatment are considered and displayed in Table 1.
Scenario 1 is the null case in which all baskets are insensitive. Scenarios 2-5 cover different combinations of insensitive
and sensitive treatment baskets while Scenario 6 is the case where all baskets are homogeneous and sensitive. This will
highlight the benefits, if any, the borrowing methods provide in terms of power improvement. Scenarios 7-10 consist of
cases where some baskets have a marginally effective response rate at 35%. For the realized sample size case, a further six
data scenarios are considered to account for the fact that ordering of response rate now matters.

For each method and scenario the following operating characteristics are computed:

• % Reject: the percentage of simulated data sets in which the null hypothesis is rejected. If the null is true then this value
is the type I error rate, else it is the power.

• % All correct: the percentage of simulated data sets in which the correct conclusions are made across all baskets.

T A B L E 1 True response rate data scenarios: For the planned sample size simulation Scenarios 1-10 are considered, whereas, for the
realized sample size simulation all Scenarios 1-16 are considered.

p1 p2 p3 p4 p5

Scenario 1 0.15 0.15 0.15 0.15 0.15

Scenario 2 0.45 0.15 0.15 0.15 0.15

Scenario 3 0.45 0.45 0.15 0.15 0.15

Scenario 4 0.45 0.45 0.45 0.15 0.15

Scenario 5 0.45 0.45 0.45 0.45 0.15

Scenario 6 0.45 0.45 0.45 0.45 0.45

Scenario 7 0.35 0.15 0.15 0.15 0.15

Scenario 8 0.35 0.35 0.35 0.15 0.15

Scenario 9 0.45 0.35 0.35 0.15 0.15

Scenario 10 0.45 0.45 0.35 0.35 0.15

Scenario 11 0.15 0.15 0.15 0.15 0.45

Scenario 12 0.15 0.15 0.45 0.15 0.45

Scenario 13 0.15 0.45 0.45 0.15 0.45

Scenario 14 0.15 0.45 0.45 0.45 0.45

Scenario 15 0.45 0.15 0.15 0.15 0.45

Scenario 16 0.45 0.15 0.45 0.15 0.45
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4400 DANIELLS et al.

• FWER (family-wise error rate): the percentage of simulated data sets in which at least one null basket is deemed
sensitive to treatment.

• Mean point estimate of the response rate in each basket and the standard deviation of said estimate across the
simulations.

The results presented focus on the first three of these, with results for the mean point estimates provided in Section 3
of the supplementary material.

For the following analysis, prior and parameter choices for each model are summarized in Table 2 with full model
specification provided in Appendix A. Priors on 𝜇 are centered around the null response rate of 0.15 with a large variance.
Priors on 𝜎2 are chosen to be consistent with those used in the literature. The EXNEX model has prior borrowing prob-
abilities fixed at 0.5. The prior parameters for the mEXNEXc model are kept the same as the standard EXNEX model to
allow for fairer comparison. These parameters are selected by the recommendation of Neuenschwander et al,9 with the
prior for the NEX component in both the EXNEX and the mEXNEXc model centered around a plausible guess of pk of
0.35. The priors for the BMA are consistent with those suggested by Psioda et al10 with priors placed on each model being
the number of distinct response rates in that model squared.

The specification of the cut-off value, c, in the mEXNEXc model is chosen through a pre-trial simulation as outlined
in Section 2.6. Cut-off values of c = i∕13 were considered where i = 0, 1, 2, 3, 4. For each value of c, 10 000 simulated data
sets were used to compute the type I error rate and power across the six scenarios in Table 1, with the results shown
in Figure 2. Within Equation (6) two cases were considered: when x = 0.4 a higher emphasis is placed on error control
over power improvement resulting in the choice c = 0. This is a more conservative value as it only allows for borrow-
ing when a basket has an identical response rate to at least one other basket. However, despite this conservative nature,
from Figure 2, we observe that this specification shows control of the type I error rate close to the nominal 10% level
under Scenarios 1-4, whilst improving power under Scenarios 2, 4-6 in comparison to an independent model. Denote
this model as mEXNEX0. The second choice is x = 0.6 which puts greater weight on power improvement whilst relax-
ing the degree of error control, resulting in the choice c = 1∕13. Denote this model as mEXNEX1∕13. A total of 10 000
simulations were run using the “rjags” package v 4.12,17 within RStudio v 1.1.45318 for each of the six data scenarios
in Table 1.

3.1 Simulation results: Planned sample sizes

The results for power and type I error rate under the planned sample size are presented in Figure 3 which shows the
percentage of simulated data sets in which the null hypothesis was rejected for each method and scenario. Full results
are also provided in Table B1 and B2 in Appendix B.

The rejection percentages are calibrated under Scenario 1 to achieve a 10% type I error rate for each method separately
and hence all rejections are approximately 10%. However, in the presence of a single heterogeneous effective basket, that is,
Scenario 2, the mEXNEX0 model gives the best performance with error control at 10% whilst achieving the greatest power
(88%). The CBHM also controls the type I error rate but only achieves 81.1% power due to the level of heterogeneity and
the nature of the calibration procedure. The BHM, BMA, and EXNEX model all have raised error rates at approximately
16.9%, 13.2%, and 11.8% respectively. The mEXNEX1∕13 model gives power that is increased by 0.8 compared to the EXNEX
model with a slightly lower type I error rate of 11.5%.

T A B L E 2 Model prior and parameter specification for the simulation study.

Model Prior and parameter specification

Independent 𝜃k ∼ N(logit(0.15), 102)

BHM 𝜇 ∼ N(logit(0.15), 102), 𝜎 ∼ Half-Cauchy(0, 25)

CBHM 𝜇 ∼ N(logit(0.15), 102), 𝜎2 = exp{−7.25 + 5.86 log(T)}

EXNEX 𝜇 ∼ N(logit(0.15), 102), 𝜎 ∼ Half-Normal(0, 1), M2k ∼ N(−0.62, 4.42), 𝛿k ∼ Bernoulli(0.5)

mEXNEXc 𝜇 ∼ N(logit(0.15), 102), 𝜎2 ∼ Half-Normal(0, 1), M2k ∼ N(−0.62, 4.42), 𝛿k ∼ Bernoulli(𝜋k)

BMA PSj
|j ∼ Beta(0.45, 0.55), f (j) ∼ P2

j
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F I G U R E 2 Pre-trial simulation results for type I error rate and power across the data scenarios for different cut-off values, c.

Across Scenarios 3-5 there is a mix of sensitive and insensitive treatment baskets. These scenarios show the benefits
in terms of power gain through information borrowing techniques compared to an independent analysis. Again in these
cases the CBHM lacks power due to the heterogeneity of the data, giving consistently lower power than an independent
analysis, whilst the BHM and BMA procedure give hugely inflated error rates. The BHM gives type I error rates ranging
from 21.6% to 42.1% across these three scenarios.

The mEXNEX1∕13 model leads to similar results to the standard EXNEX model in these scenarios due to its inability
to detect clusters of responses, which leads to increased probability values for EX assignment for all baskets. In Scenario
4 this results in a greater type I error rate for the mEXNEX1∕13 compared to the EXNEX model (15% vs 13.1%), however,
under Scenario 5 the mEXNEX1∕13 model gives a 1.3 decrease in the type I error rate. Under a more conservative cut-off,
the mEXNEX0 model keeps the type I error rate at an acceptable level with the worst case occurring under Scenario 5 in
which the error rate is just 11.2%, which is much lower than the 16.1% error rate of the EXNEX model. This is all whilst
also increasing power over an independent model by 1.4%.

In Scenario 6, when all baskets are sensitive to treatment, the BHM followed by the BMA procedure give the greatest
power at the cost of inflated error rates across the other scenarios. The mEXNEX1∕13 model has similar power to the
standard EXNEX model with mean power 91.9% compared to 92.2%, whereas the mEXNEX0 model, has lower average
power at 89.8% but still an improvement over the independent model at 88.0%.

Now consider the cases where some baskets are marginally effective with a true response rate of 35%. In particular one
can draw comparisons between Scenarios 2 and 7 as in both cases just a single basket is heterogeneous and effective to
some degree. Under both scenarios the same patterns of results are observed, but due to the lower true response rate under
Scenario 7, the difference in power and error rates between methods has been amplified. As expected, the error rates tend
to be lower under Scenario 7 compared to 2, as the pull upwards towards the heterogeneous basket will be less extreme
as it has a true response rate closer to that under the null. In this case, both mEXNEXc models give the joint highest
power at 68.3%, with the mEXNEX0 model again controlling error rates at the 10% level, while only minimal inflation is
observed under the mEXNEX1∕13 model at 11.1% (a value very similar to that of the standard EXNEX model). The BHM,
CBHM, and BMA approach all give lower power than an independent analysis with clearly inflated error rates in the
BHM and BMA cases. Similar connections can be made between Scenarios 4 and 8, with the same conclusions drawn
from each.
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4402 DANIELLS et al.

F I G U R E 3 Percentage of rejections of the null hypothesis for each method and data scenario based on a planned sample size of 13
patients per basket.
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DANIELLS et al. 4403

Under both Scenarios 9 and 10, baskets have a combination of effective, marginally effective and ineffective response
rates. Predictably, the BHM and BMA approach give the greatest power but with this have inflated error rates, just as in
Scenarios 4 and 5. All of these Scenarios 7-10 demonstrate the ability of the mEXNEXc model to control error rates when
c = 0 whilst improving power over an independent analysis anywhere from 1.8% to 3% for effective baskets and 3.3%-4.5%
for marginally effective baskets.

Looking now at the percentage of data sets in which the correct inference was made across all baskets, alongside
the family-wise error rates (where Δ

𝛼
was now calibrated under Scenario 1 to achieve 25% FWER—full results provided

in Section 1 of the supplementary material). All methods gave similar values for correct inference under the null sce-
nario. However, under both Scenarios 2 and 7, the independent model produced the greatest values, closely followed by
the mEXNEXc models. Across Scenarios 3-6 both metrics simultaneously decrease for the independent model, and also
demonstrates lowest percentage of correct inference compared to all other methods in Scenarios 8-10. The mEXNEX1∕13
model has similar or lower percentage of correct inference in comparison to the EXNEX model but with consistently
lower FWER values, while the mEXNEX0 method has greater proportions of correct inference in Scenario 3 compared
to the standard EXNEX model (54.0% compared to 51.8%) but a 14% decrease under Scenario 5. This reduction came
with a 3.3% decrease in FWER. Under Scenario 6, the methods shown to have higher power in Figure 3, also gave
greater proportion of correct inference made across all baskets. Considering Scenarios 8-10, the standard EXNEX model
gives the best percentage of all correct inference with lower FWER than the BHM, CBHM and BMA approach in all
cases. This is most prominent in Scenario 9 where in 37.1% of simulation, the EXNEX model made correct conclu-
sions in all five baskets, whereas, under the same scenario the mEXNEX1∕13 had a smaller value at 30.2% but with a 2%
lower FWER.

In view of these results, when the sample size is fixed across baskets, the proposed mEXNEX0 model controls error
rates to a nominal level whilst also improving power over implementing an independent model. Improvements are also
observed over the EXNEX model with consistently lower type I error rates but reduced power. Should interest lie more
heavily on improving power over the control of error rates, the cut-off value for exclusion of heterogeneous baskets could
be increased. Both cut-off values of 0 and 1/13 produce a model that either exceeds all other considered borrowing methods
in performance or acts similarly to the standard EXNEX model.

3.1.1 Varying the true response rate vector, p

There are an infinite number of data scenarios one could fall in when conducting clinical trial analysis, the scenarios
listed in Table 1 are only a subset of these feasible cases. The data scenarios implemented above were selected to cover a
wide range of cases, however, some important cases may not have been investigated.

To overcome this, a further simulation study was conducted within which, rather than fixing the true probability of
success parameter prior to the study, forever simulation run a new random truth vector, p, was generated with uniform
probability across the ranges [0,0.15] and [0.35,0.5] (these ranges were set to ensure equal changes of lying in the null and
non-null case respectively). Once p was generated, it was used to simulate data from a binomial distribution. The goal of
such a simulation study is to determine the operating characteristics on average over many different truth vectors in hope
to capture what would occur in cases not investigated within the previous simulation study.

A total of 20 000 simulations for each borrowing method were run under the planned sample size case of 13 patients
in each basket. Results are provided in Table 3, with further descriptions and results for the realized sample size case
provided in Section 4 of the supplementary material.

Similar to the fixed scenario cases described above, the BHM and BMA have the highest error rates, but all methods
have mean type I error rate less than the nominal 10% level. The reduced error rates come from, in some cases, the true
response rate lying well below the null 15% level under which theΔ

𝛼
value was calibrated. The CBHM continues to behave

similarly to an independent approach but with lower power.
The standard EXNEX model and mEXNEX1∕13 model behave very similarly in this study, both with type I error rate

of 3.2% and power of 86.0%. This is not unexpected, as like in the previous study, when clusters of responses are present,
the less conservative mEXNEXc model begins to perform similarly to the standard EXNEX model due to it is inability
to detect clusters of responses. When c = 0, error rates are far closer to the independent model at 2.7% (2.3% under an
independent analysis) with 83.9% power, which although lower than the standard EXNEX model, is an increase of 2.4%
over an independent analysis.
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4404 DANIELLS et al.

T A B L E 3 Operating characteristics for the planned sample size simulation study in which the truth vector was randomly generated.

Method Type I error rate Power % All correct FWER

Independent 2.25 81.48 57.63 5.68

BHM 5.00 87.51 63.07 11.68

CBHM 2.27 79.21 54.21 5.48

BMA 4.51 86.87 62.57 10.62

EXNEX 3.15 86.01 63.64 7.86

mEXNEX0 2.68 83.89 61.19 6.77

mEXNEX1∕13 3.16 85.97 63.78 7.80

In terms of percentage of simulation runs in which the correct conclusion was made in all five of the baskets, both
the standard EXNEX and mEXNEX1∕13 models have the highest value of around 63.7%. The BHM and BMA approach
have similar but slightly smaller values compared to both methods but have 2.8%-3.9% increase in FWER. The mEXNEX0
model gives both reduced percentage of all correct conclusions and FWER compared to all the aforementioned methods
but does possess a 3.6% increase in all correct inference compared to an independent analysis.

To summarize, in the planned sample size case when the true response rate is varied, the BHM and BMA continue to
display the most undesirable error rates whilst the independent analysis and CBHM lack power. The modified EXNEX
model with c = 1∕13 performs almost identically to the standard EXNEX model. When a more conservative cut-off value
c = 0 is implemented, error rates are reduced by 0.5% compared to the standard EXNEX model but with a 2.1% reduction
in power (but still a 2.4% improvement over an independent analysis).

3.2 Simulation results: Realized sample sizes

Although the protocol planned for 13 patients per basket, 20, 10, 8, 18, and 7 patients were enrolled across the five baskets.
The thresholds for efficacy,Δ

𝛼
, were calibrated based on the planned sample size of 13 per basket and was not re-calibrated

based on these observed sample sizes. Similarly, the cut-off values c in the mEXNEXc model were not adjusted and were
based on the planned equal sample size.

Percentage of rejection plots are provided in Figures 4 and 5 with full results in Tables B3–B5 of Appendix B.
The calibration procedure for the CBHM needs more careful consideration here, as the previous calibration was

based on equal sample sizes across baskets. A slight modification to Step 2 of the process was made to cover all per-
mutations of heterogeneity. Even with this adaption, when sample sizes are unequal, the calibrated values of a and b
are much larger in magnitude than in the equal sample case. This leads to stronger borrowing where baskets are at
least fairly homogeneous, producing much narrower posterior densities. These narrow posteriors, in some cases, have
their mass lying entirely above q0 and thus Δ

𝛼
is close to 1. This can cause a lack of power as it makes it incredi-

bly difficult to reject a hypothesis. To overcome this, we recommend calibrating a and b with the sample size fixed
and equal for each basket at the averaged basket sample size. Analysis is then conducted using these tuned param-
eters with the observed unequal sample sizes. In this case, the average sample size across the baskets happens to be
13 patients per basket (with rounding) and thus, the a and b values used are the same as in the planned sample
size case.

The type I error rate in Scenario 1 lies below the nominal 10% level for all methods with the independent and
mEXNEX0 models giving the lowest values, whilst the BHM, BMA, and EXNEX model are greater but are still
approximately at or below 10%.

Under Scenario 2, in which the first basket is effective to treatment, the BHM, EXNEX, mEXNEX1∕13 and BMA meth-
ods produce higher power than the independent analysis, at the cost of inflated error rates at 18.4%, 14.8%, 12.0%, and
14.1% respectively. The CBHM and mEXNEX0 model gives almost identical power values to the independent model
(94.6% and 94.3% compared to 94.6%) but the mEXNEX0 model gives error rates no greater than 10.5%. Similar results
are also seen in Scenario 7 in which the first basket is marginally effective. Now consider Scenario 11 in which, like
Scenario 2 only one basket has an effective response rate but this is now the fifth basket as opposed to the first. This bas-
ket has a smaller sample size than that of the first basket at just seven patients and thus, the power is uniformly lower
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DANIELLS et al. 4405

F I G U R E 4 Percentage of rejections of the null hypothesis for each method under data Scenarios 1-10 based on realized sample sizes of
20, 10, 8, 18, and 7 across the five baskets.
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4406 DANIELLS et al.

F I G U R E 5 Percentage of rejections of the null hypothesis for each method and under data Scenarios 11-16 based on realized sample
sizes of 20, 10, 8, 18, and 7 across the five baskets.

for all methods, however, patterns of results remain the same in terms of method performance. Under this scenario, all
methods (with the exception of the BHM) produce very similar power values ranging from 68.7% to 70.2% but all have
varying error rates. All borrowing methods have a higher error rate than that of an independent model, with inflation
above the nominal 10% level present under the BHM, BMA, EXNEX, and mEXNEX1∕13 model. The BHM has a much
lower power in this case at 63.7%.

Across Scenarios 3, 4, and 8, the mEXNEX1∕13 model gives similar/lower error rates compared to the EXNEX model
and generally higher power values in baskets with a small sample size, that is, baskets 2 and 3, with up to an increase of
2.4%. Similar power values are observed in basket 1 where the sample size is larger. The mEXNEX0 model continues to
control error rates at or below the 10% level but provides little to no improvement in terms of power over an independent
approach. This is due to the conservative nature of this c value. When c = 0, under unequal sample sizes it is likely that
all baskets will be treated as independent, as in the binary response setting, achieving identical response rates in baskets
of different sizes is often impossible.

Scenario 5 again displays the improvement in power through using the borrowing techniques, with the exception of the
mEXNEX0 model for the aforementioned conservative nature. Ignoring the independent and mEXNEX0 models for lack
of power, the mEXNEX1∕13 model displays the lowest type I error rate of 17.9% which, although inflated, is considerably
lower than the other borrowing methods, including the EXNEX model which has an error rate of 27.6%.

Similar to the planned sample size simulation, the BHM and BMA approach give greatest power in Scenario 6 but at
the cost of high error rates elsewhere. Across all baskets, the mEXNEX1∕13 model improves in power over the independent
model by up to 16.51% but also at the cost of inflated error rates. However, this inflation occurs to a lesser extent than the
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DANIELLS et al. 4407

EXNEX model across Scenarios 2-5 with a maximum difference in error rates for the two methods at 9.7% which could
be viewed as a highly significant margin.

Under Scenarios 9 and 10, those baskets that have a marginally effective treatment effect show markedly improved
power when information borrowing methods are implemented, with the mEXNEX1∕13 model obtaining up to a 20%
improvement in power compared to an independent analysis under Scenario 9—note this comes with roughly a 3%
inflation in error rate, but such inflation is less than the other borrowing methods.

Now consider the cases when the ordering of response rates is altered, under Scenario 12 the two smallest baskets
have the effective response rates whilst the larger baskets are insensitive to treatment, the mEXNEX1∕13 model gives the
greatest power for basket 3 at 78.5% (whilst the EXNEX model has power 78.1%) as well as improved power over the
standard EXNEX model for basket 5 also (69.7% compared to 69.2%). This is alongside having a lower average type I error
rate of 12.7% under mEXNEX1∕13 compared to 13.1% under the EXNEX model. In comparison to Scenario 3, when the
basket size is smaller, the performance of the BHM and a BMA approach worsens with higher errors and lower power
values, whilst the performance of the mEXNEX1∕13 over other methods improves. The same conclusions can be drawn
from Scenarios 13 to 16 also.

Considering family-wise error rate and percentage of all correct conclusions across the five baskets, if the Δ
𝛼

values
were calibrated to control FWER at 25% under the planned sample size and then applied to the realized sample size case,
all methods give slightly inflated FWER values of over 25% under Scenario 1 (see supplementary material for full results).
There is a 1-1 relation between low FWER and high percentage of cases where correct inference is made across all baskets
with those showing the highest family-wise error rate also presenting lower percentages of correct inference.

The BHM and BMA approach give the highest FWER and lowest percentage of correct inference in all baskets across
Scenarios 2-16. Under Scenarios 2 and 3 the mEXNEX1∕13 model has a FWER 5% smaller than the EXNEX model, pro-
ducing similar values to the independent approach but with an improvement in power. Scenario 6 shows that models
which typically inflate the error rate give the best proportions of correct inference across all baskets. The mEXNEX1∕13
model provides an increase of over 6% in comparison to an independent model. The percentage of all correct inference is
smaller across scenarios where there are a few marginally effective baskets, that is, Scenarios 8-10 and this lines up with
larger inflation in error rates.

Similarly to the planned sample size case, these results confirm that the choice of c value makes a big impact in
the performance of the mEXNEXc model. The c values were selected based on the planned sample size of 13 per bas-
ket and thus increments corresponding to 1 response were considered (ie, 0, 1/13, 2/13,… ), however, when sample
sizes are unequal it would be beneficial to look at other potential values such as 0, 0.05, 0.1 and so forth. A cut-off of
0.05 can be shown to perform well in this unequal sample size scenario, whereas the choice of c = 0 is far too con-
servative. In practice, when this occurs analysis can be conducted as specified in the trial protocol with the use of c
based on planned sample sizes. Alternatively, one can re-calibrate based on the realized sample sizes and compare to
original analysis to determine if there are any significant differences. It would be recommended to include instructions
within the trial protocol on how to adjust the cut-off value for the mEXNEXc model once the realized sample sizes
are known.

If the calibration of Δ
𝛼

accounted for unequal sample sizes, similar patterns in performance of each method is
observed but with the impact of small sample sizes particularly evident. Results from a further simulation under the
realized sample size with re-calibrated Δ

𝛼
based on the unequal nature are provided in Section 2 of the supplementary

materials.

4 ANALYSIS OF VE-BASKET RESULTS USING INFORMATION
BORROWING MODELS

This section revisits the analysis of the VE-BASKET results using the described and proposed information borrowing
methods. The data observed in the trial, and the posterior means for the response rate in each basket (and stan-
dard deviations) obtained by each method is given in Table 4. Also provided are the posterior probabilities of the
response rate being greater than the null for each basket under each method, that is, the decision making prob-
ability used at the conclusion of the trial. For this analysis, prior and parameter choices are provided in Table 2.
Within the modified EXNEX procedure, cut-off values, c, are chosen from c = 0, 0.05, 0.1, 0.15, … Through a simula-
tion akin to that in Section 3, cut-off values of c = 0.05 and c = 0.1 were chosen, denoted mEXNEX0.05 and mEXNEX0.1
respectively.
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T A B L E 4 Data summary of the VE-basket trial with posterior means of the response rates obtained using the various information
borrowing models alongside their standard deviations in brackets, as well as the posterior probability that the response rate is greater than
the null.

Trial data NSCLC Colorectal cancer Cholangiocarcinoma ECD/LCH Thyroid cancer

Sample size 20 10 8 18 7

ORR 0.40 0.00 0.13 0.33 0.29

Basket 1 2 3 4 5

Independent p̂k 0.399 (0.11) 0.009 (0.03) 0.126 (0.11) 0.333 (0.11) 0.285 (0.16)

P(pk > 0.15|D) 0.996 0.008 0.325 0.968 0.777

BHM p̂k 0.362 (0.10) 0.097 (0.09) 0.170 (0.11) 0.309 (0.10) 0.267 (0.13)

P(pk > 0.15|D) 0.994 0.259 0.518 0.966 0.809

CBHM p̂k 0.398 (0.11) 0.012 (0.03) 0.125 (0.11) 0.331 (0.11) 0.281 (0.16)

P(pk > 0.15|D) 0.996 0.012 0.320 0.970 0.770

BMA p̂k 0.368 (0.09) 0.058 (0.08) 0.213 (0.09) 0.331 (0.09) 0.309 (0.12)

P(pk > 0.15|D) 0.997 0.120 0.648 0.981 0.899

EXNEX p̂k 0.384 (0.10) 0.059 (0.07) 0.171 (0.12) 0.326 (0.10) 0.288 (0.14)

P(pk > 0.15|D) 0.996 0.113 0.501 0.971 0.825

mEXNEX0.1 p̂k 0.384 (0.10) 0.061 (0.06) 0.162 (0.11) 0.338 (0.10) 0.318 (0.13)

P(pk > 0.15|D) 0.997 0.089 0.454 0.983 0.904

mEXNEX0.05 p̂k 0.398 (0.10) 0.061 (0.06) 0.162 (0.11) 0.328 (0.10) 0.301 (0.14)

P(pk > 0.15|D) 0.996 0.088 0.455 0.973 0.857

For the EXNEX and mEXNEXc models, specification of a prior probability vector, 𝜋, for assignment to the EX com-
ponent is required. For each model, both the prior probability used and the posterior probabilities produced after model
fit are listed below:

Prior probability vectors: Posterior probability vectors:
EXNEX: 𝜋 = (0.50, 0.50, 0.50, 0.50, 0.50), 𝜋 = (0.36, 0.50, 0.42, 0.39, 0.41).

mEXNEX0.1 ∶ 𝜋 = (0.74, 0.00, 0.00, 0.79, 0.74), 𝜋 = (0.81, 0.00, 0.00, 0.85, 0.80).
mEXNEX0.05 ∶ 𝜋 = (0.00, 0.00, 0.00, 0.79, 0.79), 𝜋 = (0.00, 0.00, 0.00, 0.74, 0.75).

The posterior probabilities for the EXNEX model decrease for all baskets compared to the prior values despite baskets
4 and 5 having homogeneous responses. In contrast, the mEXNEX0.1 model increases between the prior and posterior
probabilities which reflects the homogeneity of the response data. When c = 0.05, we observe a decrease in posterior
probabilities from the prior values, however, they are still greater than in the EXNEX model, which suggests greater
sensitivity to the presence of both homogeneous and heterogeneous baskets.

The mEXNEX0.05 model, only allows borrowing between baskets 4 and 5 with probability 0.79. This results in standard
deviations lower in these baskets compared to the independent model. When c = 0.1, the NSCLC basket is now included
in the borrowing component with probability 0.74. This results in the estimated response rate in the first basket being
pulled down as information is borrowed from baskets 4 and 5. The estimates and standard deviations for baskets 2 and 3
are identical for both c values as they are assigned to the NEX component. The mEXNEX0.1 model has marginally smaller
standard deviations compared to the EXNEX model with similar point estimates.

The results in Table 4 also demonstrate that using the independent model on baskets with small sample sizes leads
to estimates with less precision due to the lack of borrowing. The CBHM results match that of the independent model
due to the “strong” definition of heterogeneity in it is calibration procedure. There is clear heterogeneity between bas-
ket’s 1 and 2 in which the ORR is 0.4 and 0 respectively and thus the CBHM treats all baskets as being independent
with 𝜎2 ≈ 383.
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DANIELLS et al. 4409

The estimates using the BHM are pulled towards the common mean so the values are different to the ORR values, this
is most evident in the second basket where the BHM estimates p̂2 = 0.1 while the ORR is 0. This is a direct result of the
pull towards the common mean. A similar pattern is observed under the BMA method as the averaging procedure puts
some weight on models that borrow between all baskets despite heterogeneity.

Focusing on the posterior probabilities of exceeding the null response rates, all methods give similar values for basket 1
which has a larger sample size and ORR value. This will likely lead to the treatment being deemed effective in basket 1
regardless of the method. However, the same cannot be said for basket 2 in which these probabilities vary across all
methods, giving a value of approximately 0.01 under a stratified analysis, compared to 0.25 under the BHM. This could
lead to potentially differing conclusions regarding the efficacy of a treatment based on the method used to analyse the
results. Methods that borrow information between all baskets tend to have higher posterior probabilities when basket
sample size is small compared to an independent analysis and methods such as the CBHM and mEXNEXc which borrow
information to a lesser extent.

These results highlight that, as expected, the choice of borrowing method can impact inference made at the conclusion
of a trial, especially in the case of heterogeneity across baskets. Heterogeneity causes a pull towards the common mean
under most borrowing methods resulting in estimates different to the ORR values whilst having an even bigger impact on
the decision probabilities used at the conclusion of the trail. However, the results also demonstrate benefits of borrowing
in terms of increase in precision of point estimates, particularly when the sample size is small such as in the thyroid
cancer basket which has just seven patients. From these differences in results, we would promote careful planning and
pre-trial evaluations to ensure that the borrowing method used is appropriate for the study.

5 DISCUSSION

Presented here were several Bayesian information borrowing techniques within a basket trial setting, alongside a proposed
modification to the EXNEX model. Through simulation, the BHM, EXNEX model and a BMA approach were shown to
have inflated error rates in the presence of baskets with heterogeneous response rates, while the CBHM lacks power in
such a scenario.

Exploration of the methods applied to unequal sample sizes across baskets highlighted the inadequacy of the current
calibration procedure in the CBHM which only previously considered equal sample sizes across baskets. A generalization
of this calibration is made to handle the presence of unequal sample sizes, a situation that commonly arises in the clinical
setting.

The proposed method has been shown to improve error control while increasing power over an independent analysis.
This proposed method is robust to the presence of a heterogeneous basket as it is able to identify its difference in response
and thus does not borrow information from it, while still retaining borrowing between homogeneous baskets with a
probability determined by similarity in response through Hellinger distances.

The use of Hellinger distances has already been proposed for use in information borrowing in the basket trial setting
by Zheng and Wason.19 However, they utilize the metric on data with continuous endpoints and a control arm, to stipulate
a commensurate prior based on pairwise Hellinger distances. The mEXNEXc model uses averaged Hellinger distances to
compute the prior probability of borrowing within the EXNEX model. Alternative distance metrics were considered but
were shown to have less error control to that proposed in this article and are hence omitted.

The mEXNEXc model has been specified as a two-step procedure, within which we first remove heterogeneous baskets
to treat as independent and then utilize these Hellinger distances to specify the prior borrowing probabilities between
the remaining baskets. In Section 5 of the supplementary material, explanation is provided as to why both of these steps
are utilized in place of making just one of these modifications. Justifications are provided based on several thorough
simulation studies, the first of which explored the performance of the one 1-step vs 2-step methods under the simulation
setting outlined in Section 3 which highlighted the need for the first step—that is, removal of heterogeneous baskets—in
order to control the type I error rate. We then continued exploration of the differences in approaches through a further
simulation study that varied one design parameter at a time, that is, changed the number of baskets (of which further
simulation studies under K = 3 and K = 10 baskets are presented in Section 6 of the supplementary material), changed
the sample size or changed the target response rate. From this we concluded that the 2-step mEXNEXc model as proposed
in this article performs more favorably over a 1-step modified EXNEX model when the sample size is very small or large,
when we have a smaller number of baskets and when the target response rate is closer to the null response rate. This is a
more realistic trial setting and hence why the 2-step mEXNEXc model has been proposed, although an argument could
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4410 DANIELLS et al.

be made in some cases to use just a 1-step procedure in which heterogeneous baskets are removed and the remaining
borrowing probabilities are fixed at 0.5.

The performance of the modified EXNEX model is reliant on the cut-off specification for assigning a basket for inde-
pendent analysis, which is selected to balance the trade-off between power improvement and control of type I error rate.
When chosen to favor power improvement, the proposed method reduces error rates in the presence of a single hetero-
geneous basket and improves power when all baskets are sensitive to treatment. However, when clusters of responses are
observed, the proposed method increases the probability of borrowing between all baskets and hence error rates increase
and the method performs similarly to the standard EXNEX model. Whereas, if the cut-off is chosen to control error rates
this inflation is not present across any of the simulation scenarios considered and power is improved in comparison to
an independent analysis. As a result, implementing this newly proposed modified EXNEX model with a suitable cut-off
value, produces a model that either exceeds all other borrowing methods considered here in terms of performance of acts
similarly to the standard EXNEX model.

A draw towards the standard EXNEX model is it is ability to borrow between multiple subsets of baskets by incorporat-
ing more than one exchangeability component in its mixture distribution in model (4). The mEXNEXc model could benefit
from extension to allow for this feature. This would lead to better handling of borrowing within clusters of homogeneous
responses.

Other alternative approaches for information borrowing in the basket trial setting are outlined in the literature, these
include the MUCE design,20 Liu’s two-path approach21 and the RoBoT design22 to name a few. Comparisons between the
proposed mEXNEXc model and the above methods have not yet been made.

Adaptive design features such as interim analyses with futility/efficacy stopping are desirable in most clinical trials and
has been considered in the work by Jin et al,3 Berry et al,7 Chu and Yuan,8 and Psioda et al.10 However, no such adaptive
design features were considered in this article which could be considered a limitation. The methodology described here
could be extended to incorporate such features and future work into this aspect is being conducted.

ACKNOWLEDGEMENTS
This report is independent research supported by the National Institute for Health Research (NIHR Advanced Fel-
lowship, Dr. Pavel Mozgunov, NIHR300576). The views expressed in this publication are those of the authors and not
necessarily those of the NHS, the National Institute for Health Research or the Department of Health and Social Care
(DHSC). Thomas Jaki and Pavel Mozgunov received funding from UK Medical Research Council (MC UU 00002/14 and
MC UU 00002/19, respectively). This article is based on work completed while Libby Daniells was part of the EPSRC
funded STOR-i centre for doctoral training (EP/S022252/1). For the purpose of open access, the author has applied a
Creative Commons Attribution (CC BY) licence to any author accepted manuscript version arising.

DATA AVAILABILITY STATEMENT
All simulations were conducted through the computing software JAGS in R through the “rjags” package.17 No new data
have been used in this publication. Simulations can be reproduced using the open accessible code available at https://
github.com/LibbyDaniells/mEXNEX.

ORCID
Libby Daniells https://orcid.org/0000-0003-4128-5965
Pavel Mozgunov https://orcid.org/0000-0001-6810-0284
Thomas Jaki https://orcid.org/0000-0002-1096-188X

REFERENCES
1. Lu C, Li X, Broglio K. Practical considerations and recommendations for master protocol framework: basket, umbrella and platform trials.

Ther Innov Regul Sci. 2021;55:1145-1154.
2. Bogin V. Master protocols: new directions in drug discovery. Contemp Clin Trials Commun. 2020;18:100568.
3. Jin J, Riviere M, Luo X, Dong Y. Bayesian methods for the analysis of early-phase oncology basket trials with information borrowing across

cancer types. Stat Med. 2020;39(25):3459-3475.
4. Oakes J. Effect identification in comparative effectiveness research. EGEMS. 2013;1(1):1004.
5. Bernardo J. The concept of exchangeability and its applications. Far East J Math Sci. 1996;4:111-121.
6. Bernardo J, Smith A. Bayesian Theory. Hoboken, NJ: Wiley; 1994.
7. Berry S, Broglio K, Groshen S, Berry D. Bayesian hierarchical modeling of patient subpopulations: efficient designs of phase II oncology

clinical trials. Clin Trials. 2013;10(5):720-734.

 10970258, 2023, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9867 by U
niversitaet R

egensburg, W
iley O

nline L
ibrary on [25/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/LibbyDaniells/mEXNEX
https://github.com/LibbyDaniells/mEXNEX
https://orcid.org/0000-0003-4128-5965
https://orcid.org/0000-0003-4128-5965
https://orcid.org/0000-0001-6810-0284
https://orcid.org/0000-0001-6810-0284
https://orcid.org/0000-0002-1096-188X
https://orcid.org/0000-0002-1096-188X


DANIELLS et al. 4411

8. Chu Y, Yuan Y. A Bayesian basket trial design using a calibrated Bayesian hierarchical model. Clin Trials. 2018;15(2):149-158.
9. Neuenschwander B, Wandel S, Roychoudhury S, Bailey S. Robust exchangeability designs for early phase clinical trials with multiple

strata. Pharm Stat. 2016;15(2):124-134.
10. Psioda M, Xu J, Jinag Q, Ke C, Yang Z, Ibrahim J. Bayesian adaptive basket trial design using model averaging. Biostatistics.

2021;22(1):19-34.
11. Hyman D, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med.

2015;373(8):726-736.
12. Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10(1):1-10.
13. Cunanan K, Iasonos A, Shen R, Gönen M. Variance prior specification for a basket trial design using Bayesian hierarchical modeling. Clin

Trials. 2018;16(2):142-153.
14. Gelman A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal.

2006;1(3):515-534.
15. Zheng H, Hampson L. A Bayesian decision-theoretic approach to incorporate preclinical information into phase I oncology trials. Biom J.

2020;62:1408-1427.
16. Hoeting J, Madigan D, Raftery A, Volinsky C. Bayesian model averaging: a tutorial (with comments by M. Clyde, D. Draper and E. I.

George, and a rejoinder by the authors). Stat Sci. 1999;14(4):382-417.
17. Plummer M. rjags: Bayesian Graphical Models Using MCMC. R package version 4-12; 2021.
18. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
19. Zheng H, Wason J. Borrowing of information across patient subgroups in a basket trial based on distributional discrepancy. Biostatistics.

2020;23(1):120-135.
20. Lyu J, Zhou T, Yuan S, Guo W, Ji Y. MUCE: Bayesian hierarchical modeling for the design and analysis of phase 1b multiple expansion

cohort trials. J R Stat Soc Ser C Appl Stat. 2020;72:649-669.
21. Liu R, Liu Z, Ghadessi M, Vonk R. Increasing the efficiency of oncology basket trials using a Bayesian approach. Contemp Clin Trials.

2017;63:67-72.
22. Zhou T, Ji Y. RoBoT: a robust Bayesian hypothesis testing method for basket trials. Biostatistics. 2020;22(4):897-912.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Daniells L, Mozgunov P, Bedding A, Jaki T. A comparison of Bayesian information
borrowing methods in basket trials and a novel proposal of modified exchangeability-nonexchangeability method.
Statistics in Medicine. 2023;42(24):4392-4417. doi: 10.1002/sim.9867

APPENDIX A. SIMULATION PRIOR AND PARAMETER SPECIFICATION

For the simulation study in Section 3, priors are chosen to match those suggested in the models literature. The following
priors are used for the simulation study:

• Independent model:

Yk ∼ Binomial(nk, pk), k = 1, … ,K

𝜃k = log
(

pk

1 − pk

)

,

𝜃k ∼ N(logit(0.15), 102),

• Bayesian hierarchical model:

Yk ∼ Binomial(nk, pk), k = 1, … ,K

𝜃k = log
(

pk

1 − pk

)

∼ N(𝜇, 𝜎2),

𝜇 ∼ N(logit(0.15), 102),
𝜎 ∼ Half-Cauchy(0, 25).
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• Calibrated Bayesian hierarchical model:

Yk ∼ Binomial(nk, pk), k = 1, … ,K

𝜃k = log
(

pk

1 − pk

)

∼ N(𝜇, 𝜎2),

𝜇 ∼ N(logit(0.15), 102),
𝜎

2 = exp{a + b log(T)},

where, through tuning, a = −7.25 and b = 5.86 based on a sample size of 13 per basket. The chi-squared test statistic
is used to compute T as in Equation (3).

• BMA: A weakly informative Beta prior is placed on the response rates so pSj |j ∼ Beta(a0, b0) where a0 = q1 = 0.45
and b0 = 1 − q1 = 0.55. The prior f (j) ∼ P2

j is placed on the models, where Pj is the number of distinct response
rates in model j.

• EXNEX: For the standard EXNEX model equal prior mixture weights for the EX/NEX components are used and thus
𝜋k = 0.5 for all k baskets. A plausible guess of the true response rate is chosen to be 𝜌k = 0.35 (a value that is considered
low but still indicative of a response) for all k baskets:

Yk ∼ Binomial(nk, pk), M1k ∼ N(𝜇, 𝜎2), (EX)

𝜃k = log
(

pk
1−pk

)

, 𝜇 ∼ N(logit(0.15), 102),

𝜃k = 𝛿kM1k + (1 − 𝛿k)M2k, 𝜎 ∼ Half-Normal(0, 1),

𝛿k ∼ Bernoulli(0.5), M2k ∼ N(−0.62, 4.42), (NEX)

with the parameters of the NEX component computed through the following:9

mk = log
(

𝜌k

1 − 𝜌k

)

, 𝜈k =
1
𝜌k
+ 1

1 − 𝜌k
. (A1)

• Modified EXNEX: The same structure and prior choices as the standard EXNEX model with the exception of the prior
on 𝜎. Rather than applying the prior 𝜎 ∼ Half-Normal(0, 1) the prior is placed on 𝜎2, that is, 𝜎2 ∼ Half-Normal(0, 1).
The mixture weights have a Bernoulli prior with prior parameter of success, 𝜋k, which are calculated via the Hellinger
distance with cut-off c chosen to be 0 and 1/13.

APPENDIX B. SIMULATION RESULTS

T A B L E B1 Operating characteristics for a simulation based on the planned sample size of 13 per basket for Scenarios 1-6.

% Reject

Sample size 13 13 13 13 13 % All correct FWER

Scenario 1 0.15 0.15 0.15 0.15 0.15

Independent 9.72 9.67 10.04 10.22 10.44 58.73 0.413

BHM 9.42 9.52 9.52 9.29 9.51 72.23 0.278

CBHM 9.77 9.93 9.60 9.65 9.90 76.63 0.234

(Continues)
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T A B L E B1 (Continued)

% Reject

Sample size 13 13 13 13 13 % All correct FWER

BMA 10.07 10.04 9.78 10.21 9.73 68.05 0.320

EXNEX 10.35 9.95 10.17 9.97 10.35 62.69 0.373

mEXNEX1∕13 9.78 10.05 10.40 10.00 10.09 61.18 0.388

mEXNEX0 9.57 10.06 9.18 9.84 9.61 60.04 0.400

Scenario 2 0.45 0.15 0.15 0.15 0.15

Independent 87.34 10.41 10.61 10.08 10.08 56.79 0.351

BHM 85.51 16.53 16.82 17.16 17.12 45.72 0.419

CBHM 81.13 9.68 9.86 9.82 9.57 56.15 0.275

BMA 86.40 13.16 12.98 12.92 13.59 53.25 0.356

EXNEX 86.89 11.36 12.04 11.99 11.71 51.47 0.387

mEXNEX1∕13 87.81 11.37 11.83 11.27 11.67 54.37 0.369

mEXNEX0 87.97 10.35 10.39 10.17 10.63 56.29 0.352

Scenario 3 0.45 0.45 0.15 0.15 0.15

Independent 88.36 88.67 10.24 9.80 9.97 57.35 0.271

BHM 91.62 91.56 21.70 21.59 22.32 45.96 0.428

CBHM 84.63 84.38 10.44 10.79 10.66 52.99 0.246

BMA 89.93 89.67 17.96 18.33 18.66 49.36 0.358

EXNEX 89.92 90.00 12.55 12.97 12.79 55.04 0.321

mEXNEX1∕13 89.53 89.20 12.56 12.41 12.59 54.24 0.316

mEXNEX0 88.39 88.69 10.44 10.59 10.92 55.60 0.282

Scenario 4 0.45 0.45 0.45 0.15 0.15

Independent 88.37 87.95 88.29 10.37 9.62 56.03 0.189

BHM 94.19 94.03 93.90 29.67 30.44 41.43 0.458

CBHM 85.94 86.48 86.22 12.29 12.06 49.82 0.200

BMA 92.38 92.72 93.09 23.80 23.24 44.18 0.390

EXNEX 91.13 91.08 90.96 13.12 13.13 57.75 0.230

mEXNEX1∕13 90.98 90.78 90.68 13.84 14.05 56.37 0.243

mEXNEX0 89.48 89.20 88.89 10.61 10.86 56.53 0.204

Scenario 5 0.45 0.45 0.45 0.45 0.15

Independent 88.30 87.81 87.46 88.51 10.10 54.14 0.101

BHM 96.55 96.13 96.44 96.04 42.11 47.17 0.421

CBHM 87.99 87.94 87.89 88.19 16.65 47.18 0.167

BMA 94.69 94.44 94.92 94.62 24.01 60.37 0.240

EXNEX 91.28 91.14 91.70 90.91 16.12 56.87 0.161

mEXNEX1∕13 91.43 91.72 91.63 91.52 14.86 58.60 0.149

mEXNEX0 89.54 89.44 89.40 89.19 11.20 56.54 0.112

Scenario 6 0.45 0.45 0.45 0.45 0.45

Independent 88.28 87.66 88.16 88.09 87.95 52.77

BHM 97.94 98.28 98.13 98.23 97.87 91.53

CBHM 91.28 91.48 91.06 91.16 91.48 66.72

BMA 95.24 95.49 95.62 95.30 95.84 79.88

EXNEX 92.42 92.61 91.98 91.96 91.98 68.39

mEXNEX1∕13 91.64 92.13 92.06 91.60 91.94 66.38

mEXNEX0 89.78 89.57 89.65 89.92 89.92 58.38
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4414 DANIELLS et al.

T A B L E B2 Operating characteristics for a simulation based on the planned sample size of 13 per basket for Scenarios 7-10.

% Reject

Sample size 13 13 13 13 13 % All correct FWER

Scenario 7 0.35 0.15 0.15 0.15 0.15

Independent 66.04 9.11 9.06 9.03 9.21 45.47 0.317

BHM 63.60 15.13 15.31 15.17 15.16 32.43 0.375

CBHM 55.78 9.13 9.22 8.96 9.26 38.29 0.234

BMA 65.20 13.14 13.37 12.89 13.26 37.72 0.353

EXNEX 67.77 11.27 11.46 11.25 11.31 40.06 0.371

mEXNEX1∕13 68.34 11.23 11.02 10.90 11.17 42.22 0.353

mEXNEX0 68.34 10.12 9.84 9.85 10.16 44.90 0.353

Scenario 8 0.35 0.35 0.35 0.15 0.15

Independent 66.80 64.94 65.95 9.15 9.32 23.70 0.177

BHM 80.04 79.02 80.02 28.93 28.91 24.22 0.426

CBHM 66.33 65.28 65.86 16.20 16.22 20.62 0.225

BMA 77.39 76.45 77.23 23.73 23.78 19.52 0.391

EXNEX 73.23 71.79 73.12 13.39 13.71 28.66 0.231

mEXNEX1∕13 72.98 71.60 72.82 14.40 14.43 27.53 0.245

mEXNEX0 69.35 67.97 69.41 10.73 10.84 26.76 0.203

Scenario 9 0.45 0.35 0.35 0.15 0.15

Independent 86.79 65.64 66.13 9.18 8.98 31.18 0.173

BHM 93.78 79.49 80.73 29.23 29.07 28.67 0.435

CBHM 86.56 65.29 66.40 14.29 14.42 27.79 0.213

BMA 92.90 76.68 77.27 24.01 24.15 25.25 0.395

EXNEX 90.94 71.88 73.18 13.35 13.39 36.03 0.230

mEXNEX1∕13 90.71 71.74 73.02 13.83 13.85 35.40 0.238

mEXNEX0 88.57 68.31 70.05 10.96 10.86 34.07 0.205

Scenario 10 0.45 0.45 0.35 0.35 0.15

Independent 87.23 86.71 66.48 66.23 9.11 30.24 0.091

BHM 95.87 95.57 86.07 86.09 40.76 35.86 0.408

CBHM 88.69 87.89 69.31 69.35 18.48 26.39 0.185

BMA 94.97 94.81 83.30 83.24 27.25 46.40 0.273

EXNEX 91.56 90.86 74.23 74.02 17.25 34.31 0.173

mEXNEX1∕13 91.59 91.10 74.52 74.30 16.00 36.47 0.160

mEXNEX0 89.72 89.26 70.92 70.69 11.19 35.71 0.112

T A B L E B3 Operating characteristics for a simulation based on the realized sample size of 20, 10, 8, 18, and 7 across the five baskets
for Scenarios 1-6.

% Reject

Sample size 20 10 8 18 7 % All correct FWER

Scenario 1 0.15 0.15 0.15 0.15 0.15

Independent 6.36 4.83 10.47 6.14 7.39 69.49 0.305

BHM 11.15 9.11 8.46 11.07 8.59 70.66 0.293

CBHM 8.49 7.28 9.9 6.86 9.22 72.28 0.277

(Continues)
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DANIELLS et al. 4415

T A B L E B3 (Continued)

% Reject

Sample size 20 10 8 18 7 % All correct FWER

BMA 10.41 9.21 9.37 10.34 9.75 65.99 0.340

EXNEX 9.22 7.42 10.33 10.56 7.19 65.56 0.344

mEXNEX1∕13 9.48 12.30 10.31 11.70 8.04 58.98 0.410

mEXNEX0 6.85 4.79 10.83 6.04 7.42 68.61 0.314

Scenario 2 0.45 0.15 0.15 0.15 0.15

Independent 94.61 4.83 10.40 5.91 7.67 70.02 0.261

BHM 95.61 18.43 16.32 17.29 15.18 53.00 0.434

CBHM 94.60 7.75 12.19 7.72 10.26 68.58 0.272

BMA 96.05 13.74 13.66 14.82 13.16 59.76 0.373

EXNEX 95.28 12.00 10.77 11.68 8.80 61.92 0.346

mEXNEX1∕13 95.40 14.13 10.76 11.75 8.51 60.60 0.361

mEXNEX0 94.27 4.93 10.45 5.85 7.47 69.97 0.258

Scenario 3 0.45 0.45 0.15 0.15 0.15

Independent 94.14 73.33 10.92 5.57 7.83 54.14 0.222

BHM 97.62 87.94 21.31 21.56 22.44 47.25 0.431

CBHM 94.83 75.62 12.32 7.75 10.15 53.96 0.232

BMA 96.46 84.12 17.93 17.97 19.00 47.87 0.372

EXNEX 96.27 82.59 11.05 12.31 11.54 54.81 0.287

mEXNEX1∕13 95.90 84.97 11.49 12.36 11.09 57.33 0.290

mEXNEX0 94.70 73.27 10.49 5.86 7.45 54.22 0.219

Scenario 4 0.45 0.45 0.45 0.15 0.15

Independent 94.12 73.39 78.11 5.53 7.61 47.24 0.127

BHM 98.10 91.41 86.00 28.53 30.15 39.06 0.447

CBHM 95.20 75.65 79.04 9.27 10.93 45.85 0.157

BMA 97.09 88.34 82.69 21.92 25.58 37.73 0.410

EXNEX 96.70 87.15 78.40 13.43 17.31 47.47 0.267

mEXNEX1∕13 96.25 87.37 78.90 12.15 14.16 50.08 0.234

mEXNEX0 94.70 73.44 77.75 5.89 7.30 47.11 0.128

Scenario 5 0.45 0.45 0.45 0.45 0.15

Independent 94.92 73.29 78.10 90.83 7.96 45.46 0.080

BHM 98.72 94.08 90.92 98.39 51.36 35.06 0.514

CBHM 95.16 79.55 81.27 92.30 24.01 36.52 0.240

BMA 98.06 89.68 90.46 97.36 28.21 56.25 0.282

EXNEX 98.03 89.88 79.65 95.84 27.58 46.83 0.276

mEXNEX1∕13 96.27 88.98 80.34 95.95 17.93 53.30 0.179

mEXNEX0 94.57 73.22 78.47 90.93 7.23 45.79 0.723

Scenario 6 0.45 0.45 0.45 0.45 0.45

Independent 94.37 73.47 77.77 90.76 68.12 33.05

BHM 99.39 96.97 94.72 99.01 94.80 87.29

CBHM 95.70 84.24 84.82 94.06 80.99 59.07

BMA 98.16 90.15 90.92 97.59 89.61 70.66

EXNEX 98.29 89.75 83.66 96.37 88.21 64.59

mEXNEX1∕13 96.77 89.98 79.90 95.60 78.18 52.27

mEXNEX0 94.57 73.11 77.92 90.90 69.20 33.54
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4416 DANIELLS et al.

T A B L E B4 Operating characteristics for a simulation based on the realized sample size of 20, 10, 8, 18, and 7 across the five baskets for
Scenarios 7-12.

% Reject
Sample size 20 10 8 18 7 % All correct FWER
Scenario 7 0.35 0.15 0.15 0.15 0.15
Independent 76.02 4.94 10.40 4.99 7.20 57.36 0.249
BHM 80.18 17.27 15.52 17.46 14.69 43.94 0.399
CBHM 75.84 9.30 13.08 8.98 11.39 53.72 0.267
BMA 80.10 13.81 13.52 15.06 13.48 48.14 0.371
EXNEX 78.75 12.00 10.56 11.91 8.77 50.38 0.341
mEXNEX1∕13 79.25 13.25 11.01 11.77 9.68 50.38 0.357
mEXNEX0 76.02 4.94 10.40 5.90 7.20 56.84 0.257

Scenario 8 0.35 0.35 0.35 0.15 0.15
Independent 76.02 47.90 57.64 4.86 7.20 19.18 0.118
BHM 88.00 74.06 68.46 27.85 27.75 22.18 0.414
CBHM 78.39 54.96 60.62 14.03 15.81 18.10 0.202
BMA 85.28 69.90 65.30 22.84 23.12 19.26 0.389
EXNEX 83.73 67.45 58.24 13.66 15.33 24.78 0.246
mEXNEX1∕13 81.89 66.64 59.23 12.33 14.58 23.85 0.238
mEXNEX0 76.02 47.93 57.64 5.76 7.20 18.99 0.126

Scenario 9 0.45 0.35 0.35 0.15 0.15
Independent 94.36 47.90 57.64 5.22 7.20 23.37 0.121
BHM 97.99 75.36 68.87 27.28 27.86 24.42 0.420
CBHM 95.02 52.26 60.02 10.73 12.31 22.56 0.171
BMA 97.25 69.49 64.70 21.19 23.47 22.24 0.379
EXNEX 96.76 68.53 58.20 13.04 15.93 28.11 0.249
mEXNEX1∕13 96.12 67.52 59.08 12.31 13.79 28.57 0.230
mEXNEX0 94.36 47.90 57.64 5.86 7.20 23.21 0.127

Scenario 10 0.45 0.45 0.35 0.35 0.15
Independent 94.36 72.77 57.64 67.87 7.20 24.85 0.072
BHM 98.87 93.39 79.56 90.52 46.96 28.35 0.496
CBHM 95.57 79.91 64.17 74.09 24.04 20.08 0.240
BMA 98.03 89.48 78.91 87.79 27.76 45.58 0.278
EXNEX 97.94 89.39 61.24 82.50 25.36 30.02 0.254
mEXNEX1∕13 96.66 88.21 61.64 82.01 18.18 33.81 0.182
mEXNEX0 94.36 72.83 57.64 69.63 7.20 25.39 0.072

Scenario 11 0.15 0.15 0.15 0.15 0.45
Independent 6.75 4.94 10.40 4.91 68.65 51.58 0.244
BHM 15.60 14.74 13.30 15.13 63.74 31.89 0.384
CBHM 8.47 7.22 11.26 6.76 68.78 49.76 0.248
BMA 12.07 10.87 10.99 12.22 70.21 45.60 0.328
EXNEX 10.71 9.97 10.36 11.60 68.89 44.60 0.335
mEXNEX1∕13 10.22 12.99 10.52 11.36 69.15 41.90 0.328
mEXNEX0 6.75 4.94 10.40 5.90 68.65 51.06 0.253

Scenario 12 0.15 0.15 0.45 0.15 0.45
Independent 6.75 4.94 78.46 5.19 68.65 45.88 0.160
BHM 19.81 19.69 77.71 19.10 72.94 30.79 0.416
CBHM 8.45 71.40 76.84 7.07 69.58 45.28 0.176
BMA 14.06 13.59 76.02 15.03 72.10 32.99 0.328
EXNEX 13.61 13.76 78.05 12.07 69.18 35.06 0.326
mEXNEX1∕13 12.05 14.42 78.53 11.57 69.70 35.86 0.319
mEXNEX0 6.75 4.94 78.46 5.77 68.65 45.49 0.166
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DANIELLS et al. 4417

T A B L E B5 Operating characteristics for a simulation based on the realized sample size of 20, 10, 8, 18, and 7 across the five
baskets for Scenarios 13-16.

% Reject

Sample size 20 10 8 18 7 % All correct FWER

Scenario 13 0.15 0.45 0.45 0.15 0.45

Independent 6.75 72.77 78.46 4.87 68.65 35.11 0.113

BHM 24.43 88.84 83.42 24.96 80.68 33.21 0.393

CBHM 8.80 74.51 78.85 7.73 69.96 34.72 0.138

BMA 16.49 84.14 80.71 18.01 76.41 32.74 0.301

EXNEX 16.08 84.34 78.56 12.59 70.79 34.35 0.262

mEXNEX1∕13 12.96 85.24 78.71 11.93 70.96 36.75 0.230

mEXNEX0 6.75 72.77 78.46 5.93 68.65 34.77 0.123

Scenario 14 0.15 0.45 0.45 0.45 0.45

Independent 6.75 72.77 78.46 90.51 68.65 33.62 0.068

BHM 33.15 92.31 89.48 98.17 88.46 45.93 0.332

CBHM 10.60 75.58 79.79 91.72 71.10 33.01 0.106

BMA 16.88 89.36 86.45 97.33 87.04 56.35 0.169

EXNEX 16.72 89.33 79.41 96.53 79.03 45.97 0.167

mEXNEX1∕13 13.64 88.06 79.75 96.36 73.96 44.16 0.136

mEXNEX0 6.75 72.82 78.46 91.20 68.65 33.72 0.068

Scenario 15 0.45 0.15 0.15 0.15 0.45

Independent 94.36 4.94 10.40 5.05 68.65 52.35 0.191

BHM 97.24 22.52 20.75 21.14 76.40 38.11 0.433

CBHM 94.60 7.75 12.61 7.88 70.05 51.10 0.213

BMA 96.31 16.60 16.98 17.12 74.34 41.21 0.364

EXNEX 95.90 16.22 10.77 12.33 70.05 42.54 0.336

mEXNEX1∕13 95.77 15.27 11.14 11.85 70.29 43.45 0.325

mEXNEX0 94.36 4.95 10.40 5.83 68.65 51.79 0.198

Scenario 16 0.45 0.15 0.45 0.15 0.45

Independent 94.36 4.94 78.46 4.91 68.65 46.49 0.097

BHM 98.25 27.38 84.74 25.99 82.68 37.57 0.402

CBHM 94.71 8.36 79.27 8.70 70.39 44.99 0.134

BMA 97.20 17.75 82.49 20.40 79.90 38.51 0.338

EXNEX 97.15 17.80 78.74 12.98 72.42 38.90 0.278

mEXNEX1∕13 96.39 17.06 79.08 11.88 72.42 39.00 0.268

mEXNEX0 94.36 4.94 78.46 6.00 68.65 45.88 0.107
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