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Abstract

The goal of this thesis is to develop the theory of (∞, 1)-categories internal to an arbitrary ∞-topos
B. These objects can be defined as complete Segal objects in B or equivalently as sheaves of ∞-categories
on B, and we will simply refer to them as B-categories for short. Here we develop an extensive amount of
tools that are needed to efficiently work with these objects in practice.

Beginning with the theory of adjunctions, we define notions of limits and colimits in B-categories
and prove that presheaf B-categories are free cocompletions. We continue by developing a theory of
accessible and presentable B-categories and finally we study B-topoi. Here one of our main results is that
B-topoi are equivalent to relative topoi over B, so geometric morphism with target B. We then apply this
result to study smooth and proper geometric morphisms of ∞-topoi from an internal point of view. We
conclude with an application in étale homotopy theory where we use some of our machinery to construct
and understand a condensed refinement of the usual étale homotopy type of schemes.
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CHAPTER 1

Introduction

1.1. Motivation

Ever since the fundamental work of Lurie [57], the language of ∞-categories has become an indispens-
able tool in many areas of mathematics that employ homotopical thinking. The main goal of this thesis
is to contribute to the further development of this language by systematically studying ∞-categories
parametrized by an ∞-topos B. Here an ∞-category parametrized by B is defined to be a sheaf of
∞-categories on B, so a limit preserving functor Bop → Cat∞. We will call these objects B-categories for
short. Let us write Cat(B) = Funlim(Bop,Cat∞) for the ∞-category of B-categories. We now continue
by giving some examples where B-categories show up in practice.

One can think of parametrized ∞-categories as a way of encoding additional algebraic structure on
an ∞-category. As a concrete example let G be a compact Lie-group and OrbG its orbit category. Then
a PSh(OrbG)-category C is simply a functor C : OrbG → Cat∞. We think of a PSh(OrbG)-category as
an ∞-category with an action of the group G and for an orbit G/H we think of the value C(G/H) as
the additional information of the “topological” H-fixed points of the action on C. In fact the idea of
systematically studying PSh(OrbG)-categories originated in [11], [12], [13], [71] etc. and these methods
are by now a standard tool in equivariant homotopy theory, see [22], [21] etc.

Let us now give an example in which parametrized ∞-categories arise in more geometric situations.
For this let f : X → Y be a map of topological spaces. Then the functor

Open(Y )→ Cat∞, U 7→ Sh(f−1(U))

defines a sheaf of ∞-categories on Y that we denote by ShY (X). It turns out that ShY (X) suffices to
completely reconstruct the map f and provides a useful way of encoding the topological information of f .
In fact we will see in Chapter 6 that certain categorical properties of the Sh(Y )-category ShY (X) give
necessary and sufficient conditions for the functors f∗ : Sh(X)→ Sh(Y ) and f∗ to be compatible with
base change along some other map g : Z → Y .

Lastly B-categories can be used to encode a topological structure on an ∞-category by letting B be
the∞-topos of pyknotic spaces or condensed anima, introduced by Barwick-Haine [10] or Clausen-Scholze
[20]. As a concrete example, in [9, §13] the authors construct a Pyk(S)-category Gal(X) for any qcqs
scheme X that serves as a refinement of the category of points of the étale topos of Xét and captures the
additional information of a pro-finite topology on the category of points. Remembering this additional
structure on the category Gal(X) then allows to fully recover Xét from X, see [9, Corollary 0.5.2] and
[59, Theorem 2.3.1].

The above examples show that parametrized∞-categories naturally appear in many different contexts.
However, just like in ordinary higher category theory, it is often a non-trivial task to construct functors
between B-categories, since these encode many higher coherences, let alone prove properties of those.
The main way to overcome this issue is to construct functors, natural transformations etc. using universal
properties. But in order to be able to even formulate these universal properties one needs a suitably
developed framework for the higher category theory of parametrized ∞-categories. Providing such a
framework is the main goal of this thesis. In fact we will develop most of the contents of Lurie’s Higher
topos theory [57] in the context of B-categories.

i



ii 1. INTRODUCTION

Let us now take a conceptually slightly different point of view on B-categories. For this recall that
via the nerve functor an ∞-category can be equivalently thought of as a functor C : ∆op → S satisfying
the following conditions: For any n ≥ 2 the canonical map

Cn
(d{0,1},d{1,2},..,d{n−1,n})
−−−−−−−−−−−−−−−−→ C1 ×C0 C1 ×C0 ...×C0 C1

is an equivalence and furthermore the square

C0 C3

C0 × C0 C1 × C1

σ0

(id,id) d{0,2}×d{1,3}

σ0

is cartesian. Here we think of C1 as the space of morphisms in C, so that informally speaking, the first
condition says that Cn should be equivalent to the space of composable sequences of n morphisms. We
refer to these conditions for all n ≥ 2 as the Segal conditions. The second condition enforces that C0 is
equivalent to the space of equivalence in C, i.e. arrows that have a left and a right inverse. If a simplicial
object satisfies this condition, we say that it satisfies univalence. It turns out that simplicial objects in S

satisfying these two conditions model the ∞-category of ∞-categories. More precisely, the nerve functor
defines an equivalence between the ∞-category Cat∞ and the full subcategory of Fun(∆op, S) spanned by
the simplicial objects satisfying the Segal conditions and univalence, see [51] and [40].

One may now be inclined to consider a more general version of the above definition by replacing S

with a general ∞-topos B in order to define a notion of an ∞-category internal to B. It turns out that
the above equivalence generalizes and B-categories are equivalent to ∞-categories internal to B. Indeed,
if we denote by CSS(B) the full subcategory of Fun(∆op,B) spanned by those simplicial objects satisfying
the Segal conditions and univalence, it is not hard to see that there is an equivalence of ∞-categories

Cat(B) ≃ CSS(B).

The above equivalence shows that parametrized and internal higher category theory are equivalent
theories. In practice both of these perspectives are useful for different reasons. The internal point of
view often allows to give conceptually very clean definitions and proofs by “internalizing” the respective
concepts from usual ∞-category theory, effectively hiding the complexity of the base ∞-topos B. On the
other hand the parametrized perspective is crucial, because in practice almost all interesting examples
arise as some explicit sheaves of ∞-categories. Therefore we try get the best from both worlds in this
thesis: We give conceptually clean constructions and proofs using the internal perspective, but also
unwind their explicit meaning for the corresponding sheaves of ∞-categories.

1.2. Outline and Main results

We continue by giving a rough overview of the contents of each chapter of this thesis.

1.2.1. Fundamentals of B-category theory. Since we will directly build on the foundations of
B-category theory laid out in [62], we begin by recalling the basic definitions and results from loc. cit. in
§ 2.1. After that we study two fundamental kinds of construction in B-category theory in § 2.2, namely
subcategories and localisations. These constructions are both direct adaptions of their analogues in usual
∞-category theory. Furthermore we give a quick proof of the Straightening-Unstraightening equivalence
in the context of B-categories in § 2.3.

In § 2.4 we study adjunctions of B-categories. Defining an adjunction of B-categories is fairly
straightforward. The ∞-category Cat(B) is enriched over Cat∞ and therefore yields an (∞, 2)-category.
Thus we may simply take as a notion of adjunction the usual notion of adjunction in an (∞, 2)-category.
We prove a number of expected properties of adjunctions between B-categories by internalizing some
of the arguments from [17, §6.1]. We also give an explicit section-wise criterion for the existence of an
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adjoint functor that is very convenient in practice and which we will constantly use in the later chapters
of this thesis. Except for § 2.3, the content of this chapter first appeared in [63].

1.2.2. Colimits and Cocompletions. In this chapter we study (co)limits and (co)completions in
the context of B-category theory. In § 3.1 we begin by defining a notion of (co)limits in B-categories by
adapting Joyal’s definition [49, Definition 4.5] to our context and provide a number of explicit examples.
We then define what it means for a B-category to be cocomplete in § 3.2. While this notion is defined in
a purely internal way, it admits the following very concrete reformulation:

Proposition 1.2.2.1 (Corollary 3.2.4.7). A B-category C is cocomplete if and only if the following
conditions are satisfied:

(1) For every A ∈ B the ∞-category C(A) is cocomplete and for any s : B → A the functor
s∗ : C(A)→ C(B) preserves colimits.

(2) For every map p : P → A in B the functor p∗ has a left adjoint p! such that for every pullback
square

Q P

B A

t

q p

s

in B the natural map q!t
∗ → s∗p! is an equivalence.

The dual statement for completeness holds as well.

To state the main theorem of this section, we need to introduce the following example of a B-category.
Unstraightening the codomain fibration ev1 : B∆1 → B defines a functor

ΩB : Bop → Cat∞, A 7→ B/A.

Because B is an ∞-topos, ΩB is a sheaf and thus defines a B-category. This example is fundamental for
the theory of B-categories because it plays the role that the ∞-category of spaces S plays in ordinary
higher category theory. Some crucial evidence for this claim is already given in [62], where it is shown
that ΩB is the base of the universal left fibration. Using Proposition 1.2.2.1 we can now easily verify that
ΩB has the expected property of being cocomplete. In fact the following much stronger statement is true,
which in particular characterizes ΩB as the free cocompletion of the point:

Theorem 1.2.2.2 (Theorem 3.4.1.1). For any B-category C and any cocomplete B-category E,
restriction along the Yoneda embedding hC : C ↪→ PShB(C) induces an equivalence

(hC)∗ : Funcc
B(PShB(C),E) ≃ FunB(C,E).

In other words, the Yoneda embedding hC : C ↪→ PShB(C) exhibits the B-category of presheaves on C as
the free cocompletion of C.

More generally we construct a free U-cocompletion for any internal class U and prove that it has the
expected universal property, see Theorem 3.4.1.13.

The contents of this chapter first appeared as a part of [63].

1.2.3. Presentable B-categories. Ever since Lurie’s seminal work [57], the theory of presentable
∞-categories has taken an important role, both within the development of the general theory of ∞-
categories and in applications. This is due to the many favourable properties of presentable ∞-categories,
such as the adjoint functor theorems or the existence of a well-behaved and explicit tensor product. Thus
the goal of this chapter is to generalize this notion to the context of B-categories.

As in usual ∞-category theory we would like to call a B-category presentable if it is accessible and
cocomplete. Therefore we begin by introducing a suitable notion of accessible B-categories. For this
we define the notion of a U-filtered B-category for some internal class U. Then a B-category C is called
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U-accessible if there is a small B-category C0 and a sufficiently nice1 internal class U such that C is
obtained by freely adjoining U-filtered colimits. We will say that C is accessible if it is U-accessible for
some (sufficiently nice) U. Thus we can now define C to be presentable if it is accessible and cocomplete.
Our first main result is the following characterization of presentable B-categories:

Theorem 1.2.3.1 (Theorem 4.4.2.4). For a large B-category D, the following are equivalent:
(1) D is presentable;
(2) there is a B-category C and a sound doctrine U such that D is a U-accessible Bousfield localisation

of PShB(C);
(3) D is accessible and cocomplete;
(4) there is a sound doctrine U such that D is U-accessible and DU -cpt is op(U)-cocomplete;
(5) there is a doctrine U and a small op(U)-cocomplete B-category C such that D ≃ ShU

Ω(C) (see
Definition 4.4.6.1);

(6) The following two conditions are satisfied:
(a) the associated sheaf D : Bop → Ĉat∞ takes values in the ∞-category PrL

∞ of presentable
∞-categories and colimit-preserving functors;

(b) for every map s : B → A in B the associated transition functor s∗ : D(A)→ D(B) admits a
left adjoint s!, and for every pullback square in B the induced commutative square in PrL

∞
is left adjointable.

Note that the equivalence of conditions (1)-(5) is an analogue of the characterization of presentable
∞-categories due to Lurie and Simpson [57, Theorem 5.5.1.1]. Condition (6), on the other hand, gives a
very explicit and simple way of checking whether a B-category is presentable in practice. Having such a
plethora of equivalent characterisations of the notion of presentability at hand, it is straightforward to
prove the expected theorems that revolve around these objects: Among other things, we prove adjoint
functor theorems and discuss how one can construct (internal) limits and colimits of such B-categories.
Furthermore, we construct the tensor product of presentable B-categories and we show:

Theorem 1.2.3.2 (Propositions 4.6.3.2, 4.6.3.7 and 4.6.3.10). There is a strong monoidal and fully
faithful left adjoint ModB(PrL

∞) ↪→ PrL(B), where B is viewed as a presentably symmetric monoidal
∞-category via its cartesian monoidal structure and where PrL(B) is the ∞-category of presentable B-
categories and cocontinuous functors. Furthermore this functor is an equivalence whenever B is generated
under colimits by (−1)-truncated objects.

The contents of this chapter first appeared in [65].

1.2.4. B-topoi. Many of the explicit examples of presentable B-categories that we have in mind
arise in the following way: To any geometric morphism f∗ : X → B of ∞-topoi with left adjoint f∗,
one can associate a presentable B-category X given by the sheaf of ∞-categories X/f∗(−) on B. In
fact, B-categories that arise via the above construction have even more favourable properties than just
presentability. They give examples of B-topoi, the topic of this chapter.

Recall that a presentable ∞-category X is an ∞-topos if the functor X/− : Xop → Cat∞ that is
classified by unstraightening the codomain fibration is a limit preserving functor. In this case we
also say that X satisfies descent. Now if X is a B-category with finite limits we also have a cartesian
fibration ev1 : X∆1 → X of B-categories, that via unstraightening for B-categories classifies a functor
X/− : Xop → CatB2. We will say that X satisfies descent if this functor is limit preserving and that X is a
B-topos if it is presentable and satisfies descent. The first main result of this chapter is the following
classification of B-topoi:

Theorem 1.2.4.1 (Theorem 5.2.1.5). For a large B-category X, the following are equivalent:

1The precise condition is that we require U to be a sound doctrine, see Definition 4.1.2.7.
2Here CatB denotes the B-category of B-categories.
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(1) X is a B-topos;
(2) X satisfies the internal Giraud axioms:

(a) X is presentable;
(b) X has universal colimits;
(c) groupoid objects in X are effective;
(d) Ω-colimits in X are disjoint;

(3) there is a B-category C such that X arises as a left exact and accessible Bousfield localisation of
PShB(C);

(4) X is Ω-cocomplete and takes values in the ∞-category TopL,ét
∞ of ∞-topoi and étale algebraic

morphisms;
(5) X is an TopL,ét

∞ -valued sheaf that preserves pushouts.

The first three items in Theorem 1.2.4.1 can be understood as the B-categorical analogue of Lurie’s
characterisation of ∞-topoi in [57, Theorem 6.1.0.1]. By contrast, the last two items of the theorem
provide an external characterisation of B-topoi, i.e. one in terms of the underlying sheaves of∞-categories.

As usual we will say that a geometric morphism of B-topoi is a right adjoint functor f∗ : X → Y
between B-topoi whose left adjoint is left exact. We denote the ∞-category of B-topoi and geometric
morphisms between them by TopR(B). As a consequence of the fact that ΩB is the free cocompletion of
the point, we deduce that ΩB is the terminal object of TopR(B). It follows that the global sections functor
TopR(B)→ TopR

∞ factors through (TopR
∞)/B. Using the explicit characterisations of Theorem 1.2.4.1 we

can prove the following result:

Theorem 1.2.4.2 (Theorem 5.2.5.1). The global sections functor induces an equivalence Γ: TopR(B) ≃
(TopR

∞)/B between the ∞-category of B-topoi and the ∞-category of ∞-topoi over B.

The inverse to the equivalence in Theorem 1.2.4.2 can also be described very explicitly: It is precisely
the construction already described above, that sends a geometric morphism f∗ : X→ B to the B-category
given by the sheaf of ∞-categories f∗ΩX = X/f∗(−) on B.

Theorem 1.2.4.2 provides a useful way for understanding relative∞-topoi, because it allows to translate
properties of geometric morphisms to properties of the corresponding B-topoi. Since, conceptually speaking,
B-topoi behave in essentially the same way as ordinary ∞-topoi, the latter is often quite approachable.
This way of thinking about relative topoi is well-known in the 1-categorical case since the work of Moens
[67]. In fact many parts of Johnstone’s book [46] are using this strategy in a crucial way.

We also give an example how to apply Theorem 1.2.4.2 in ∞-topos theory. We internalize the proof
that for two ∞-topoi X and Y their product in TopR

∞ is given by the tensor product X⊗ Y. Using the
equivalence of Theorem 1.2.4.2, it follows that for a span of ∞-topoi X f∗−→ B

g∗←− Y the fibre product
X×BY in TopR

∞ is given by the tensor product of presentable B-categories f∗ΩX⊗B g∗ΩY. In combination
with Theorem 1.2.3.2 this shows that the fibre product X×B Y in TopR

∞ and the relative tensor product
X⊗B Y in PrL agree whenever B is generated under colimits by (−1)-truncated objects, generalizing [7,
Corollary 1.10].

Finally, we conclude this chapter by laying the foundations for the theory of localic B-topoi.
The contents of this chapter first appeared as part of [64] and [66].

1.2.5. Application: Smooth and proper morphisms of ∞-topoi. We now continue by giving
a further application of the results of this thesis in ∞-topos theory. Recall from [57, Definition 7.3.1.4]
that a geometric morphism p∗ : X→ B of ∞-topoi is called proper if it satisfies proper base change, so if
for any rectangle in TopR

∞

X′′ X′ X

B′′ B′ B

t∗

r∗

s∗

q∗ p∗

l∗ h∗
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in which both squares are cartesian, the mate transformation:

l∗q∗ → r∗t
∗

is invertible. Dually we say that p∗ is smooth if it satisfies smooth base change, so if the dual mate
transformation

q∗l∗ → t∗r
∗

is invertible. Knowing that a specific geometric morphism is smooth or proper can be very useful in
applications, but the above definitions are often rather hard to check. Therefore the main goal of this
chapter is to provide more explicit criteria for smoothness and properness.

Let us start by explaining the characterization for smooth geometric morphisms. Recall that a
geometric morphism of ∞-topoi p∗ : X → B is locally contractible if p∗ admits a further left adjoint
p♯ : X→ B with the property that for any span p∗A→ p∗B ← X in X the canonical map

p♯(p∗A×p∗B X)→ A×B p♯X

is an equivalence. Translating p∗ to be the B-topos p∗ΩX via the equivalence of Theorem 1.2.4.2, it is
not hard to check that p∗ is locally contractible if and only if the unique algebraic morphism of B-topoi
ΩB → p∗ΩX admits a left adjoint. In this case we also say that p∗ΩX is a locally contractible B-topos.
We then characterize locally contractible B-topoi as those B-topoi that are generated by their contractible
objects, see Proposition 6.1.2.5. As a consequence we deduce the following:

Theorem 1.2.5.1 (Theorem 6.1.3.2). A geometric morphism p∗ : X→ B is smooth if and only if it is
locally contractible.

We now continue by giving a characterization of proper morphisms of ∞-topoi. In order to motivate
our criterion, recall from [57, Corollary 7.3.4.12] that a Hausdorff space is compact if and only if the
global sections functor Γ∗ : Sh(X)→ S preserves filtered colimits. Thus one may be tempted to more
generally call an ∞-topos X compact if the global sections functor Γ∗ : X→ S preserves filtered colimits.
Given the theory that we have developed so far we can now relativize this condition. For this recall that
we call a B-category I filtered if the colimit functor colimI : FunB(I,ΩB) → ΩB is left exact. We then
say that a geometric morphism p∗ : X→ B is compact if the associated terminal geometric morphism of
B-topoi (ΓB)∗ : p∗ΩX → ΩB commutes with colimits indexed by filtered B-categories.

Since the notion of properness of a geometric morphism also gives a sensible notion of relative
compactness one might ask if these two notions agree. We give an affirmative answer:

Theorem 1.2.5.2 (Theorem 6.2.1.12). A geometric morphism p∗ : X→ B is proper if and only if it
is compact.

That such a characterization of proper geometric morphisms should hold is already mentioned in
[57, Remark 7.3.1.5], but the necessary language to make it precise was not yet available. However, note
that even in the case B = S, where the statement makes no reference to internal higher category theory,
Theorem 1.2.5.2 was previously unknown. In fact, our proof crucially uses techniques from internal higher
category theory even in this case.

Finally we apply the above theorem to show that a proper and separated map p : X → Y of arbitrary
topological spaces induces a proper geometric morphism p∗ : Sh(X) → Sh(Y ). This generalizes [57,
Theorem 7.3.1.16], where X was assumed to be completely regular.

The contents of this chapter first appeared as parts of [64] and [66].

1.2.6. Applications in étale homotopy theory. In the final chapter we will present applications
of the previous results in étale homotopy theory. These applications have their origin in the work of
Barwick-Glasman-Haine on Exodromy results in algebraic geometry [9] and Lurie’s work on Ultracategories
[59]. The ∞-topos internally to which we are going to work is the ∞-topos of condensed or pyknotic
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spaces. Our starting point is the question to what extend a coherent ∞-topos X can be recovered from
its category of points.

In general the answer to this question is that it cannot3, but we can fix this issue by remembering
the natural pyknotic structure that the category of points Pt(X) acquires. Indeed, for any ∞-topos X we
define Pt(X) to be the Pyk(S)-category given by the functor

Pt(X) : Pro(Setfin)→ Cat∞, S 7→ Fun∗(Sh(S),X).

It is expected that one can recover the full ∞-topos X from Pt(X) whenever X is bounded and coherent.
Lurie proves this for coherent 1-topoi in [59].

For our applications we will focus on the case where X = Xét is the ∞-topos of étale sheaves on a
qcqs scheme X. In this case it turns out that the ∞-topos Xét can already be recovered from a smaller
variant of Pt(X). Following [9], we write Gal(X) for the Pyk(S)-category given by the functor

Gal(X) : Pro(Setfin)→ Cat∞, S 7→ Funcoh
∗ (Sh(S), Xét),

where Funcoh
∗ (Sh(S), Xét) denotes the ∞-category of coherent geometric morphisms. Considering the

∞-category Sπ as a constant Pyk(S)-category, Barwick-Glasman-Haine show that there is an equivalence
of ∞-categories

Xcons
ét ≃ FunPyk(S)(Gal(X), Sπ),

where the left hand side denotes the full subcategory spanned by the constructible étale sheaves, see [9,
Corollary 0.5.2, Theorem 13.2.11]. The first main result of this chapter extends the Exodromy equivalence
to a much larger class of sheaves. To simplify notation we write Pyk(S) = ΩPyk(S).

Theorem 1.2.6.1 (Theorem 7.2.0.1). Let X be a qcqs scheme. Then the exodromy equivalence induces
an equivalence of ∞-topoi

Xhyp
proét

≃−−→ FunPyk(S)(Gal(X),Pyk(S)).

Here the source category is the ∞-topos of hypercomplete pro-étale sheaves on X, as introduced in
[14, §4]. The above theorem shows that when working internally to pyknotic spaces the structure of the a
priori complicated pro-étale ∞-topos greatly simplifies because it is “just” a presheaf category. It also
gives a conceptual explanation why the topos of pro-étale sheaves has so many convenient properties. For
example it immediately implies that for an arbitrary map of schemes f : X → Y the pullback functor

f∗ : Y hyp
proét → Xhyp

proét

commutes with all limits, see Corollary 7.2.3.12.
We will then apply Theorem 1.2.6.1 to understand the étale homotopy theory of schemes. Recall that

the étale homotopy type of a scheme X, introduced by Artin-Mazur-Friedlander in [8],[24], can from a
modern point of view be defined as the shape of the ∞-topos of hypercomplete étale sheaves Xhyp

ét , see
[44, § 5]. Since Xhyp

ét is typically not locally contractible, the étale homotopy type is often not a space
but a pro-space, which can be hard to work with. However, Theorem 1.2.6.1 shows that the situation
improves if we work in the pro-étale setting instead. The Pyk(S)-topos Xhyp

proét is locally contractible, it
is even a presheaf topos. Therefore we may also easily compute its shape relative to Pyk(S), which we
denote by Πproét

∞ (X), as the groupoidification Gal(X)gpd.
We call the pyknotic space Πproét

∞ (X) the pro-étale homotopy type of X. It is related to the usual étale
homotopy type via the fact that Πét

∞(X) is equivalent to the pro-truncated homotopy type of Πproét
∞ (X)

(see Proposition 7.3.1.7). Having this explicit description of Πproét
∞ (X) as the groupoidification of a

Pyk(S)-category allows us to apply methods from the theory of Pyk(S)-categories. Concretely we will
prove a variant of Quillen’s Theorem B [74, Theorem B], internally to any ∞-topos B and also up to

3The sheaf topoi associated with any two pro-finite sets of the same cardinality have the same category of points
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localisation at a class of morphisms.4 We then apply this result to deduce that for a smooth and proper
morphism X → Y of qcqs schemes and a geometric point y → Y the fibre of the induced map

Πproét
∞ (X)→ Πproét

∞ (Y )

at y is equivalent to Πproét
∞ (Xy) after pro-finitely completing at the primes that are invertible on Y , see

Theorem 7.3.3.10.
The results of § 7.2 have first appeared in [91] and the results of § 7.3 are going to appear in joint

work with Barwick, Haine, Holzschuh, Lara, Mair and Martini.

1.3. Related work

The series of papers on parametrized higher category theory and parametrized higher algebra by
Barwick-Dotto-Glasman-Nardin-Shah [11], [13], [82], [71], [83] already develops a substantial amount of
the theory of internal higher categories in the special case where B = PSh(C) is a presheaf category on
some orbital ∞-category. More concretely, in the case of an arbitrary presheaf ∞-topos, many of the
results in Chapter 3 and some results from Chapter 4 on filteredness have also been proven by Shah in
[82] and [83]. If C is also assumed to be orbital, a theory of presentability has been developed by Hilman
in [43].

The theory of B-categories is also closely related to various flavours of synthetic ∞-category theory.
One instance of such a theory is Riehl-Shulman’s simplicial homotopy type theory [79]. By [84], simplicial
homotopy type theory can be interpreted in simplicial objects in any ∞-topos and therefore provides a
purely synthetic way of arguing about B-categories. Many concepts of internal higher category theory
have been developed from this point of view by Buchholtz-Weinberger in [16] and Weinberger in [90],
[89], [88]. Our theory is also related to the ongoing work of Cisinski-Cnossen-Nguyen-Walde on the
formalization of higher category theory [19]. The theory of B-categories will give rise to an example of a
“synthetic category theory” and then many of our results can be proven in this more general setup.

Let us also mention that in the 1-categorical context, the notion of an internal category has been
first formulated by Grothendieck in [31] and since then has been developed by many mathematicians
such as Bunge, Bénabou, Celeyrette, Joyal and Tierney. In particular many results of this thesis are
well-known for a long time in the 1-categorical context. Also many of the 1-categorical analogues of our
topos-theoretic results are well-known. See [46] for an extensive account. More specifically let us mention
that the equivalence between relative and internal topoi is due to Moens [67] and the characterization of
proper morphisms is due Lindgren [54] and also appears in [69].

Finally let us again mention that the contents of Chapters 2-6 are all part of joint work with Louis
Martini [63], [65], [64], [66]. The contents of § 7.2 first appeared in [91], but some of the arguments have
been simplified and some results have been added. The contents of § 7.3 are going to appear in joint
work with Barwick, Haine, Holzschuh, Lara, Martini and Mair.

4Such a result was also proven in [68]. We will give our own proof here, that is better adapted to the language of this
thesis.



CHAPTER 2

Fundamentals of B-category theory

The goal of this chapter is to set the stage and prove some preliminary results for the later chapters
of this thesis. We will begin with an extensive recollection of the main framework and results from [62]
in § 2.1. After that we continue by studying subcategories and localisations of B-categories in § 2.2.
Both of these notions are rather straightforward adoptions of the corresponding notions in usual higher
category theory. Then we will give a proof of the straightening-unstraightening equivalence for cocartesian
fibrations of B-categories in § 2.3.2. This result was first proven in [61], but we decided to give our own
proof here because it is completely different from the on given in [61].

In § 2.4 we study adjunctions between B-categories. They are defined via the standard 2-categorical
definition in terms of units, counits and triangle identities, but we also provide a number of equivalent
characterizations, as in [17, § 6.1]. We also prove a useful section-wise characterization for the existence
of an adjoint: A functor of B-categories f : C → D has a left adjoint if and only if for every A ∈ B

the functor of f(A) : C(A)→ D(A) admits a left adjoint and for any s : A→ B in B the induced mate
transformation is invertible, see Proposition 2.4.2.9.

2.1. Background and recollections on B-categories

In this section we recall the basic framework of higher category theory internal to an ∞-topos
from [62]. We give quick arguments for some of the easier statements if possible, but mostly we just refer
to loc. cit. for proofs.

2.1.1. General conventions and notation. We generally follow the conventions and notation
from [62]. For the convenience of the reader, we will briefly recall the main setup.

Throughout this paper we freely make use of the language of higher category theory. We will
generally follow a model-independent approach to higher categories. This means that as a general rule,
all statements and constructions that are considered herein will be invariant under equivalences in the
ambient ∞-category, and we will always be working within such an ambient ∞-category.

We denote by ∆ the simplex category, i.e. the category of non-empty totally ordered finite sets with
order-preserving maps. Every natural number n ∈ N can be considered as an object in ∆ by identifying n
with the totally ordered set ⟨n⟩ = {0, . . . n}. For i = 0, . . . , n we denote by δi : ⟨n− 1⟩ → ⟨n⟩ the unique
injective map in ∆ whose image does not contain i. Dually, for i = 0, . . . n we denote by σi : ⟨n+ 1⟩ → ⟨n⟩
the unique surjective map in ∆ such that the preimage of i contains two elements. Furthermore, if S ⊂ n
is an arbitrary subset of k elements, we denote by δS : ⟨k⟩ → ⟨n⟩ the unique injective map in ∆ whose
image is precisely S. In the case that S is an interval, we will denote by σS : ⟨n⟩ → ⟨n− k⟩ the unique
surjective map that sends S to a single object. If C is an ∞-category, we refer to a functor C : ∆op → C

as a simplicial object in C. We write Cn for the image of n ∈ ∆ under this functor, and we write di, si,
dS and sS for the image of the maps δi, σi, δS and σS under this functor. Dually, a functor C• : ∆→ C

is referred to as a cosimplicial object in C. In this case we denote the image of δi, σi, δS and σS by di, si,
dS and σS .

The 1-category ∆ embeds fully faithfully into the ∞-category of ∞-categories by means of identifying
posets with 0-categories and order-preserving maps between posets with functors between such 0-categories.
We denote by ∆n the image of ⟨n⟩ ∈ ∆ under this embedding.

1



2 2. FUNDAMENTALS OF B-CATEGORY THEORY

2.1.2. Set-theoretical foundations. Once and for all we will fix three Grothendieck universes
U ∈ V ∈ W that contain the first infinite ordinal ω. A set is small if it is contained in U, large if
it is contained in V and very large if it is contained in W. An analogous naming convention will be
adopted for ∞-categories and ∞-groupoids. The large ∞-category of small ∞-groupoids is denoted by S,
and the very large ∞-category of large ∞-groupoids by Ŝ. The (even larger) ∞-category of very large
∞-groupoids will be denoted by ̂̂S. Similarly, we denote the large ∞-category of small ∞-categories by
Cat∞ and the very large ∞-category of large ∞-categories by Ĉat∞. We shall not need the ∞-category
of very large ∞-categories in this thesis.

2.1.3. ∞-topoi. For ∞-topoi A and B, a geometric morphism is a functor f∗ : B→ A that admits
a left exact left adjoint, and an algebraic morphism is a left exact functor f∗ : A→ B that admits a right
adjoint. The global sections functor is the unique geometric morphism ΓB : B→ S into the ∞-topos of
∞-groupoids S. Dually, the unique algebraic morphism originating from S is denoted by constB : S→ B

and referred to as the constant sheaf functor. We will often omit the subscripts if they can be inferred from
the context. For an object A ∈ B, we denote the induced étale geometric morphism by (πA)∗ : B/A → B.

2.1.4. Universe enlargement. If B is an∞-topos, we define its universe enlargement B̂ = Sh
Ŝ
(B),

where the right-hand side denotes the ∞-category of presheaves Bop → Ŝ which preserve small limits; this
is an ∞-topos relative to the larger universe V [57, Remark 6.3.5.17]. Moreover, the Yoneda embedding
gives rise to an inclusion B ↪→ B̂ that commutes with small limits and colimits and with the internal
hom [62, Proposition 2.4.4]. The operation of enlarging universes is transitive: when defining the ∞-topoŝ̂B relative to W as the universe enlargement of B̂ with respect to the inclusion V ∈W, the ∞-categorŷ̂B is equivalent to the universe enlargement of B with respect to U ∈W [62, Remark 2.4.1].

2.1.5. Factorisation systems. Recall from [57, § 5.2.8], that if f : a → b and g : x → y are
morphisms in an ∞-category C, we say that f is left orthogonal to g (or g is right orthogonal to f) if the
commutative square

mapC(b, x) mapC(b, y)

mapC(a, x) mapC(a, y)

g∗

f∗ f∗

g∗

is cartesian. If C is a presentable ∞-category and if S is a small set of maps in C, there is a unique
factorisation system (L,R) in which a map is contained in R if and only if it is right orthogonal to the
maps in S, and where L is dually defined as the set of maps that are left orthogonal to the maps in
R, see [57, Proposition 5.5.5.7]. We refer to L as the saturation of S; this is the smallest set of maps
containing S that is stable under pushouts, contains all equivalences and is stable under small colimits in
Fun(∆1,C), see e.g. [62, Proposition 2.5.6]. An object c ∈ C is said to be S-local if the unique morphism
c→ 1 is contained in R.

If C is cartesian closed with internal hom [−,−] and has pullbacks, we say that f : a→ b is internally
left orthogonal to g : x→ y (or g is internally right orthogonal to f) if the commutative square

[b, x] [b, y]

[a, x] [a, y]

g∗

f∗ f∗

g∗

in C is cartesian. If C is again presentable and S a small set of morphisms in C, we can analogously
construct a factorisation system (L′,R′) in which R′ is the set of maps in B that are internally right
orthogonal to the maps in S [5]. Explicitly, a map is contained in R′ if and only if it is right orthogonal
to maps of the form s× idc for any s ∈ S and any c ∈ C. The left complement L′ is comprised of the
maps in C that are left orthogonal to the maps in R′ and is referred to as the internal saturation of S.
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Equivalently, L′ is the saturation of the set of maps s× idc for s ∈ S and c ∈ C. An object c ∈ C is said
to be internally S-local if the unique morphism c→ 1 is contained in R′.

Given any factorisation system (L,R) in C in which L is the saturation of a small set of maps in C,
the inclusion R ↪→ Fun(∆1,C) admits a left adjoint that carries a map f ∈ Fun(∆1,C) to the map r ∈ R

that arises from the unique factorisation f ≃ rl into maps l ∈ L and r ∈ R [57, Lemma 5.2.8.19]. By
taking fibres over an object c ∈ C, one furthermore obtains a Bousfield localisation C/c ⇆ R/c such that
if f : d → c is an object in C/c and if f ≃ rl is its unique factorisation into maps l ∈ L and r ∈ R, the
adjunction unit is given by l.

2.1.6. Simplicial objects, B-categories and B-groupoids. We will now give the definition of a
B-category, our main subject of study. However we at first introduce some notation:

Notation 2.1.6.1. If B is an arbitrary ∞-topos, we denote by B∆ = Fun(∆op,B) the ∞-topos of
simplicial objects in B. Note that the adjunction (const ⊣ Γ): S ⇆ B yields via postcomposition an
induced adjunction (const ⊣ Γ): S∆ ⇆ B∆ on the level of simplicial objects. We will often implicitly
identify a simplicial ∞-groupoid K with its image in B∆ along constB.

For every n ≥ 1, we denote by In = ∆1 ⊔∆0 · · · ⊔∆0 ∆1 ↪→ ∆n the n-spine, viewed as a simplicial
∞-groupoid. Furthermore, we denote by E1 = (∆0 ⊔∆0) ⊔(∆1⊔∆1) ∆3 the walking equivalence.

Definition 2.1.6.2 ([62, Definitions 3.1.5 and 3.2.1]). A B-category is a simplicial object C ∈ B∆

that is internally local with respect to I2 ↪→ ∆2 (Segal conditions) and E1 → ∆0 (univalence). We
denote by Cat(B) ↪→ B∆ the full subcategory spanned by the B-categories. A B-groupoid is a simplicial
object G ∈ B∆ which is internally local with respect to ∆1 → ∆0. We denote by Grpd(B) ↪→ B∆ the full
subcategory spanned by the B-groupoids.

Remark 2.1.6.3 ([62, Proposition 3.2.7]). A combinatorial argument, see [62, Lemma 3.2.5 and 3.2.6],
shows that a simplicial object C is a B-category if and only if it satisfies the following two conditions:

(1) (Segal conditions) For all n ≥ 2 the map

Cn
(d{0,1},d{1,2},..,d{n−1,n})
−−−−−−−−−−−−−−−−→ C1 ×C0 C1 ×C0 ...×C0 C1

in B is an equivalence.
(2) (Univalence) The commutative square

C0 C3

C0 × C0 C1 × C1

σ0

(id,id) d{0,2}×d{1,3}

σ0

in B is a pullback.

Remark 2.1.6.4. There are several non-equivalent definitions of the walking equivalence. For example,
Charles Rezk [77, § 6] defines the walking equivalence as the simplicial set J that arises as the nerve of
the category with two objects and a unique isomorphism between them. Our model E1 (that we adopted
from [55, Notation 1.1.12]), on the other hand, is comprised of a map together with separate left and
right inverses. Nevertheless, either choice gives rise to the same notion of B-categories: there is a natural
map E1 → J which is contained in the internal saturation of I2 ↪→ ∆2, i.e. which becomes an equivalence
when imposing the Segal conditions. This can be extracted from the discussion in [77, § 6], see also [76,
§ 2.4].

Proposition 2.1.6.5 ([62, Proposition 3.2.9, Remark 3.2.10 and Proposition 3.2.11]). The inclusion
Cat(B) ↪→ B∆ preserves filtered colimits and admits a left adjoint which preserves finite products.
Therefore, Cat(B) is presentable and an exponential ideal in B∆, so in particular cartesian closed.
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Proof. The statement about preservation of filtered colimits follows because the limits involved in
the explicit description of Remark 2.1.6.3 are all finite and filtered colimits commute with finite limits in
B∆. Furthermore the fact that the left adjoint B∆ → Cat(B) preserves finite products is easily seen to be
equivalent to Cat(B) being an exponential ideal in B∆. Thus we need to see that for any K ∈ B∆ and
C ∈ Cat(B), the internal hom HomB∆

(K,C) is a B-category. But this is clear from Definition 2.1.6.2,
because B-categories are defined to be internally local with respect to I2 → ∆2 and E1 → ∆0. □

Notation 2.1.6.6. We will denote by FunB(−,−) the internal hom in Cat(B) and refer to it as the
functor B-category bifunctor.

Proposition 2.1.6.7 ([62, after Corollary 3.2.12]). A simplicial object in B is a B-groupoid if and
only if it is constant (i.e. contained in the essential image of the diagonal embedding ι : B ↪→ B∆), and
every B-groupoid is a B-category. Moreover, the resulting embedding B ≃ Grpd(B) ↪→ Cat(B) admits
both a left adjoint (−)gpd (the groupoidification functor) and a right adjoint (−)≃ (the core B-groupoid
functor). Explicitly, if C is a B-category, one has Cgpd ≃ colim∆op C and C≃ ≃ C0.

Proof. If a simplicial object K ∈ B∆ is internally local with respect to ∆1 → ∆0, an easy
combinatorial argument (see [62, Lemma 3.1.3]) shows that it is local with respect to all maps of the
form ∆n ×A→ ∆0 ×A. This implies that K is constant. The converse follows because the left adjoint
colim∆op : B∆ → B sends maps of the form K ×∆1 → K ×∆0 for K ∈ B∆ to equivalences. Indeed, as
a sifted colimit, it commutes with products and clearly inverts the map ∆1 → ∆0. Since a constant
simplicial object satisfies the conditions of Remark 2.1.6.3, it also follows that any B-groupoid is a
B-category. The remaining part of the Proposition is clear. □

Definition 2.1.6.8. If C is a B-category, we denote by Cop the simplicial object that is obtained by
precomposing C : ∆op → B with the involution (−)op : ∆ ≃ ∆ that carries ⟨n⟩ (viewed as a 0-category)
to its opposite ⟨n⟩op. The simplicial object Cop is again a B-category that we refer to as the opposite
B-category of C.

Remark 2.1.6.9. The equivalence (−)op : Cat(B) ≃ Cat(B) from Definition 2.1.6.8 restricts to the
identity on Grpd(B). In fact, this follows immediately from the observation that B-groupoids are constant
simplicial objects (see Proposition 2.1.6.7).

Remark 2.1.6.10 ([62, § 3.3]). If f∗ : B → A is a geometric morphism and if f∗ is the associated
algebraic morphism, postcomposition induces an adjunction f∗ ⊣ f∗ : Cat(A) ⇆ Cat(B). In particular,
one obtains an adjunction constB ⊣ ΓB : Cat∞ ⇆ Cat(B). We will often implicitly identify an∞-category
C with the associated constant B-category constB(C) ∈ Cat(B). Furthermore, if the geometric morphism
f∗ is étale, the further left adjoint f! of f∗ also induces a functor f! : Cat(B)→ Cat(A) that identifies
Cat(B) with Cat(A)/f!1.

Construction 2.1.6.11. By making use of the adjunction constB ⊣ ΓB : Cat∞ ⇆ Cat(B) and the
internal hom FunB(−,−) as well as the product −×− in Cat(B), one can define bifunctors

FunB(−,−) = ΓB ◦ FunB(−,−) : Cat(B)op × Cat(B)→ Cat∞(Functor ∞-category)

(−)(−) = FunB(constB(−),−) : Catop
∞ ×Cat(B)→ Cat(B)(Powering)

−⊗− = constB(−)×− : Cat∞×Cat(B)→ Cat(B)(Tensoring)

which fit into equivalences

mapCat(B)(−⊗−,−) ≃ mapCat∞(−,FunB(−,−)) ≃ mapCat(B)(−, (−)(−))

(see [62, § 3.4]). In particular, we have FunB(−,−)≃ ≃ mapCat(B)(−,−), so that FunB(−,−) gives
rise to a Cat∞-enrichment of Cat(B) and therefore an (∞, 2)-categorical enhancement of Cat(B) [62,
Remark 3.4.3].
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Remark 2.1.6.12 ([62, Proposition 3.1.2]). There is an equivalence of functors idCat(B) ≃ ((−)∆•)≃.
In other words, for any B-category C and any integer n ≥ 0 one may canonically identify Cn ≃ (C∆n)0.

2.1.6.13. We conclude this section with a remark on large B-categories: observe that postcomposition
with the universe enlargement B ↪→ B̂ from § 2.1.4 determines an inclusion Cat(B) ↪→ Cat(B̂) that is
natural in B both with respect to geometric and algebraic morphisms of ∞-topoi [62, § 3.3]. Furthermore,
the inclusion commutes with small limits and the internal hom [62, Proposition 3.4.1] and therefore also
the tensoring, powering and functor ∞-category bifunctors [62, Corollary 3.4.2]. We refer to the objects
in Cat(B̂) as large B-categories (or as B̂-categories) and to the objects in Cat(B) as small B-categories.
If not specified otherwise, every B-category is small. Note, however, that by replacing the universe U
with the larger universe V (i.e. by working internally to B̂), every statement about B-categories carries
over to one about large B-categories as well. Also, we will often omit specifying the relative size of a
B-category if it is evident from the context, and we will continue writing FunB(C,D) for the internal hom
even if C and D are large.

2.1.7. B-categories as sheaves of ∞-categories. One may equivalently regard a B-category as
a sheaf of ∞-categories on B, by which we mean a functor Bop → Cat∞ that preserves small limits. Let
us first introduce the following notation:

Notation 2.1.7.1. If C is an ∞-category with all small colimits and D an ∞-category with all small
limits we write ShD(C) = Funlim(Cop,D).

Proposition 2.1.7.2 ([62, Proposition 3.5.1 and Remark 3.5.6]). Let ι : B ↪→ Cat(B) denote the
diagonal embedding. There is a canonical equivalence of B-categories

Φ: Cat(B)→ ShCat∞(B).

that restricts to the equivalence B ≃ ShS(B) along the diagonal ι : B ↪→ Cat(B).

Proof. If C is an arbitrary ∞-category with finite limits, we write FunCSS(∆op,C) for the full
subcategory spanned the functors that satisfy the conditions appearing in Remark 2.1.6.3. Recall from
[51, 40] that the nerve functor

N : Cat∞ → Fun(∆op, S), C 7→ mapCat∞(∆•,C)

restricts to an equivalence Cat∞ ≃ FunCSS(∆op, S). We therefore obtain a chain of natural equivalences

Cat(B) ≃ FunCSS(∆op,Funlim(Bop, S)) ≃ Funlim(Bop,FunCSS(∆op, S)) ≃ ShCat∞(B)

because limits in functor ∞-categories are computed pointwise. The second claim is clear from the
construction of the above equivalence. □

2.1.7.3. Explicitly the functor Φ sends a B-category C to the sheaf of complete Segal-spaces given by
mapB(−,C•). Using Remark 2.1.6.12 we obtain a chain of natural equivalences

mapB(−,C•) ≃ mapB∆
(ι(−),C∆•) ≃ mapCat∞(∆•,FunB(ι(−),C)),

where ι : B → B∆ is the diagonal functor. It follows that we may identify Φ(C) with the sheaf
FunB(ι(−),C). Hereafter, we will often implicitly identify a B-category C with the associated sheaf Φ(A).
That is, we usually write C(A) = Φ(C)(A) ≃ FunB(ι(A),C) for the ∞-category of local sections over
A ∈ B, and we write s∗ : C(B)→ C(A) for the restriction functor along a map s : B → A in B.

Remark 2.1.7.4 (cf. [62, Remark 3.1.1]). More explicitly, the ∞-category C(A) = FunB(ι(A),C) is
given by the complete Segal space whose space of n-morphisms is given by the ∞-groupoid mapB(A,Cn).
In particular, the equivalence Cat(B) ≃ ShCat∞(B) from Proposition 2.1.7.2 commutes both with
taking core B-groupoids and opposite B-categories, in the sense that we have equivalences of sheaves
C≃(−) ≃ C(−)≃ and Cop(−) ≃ C(−)op.
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Remark 2.1.7.5. One may interpret Proposition 2.1.7.2 as a correspondence between internal and
parametrised higher category theory. Both approaches have their specific advantages: the upshot of
the internal approach is that one can often use a statement about ∞-categories and simply interpret it
internally in B in order to obtain the corresponding statement for B-categories. On the other hand, it is
usually easier to construct a particular B-category via its associated sheaf of ∞-categories. In fact, most
examples that are of practical interest arise in this way.

Remark 2.1.7.6 ([62, § 3.5]). The equivalence Cat(B) ≃ ShCat∞(B) is natural in B: if f∗ : B→ A is
a geometric morphism and f∗ denotes its left adjoint, one obtains commutative squares

Cat(B) ShCat∞(B) Cat(B) ShCat∞(B)

Cat(A) ShCat∞(A) Cat(A) ShCat∞(A).

f∗

≃

f∗ f∗

≃

f∗

≃ ≃

Explicitly, f∗ : ShCat∞(B)→ ShCat∞(A) is given by restriction along f∗ : A→ B. In particular, we may
identify C(1) ≃ ΓB(C) for every B-category C. Furthermore, f∗ : ShCat∞(A)→ ShCat∞(B) is given by
left Kan extension along f∗ : A→ B. Thus, if the latter functor admits an additional left adjoint f!, then
f∗ : ShCat∞(A)→ ShCat∞(B) is simply given by precomposition with f!.

Remark 2.1.7.7 ([62, Proposition 3.5.1]). The equivalence between B-categories and sheaves of
∞-categories respects universe enlargement in the following sense: there is a commutative square

Cat(B) ShCat∞(B)

Cat(B̂) ShĈat∞
(B)

≃

≃

in which the lower horizontal equivalence is obtained by sending a large B-category C to Fun
B̂

(ι(−),C),
where ι : B ↪→ B̂ ↪→ Cat(B̂) is the inclusion.

2.1.7.8. We conclude this section by noting that the sheaf-theoretic perspective on B-categories
also gives rise to a fibrational point of view: on account of the inclusion ShĈat∞

(B) ↪→ PShĈat∞
(B)

and by making use of the straightening/unstraightening equivalence PShĈat∞
(B) ≃ Cart(B) between

Ĉat∞-valued presheaves on B and cartesian fibrations over B (see [57, § 3.2]), we obtain a full embedding
Cat(B̂) ↪→ Cart(B) which sends a (large) B-category C to its underlying cartesian fibration

∫
C→ B.

2.1.8. Objects and morphisms in B-categories. Next we introduce notions of objects and
morphisms in a B-category:

2.1.8.1. Observe that by combining Proposition 2.1.7.2 and 2.1.7.3 with the two-variable adjunctions
between the bifunctors FunB(−,−), −⊗− and (−)(−), one obtains equivalences

C∆n

(A)≃ ≃ mapCat(B)(A,C∆n

) ≃ mapCat(B)(∆n ⊗A,C) ≃ mapCat∞(∆n,C(A))

for every A ∈ B, every C ∈ Cat(B) and each n ∈ N (where we leave the diagonal embedding B ↪→ Cat(B)
implicit). Moreover, by combining Proposition 2.1.6.7 with Remark 2.1.6.12, we may furthermore compute

mapCat(B)(A,C∆n

) ≃ mapB(A,Cn).

In other words, the datum of a map A→ C∆n in Cat(B) is equivalent to that of a map ∆n ⊗A→ C in
Cat(B), a map A→ Cn in B as well as a functor ∆n → C(A) of ∞-categories.

Definition 2.1.8.2. Let C be a B-category and let A ∈ B be an object. For a given integer n ≥ 0,
an n-morphism in C in context A is a map A→ C∆n in Cat(B). If n = 0, we simply speak of an object
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in C in context A, and for n = 1 we refer to such a map as a morphism in C in context A. Given objects
c, d : A⇒ C, one defines the mapping B/A-groupoid mapC(c, d) as the pullback

mapC(c, d) C1

A C0 × C0.

(d1,d0)
(c,d)

We denote a section f : A→ mapC(c, d) by f : c→ d.

Remark 2.1.8.3 ([62, § 3.6]). Equivalently, the mapping B/A-groupoid mapC(c, d) can be defined as
the pullback of (d1, d0) : C∆1 → C× C along (c, d) : A→ C× C.

Remark 2.1.8.4. Viewed as an S-valued sheaf on B/A, the object mapC(c, d) from Definition 2.1.8.2
is given by the assignment

B/A ∋ (s : B → A) 7→ mapC(B)(s∗c, s∗d)

where s∗c = cs and likewise for d.

2.1.8.5. More generally, if c0, . . . , cn are objects in context A in C, one writes mapC(c0, . . . , cn) for the
pullback of (dn, . . . , d0) : Cn → Cn+1

0 along the map (c0, . . . , cn) : A→ Cn+1
0 . Using the Segal conditions,

one obtains an equivalence

mapC(c0, . . . , cn) ≃ mapC(c0, c1)×A · · · ×A mapC(cn−1, cn).

By combining this identification with the map mapC(c0, . . . , cn)→ mapC(c0, cn) that is induced by the
map d{0,n} : Cn → C1, one obtains a composition map

mapC(c0, c1)×A · · · ×A mapC(cn−1, cn)→ mapC(c0, cn).

Given maps fi : ci−1 → ci in C for i = 1, . . . , n, we write f1 · · · fn for their composition. By making use of
the simplicial identities, it is straightforward to verify that composition is associative and unital, i.e. that
the relations f(gh) ≃ (fg)h and f id ≃ f ≃ id f as well as their higher analogues hold whenever they
make sense, see [77, Proposition 5.4] for a proof.

Remark 2.1.8.6. As a B-category C is determined by the associated sheaf of ∞-categories on B

but not just by the underlying ∞-category ΓB(C) of global sections, it is crucial that we allow objects
and morphisms in C to have arbitrary context A ∈ B. In other words, we need to allow objects and
morphisms to be only locally defined, where by the term local we allude to the point of view that the
base ∞-topos B can be thought of as a spatial object. Alternatively, this phenomenon can be viewed
as a shadow of the notion of contexts in type theory (hence the name), where they are needed to keep
track of the types of the variables that occur in a formula. More precisely, when regarding the theory of
B-categories as a model of simplicial homotopy type theory [79], the type-theoretic notion of contexts
exactly translates into our notion of contexts.

Remark 2.1.8.7. At first, the fact that objects and morphisms of a B-category C have non-global
context A might appear to complicate things, but in practice this is usually not the case: in fact, by
making use of the adjunction (πA)! ⊣ π∗A : B/A ⇆ B and by the observations made in Remark 2.1.6.10,
the datum of an object c : A → C precisely corresponds to that of an object c̄ : 1B/A

→ π∗AC, where
π∗AC ∈ Cat(B/A) is the image of C along the base change functor π∗A : Cat(B)→ Cat(B/A) ≃ Cat(B)/A.
In other words, upon replacing B with B/A and C with π∗AC, object in context A are turned into objects
in global context. Very often, we will make use of this correspondence in order to be able to restrict
our attention to objects and morphisms in global context (see § 2.1.14 below for more details on this
strategy).
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Remark 2.1.8.8. Observe that for every B-category C there is a distinguished object τ : C0 → C that
is determined by the counit of the adjunction ι ⊣ (−)0 : Cat(B) ⇆ B from Proposition 2.1.6.7. We refer
to τ as the tautological object of C. By definition, every object c : A → C arises as a pullback of τ , in
the sense that we have c ≃ c∗τ (where c∗ : C(C0)→ C(A) is the restriction functor). In that way, many
questions about an arbitrary object in a B-category can be reduced to questions about the tautological
object.

We conclude this section with a discussion of equivalences in B-categories. To that end, given any
object c : A→ C in a B-category C, let us denote by idc : c→ c the morphism that is determined by the
lift s0c : A→ C0 → C1 of (c, c) : A→ C0 × C0.

Definition 2.1.8.9. A morphism f : c → d in C is an equivalence if there are maps g : c → d and
h : c→ d (all in context A) such that gf ≃ idc and fh ≃ idd.

As a consequence of univalence, one finds:

Proposition 2.1.8.10 ([62, Corollary 3.6.3]). A map f : A→ C∆1 in a B-category C is an equivalence
if it factors through s0 : C ↪→ C∆1 .

In other words, every equivalence f : A→ C1 is equivalent (in the ∞-groupoid C1(A)) to an identity.

2.1.9. Fully faithful functors and full subcategories. We now discuss fully faithful functors
and full subcategories in the setting of B-categories:

Definition 2.1.9.1. A functor f : C → D between B-categories is said to be fully faithful if it is
internally right orthogonal to the map ∆0 ⊔∆0 → ∆1. Dually, a functor is essentially surjective if is
(internally) left orthogonal to the class of fully faithful functors.

2.1.9.2. It follows formally that fully faithful functors are stable under small limits in Fun(∆1,Cat(B))
and are preserved by the endofunctor FunB(C,−) for every B-category C [62, Proposition 3.8.4]. Moreover,
it immediately follows that functor of B-categories is an equivalence if and only if it is fully faithful
and essentially surjective [62, Proposition 3.8.3], and every functor can be uniquely factored into an
essentially surjective and a fully faithful functor. In other words, the essential image of a functor between
B-categories is well-defined.

Fully faithful and essentially surjective functors can be characterised as follows. For the proofs we
refer to [62].

Proposition 2.1.9.3 ([62, Proposition 3.8.6 and 3.8.7]). For a functor f : C→ D of B-categories,
the following are equivalent:

(1) The functor f is fully faithful;
(2) the square

C1 D1

C0 × C0 D0 × D0

f1

f0×f0

is a pullback;
(3) for every A ∈ B and any two objects c0, c1 : A→ C in context A, the morphism

mapC(c0, c1)→ mapD(f(c0), f(c1))

that is induced by f is an equivalence in B/A;
(4) for every A ∈ B the functor f(A) : C(A)→ D(A) of ∞-categories is fully faithful.

Proposition 2.1.9.4 ([62, Corollary 3.8.12]). A functor f : C → D is essentially surjective if and
only if f0 : C0 → D0 is a cover (i.e. an effective epimorphism) in B.
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Fully faithful functors are in particular monomorphisms, hence the full subcategory Subfull(D) ↪→
Cat(B)/D that is spanned by the fully faithful functors into D is a poset whose objects we call full
subcategories of D.

Proposition 2.1.9.5 ([62, Proposition 3.9.3]). Taking core B-groupoids determines an equivalence of
posets Subfull(D) ≃ Sub(D0) between the poset of full subcategories of D and the poset of subobjects of
D0 ∈ B.

2.1.9.6. In particular, Proposition 2.1.9.5 implies that specifying a full subcategory of D is equivalent
to specifying a subobject of D0. Therefore, if (di : Ai → D)i∈I is a family of objects in D, we may define
the full subcategory of D that is spanned by these objects as the unique full subcategory of D whose core
B-groupoid is given by the image of the induced morphism (di) :

⊔
iAi → D in B [62, Definition 3.9.7].

Note that this is possible even if the family is large [62, Remark 3.9.8].

2.1.10. The universe for B-groupoids. In this section we will introduce a large B-category
that we call . It will play the role in B-category theory that the ∞-category of spaces S plays in usual
∞-category theory.

Definition 2.1.10.1. By straightening the codomain fibration Fun(∆1,B)→ B, one obtains a functor
B/− : Bop → Ĉat∞ that preserves small limits since B is an ∞-topos [57, Proposition 6.1.3.9]. In other
words, B/− is a sheaf of (large) ∞-categories and therefore (by Remark 2.1.7.7) determined by a large
B-category ΩB that we refer to as the universe for B-groupoids [62, § 3.7].

2.1.10.2. We will often omit the subscript if it is clear from the context. By definition, we have
equivalences Ω(A) ≃ B/A ≃ Grpd(B/A). In other words, the objects in Ω in context A are precisely given
by the B/A-groupoids, an observation which justifies its name.

Moreover, we have:

Proposition 2.1.10.3 ([62, Proposition 3.7.3]). For any two objects g, h in Ω in context A ∈ B that
correspond to B/A-groupoids G,H ∈ Grpd(B/A) ≃ B/A, there is an equivalence

mapΩ(g, h) ≃ HomB/A
(G,H)

in B/A, where HomB/A
(−,−) denotes the internal hom in B/A.

Remark 2.1.10.4. The universe Ω is to be regarded as the B-categorical analogue of the ∞-category
S of ∞-groupoids. In fact, the first main result of this thesis (Theorem 3.4.1.1) implies in particular
that Ω is characterised among B-categories by the same universal property that characterises S among
∞-categories (namely as the free cocompletion of the point).

Definition 2.1.10.5. We refer to a full subcategory of Ω as a subuniverse.

2.1.10.6. It follows from item (4) of Proposition 2.1.9.3 and the definition of Ω that every such
subuniverse corresponds precisely to a local class of morphisms in B, i.e. a class S that satisfies the
condition that a morphism p : P → A in B is contained in S if and only if it is locally contained in S, i.e.
if and only if for every cover (si) : ⊔i Ai ↠ A in B, the maps s∗i (p) : Ai ×A P → Ai are contained in S

(see [57, § 6.1.3 and Proposition 6.2.3.14]). In other words. we have:

Proposition 2.1.10.7 ([62, Proposition 3.9.12]). There is an equivalence between the partially ordered
set of local classes in B and Subfull(Ω).

Notation 2.1.10.8. For a given local class S, we denote the associated subuniverse by ΩS .

Example 2.1.10.9 (see the discussion towards the end of [62, § 4.5]). Let us say that a map p : P → A

in B̂ is small if for every map A′ → A in which A′ ∈ B, the pullback A′ ×A P is contained in B as well.
This determines a local class of morphisms in B̂ and therefore by Proposition 2.1.10.7 a subuniverse
of Ω

B̂
∈ Cat( ̂̂B) which can be identified with ΩB ∈ Cat(B̂) ↪→ Cat( ̂̂B). This exhibits ΩB as a full

subcategory of Ω
B̂

.
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2.1.11. Left fibrations and the Grothendieck construction. In this subsection we will recall
one of the main theorems from [62], which provides an equivalence between the B-category of functors to
the universe ΩB and a suitably defined category of left fibrations. This is the B-categorical analogue of
the usual straightening-unstraightening equivalence for left fibrations [57, Theorem 2.2.1.2].

Definition 2.1.11.1. A functor p : P → C between B-categories is called a left fibration if it is
internally right orthogonal to the map d1 : ∆0 ↪→ ∆1. A functor that is contained in the internal
saturation of this map is said to be initial.

2.1.11.2. As an immediate consequence of the definition one obtains a factorisation system between
initial maps and left fibrations.

We continue with some easy characterizations of left fibrations:

Lemma 2.1.11.3. A functor p : P→ C of B-categories is a left fibration if and only for any A ∈ B the
induced functor P(A)→ C(A) of ∞-categories is a left fibration.

Proof. By definition, p : P→ C is internally right orthogonal to d1 if and only if the square

FunB(∆1,P) FunB(∆1,C)

FunB(∆0,P) FunB(∆0,C)

(d1)∗ (d1)∗

is cartesian. Since a square of sheaves of ∞-categories is cartesian if and only if it is so section-wise, the
claim follows from the natural equivalence

FunB(∆n,D)(A) ≃ FunB(A,FunB(∆n,D)) ≃ Fun(∆n,FunB(A,D)) ≃ Fun(∆n,D(A))

and the analogous characterization for left fibrations between ordinary ∞-categories, see [17, Proposition
3.4.5]. □

Construction 2.1.11.4. The restriction of the codomain fibration d0 : Fun(∆1,Cat(B))→ Cat(B)
to the full subcategory of Fun(∆1,Cat(B)) that is spanned by the left fibrations is a cartesian fibra-
tion (as left fibrations are stable under pullback) and therefore determines via straightening a functor
LFib: Cat(B)op → Ĉat∞. By precomposing this functor with the product bifunctor −×− : B×Cat(B)→
Cat(B) (where we leave the diagonal embedding B ↪→ Cat(B) implicit), we therefore end up with a
functor

LFib(−×−) : Cat(B)op → PShĈat∞
(B), C 7→ LFibC = LFib(−× C).

Theorem 2.1.11.5 ([62, Theorem 4.5.1]). For every B-category C, the presheaf LFibC is a sheaf and
therefore defines a large B-category. Furthermore, there is an equivalence

LFibC ≃ FunB(C,Ω)

of large B-categories that is natural in C ∈ Cat(B).

The proof given in [62] is following along the lines of [17], adapting all necessary notions to the
B-categorical setting. In § 2.3.2 we will give a rather different proof, generalizing the proof for B being
the ∞-topos of pyknotic spaces, given in [91, §3].

Remark 2.1.11.6. By means of the projection pr0 : A × C → A, every functor p : P → A × C can
be regarded as a map in Cat(B)/A ≃ Cat(B/A) (cf. Remark 2.1.6.10). Now since the forgetful functor
(πA)! : B/A → B creates pullbacks, it follows (using Lemma 2.1.11.3) that p is a left fibration of B/A-
categories if and only if it is a left fibration of B-categories. Consequently, the functor (πA)! induces an
equivalence

LFibB/A
(π∗AC) ≃ LFibB(A× C)

(where the subscript indicates internal to which ∞-topos we are taking left fibrations). In other words,
the objects of LFibC in context A are precisely given by the left fibrations (internal to B/A) over π∗AC.
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Remark 2.1.11.7. Dually, a functor p : P→ C of B-categories is a right fibration if it is internally
right orthogonal to d0 : ∆0 ↪→ ∆1, and a functor that is contained in the internal saturation of the latter
map is said to be final. Equivalently, p is a right fibration precisely if pop (see Definition 2.1.6.8) is a left
fibration, and a functor j is final if and only if jop is initial. Again, one obtains a factorisation system
between final maps and right fibrations, and by the same construction as for left fibrations (or by simply
dualising this construction in the appropriate way) one ends up with a functor

RFib(−×−) : Cat(B)op → PShĈat∞
(B), C 7→ RFibC = RFib(C×−).

For every B-category C, we have RFibC ≃ LFibCop , hence RFibC defines a large B-category as well, and
one furthermore obtains a natural straightening/unstraightening equivalence

RFibC ≃ PShB(C),

where PShB(C) = FunB(Cop,Ω) is the large B-category of presheaves on C.

2.1.12. Slice B-categories and initial objects. We now turn to the most important example of
a left fibration:

Definition 2.1.12.1. For any B-category C and any object c : A→ C, one defines the slice B-category
Cc/ via the pullback

Cc/ C∆1

A× C C× C.

(πc)! (d1,d0)

c×id

Remark 2.1.12.2 ([62, Remark 4.2.2]). In the situation of Definition 2.1.12.1, Remark 2.1.8.7 allows
us to transpose c : A→ C to an object c̄ : 1B/A

→ π∗AC. Thus, we can also define the slice B/A-category
(π∗AC)̄c/, which also comes with a projection (πc̄)! : (π∗AC)̄c/ → π∗AC. This turns out to produce the same
result, in the sense that when applying the forgetful functor (πA)! : Cat(B/A) → Cat(B) to the map
(πc̄)! : (π∗AC)̄c/ → π∗AC, we recover the map (πc)! : Cc/ → A × C from Definition 2.1.12.1. Thus, when
regarded as a B/A-category, we may identify Cc/ with (π∗AC)̄c/.

Remark 2.1.12.3. Dually, by performing the pullback of (d1, d0) along id×c : C×A→ C× C, one
defines the slice B-category C/c together with its projection (πc)! : C/c → C × A. Alternatively, this
B-category can be defined via the identity C/c ≃ (Cop

c/ )op.

Proposition 2.1.12.4 ([62, Proposition 4.2.7]). For every object c : A→ C in a B-category C, the
functor (πc)! : Cc/ → A× C is a left fibration of B-categories.

Proof. Combining Remark 2.1.12.2 with Remark 2.1.11.6, we may transpose c to an object c̄ : 1B/A
→

π∗AC and only have to check that the functor (πc̄)! : (π∗AC)̄c/ → π∗AC of B/A-categories is a left fibration.
In other words we may replace B by B/A to assume that A = 1. In that case the claim is an easy
consequence of Lemma 2.1.11.3 and the analogous statement for ordinary ∞-categories (see e.g. [17,
Proposition 4.2.7]). □

Remark 2.1.12.5. By Remark 2.1.12.2, the functor (πc)! in Proposition 2.1.12.4 can be regarded as
a map in Cat(B/A) and is as such a left fibration as well (by either applying Proposition 2.1.12.4 to the
transposed object c̄ : 1B/A

→ π∗AC or by using Remark 2.1.11.6).

Definition 2.1.12.6. Let C be a B-category. An object c : A→ C is said to be initial if the transpose
map 1→ π∗AC defines an initial functor in Cat(B/A).

Remark 2.1.12.7. In the situation of Definition 2.1.12.6, one dually says that c is final if the transpose
map 1→ π∗AC defines a final functor in Cat(B/A).
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Remark 2.1.12.8 ([62, Remark 4.3.7]). For every object A ∈ B, the forgetful functor

(πA)! : Cat(B/A) ≃ Cat(B)/A → Cat(B)

creates initial maps. Therefore, if C is a B-category, an object c : A→ C is initial if and only if the map
(c, id) : A→ C×A is an initial functor in Cat(B).

2.1.12.9. Observe that if c : A→ C is an object in a B-category C, the identity idc : A→ C∆1 takes
values in Cc/. We therefore obtain a section idc : A→ Cc/ of the structure map Cc/ → A (which coincides
with the image of idc̄ : 1B/A

→ (π∗AC)̄c/ along the forgetful functor (πA)!, see Remark 2.1.12.2).

Proposition 2.1.12.10 ([62, Proposition 4.3.9 and Remark 4.3.10]). For any B-category and any
object c : A→ C, the section idc : A→ Cc/ is initial as a map in Cat(B/A) and therefore defines an initial
object of Cc/.

Corollary 2.1.12.11 ([62, Corollary 4.3.19]). Let C be a B-category and let c : A → C be an
object in C. The factorisation of c into an initial map and a left fibration is given by the composition
pr1(πc)! idc : A→ (C)c/ → C where pr1 : A× C→ C is the projection.

Proposition 2.1.12.12 ([62, Proposition 4.3.20]). Let C be a B-category. For any object c : A→ C,
the following are equivalent:

(1) c is an initial object;
(2) the projection (πc)! : Cc/ → A× C is an equivalence;
(3) for any object d : B → C the map mapC(pr∗0 c,pr∗1 d)→ A×B is an equivalence in B.

Corollary 2.1.12.13 ([62, Corollary 4.3.21]). Let C be a B-category and let c and d be objects in C
in context A ∈ B such that c is initial. Then there is a unique map c→ d in C in context A that is an
equivalence if and only if d is initial as well.

Remark 2.1.12.14. Let us briefly conclude with a remark about the functoriality of the slice
construction. Let C be a B-category and f : c→ d a morphism in context A ∈ B. We have an evident
commutative square

A C/d

C/c A× C

f

idc

and since idc is final, there is a unique functor f! : C/c → C/d making the above square commute. Dually
we also get an induced functor f∗ : Cd/ → Cc/.

2.1.13. Yoneda’s lemma. The theory of left fibrations can be used to derive a version of Yoneda’s
lemma for B-categories. First, we need a functorial version of the mapping B-groupoid construction. To
that end, let us denote by − ⋆− : ∆×∆→ ∆ the ordinal sum bifunctor. We may now define:

Definition 2.1.13.1 ([62, Definition 4.2.4]). Let ϵ : ∆→ ∆ denote the functor ⟨n⟩ 7→ ⟨n⟩op ⋆ ⟨n⟩. For
any B-category C, we define the twisted arrow B-category Tw(C) to be the simplicial object given by the
composition

∆op ϵop

−−→ ∆op C−→ B.

This defines a functor Tw : Cat(B)→ B∆.

Note that the functor ϵ in Definition 2.1.13.1 comes along with two canonical natural transformations

(−)op → ϵ← id∆

which induces a map of simplicial objects

Tw(C)→ Cop × C
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that is natural in C.
Combining the natural equivalences of 2.1.8.1 with Lemma 2.1.11.3, we get:

Proposition 2.1.13.2 ([62, Proposition 4.2.5]). For every B-category C, the simplicial object Tw(C)
is a B-category, and the map Tw(C)→ Cop × C is a left fibration.

By applying the straightening/unstraightening equivalence from Theorem 2.1.11.5 to the left fibration
Tw(C)→ Cop × C, one now ends up with a bifunctor

mapC : Cop × C→ Ω

that sends a pair of objects (c, d) : A→ Cop × C to the object mapC(c, d) ∈ B/A from Definition 2.1.8.2.
Upon transposing this bifunctor across the adjunction Cop ×− ⊣ FunB(Cop,−), one obtains the Yoneda
embedding

hC : C→ PShB(C).

Theorem 2.1.13.3 ([62, Theorem 4.7.8]). For any B-category C, there is a commutative diagram

Cop × PShB(C) PShB(C)op × PShB(C)

Ω
ev

h×id

mapPSh
B

(C)(−,−)

in Cat(B̂) (where ev is the evaluation map).

Corollary 2.1.13.4 ([62, Corollary 4.7.16]). For every B-category C, the Yoneda embedding hC is
fully faithful.

Remark 2.1.13.5 ([62, Proposition 4.7.20]). Explicitly, an object A→ PShB(C) is contained in C if
and only if the associated right fibration p : P → C × A admits a final section A → P over A (i.e. if P
has a final object in global context when viewed as a B/A-category). If this is the case, one obtains an
equivalence C/c ≃ P over C×A where c is the image of the final section A→ P along the functor P→ C.

2.1.14. Context reduction techniques. As a general rule, every construction and every statement
that we make in B-category theory has to be local in B and has to be invariant under étale transposition,
in the following sense:
(locality) For every A ∈ B, the base change functor π∗A : Cat(B) → Cat(B/A) preserves all of the

structure that we use when reasoning about B- (resp. B/A-)categories. Furthermore, for every
cover (i.e. effective epimorphism) (si) :

⊔
iAi ↠ A in B and every object c : A → C in a

B-category C, a proposition is true for c if and only if it is true for each of the pullbacks
s∗i (c) : Ai → C.

(étale transposition invariance) For every object c : A→ C in a B-category C, a proposition holds
for c if and only if the same proposition, interpreted internally in B/A, is true for the transposed
object c̄ : 1B/A

→ π∗AC (see Remark 2.1.8.7).

Remark 2.1.14.1. More concretely, the locality rule asserts that
(1) π∗A preserves limits and colimits;
(2) there is an equivalence π∗A constB ≃ constB/A

;
(3) π∗A commutes with the internal hom FunB(−,−) [62, Lemma 4.2.3];
(4) π∗A carries the universe ΩB to the universe ΩB/A

[62, Remark 3.7.2].
From these preservation properties, one can now infer that virtually all constructions that we carry out
in Cat(B) are preserved by π∗A, see Example 2.1.14.7 below for a few specific instances.

Remark 2.1.14.2. In the locality rule, we need not assume that a cover (si) :
⊔
iAi ↠ A is small. In

fact, since B is presentable and therefore admits a small full subcategory G ⊂ B that is dense in B (i.e.
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which has the property that every A ∈ B is the colimit of the diagram G/A → B), every large cover can
be refined by a small one.

Remark 2.1.14.3. Very often, we simply impose invariance under étale transposition by defining a
property of c : A→ C as a property of its transpose c̄ : 1B/A

→ π∗AC (see for example Definition 2.1.12.6).

Remark 2.1.14.4. Locality and invariance under étale transposition imply that the context of an
object is largely irrelevant: if we wish to study the properties of an object c : A→ C in a B-category C,
we may simply pass to the slice ∞-topos B/A, replace C by π∗AC and c by its transpose c̄ : 1B/A

→ π∗AC
and can thus assume that c has had global context to begin with. Note that by locality, π∗AC arises from
the very same constructions (internally in B/A) that are used to define C (internally in B), hence every
statement about the objects of C also makes sense as a statement about the objects of π∗AC. A typical
example of how this procedure is used in practice is the proof of Proposition 2.1.12.4.

Remark 2.1.14.5. If C is a B-category and if P (c) is a proposition about an object c : A → C in
context A ∈ B, then locality implies that there is a full subcategory P ↪→ C that classifies P , in the sense
that an object c : A → C is contained in P if and only if P (c) is true. In fact, we may define P as the
full subcategory that is spanned by the objects c : A→ C in arbitrary context A for which P (c) holds.
Explicitly, P is the unique full subcategory of C for which P0 ↪→ C0 is the image of the map⊔

c : A→C
P (c) holds

A→ C0

(cf. Proposition 2.1.9.5). This means that for the tautological object τ : P0 → P (see Remark 2.1.8.8)
there is a cover (si) :

⊔
iAi ↠ P0 such that P (s∗i τ) holds for each i. Since every object of P is a pullback

of τ and since covers are stable under base change in B, this implies that for every object c : A→ P there
is a cover (si) :

⊔
iAi ↠ A such that P (s∗i c) holds. Using the locality rule, we thus deduce that P (c)

must be true. Consequently, an object c : A→ C is contained in P if and only if P (c) holds, as claimed.

Remark 2.1.14.6. By combining Remarks 2.1.14.4 and 2.1.14.5, if P (c) is a proposition about an
object c : A → C in a B-category C and if P ↪→ C is the associated classifying full subcategory, then
π∗AP ↪→ π∗AC classifies the proposition P interpreted internally in B/A. In fact, π∗AP is the full subcategory
of π∗AC that is spanned by those objects c̄ : B → π∗AC in context B ∈ B/A for which the transpose
c : B → C satisfies P (c) (interpreted internally in B), which by invariance under étale transposition is
equivalent to c̄ satisfying P (c̄) (interpreted internally in B/A).

Example 2.1.14.7. Suppose that C is a B-category. Then locality asserts that for every A ∈ B,
one obtains an equivalence π∗APShB(C) ≃ PShB/A

(π∗AC) (cf. the list in Remark 2.1.14.1). In light of
this equivalence, one can furthermore identify π∗A(hC) with hπ∗

A
C [62, Lemma 4.7.14] (where hC is the

Yoneda embedding). Hence, an object F : A → PShB(C) is representable if and only if its transpose
F̄ : 1B/A

→ PShB(π∗AC) is representable, so that this property is indeed invariant under étale transposition.
It also satisfies the second part of the locality principle, which can be seen as follows: given a cover
(si) :

⊔
iAi ↠ A in B, the presheaf F being representable precisely means that the map F : A→ PShB(C)

factors through the Yoneda embedding h : C ↪→ PShB(C), so clearly F being representable implies that
s∗i (F ) = Fsi is representable. Conversely, if each s∗i (F ) is representable, one can form the lifting problem⊔

iAi C

A PShB(C)

(si) h

F

which admits a unique solution (since covers and monomorphisms form a factorisation system in B̂),
hence the result follows.
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2.2. Subcategories and Localisations

Forming subcategories or localizing at a class of morphisms are two of the most fundamental tools
in (higher) category theory. In this section we will study the corresponding notions in the world of
B-categories. We will begin by proving a number of preliminary results about monomorphisms of
B-categories in § 2.2.1. In § 2.2.2 we then study subcategories of B-categories. Our main result here is
that subcategories of C uniquely correspond to subobjects of C1 that are closed under equivalences and
composition. We conclude by studying localisations of B-categories in § 2.2.3.

2.2.1. Monomorphisms of B-categories. Recall that a monomorphism in Cat(B) (i.e. a (−1)-
truncated map) is a functor that is internally left orthogonal to the map ∆0 ⊔∆0 → ∆0. In other words,
a functor f : C→ D between B-categories is a monomorphism if and only if the square

C D

C× C D× D

f

(idC,idC) (idD,idD)
f×f

is a pullback, or equivalently that the diagonal map C → C ×D C is an equivalence. We say that a
monomorphism f : C ↪→ D exhibits C as a subcategory of D. We will study subcategories more extensively
in § 2.2.2.

Proposition 2.2.1.1. A functor f : C→ D between B-categories is a monomorphism if and only if
both f0 and f1 are monomorphisms in B. In particular, both the inclusion Grpd(B) ↪→ Cat(B) and the
core B-groupoid functor (−)≃ : Cat(B)→ Grpd(B) preserve monomorphisms.

Proof. Since limits in Cat(B) are computed levelwise, the map f is a monomorphism precisely if
fn is a monomorphism in B for all n ≥ 0. Owing to the Segal conditions, this is automatically satisfied
whenever only f0 and f1 are monomorphisms. □

Proposition 2.2.1.2. Let f : C→ D be a functor between large B-categories. Then the following are
equivalent:

(1) f is a monomorphism;
(2) f≃ is a monomorphism in B̂, and for any A ∈ B and any two objects c0, c1 : A→ C in context

A ∈ B, the morphism

mapC(c0, c1)→ mapD(f(c0), f(c1))

that is induced by f is a monomorphism in B̂/A;
(3) for every A ∈ B the functor f(A) : C(A)→ D(A) is a monomorphism of ∞-categories;
(4) the map of cartesian fibrations over B that is determined by f is a monomorphism of ∞-

categories.

Proof. As monomorphisms are defined by a limit condition, one easily sees that conditions (1), (3)
and (4) are equivalent, by making use of the equivalence of∞-categories PShĈat∞

(B) ≃ Cart(B) (here the
latter denotes the ∞-category of cartesian fibrations over B, see § 2.1.7) and the fact that the inclusion
Cat(B̂) ↪→ PShĈat∞

(B) creates limits. Moreover, Proposition 2.2.1.1 implies that f is a monomorphism
if and only if both f0 and f1 are monomorphisms in B̂. It therefore suffices to show that f1 is a
monomorphism if and only if for every A ∈ B and any two objects c0, c1 : A → C in context A, the
morphism

mapC(c0, c1)→ mapD(f(c0), f(c1))
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that is induced by f is a monomorphism in B̂/A, provided that f0 is a monomorphism. By definition, the
map that f induces on mapping B-groupoids fits into the commutative diagram

mapC(c0, c1) mapD(f(c0), f(c1))

C1 D1

A A

C0 × C0 D0 × D0.

f1

id

f0×f0

in which the two squares on the left and on the right are pullbacks. As f0 is a monomorphism, the bottom
square is a pullback, which implies that the top square is a pullback as well. Hence if f1 is a monomorphism,
then the morphism on mapping B-groupoids must be a monomorphism as well. Conversely, suppose that
f induces a monomorphism on mapping B-groupoids. Let P ≃ (C0 × C0)×D0×D0 D1 denote the pullback
of the front square in the above diagram. Then f1 factors as C1 → P → D1 in which the second arrow is
a monomorphism. It therefore suffices to show that the map C1 → P is a monomorphism as well. Note
that the map mapD(f(c0), f(c1))→ D1 factors through the inclusion P ↪→ D1 such that the induced map
mapD(f(c0), f(c1)) → P arises as the pullback of the map P → C0 × C0 along (c0, c1). As the object
C0 × C0 is obtained as the colimit of the diagram

B/C0×C0 → B ↪→ B̂,

we obtain a cover
⊔
A→C0×C0

A↠ C0 × C0 in B̂ and therefore a cover⊔
(c0,c1)

mapD(f(c0), f(c1)) ↠ P.

We conclude the proof by observing that there is a pullback diagram⊔
(c0,c1) mapC(c0, c1) C1

⊔
(c0,c1) mapD(f(c0), f(c1)) P

in which the left vertical map is a monomorphism. Thus C1 → P is also a monomorphism by [57,
Proposition 6.2.3.17]. □

Example 2.2.1.3. For any B-category C, the canonical map C≃ → C is a monomorphism. In fact,
using Proposition 2.2.1.2 this follows from the observation that on the level of cartesian fibrations over B

this map is given by the inclusion of the wide subcategory of
∫

C spanned by the cartesian arrows and
that this defines a monomorphism of ∞-categories.

A strong epimorphism in Cat(B) is a functor that is left orthogonal to the collection of monomorphisms.
As a consequence of Proposition 2.2.1.1, one finds:

Proposition 2.2.1.4. A functor between B-groupoids is a strong epimorphism if and only if
it is essentially surjective. Furthermore, both the inclusion Grpd(B) ↪→ Cat(B) and the functor
(−)gpd : Cat(B)→ Grpd(B) preserve strong epimorphisms.

Proof. Let f be a functor between B-categories. Then fgpd is left orthogonal to a map g in
Grpd(B) if and only if f is left orthogonal to g when viewing the latter as a map in Cat(B). Since by
Proposition 2.2.1.1 g is a monomorphism in Grpd(B) if and only if g is a monomorphism in Cat(B), the
map fgpd is a strong epimorphism whenever f is one. Now if f is an essentially surjective map between
B-groupoids and if g is a monomorphism in Cat(B), then f is left orthogonal to g if and only if f is
left orthogonal to g≃, hence f is a strong epimorphism in Cat(B) since the core B-groupoid functor
preserves monomorphisms by Proposition 2.2.1.1 and since [62, Corollary 3.8.11] implies that a map
between B-groupoids is a monomorphism if and only if it is fully faithful. As every strong epimorphism
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is in particular essentially surjective (since fully faithful functors are always monomorphisms and since
essentially surjective maps are left orthogonal to fully faithful functors), this argument also shows that
the inclusion Grpd(B) ↪→ Cat(B) preserves strong epimorphisms. □

Remark 2.2.1.5. In light of Proposition 2.2.1.1 it might be tempting to expect that a map f : C→ D
in Cat(B) is a strong epimorphism if and only if f0 and f1 are covers. In fact, since the Segal conditions
imply that f0 and f1 being a cover is equivalent to f being a cover in the ∞-topos B∆ (where covers
are given by levelwise covers in B), this is easily seen to be a sufficient condition. It is however not
necessary. For example, the functor (d2, d0) : ∆1 ⊔∆1 → ∆2 in Cat∞ is a strong epimorphism since every
subcategory of ∆2 that contains the image of this functor must necessarily be ∆2, but this map is not
surjective on the level of morphisms.

2.2.2. Subcategories of B-categories. For any ∞-category C with finite limits and any object
c ∈ C, we write SubC(c) for the poset of subobjects of c, i.e. the full subcategory of C/c that is spanned by
the (−1)-truncated objects. Since a functor f : C→ D is a monomorphism in Cat(B) if and only if f is a
(−1)-truncated object in Cat(B)/D, it makes sense to define:

Definition 2.2.2.1. Let D be a B-category. A subcategory of D is defined to be an object in
SubCat(B)(D).

Warning 2.2.2.2. If C is a B-category, not every subobject of C in B∆ need to be a B-category.
Therefore, the two posets SubCat(B)(C) and SubB∆(C) are in general different.

Recall from the discussion in § 2.1.6 (but see also § 2.1.8) that if C is a B-category and A is an object
in B, the datum of a map A→ C1 is equivalent to that of a map A→ C∆1 , which is in turn equivalent to
that of a map ∆1 ⊗A→ C. Hence, the identity C1 → C1 transposes to a functor ∆1 ⊗ C1 → C.

Lemma 2.2.2.3. For any B-category C, the functor ∆1 ⊗ C1 → C is a strong epimorphism in Cat(B).

Proof. In light of Remark 2.2.1.5, it suffices to show that the functor ∆1 ⊗ C1 → C induces a cover
on level 0 and level 1. On level 0, the map is given by

(d1, d0) : C1 ⊔ C1 → C0

which is clearly a cover since precomposition with s0 ⊔ s0 : C0 ⊔ C0 → C1 ⊔ C1 recovers the diagonal
C0 ⊔ C0 → C0 which is always a cover in B. On level 1, one obtains the map

(s0d1, id, s0d0) : C1 ⊔ C1 ⊔ C1 → C1

which is similarly a cover in B, as desired. □

Proposition 2.2.2.4. Let f : C → D be a functor between large B-categories and let E ↪→ D be a
subcategory. The following are equivalent:

(1) f factors through the inclusion E ↪→ D;
(2) f≃ factors through E≃ ↪→ D≃, and for each pair of objects (c0, c1) : A → C0 × C0 in context

A ∈ B, the map
mapC(c0, c1)→ mapD(f(c0), f(c1))

that is induced by f factors through the inclusion

mapE(f(c0), f(c1)) ↪→ mapD(f(c0), f(c1));

(3) for each map ∆1 ⊗A→ C in context A ∈ B its image in D is contained in E.

Proof. It is immediate that (1) implies (2) and that (2) implies (3). Suppose therefore that
condition (3) holds. As in the proof of Proposition 2.2.1.2, the collection of all maps A→ C1 constitutes
a cover ⊔

A→C1

A↠ C1
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in B̂. By applying Proposition 2.2.1.4 and [62, Corollary 3.8.12], we may view this map as a strong
epimorphism between large B-groupoids. Since strong epimorphisms are internally left orthogonal
to monomorphisms and therefore closed under products in Cat(B̂), we deduce that the induced map⊔
A→C1

∆1 ⊗A→ ∆1 ⊗ C1 is a strong epimorphism. Together with Lemma 2.2.2.3, we therefore obtain a
strong epimorphism

⊔
A↠C1

∆1⊗A→ C. Using the assumptions, we may now construct a lifting problem⊔
A→C1

∆1 ⊗A E

C Df

which admits a unique solution, hence condition (1) follows. □

Corollary 2.2.2.5. A functor f : C→ D of B-categories factors through the inclusion D≃ ↪→ D if
and only if f sends all morphisms in C to equivalences in D. □

Definition 2.2.2.6. Let f : C→ D be a map in Cat(B) and let C ↠ E ↪→ D be the factorisation of
f into a strong epimorphism and a monomorphism. Then the subcategory E ↪→ D is referred to as the
1-image of f .

In [62, § 3.9] we have shown that full subcategories of a B-category C can be parametrised by the
subobjects of C0 in B (see also Proposition 2.1.9.5). Our goal hereafter is to obtain a similar result for all
subcategories of C. To that end, note that the functor

(−)∆1
: Cat(B)/C → Cat(B)/C∆1

admits a left adjoint that is given by the composition

Cat(B)/C∆1
∆1⊗−−−−−→ Cat(B)/∆1⊗C∆1

ev!−−→ Cat(B)/C

in which ev denotes the evaluation map. Similarly, the functor

(−)≃ : Cat(B)/C∆1 → B/C1

has a left adjoint that is given by the composition

B/C1 ↪→ Cat(B)/C1

i!−→ Cat(B)/C∆1

where i : C1 ≃ (C∆1)≃ ↪→ C∆1 denotes the canonical inclusion. By Proposition 2.2.1.1, the functor
(−)1 = (−)≃ ◦ (−)∆1 sends a monomorphism D ↪→ C to the inclusion D1 ↪→ C1 and therefore restricts to
a functor SubCat(B)(C)→ SubB(C1). Since the inclusion SubCat(B)(C) ↪→ Cat(B)/C admits a left adjoint
that sends a functor f : D→ C to its 1-image in C, we thus obtain an adjunction

(⟨−⟩ ⊣ (−)1) : SubB(C1) ⇆ SubCat(B)(C)

in which the left adjoint ⟨−⟩ sends a monomorphism S ↪→ C1 to the 1-image ⟨S⟩ of the associated map
∆1 ⊗ S → C. Note that for any subcategory D ↪→ C, the counit ⟨D1⟩ → D is given by the unique solution
to the lifting problem

∆1 ⊗ D1 D

⟨D1⟩ C

in which the upper horizontal map is the transpose of the identity D1 → D1. By Lemma 2.2.2.3, this is a
strong epimorphism, hence we conclude that the map ⟨D1⟩ → D must be an equivalence. We have thus
shown:

Proposition 2.2.2.7. For any B-category C, the functor (−)1 : SubCat(B)(C)→ SubB(C1) exhibits
the poset SubCat(B)(C) as a reflective subposet of SubB(C1). □
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Remark 2.2.2.8. The inclusion (−)1 : SubCat(B)(C) ↪→ SubB(C1) is in general not an equivalence.
For example, consider B = S and C = ∆2: here the two maps d{0,1} : ∆1 → ∆2 and d{1,2} : ∆1 → ∆2

determine a proper subobject of ∆2
1, but the associated subcategory of ∆2 is nevertheless ∆2 itself.

As Remark 2.2.2.8 exemplifies, one obstruction to (−)1 : Sub(C) ↪→ Sub(C1) being an equivalence is
that the collection of maps that determine a subobject S ↪→ C1 need not be stable under composition. In
other words, to make sure that a subobject of C1 arises as the object of morphisms of a subcategory of
C, we need to impose a composability condition on this subobject. Altogether, we obtain the following
characterisation of the essential image of (−)1:

Proposition 2.2.2.9. For any B-category C, a subobject S ↪→ C1 lies in the essential image of the
inclusion SubCat(B)(C) ↪→ SubB(C1) if and only if

(1) it is closed under equivalences, i.e. the map (s0d1, s0d0) : S ⊔ S → C1 factors through S ↪→ C1;
(2) it is closed under composition, i.e. the restriction of the composition map d1 : C1 ×C0 C1 → C1

along the inclusion S ×C0 S ↪→ C1 ×C0 C1 factors through S ↪→ C1.

The remainder of this section is devoted to the proof of Proposition 2.2.2.9. Our strategy is to make
use of the intuition that the datum of a subcategory of C should be equivalent to the datum of a collection
of objects in C, together with a composable collection of maps between these objects. Our goal hereafter
is turn this surmise into a formal statement.

2.2.2.10. For any integer k ≥ 0, let ik : ∆≤k ↪→ ∆ denote the full subcategory spanned by ⟨n⟩ for
n ≤ k, and let B

≤k
∆ denote the ∞-category of B-valued presheaves on ∆≤k. The truncation functor

i∗k : B∆ → B
≤k
∆ admits both a left adjoint (ik)! and a right adjoint (ik)∗ given by left and right Kan

extension. Note that both (ik)! and (ik)∗ are fully faithful. We will generally identify B
≤k
∆ with its

essential image in B∆ along the right Kan extension (ik)∗. We define the associated coskeleton functor as
coskk = (ik)∗i∗k and the skeleton functor as skk = (ik)!i

∗
k. The unit of the adjunction i∗k ⊣ (ik)∗ provides

a map idB∆ → coskk, and the counit of the adjunction (ik)! ⊣ i∗k provides a map skk → idB∆ . We
say that C ∈ B∆ is k-coskeletal if the map C → coskk(C) is an equivalence, i.e. if C is contained in
B
≤k
∆ ⊂ B∆. Dually, C is k-skeletal if the map skk(C)→ C is an equivalence. Note that the adjunction

skk ⊣ coskk implies that a simplicial object is k-coskeletal if and only if it is local with respect to the
maps skk(D)→ D for every D ∈ B∆.

Definition 2.2.2.11. For any integer k ≥ 0, a map f : C → D in B∆ is said to be k-coskeletal if it is
right orthogonal to skk(K)→ K for every K ∈ B∆.

Note that by using the adjunction skk ⊣ coskk and Yoneda’s lemma, one has the following criterion
for a map between simplicial objects in B to be k-coskeletal:

Proposition 2.2.2.12. For any integer k ≥ 0, a map f : C → D in B∆ is k-coskeletal precisely if
the canonical map C → D ×coskk(D) coskk(C) is an equivalence. □

For any n ≥ 1, denote by ∂∆n the simplicial ∞-groupoid skn−1 ∆n and by ∂∆n ↪→ ∆n the natural
map induced by the adjunction counit.

For later use, we record the following obvious consequence of the skeletal filtration on simplical sets:

Lemma 2.2.2.13. Let j : K ↪→ L be a monomorphism of finite simplicial sets and assume that
skkK = skk L for some k ∈ N. Then j is contained in the smallest saturated class containing the maps
∂∆l → ∆l for k < l ≤ dimL. □

Lemma 2.2.2.14. Let k ≥ 0 be an integer. Then the following sets generate the same saturated class
of morphisms in B∆:

(1) {skkD → D | D ∈ B∆};
(2) {∂∆n ⊗A ↪→ ∆n ⊗A | n > k, A ∈ B}.
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(3) {∂∆k+1 ⊗D ↪→ ∆k+1 ⊗D | D ∈ B∆}.

Proof. We start by showing that the saturations of (1) and (2) agree. Given A ∈ B, note that since
the truncation functor i∗k commutes with postcomposition by both the pullback functor π∗A : B→ B/A

and its right adjoint (πA)∗, the uniqueness of adjoints implies that the functor skk commutes with
− × A : B∆ → B∆. By a similar argument, the functor skk commutes with const : S∆ → B∆. We
therefore obtain an equivalence skk(∆m ⊗A) ≃ skk(∆m)⊗A with respect to which the canonical map
skk(∆m ⊗ A)→ ∆m ⊗ A corresponds to the map obtained by applying the functor −⊗ A to the map
skk(∆m) → ∆m. This already implies that the set in (2) is contained in the set in (1), so that the
saturation of (2) is contained in the saturation of (1). Conversely, as any D ∈ B∆ can be written as a
colimit of objects of the form ∆n ⊗A (see [62, Lemma 4.5.2]), the above argument also shows that every
map in (1) is a colimit of maps of the form skk(∆n)⊗A→ ∆n ⊗A. Since moreover constB and −⊗A
are colimit-preserving functors, one finds that (1) is contained in the saturation of (2) as soon as we can
show that any saturated class S of maps in S∆ which contains ∂∆n → ∆n for all n > k must also contain
the maps skk ∆m → ∆m for all m. But that is immediate from Lemma 2.2.2.13.

Next, to show that the saturation of (2) contains (3), we may again assume D ≃ ∆m ⊗A. In this
case, the inclusion ∂∆k+1 ×∆m ↪→ ∆k+1 ×∆m can be obtained as an iterated pushout of maps of the
form ∂∆n ↪→ ∆n for n > k (by Lemma 2.2.2.13), hence the claim follows. For the converse inclusion, we
will use induction on n, the case n = k + 1 being satisfied by definition. Given that for a fixed n > k the
inclusion ∂∆n ⊗A ↪→ ∆n ⊗A is contained in the saturation of (3), Lemma 2.2.2.13 allows us to build
the inclusion ∂∆n ×∆1 ↪→ skn(∆n ×∆1) as an iterated pushout along ∂∆n ↪→ ∆n. Therefore, the map
skn(∆n×∆1)⊗A ↪→ (∆n×∆1)⊗A is contained in the saturation of (3) by the left cancellation property.
Let α : ∆n+1 → ∆n ×∆1 be defined by α(i) = (i, 0) for i = 0, . . . , n and α(n+ 1) = (n+ 1, 1), and let
β : ∆n ×∆1 → ∆n+1 be given by β(i, 0) = i and β(i, 1) = n+ 1. We then obtain a retract diagram

∂∆n+1 skn(∆n ×∆1) ∂∆n+1

∆n+1 ∆n ×∆1 ∆n+1

α′ β′

α β

in which α′ and β′ are given by the restriction of α and β, respectively. We therefore conclude that the
map ∂∆n+1 ⊗A ↪→ ∆n+1 ⊗A is in the saturation of (3), as desired. □

As a consequence of Lemma 2.2.2.14, one finds:

Proposition 2.2.2.15. For any integer k ≥ 0, a map f : C → D in B∆ is k-coskeletal if and only if
it is internally right orthogonal to the map ∂∆k+1 ↪→ ∆k+1. □

We can use Proposition 2.2.2.15 to show that every monomorphism between B-categories is 1-
coskeletal. To that end, recall that we denote by I2 ↪→ ∆2 the inclusion of the 2-spine (see § 2.1.6). We
now obtain:

Lemma 2.2.2.16. Let S be the internal saturation of ∆0 ⊔∆0 → ∆0 and I2 ↪→ ∆2 in B∆. Then S

contains the map ∂∆2 ↪→ ∆2.

Proof. Let f : K → L be a map in B∆ that is internally right orthogonal to the maps ∆0⊔∆0 → ∆0

and the inclusion of the 2-spine I2 ↪→ ∆2. Then f is a monomorphism. Now consider the commutative
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diagram

K∆2

P K∂∆2
KI2

Q R KI2

L∆2
L∂∆2

LI
2

L∆2
L∂∆2

LI
2

⌜ id

⌜ ⌜

id id id

in which P , Q and R are defined by the condition that the respective square is a pullback diagram. We
need to show that the map K∆2 → P is an equivalence. As by assumption on f the map K∆2 → Q

is an equivalence, it suffices to show that P → Q is an equivalence as well. But this map is already a
monomorphism, hence the claim follows from the observation that P → Q must be a cover as the map
K∆2 → Q is one. □

Proposition 2.2.2.17. Every monomorphism between B-categories is 1-coskeletal.

Proof. Lemma 2.2.2.16 implies that every monomorphism between B-categories is internally right
orthogonal to ∂∆2 ↪→ ∆2 and therefore 1-coskeletal. □

Let C be a B-category and let Cat(B)≤1
/C be the full subcategory of Cat(B)/C that is spanned by the

1-coskeletal maps into C. By restricting the inclusion Cat(B)≤1
/C ↪→ Cat(B)/C to (−1)-truncated objects

(i.e. to monomorphisms into D), one obtains a full embedding

Sub≤1
Cat(B)(C) ↪→ SubCat(B)(C)

of partially ordered sets. Proposition 2.2.2.17 now implies:

Corollary 2.2.2.18. For any B-category C, the inclusion Sub≤1
Cat(B)(C) ↪→ SubCat(B)(C) is an

equivalence. □

For any B-category C, the functor (cosk1)/C : (B∆)/C → (B≤1
∆ )/ cosk1 C that is induced by the coskeleton

functor on the slice∞-categories admits a fully faithful right adjoint η∗ that is given by base change along
the adjunction unit η : C→ cosk1 C. Upon restricting to subobjects, we therefore obtain an adjunction

SubB∆(C) Sub
B
≤1
∆

(cosk1 C).
η∗

(cosk1)/C

In general, the functor η∗ does not take values in SubCat(B)(C), but we may explicitly characterise
those subobjects of cosk1 C that do give rise to a B-category. To that end, note that given a subobject
D ↪→ cosk1 C in B

≤1
∆ , the restriction of d1 : C1 ×C0 C1 → C1 along the inclusion D1 ×D0 D1 ↪→ C1 ×C0 C1

determines a map d1 : D1 ×D0 D1 → C1.

Definition 2.2.2.19. Let C be a B-category. A subobject D ↪→ cosk1 C in B
≤1
∆ is said to be

closed under composition if the map d1 : D1 ×D0 D1 → C1 factors through D1 ↪→ C1. We denote by
Subcomp

B
≤1
∆

(cosk1 C) the full subcategory of Sub
B
≤1
∆

(cosk1 C) that is spanned by these subobjects.

Lemma 2.2.2.20. Let A ∈ B be an arbitrary object and let S be a saturated set of maps in B∆ that
contains the internal saturation of ∂∆2 ↪→ ∆2 as well as the map I2 ⊗A ↪→ ∆2 ⊗A. Then S contains
In ⊗A ↪→ ∆n ⊗A for all n ≥ 2.

Proof. We may assume n > 2. By [50, Proposition 2.13], it suffices to show that for all 0 < i < n

the inclusion Λni ⊗A ↪→ ∆n ⊗A is contained in S. On account of the factorisation Λni ↪→ ∂∆n ↪→ ∆n in
which the first map is obtained as a pushout along ∂∆n−1 ↪→ ∆n, this is immediate. □
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Proposition 2.2.2.21. Let D ↪→ cosk1 C be a subobject in B
≤1
∆ . Then η∗D is a B-category if and

only if D is closed under composition. In particular, η∗ defines an equivalence Subcomp
B
≤1
∆

(cosk1 C) ≃
SubCat(B)(C).

Proof. If η∗D is a B-category, the fact that applying cosk1 to the inclusion η∗D ↪→ C recovers the
subobject D ↪→ cosk1 C implies that D is closed under composition. Conversely, suppose that D is closed
under composition. Since E1 → 1 is a cover in B∆ (where E1 is the walking equivalence, see § 2.1.6),
every monomorphism of simplicial objects in B is internally right orthogonal to E1 → 1. Therefore η∗D
is univalent. We still need to show that η∗D satisfies the Segal conditions. Since η∗D ↪→ C is 1-coskeletal,
Lemma 2.2.2.20 implies that we only need to show that (η∗D)2 → C1 ×D0 D1 is an equivalence. As
this map is a monomorphism, it furthermore suffices to show that it is a cover in B. Note that since
the natural map (−)∆2 → (−)∂∆2 induces an equivalence on 1-coskeletal objects, the identification
∂∆2 ≃ I2 ⊔∆0⊔∆0 ∆1 gives rise to a commutative square

C1 ×C0 C1 (cosk1 C)2 C1 ×C0 C1

D1 ×D0 D1 D2 D1 ×D0 D1

C1 C0 × C0

D1 D0 ×D0

d1

d1

in which the two squares in the front and in the back of the cube are pullbacks and where the dashed
arrows exist as D is closed under composition. By combining this diagram with the pullback square

(η∗D)2 D2

C2 (cosk1 C)2,

one concludes that the map (η∗D)2 → D1 ×D0 D1 admits a section and is therefore a cover, as desired.
Lastly, the claim that that η∗ induces an equivalence SubObjcomp(cosk1 C) ≃ Sub(C) now follows easily
with Corollary 2.2.2.18. □

Proof of Proposition 2.2.2.9. It is clear that any subobject S ↪→ C1 that arises as the object
of morphisms of a subcategory of C must necessarily satisfy the two conditions, so it suffices to prove
the converse. Let D0 ↪→ C be the image of (d1, d0) : S ⊔ S → C0. As S is closed under equivalences in
C, the restriction of s0 : C0 → C1 to D0 factors through S ↪→ C1. By setting D1 = S, we thus obtain
a subobject D ↪→ cosk1 C in B

≤1
∆ . By assumption, this subobject is closed under composition in the

sense of Definition 2.2.2.19, hence Proposition 2.2.2.21 implies that η∗D is a subcategory of C. Hence
S = D1 arises as the object of morphisms of η∗D and is therefore contained in the essential image of
(−)1 : SubCat(B)(C) ↪→ SubB(C1). □

2.2.3. Localisations of B-categories. Recall that a functor between B-categories is said to be
conservative if it is internally right orthogonal to the map ∆1 → ∆0 (cf. [62, Definition 4.1.10]). Hereafter
we discuss the left complement of the associated factorisation system, i.e. the saturated class that is
internally generated by ∆1 → ∆0.

Definition 2.2.3.1. A functor between B-categories is an iterated localisation if it is left orthogonal
to every conservative functor.
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Remark 2.2.3.2. By definition, a functor f : C→ D is conservative if and only if the commutative
square

C D

C∆1 D∆1

f

diag diag

f∆1

is cartesian. Since this can be check after evaluating at any A ∈ B, the natural equivalences C∆n(A) ≃
C(A)∆n show that f is conservative if and only if f(A) is conservative for all A.

The saturated class of iterated localisations in Cat(B) is internally generated by ∆1 → ∆0. Since
this map is a strong epimorphism by Remark 2.2.1.5, we deduce:

Proposition 2.2.3.3. Every iterated localisation in Cat(B) is a strong epimorphism and therefore in
particular essentially surjective. Dually, every monomorphism is conservative. □

Definition 2.2.3.4. Let C be a B-category and let S→ C be a functor. The localisation of C at S is
the B-category S−1C that fits into the pushout square

S Sgpd

C S−1C.
⌟

We refer to the map C→ S−1C as the localisation functor that is associated with the map S→ C. More
generally, a functor C→ D between B-categories is said to be a localisation if there is a functor S→ C
and an equivalence D ≃ S−1C in Cat(B)C/.

Remark 2.2.3.5. The above definition is a direct analogue of the construction of localisations of
∞-categories, see [17, Proposition 7.1.3].

By definition, the groupoidification functor S→ Sgpd in Definition 2.2.3.4 is an iterated localisation.
One therefore finds:

Proposition 2.2.3.6. For any B-category C and any functor S → C, the localisation functor
C→ S−1C is an iterated localisation. □

Lemma 2.2.3.7. Let G be a B-groupoid and let G→ C be a strong epimorphism in Cat(B). Then C is
a B-groupoid as well.

Proof. Since G is a B-groupoid, Corollary 2.2.2.5 implies that the functor G→ C factors through
the inclusion C≃ ↪→ C. We may therefore construct a lifting problem

G C≃

C Cid

which admits a unique solution. Hence the identity on C factors through C≃ ↪→ C, which evidently implies
that C≃ ↪→ C is already an equivalence. □

Lemma 2.2.3.8. For any strong epimorphism f : C→ D in Cat(B), the commutative square

C Cgpd

D Dgpd

f fgpd

is cocartesian.
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Proof. If P = D⊔C Cgpd denotes the pushout, we need to show that the induced functor g : P→ Dgpd

is an equivalence. Since iterated localisations are stable under pushout, the map D→ P is an iterated
localisation, which (by the left cancellation property) implies that g must be an iterated localisation as
well. We therefore only need to show that g is conservative. Since Dgpd is a B-groupoid, this is equivalent
to P being a B-groupoid as well [62, Corollary 4.1.17]. But since strong epimorphisms are also preserved
by pushouts, the map Cgpd → P is a strong epimorphism, hence Lemma 2.2.3.7 implies the claim. □

Proposition 2.2.3.9. Let f : S→ T and g : T→ C be functors in Cat(B), and suppose that f is a
strong epimorphism. Then the induced functor S−1C→ T−1C is an equivalence.

Proof. This is a direct consequence of the pasting lemma for pushout squares and Lemma 2.2.3.8. □

Remark 2.2.3.10. Proposition 2.2.3.9 implies that when considering localisations of a B-category C,
we may restrict our attention to subcategories S ↪→ C instead of general functors, as we can always factor
a functor S→ C into a strong epimorphism followed by a monomorphism. Alternatively, by making use
of the strong epimorphism ∆1 ⊗ S0 → S from Lemma 2.2.2.3, we can always assume that S is of the form
∆1 ⊗A for some A ∈ B.

Let f : C→ D be a functor between B-categories. Let f∗D≃ ↪→ C be the subcategory that is defined
by the pullback square

f∗D≃ D≃

C D.

⌜

f

Since D≃ is a B-groupoid, the map f∗D≃ → D≃ factors through f∗D≃ → (f∗D≃)gpd. Consequently, one
obtains a factorisation of f into the composition

C→ (f∗D≃)−1C f1−→ D.

Let us set C1 = (f∗D≃)−1C. By replacing C by C1 and f by f1 and iterating this procedure, we obtain
an N-indexed diagram in Cat(B)/D. Let f∞ : E→ D denote the colimit of this diagram. By construction,
the map f factors into the composition C→ E→ D in which the first map is a countable composition of
localisations and therefore an iterated localisation in the sense of Definition 2.2.3.1. We claim that the
map f∞ is conservative. To see this, consider the cartesian square

f∗∞D≃ D≃

E D.

⌜

f∞

On account of filtered colimits being universal in Cat(B) (see Proposition 2.1.6.5), we obtain an equivalence
f∗∞D≃ ≃ colimn f

∗
nD≃. By construction, the categories f∗nD≃ sit inside the N-indexed diagram

· · · → f∗n−1D≃ → (f∗n−1D≃)gpd → f∗nD≃ → (f∗nD≃)gpd → f∗n+1D≃ → (f∗n+1D≃)gpd → · · ·

such that the functor ·2: N→ N that is given by the inclusion of all even natural numbers recovers the
N-indexed diagram n 7→ f∗nD≃ that is defined by the cartesian square above. As both the inclusion of
all even natural numbers and that of all odd natural numbers define final functors N→ N, we conclude
that f∗∞D≃ is obtained as the colimit of the diagram n 7→ (f∗nD≃)gpd and is therefore a groupoid in B.
Applying [62, Corollary 4.1.16], this shows that f∞ is conservative. Therefore the factorisation of f into
the composite C→ E→ D as constructed above is the unique factorisation of f into an iterated localisation
and a conservative functor. Applying this construction when f is already an iterated localisation, one in
particular obtains:

Proposition 2.2.3.11. Every iterated localisation between B-categories is obtained as a countable
composition of localisation functors. □
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Our next goal is to prove the universal property of a localisation functor. To that end, given any two B-
categories C and D and any functor S→ C, note that as the base change functor π∗A : Cat(B)→ Cat(B/A)
from Remark 2.1.6.10 preserves the internal hom FunB(−,−) [62, Lemma 4.2.3], an object of FunB(C,D)
in context A ∈ B is precisely given by a functor of B/A-categories π∗AC→ π∗AD. Therefore, the collection
of functors π∗AC→ π∗AD in arbitrary context A ∈ B whose restriction along π∗AS→ π∗AC factors through
π∗AD≃ span a full subcategory of FunB(C,D) (see § 2.1.9) that we denote by FunS

B(C,D).

Remark 2.2.3.12 (locality of FunS
B(C,D)). Note that a functor f : π∗AS → π∗AD factors through

π∗AD≃ if and only if the transposed map A × S → D factors through D≃. As the map D≃ ↪→ D is a
monomorphism by Example 2.2.1.3, the same argument as in Example 2.1.14.7 shows that this condition
is local, in the sense that for every cover (si) :

⊔
iAi ↠ A in B, the functor f factors through π∗AD≃ if and

only if each of the functors s∗i (f) factors through π∗Ai
D≃. As a consequence, every object A→ FunS

B(C,D)
encodes a functor π∗AC→ π∗AD whose restriction along π∗AS→ π∗AC factors through π∗AC≃. In conjunction
with [62, Lemma 4.2.3], this observation furthermore implies that there is a canonical equivalence
π∗AFunS

B(C,D) ≃ Funπ
∗
AS

B/A
(π∗AC, π∗AD) for every A ∈ B, cf. Remark 2.1.14.6.

Remark 2.2.3.13. By Corollary 2.2.2.5 and Remark 2.2.3.12, a functor π∗AC→ π∗AD defines an object
in FunS

B(C,D) precisely if its restriction along π∗AS→ π∗AC sends every map in π∗AS to an equivalence in
π∗AC.

Proposition 2.2.3.14. Let C be a B-category and let S→ C be a functor. Then precomposition with
the localisation functor L : C→ S−1C induces an equivalence

L∗ : FunB(S−1C,D) ≃ FunS
B(C,D)

for any B-category D.

Proof. By applying the functor FunB(−,D) to the pushout square that defines the localisation of C
at S, one obtains a pullback square

FunB(S−1C,D) FunB(C,D)

FunB(Sgpd,D) FunB(S,D).

We claim that the two horizontal functors are fully faithful. To see this, it suffices to consider the lower
horizontal map. This is a fully faithful functor precisely if it is internally right orthogonal to the map
∆0 ⊔∆0 → ∆1, and by making use of the adjunction between tensoring and powering in Cat(B), one sees
that this is equivalent to the induced functor D∆1 → D× D being internally right orthogonal to the map
S→ Sgpd. Hence it suffices to show that the functor D∆1 → D×D is conservative. But that is immediate
from Remark 2.2.3.2.

Since for any A ∈ B a functor π∗AS→ π∗AD factors through π∗AD≃ if and only if it factors through the
map π∗AS→ π∗ASgpd, one obtains a commutative square

FunS
B(C,D) FunB(C,D)

FunB(Sgpd,D) FunB(S,D).

and therefore a map FunS
B(C,D) ↪→ FunB(S−1C,D). Since every object A→ FunB(S−1C,D) by definition

gives rise to an object in FunS
B(C,D), this map must also be essentially surjective and is thus an

equivalence. □
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2.3. Straightening-Unstraightening for B-categories

One of the most fundamental results in ∞-category theory is the straightening-unstraightening
equivalence relating functors with target Cat∞ and cocartesian fibrations, see [57, Theorem 3.2.0.1]. The
goal of this section is to prove the analogous result in the world of B-categories. This was first proven in
[61] but we decided to include our own proof in § 2.3.2 since it is rather different from the one given in
[61]. While the proof in loc. cit. internalizes some of the ideas of [57, § 3.2], ours is bootstrapped from
[57, Theorem 3.2.0.1] and the explicit description of unstraightening as a lax colimit in [27]. To be able
to prove straightening-unstraightening we at first need to define the B-category of B-categories, which we
do in § 2.3.1.

2.3.1. The large B-category of B-categories. The goal in this section is to define the large
B-category of B-categories. What makes this possible is the following general construction:

Construction 2.3.1.1. Recall that Lurie’s tensor product of presentable ∞-categories introduced
in [56, § 4.8.1] defines a functor

−⊗− : PrR×PrR → PrR, (C,D) 7→ ShC(D)

that preserves limits in each variable. Since the functor B/− : Bop → Ĉat∞ factors through the inclusion
PrR ↪→ Ĉat∞ we may consider the composite

PrR×Bop id×B/−−−−−−→ PrR×PrR −⊗−−−−→ PrR → Ĉat∞.

Its transpose defines a functor PrR → Fun(Bop, Ĉat∞). It follows from [57, Theorem 5.5.3.18] that this
map factors through the full subcategory spanned by the limit-preserving functors and thus defines a
functor

−⊗ Ω : PrR → Cat(B̂).
By the explicit description of the tensor product of presentable ∞-categories [56, Proposition 4.8.1.17],
this functor is equivalently given by Sh−(B/−). In other words, given any presentable ∞-category E, the
associated large B-category E⊗ Ω is given by the composition

Bop B/−−−−→ (PrL)op ShE(−)−−−−−→ Ĉat∞.

Let us now consider the above construction in the special case E = Cat∞. By definition, Cat∞⊗Ω is
given by the composite

Bop B/−−−−→ (PrL)op ShCat∞ (−)−−−−−−−→ Ĉat∞
and thus agrees with the presheaf of ∞-categories Cat(B/−) defined in [62, § 3.3]. In particular it follows
that the latter is indeed a sheaf. Therefore we feel inclined to make the following definition:

Definition 2.3.1.2. We define the large B-category CatB of (small) B-categories to be CatB =
Cat∞⊗Ω, i.e. as the large B-category that corresponds to the sheaf Cat(B/−).

Remark 2.3.1.3 (locality of the B-category of B-categories). By definition of CatB, there is a
canonical equivalence π∗A CatB ≃ CatB/A

for every A ∈ B (where π∗A : Cat(B̂)→ Cat(B̂/A) denotes the
base change functor induced by π∗A : B→ B/A, cf. Remark 2.1.6.10). In fact, by Remark 2.1.7.6 we may
compute π∗A CatB ≃ Cat(B/(πA)!(−)), which is evidently equivalent to Cat((B/A)/−).

Remark 2.3.1.4. By applying − ⊗ Ω to the equivalence (−)op : Cat∞ ≃ Cat∞, one obtains an
equivalence (−)op : CatB ≃ CatB. On global sections over A ∈ B, this equivalence recovers the equivalence
(−)op : Cat(B/A) ≃ Cat(B/A) that carries a B/A-category to its opposite (cf. Remark 2.1.7.4).

Remark 2.3.1.5. By working internally to B̂, we may define the (very large) B-category Cat
B̂

of
large B-categories. By regarding CatB as a very large B-category, we furthermore obtain a fully faithful
functor i : CatB ↪→ Cat

B̂
. In fact, by the discussion in [62, § 3.3], the inclusion Cat(B/A) ↪→ Cat(B̂/A)
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defines an embedding of presheaves Cat(B/−) ↪→ Cat(B̂/−) on B. Since moreover restriction along the
inclusion B ↪→ B̂ defines an equivalence

Sh
Cat(̂̂S)

(B̂) ≃ Sh
Cat(̂̂S)

(B)

(see the argument in [62, Remark 2.4.1]), we obtain the desired fully faithful functor CatB ↪→ Cat
B̂

in
Cat( ̂̂B). Explicitly, an object A→ Cat

B̂
in context A ∈ B̂ that corresponds to a B/A-category C→ A is

contained in CatB precisely if for any map s : A′ → A with A′ ∈ B the pullback s∗C is small.

2.3.2. Straightening-Unstraightening. The goal of this section is to give a quick proof of the
straightening-unstraightening equivalence for B-categories, see Theorem 2.3.2.7. This was first proven in
[61]. The proof given here is a straight-forward generalization of the proof of ”continuous straightening-
unstraightening” given in [91] and while it might be conceptually less satisfying than the one in [61], it
has the advantage that it’s a bit shorter, so we decided to include it here.

Definition 2.3.2.1. A functor p : D→ C of B-categories is a cocartesian fibration if and only if for
any A ∈ B the map p(A) : D(A) → C(A) is a cocartesian fibration and for any s : B → A, the functor
s∗ : D(A)→ D(B) sends p(A)-cocartesian edges to p(B)-cocartesian edges.

For two cocartesian fibrations p : D → C and p′ : D′ → C a cocartesian functor f from p to p′ is a
commutative triangle

D D′

C

f

p p′

such that for any A ∈ B, the induced functor f(A) : D(A) → D′(A) sends p(A)-cocartesian edges to
p′(A)-cocartesian edges. We say that a morphism f : ∆1 → D(A) is p-cocartesian if for all s : B → A the
morphism s∗f is p(B)-cocartesian.

Remark 2.3.2.2. There is also a more internal definition of cocartesian fibrations and functors, see
[61, Definition 3.1.1]. That this definition agrees with the one above is proven in [61, Proposition 3.1.7].

Remark 2.3.2.3. Evidently p : D→ C is a cocartesian fibration if and only if for any d : A→ D and
morphism f : p(d)→ y in C, there is some cocartesian morphism f ′ : d→ d′ lifting f .

Remark 2.3.2.4. Let us denote by Funcocart(∆1,Cat∞) the full subcategory spanned by the cocarte-
sian fibrations where the morphisms are the commutative squares

D D′

C C′

s

p p′

t

such that s sends p-cocartesian edges to p′-cocartesian edges. Then the inclusion Funcocart(∆1,Cat∞)→
Fun(∆1,Cat∞) preserves all limits. Indeed, by combining [27, Theorem 4.5] with [56, Proposition 7.3.2.6]
we see that the inclusion even admits a left adjoint. It follows that if B = PSh(C0) is a presheaf topos, it
suffices to check the conditions appearing in Definition 2.3.2.1 on the full subcategory C0 ⊆ PSh(C0).

For later use we make the following observation:

Remark 2.3.2.5. Suppose that C is an ∞-category and p : D→ constC a functor. Then in order to
show that p is cocartesian fibration, it suffices to check that

(1) For any A ∈ B the functor (ηA)∗p(A) : (ηA)∗D(A) → C given by pulling back p(A) : D(A) →
constC(A) along the adjunction unit ηA : C→ constC(A) is a cocartesian fibration.

(2) For any s : B → A the induced functor s∗ : (ηA)∗D(A) → (ηB)∗D(B) preserves cocartesian
edges.
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Indeed, to see that p(A) is a cocartesian fibration it suffices to check this after pulling back along any
map α : ∆n → constC(A). But by Proposition A.2, we may find some cover s : B ↠ A, such that s∗α
factors through ηB : C→ constC(B). In particular we have a diagram

∆n ×const C(B) D(B) (ηB)∗D(B) D(B)

∆n C constC(B)

s∗α

ηB

in which all squares are cartesian. Since the middle arrow is a cocartesian fibration, it follows that
the functor ∆n ×const C(B) C(B) → ∆n is a cocartesian fibration and the same holds for any further
pullback along some t : C → B. Since B → A is an effective epimorphism it follows using condition
(2) and Remark 2.3.2.4, that also ∆n ×const C(A) C(A) → ∆n is a cocartesian fibration and thus p(A)
is a cocartesian fibration. A similar argument shows that for any s : B → A, the functor s∗ preserves
cocartesian edges and the claim follows.

Definition 2.3.2.6. If C is a B-category, we write CocartC for the subcategory of Cat(B)/C spanned
by the cocartesian fibrations and cocartesian functors between them. Since cocartesian fibrations and
functors are stable under pullbacks, it follows that the functor Cat(B)/− (that we get by straightening
the codomain fibration ev1 : Cat(B)∆1 → Cat(B)) restricts to a functor

Cocart− : Cat(B)op → Ĉat∞.

For any C ∈ Cat(B) we may now precompose with the functor (C×−)op : Bop → Cat(B)op in order to
obtain a functor

CocartC : Bop → Ĉat∞.

The goal of this section is to prove the following:

Theorem 2.3.2.7. Let C be a B-category. Then there is an equivalence of functors Bop → Ĉat∞

StC : CocartC ≃ FunB(C,CatB) : UnC .

In particular CocartC is a B-category. Furthermore this equivalence is natural in C.

Remark 2.3.2.8. By [61, Remark 5.2.4] the functor CocartC agrees with sheaf corresponding to the
(large) B-category of cocartesian fibrations defined there.

Remark 2.3.2.9. Dually we say that a functor f : D → C of B-categories is a cartesian fibration
if fop is a cocartesian fibration. It follows that applying (−)op : CatB → CatB induces an equivalence
CartC ≃ CocartCop (here CartC is defined in the same way as in Definition 2.3.2.6). Thus it follows from
Theorem 2.3.2.7 that we also have a natural equivalence

StC : CartC ≃ FunB(Cop,CatB) : UnC .

Let us start with the following setup. Let C0 be an ∞-category and C : Cop
0 → Cat∞ a PSh(C0)-

category classified by a cocartesian fibration p : C̃ → C
op
0 . Then the straightening-unstraightening

equivalence
Fun(Cop

0 ,Cat∞) ≃ CocartCop
0

induces an equivalence of ∞-categories

ψ : Cat(PSh(C0))/C → (CocartCop
0

)/C̃

that is natural in C. The following lemma now explicitly identifies the essential image of CocartC under
the equivalence ψ:
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Lemma 2.3.2.10. Under the equivalence ψ, the subcategory CocartC corresponds to the subcategory
CocartC̃ ⊂ (CocartCop

0
)/C̃.

Proof. We start by checking that the two subcategories ψ(CocartC) and CocartC̃ have the same
objects. For this observe that by Remark 2.3.2.4 a functor of PSh(C0)-categories q : D→ C is a cocartesian
fibration if and only if the associated morphism q̃ : D̃→ C̃ of cocartesian fibrations over C

op
0 satisfies the

conditions of [55, Lemma 1.4.14] and thus if only if it is a cocartesian fibration.
To conclude the proof we therefore only need to see that a morphism f : D→ D′ over C is a cocartesian

functor if and only if the associated functor f̃ : D̃→ D̃′ over C̃ preserves cocartesian edges. Unwinding
the definitions this follows immediately from the next Lemma. □

Lemma 2.3.2.11. Suppose that we are given a commutative diagram of ∞-categories

D E

C

C0

f

s

p

t

r
q

where all arrows expect f are cocartesian fibrations and we assume that f sends p-cocartesian edges to
r-cocartesian edges, Then f sends s-cocartesian edges to t-cocartesian edges if and only if for every A ∈ C0

the induced map on fibres
DA EA

CA

fA

sA tA

sends sa cocartesian edges to ta cocartesian edges.

Proof. It is clear that if f preserves cocartesian edges, then so do any of the maps on fibres. For
the converse note that by [57, Proposition 2.4.2.11] an edge α : d→ d′ is s-cocartesian if and only if we
can factor it as the composite of a p-cocartesian edge followed by an sp(d′)-cocartesian edge. Since we
have an analogous description for t-cocartesian edges the claim follows from our assumption because f
sends p-cocartesian edges to r-cocartesian edges. □

One of the main ingredients for our proof of Theorem 2.3.2.7 is the following:

Theorem 2.3.2.12 ([27, Corollary 7.6]). Let C be an ∞-category and let F : C→ Cat∞ be a functor.
There is a canonical equivalence

colim
Tw(C)

F (−)× C−/
≃−−→ Un(F )

of ∞-categories that is natural in F . Here Un(F ) denotes the total space of the cocartesian fibration
classifying F .

For our applications we will need the following slightly more precise formulation, which can be easily
deduced from the results in [27]:

Corollary 2.3.2.13. Let C be an ∞-category and let F : C → Cat∞ be a functor. There is a
canonical equivalence

colim
Tw(C)

F (−)× C−/
≃−−→ Un(F )

of cocartesian fibrations that is furthermore natural in F . In particular for any f : x → y in C, the
canonical functor

cf : F (x)× Cy/ → colim
Tw(C)

F (−)× C−/
≃−−→ Un

preserves cocartesian edges.
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Proof. For any cocartesian fibration p : X → C there is a natural equivalence

mapCocart(C)(colim
Tw(C)

F (−)× C−/, X) ≃ lim
Tw(C)

mapCocart(C)(F (−)× C−/, X)

≃ lim
Tw(C)

mapCat∞(F (−),FunCocart(C)(C−/, X))

≃ mapFun(C,Cat∞)(F,St(X)).

Here the second equivalence follows by adjunction and the last equivalence follows from [27, Lemma
9.10] and [29, Proposition 2.3]. This proves the first part of the claim. The second part follows since
the explicit formula in Theorem 2.3.2.12 shows that the forgetful functor Cocart(C)→ Cat∞/C preserves
colimits. □

Lemma 2.3.2.14. Let C be an ∞-category such that B is a left exact accessible localisation of PSh(C).
For any two B-categories C and D, there is an equivalence

FunB(C,D) ≃
∫
c

Fun(C(Lc),D(Lc)) := lim
Tw(C)

Fun(C(L(−)),D(L(−))).

that is natural in C,D ∈ Cat(B).

Proof. If i : B ↪→ PSh(C) is the inclusion, the observation that we have a canonical equivalence
FunB(−,−) ≃ FunPSh(C)(i(−), i(−)) implies that we can assume that B = PSh(C). In this case, we have
an equivalence Cat(B) ≃ PShCat∞(C). By [29, Proposition 2.3] there is therefore an equivalence

mapCat(B)(C,D) ≃
∫
c

mapCat∞(C(c),D(c))

that is natural in C and D. Thus, for any ∞-category K we have a chain of natural equivalences

mapCat∞(K,FunB(C,D)) ≃ mapCat(B)(K⊗ C,D)

≃
∫
c

mapCat∞(K× C(c),D(c))

≃ mapCat∞(K,
∫
c

Fun(C(c),D(c)))

which implies that we also get an equivalence

FunB(C,D) ≃
∫
c

Fun(C(c),D(c))

that is natural in C and D. □

We can now already prove the desired equivalence in the case where B is a presheaf topos:

Proposition 2.3.2.15. Let C be a PSh(C0)-category. Then there is an equivalence of ∞-categories

FunPSh(C0)(C,CatPSh(C0)) ≃ CocartC

which is furthermore natural in C.

Proof. Let p : C̃ → C
op
0 be the corresponding cocartesian fibration. Then Lemma 2.3.2.10 shows

that there is a natural equivalence
CocartC ≃ CocartC̃ .

Now by Theorem 2.3.2.12 we have a natural equivalence C̃ ≃ colimTw(Cop
0 ) C(−)× (C/−)op and therefore

we get a chain of natural equivalences

CocartC̃ ≃ Fun( colim
Tw(Cop

0 )
C(−)× (C/−)op,Cat∞) ≃ lim

Tw(Cop
0 )

Fun(C(−),Fun(C/−)op,Cat∞))

=
∫
c

Fun(C(c),CatPSh(C0)(c))

≃ FunPSh(C0)(C0,CatPSh(C0))

using straightening-unstraightening for the first equivalence and Lemma 2.3.2.14 for the last. □
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We are now ready to prove the main result:

Proof of Theorem 2.3.2.7. Observe that the functor defining the B-category FunB(C,Cat(B)) is
given by the composite

Bop −×A−−−→ Cat(B)op FunB(−,Cat(B))−−−−−−−−−−→ Ĉat∞.

It follows that in order prove Theorem 2.3.2.7 it suffices to prove that we have an equivalence of
∞-categories

CocartC ≃ FunB(C,Cat(B)))

that is natural in C. For this we move one universe up and consider C as PSh
Ŝ
(B)-category so that we

may apply Proposition 2.3.2.15 to deduce that we have a natural equivalence

CocartC̃ ≃ FunPSĥ
S

(B)(C,CatPSĥ
S

(B)) ≃
∫
A

Fun((C(A),Fun((B/A)op, Ĉat∞)).

As before, we denote by p : C̃ → Bop the cocartesian fibration classifying C. Now we observe using
Lemma 2.3.2.10 in the case C0 = B, that CocartC is naturally equivalent to the full subcategory of
CocartC̃ spanned by the cocartesian fibrations q : D̃→ C̃ satisfying the following condition: The composite
cocartesian fibration

D̃ q−→ C̃ p−→ Bop

classifies a limit preserving functor Bop → Cat∞ ⊆ Ĉat∞. On the other hand we have that

FunB(C,CatB) ≃
∫
A

Fun(C(A),Funlim((B/A)op,Cat∞)) ⊆
∫
A

Fun(C(A),Fun((B/A)op, Ĉat∞)).

Therefore it remains to check that a cocartesian fibration q : D̃→ C̃ classifies a limit preserving functor
to Cat∞ ⊆ Ĉat∞ after composing with p : C̃ → Bop if and only if for any f : A → B ∈ Tw(Bop) and
c ∈ C(B) the functor classified by pulling back q along

φ(c,f) : {c} × (B/A)op → C(B)× (B/A)op → C̃

classifies a limit preserving functor (B/A)op → Cat∞ ⊆ Ĉat∞. Let us begin by assuming that p◦q classifies
a limit preserving functor to Cat∞. In this case note that the cocartesian fibration q(c,f) : (B/A)op×C̃ D̃→
(B/A)op given by pulling back q along φ(c,f) also sits inside a cartesian square

(+)
(B/A)op ×C̃ D̃ (B/A)op ×Bop D̃

(B/A)op (B/A)op ×Bop C̃

q(x,f)

where the right vertical arrow is given by pulling back along the forgetful functor (B/A)op → Bop.
Furthermore note that since the functor φ(c,f) sends any edge in (B/A)op to a cocartesian edge in C̃ (using
Corollary 2.3.2.13), the above square is also a pullback in Cocart(B/A)op . Also note that the projection
(B/A)op ×Bop C̃→ (B/A)op classifies the composite

(B/A)op → Bop C(−)−−−→ Cat∞

which preserves all limits. Since the same holds for (B/A)op ×Bop D̃ → (B/A)op it follows that q(x,f)

classifies a functor which is a pullback of limit preserving functors with values in Cat∞ and thus has the
same properties.

For the converse let us fix diagram d : K → B. Then for any c ∈ C(colim d) we consider the functor

φ(c,idcolim d) : (B/ colim d)op → C̃
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as above, which induces a cartesian square of the form (+) in CocartB/ colim d
Let us denote the functor

classified by q(c,idcolim d) by Fc. Then the induced commutative diagram of functors yields a commutative
cube

limd Fc(−) limd D(−)

Fc(colim d) D(colim d)

∗ limd C(−)

∗ C(colim d)

≃

c

≃

where the lower right diagonal functor is an equivalence because C is a B-category and the upper left
diagonal is an equivalence by assumption. Since we have such a cube for any c ∈ C(colim d) it follows that
the map D(colim d)→ limd D(−) is a fibre-wise equivalence and therefore an equivalence. Furthermore D
lands in Cat∞ ⊂ Ĉat∞ because Fc and C do by assumption. This completes the proof. □

Let us now remark that one can also deduce straightening-unstraightening for left fibrations from
Theorem 2.3.2.7. For this observe that applying Construction 2.3.1.1 to the fully faithful functor S→ Cat∞
we obtain a functor j : ΩB → CatB. Furthermore it follows directly from Proposition 2.1.9.3 that j is fully
faithful. Therefore composing with j gives a fully faithful functor j∗ : FunB(C,ΩB) ↪→ FunB(C,CatB) by
[62, Proposition 3.8.4]. Furthermore note that an arbitrary morphism of left fibrations of B-categories is
a cocartesian functor so that we also get an inclusion of a full subcategory LFibC ⊆ CocartC. We can then
conclude:

Corollary 2.3.2.16. Let C be a B-category. Then the equivalence of Theorem 2.3.2.7 restricts to an
equivalence of full subcategories

LFibC ≃ FunB(C,ΩB).

Proof. It follows from the proof of Theorem 2.3.2.7 that a cocartesian fibration q(A) : D → C
corresponds to a functor that factors through ΩB ⊆ CatB if and only if for every A ∈ B all fibres of the
functors q(A) : D(A)→ C(A) are ∞-groupoids. This is the case if and only if they are left fibrations by
Proposition 2.1.11.3, so the claim follows. □

2.4. Adjunctions

In this section we will study adjunctions between B-categories. We begin in § 2.4.1 by defining such
adjunctions as ordinary adjunctions in the underlying bicategory of Cat(B). In § 2.4.2 we compare our
definition with relative adjunctions and prove a convenient section-wise criterion for when a functor
admits a left or right adjoint. In § 2.4.3 we discuss an alternative approach to adjunctions based on an
equivalence of mapping B-groupoids. Finally, we discuss the special case of reflective subcategories in
§ 2.4.4.

2.4.1. Definitions and basic properties. Let C and D be B-categories, let f, g : C ⇒ D be two
functors and let α : f → g be a morphism of functors, i.e. a map in FunB(C,D). If h : E→ C is any other
functor, we denote by αh : fh→ gh the map h∗(α) in FunB(E,D). Dually, if k : D→ E is an arbitrary
functor, we denote by kα : kf → kg the map k∗(α) in FunB(C,E). Having established the necessary
notational conventions, we may now define:

Definition 2.4.1.1. Let C and D be B-categories. An adjunction between C and D is a tuple
(l, r, η, ϵ), where l : C→ D and r : D→ C are functors and where η : idD → rl and ϵ : lr → idC are maps
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such that there are commutative triangles

l lrl rlr r

l r

lη

id
ϵl

ηr

rϵ
id

in FunB(C,D) and in FunB(D,C), respectively. We denote such an adjunction by l ⊣ r, and we refer
to η as the unit and to ϵ as the counit of the adjunction. We say that a pair (l, r) : C ⇆ D defines an
adjunction if there exist transformations η and ϵ as above such that the tuple (l, r, η, ϵ) is an adjunction.

Analogous to how adjunctions between ∞-categories can be defined (see [48, §17]), Definition 2.4.1.1
is equivalent to an adjunction in the underlying homotopy bicategory of the (∞, 2)-category Cat(B) (see
§ 2.1.6). We may therefore make use of the usual bicategorical arguments to derive results for adjunctions
in Cat(B). Hereafter, we list a few of these results, we refer the reader to [30, § I.6] and [80, § 2.1] for
proofs.

Proposition 2.4.1.2. If (l ⊣ r) : C ⇆ D and (l′ ⊣ r′) : D ⇆ E are adjunctions between B-categories,
then the composite functors define an adjunction (ll′ ⊣ r′r) : C ⇆ E. □

Proposition 2.4.1.3. Adjoints are unique if they exist, i.e if (l ⊣ r) and (l ⊣ r′) are adjunctions
between B-categories, then r ≃ r′. Dually, if (l ⊣ r) and (l′ ⊣ r) are adjunctions, then l ≃ l′. □

Proposition 2.4.1.4. In order for a pair (l, r) : C ⇆ D of functors between B-categories to define an
adjunction, it suffices to provide maps η : idD → rl and ϵ : lr → idC such that the compositions ϵl ◦ lη and
rϵ ◦ ηr are equivalences. □

Corollary 2.4.1.5. If f : C → D is an equivalence between B-categories, then the pair (f, f−1)
defines an adjunction. □

Corollary 2.4.1.6. For any adjunction (l ⊣ r) : C ⇆ D between B-categories and any equivalence
f : D ≃ D′, the induced pair (lf−1, fr) : C ⇆ D′ defines an adjunction as well. □

If A and B are ∞-topoi and f : Cat(B)→ Cat(A) is a functor, we will often need to know whether f
carries an adjunction l ⊣ r in Cat(B) to an adjunction f(l) ⊣ f(r) in Cat(A). This is obviously the case
whenever f is a functor of (∞, 2)-categories. Since we do not wish to dive too deep into (∞, 2)-categorical
arguments, we will instead make use of the straightforward observation that f preserves adjunctions
whenever there is a bifunctorial map

FunB(−,−)→ FunA(f(−), f(−))

that recovers the action of f on mapping ∞-groupoids upon postcomposition with the core ∞-groupoid
functor.

Lemma 2.4.1.7. Let A and B be ∞-topoi and let f : Cat(B)→ Cat(A) be a functor that preserves
finite products. Suppose furthermore that there is a morphism of functors constA → f ◦ constB, where
constB : Cat∞ → Cat(B) and constA : Cat∞ → Cat(A) are the constant sheaf functors. Then f induces a
bifunctorial map FunB(−,−)→ FunA(f(−), f(−)) that recovers the action of f on mapping ∞-groupoids
upon postcomposition with the core ∞-groupoid functor. Moreover, if f is fully faithful and if the map
constA → f ◦constB restricts to an equivalence on the essential image of f , then this map is an equivalence.

Proof. Since f preserves finite products, the map constA → f ◦ constB induces a map

−⊗ f(−)→ f(−⊗−)

of bifunctors Cat∞×Cat(B)→ Cat(A). This map gives rise to the first arrow in the composition

mapCat(A)(f(−⊗−), f(−))→ mapCat(A)(−⊗ f(−), f(−)) ≃ mapCat∞(−,FunA(f(−), f(−))),
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and by precomposition with the morphism mapCat(B)(−⊗−,−)→ mapCat(A)(f(−⊗−), f(−)) that is
induced by f and Yoneda’s lemma, we end up with the desired morphism of functors

FunB(−,−)→ FunA(f(−), f(−))

that recovers the morphism mapCat(B)(−,−) → mapCat(A)(f(−), f(−)) upon restriction to core ∞-
groupoids. By construction, this map is an equivalence whenever f is fully faithful and the map
constA → f ◦ constB is an equivalence. □

Remark 2.4.1.8. In the situation of Lemma 2.4.1.7, the construction in the proof shows that if C
and D are B-categories, the functor

FunB(C,D)→ FunA(f(C), f(D))

that is induced by f and the morphism of functors φ : −⊗f(−)→ f(−⊗−) is given as the transpose of
the composition

FunB(C,D)⊗ f(C) φ−→ f(FunB(C,D)⊗ C) f(ev)−−−→ f(D)
in which ev : FunB(C,D)⊗ C→ D denotes the counit of the adjunction −⊗ C ⊣ FunB(C,−).

Using Lemma 2.4.1.7, one now finds:

Corollary 2.4.1.9. Let f∗ : B→ A be a geometric morphism of ∞-topoi. If a pair (l, r) of functors
in Cat(B) defines an adjunction, then the pair (f∗(l), f∗(r)) defines an adjunction in Cat(A). Moreover,
the converse is true whenever f∗ is fully faithful.

Dually, for any algebraic morphism f∗ : A → B of ∞-topoi, if a pair (l, r) of functors in Cat(A)
defines an adjunction, then the pair (f∗(l), f∗(r)) defines an adjunction in Cat(B), and the converse is
true whenever f∗ is fully faithful.

Proof. This follows immediately from Lemma 2.4.1.7 on account of the equivalence constB ≃
f∗ ◦ constA and the map constA → f∗ constB that is induced by the adjunction unit idA → f∗f

∗. □

Recall from Proposition 2.1.6.7 that the inclusion B ≃ Grpd(B) ↪→ Cat(B) admits a left adjoint
(−)gpd. We now obtain:

Corollary 2.4.1.10. The groupoidification functor (−)gpd : Cat(B)→ Grpd(B) preserves adjunc-
tions and therefore carries any left or right adjoint functor to an equivalence in Grpd(B).

Proof. The first part follows by applying Lemma 2.4.1.7 to the map η constB : constB → (−)gpd ◦
constB in which η : idCat(B) → (−)gpd denotes the adjunction unit. As for the second part, it suffices
to note that if (l ⊣ r) : G ⇆ H is an adjunction between B-groupoids, then since both FunB(G,G) and
FunB(H,H) are ∞-groupoids both unit and counit must be an equivalence. □

Corollary 2.4.1.11. For any simplicial object K ∈ B∆, the endofunctor FunB(K,−) on Cat(B)
preserves adjunctions in Cat(B).

Proof. By bifunctoriality of FunB(−,−), precomposition with the terminal map K → 1 in B∆ gives
rise to the diagonal functor idCat(B) → FunB(K,−), and combining this map with the functor constB
then defines a map constB(−)→ FunB(K, constB(−)), hence Lemma 2.4.1.7 applies. □

Remark 2.4.1.12. In the situation of Corollary 2.4.1.11, Remark 2.4.1.8 shows that for any two
B-categories C and D, the induced map

FunB(C,D)→ FunB(FunB(K,C),FunB(K,D))

is the one that is determined by the composition

FunB(C,D)⊗ (FunB(K,C)×K) id⊗ evK−−−−−→ FunB(C,D)⊗ C evC−−→ D

in light of the two adjunctions − × K ⊣ FunB(K,−) and − ⊗ C ⊣ FunB(C,−). Here evK and evC,
respectively, denote the counits of these adjunctions.
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Combining Corollary 2.4.1.9 with Corollary 2.4.1.11, one furthermore obtains:

Corollary 2.4.1.13. For any simplicial object K ∈ B∆, the functor FunB(K,−) : Cat(B)→ Cat∞
carries adjunctions in Cat(B) to adjunctions in Cat∞. □

Similarly as above, if A and B are ∞-topoi and if f : Cat(B)→ Cat(A) is a functor such that there
is a bifunctorial map

FunB(−,−)→ FunA(f(−), f(−))op

that recovers the action of f on mapping ∞-groupoids upon postcomposition with the core ∞-groupoid
functor, the functor f sends an adjunction l ⊣ r in Cat(B) to an adjunction f(r) ⊣ f(l) in Cat(A). One
therefore finds:

Proposition 2.4.1.14. The equivalence (−)op : Cat(B)→ Cat(B) sends an adjunction l ⊣ r to an
adjunction rop ⊣ lop.

Proof. This follows from the evident equivalence

(−)op : FunB(−,−) ≃ FunB((−)op, (−)op)op

of bifunctors Cat(B)op × Cat(B) → Cat∞, which shows that if l ⊣ r is an adjunction with unit η and
counit ϵ, then the pair (rop, lop) defines an adjunction on account of the maps ϵop : id → loprop and
ηop : roplop → id that correspond to ϵ and η via the above equivalence. □

The contravariant versions of the functors considered in Corollary 2.4.1.11 and Corollary 2.4.1.13
preserve adjunctions as well: If C is an arbitrary B-category, functoriality of FunB(−,C) defines a map

mapCat(B)(E,D)→ mapCat(B)(FunB(D,C),FunB(E,C))

that is natural in E and D. The composition

mapCat(B)(−⊗ E,D)→ mapCat(B)(FunB(D,C),FunB(−⊗ E,C))

≃ mapCat(B)(FunB(D,C)× (−⊗ E),C)

≃ mapCat(B)((−⊗ FunB(D,C))× E,C)

≃ mapCat(B)(−⊗ FunB(D,C),FunB(E,C))

(in which each step is natural in D and E) and Yoneda’s lemma now give rise to a map

FunB(E,D)→ FunB(FunB(D,C),FunB(E,C))

that defines a morphism of functors Cat(B)op×Cat(B)→ Cat∞ and that recovers the action of FunB(−,C)
on mapping ∞-groupoids upon postcomposition with the core ∞-groupoid functor. One therefore finds:

Proposition 2.4.1.15. For any B-category C, the two functors FunB(−,C) and FunB(−,C) carry
an adjunction l ⊣ r in Cat(B) to an adjunction r∗ ⊣ l∗ in Cat(B) and in Cat∞, respectively. □

2.4.2. Adjunctions via relative adjunctions of cartesian fibrations. Recall from the discussion
in 2.1.7 that every pair (l, r) : C ⇆ D of functors between (large) B-categories give rise to a pair of functors
(
∫
l,

∫
r) :

∫
C ⇆

∫
D between the associated cartesian fibrations over B. In this section, our goal is to

characterise those pairs (
∫
l,

∫
r) that come from an adjunction l ⊣ r.

Given any small ∞-category C, there is a bifunctor

−⊗− : Cat∞×Cart(C)→ Cart(C)

that sends a pair (X,P→ C) to the cartesian fibration X× P→ P→ C in which the first arrow is the
natural projection. Explicitly, a morphism in X×P is cartesian precisely if its projection to P is cartesian
in P and its projection to X is an equivalence. For an arbitrary fixed cartesian fibration P → C, the
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functor − ⊗ P : Cat∞ → Cart(C) ↪→ (Ĉat∞)/C admits a right adjoint Fun/C(P,−) that sends a map
Q→ C to the ∞-category that is defined by the pullback square

Fun/C(P,Q) Fun(P,Q)

1 Fun(P,C)

in which the vertical map on the right is given by postcomposition with Q→ C and in which the lower
horizontal arrow picks out the cartesian fibration P→ C [57, Proposition 5.2.5.1]. If Q→ C is a cartesian
fibration, let FunCart

/C (P,Q) ↪→ Fun/C(P,Q) denote the full subcategory that is spanned by those functors
that preserve cartesian edges, and observe that this defines a functor

FunCart
/C (P,−) : Cart(C)→ Cat∞ .

As the equivalence map/C(X ⊗ P,Q) ≃ mapĈat∞
(X,Fun/C(P,Q)) identifies functors X ⊗ P → Q that

preserve cartesian arrows with functors X→ Fun/C(P,Q) that take values in FunCart
/C (P,Q), one obtains

an adjunction (−⊗P ⊣ FunCart
/C (P,−)) : Ĉat∞ ⇆ Cart(C). By making use of the bifunctoriality of −⊗−,

the assignment P 7→ FunCart
/C (P,−) gives rise to a bifunctor FunCart

/C (−,−) in a unique way such that
there is an equivalence

mapCart(C)(−⊗−,−) ≃ mapCat∞(−,FunCart
/C (−,−)).

Note that there is an equivalence
∫

(−⊗−) ≃ −⊗
∫

(−) of bifunctors Cat∞×Cat(PShS(C))→ Cart(C)
in which the tensoring on the left-hand side is given by the canonical tensoring in Cat(PShS(C)) over
Cat∞, i.e. by the bifunctor const(−)×−. By the uniqueness of adjoints, one therefore finds:

Proposition 2.4.2.1. For any small ∞-category C, there is an equivalence

FunPShS(C)(−,−) ≃ FunCart
/C (∫(−), ∫(−))

of bifunctors Cat(PShS(C))op×Cat(PShS(C))→ Cat∞ that recovers the action of
∫

: PShS(C)→ Cart(C)
on mapping ∞-groupoids upon postcomposition with the core ∞-groupoid functor. □

Recall the notion of a relative adjunction between cartesian fibrations as defined by Lurie in [56,
§ 7.3]:

Definition 2.4.2.2. Let C be an ∞-category and let P and Q be cartesian fibrations over C. A
relative adjunction between P and Q is defined to be an adjunction (l ⊣ r) : Q ⇆ P between the underlying
∞-categories such that both l and r define maps in Cart(C) and such that the structure map p : P→ C

sends the adjunction counit ϵ to the identity transformation on p and the structure map q : Q→ C sends
the adjunction unit η to the identity transformation on q.

By construction of the bifunctor FunCart
/C (−,−), it is immediate that a pair (l, r) : Q ⇆ P of maps

in Cart(C) defines a relative adjunction if and only if there are maps η : idQ → rl and ϵ : lr → idP in
FunCart

/C (Q,Q) and FunCart
C (P,P), respectively, that satisfy the triangle identities from Definition 2.4.1.1.

Proposition 2.4.2.1 therefore implies:

Corollary 2.4.2.3. For any small ∞-category C, a pair (l, r) : C ⇆ D of functors between PShS(C)-
categories defines an adjunction if and only if the associated pair (

∫
l,

∫
r) defines a relative adjunction in

Cart(C). □

Observe that as by [57, Lemma 6.3.5.28] the inclusion B̂ ↪→ PSh
Ŝ
(B) defines a geometric morphism

of ∞-topoi (relative to the universe V), Corollary 2.4.1.9 implies that the pair (l, r) defines an adjunction
between large B-categories if and only if it defines an adjunction in PSh

Ŝ
(B). We may therefore conclude:

Corollary 2.4.2.4. A pair (l, r) : C ⇆ D of functors between large B-categories defines an adjunction
if and only if the associated pair (

∫
l,

∫
r) defines a relative adjunction in Cart(B). □
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The upshot of Corollary 2.4.2.4 is that we may make use of Lurie’s results on relative adjunctions [56,
§ 7.3.2] in order to formulate a useful criterion for when a functor between B-categories admits a right
and a left adjoint, respectively. For this we need to recall the mate construction:

Definition 2.4.2.5. For any right lax square in Cat(B) of the form

C1 D1

C2 D2

r1

f g
φ

r2

such that both r1 and r2 admit left adjoints l1 and l2 exhibited by units ηi : id → rili and counits
ϵi : liri → id, there is a left lax square

C1 D1

C2 D2

l1

f
ψ

g

l2

in which ψ is defined as the composite map

l2g
l2gη1−−−→ l2gr1l1

l2φl1−−−→ l2r2fl1
ϵ2fl1−−−→ fl1.

Conversely, when starting with the latter left lax square, the original right lax square is recovered by
means of the composition

gr1
η2gr1−−−→ r2l2gr1

r2ψr1−−−−→ r2fl1r1
r2fϵ1−−−→ r2f.

The left lax square determined by ψ is referred to as the mate of the right lax square determined by ψ,
and vice versa.

Remark 2.4.2.6. In the 2-categorical context mates have been studied under the name adjoint
squares by Gray in [30, §I.6], and under the name mate in [52, §2]. In the (∞, 2)-categorical setting they
have been studied by Haugseng, see the discussion following [37, Remark 4.5]. In the case where the
starting 2-cell is invertible, which we will mostly use, they are also already considered in [56, Definition
4.7.4.13].

Remark 2.4.2.7. The mate construction is functorial in the following sense: Consider the composition
of right lax squares

C1 D1

C2 D2

C3 D3,

r1

f1 g1
φ1

r2

f2 g2
φ2

r3

by which we simply mean the composition (φ2f1) ◦ (g2φ1). Then the mate of the composite square is
given by the composition of left lax squares

C1 D1

C2 D2

C3 D3,

l1

f1
ψ1 g1

l2

f2
ψ2

g2

l3

in which ψ1 denotes the mate of φ1 and ψ2 denotes the mate of φ2. This is easily checked using the
triangle identities for adjunctions and the interchange law in bicategories.
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Similarly, one can show that the mate of the horizontal composition of right lax squares

C1 D1 E1

C2 D2 E2

r1

f g
φ1

r′1

h
φ2

r2 r′2

(i.e. the composite r′2φ1 ◦ φ2r1) is given by the horizontal composition of the associated mates.

Lemma 2.4.2.8. Let C be an ∞-category and let p : P→ C and q : Q→ C be cartesian fibrations. A
map r : P→ Q in Cart(C) is a relative right adjoint if and only if

(1) for all c ∈ C the functor r|c : P|c → Q|c that is induced by r on the fibres over c admits a left
adjoint lc : Q|c → P|c;

(2) For every morphism g : d→ c in C, the mate of the commutative square

P|c Q|c

P|d Q|d

r|c

g∗ g∗
≃

r|d

commutes.

If this is the case, the relative left adjoint l of r recovers the map lc on the fibres over c ∈ C.
Dually, a map l : Q→ P in Cart(C) is a relative left adjoint if and only if

(1) for all c ∈ C the functor l|c : Q|c → P|c that is induced by l on the fibres over c admits a right
adjoint rc : P|c → Q|c;

(2) For every morphism g : d→ c in C, the mate of the commutative square

P|c Q|c

P|d Q|d

l|c

g∗ g∗

l|d

≃

commutes.

If this is the case, the relative right adjoint r of l recovers the map rc on the fibres over c ∈ C.

Proof. The second statement is the content of (the dual of) [56, Proposition 7.3.2.11]. The first
statement, on the other hand, is a formal consequence of the second: in fact, in light of the straightening
equivalence, there is an equivalence (−)∨,op : Cart(C) ≃ Cart(C) that is determined by the equivalence
(−)op
∗ : PShĈat∞

(C) ≃ PShĈat∞
(C) given by postcomposition with the involution (−)op : Ĉat∞ ≃ Ĉat∞.

By combining Proposition 2.4.1.14 with Corollary 2.4.2.3, the equivalence (−)∨,op carries a relative left
adjoint to a relative right adjoint, and it is evidently true that it translates the two conditions in the
second statement to the two conditions in the first one. Since we already know that the second statement
is verified, the first one therefore follows as well. □

By combining Corollary 2.4.2.4 with Lemma 2.4.2.8, we conclude:

Proposition 2.4.2.9. A functor r : C→ D in Cat(B̂) is a right adjoint if and only if the following
two conditions hold:

(1) For any object A ∈ B, the induced functor r(A) : C(A) → D(A) is the right adjoint in an
adjunction (lA, r(A), ηA, ϵA).
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(2) For any morphism s : B → A in B, the mate of the commutative square

C(A) D(A)

C(B) D(B)

r(A)

s∗ s∗
≃

r(B)

commutes.
If this is the case, then the left adjoint l of r is given on objects A ∈ B by lA and on morphisms s : B → A

by the mate of the commutative square defined by r(s).
Dually, a functor l : D→ C in Cat(B̂) is a left adjoint if and only if the following two conditions hold:
(1) For any object A ∈ B, the induced map l(A) : D(A)→ C(A) is the left adjoint in an adjunction

(l(A), rA, ηA, ϵA).
(2) For any morphism s : B → A in B, the mate of the commutative square

C(A) D(A)

C(B) D(B)

l(A)

s∗
≃

s∗

l(B)

commutes.
If this is the case, then a right adjoint r of l is given on objects A ∈ B by rA and on morphisms s : B → A

by the mate of the commutative square defined by l(s). □

Remark 2.4.2.10. In the situation of Proposition 2.4.2.9, suppose that the functor r : C → D is
fully faithful and suppose that condition (1) is satisfied. Since the mate of the commutative square in
condition (2) is given by the composition

lBs
∗ lBs

∗ηA−−−−−→ lBs
∗r(A)lA

≃−→ lBr(B)s∗lA
ϵBs
∗lA−−−−→ s∗lA

in which the map ϵB is an equivalence, the composition is an equivalence whenever the map lBs
∗ηA is

an equivalence. Since furthermore the map lAηA is an equivalence as well, we may in this case replace
condition (2) by the a priori weaker condition that there exists an arbitrary equivalence lBs∗ ≃ s∗lA.

Combining Lemma 2.4.2.8 with Corollary 2.4.2.3 furthermore implies:

Corollary 2.4.2.11. Let r : C→ D be a functor of B-categories and let L : PSh(C)→ B be a left
exact localisation where C is some small ∞-category. Then r is a right adjoint if and only if the following
two conditions hold:

(1) For any object c ∈ C, the induced functor r(Lc) : C(Lc)→ D(Lc) is a right adjoint.
(2) For any morphism s : d→ c in C, the mate of the commutative square

C(Lc) D(Lc)

C(Ld) D(Ld)

r(Lc)

Ls∗ Ls∗
≃

r(Ld)

commutes. □

Using the criterion from Proposition 2.4.2.9, we are now able to provide a large class of examples for
adjunctions between B-categories:

Example 2.4.2.12. In Construction 2.3.1.1, we defined a functor −⊗ Ω : PrR → Cat(B) that carries
a presentable ∞category C to the sheaf of ∞-categories C⊗B/− (where −⊗− is Lurie’s tensor product
of presentable ∞-categories). Therefore, if g : C → D is a right adjoint functor between presentable
∞-categories, we get an induced functor

g ⊗ Ω : C⊗ Ω→ D⊗ Ω
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of large B-categories. We note that for any morphism s : B → A in B the mate of the commutative square

C⊗B/A D⊗B/A

C⊗B/B D⊗B/B

C⊗s∗

g⊗B/A

D⊗s∗

g⊗B/B

may be identified with the square induced by passing to left adjoints in the commutative diagram

C⊗B/A D⊗B/A

C⊗B/B D⊗B/B

g⊗B/A

g⊗B/B

C⊗s∗ D⊗s∗

Thus it follows from Proposition 2.4.2.9 that g ⊗ Ω is a right adjoint.

We conclude this section by applying the above example in two concrete cases. At first we note that the
large B-category Ω∆ = PShB(∆) (where ∆ is viewed as a constant B-category) may naturally be identified
with the large B-category S∆ ⊗Ω. Therefore, by applying the functor −⊗Ω from Construction 2.3.1.1 to
the inclusion Cat∞ ↪→ PShS(∆), one obtains a canonical inclusion of large B-categories

ι : CatB ↪→ PShB(∆).

Now Example 2.4.2.12 shows:

Proposition 2.4.2.13. The inclusion ι : CatB ↪→ PShB(∆) admits a left adjoint L : PShB(∆) →
CatB. □

Similarly, the inclusion S ↪→ Cat∞ induces an inclusion Ω ↪→ CatB, so that Example 2.4.2.12 together
with Proposition 2.1.6.7 yields:

Proposition 2.4.2.14. The inclusion Ω ↪→ CatB admits both a right adjoint (−)≃ and a left adjoint
(−)gpd that recover the core B-groupoid and the groupoidification functor on local sections. □

2.4.3. Adjunctions in terms of mapping B-groupoids. The notion of an adjunction between
∞-categories can be formalised in several ways. One way is the bicategorical approach that we have
chosen in Definition 2.4.1.1, but an equivalent way to define an adjunction is by means of a triple (l, r, α)
in which (l, r) : C ⇆ D is a pair of functors and

α : mapD(−, r(−)) ≃ mapC(l(−),−)

is an equivalence (see for Example [17, Theorem 6.1.23]). The aim of this section is to obtain an analogous
characterisation for adjunctions between B-categories. To that end, recall from § 2.1.11 that there is
a factorisation system in Cat(B) between initial functors and left fibrations. Recall, furthermore, that
there is a functor Cat(B)op → Cat(B̂) that carries a B-category C to the large B-category LFibC of left
fibrations over C and that carries a functor f : C→ D to the pullback functor f∗ : LFibC → LFibD that
carries a left fibration q : Q → A × D in context A ∈ B to its pullback along id×f : A × C → A × D.
Now the key result from which we will derive our desired characterisation of adjunctions is the following
statement:

Proposition 2.4.3.1. Let f : C→ D be a functor between B-categories. Then the pullback functor

f∗ : LFibD → LFibC

admits a left adjoint f! that is fully faithful whenever f is. If p : P→ A× C is an object in LFibC, the left
fibration f!(p) over A× D is the unique functor that fits into a commutative diagram

P f!P

A× C A× D

p

i

f!(p)
id×f
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such that i is initial.

In order to prove Proposition 2.4.3.1, we need the following lemma:

Lemma 2.4.3.2. If f : C→ D and g : D→ E are functors in Cat(B) such that g is fully faithful, then
gf is initial if and only if both f and g are initial.

Proof. As initial functors are closed under composition, gf is initial whenever both f and g are, so
it suffices to show the converse direction. Since initial functors are the left complement in a factorisation
system, they satisfy the left cancellability property, so that it suffices to show that f is initial given that
gf is. We will make use of the B-categorical version of Quillen’s theorem A [62, Corollary 4.4.8]. Let
therefore d : A→ D be an object in context A ∈ B. On account of the commutative diagram

C/d D/d E/g(d)

C×A D×A E×A

in which the left square is a pullback, it suffices to show that the right square is a pullback as well, which
follows immediately from g being fully faithful. □

Proof of Proposition 2.4.3.1. We wish to apply Proposition 2.4.2.9. Fixing an object A ∈ B,
first note that the functor

f∗ : LFib(A× D)→ LFib(A× C)

that is given by pullback along (id×f) : A× C→ A× D has a left adjoint f!. In fact, on account of the
commutative square

LFib(A× D) LFib(A× C)

Cat(B)/A×D Cat(B)/A×C,

f∗

i i

f∗

one may define the desired left adjoint f! on the level of left fibrations as the composition L/A×D◦(id×f)!◦i,
where L/A×C : Cat(B)/A×D → LFib(A×D) denotes the localisation functor and where (id×f)! denotes the
forgetful functor. By construction, this functor sends p : P→ A×C to the left fibration f!(p) : Q→ A×D
that arises from the factorisation of (id×f)p : P→ A× D into an initial map and a left fibration. Note
that the counit of this adjunction is given by the canonical map P → Q ×C D. If f is fully faithful,
Lemma 2.4.3.2 implies that this map is initial and therefore an equivalence since it is already a left
fibration. As a consequence f being fully faithful implies that f! is fully faithful as well. Therefore, by
using Proposition 2.4.2.9 the proof is complete once we show that for any map s : B → A in B, the lax
square

LFib(A× D) LFib(A× C)

LFib(B × D) LFib(B × C)

f!

s∗
φ

s∗

f!

commutes. To see this, let p : P→ A× C be a left fibration, and consider the commutative diagram

s∗f!P f!P

s∗P P

B × D A× D

B × C A× C

s∗f!(p) f!(p)

s∗p

s∗i i

s×id

s×id

id×f id×f

p
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in which f!(p)i : P→ f!P→ A× D is the factorisation of (id×f)p into an initial map and a left fibration.
The map φ : f!s

∗(p)→ s∗f!(p) is given by the unique lift in the commutative square

s∗P s∗f!P

f!s
∗P B × D

j

s∗i

s∗f!(p)
φ

f!s
∗p

in which j is initial. To complete the proof, it therefore suffices to show that s∗i is initial, which follows
from the fact that the map s : B → A is a right fibration and therefore proper, cf. [62, § 4.4]. □

Corollary 2.4.3.3. For any functor f : C→ D between B-categories, the functor

f∗ : FunB(D,Ω)→ FunB(C,Ω)

admits a left adjoint f! that fits into a commutative diagram

Cop Dop

FunB(C,Ω) FunB(D,Ω)

fop

hCop hDop

f!

in which the two vertical arrows are given by the Yoneda embedding. Moreover, f is fully faithful if and
only if f! is fully faithful.

Proof. The existence of the left adjoint f! follows immediately from Proposition 2.4.3.1 on account
of the straightening/unstraightening equivalence for left fibrations (Theorem 2.1.11.5). To show that the
composition Cop ↪→ FunB(C,Ω)→ FunB(D,Ω) factors through the Yoneda embedding Dop ↪→ FunB(D,Ω),
it suffices to show that for every representable left fibration p : P→ A× C the associated left fibration
f!(p) : Q→ A× D is representable as well. This follows immediately from the fact that there is an initial
map i : P→ Q, which implies that Q admits an initial section A→ Q whenever P admits such a section
(cf. Remark 2.1.13.5). □

Proposition 2.4.3.4. A pair of functors (l, r) : C ⇆ D between B-categories defines an adjunction if
and only if there is an equivalence of functors

α : mapD(l(−),−) ≃ mapC(−, r(−)).

Proof. Suppose that l ⊣ r is an adjunction in Cat(B). Then Proposition 2.4.1.15 gives rise to an
adjunction l∗ ⊣ r∗ : PShB(D) ⇆ PShB(C). On the other hand, Corollary 2.4.3.3 provides a left adjoint
r! to r∗, hence the uniqueness of adjoints implies that there is an equivalence β : r! ≃ l∗. We therefore
conclude that there is an equivalence α : hCr ≃ l∗hD, where hC and hD denotes the Yoneda embedding
of C and D, respectively. On account of the adjunction −× Dop ⊣ FunB(Dop,−), the datum of such an
equivalence corresponds precisely to an equivalence

α : mapD(l(−),−) ≃ mapC(−, r(−)),

as desired.
Conversely, suppose that the pair (l, r) comes along with an equivalence α as above. As functoriality

of the twisted arrow construction (Definition 2.1.13.1) gives rise to a morphism of functors mapC(−,−)→
mapD(l(−), l(−)), one obtains a map

mapC(−,−)→ mapD(l(−), l(−)) ≃ mapC(−, rl(−)).

As the Yoneda embedding is fully faithful (Corollary 2.1.13.4), this map arises uniquely from a map
η : idC → rl. In fact, we may view the above map as a functor

C→ PShB(C)∆1
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that sends an object d : A→ C to the map

mapC(−, d)→ mapD(l(−), l(d)) ≃ mapC(−, rl(d))

in PShB(C). As the Yoneda embedding C ↪→ PShB(C) is fully faithful, this map must arise from a map in
C, hence the above functor factors through the fully faithful functor C∆1

↪→ PShB(C)∆1 that is induced
by the Yoneda embedding. By a similar argument, one obtains a map ϵ : lr → idD. We complete the
proof by showing that η and ϵ satisfy the conditions of Proposition 2.4.1.4, i.e. that the maps rϵ ◦ ηr
and ϵl ◦ lη are equivalences. We show this for the first case, the second case follows from an analogous
argument. Since equivalences of functors can be detected objectwise by [62, Corollary 4.7.17], it suffices
to show that for any object d : A→ D the map

r(d) ηrd−−→ rlr(d) rϵd−−→ r(d)

is an equivalence. Now bifunctoriality of the equivalence mapD(l(−),−) ≃ mapC(−, r(−)) implies that
there is a commutative diagram

r(d) rlr(d)

r(d) r(d)

ηrd

idr(d) rϵd

idr(d)

that arises from the transposed commutative diagram

lr(d) lr(d)

lr(d) d,

idlr(d)

idlr(d) ϵd

ϵd

which proves the claim. □

Recall that if r : D→ C is a functor between B-categories and if c : A→ D is an arbitrary object, the
functor mapC(c, r(−)) : A× D→ Ω precisely classifies the left fibration Dc/ → A× D that arises as the
pullback of the slice projection (πc)! : Cc/ → A×C along id×r : A×D→ A×C (see [62, Definition 4.2.1]).
We now obtain:

Corollary 2.4.3.5. Let r : D → C be a functor between large B-categories. Then r admits a left
adjoint l if and only if for any object c : A→ C in context A ∈ B the copresheaf mapC(c, r(−)) (viewed as
an object in FunB(D,Ω) in context A) is representable by an object in D, in which case the representing
object is given by l(c) and the associated initial object in Dc/ is given by the unit map ηc : c→ rl(c).

Proof. By Proposition 2.4.3.4, the functor r admits a left adjoint if and only if there is a functor
l : C→ D and an equivalence

α : mapD(l(−),−) ≃ mapC(−, r(−)).

Therefore, if r admits a left adjoint then mapC(c, r(−)) is representable by l(c) : A→ D, and the explicit
construction of the equivalence α in Proposition 2.4.3.4 shows that the equivalence

Dl(c)/ ≃ Dc/

over A× D that arises from α sends the initial section idl(c) : A→ Dl(c)/ to the unit map ηc : c→ rl(c).
Conversely, if mapC(c, r(−)) is representable for every object c in C in context A ∈ B, then the

functor hr : D→ C ↪→ PSh
B̂

(C) = FunB(Cop,Ω
B̂

) transposes to a functor

Cop → FunB(D,Ω
B̂

)

that factors through the Yoneda embedding Dop ↪→ FunB(D,Ω
B̂

) by [62, Proposition 3.9.4] and therefore
defines a functor l : C→ D. By construction, this functor comes with an equivalence mapD(l(−),−) ≃
mapC(−, r(−)), hence the claim follows. □
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Let C and D be B-categories and let FunRB(D,C) ↪→ FunB(D,C) be the full subcategory that is
spanned by those functors π∗AD→ π∗AC in Cat(B/A) (for every A ∈ B) that admit a left adjoint. Dually,
let FunLB(C,D) ↪→ FunB(C,D) denote the full subcategory spanned by those functors that admit a right
adjoint.

Remark 2.4.3.6 (locality of adjunctions). If C and D are B-categories and A ∈ B is an arbitrary
object, the property of a functor f : π∗AC → π∗AD to be a right adjoint is local in B (see § 2.1.14). In
fact, by Corollary 2.4.3.5 this property is equivalent to the condition that for every object c in π∗AC (in
arbitrary context), the functor mapπ∗

A
C(c, f(−)) is representable. Hence the claim follows from the fact

that the representability of such functors is a local condition (see Example 2.1.14.7). In particular, this
implies that every object in FunRB(C,D) in context A ∈ B encodes a right adjoint functor π∗AC→ π∗AD,
and one furthermore has a canonical equivalence π∗AFunRB(D,C) ≃ FunRB/A

(π∗AD, π∗AC) for every A ∈ B

(see Remarks 2.1.14.5 and 2.1.14.6).

Remark 2.4.3.7 (étale transposition invariance). By its very definition, the property of an object
f : A → FunB(D,C) to be a right adjoint (i.e. to be contained in FunRB(D,C)) is invariant under étale
transposition (see § 2.1.14).

Corollary 2.4.3.8. For any two B-categories C and D, there is an equivalence

FunRB(D,C) ≃ FunLB(C,D)op

that sends a functor between D and C to its left adjoint, and vice versa.

Proof. By postcomposition with the Yoneda embedding C ↪→ PShB(C), the B-category FunRB(D,C)
embeds into FunB(D×Cop,Ω). Likewise, the B-category FunLB(C,D)op ≃ FunRB(Cop,Dop) embeds into the
B-category FunB(D×Cop,Ω). To finish the proof, we only need to show that an object f : A×D×Cop → Ω
in FunB(D× Cop,Ω) in context A ∈ B is contained in the essential image of FunRB(D,C) if and only if it is
contained in the essential image of FunLB(C,D)op. By Remarks 2.4.3.6 and 2.4.3.7 (and the fact that the
base change functor π∗A preserves the internal hom, cf. Remark 2.1.14.1), we may replace B with B/A and
can thus assume that A ≃ 1 (see Remark 2.1.14.4). By Corollary 2.4.3.5, the functor f is contained in
FunRB(D,C) if and only if f(d,−) is representable for any object d in D and f(−, c) is representable for
any object c in C, which is in turn equivalent to f being contained in the essential image of FunLB(C,D)op.
Thus the claim follows. □

2.4.4. Reflective subcategories. In this brief section we discuss the special case of an adjunction
where the right adjoint is fully faithful. Again this material is quite standard for ordinary ∞-categories,
see for example [57, §5.2.7].

Definition 2.4.4.1. Let i : C ↪→ D be a fully faithful functor between B-categories. Then C is said to
be reflective in D if i admits a left adjoint. Dually, C is coreflective if i admits a right adjoint.

Proposition 2.4.4.2. If (l ⊣ r) : C ⇆ D is an adjunction between B-categories, then l is fully faithful
if and only if the adjunction unit η is an equivalence, and r is fully faithful if and only if the adjunction
counit ϵ is an equivalence.

Proof. The functor l is fully faithful if and only if the map

mapC(−,−)→ mapD(l(−), l(−))

is an equivalence [62, Proposition 3.8.7]. By postcomposition with the equivalence

mapD(l(−), l(−)) ≃ mapC(−, rl(−))

that is provided by Proposition 2.4.3.4, this is in turn equivalent to the map

mapC(−,−)→ mapC(−, rl(−))



2.4. ADJUNCTIONS 45

being an equivalence. But this map is obtained as the image of the adjunction unit η : ∆1 → FunB(C,C)
along the fully faithful functor FunB(C,C) ↪→ FunB(Cop × C,Ω) that is induced by postcomposition with
the Yoneda embedding C ↪→ PShB(C). The claim thus follows from the observation that fully faithful
functors are conservative (since the map ∆1 → ∆0 is essentially surjective, see [62, Lemma 3.8.8]). The
dual statement about r and ϵ is proved by an analogous argument. □

By combining Proposition 2.4.4.2 with Proposition 2.4.1.4, one immediately deduces:

Corollary 2.4.4.3. Let i : D ↪→ C be a fully faithful functor between B-categories. Then D is
reflective in C if and only if i admits a retraction L : C→ D together with a map η : idC → iL such that
both ηi and Lη are equivalences. □

If D ↪→ C is a reflective subcategory, then the reflection functor L : C→ D is a retraction and therefore
in particular essentially surjective (cf. Proposition 2.1.9.4). Consequently, we may recover the subcategory
D from the endofunctor iL : C→ C be means of its factorisation into an essentially surjective and a fully
faithful functor. Conversely, given an arbitrary endofunctor f : C→ C, Corollary 2.4.4.3 shows that the
essential image of f defines a reflective subcategory precisely if there is a map η : idC → f such that both
ηf and fη are equivalences. Let us record this observation for future use in the following proposition.

Proposition 2.4.4.4. Let C be a B-category, let f : C→ C be a functor and let iL : C ↠ D ↪→ C be
its factorisation into an essentially surjective and a fully faithful functor. Then L ⊣ i precisely if there is
a map η : idC → f such that both ηf and fη are equivalences. □

Example 2.4.4.5. If (L,R) is a factorisation system in B, then for any A ∈ B the full subcategory
R/A ↪→ B/A is reflective: the associated reflection functor L/A : B/A → R/A is induced by the unique
factorisation of maps. Such a factorisation system (L,R) is called a modality if L is closed under base
change in B, which precisely means that for every map s : B → A in B the natural map L/Bs

∗ → s∗L/A

is an equivalence. Using Proposition 2.4.2.9, we thus conclude that the right orthogonality class R of
any modality (L,R) defines a reflective subcategory of Ω. In Example 3.2.4.4 below, we will characterise
those reflective subcategories of Ω that arise in such a way.

Reflective subcategories are examples of localisations in the sense of § 2.2.3:

Proposition 2.4.4.6. Let (l ⊣ r) : C ⇆ D be a reflective subcategory. Then l is the localisation of C
at the subcategory S = l−1D≃ ↪→ C.

Proof. By construction of S, we obtain a commutative diagram

S Sgpd D≃

C S−1C D,L

l

g

hence we only need to show that g is an equivalence. Let us define h = Lr. Then gh ≃ lr ≃ id, hence
h is a right inverse of g. We finish the proof by showing that h is a left inverse of g as well. Since
L∗ : FunB(S−1C,S−1C)→ FunB(C,S−1C) is fully faithful by Proposition 2.2.3.14, it suffices to produce
an equivalence hgL ≃ L. Let η : id → rl be the adjunction unit. Since lη is an equivalence, the map
lηc factors through the core D≃ ↪→ D for every object c : A → C in context A ∈ B. By construction
of S, this means that ηc is contained in S, hence Lηc is an equivalence. Since equivalences of functors
can be detected objectwise [62, Corollary 4.7.17], we conclude that Lη : L → Lrl ≃ hgL is the desired
equivalence. □

It will be useful to have a name for the class of localisations that arise from reflective subcategories:

Definition 2.4.4.7. Let S→ C be a functor between B-categories. The localisation L : C→ S−1C is
said to be a Bousfield localisation if L admits a fully faithful right adjoint i : S−1C ↪→ C.
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Remark 2.4.4.8. The extra condition on the right adjoint in Definition 2.4.4.7 to be fully faithful is
superfluous: in fact, by Proposition 2.2.3.14 the functor L∗ : PShB(S−1C) → PShB(C) is fully faithful
and by Proposition 2.4.1.15 L∗ is left adjoint to i∗. We therefore obtain an equivalence L∗ ≃ i!, hence
Corollary 2.4.3.3 implies that i must be fully faithful as well.



CHAPTER 3

Colimits and cocompletions

We begin this chapter by studying limits and colimits in B-category theory in § 3.1. The definition of
a (co)limit will be a straightforward adaption of the usual definition for∞-categories. After developing the
general theory, we provide a number of explicit examples and show that some important B-categories have
all limits and colimits. We also provide some techniques how to split up colimits indexed by B-categories
into more manageable parts, which will be convenient in the next sections and chapters.

In § 3.2 we define what it means for a B-category to be cocomplete. One subtle but important
difference with ordinary ∞-category theory, is that a B-category is not necessarily cocomplete even if
every diagram d : A→ FunB(I,C) in an arbitrary context A admits a colimit. Instead one has to require
that the same property also holds for π∗AC, internally to B/A for every A ∈ B. More generally we define
a notion of U-cocompleteness for any subsheaf U ⊆ CatB and unwind these definitions in a number of
examples.

In § 3.3 we develop a theory of Kan-extensions in the world of B-categories. We prove that Kan-
extensions exist, whenever the B-categories involved admit a sufficient amount of colimits. Finally, we
prove the main results of this chapter in § 3.4. We show that for any B-category C, the Yoneda-embedding
hC : C→ PShB(C) exhibits PShB(C) as the free cocompletion of C. More generally we construct the free
U-cocompletion of C for any internal class U and prove that is has the expected universal property. We
also give some concrete examples of free U-cocompletions, in particular when C is the point.

3.1. Limits and colimits

In this section we discuss limits and colimits in a B-category. We set up the general theory in
§ 3.1.1–3.1.3. All in all our treatment is quite parallel to the one in ordinary higher category theory, see for
example [48, §19] or [17, §6.2]. In § 3.1.4 and § 3.1.5 we discuss limits and colimits in the universe Ω and
in the B-category of B-categories CatB. In § 3.1.6 we discuss how to compute colimits in slice categories
and in § 3.1.7 we collect some results that show under which circumstances an adjunction induces an
adjunction on slice categories. In § 3.1.8 we show that initial and final functors can be characterised by
their property of preserving limits and colimits. Finally, in § 3.1.9 we explain how general internal limits
and colimits can be decomposed into groupoidal and constant limits and colimits.

3.1.1. Definitions and first examples. Let C be a B-category. Recall from Proposition 2.1.6.5
that for any simplicial object I in B the internal hom FunB(I,C) in B∆ is a B-category. We refer to
the objects of this B-category as I-indexed diagrams in C. Note that this B-category is equivalent to
FunB(I,C), where I is the image of the simplicial object I along the localisation functor B∆ → Cat(B).
Thus, in what follows we can always safely assume that I is a B-category.

Now recall from [62, Definition 4.2.1] that to any pair of maps f : D→ C and g : E→ C in Cat(B) we
can associate the comma B-category D ↓C E = (D× E)×C×C C∆1 . We may now define:

Definition 3.1.1.1. Let C be a B-category and let d : A→ FunB(I,C) be an I-indexed diagram in C
in context A ∈ B, for some I ∈ B∆. The B-category of cones over d is defined as the comma B-category
C/d = C ↓Fun

B
(I,C) A formed from d : A → FunB(I,C) and the diagonal map diag : C → FunB(I,C).

Dually, the B-category of cocones under d is defined as the comma B-category Cd/ = A ↓Fun
B

(I,C) C.

47
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In the situation of Definition 3.1.1.1, the B-category of cones C/d admits a structure map into C×A
that fits into the pullback square

C/d FunB(I,C)/d

C×A FunB(I,C)×A

(πd)!

diag× id

in which the vertical map on the right is the forgetful functor from the slice B-category, cf. Defini-
tion 2.1.12.1. Since this is a right fibration (Proposition 2.1.12.4), so is the map C/d → C×A. In other
words, we may regard this map as an object in RFibC in context A. Dually, the map Cd/ → A × C is
a left fibration and therefore defines an object in LFibC in context A. With respect to the straighten-
ing/unstraightening equivalence RFibC ≃ PShB(C) from Theorem 2.1.11.5, the right fibration C/d → C×A
corresponds to the presheaf mapFun

B
(I,C)(diag(−), d) on C, and the left fibration Cd/ → A×C corresponds

to the copresheaf mapFun
B

(I,C)(d,diag(−)) on C.

Remark 3.1.1.2 (locality of cones). In the situation of Definition 3.1.1.1, if B ∈ B is an arbitrary
object, it follows immediately from Remark 2.1.14.1 that one obtains a canonical equivalence of B/B-
categories π∗B(C/d) ≃ (π∗BC)/π∗

B
(d).

Remark 3.1.1.3 (étale transposition invariance for cones). In the situation of Definition 3.1.1.1,
let us denote by d̄ : 1B/A

→ π∗AFunB(I,C) ≃ FunB/A
(π∗AI, π∗AC) the transpose of d. Since the forgetful

functor (πA)! : Cat(B/A)→ Cat(B) preserves pullbacks, we deduce from Remark 2.1.12.2 that the map
C/d → C × A arises as the image of (π∗AC)/d̄ → π∗AC along (πA)!. In other words, when regarded as a
B/A-category, we can identify C/d with (π∗AC)/d̄.

Remark 3.1.1.4. Let I be a simplicial object in B and let C be a B-category. Recall from [62,
Definition 4.3.11] the definition of the right cone I▷ as the pushout

I ⊔ I ∆1 ⊗ I

I ⊔ 1 I▷.

id×πI

(d1,d0)

(ι,∞)

By applying the functor FunB(−,C) to this diagram, one obtains an equivalence

FunB(I▷,C) ≃ FunB(I,C) ↓Fun
B

(I,C) C

over FunB(I,C)× C, in which the right-hand side denotes the comma B-category that is formed from the
cospan

FunB(I,C) id−→ FunB(I,C) diag←−− C.

By construction, if d : A → FunB(I,C) is an I-indexed diagram in C in context A ∈ B, one obtains a
pullback square

Cd/ FunB(I▷,C)

A× C FunB(I,C)× C.

(ι∗,∞∗)

d×id

In other words, the pullback of FunB(I▷,C) along d× id recovers the B-category of cocones under d. We
may therefore regard any object d̄ : A→ FunB(I▷,C) as a cocone d→ diag c under the diagram d = ι∗d̄

with c =∞∗d̄.
Dually, one defines the left cone I◁ as the pushout

I ⊔ I ∆1 ⊗ I

1× I I◁

πI×id

(d1,d0)
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and therefore obtains an equivalence

FunB(I◁,C) ≃ C ↓Fun
B

(I,C) FunB(I,C)

over C× FunB(I,C). Consequently, the pullback of FunB(I◁,C) along id×d recovers the B-category of
cones C/d over d.

Definition 3.1.1.5. Let C be a B-category and let d : A → FunB(I,C) be an I-indexed diagram
in context A in C, for some A ∈ B and some I ∈ B∆. A limit cone of d is a map diag(lim d) → d in
FunB(I,C) in context A that defines a final section A→ C/d over A. Dually, a colimit cocone of d is a
map d→ diag(colim d) in FunB(I,C) in context A that defines an initial section A→ Cd/ over A.

Remark 3.1.1.6. The above definition is a direct analogue of Joyal’s original definition of limits and
colimits in an ∞-category [49].

Remark 3.1.1.7. In the situation of Definition 3.1.1.5, Remark 2.1.13.5 implies that an I-indexed
diagram d : A→ FunB(I,C) admits a colimit cocone if and only if the presheaf mapFun

B
(I,C)(d,diag(−))

is representable, in which case the representing object is given by colim d. In other words, if d admits a
colimit cocone, one obtains an equivalence Ccolim d/ ≃ Cd/ over A× C, and conversely if there is an object
c : A → C and an equivalence Cc/ ≃ Cd/ over A × C then the image of the object idc in Cc/ along this
equivalence defines a colimit cocone of d. A similar observation can be made for limits. In particular, the
colimit and limit of a diagram are unique up to equivalence if they exist.

Remark 3.1.1.8 (locality of limits and colimits). The existence of limits and colimits is a local
condition: in fact, by the same reasoning as in Remark 2.4.3.6, a diagram d : A→ FunB(I,C) admits a
limit in C if and only if for every cover (si) :

⊔
iAi ↠ A the diagram s∗i (d) : Ai → FunB(I,C) admits a

limit in C. Analogous observations can be made for colimits.

Remark 3.1.1.9 (étale transposition invariance for limits and colimits). In light of Remark 3.1.1.3,
a cone diag c → d in FunB(I,C) in context A transposes to a cone diag c̄ → d̄ in FunB/A

(π∗AI, π∗AC) in
context 1B/A

(where d̄ : 1B/A
→ FunB(B/A)(π∗AI, π∗AC) and c̄ : 1B/A

→ π∗AC are the transpose of d and c,
respectively), and the former defines an initial section A→ C/d over A if and only if the latter defines an
initial object 1B/A

→ π∗AC/d̄. In other words, we may compute the limit of d : A → FunB(I,C) as the
transpose of the limit of d̄ : 1B/A

→ FunB/A
(π∗AI, π∗AC). Analogous observations can be made for colimits.

Example 3.1.1.10. Let C be B-category and let c : A → C be an object, viewed as a 1-indexed
diagram c : A → FunB(1,C) ≃ C. Then there are equivalences lim c ≃ c ≃ colim c, and the associated
limit and colimit cocones are given by idc : A→ C/c and idc : A→ Cc/.

Example 3.1.1.11. For any B-category C and any object c : A→ C, the object c is initial if and only
if it defines a colimit of the initial diagram d : ∅→ C, and dually c is final if and only if it defines a limit
of d. In fact, since ∅ is initial in Cat(B), there is an equivalence FunB(∅,C) ≃ 1, which implies that the
left fibration Cd/ → A × C is an equivalence. Consequently, a section A → Cd/ is initial if and only if
the map A → A × C is, which is in turn the case if and only if the associated map 1 → π∗AC is initial
in Cat(B/A). As this is precisely the condition that c is an initial object in C, the result follows. The
statement about final objects and limits follows by dualisation.

Proposition 3.1.1.12. Let C be a B-category and let I be a simplicial object in B. The following
conditions are equivalent:

(1) every diagram d : A→ FunB(I,C) admits a colimit colim d;
(2) the diagonal functor diag : C→ FunB(I,C) admits a left adjoint colim: FunB(I,C)→ C.

If either of these conditions are satisfied, the functor colim carries d to colim d, and the adjunction unit
d→ diag colim d defines a colimit cocone of d. The dual statement for limits holds as well.
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Proof. By the dual of Corollary 2.4.3.5, the functor diag admits a left adjoint if and only if for
every diagram d : A→ FunB(I,C) the functor mapFun

B
(I,D)(d,diag(−)) is representable by an object in C,

in which case the left adjoint sends d to the representing object in C. By definition, this functor classifies
the left fibration Cd/ → A× C. Therefore, Remark 3.1.1.7 shows that diag admits a left adjoint if and
only if every diagram d admits a colimit colim d : A→ C, in which case this is the representing object of
the functor mapFun

B
(I,C)(d,diag(−)). Corollary 2.4.3.5 moreover shows that in this case the adjunction

unit d→ diag colim d defines an initial section A→ Cd/. □

Example 3.1.1.13. Let C be a large B-category and G be a B-groupoid. By using Proposition 2.4.2.9,
the following two conditions are equivalent:

(1) C admits G-indexed colimits;
(2) for every A ∈ B the functor π∗G : C(A) → C(G × A) admits a left adjoint (πG)! such that for

every map s : B → A in B the natural morphism (πG)!s
∗ → s∗(πG)! is an equivalence.

In particular, if C has G-indexed colimits, then the colimit of a diagram d : A → FunB(G,C) can be
identified with the image of d ∈ C(G×A) along the functor (πG)!.

Dually, the following two conditions are equivalent:
(1) C admits G-indexed limits;
(2) for every A ∈ B the functor π∗G : C(A)→ C(G× A) admits a right adjoint (πG)∗ such that for

every map s : B → A in B the natural morphism s∗(πG)∗ → (πG)∗s∗ is an equivalence.
In particular, if C has G-indexed limits, then the limit of a diagram d : A→ FunB(G,C) can be identified
with the image of d ∈ C(G×A) along the functor (πG)∗.

Example 3.1.1.14. Let C be a large B-category and let I be an ∞-category. By using Proposi-
tion 2.4.2.9, the following two conditions are equivalent:

(1) C admits I-indexed colimits;
(2) for every A ∈ B the ∞-category C(A) admits I-indexed colimits, and for every map s : B → A

in B the functor s∗ : C(A)→ C(B) preserves such colimits.
Dually, the following two conditions are equivalent:

(1) C admits I-indexed limits;
(2) for every A ∈ B the ∞-category C(A) admits I-indexed limits, and for every map s : B → A in

B the functor s∗ : C(A)→ C(B) preserves such limits.

Remark 3.1.1.15. Let C be a small ∞-category such that B is a left exact and accessible localisation
of PSh(C). Let L : PSh(C)→ B be the localisation functor. Then Corollary 2.4.2.11 implies that in the
situation of Example 3.1.1.13 and Example 3.1.1.14, it suffices to check the condition in (2) for the special
case where A = L(c), B = L(d) and s = L(t) for some objects c, d ∈ C and some map t : d→ c in C.

3.1.2. Preservation of limits and colimits. Let f : C→ D be a functor between B-categories
and let I be a simplicial object in B. Let f∗ : FunB(I,C)→ FunB(I,D) be the functor that is given by
postcomposition with f . For any diagram d : A → FunB(I,C), the functor f∗ gives rise to an evident
commutative square

C/d D/f∗d

C×A D×A.

f∗

f×id

Suppose that d has a limit in C, i.e. there is a limit cone given by a final section A→ C/d over A. We say
that the functor f preserves this limit if the image of this limit cone along f∗ defines a final section of
D/f∗d. Dually, if d has a colimit in C then f is said to preserve this colimit if the image of the colimit
cocone along f∗ is an initial section of Df∗d/ over A.
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Remark 3.1.2.1 (locality of preservation of limits and colimits). The property that a functor
f : C→ D preserves the limit (colimit) of a diagram d : A→ FunB(I,C) is a local condition: in fact, the
same reasoning as in Remark 2.4.3.6 implies that f preserves the limit of d if and only if for every cover
(si) :

⊔
iAi ↠ A in B the limit of the induced diagram s∗i (d) is preserved by f . Analogous observations

can be made for colimits.

Remark 3.1.2.2 (étale transposition invariance for the preservation of limits and colimits). Note
that by means of the projections to A, the functor f∗ : C/d → D/f∗d can be regarded as a map in
Cat(B/A). When viewed as such, Remark 3.1.1.3 implies that this map can be identified with the
functor (π∗Af)∗ : (π∗AC)/d̄ → (π∗AD)/(π∗

A
f)∗d̄ (where d̄ : 1B/A

→ FunB/A
(π∗AI, π∗AC) denotes the transpose of

d). Together with Remark 3.1.1.9, this implies that f preserves the limit of d if and only if π∗Af preserves
the limit of d̄. Analogous observations hold for colimits.

Lemma 3.1.2.3. Let (l ⊣ r) : C ⇆ D be an adjunction between B-categories, and let f : c→ r(d) be a
map in C in context A ∈ B. Then f is an equivalence if and only if the transpose map g : l(c)→ d defines
a final section of C/d over A.

Proof. By Corollary 2.4.3.5, the counit ϵd : lr(d)→ d defines a final section of C/d over A, hence
the dual of Corollary 2.1.12.13 implies that there is a map g → ϵd in C/d that is an equivalence if and
only if g is final. On account of the equivalence C/d ≃ C/r(d), this map corresponds to a map f → idr(d)

in C/r(d). The result now follows from the straightforward observation that the latter is an equivalence if
and only if f is an equivalence in C. □

Proposition 3.1.2.4. Let f : C → D be a functor between B-categories and let I be a simplicial
object in B such that C and D admit all I-indexed limits, i.e the diagonal maps C → FunB(I,C) and
D→ FunB(I,D) admit right adjoints (cf. Proposition 3.1.1.12). Then f preserves all I-indexed limits
precisely if the mate of the commutative square

FunB(I,C) C

FunB(I,D) D

f∗

diag
f

diag

commutes. The dual statement about colimits holds as well.

Proof. Suppose that f preserves all I-indexed limits. The mate of the commutative square in the
statement of the proposition is encoded by a map φ : f lim→ lim f∗ that is given by the composite

f lim ηf lim−−−−→ lim diag f lim ≃−→ lim f∗ diag lim lim f∗ϵ−−−−→ lim f∗

in which η and ϵ are the units and counits of the two adjunctions diag ⊣ lim. By [62, Corollary 4.7.17], this
map is an equivalence if and only if for any d : A→ FunB(I,D) the associated map φ(d) : f(lim d)→ lim f∗d

is an equivalence in D. Now since the transpose map diag f(lim d)→ f∗d is given by postcomposing the
equivalence diag f(lim d) ≃ f∗ diag(lim d) with the map f∗ϵd and since Proposition 3.1.1.12 implies that
ϵd is precisely the limit cone over d in D, the claim follows from Lemma 3.1.2.3. □

Remark 3.1.2.5. Let f : C→ D be a functor between B-categories, let I be an arbitrary simplicial
object in B and let d : A→ FunB(I,C) be a diagram that has a limit in C. Suppose furthermore that f∗d
has a limit in D. Then the universal property of final objects (see Corollary 2.1.12.13) gives rise to a
unique map

diag f(lim d) diag lim f∗d

f∗d

in D/f∗d that is an equivalence if and only if f preserves the limit of d. Since D/f∗d → D is a right
fibration and therefore in particular conservative (cf. [62, Definition 4.1.10]), this is in turn equivalent to
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the map f(lim d)→ lim f∗d being an equivalence in D. If both C and D admit I-indexed limits, this map
is nothing but the mate transformation f lim→ lim f∗ from Proposition 3.1.2.4 evaluated at the object d.

Example 3.1.2.6. Let f : C→ D be a functor between large B-categories and let G be a B-groupoid.
Suppose that both C and D admit G-indexed colimits. By using Proposition 2.4.2.9 and Proposition 3.1.2.4,
the following two conditions are equivalent:

(1) f preserves G-indexed colimits;
(2) for every A ∈ B the natural morphism (πG)!f(G×A)→ f(A)(πG)! is an equivalence.

Dually, if C and D admit G-indexed limits, the following two conditions are equivalent:
(1) f preserves G-indexed limits;
(2) for every A ∈ B the natural morphism f(A)(πG)∗ → (πG)∗f(A) is an equivalence.

Example 3.1.2.7. Let f : C→ D be a functor between large B-categories, let I be an ∞-category and
suppose that both C and D admit I-indexed colimits. By using Proposition 2.4.2.9 and Proposition 3.1.2.4,
the following two conditions are equivalent:

(1) f preserves I-indexed colimits;
(2) for every A ∈ B the functor f(A) : C(A)→ D(A) preserves I-indexed colimits.

Dually, if C and D admit I-indexed limits, the following two conditions are equivalent:
(1) f preserves I-indexed limits;
(2) for every A ∈ B the functor f(A) : C(A)→ D(A) preserves I-indexed limits.

Checking whether a functor between B-categories preserves certain limits or colimits becomes simpler
when the functor is fully faithful:

Proposition 3.1.2.8. Let f : C ↪→ D be a fully faithful functor between B-categories, let I be a
simplicial object in B and let d : A→ FunB(I,C) be a diagram in C. Suppose that f∗(d) admits a colimit
in D such that colim f∗d is contained in C. Then colim f∗d already defines a colimit of d in C. The
analogous statement for limits holds as well.

Proof. Since f is fully faithful, the canonical square

Cd/ Df∗d/

A× C A× D

f∗

id×f

is a pullback and f∗ is fully faithful. Therefore, if colim f∗d : A → Df∗d/ is an initial section such that
the underlying object colim f∗d in D is contained in C, then the entire colimit cocone is contained in
the essential image of f∗, i.e. defines a section A→ Cd/ over A. By Lemma 2.4.3.2, this section must be
initial as well, hence the result follows. □

Corollary 3.1.2.9. Let f : C ↪→ D be a fully faithful functor between B-categories, and suppose that
both C and D admit I-indexed colimits for some simplicial object I in B. Then f preserves I-indexed
colimits if and only if the restriction of colim: FunB(I,D) → D along the inclusion f∗ : FunB(I,C) ↪→
FunB(I,D) factors through the inclusion f : C ↪→ D. The analogous statement for limits holds as well. □

We conclude this section with a discussion of the preservation of (co)limits by adjoint functors. We
will need the following lemma:

Lemma 3.1.2.10. Let (l ⊣ r) : C ⇆ D be an adjunction between B-categories and let i : L→ K be a
map between simplicial objects in B. Then the two commutative squares

FunB(K,C) FunB(K,D) FunB(K,C) FunB(K,D)

FunB(L,C) FunB(L,D) FunB(L,C) FunB(L,D)

l∗

i∗ i∗

r∗

i∗ i∗

l∗ r∗
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that are obtained from the bifunctoriality of FunB(−,−) are related by the mate correspondence.

Proof. To prove the lemma, we may argue in the homotopy bicategory of the (∞, 2)-category
Cat(B). Then the claim follows from the fact that the natural transformation FunB(K,−)→ FunB(L,−)
determines a pseudonatural transformation between 2-functors. See [52, Proposition 2.5] for an argument
in the strict case. □

Proposition 3.1.2.11. Let (l ⊣ r) : C ⇆ D be an adjunction between B-categories. Then l preserves
all colimits that exist in C, and r preserves all limits that exist in D.

Proof. We will show that the right adjoint r : D→ C preserves all limits that exist in D, the dual
statement about l and colimits follows by taking opposite B-categories. Let therefore I be a simplicial
object in B and let d : A→ FunB(I,D) be a diagram that has a limit in D. We need to show that the
image of the final section diag lim d→ d along r∗ : D/d → C/r∗d is final. By Corollary 2.4.1.11, the functor
FunB(I,−) sends the adjunction l ⊣ r to an adjunction l∗ ⊣ r∗ : FunB(I,C) ⇆ FunB(I,D), hence by using
Proposition 2.4.3.4 one obtains a chain of equivalences

mapC(−, r(lim d)) ≃ mapD(l(−), lim d)

≃ mapFun
B

(I,D)(diag l(−), d)

≃ mapFun
B

(I,D)(l∗ diag(−), d)

≃ mapFun
B

(I,C)(diag(−), r∗d)

of presheaves on C. We complete the proof by showing that this equivalence sends the identity idr(lim d)

to the map diag r(lim d) ≃ r∗ diag lim d→ r∗d that arises as the image of the limit cone diag lim d→ d

under the functor r∗. By construction, the image of the identity idr(lim d) under this chain of equivalences
is given by the composition

diag r(lim d) η diag r−−−−→ r∗l∗ diag r(lim d) ≃−→ r∗ diag lr(lim d) r∗ diag ϵ−−−−−→ r∗ diag lim d→ r∗d

in which the right-most map is the image of the limit cone diag lim d→ d under the functor r∗, the map
η denotes the unit of the adjunction l∗ ⊣ r∗ and ϵ denotes the counit of the adjunction l ⊣ r. As the
composition of the first three maps is precisely the mate of the equivalence l∗ diag ≃ diag l and therefore
recovers the equivalence diag r(lim d) ≃ r∗ diag(lim d) by Lemma 3.1.2.10, the result follows. □

Proposition 3.1.2.12. Let (l ⊣ r) : C ⇆ D be an adjunction in Cat(B) that exhibits D as a reflective
subcategory of C, let I be a simplicial object in B and let d : A → FunB(I,D) be a diagram in context
A ∈ B such that r∗d admits a colimit in C. Then l(colim r∗d) defines a colimit of d in D. Dually, if r∗d
admits a limit in C, then l(lim r∗d) defines a limit of d in D.

Proof. Suppose first that r∗d admits a colimit in C. Since r is fully faithful, we obtain a chain of
equivalences

mapFun
B

(I,D)(d, diag(−)) ≃ mapFun
B

(I,C)(r∗d,diag r(−))

≃ mapC(colim r∗d, r(−))

≃ mapD(l(colim r∗d),−),

which shows that the colimit of d in D exists and is explicitly given by l(colim r∗d).
Next, let us suppose that r∗d admits a limit in C. By the triangle identities, the functor l sends the

adjunction unit η : id→ rl to an equivalence. In particular, the map lim r∗d→ rl(lim r∗d) is sent to an
equivalence in D. Note that on account of the equivalence

mapC(−, lim r∗d) ≃ mapFun
B

(I,D)(diag l(−), d),
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the presheaf mapC(−, lim r∗d) sends any map in C that is inverted by l to an equivalence in Ω. Applying
this observation to η : lim r∗d → rl(lim r∗d), we obtain a retraction φ : rl(lim r∗d) → lim r∗d of η that
gives rise to a retract diagram

lim r∗d rl(lim r∗d) lim r∗d

rl(lim r∗d) rlrl(lim r∗d) rl(lim r∗d)

η

η φ

η η

rlη rlφ

in which the two maps in the lower row are equivalences. By the triangle identities and the fact that since
r is fully faithful the adjunction counit ϵ : lr → id is an equivalence (see Proposition 2.4.4.2), the vertical
map in the middle must be an equivalence as well, hence we conclude that η : lim r∗d→ rl(lim r∗d) too
is an equivalence. Therefore, the computation

mapFun
B

(I,D)(diag(−), d) ≃ mapFun
B

(I,C)(diag r(−), r∗d)

≃ mapC(r(−), lim r∗d)

≃ mapC(r(−), rl(lim r∗d))

≃ mapD(lr(−), l(lim r∗d))

≃ mapD(−, l(lim r∗d))

proves the claim. □

Remark 3.1.2.13. We adopted the strategy for the proof of the second claim in Proposition 3.1.2.12
from Denis-Charles Cisinski’s proof of the analogous statement for ∞-categories, see [17, Proposi-
tion 6.2.17].

3.1.3. Limits and colimits in functor categories. In this section, we discuss the familiar fact
that limits and colimits in functor∞-categories can be computed objectwise in the context of B-categories.

Proposition 3.1.3.1. Let I be a simplicial object in B and let C be a B-category that admits all
I-indexed limits. Then FunB(K,C) admits all I-indexed limits for any simplicial object K in B, and the
precomposition functor i∗ : FunB(K,C)→ FunB(L,C) preserves I-indexed limits for any map i : L→ K

in B∆. The dual statement for colimits is true as well.

Proof. Proposition 3.1.1.12 implies that the diagonal functor diag : C→ FunB(I,C) admits a right
adjoint lim: FunB(I,C)→ C. By Corollary 2.4.1.11, the functor lim∗ : FunB(K,FunB(I,C))→ FunB(K,C)
therefore defines a right adjoint to the diagonal functor diag∗ : FunB(K,C)→ FunB(K,FunB(I,C)). As
postcomposing the latter with the equivalence FunB(K,FunB(I,C)) ≃ FunB(I,FunB(K,C)) recovers the
diagonal functor diag : FunB(K,C)→ FunB(I,FunB(K,C)), Corollary 2.4.1.11 implies that FunB(K,C)
admits all I-indexed limits. If i : L→ K is an arbitrary map in B∆, the commutative diagram

FunB(K,C) FunB(K,FunB(I,C)) FunB(I,FunB(K,C))

FunB(L,C) FunB(L,FunB(I,C)) FunB(I,FunB(L,C))
i∗

diag∗

diag

i∗

≃

(i∗)∗
diag∗

diag

≃

and the functoriality of the mate construction (cf. Remark 2.4.2.7) imply that in order to show that the
functor i∗ : FunB(K,C)→ FunB(L,C) preserves I-indexed limits, we only need to show that the mate of
the left square in the above diagram commutes, which is an immediate consequence of Lemma 3.1.2.10. □
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Proposition 3.1.3.2. Let I be a simplicial object in B and let C and D be B-categories such that
D admits I-indexed limits. Let d : A → FunB(I,FunB(C,D)) be a diagram in context A ∈ B, and let
diagF → d be a cone over d, where F : A→ FunB(C,D) is an arbitrary object. Then diagF → d is a limit
cone if and only if for every map s : B → A in B and every c : B → C the induced map diag(F )(c)→ d̄(c)
is a limit cone in π∗AD in context B (where diagF → d̄ denotes the transpose of diagF → d across the
adjunction (πA)! ⊣ π∗A). The dual statements for colimits holds as well.

Proof. Using that π∗A preserves the internal hom (Remark 2.1.14.1) together with the étale transpo-
sition invariance of limits (Remark 3.1.1.9), we may replace B with B/A and can therefore assume A ≃ 1
(see Remark 2.1.14.4). By means of the adjunction diag ⊣ lim and Lemma 3.1.2.3, the map diagF → d

defines a limit cone if and only if the transpose map F → lim d is an equivalence in FunB(C,D). Using
that equivalences in functor B-categories are detected object-wise (see [62, Corollary 4.7.17]), this is in
turn the case precisely if for every c : B → C the map F (c) → (lim d)(c) is an equivalence in context
B. Note that by Remark 3.1.1.8, this map transposes to the map π∗B(F )(c̄) → lim π∗B(d)(c̄) (where
c̄ : 1B/B

→ π∗BC is the transpose of c). Using Proposition 3.1.3.1, we can identify the latter with the map
π∗B(F )(c̄)→ lim(π∗B(d)(c)), i.e. with the transpose of the morphism of diagrams diag π∗B(F )(c̄)→ π∗B(d)(c̄).
Hence, we conclude that diagF → d is a limit cone if and only if diag π∗B(F )(c̄) → π∗B(d)(c̄) is one for
each c : B → C. Now by Remark 3.1.1.3, the latter transposes to diagF (c) → d(c), hence the claim
follows from the invariance of limit cones under étale transposition (Remark 3.1.1.9). □

Proposition 3.1.3.3. Let f : C→ D be a functor between B-categories, let I be a simplicial object
in B and suppose that both C and D admits I-indexed limits and that f preserves such limits. Then for
every simplicial object K in B, the induced functor f∗ : FunB(K,C)→ FunB(K,D) preserves I-indexed
limits as well. The dual statement for colimits holds too.

Proof. Similarly as in the proof in Proposition 3.1.3.1, we need to show that the mate of the left
square in the commutative diagram

FunB(K,C) FunB(K,FunB(I,C)) FunB(I,FunB(K,C))

FunB(K,D) FunB(K,FunB(I,D)) FunB(I,FunB(K,D))

f∗

diag∗

diag

(f∗)∗

≃

(f∗)∗
diag∗

diag

≃

commutes, which follows from the observation that this mate is obtained by applying the functor
FunB(K,−) to the mate of the commutative square

C FunB(I,C)

D FunB(I,D),

f

diag

f∗

diag

which by assumption is an equivalence. Hence the claim follows. □

3.1.4. Limits and colimits in the universe Ω. Our goal of this section is to prove that the
universe Ω for B-groupoids admits small limits and colimits, and to give explicit constructions of those.
We start with the case of colimits:

Proposition 3.1.4.1. The universe Ω for small B-groupoids admits small colimits. Moreover, if
I is a B-category and if d : A → FunB(I,Ω) is an I-indexed diagram in context A ∈ B, then the colimit
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colim d : A→ Ω is given by the B/A-groupoid (
∫
d)gpd , where

∫
d→ A× I denotes the left fibration that

is classified by d.

Proof. In light of Proposition 3.1.1.12, we need to show that the diagonal functor diag : Ω →
FunB(I,Ω) has a left adjoint, which is a consequence of Corollary 2.4.3.3. The explicit description of this
colimit furthermore follows from Proposition 2.4.3.1. □

Remark 3.1.4.2. For the special case B ≃ S, the explicit construction of colimits in Proposition 3.1.4.1
is given in [57, Corollary 3.3.4.6].

Remark 3.1.4.3. Let i : B ↪→ PSh(C) be a left exact accessible localisation with left adjoint L, where
C is a small ∞-category. Let I be a B-category and let d : 1→ FunB(I,Ω) be a diagram classified by a left
fibration P→ I. By Proposition 3.1.4.1 we have that colim d ≃ Pgpd ≃ colim∆op P. Therefore colim d is
given by applying L to the presheaf

c 7→ (colim
∆op

P)(c) ≃ colim
∆op

(P(c)) ≃ P(c)gpd.

Since [62, Corollary 4.6.8] implies that for every c ∈ C the left fibration P(c) → I(c) classifies the
functor ΓB/L(c) ◦ d(c) : I(c) → S, we conclude that colim d ∈ B is given by applying L to the presheaf
c 7→ colim(Γ ◦ d(c)).

We now record the following easy consequence:

Corollary 3.1.4.4. Suppose that I is a B-category, d : I→ Ω a diagram and f : J→ I an essentially
surjective functor. Then we get an induced effective epimorphism colim d ◦ f → colim d in B.

Proof. Let P→ I denote the left fibration classifying d. Consider the cartesian square

Q P

J I

f ′

f

where Q→ J classifies d ◦ f . Since essentially surjective functors are stable under pullback, we get that
f ′ is also essentially surjective. We claim that thus (f ′)gpd : Qgpd → Pgpd is an effective epimorphism.
Indeed by Proposition 2.1.9.4 the induced map Q0 → P0 is an effective epimorphism. Since the canonical
map P0 → Pgpd is also an effective epimorphism (this can be easily deduced from [57, Lemma 6.2.3.13]),
the claim follows from [57, Corollary 6.2.3.12]. Hence (f ′)gpd is also essentially surjective and the claim
follows from Proposition 3.1.4.1. □

We will now proceed by showing that Ω also admits small limits. By Proposition 3.1.1.12, we need to
show that for any B-category I the diagonal functor diag : Ω→ FunB(I,Ω) admits a right adjoint. To that
end, recall that since Cat(B) is cartesian closed, the pullback functor π∗I : Cat(B) → Cat(B)/I admits
a right adjoint (πI)∗ that is given by sending a functor p : P → I to the B-category FunB(I,P)/I that is
defined by the pullback square

FunB(I,P)/I FunB(I,P)

1 FunB(I, I).

p∗

idI

If p is a left fibration, then so is p∗, hence (πI)∗ sends p to a B-groupoid in this case. Upon replacing B

with B/A (where A ∈ B is an arbitrary object) and using the locality of LFib (see Remark 2.1.11.6), this
argument also shows that the pullback functor π∗I : B/A → LFib(A× I) admits a right adjoint (πI)∗ for
any A ∈ B. Moreover, if s : B → A is a map in B, the natural map s∗(πI)∗ → (πI)∗s∗ is an equivalence
whenever the transpose map s!(πI)∗ → (πI)∗s! is one, and as this latter condition is evidently satisfied,
Proposition 2.4.2.9 and Theorem 2.1.11.5 now show:
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Proposition 3.1.4.5. The universe Ω for small B-groupoids admits small limits. More precisely,
if I is a B-category and if d : A→ FunB(I,Ω) is an I-indexed diagram in context A ∈ B, then the limit
lim d : A → Ω is given by the B/A-groupoid FunB/A

(π∗AI,
∫
d̄)/π∗

A
I in B/A, where

∫
d̄ → π∗AI is the left

fibration that is classified by the transpose d̄ : π∗AI→ ΩB/A
of d. □

Proof. The discussion before the proposition shows the existence of limits. The explicit description
of the limit follows from the description of the right adjoint (πI)∗ in the case A = 1 and the invariance of
limits under étale transposition, Remark 3.1.1.9. □

Remark 3.1.4.6. For the special case B ≃ S, the explicit construction of limits in Proposition 3.1.4.5
is given in [57, Corollary 3.3.3.3].

If I is an arbitrary B-category, the fact that right adjoint functors preserve limits (Proposition 3.1.2.11)
combined with the fact that the final object 1Ω is the limit of the unique diagram ∅→ Ω (Example 3.1.1.11)
show that diag(1Ω) : 1→ FunB(I,Ω) defines a final object in FunB(I,Ω). We will denote this object by
1Fun

B
(I,Ω). Proposition 3.1.4.5 now implies:

Corollary 3.1.4.7. For any B-category I, the limit functor limI : FunB(I,Ω)→ Ω is explicitly given
by the representable functor mapFun

B
(I,Ω)(1Fun

B
(I,Ω),−), where 1Fun

B
(I,Ω) : 1→ FunB(I,Ω) denotes the final

object in FunB(I,Ω).

Proof. Since Proposition 3.1.4.5 already implies the existence of limI, the claim follows from the
equivalence mapFun

B
(I,Ω)(1Fun

B
(I,Ω),−) ≃ mapΩ(1Ω, limI(−)) and the fact that mapΩ(1Ω,−) is equivalent

to the identity functor on Ω, see [62, Proposition 4.6.3]. □

Recall from § 2.1.10 that there is a canonical embedding i : ΩB ↪→ Ω
B̂

. For later use, we note:

Proposition 3.1.4.8. The inclusion i : ΩB ↪→ Ω
B̂

preserves small limits and colimits.

Proof. We begin with the case of colimits. Using Corollary 3.1.2.9, it suffices to show that the
restriction of the colimit functor colim: FunB(I,Ω

B̂
) → Ω

B̂
along the inclusion i∗ : FunB(I,ΩB) ↪→

FunB(I,Ω
B̂

) takes values in ΩB for any B-category I. Since Proposition 3.1.4.1 implies that the colimit of
any diagram d : A→ FunB(I,Ω

B̂
) is given by the (large) B/A-groupoid (

∫
d)gpd, the claim follows from [62,

Proposition 3.3.3], together with the fact that d taking values in FunB(I,ΩB) is tantamount to
∫
d being

a small B/A-category, cf. [62, Corollary 4.5.9].
As for the case of limits, by Corollary 3.1.4.7 we need to verify that mapFun

B
(I,Ω

B̂
)(1Fun

B
(I,Ω

B̂
), i∗(−))

takes values in ΩB. Since we have 1Ω
B̂

≃ i(1Ω), we find that 1Fun
B

(I,Ω
B̂

) ≃ i∗(1Fun
B

(I,Ω)), so that the
functor mapFun

B
(I,Ω

B̂
)(1Fun

B
(I,Ω

B̂
), i∗(−)) can be identified with mapFun

B
(I,Ω)(1Fun

B
(I,Ω),−) (since i∗ is fully

faithful). Hence the claim follows. □

We have now assembled the necessary results in order to prove the following:

Proposition 3.1.4.9. For any B-category C, the B-category PShB(C) of presheaves on C admits
small limits and colimits. Moreover, for any B-category I and any diagram d : A→ FunB(I,C), a cone
diag c→ d defines a limit of d if and only if the induced cone diag h(c)→ h∗d defines a limit in PShB(C).
In particular, the Yoneda embedding h preserves small limits.

Proof. The fact that PShB(C) admits small limits and colimits follows immediately from combining
Proposition 3.1.3.1 with Propositions 3.1.4.5 and 3.1.4.1. Now if d : A → FunB(I,C) is an I-indexed
diagram in C and if diag c→ d is an arbitrary cone that is represented by a section A→ C/d over A, we
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obtain a commutative diagram

C/c PShB(C)/h(c)

C/d PShB(C)/h∗d

C×A PShB(C)×A

C×A PShB(C)×A

h×id

id id
h×id

in which the square in the front and the one in the back are cartesian as h is fully faithful. Therefore, the
upper horizontal square must be cartesian as well. The cone diag c→ d defines a limit of d if and only if
the map C/c → C/d is an equivalence. Likewise, the induced cone diag h(c)→ h∗d defines a limit of h∗d
precisely if the map PShB(C)/h(c) → PShB(C)/h∗d is an equivalence. To complete the proof, we therefore
need to show that the first map is an equivalence if and only if the second map is one. As the upper
square in the previous diagram is cartesian, the second condition implies the first. Conversely, the map
PShB(C)/h(c) → PShB(C)/h∗d corresponds via Theorem 2.1.11.5 to a map between presheaves on PShB(C)
which are both representable by objects in PShB(C). Therefore, there is a unique map h(c)→ lim h∗d in
PShB(C) such that the induced map

mapPSh
B

(C)(−, h(c))→ mapPSh
B

(C)(−, lim h∗d)

recovers the morphism PShB(C)/h(c) → PShB(C)/h∗d on the level of presheaves on PShB(C). As Yoneda’s
lemma (Theorem 2.1.13.3) implies that restricting this map along h : C ↪→ PShB(C) recovers the map
h(c)→ lim h∗d, the latter being an equivalence implies that the morphism PShB(C)/h(c) → PShB(C)/h∗d
is an equivalence as well, as desired. □

Corollary 3.1.4.10. For any B-category C and any object c : A → C in context A ∈ B, the
corepresentable functor mapC(c,−) : A× C→ Ω transposes to a functor π∗AC→ ΩB/A

that preserves all
limits that exist in π∗AC.

Proof. By Example 2.1.14.7, the transpose of mapC(c,−) can be identified with mapπ∗
A

C(c̄,−), where
c̄ : 1B/A

→ π∗AC is the transpose of c. Therefore, by replacing B with B/A, we may assume that A ≃ 1. On
account of Yoneda’s lemma, the functor mapC(c,−) is equivalent to the composition c∗h, where h denotes
the Yoneda embedding and c∗ : PShB(C)→ Ω is the evaluation functor at c. By Proposition 3.1.4.9 and
Proposition 3.1.3.1, both of these functors preserve limits, hence the claim follows. □

Our next goal is to show that Ω is cartesian closed. To that end, denote by −×− : Ω× Ω→ Ω the
product functor. One now finds:

Proposition 3.1.4.11. The universe Ω for small B-groupoids is cartesian closed, in that there is an
equivalence

mapΩ(−×−,−) ≃ mapΩ(−,mapΩ(−,−))

of functors Ωop × Ωop × Ω→ Ω.

Proof. First, we claim that the transpose φ : Ω→ FunB(Ω,Ω) of the product bifunctor −×− : Ω×
Ω→ Ω takes values in FunLB(Ω,Ω). To see this, we need to show that the image of every B/A-groupoid
G along φ defines a left adjoint functor of B/A-categories. Note that since π∗A preserves adjunctions
(Corollary 2.4.1.9) and the internal hom (Remark 2.1.14.1), we may identify π∗A(−×−) with the product
bifunctor of π∗AΩ and π∗A(φ) with its transpose. Together with the equivalence π∗AΩ ≃ ΩB/A

from
Remark 2.1.14.1, this implies that the image φ(G) : A→ FunB(Ω,Ω) transposes to the product functor
G×− : ΩB/A

→ ΩB/A
. Thus, by replacing B with B/A, we may assume without loss of generality that
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A ≃ 1. In this case, Example 3.1.1.14 implies that the functor G×− : Ω→ Ω is given on local sections
over A ∈ B by the ∞-categorical product functor

B/A B/A
π∗AG×−

which admits a right adjoint HomB/A
(π∗AG,−). If s : B → A is a map in B, we deduce from [62,

Lemma 4.2.3] that the natural map s∗HomB/A
(π∗AG,−)→ HomB/B

(π∗BG, s∗(−)) is an equivalence, hence
Proposition 2.4.2.9 shows that the functor G×− : Ω→ Ω admits a right adjoint, as desired.

As a consequence of what we’ve just shown and Corollary 2.4.3.8, we now obtain a bifunctor
f : Ωop × Ω→ Ω that fits into an equivalence

mapΩ(−×−,−) ≃ mapΩ(−, f(−,−)).

We complete the proof by showing that f is equivalent to the mapping bifunctor mapΩ(−,−). Note that
by [62, Proposition 4.6.3] the functor mapΩ(1Ω,−) is equivalent to the identity on Ω. Hence the chain of
equivalences

f(−,−) ≃ mapΩ(1Ω, f(−,−)) ≃ mapΩ(1Ω ×−,−) ≃ mapΩ(−,−)

in which the second step follows from the evident equivalence 1Ω × − ≃ idΩ gives rise to the desired
identification. □

In [62, Proposition 3.7.3], it was shown that for any two objects g, h : A⇒ Ω in context A ∈ B that
correspond to B/A-groupoids G,H, there is an equivalence HomB/A

(G,H) ≃ mapΩ(g, h) of B/A-groupoids
(where HomB/A

(G,H) denotes the internal hom in B/A). We are now able to upgrade this result to a
functorial equivalence.

Proposition 3.1.4.12. The mapping B-groupoid bifunctor mapΩ(−,−) recovers the internal hom
bifunctor HomB/A

(−,−) : Bop
/A ×B/A → B/A when taking local sections over A ∈ B.

Proof. By [62, Lemma 4.7.13] and Remark 2.1.14.1, we can identify π∗A(mapΩ(−,−)) with the
functor mapΩB/A

(−,−). Therefore, by replacing B with B/A we may assume without loss of generality that
A ≃ 1. Also, [62, Corollary 4.6.8] implies that one may identify the bifunctor mapB(−,−) : Bop ×B→ S

with the composition
Bop ×B

ΓB(mapΩ(−,−))−−−−−−−−−−→ B
ΓB−−→ S.

Since applying ΓB to the bifunctor − × − : Ω × Ω → Ω recovers the ordinary product bifunctor on B,
Proposition 3.1.4.11 yields an equivalence

mapB(−×−,−) ≃ mapB(−,ΓB(mapΩ(−,−))),

which finishes the proof. □

3.1.5. Limits and colimits in CatB. Recall that by the discussion in § 2.3.1, the assignment
A 7→ Cat(B/A) defines a sheaf of ∞-categories on B that we denote by CatB and that we refer to as the
B-category of (small) B-categories. By combining Proposition 3.1.2.12 with Proposition 2.4.2.13 and the
fact that presheaf B-categories admits small limits and colimits (Proposition 3.1.4.9), we find:

Proposition 3.1.5.1. The B-category CatB admits small limits and colimits. □

Next, our goal is to show that CatB is cartesian closed. To that end, let −×− : CatB×CatB → CatB
be the product functor.

Proposition 3.1.5.2. There is a functor FunB(−,−) : Catop
B ×CatB → CatB together with an

equivalence
mapCatB(−×−,−) ≃ mapCatB(−,FunB(−,−)).

In other words, the B-category CatB is cartesian closed.
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Proof. This is proved in exactly the same way as Proposition 3.1.4.11. Using Corollary 2.4.3.8, it is
enough to show that the product bifunctor transposes to a functor CatB → FunLB(CatB,CatB). Using the
equivalence π∗A CatB ≃ CatB/A

from Remark 2.3.1.3, we may carry out the same reduction steps as in the
proof of Proposition 3.1.4.11, so that it will be sufficient to prove that for every B-category C the functor
C×− : CatB → CatB has a right adjoint. To see this, note that this functor is given on local sections
over A ∈ B by the ∞-categorical product functor

Cat(B/A) Cat(B/A).π∗AC×−

which admits a right adjoint FunB/A
(π∗AC,−). Furthermore, if s : B → A is a map in B, we deduce

from [62, Lemma 4.2.3] that the natural map s∗FunB/A
(π∗AC,−)→ FunB/B

(π∗BC, s∗(−)) is an equivalence.
Hence, Proposition 2.4.2.9 shows that the functor C × − : CatB → CatB admits a right adjoint, as
desired. □

Remark 3.1.5.3. By making use of [62, Corollary 4.6.8] and the fact that the product bifunctor
−×− on CatB recovers the ∞-categorical product bifunctor on Cat(B/A) upon taking local sections over
A ∈ B, the equivalence

mapCatB(−×−,−) ≃ mapCatB(−,FunB(−,−))
from Proposition 3.1.5.2 implies that the bifunctor FunB(−,−) : Catop

B ×CatB → CatB recovers the
internal hom of Cat(B/A) when being evaluated at A ∈ B, which justifies our choice of notation.

Corollary 3.1.5.4. The mapping B-groupoid bifunctor mapCatB(−,−) : Catop
B ×CatB → Ω is equiv-

alent to the composition of the bifunctor FunB(−,−) : Catop
B ×CatB → CatB with the core B-groupoid

functor (−)≃ : CatB → Ω.

Proof. On account of Proposition 2.4.2.14 and the fact that the functor mapΩ(1Ω,−) is equivalent
to the identity on Ω (see [62, Proposition 4.6.3]), we obtain equivalences

FunB(−,−)≃ ≃ mapΩ(1Ω,FunB(−,−)≃)

≃ mapCatB(1Ω,FunB(−,−))

≃ mapCatB(1Ω ×−,−)

≃ mapCatB(−,−)

in which the last equivalence follows from the evident equivalence 1Ω ×− ≃ idCatB . □

3.1.6. Colimits in slice B-categories. It is well-known that if C is an ∞-category and c ∈ C is an
arbitrary object, the colimit of a diagram d : I→ C/c can be computed as the colimit of the underlying
diagram (πc)!d : I→ C. In this section we will establish the analogous statement for B-categories.

Lemma 3.1.6.1. Let C be a B-category and let f : c→ d be a map in C in context 1 ∈ B such that c
is an initial object in C. Then f defines an initial object in C/d.

Proof. Let g : c′ → d be an arbitrary map in C in context 1 ∈ B. We have an evident commutative
square

(C/d)/g C/c′

C/d C.

≃

(πg)! (πc′ )!

(πd)!

in which the upper horizontal map is an equivalence as it is a right fibration that preserves final objects.
Moreover, since c is initial, the diagram

1 C/d

1 C

f

id (πd)!

c
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is a pullback. Thus we obtain a cartesian square
Consequently, we obtain an equivalence map/d(f, g) ≃ mapC(c, c′). Since c is initial, we conclude

that map/d(f, g) ≃ 1. By replacing B with B/A, the same conclusion holds for every map g : c′ → π∗Ad in
context A. Hence, we deduce from [62, Proposition 4.3.14] that f is initial. □

Lemma 3.1.6.2. Let C be a B-category and let f : c→ d be a map in C in context 1 ∈ B. Then there
is an equivalence (Cc/)/f ≃ (C/d)f/ that commutes with the projections to C/d and Cc/.

Proof. Note that the projection (πc)! : Cc/ → C induces a left fibration (πc)! : (Cc/)/f → C/d. By
considering the commutative square

c c

c d

id

id f

f

as an object φ : 1→ (Cc/)/f , we obtain a commutative square

1 (Cc/)/f

(C/d)f/ C/d.

φ

idf (πc)!

(πc)!

As the left vertical map is initial, the dotted filler exists, hence the proof is complete once we show that
φ is initial too. By construction, the right fibration (πf )! : (Cc/)/f → Cc/ carries φ to an initial object.
The desired result therefore follows from Lemma 3.1.6.1. □

Proposition 3.1.6.3. Let I and C be B-categories and let c : 1→ C be an object. Let d : I→ C/c be a
diagram and suppose that the diagram (πc)!d : I→ C admits a colimit in C. Then d admits a colimit in
C/c, and (πc)! preserves this colimit.

Proof. On account of the equivalence FunB(I,C/c) ≃ FunB(I,C)/ diag(c), the diagram d : K → C/c
corresponds to an object d′ = (πc)!d→ diag(c) in FunB(I,C)/ diag(c), which can be equivalently regarded
as a cocone d′ : 1→ Cd′/. One therefore obtains a unique map

d′

diag(colim d′) diag(c)

d′

in Cd′/ (by the universal property of initial objects, see [62, Proposition 4.3.14]) which can be regarded as
an object in (Cd′/)/d′ . Now Lemma 3.1.6.2 gives rise to an equivalence

(FunB(I,C)d′/)/d′ ≃ FunB(I,C/c)d/

over FunB(I,C/c) the pullback of which along the diagonal map determines an equivalence (Cd′/)/d′ ≃ (C/c)d/
that fits into a commutative diagram

(Cd′/)/d′ (C/c)d/

Cd′/

≃

(π
d′

)! (πc)!

Consequently, the colimit cocone d′ → colim d′ lifts along (πc)! to a cocone under d. By Lemma 3.1.6.1,
this lift defines an initial object and therefore a colimit cocone, hence the claim follows. □
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3.1.7. Adjunctions of slice B-categories. In this section we collect some basic facts about
adjunctions between slice B-categories. More precisely, we show how an adjunction between B-categories
induces an adjunction on slice B-categories, and we furthermore investigate the relation between the
existence of pullbacks in a B-category and adjunctions between its slices. Everything discussed in
this section is well-known for ∞-categories, and our proofs are straightforward adaptations of their
∞-categorical counterparts.

Proposition 3.1.7.1. Let (l ⊣ r) : C ⇆ D be an adjunction between B-categories, and let c : A→ C
be an arbitrary object. Then the induced functor r/c : C/c → D/r(c) of B/A-categories admits a left adjoint
lc that is explicitly given by the composition

lc : D/r(c)
l/r(c)−−−→ C/lr(c)

(ϵc)!−−−→ C/c,

where ϵc : lr(c)→ c is the counit of the adjunction (l ⊣ r).

Proof. Using [62, Remark 4.2.2], we may replace B by B/A and the adjunction l ⊣ r by its image
along π∗A and can therefore assume without loss of generality that A ≃ 1. Let us fix an adjunction unit η
and an adjunction counit ϵ. In light of the commutative diagram

C/c D/r(c)

D/r(c) C/lr(c) D/rlr(c)

D C D

r/c

(πc)! (πr(c))!

l/r(c)

(πr(c))!

lc

(ϵc)!

r/lr(c)

(πlr(c))!

(ϵr(c))!

(πrlr(c))!

l r

we obtain an equivalence rl(πr(c))! ≃ (πr(c))!r/clc, which in turn yields a commutative diagram

1 D/r(c) D/r(c)

∆1 ∆1 ⊗ D/r(c) D.

d0

idr(c)

ϵr(c)

d0

r/clc

(πr(c))!

id⊗ idr(c)

rηc

η(πr(c))!

ηc

Note that as d0 is a final functor, the lift ηc exists. Moreover, since restricting ηc along id⊗ idr(c) produces
a lift of the outer square in the above diagram, the uniqueness of such lifts and the triangle identities for
the adjunction l ⊣ r imply that ηc carries the final object idr(c) to the map in D/r(c) that is encoded by
the commutative triangle

r(c) rlr(c)

r(c).
idr(c)

rη(c)

ϵr(c)

In particular, the functor D/r(c)
d1

−→ ∆1 ⊗ D/r(c)
ηc−→ D/r(c) preserves the final object. Since this functor

by construction commutes with the projection (πr(c))!, it must therefore be equivalent to the identity on
D/r(c), so that ηc encodes a map idD/r(c) → r/clc.

Dually, we also have an equivalence lr(πc)! ≃ (πc)!lcr/c, so that the map ϵ(πc)! : ∆1⊗C/c → C encodes
a morphism of functors (πc)!lcr/c → (πc)!. By an analogous argument as above, we can now construct
a lift ϵc : ∆1 ⊗ C/c → C/c of ϵ(πc)! along (πc)! that encodes a morphism of functors lcr/c → idC/c

. To
complete the proof, it now suffices to show that the two compositions r/c

ηcr/c−−−→ r/clcr/c
r/cϵc−−−→ r/c and

lc
lcηc−−→ lcr/clc

ϵlc−−→ lc are equivalences, by Proposition 2.4.1.4. Using that (πr(c))! and (πc)! are right
fibrations and therefore in particular conservative, it suffices to show that these two morphisms become
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equivalences after postcomposition with (πr(c))! and (πc)!, respectively. Therefore, the claim follows from
the triangle identities for η and ϵ, together with the observation that by construction we may identify
(πr(c))!ηc ≃ η(πr(c))! and (πc)!ϵc ≃ ϵ(πc)!. □

Lemma 3.1.7.2. Let C be a B-category and let c : 1→ C be an arbitrary object. For any map f : d→ c,
there is a pullback square

mapC/c
(−, f) mapC((πc)!(−), d)

diag(1Ω) mapC((πc)!(−), c)

(πc)!

f∗

in PShB(C/c).

Proof. We have a commutative diagram

C/d C/c ×C C/d C/d

C/c C/c ×C C/c C/c

C/c C

(f!,id)

f! f!

(id,id)

(πc)!

(πc)!

in which all square are cartesian. It follows that the upper right square defines a cartesian square of right
fibrations over C and thus the claim follows because (πc)! induces an equivalence (C/c)/f

≃−→ C/d of right
fibrations over C/c. □

Proposition 3.1.7.3. Let C be a B-category with a final object 1C : 1→ C. Then the following are
equivalent:

(1) C admits finite products;
(2) for every c : A→ C in context A ∈ B, the projection (πc)! : C/c → π∗AC admits a right adjoint

π∗c .
Moreover, if either of these conditions is satisfied, the composition (πc)!π

∗
c is equivalent to the endofunctor

−× c on π∗AC.

Proof. Let us first assume that C admits finite products. By replacing B with B/A and C with π∗AC,
we may assume that A ≃ 1. Suppose that d : 1→ C is an arbitrary object. On account of the equivalence
1C × c ≃ c, we have a commutative square

1 1 C/c

∆1 C C

id

d0 1C

idc

(πc)!

πd −×c

π∗c

(in which πd : d → 1C denotes the unique map), and since 1C is final, the lift π∗c exists. Note that the
projection pr0 : − ×c → idC defines a map ϵ : (πc)!π

∗
c → idC. Now the fact that π∗c by construction

preserves final objects implies that this functor carries the unique map πd : d → 1C to the unique
map ππ∗c (d) : π∗c (d) → idc. As this implies that the image of ππ∗c (d) along (πc)! recovers the projection
pr1 : d× c→ c, the commutative square

mapC(−, (πc)!π
∗
c (d)) mapC(−, d)

mapC(−, c) diag(1Ω)

ϵ∗

(πc)!(ππ∗c (d))∗

is a pullback in PShB(C). Together with Lemma 3.1.7.2, this shows that the composition

mapC/c
(−, π∗c (d)) (πc)!−−−→ mapC((πc)!(−), (πc)!π

∗
c (d)) ϵ∗−→ mapC((πc)!(−), d)
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is an equivalence. By replacing B with B/A and C with π∗AC, the same assertion is true for any object
d : A→ C. Hence π∗c is right adjoint to (πc)!.

Conversely, suppose that (πc)! admits a right adjoint π∗c for all objects c : A→ C, and let us show
that C admits finite products. By induction, it suffices to consider binary products. Given any pair of
objects (c, d) : A → C × C, we need to show that the presheaf mapπ∗

A
C(diag(−), (c, d)) is representable.

We may again assume that A ≃ 1. Let us show that the object (πc)!π
∗
c (d) represents this presheaf. Note

that there is a pullback square

mapC×C(diag(−), (c, d)) mapC(−, d)

mapC(−, d) diag(1Ω).

To complete the proof, it therefore suffices to show that the maps ϵ∗ : mapC(−, (πc)!π
∗
c (d))→ mapC(−, d)

and (πc)!(ππ∗c (d))∗ : mapC(−, (πc)!π
∗
c (d)) → mapC(−, c) exhibit mapC(−, (πc)!π

∗
c (d)) as a product of

mapC(−, c) and mapC(−, d) in PShB(C). By the object-wise criterion for equivalences and Corollary 2.4.1.9,
this follows once we show that for every z : 1→ C the commutative square

mapC(z, (πc)!π
∗
c (d)) mapC(z, d)

mapC(z, c) 1

ϵ∗

(πc)!(ππ∗c (d))∗

is a pullback square in B. By descent in B and Lemma 3.1.7.2, this follows once we show that for any
map f : π∗A(z)→ π∗A(c) the composition

mapC/c
(f, π∗c (d)) (πc)!−−−→ mapC(π∗A(z), π∗A(πc)!π

∗
c (d)) π∗A(ϵ)∗−−−−→ mapC(π∗A(z), π∗A(d))

is an equivalence. Since this is just the adjunction property of (πc)! ⊣ π∗c , the claim follows. □

Remark 3.1.7.4. In the situation of Proposition 3.1.7.3, the proof shows that in light of the equivalence
(πc)!π

∗
c ≃ − × c, the counit of the adjunction (πc)! ⊣ π∗c can be identified with pr0 : − ×c → idπ∗

A
C.

Similarly, if d → c is an arbitrary map in context A ∈ B, the unit d → π∗c (πc)! is characterised by the
condition that the composition (πc)!d→ (πc)!π

∗
c (πc)!d ≃ ((πc)!d)× c→ (πc)!d is equivalent to the identity.

It is therefore determined by the map (πc)!d→ ((πc)!d)× c that is given by the identity on the first factor
and the structure map d→ c on the second factor.

Corollary 3.1.7.5. For any B-category C, the following are equivalent:
(1) C admits pullbacks;
(2) for every map f : c → d in C in context A ∈ B, the projection f! : C/c → C/d admits a right

adjoint f∗.
Moreover, if either of these conditions are satisfied, then the composition f!f

∗ can be identified with the
pullback functor −×d c.

Proof. In light of Proposition 3.1.7.3, it will be enough to show that C admits pullbacks if and only
if for every object c : A→ C the B/A-category C/c admits binary products. Using Example 3.1.1.14, this is
easily reduced to the corresponding statement for∞-categories, which appears as [17, Theorem 6.6.9]. □

Corollary 3.1.7.6. Let (l ⊣ r) : C → D be an adjunction between B-categories, and suppose
that C admits pullbacks. Then for any object d : A → D in D in context A ∈ B, the induced functor
l/d : D/d → C/l(c) admits a right adjoint rd that is explicitly given by the composition

rd : C/l(d)
r/l(d)−−−→ D/rl(d)

(ηd)∗−−−→ D/d

in which (ηd)∗ = d× rl(d)− is the pullback functor along the adjunction unit.
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Proof. By Corollary 3.1.7.5 the functor (ηd)∗ indeed exists and is right adjoint to the projection
(ηd)!. Now by Proposition 3.1.7.1, the functor r/l(d) : C/l(d) → D/rl(d) admits a left adjoint lr(d) that is
given by the composition (ϵl(d))!l/rl(d). Therefore, the functor rd is right adjoint to the composition

D/d
(ηd)!−−−→ D/rl(d)

l/rl(d)−−−−→ C/lrl(d)
(ϵl(d))!−−−−→ C/l(d).

It now suffices to notice that on account of the triangle identities, this functor is equivalent to l/d. □

3.1.8. A characterisation of initial and final functors. In this section, we show that initial and
final functors (see § 2.1.11) can be characterised as those functors along which restriction of diagrams
does not change their limits and colimits, respectively. For the case B ≃ S, this characterisation is proved
in [57, Proposition 4.1.1.8] or [17, Theorem 6.4.5]. For the general case, note that precomposition with
a functor i : J→ I of B-categories defines a functor i∗ : FunB(I,C)→ FunB(J,C) that induces a functor
i∗ : Cd/ → Ci∗d/ over A× C for every I-indexed diagram d : A→ FunB(I,C) in C.

Proposition 3.1.8.1. For any functor i : J→ I between B-categories, the following are equivalent:

(1) i is final;
(2) for every large B-category C and every diagram d : A→ FunB(I,C) in context A ∈ B, the functor

i∗ : Cd/ → Ci∗d/ is an equivalence;
(3) For every large B-category C and every diagram d : A → FunB(I,C) in context A ∈ B that

admits a colimit colim d, the image of the colimit cocone d → diag colim d along the functor
i∗ : Cd/ → Ci∗d/ defines a colimit cocone of i∗d.

(4) The mate of the commutative square

Ω FunB(I,Ω)

Ω FunB(J,Ω)

diag

id i∗

diag

commutes.

The dual characterisation of initial functors holds as well.

Proof. We begin by showing that (1) implies (2). Suppose that i is final, and let d : A→ FunB(I,C)
be an arbitrary diagram. By making use of Remark 3.1.1.9 and the fact that the base change functor π∗A
preserves final functors [62, Remark 4.4.9], we may replace B with B/A and can therefore assume that
A ≃ 1 (see Remark 2.1.14.4). On account of [62, Proposition 4.1.18], it suffices to show that the induced
map i∗|c on the fibres over every c : A→ C is an equivalence. By the same argument as above, we may
again assume A ≃ 1. Now the commutative diagram

1 C

FunB(I,C) FunB(I,C)× FunB(I,C)

c

d d×diag
id× diag(c)

shows that the fibre of the left fibration Cd/ → C over c is equivalent to the fibre of the right fibration
FunB(I,C/c)→ FunB(I,C) (that is given by postcomposition with (πc)! : C/c → C) over d : 1→ FunB(I,C).
Similarly, the fibre of Ci∗d/ → C over c is equivalent to the fibre of the right fibration FunB(J,C/c) →
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FunB(J,C) over i∗d such that the map i∗|c fits into the commutative diagram

Ci∗d/|c FunB(J,C/c)

Cd/|c FunB(I,C/c)

1 FunB(J,C)

1 FunB(I,C)

i∗|c i∗

i∗d

d

id i∗

in which the two squares in the front and in the back are cartesian. Since i is final, the right square must
be cartesian as well, hence i∗|c is an equivalence, so that (2) holds. Condition (3) follows immediately
from (2). For the special case C = Ω, the same argument as in the proof of Proposition 3.1.2.4 shows that
condition (3) is equivalent to the condition that the map colimJ i

∗ → colimI must be an equivalence, hence
condition (3) implies condition (4). Lastly, suppose that the map colimJ i

∗ → colimI is an equivalence,
and let us show that i is final. It will be enough to show that i is internally left orthogonal to the
universal right fibration Ω̂op → Ωop (see [62, § 4.6]) as every right fibration between (small) B-categories
arises as a pullback of this functor. By Proposition 3.1.4.5, the universe Ω admits small limits, hence if
d : A→ FunB(I,Ωop) is an arbitrary diagram both Ωop

d/ and Ωop
i∗d/ admits an initial section. By assumption,

the functor i∗ : Ωop
d/ → Ωop

i∗d/ sends the colimit cocone d→ diag colim d to an initial section of Ωop
i∗d/, which

implies that the functor i∗ : Ωop
d/ → Ωop

i∗d/ must be initial as well. But this map is already a left fibration
since it can be regarded as a map between left fibrations over Ωop, hence we conclude that this functor
must be an equivalence. Similarly as above and by making use of the equivalence Ω̂ ≃ Ω1Ω/ over Ω
from [62, Proposition 4.6.3], one obtains a commutative diagram

Ωop
i∗d/|π∗A(1Ω) FunB(J, Ω̂op)

Ωop
d/ |π∗A(1Ω) FunB(I, Ω̂op)

A FunB(J,Ωop)

A FunB(I,Ωop)

i∗|π∗
A

(1Ω) i∗

i∗d

d

id i∗

in which the squares in the front, in the back and on the left are cartesian. As the maps FunB(I, Ω̂op)→
FunB(I,Ωop) and FunB(J, Ω̂op) → FunB(J,Ωop) are right fibrations, the vertical square on the right is
cartesian already when its underlying square of core B-groupoids is. We therefore deduce that this square
must be a pullback as well, which means that i is final. □

Remark 3.1.8.2. Let C be a large B-category, let i : J→ I be a functor between B-categories and let
us fix an I-indexed diagram d : A→ FunB(I,C). Suppose that both d and i∗d admit a colimit in C. Then
the universal property of initial objects (see [62, Corollary 4.3.21]) gives rise to a unique map

i∗d

diag colim i∗d diag colim d

in Ci∗d/ that is an equivalence if and only if the cocone i∗d → diag colim d (which is the image of the
colimit cocone d→ diag colim d along i∗) is a colimit cocone. Proposition 3.1.8.1 now implies that this
map is always an equivalence when i is final, and conversely i must be final whenever this map is an
equivalence for every B-category C and every diagram d that has a colimit in C (in fact, Proposition 3.1.8.1
shows that it suffices to consider C = Ω).
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3.1.9. Decomposition of colimits I. In [57, § 4.2], Lurie provides techniques for computing colimits
in an∞-category by means of decomposing diagrams into more manageable pieces. For example, he proves
that an ∞-category has small colimits if and only if it has small coproducts and pushouts. In this section,
we aim for similar results in the context of internal higher category theory. We are mainly interested in
the decomposition of arbitrary colimits into colimits indexed by constant B-categories (i.e. B-categories
that are in the image of the functor constB : Cat∞ → Cat(B), see Remark 2.1.6.10) and B-groupoids.
In these two cases, colimits admit rather explicit descriptions that are often simpler to understand in
practice (see Examples 3.1.1.14 and 3.1.1.13). Note that in ∞-category theory such a decomposition is
not really visible since internal to the ∞-topos of spaces S, any S-groupoid is automatically constant.
However, the technique of proof that we use is still mostly the same as in [57, § 4.2]. Our main result will
be the following proposition:

Proposition 3.1.9.1. A large B-category C admits small colimits if and only if it admits colimits
indexed by constant B-categories and by B-groupoids, and a functor f : C→ D between large B-categories
that admit small colimits preserves such colimits if and only if it preserves colimits indexed by constant
B-categories and by B-groupoids.

The proof of Proposition 3.1.9.1 requires a few preparations.

Lemma 3.1.9.2. Let (Ci)i∈I be a small family of B-categories, and let ci : 1 → Ci be an object in
context 1 ∈ B for every i ∈ I. If each ci is initial then the induced object c = (ci)i∈I : 1→ C =

∏
i Ci is

initial as well.

Proof. By Proposition 2.1.12.12, the object (ci)i∈I is initial precisely if the projection

(πc)! : Cc/ → C

is an equivalence. The result thus follows from the observation that (πc)! is equivalent to the product∏
i

(πci)! :
∏
i

(Ci)ci/ →
∏
i

Ci

and is therefore an equivalence since each of the maps (πci
)! is one. □

The key input in the proof of Proposition 3.1.9.1 is the following Proposition. The strategy of proof
is the same as in [57, Proposition 4.4.2.6].

Proposition 3.1.9.3. Let κ be a regular cardinal, let K be a κ-small ∞-category and let

α : K→ Cat(B), k 7→ Jk

be a diagram with colimit J = colimk Jk in Cat(B). Suppose that C is a B-category and that d : J→ C is
a diagram such that

(1) for every k ∈ K the restricted diagram dk : Jk → C admits a colimit in C;
(2) C admits colimits indexed by κ-small constant B-categories.

Then d admits a colimit in C.

Proof. We consider the full subcategory C of (Cat∞)/K spanned by all functors φ : L → K such
that the conclusion of the proposition holds for α ◦ φ. We wish to show that the C contains idK. For
this it suffices to see that C contains all maps ∆n → K and is closed under κ-small coproducts and
pushouts (as every κ-small simplicial set can be build as an iterated pushout of κ-small coproducts of
simplices). Since ∆n has a final object, the first part is clear. Thus it remains to prove the proposition in
the cases where K is a κ-small set and K = Λ2

0. Suppose first that K is a κ-small set. Then the inclusions
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ik : Jk ↪→ J for each k ∈ K determine a pullback square

Cd/
∏
k Cdk/

C FunB(K,C).

(i∗k)k∈K

diag

By assumption, each of the categories Cdk/ admits an initial global section, hence Lemma 3.1.9.2
implies that the induced global section 1 →

∏
k Cdk/ is initial as well. Phrased differently, the functor

FunB(K,C)→ Ω that classifies the left fibration
∏
k Cdk/ → FunB(K,Ω) is corepresented by the diagram

(colim dk)k∈K : K → C. Since diag by assumption admits a left adjoint, we thus conclude that the left
fibration Cd/ → C is classified by the functor corepresented by

⊔
k colim dk : 1→ C, which implies that d

has a colimit in C.
Let us now assume K = Λ2

0, i.e. that J is given by a pushout. Then there is an equivalence

Cd/ limk Cdk/

C

≃

of left fibrations over C, which with Example 3.1.1.14 implies that the functor mapFun
B

(J,C)(d,diag(−))
is given by the Kop-indexed limit of functors mapFun

B
(Jk,C)(dk,diag(−)) in FunB(C,Ω). Since C by

assumption admits K-indexed colimits, its opposite Cop admits Kop-indexed limits. Moreover, since each
of the functors mapFun

B
(Jk,C)(dk,diag(−)) is contained in the essential image of the Yoneda embedding

Cop ↪→ FunB(C,Ω), we conclude that mapFun
B

(J,C)(d,diag(−)) is corepresentable since the Yoneda
embedding commutes with limits (Proposition 3.1.4.9). Hence the diagram d admits a colimit in C. □

By a similar argument as in the proof of Proposition 3.1.9.3 one shows:

Proposition 3.1.9.4. Let κ be a regular cardinal, let K be a κ-small ∞-category and let

α : K→ Cat(B), k 7→ Jk

be a diagram with colimit J = colimk Jk in Cat(B). Let C be a B-category that satisfies the conditions of
Proposition 3.1.9.3, let d : J→ C be a diagram and suppose that f : C→ D is a functor in Cat(B) such
that

(1) for every k ∈ K the functor f preserves the colimit of the restricted diagram dk : Jk → C;
(2) f preserves colimits indexed by κ-small constant B-categories.

Then f preserves the colimit of d. □

Proof of Proposition 3.1.9.1. Let J be a B-category and let d : A→ FunB(J,C) be a diagram
in context A ∈ B. We want to show that d admits a colimit in C. By making use of Remark 3.1.1.9, we
may replace B by B/A and can thus assume that A ≃ 1 (see Remark 2.1.14.4). Recall from [62, Lemma
4.5.2 and the discussion following it] that we have a canonical equivalence

J ≃ colim
(∆n×G)/J

∆n ⊗ G.

Furthermore it follows from Proposition 3.1.8.1 that a B-category C has ∆n ⊗ G-indexed colimits if
and only if it has G-indexed colimits since ∆n admits a final object. So if C admits colimits indexed
by constant B-categories and B-groupoids G, we may apply Proposition 3.1.9.3 to conclude that d has
a colimit in C. The argument for the preservation of small colimits is analogous, by making use of
Proposition 3.1.9.4 instead. □
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3.2. Cocompleteness

This section is dedicated to a more global study of (co)limits in a B-category. More precisely, if
U is an internal class of B-categories (i.e. a full subcategory of CatB, see Definition 3.2.1.1), we define
and study what it means for a B-category C to be U-(co)complete and for a functor f : C→ D between
B-categories to be U-(co)continuous. For the special case where U = CatB, this will yield the correct
internal analogue of the usual notion of cocompleteness and cocontinuity in (higher) category theory. One
should note that this will be a strictly stronger notion than to simply admit all internal colimits that are
indexed by small B-categories, cf. Example 3.2.4.12 below. We begin in § 3.2.1 by defining the notion of an
internal class U of B-categories, which is the internal analogue of a collection of ∞-categories. In § 3.2.2,
we give the definition of U-cocompleteness and U-cocontinuity with respect to such an internal class and
we recast some of the results from § 3.1 in this language. In § 3.2.3, we define the large B-category of
U-cocomplete B-categories, and in § 3.2.4 we study the special case where U is the internal class of all
(small) B-categories.

3.2.1. Internal classes. In this section we introduce the correct B-categorical analogue of classes
of ∞-categories:

Definition 3.2.1.1. An internal class of B-categories is a full subcategory U ↪→ CatB.

Remark 3.2.1.2. The reason why we define an internal class to be a full subcategory U ↪→ CatB
rather than just a subcategory U ↪→ Cat(B) in the usual ∞-categorical sense is that when using internal
classes as indexing classes for colimits, only the former notion leads to a theory of cocompleteness that is
local in B (cf. § 2.1.14), whereas the latter does not. For example, it is not reasonable to call a B-category
cocomplete even when it admits I-indexed colimits for every B-category I (see Definition 3.1.1.5), because
it could still happen that there is a B/A-category J (for some A ∈ B) such that π∗AC does not have all
J-indexed colimits (see Example 3.2.4.12 below). Instead, on should ask that C admits all colimits indexed
by the maximal internal class CatB (Example 3.2.1.3), which precisely amounts to asking that every
small diagram I→ π∗AC of B/A-categories admits a colimit for every A ∈ B. In this way, the notion of
cocompleteness is forced to be local.

Example 3.2.1.3. By Remark 2.3.1.5, the (large) B-category CatB may be regarded as an internal
class of large B-categories, so as a subcategory of the (very large) B-category Cat

B̂
.

Example 3.2.1.4. On account of the adjunction const ⊣ Γ: Ĉat∞ ⇆ Cat(B̂), the transpose of the
functor const : Cat∞ → Cat(B) ≃ Γ(CatB) defines a map const(Cat∞)→ CatB in Cat(B̂). The essential
image of this functor thus defines an internal class of B-categories that we denote by LConst ↪→ CatB and
that we refer to as the internal class of locally constant B-categories. By construction, this is the full
subcategory of CatB that is spanned by the constant B-categories, i.e. by those objects 1→ CatB that
correspond to categories of the form const(C) for some C ∈ Cat∞. Thus, a B/A-category C defines an
object in LConst in context A ∈ B precisely if there is a cover (si)i∈I :

⊔
i∈I Ai ↠ A in B such that s∗iC

is a constant B/Ai
-category for each i ∈ I.

Example 3.2.1.5. On account of the inclusion Ω ↪→ CatB from Proposition 2.4.2.14, the universe Ω
can be viewed as an internal class of B-categories.

3.2.2. U-cocomplete B-categories. In this section we define and study the condition on a B-
category to admit colimits indexed by objects in an internal class U of B-categories (see Definition 3.2.1.1).

Definition 3.2.2.1. Let U be an internal class of B-categories. A B-category C is said to be
U-cocomplete if π∗AC admits I-indexed colimits for every object I ∈ U(A) and every A ∈ B. Similarly, if
f : C→ D is a functor between B-categories that are both U-cocomplete, we say that f is U-cocontinuous if
π∗Af preserves I-indexed colimits for any A ∈ B and any I ∈ U(A). We simply say that a (large) B-category
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C is cocomplete if it is CatB-cocomplete (when viewing CatB as an internal class of B̂-categories), and we
call a functor between cocomplete (large) B-categories cocontinuous if it is CatB-cocontinuous.

Dually, we say that a B-category C is U-complete if π∗AC admits I-indexed limits for every object
I ∈ U(A) and every A ∈ B. If f : C→ D is a functor between B-categories that are both U-complete, we
say that f is U-continuous if π∗Af preserves I-indexed limits for any A ∈ B and any I ∈ U(A). We simply
say that a (large) B-category C is complete if it is CatB-complete, and we call a functor between complete
(large) B-categories continuous if it is CatB-continuous.

Remark 3.2.2.2. If U is an internal class of B-categories, let op(U) be the internal class that arises
as the image of U along the equivalence (−)op : CatB ≃ CatB from Remark 2.3.1.4. Then a B-category
C is U-complete if and only if Cop is op(U)-cocomplete, and a functor f is U-continuous if and only if
fop is op(U)-cocontinuous. For this reason, we may dualise statements about op(U)-cocompleteness and
op(U)-cocontinuity to obtain the corresponding statements about U-completeness and U-continuity.

Remark 3.2.2.3 (locality of U-cocompleteness and U-cocontinuity). Since both the existence of
(co)limits and the preservation of such (co)limits are local conditions (Remark 3.1.1.8 and Remark 3.1.2.1),
one finds that if

⊔
iAi ↠ 1 is a cover in B, a B-category C is U-(co)complete if and only if π∗Ai

C is
π∗Ai

U-(co)complete, and a functor f : C→ D between U-(co)complete B-categories is U-(co)continuous if
and only if π∗Ai

(f) is π∗Ai
U-(co)continuous.

Remark 3.2.2.4. Let U be an internal class of B-categories that is spanned by a collection of objects
(Ii ∈ CatB(Ai))i∈I in CatB (in the sense of § 2.1.9). Then Remark 3.1.1.8 implies that a B-category C
is U-cocomplete whenever π∗Ai

C has Ii-indexed colimits for all i ∈ I. Moreover, Remark 3.1.2.1 implies
that a functor f : C→ D between U-cocomplete B-categories is U-cocontinuous whenever π∗Ai

f preserves
Ii-indexed colimits for all i ∈ I.

Since by Corollary 2.4.1.9 the functor π∗A carries adjunctions in B to adjunctions in B/A for every
A ∈ B, Proposition 3.1.2.11 implies:

Proposition 3.2.2.5. A left adjoint functor between U-cocomplete categories is U-cocontinuous, while
a right adjoint between U-complete categories is U-continuous. □

Similarly, Proposition 3.1.2.12 shows:

Proposition 3.2.2.6. Suppose that U is an internal class of B-categories and let D be a U-cocomplete
B-category. Then every reflective and every coreflective subcategory of D is U-cocomplete as well. □

As we have a natural equivalence π∗AFunB(−,−) ≃ FunB/A
(π∗A(−), π∗A(−)) for every A ∈ B (see

Remark 2.1.14.1), Propositions 3.1.3.1 and 3.1.3.3 show:

Proposition 3.2.2.7. Let f : C→ D be a U-cocontinuous functor between U-cocomplete B-categories.
Then f∗ : FunB(K,C)→ FunB(K,D) is a U-cocontinuous functor between U-cocomplete B-categories for
all K ∈ B∆. Moreover, for all i : L→ K in B∆, the map i∗ : FunB(K,C)→ FunB(L,C) is U-cocontinuous
as well. □

Example 3.2.2.8. The universe Ω for small B-groupoids is complete and cocomplete since Ω admits
small limits and colimits (Proposition 3.1.4.1 and Proposition 3.1.4.5) and since for any A ∈ B there is a
natural equivalence π∗AΩ ≃ ΩB/A

(Remark 2.1.14.1). By the same argument and Proposition 3.1.4.8, the
inclusion i : ΩB ↪→ Ω

B̂
is continuous and cocontinuous.

Furthermore we conclude:

Proposition 3.2.2.9. For any B-category C, the presheaf B-category PShB(C) is complete and
cocomplete. If C is U-complete for some internal class U, the Yoneda embedding hC : C ↪→ PShB(C) is
U-continuous, and for every c : A→ C the corepresentable copresheaf mapC(c,−) : A× C→ Ω transposes
to a π∗AU-continuous functor π∗AC→ ΩB/A

.
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Proof. The first claim is an immediate consequence of Example 3.2.2.8 and Proposition 3.2.2.7. For
the second claim, we have to see that π∗Ah : π∗AC→ π∗APShB(C) preserves all limits indexed by the objects
in U(A). By Example 2.1.14.7, we may identify π∗AhC with hπ∗

A
C, so that we may replace B with B/A and

can therefore assume that A ≃ 1. Now the claim follows from Proposition 3.1.4.9. Lastly, the third claim
is a direct consequence of Corollary 3.1.4.10. □

Example 3.2.2.10. By combining Proposition 3.2.2.9 with Proposition 3.2.2.6, one finds that the
B-category CatB is complete and cocomplete.

Also note that Proposition 3.1.6.3 in combination with the fact that the slice construction is compatible
with π∗A(−) by Remark 2.1.14.1 we conclude:

Corollary 3.2.2.11. Let U be an internal class of B-categories and let C be a U-cocomplete B-
category. For every object c : 1→ C, the slice B-category C/c is U-cocomplete, and the forgetful functor
(πc)! is U-cocontinuous. □

3.2.3. The large B-category of U-cocomplete B-categories. In Proposition 2.2.2.7, we show
that in order to define a (non-full) subcategory of a B-category C, it suffices to specify a subobject of its
object of morphisms C1, i.e. an arbitrary family of maps in C. With this in mind, we define:

Definition 3.2.3.1. For any internal class U of B-categories, the large B-category of U-cocomplete
B-categories CatU -cc

B is defined as the subcategory of CatB that is spanned by the π∗AU-cocontinuous
functors between π∗AU-cocomplete B/A-categories for every A ∈ B. In the case where U = CatB (viewed
as an internal class of large B-categories), we denote the resulting very large B-category by Catcc

B̂
.

Remark 3.2.3.2 (locality of CatU -cc
B ). The subobject of (CatB)1 that is spanned by the π∗AU-

cocontinuous functors between π∗AU-cocomplete B-categories is stable under equivalences and composition
in the sense of Proposition 2.2.2.9. As moreover U-cocompleteness and U-cocontinuity are local conditions
(Remark 3.2.2.3), we conclude (by the same argument as in Remark 2.1.14.5) that an object A→ CatB
is contained in CatU -cc

B if and only if the associated B/A-category is π∗AU-complete, and a functor
f : C → D between B/A-categories defines a morphism in CatU -cc

B in context A ∈ B precisely if it is
a π∗AU-cocontinuous functor between π∗AU-cocomplete B/A-categories. In particular, if C and D are
π∗AU-cocomplete B/A-categories, a functor π∗AC→ π∗AD is contained in the image of the monomorphism

mapCatU -cc
B

(C,D) ↪→ mapCatB(C,D)

if and only if it is π∗AU-cocontinuous. Moreover, there is a canonical equivalence π∗A CatU -cc
B ≃ Catπ

∗
AU -cc

B/A

for every A ∈ B (by the same argument as in Remark 2.1.14.6).

Definition 3.2.3.3. Let U be an internal class of B-categories. If C and D are U-cocomplete
B-categories, we will denote by FunU -cc

B (C,D) the full subcategory of FunB(C,D) that is spanned by
those objects A → FunB(C,D) in context A ∈ B such that the corresponding functor π∗AC → π∗AD is
π∗AU-cocontinuous. In the case where U = CatB, we will denote the associated large B-category by
Funcc

B(C,D).

Remark 3.2.3.4 (locality of FunU -cc
B (C,D)). In the situation of Definition 3.2.3.3, note that by

combining Remark 3.1.5.3 and Corollary 3.1.5.4 with Remark 3.2.3.2, we obtain an equivalence

mapCatU -cc
B

(C,D) ≃ FunU -cc
B (C,D)≃.

As a consequence, Remark 3.2.3.2 implies that an object A→ FunB(C,D) is contained in FunU -cc
B (C,D) if

and only if the associated functor π∗AC→ π∗AD is π∗AU-cocontinuous, and we obtain a canonical equivalence

π∗AFunU -cc
B (C,D) ≃ Funπ

∗
AU -cc

B/A
(π∗AC, π∗AD)

for every A ∈ B (see Remark 2.1.14.6).
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The notion of U-cocompleteness and U-cocontinuity allows for some flexibility in the choice of internal
class U. For example, Proposition 3.1.8.1 implies that whenever I is a B-category that is contained in U
and f : I→ J is a final functor, adjoining the B-category J to U does not affect whether a B-category is
U-cocomplete or not. As it will be convenient later to impose certain stability conditions on an internal
class, we define:

Definition 3.2.3.5. A colimit class in B is an internal class U of B-categories that contains the final
B-category 1 and that is stable under final functors, i.e. satisfies the property that whenever I→ J is a
final functor in B/A for some A ∈ B, then I ∈ U(A) implies that J ∈ U(A).

For every internal class U of B-categories one can construct a colimit class Ucolim that is uniquely
specified by the condition that Ucolim is the minimal colimit class that contains U. Explicitly, this class
is spanned by those B/A-categories J that admit a final functor from either an object in U(A) or the
final B/A-category 1 ∈ Cat(B/A). Thus, a B/A-category I is contained in Ucolim(A) if and only if there
is a cover (si) :

⊔
iAi ↠ A in B such that for each i the B/Ai

-category s∗i I admits a final functor from
either an object in U(Ai) or the final object 1 ∈ Cat(B/Ai

). By combining Proposition 3.1.8.1 with
Remark 3.2.2.4, we deduce that a B-category C is U-cocomplete if and only if it is Ucolim-cocomplete,
and similarly a functor f : C → D is U-cocontinuous if and only if it is Ucolim-cocontinuous. Together
with the evident observation that the above description of the objects in Ucolim is local in B (so that
one obtains an equivalence π∗A(Ucolim) ≃ (π∗AU)colim for all A ∈ B, cf. § 2.1.14), this implies that one has
CatU -cc

B ≃ CatUcolim -cc
B . Thus, for the sake of discussing colimits, we may therefore always assume that an

internal class is a colimit class.

3.2.4. Cocompleteness and cocontinuity. In § 3.1.9, we saw that every small internal colimit can
be decomposed into colimits indexed by B-groupoids and by constant B-categories. In the terminology
introduced in § 3.2.2, this result can be formulated as follows:

Proposition 3.2.4.1. A large B-category C is cocomplete if and only if it is both Ω- and LConst-
cocomplete, and a functor between cocomplete large B-categories is cocontinuous if and only if it is both
Ω- and LConst-cocontinuous.

Proof. We show the case of cocompleteness, the case of cocontinuity is completely analogous.
We need to show that for every A ∈ B the B/A-category π∗AC admits colimits indexed by all small
B/A-categories if it admits colimits indexed by all small B/A-groupoids and by the objects of LConst(A).
Note that by construction of LConst (Example 3.2.1.4) and by the equivalence constB/A

≃ π∗A constB for
every A ∈ B (Remark 2.1.14.1), we may identify π∗A LConst with the internal class of locally constant
B/A-categories. Therefore, we may replace B by B/A and can thus assume that A ≃ 1. In this case, the
result follows immediately from Proposition 3.1.9.3 (since every constant B-category defines an object in
LConst(1)). □

In light of Proposition 3.2.4.1, it seems reasonable to investigate Ω- and LConst-cocompleteness
separately. We begin with the case of B-groupoidal colimits. By combining Example 3.1.1.13 with
Example 3.1.2.6, we find:

Proposition 3.2.4.2. Let S be a local class of maps in B and let ΩS be the associated subuniverse
(see § 2.1.10), where we view ΩS as an internal class of large B-categories. Then a large B-category C is
ΩS-cocomplete if and only if the following two conditions are satisfied:

(1) for every map p : P → A in S, the functor p∗ : C(A)→ C(P ) admits a left adjoint p!;
(2) for every pullback square

Q P

B A

t

q p

s
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in B in which p and q are contained in S, the natural map q!t
∗ → s∗p! is an equivalence.

Furthermore, a functor f : C→ D between (large) ΩS-cocomplete B-categories is ΩS-cocontinuous precisely
if for every map p : P → A in S the natural map p!f(P )→ f(A)p! is an equivalence. □

Example 3.2.4.3. If S is a local class in B, the associated subuniverse ΩS ↪→ Ω is closed under
ΩS-colimits (i.e. ΩS is ΩS-cocomplete and the inclusion ΩS ↪→ Ω is ΩS-cocontinuous) if and only if S is
stable under composition. For example, this is always the case when S is the right class of a factorisation
system in B.

Example 3.2.4.4. Recall from Example 2.4.4.5 that every modality (L,R) in B (i.e. a factorisation
system in which L is stable under base change in B) determines a reflective subcategory ΩR of Ω.
Conversely, if ΩR ↪→ Ω is an arbitrary reflective subcategory, then [85, Theorem 4.8] shows that the
associated local class R in B arises from a modality as in Example 2.4.4.5 precisely if R is stable under
composition, i.e. if ΩR ↪→ Ω is closed under ΩR-colimits. Hence modalities in B correspond precisely to
those reflective subuniverses that are closed under self-indexed colimits in Ω.

Let K be a class of ∞-categories, i.e. a full subcategory of Cat∞. As in example 3.2.1.4 we obtain
a functor K → CatB by transposing the map constB : K ↪→ Cat∞ → Cat(B) across the adjunction
constB ⊣ ΓB. We denote the essential image of this functor by LConstK. By construction, for every
A ∈ B the internal class π∗A LConstK is the full subcategory of CatB/A

that is spanned by constB/A
(I)

for each I ∈ K. Hence a B/A-category C defines an object in LConstK(A) if and only if there is a cover
(si)i :

⊔
Ai ↠ A such that s∗iC ≃ constB/Ai

(Ii) for some Ii ∈ K. Using Remark 3.2.2.4, Examples 3.1.1.14
and 3.1.2.7 now imply:

Proposition 3.2.4.5. If K is a class of ∞-categories, a B-category C is LConstK-cocomplete if and
only if for every A ∈ B the ∞-category C(A) admits colimits indexed by every object in K and for every
map s : B → A in B the functor s∗ : C(A) → C(B) preserves such colimits. Furthermore, a functor
f : C→ D between LConstK-cocomplete B-categories is LConstK-cocontinuous if and only if for all A ∈ B

the functor f(A) preserves all colimits that are indexed by objects in K. □

In Construction 2.3.1.1 we define a functor − ⊗ Ω : PrR → Cat(B̂). Its explicit formula and
Proposition 3.2.4.5 now yield:

Corollary 3.2.4.6. For every class of ∞-categories K there is an equivalence CatLConstK -cc
B ≃

CatK -cc
∞ ⊗Ω with respect to which the inclusion CatLConstK -cc

B ↪→ CatB is obtained by applying −⊗ Ω to
the inclusion CatK -cc

∞ ↪→ Cat∞. □

By combining Propositions 3.2.4.1, 3.2.4.2 and 3.2.4.5 we now arrive at the following:

Corollary 3.2.4.7. A B-category C is cocomplete if and only if the following conditions are satisfied:
(1) For every A ∈ B the ∞-category C(A) is cocomplete and for any s : B → A the functor

s∗ : C(A)→ C(B) preserves colimits.
(2) For every map p : P → A in B the functor p∗ has a left adjoint p! such that for every pullback

square
Q P

B A

t

q p

s

the natural map q!t
∗ → s∗p! is an equivalence.

Furthermore a functor f : C→ D of cocomplete B-categories is cocontinuous if and only if for every A ∈ B

the functor f(A) preserves colimits, and for every map p : P → A in B the natural map p!f(P )→ f(A)p!

is an equivalence. □
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Example 3.2.4.8. Let C be a presentable ∞-category. Then Corollary 3.2.4.7 and its dual show that
the B-category of Construction 2.3.1.1 is both complete and cocomplete. In fact C⊗ Ω will give rise to a
presentable B-category, which are defined to be suitable localisations of presheaf B-categories. We will
pursue a detailed study of presentable B-categories in Chapter 4.

Remark 3.2.4.9. Let C be a small ∞-category such that B is a left exact and accessible localisation
of PSh(C), and let L : PSh(C)→ B be the localisation functor. Then in order to see that a B-category
C is cocomplete, it suffices to check the conditions of Corollary 3.2.4.7 for objects in C: Indeed, as the
existence of colimits is a local condition (Remark 3.1.1.8), one may assume without loss of generality
that the object A appearing in condition (1) and (2) of Corollary 3.2.4.2 is of the form L(a) for some
a ∈ C. By furthermore using Remark 3.1.1.15, one can also assume that B = L(b) and s = L(s′) for some
d ∈ C and some map s′ : b→ a in C. Finally, provided that C is LConst-cocomplete, Proposition 3.1.9.3
allows us to further assume that P = L(p) and u = L(u′) for some p ∈ C and some map u′ : p→ a in C.
Together with Proposition 3.2.4.1, these observations imply that C is cocomplete if and only if

(1) for every a ∈ C the ∞-category C(L(a)) has small colimits, and for every t : b → a in C the
functor L(t)∗ : C(L(a))→ C(L(b)) preserves small colimits;

(2) for every pullback square
Q p

b a

t

v u

s

in PSh(C) where s : b→ a and u : p→ a are maps in C, the functors L(u)∗ : C(L(a))→ C(L(p))
and L(v)∗ : C(L(d))→ C(L(Q)) admits left adjoints L(u)! and L(v)! such that the natural map
L(v)!L(t)∗ → L(s)∗L(u)! is an equivalence.

Example 3.2.4.10. Let X be an ∞-topos and let f∗ : X → B be a geometric morphism. We may
consider the limit-preserving functor

X/f∗(−) : Bop (f∗)op

−−−−→ Xop X/−−−−→ Ĉat∞

which defines a large B-category X. Clearly X is LConst-cocomplete. Furthermore, for every pullback
square

Q P

B A

t

q p

S

in B, the lax square

X/f∗(Q) X/f∗(P )

X/f∗(B) X/f∗(A)

f∗(q)! f∗(p)!

f∗(t)∗

f∗(s)∗

commutes since f∗ preserves pullbacks. Thus it follows from Corollary 3.2.4.7 that X is cocomplete.
Dually one shows that X is also complete. In fact X will be an example of a B-topos, i.e. a left exact
localisation (in a suitable sense) of a presheaf B-category and any B-topos arises in this way. We will
make this claim precise in Chapter 5.

Example 3.2.4.11. One may also combine Proposition 3.2.4.2 and 3.2.4.5 in a more general way.
Namely let S be a local class of maps in B and K a class of ∞-categories, and consider the internal
class ⟨S,K⟩ generated by ΩS and LConstK (i.e. the essential image of the functor ΩS ⊔ LConstK → CatB).
Then Remark 3.2.2.4 shows that a B-category C is ⟨S,K⟩-cocomplete if and only if

(1) for every A ∈ B the ∞-category C(A) admits colimits indexed by objects in K, and for every
map s : B → A in B the transition functor s∗ : C(A)→ C(B) preserve these colimits;
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(2) for every map p : P → A in S the functor p∗ admits a left adjoint p! that is compatible with
base change in the sense of Proposition 3.2.4.2.

Example 3.2.4.12. The notion of being cocomplete is strictly stronger than simply admitting small
colimits. For a concrete counterexample, consider be the category of (topological) manifolds Man. There
is a functor

Sh = Sh(−) : Man→ PrL

that takes a manifold M to the ∞-category of sheaves of spaces on M . This defines a limit-preserving
functor

Sh : PShS(Man)op → PrL

via Kan extension and thus a PShS(Man)-category that in particular admits all colimits indexed by
constant PShS(Man)-categories. Furthermore Sh has all colimits indexed by PShS(Man)-groupoids: by
Proposition 3.1.9.3 it suffices to see this for representable PShS(Man)-groupoids. By Corollary 2.4.2.11,
we have to check that for any two manifolds M and N the functor

π∗M : Sh(N)→ Sh(M ×N)

admits a left adjoint and for any map α : N ′ → N the mate of the commutative square

Sh(N) Sh(M ×N)

Sh(N ′) Sh(M ×N ′)

π∗M

α∗ α∗X

π∗M

is an equivalence. Since the projections M ×N → N and M ×N ′ → N ′ are topological submersions,
the left adjoint exists and the mate is an equivalence by the smooth base change isomorphism, see [86,
Lemma 3.25]. Therefore Sh admits small colimits. However, if Sh was cocomplete, it would follow that
for any continuous map f : M → N of manifolds, the pullback functor

f∗ : Sh(N)→ Sh(M)

would have a left adjoint. This is certainly not the case. For example if Y is a point, the pullback f∗

is simply the stalk functor at the point determined by f , and in general stalk functors don’t preserve
infinite products. However if we let Sub denote the local class in PShS(Man) that is generated by the
topological submersions in Man, the above arguments show that the PShS(Man)-category Sh is in fact
⟨Sub,Cat∞⟩-cocomplete (see Example 3.2.4.11).

3.3. Kan extensions

The goal of this chapter is to develop the theory of Kan extensions of functors between B-categories.
The main theorem about the existence of Kan extensions will be discussed in § 3.3.3, but its proof requires
a few preliminary steps. We begin in § 3.3.1 by discussing the co-Yoneda lemma, which states that every
presheaf can be obtained as the colimit of its Grothendieck construction. Secondly, § 3.3.2 contains a
discussion of what we call U-small presheaves, those that can be obtained as U-colimits of representables.

3.3.1. The co-Yoneda lemma. If C is a B-category and if F : Cop → Ω is a presheaf on C, Yoneda’s
lemma (Theorem 2.1.13.3) and the straightening/unstraightening equivalence (Theorem 2.1.11.5) allow
us to identify the pullback p : C/F → C of the right fibration (πF )! : PShB(C)/F → PShB(C) along the
Yoneda embedding h : C ↪→ PShB(C) with the right fibration

∫
F → C that is classified by F . Let

us denote by h/F : C/F ↪→ PShB(C)/F the induced embedding. Since PShB(C)/F admits a final object
idF : 1→ PShB(C)/F , Proposition 3.1.8.1 implies that the functor (πF )! admits a colimit that is given by
F itself (cf. Example 3.1.1.10). Using Remark 3.1.8.2, the functor h/F therefore induces a canonical map

colim hp ≃ colim(πF )!h/F → colim(πF )! ≃ F

of presheaves on C. Our goal in this section is to prove that this map is an equivalence:
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Proposition 3.3.1.1. Let C be a B-category, let F : 1 → PShB(C) be a presheaf on C and let
p : C/F → C be the associated right fibration. Then the map colim hp→ F is an equivalence.

Remark 3.3.1.2. The analogue of Proposition 3.3.1.1 for usual ∞-categories can be found in [57,
Lemma 5.1.5.3].

The proof of Proposition 3.3.1.1 requires a few preparations. We begin with the following special
case:

Proposition 3.3.1.3. For any B-category C, the colimit of the Yoneda embedding h : C ↪→ PShB(C)
is given by the final object 1PSh

B
(C).

Proof. Using Proposition 3.1.4.8 in conjunction with Proposition 3.1.2.8, it suffices to show that
the colimit of ĥ : C ↪→ PSh

B̂
(C) = FunB(Cop,Ω

B̂
) is given by 1PSh

B̂
(C). On account of the commutative

diagram

PSh
B̂

(C) FunB(C,PSh
B̂

(C))

FunB(Cop × PShB(C),Ω
B̂

) FunB(Cop × C,Ω
B̂

)

diag

pr∗0 ≃
(id×h)∗

and Corollary 2.4.3.3, the colimit of ĥ in PSh
B̂

(C) is equivalent to (pr0)!(id×h)!(imapC), where i : Ω ↪→ Ω
B̂

denotes the inclusion. On the other hand, Yoneda’s lemma provides a commutative square

Tw(C)
∫

ev

Cop × C Cop × PShB(C)

j

id×h

in which j is initial (see the proof of [62, Theorem 4.7.8]), which together with Proposition 2.4.3.1
implies that (id×h)!(imapC) is given by the functor i ◦ ev. Note that by postcomposing pr∗0 with the
equivalence FunB(Cop × PShB(C),Ω

B̂
) ≃ FunB(PShB(C),PSh

B̂
(C)), we recover the diagonal functor

diag : PSh
B̂

(C)→ FunB(PShB(C),PSh
B̂

(C)). As this equivalence furthermore transforms the composition
i ◦ ev into the inclusion i∗ : PShB(C) ↪→ PSh

B̂
(C), we conclude that the colimit of ĥ is equivalent to the

colimit of i∗. Since 1PSh
B

(C) is a final object, the result thus follows from Proposition 3.1.8.1, together
with Example 3.1.1.10. □

Remark 3.3.1.4. In the situation of Proposition 3.3.1.3, Proposition 2.4.3.1 implies that the colimit
of the Yoneda embedding h : C ↪→ PShB(C) classifies the left fibration q : Q→ Cop that is defined by the
unique commutative square

Tw(C) Q

Cop × C Cop

p

i

q

pr0

in which i is initial. By Proposition 3.3.1.3, the map q is an equivalence, hence we conclude that the
projection pr0 p : Tw(C)→ Cop must be initial.

Lemma 3.3.1.5. Let C be a B-category and let F : Cop → Ω be a presheaf on C. Then there is a
canonical equivalence PShB(C/F ) ≃ PShB(C)/F that fits into a commutative diagram

C/F

PShB(C/F ) PShB(C)/F

(hC)/F
h(C/F )

≃
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Proof. Let p : C/F → C be the projection, and let p! : PShB(C/F ) → PShB(C) be the left adjoint
of the precomposition functor p∗. By Corollary 2.4.3.3, there is an equivalence p!h(C/F ) ≃ hCp, hence it
suffices to show that p! factors through (πF )! : PShB(C)/F → PShB(C) via an equivalence. By construction
of p!, this functor sends the final object 1PSh

B
(C/F ) to F , hence we obtain a lifting problem

1 PShB(C)/F

PShB(C/F ) PShB(C)

F

1PSh
B

(C/F ) (πF )!

p!

in which F and 1PSh
B

(C) define final maps and (πF )! is a right fibration. On account of the factorisation
system between final maps and right fibrations, the dashed arrow exists and has to be final as well. To
complete the proof, it therefore suffices to show that it is also a right fibration, which follows once we verify
that p! is a right fibration. By Proposition 2.4.3.1, this map evaluates at any A ∈ B to the the functor
RFib(A×C/F )→ RFib(A×C) that is given by restricting the right fibration Cat(B)/A×C/F

→ Cat(B)/A×C

of ∞-categories. Since the canonical square

RFib(A× C/F ) Cat(B)/A×C/F

RFib(A× C) Cat(B)/A×C

is a pullback, it thus follows that p! is sectionwise a right fibration and must therefore be a right fibration
itself. □

Proof of Proposition 3.3.1.1. The map colim hp→ F is determined by the cocone under hp ≃
(πF )!h/F that arises as the image of the colimit cocone (πF )! → diag(F ) along the functor

(h/F )∗ : PShB(C)(πF )!/ → PShB(C)hp/.

By making use of the equivalence φ : PShB(C)/F ≃ PShB(C/F ) from Lemma 3.3.1.5, we now obtain a
commutative square

PShB(C/F )φ/ PShB(C/F )hC/F
/

PShB(C)(πF )!/ PShB(C)hp/.

(h/F )∗

(p!)∗ (p!)∗
(h/F )∗

As p! is a left adjoint and therefore preserves colimits, we may thus replace C by C/F and can there-
fore assume without loss of generality F = 1PSh

B
(C), in which case the desired result follows from

Proposition 3.3.1.3. □

3.3.2. U-small presheaves. In this section we study those subcategories of the B-category PShB(C)
of presheaves on a B-category C that are spanned by U-colimits of representable presheaves for an
arbitrary internal class U of B-categories.

Definition 3.3.2.1. Let C be a B-category and let U be an internal class of B-categories. We say
that a presheaf F : A→ PShB(C) in context A ∈ B is U-small if C/F is contained in Ucolim(A) (see the
discussion after Definition 3.2.3.5). We denote by SmallUB(C) the full subcategory of PShB(C) that is
spanned by the U-small presheaves.

Remark 3.3.2.2 (locality of U-small presheaves). The property of a presheaf F : A→ PShB(C) to
be U-small is local in B. That is, for every cover (si) :

⊔
iAi ↠ A in B, the presheaf F is U-small if

and only if s∗i (F ) is U-small. This follows immediately from the fact that since Ucolim(−) is a subsheaf
of Cat(B/−), the property to be contained in Ucolim(A) can be checked locally. As a consequence (see
Remark 2.1.14.5), a presheaf F is contained in SmallB(C) if and only if F is U-small. From this observation
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and Remark 3.3.2.3 below, it furthermore follows (by the argument in Remark 2.1.14.6) that there is a
natural equivalence

Smallπ
∗
AU

B/A
(π∗AC) ≃ π∗A SmallUB(C).

for every A ∈ B.

Remark 3.3.2.3 (étale transposition invariance of U-small presheaves). Since for every A ∈ B we
have an equivalence π∗A(Ucolim) ≃ (π∗AU)colim (see the discussion following Definition 3.2.3.5) and on
account of Remark 2.1.12.2, it follows that a presheaf F : A → PShB(C) is U-small if and only if its
transpose F̂ : 1B/A

→ PShB/A
(π∗AC) is π∗AU-small.

Remark 3.3.2.4. For the special case where B ≃ S and where U is the class of κ-filtered∞-categories
for some regular cardinal κ, the ∞-category of U-small presheaves on a small ∞-category is precisely its
ind-completion by κ-filtered colimits in the sense of [57, § 5.3.5]. In general, however, the B-category
SmallUB(C) need not be a free cocompletion, see § 3.4.1 below.

Example 3.3.2.5. For any internal class U of B-categories and for any B-category C, the presheaf
represented by an object c in C in context A ∈ B is U-small: the canonical section idc : A→ C/c provides
a final map from an object contained in Ucolim(A), which implies that C/c defines an object of Ucolim

as well. By making use of [62, Proposition 3.9.4], the Yoneda embedding h : C ↪→ PShB(C) thus factors
through the inclusion SmallUB(C) ↪→ PShB(C).

Proposition 3.3.2.6. For any B-category C and any internal class U of B-categories, the B-category
SmallUB(C) is closed under U-colimits of representables in PShB(C). More precisely, for any object A→ U
in context A ∈ B that corresponds to a B/A-category I, the colimit functor colim: FunB/A

(I, π∗APShB(C))→
π∗APShB(C) restricts to a functor

colim: FunB/A
(I, π∗AC)→ π∗A SmallUB(C).

Proof. By using Example 2.1.14.7 and Remark 3.3.2.2, we may replace B by B/A, so that it will be
enough to show that for any diagram d : B → FunB(I,C) in context B ∈ B the colimit colim hd : B →
PSh

B̂
(C) is a U-small presheaf on C. By the same argument and Remark 3.1.1.9, we may again replace B

with B/B, so that we can also reduce to B ≃ 1. Let pi : I→ P→ C be the factorisation of d into a final
functor and a right fibration. By Proposition 3.1.8.1 we find colim hd ≃ colim hp, hence Proposition 3.3.1.1
implies P ≃ C/ colimhd. Since i is a final functor into P from the B-category I ∈ U(1), this shows that
colim hd is U-small. □

We finish this section by showing that for any B-category C, the functor h : C ↪→ SmallUB(C) that is
induced by the Yoneda embedding has a left adjoint whenever C is U-cocomplete.

Proposition 3.3.2.7. Let U be an internal class of B-categories. If C is a U-cocomplete B-category, the
functor h : C ↪→ SmallUB(C) that is induced by the Yoneda embedding admits a left adjoint L : SmallUB(C)→
C.

Proof. As C being U-cocomplete is equivalent to C being Ucolim-cocomplete, we may assume
without loss of generality that U is already a colimit class. Let F be an object in SmallUB(C) in context
A ∈ B. On account of Proposition 2.4.3.5, it suffices to show that the copresheaf mapSmallU

B
(C)(F, h(−))

is corepresentable by an object in C. Using Example 2.1.14.7 together with Remark 3.3.2.2, we may
replace B with B/A and can therefore assume without loss of generality that F is a U-small presheaf
in context 1 ∈ B (see Remark 2.1.14.4). In this case, we have C/F ∈ U(1), where p : C/F → C is the
right fibration that is classified by F . Now Proposition 3.3.1.1 and Proposition 3.1.8.1 give rise to an
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equivalence F ≃ colim hp. Thus, one obtains a chain of equivalences

mapSmallU
B

(C)(F, h(−)) ≃ mapPSh
B

(C)(colim hp, h(−))

≃ mapFun
B

(C/F ,PSh
B

(C))(hp, diag h(−))

≃ mapFun
B

(C/F ,C)(p, diag(−))

≃ mapC(colim p,−),

which shows that the presheaf mapSmallU
B

(C)(F, h(−)) is represented by L(F ) = colim p. □

3.3.3. The functor of left Kan extension. Throughout this section, let C, D and E be B-categories
and let f : C→ D be a functor.

Definition 3.3.3.1. A left Kan extension of a functor F : C→ E along f is a functor f!F : D→ E
together with an equivalence

mapFun
B

(D,E)(f!F,−) ≃ mapFun
B

(C,E)(F, f∗(−)).

Dually, a right Kan extension of F along f is a functor f∗F : D→ E together with an equivalence

mapFun
B

(D,E)(−, f∗F ) ≃ mapFun
B

(C,E)(f∗(−), F ).

Remark 3.3.3.2 (locality of Kan extensions). In the situation of Definition 3.3.3.1, if A ∈ B is
an arbitrary object, one easily deduces from Remark 2.1.14.1 and [62, Lemma 4.7.13] that the functor
π∗A(f!F ) is a left Kan extension of π∗AF along π∗Af .

Remark 3.3.3.3. As usual, the theory of right Kan extensions can be formally obtained from the
theory of left Kan extensions by taking opposite B-categories. We will therefore only discuss the case of
left Kan extensions.

Remark 3.3.3.4. The theory of Kan extensions for the special case B ≃ S is discussed in [48, §22], [57,
§ 4.3], or [17, §6.4].

The main goal of this section is to prove the following theorem about the existence of left Kan
extensions:

Theorem 3.3.3.5. Let U be an internal class of B-categories such that for every object d : A→ D
in context A ∈ B the B/A-category C/d is contained in Ucolim(A). Then, whenever E is U-cocomplete,
the functor f∗ : FunB(D,E)→ FunB(C,E) has a left adjoint f! which is fully faithful whenever f is fully
faithful.

Proof. To begin with, by replacing U with Ucolim, we may assume without loss of generality that U
is a colimit class and therefore that C/d is contained in U for every object d in D.

By Corollary 2.4.3.3, the functor (f × id)∗ : FunB(D × Eop,Ω) → FunB(C × Eop,Ω) admits a left
adjoint (f × id)!. We now claim that the composition

FunB(C,E) h∗−→ FunB(C,PShB(E)) ≃ FunB(C× Eop,Ω) (f×id)!−−−−−→ FunB(D× Eop,Ω) ≃ FunB(D,PShB(E))

takes values in FunB(D,SmallUB(E)). To see this, let F : A→ FunB(C,E) be an object in context A ∈ B.
Using Example 2.1.14.7 together with Remark 3.3.2.2 and the fact that as π∗A preserves adjunctions
(Corollary 2.4.1.9) we may identify π∗A(f × id)! with (π∗A(f)× id)!, which allows us to replace B with B/A

and therefore to reduce to the case where A ≃ 1 (see Remark 2.1.14.4). Let p : P→ C× Eop be the left
fibration that is classified by the transpose of hF , and let qi : P→ Q→ D× Eop be the factorisation of
(f × id)p into an initial functor and a left fibration. Then q : Q→ D× Eop classifies (f × id)!(hF ), hence
we need to show that for any object d : A→ D in context A ∈ B the fibre Q|d → A× Eop is classified by
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a U-small presheaf on E. By the same argument as above, we may again assume that A ≃ 1. Consider
the commutative diagram

Q|d

P/d Q/d R

P Q Eop

C/d × Eop D/d × Eop Eop

C× Eop D× Eop

s

i/d j

r

p

i

id

f×id

q

in which R is uniquely determined by the condition that j be initial and r be a left fibration. Since i/d
is the pullback of i along a right fibration and since right fibrations are proper [62, Proposition 4.4.7],
this map is initial. As a consequence, the composition ji/d is initial as well, which implies that the left
fibration r is classified by the colimit of the composition C/d → C→ E ↪→ PShB(E). By Proposition 3.3.2.6
and the condition on C/d to be contained in U(1), the left fibration r is classified by a U-small presheaf.
To prove our claim, we therefore need only show that the map s : Q|d → R is an equivalence. As this is
a map of right fibrations over Eop, we may work fibrewise [62, Proposition 4.1.18]. If e : A→ Eop is an
object in context A ∈ B, we obtain an induced commutative triangle

(Q|d)|e

(Q/d)|e R|e

s|e

j|e

over A. Since the projections Q/d → Eop and R→ Eop are smooth by [62, Propositions 4.4.6 and 4.4.7]
and since initial functors are a fortiori covariant equivalences (see [62, § 4.4]), we deduce from [62,
Proposition 4.4.10] that j|e exhibits R|e as the groupoidification of (Q/d)|e. Moreover, the map (Q|d)|e →
(Q/d)|e is a pullback of the final map A→ D/d ×A along a smooth map and therefore final as well. Since
final functors induce equivalences on groupoidifications, we thus conclude that s|e must be an equivalence,
as desired.

By making use of the discussion thus far, we may now define f! as the composition of the two
horizontal arrows in the top row of the commutative diagram

FunB(C,E) FunB(D,SmallUB(E)) FunB(D,E)

FunB(C× Eop,Ω) FunB(D× Eop,Ω)

h

L∗

(f×id)!

in which L denotes the left adjoint to the Yoneda embedding that is supplied by Proposition 3.3.2.7. It is
now clear from the construction of f! that this functor defines a left adjoint of f∗.

Lastly, suppose that f is fully faithful. We show that in this case the adjunction counit idFun
B

(C,E) →
f∗f! is an equivalence. Since equivalences are computed objectwise (see [62, Corollary 4.7.17]), we only
have to show that for every object F in FunB(C,E) the induced map F → f∗f!F is an equivalence. Since
π∗A preserves adjunctions and the internal hom (Corollary 2.4.1.9 and Remark 2.1.14.1), we may replace
B with B/A and can therefore assume that F is in context 1 ∈ B (see Remark 2.1.14.4). By construction
of the adjunction f! ⊣ f∗, the unit F → f∗f!F is determined by the composition

h∗(F ) η1h∗(F )−−−−−→ (f × id)∗(f × id)!h∗(F ) (f×id)∗η2(f×id)!h∗(F )−−−−−−−−−−−−−−−→ (f × id)∗h∗L∗(f × id)!h∗(F )

in which η1 is the unit of the adjunction (f × id)! ⊣ (f × id)∗ and η2 is the unit of the adjunction L∗ ⊣ h∗.
By Corollary 2.4.3.3, the first map is an equivalence, hence it suffices to show that the second one is an
equivalence as well. Again, it suffices to show this objectwise. Let therefore c be an object of C, as above
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without loss of generality in context 1 ∈ B. By the above argument, the object (f × id)!h∗(F )(c) is given
by the colimit of the diagram hF (πc)! : C/c → C → E ↪→ PShB(E). By making use of the final section
idc : 1→ C/c, this presheaf is therefore representable by F (c), which implies the claim. □

Remark 3.3.3.6. In the situation of Theorem 3.3.3.5, the construction of f! shows that if F : D→ E
is a functor, the counit f!f

∗F → F is given by the composition

L∗(f × id)!(f × id)∗h∗(F ) L∗ϵ1h∗F−−−−−−→ L∗h∗(F ) ϵ2−→ F

where ϵ1 is the counit of the adjunction (f × id)! ⊣ (f × id)∗ and ϵ2 is the counit of the adjunction L∗ ⊣ h∗.
Since the latter is an equivalence, the functor F arises as the left Kan extension of f∗F precisely if the
map L∗ϵ1h∗(F ) is an equivalence. Let q : Q → D× Eop be the left fibration that is classified by h∗(F )
and let p : P → C × Eop be the pullback of q along f × id. Let furthermore q′ : Q′ → C × Eop be the
functor that arises from factoring (f × id)p into an initial map and a left fibration. On the level of left
fibrations over D× Eop, the map ϵ1h∗(F ) is then given by the map g that arises as the unique lift in the
commutative diagram

P Q

Q′ D× Eop.

i

i∗ q

q

g

Then the condition that L∗ϵ1h∗F is an equivalence corresponds to the condition that for any object
d : A→ D in context A ∈ B the map g|d : Q′|d → Q|d, viewed as a map over π∗AEop, induces an equivalence
colim(q′|op

d ) ≃ colim(q|op
d ) in π∗AE. Note that by a similar argument as in the proof of Theorem 3.3.3.5,

the map g|d fits into a commutative square

Q′/d Q/d

Q′|d Q|d

g/d

j′ j

g|d

in which j′ and j are initial. As a consequence, the map g|d is determined by the factorisation of the
map ji/d in the commutative diagram

P/d Q/d Q|d

C/d × Eop ×A D/d × Eop ×A Eop ×A

i/d j

f/d×id

into an initial map and a right fibration. This argument shows that the map g|d classifies the canonical
map

colim hF (πd)!f/d → colim hF (πd)!

of presheaves on π∗AE that is induced by the functor f/d : C/d → D/d. Since L is a left inverse of h that
preserves colimits, we thus conclude that F is a left Kan extension of its restriction f∗F precisely if the
map f/d : C/d → D/d induces an equivalence

colimF (πd)!f/d ≃ colimF (πd)! ≃ F (d)

in π∗AE for every object d : A→ D.

Recall from [62, § 4.7] that a large B-category D is locally small if the left fibration Tw(D)→ Dop×D
is small (in the sense of [62, § 4.5]). Theorem 3.3.3.5 now implies:

Corollary 3.3.3.7. If f : C→ D is a functor of B-categories such that C is small and D is locally
small (but not necessarily small). If E is a cocomplete large B-category, the functor of left Kan extension
f! always exists.
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Proof. By Theorem 3.3.3.5, it suffices to show that for any object d : A → D in context A ∈ B

the B/A-category C/d is small, which follows immediately from the observation that the right fibration
C/d → C×A a pullback of the small fibration Tw(D)→ Dop × D and therefore small itself. □

We conclude this section with an application of the theory of Kan extensions to a characterisation of
colimit cocones. If I is a B-category, recall from Remark 3.1.1.4 that the associated right cone I▷ comes
equipped with two functors ι : I→ I▷ and ∞ : 1→ I▷. Our goal is to prove:

Proposition 3.3.3.8. Let I and C be B-categories and suppose that C admits I-indexed colimits. Then
the functor of left Kan extension

ι! : FunB(I,C)→ FunB(I▷,C)

along ι : I→ I▷ exists and is fully faithful, and its essential image coincides with the full subcategory of
FunB(I▷,C) that is spanned by the colimit cocones.

The proof of Proposition 3.3.3.8 relies on the following two general facts:

Lemma 3.3.3.9. Suppose that
P Q

C D

p

g

q

f

is a cartesian square in Cat(B) such that q admits a fully faithful left adjoint. Then p admits a fully
faithful left adjoint as well.

Proof. By assumption q has a section l1 : D → Q which pulls back along f to form a section
l0 : C ↪→ P of p. Moreover, the adjunction counit ϵ1 : ∆1 ⊗ Q→ Q fits into a commutative diagram

∆1 ⊗ D ∆1 ⊗ Q Q

D Q D,

id⊗l1

s0 ϵ1

s0

q

l1 q

hence pullback along f defines a map ϵ0 : ∆1 ⊗ P→ P that fits into a commutative square

∆1 ⊗ C ∆1 ⊗ P P

C P C,

id⊗l0

s0 ϵ0

s0

p

l0 p

By construction, the map ϵ0d
0 is equivalent to the identity on P, and the map ϵ1d

1 recovers the functor
l1p. The previous commutative diagram now precisely expresses that both pϵ0 and ϵ0l0 are equivalence,
hence the desired result follows from Corollary 2.4.4.3. □

Lemma 3.3.3.10. Fully faithful functors in Cat(B) are stable under pushout.

Proof. If
C E

D F

f

h

g

k

is a pushout square in Cat(B) in which f is fully faithful, applying the functor PShB(−) results in a
pullback square

PShB(F) PShB(E)

PShB(D) PShB(C)
k∗

g∗

h∗

f∗
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in which f∗ admits a fully faithful left adjoint f!. By Lemma 3.3.3.9, this implies that g∗ admits a fully
faithful left adjoint as well, hence that the functor of left Kan extension g! is fully faithful. This in turn
implies that g must be fully faithful too, see Corollary 2.4.3.3. □

Proof of Proposition 3.3.3.8. Let U be the smallest colimit class in B that contains I. Then C
is U-cocomplete (by Remark 3.2.2.4). Hence the existence of ι! follows from Theorem 3.3.3.5 once we
show that for every object j : A→ I▷ the B/A-category I/j is contained in U(A). By definition of the right
cone, we have a cover I0 ⊔ 1 ↠ (I▷)0 which induces a cover A0 ⊔ A1 ↠ A by taking the pullback along
j : A → (I▷)0. Let j0 : A0 → I▷ and j1 : A1 → I▷ be the induced objects. Since j0 factors through the
inclusion ι0 : I0 ↪→ (I▷)0 and since ι is fully faithful by Lemma 3.3.3.10, we obtain an equivalence I/j0 ≃ I/j′0
over A0, where j′0 is the unique object in I such that ι(j′0) ≃ j0. Since j1 factors through the inclusion
of the cone point ∞ : 1 → I▷ which defines a final object in I▷, we furthermore obtain an equivalence
I/j1 ≃ π∗Ai

I. Therefore the B/A-category I/j is locally contained in U and therefore contained in U itself,
for U defines a sheaf on B. We therefore deduce that the functor of left Kan extension ι! exists. Since
Lemma 3.3.3.10 implies that ι is fully faithful, Corollary 2.4.3.3 furthermore shows that ι! is fully faithful
as well.

We finish the proof by identifying the essential image of ι!. By combining Remark 3.1.1.4 with
Lemma 3.3.3.9, if d : A → FunB(I,C) is a diagram, the object ι!(d) defines a fully faithful left adjoint
A → Cd/ to the projection Cd/ → A. By Example 3.1.1.11, this precisely means that ι!(d) is an initial
section over A and is therefore a colimit cocone. Conversely, if d̄ : A → FunB(I▷,C) is a cocone under
d = ι∗d̄, the map ϵd̄ : ι!d → d̄ defines a map in Cd/. By the above argument, the domain of this map
is a colimit cocone, hence if d̄ defines a colimit cocone in Cd/ as well, the map ϵd̄ must necessarily
be an equivalence since any map between two initial objects in a B/A-category is an equivalence (see
Corollary 2.1.12.13). □

3.4. Cocompletion

The main goal of this section is to construct and study the free cocompletion by U-colimits of an
arbitrary B-category, for any internal class U of B-categories. In § 3.4.1 we give the construction of this
B-category and prove its universal property. § 3.4.2 contains a criterion to detect free cocompletions, and
in § 3.4.3 we study the free U-cocompletion of the point. Finally, in § 3.4.4 we improve on the results of
§ 3.1.9 and explain how to decompose colimits of B-categories in greater generality.

3.4.1. The free U-cocompletion. Let C be a B-category and let U be an internal class of B-
categories. The goal of this section is to construct the free U-cocompletion of C, i.e. the initial U-cocomplete
B-category that is equipped with a functor from C.

We begin our discussion of the free cocompletions with the maximal case U = CatB:

Theorem 3.4.1.1. For any B-category C and any cocomplete large B-category E, the functor of left
Kan extension (hC)! along the Yoneda embedding hC : C ↪→ PShB(C) induces an equivalence

(hC)! : FunB(C,E) ≃ Funcc
B(PShB(C),E).

In other words, the Yoneda embedding hC : C ↪→ PShB(C) exhibits the B-category of presheaves on C as
the free cocompletion of C.

Remark 3.4.1.2. The analogue of Theorem 3.4.1.1 for ∞-categories is the content of [57, Theo-
rem 5.1.5.6] or [17, Theorem 6.3.13].

The proof of Theorem 3.4.1.1 relies on the following lemma:

Lemma 3.4.1.3. Let f : C→ D be a functor of B-categories and assume that C is small. Then the left
Kan extension (hC)!(hDf) : PShB(C)→ PSh

B̂
(D) = FunB(Dop,Ω

B̂
) of hDF along hC is equivalent to the
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composition
PShB(C) i∗

↪−→ PSh
B̂

(C) f!−→ PSh
B̂

(D),

where i : ΩB ↪→ Ω
B̂

is the inclusion from § 2.1.10.

Proof. Since (hC)! is fully faithful and since the restriction of f!i∗ along hC recovers the functor
hDf , it suffices to show that f!i∗ is a left Kan extension along its restriction. By Remark 3.3.3.6, this is
the case precisely if for any presheaf F on C the inclusion h/F : C/F ↪→ PShB(C)/F induces an equivalence

colim f!(πF )!h/F ≃ colim f!(πF )! ≃ f!(F ).

Since f!i∗ commutes with small colimits (Proposition 3.1.4.8) and since PShB(C) admits small colimits
(Proposition 3.2.2.7), it suffices to show that the map

colim(πF )!h/F → F

is an equivalence in PShB(C), which follows immediately from Proposition 3.3.1.1. □

Proof of Theorem 3.4.1.1. Let us first show that for any object f : A→ FunB(C,E) in context
A ∈ B the object (hC)!(f) is contained in Funcc

B (PShB(C),E). By making use of Remarks 3.2.3.4, 2.1.14.1
and 3.3.3.2 as well as Example 2.1.14.7, we may replace B with B/A and can therefore assume that A ≃ 1
(see Remark 2.1.14.4). Hence, we only need to show that h!(f) is cocontinuous. By again making use of
Remark 3.3.3.2 and Example 2.1.14.7, it is enough to show that h!(f) preserves I-indexed colimits for
every small B-category I. By Lemma 3.4.1.3 and the explicit construction of h! in Theorem 3.3.3.5, the
functor h!(f) is equivalent to the composition

PShB(C) i∗
↪−→ PSh

B̂
(C) f!−→ SmallCatB

B̂
(E) L−→ E

in which L is left adjoint to the Yoneda embedding hE. Since all three functors preserve small colimits,
the claim follows.

By what we have just shown, the embedding h! takes values in Funcc
B(PShB(C),E) and therefore

determines an inclusion h! : FunB(C,E) ↪→ Funcc
B(PShB(C),E). To show that this functor is essentially

surjective as well, we need only show that any object g : A→ FunB(PShB(C),E) in context A ∈ B whose
associated functor in Cat(B̂/A) is cocontinuous is a left Kan extension of its restriction along h. By the
same reduction argument as above, we may again assume A ≃ 1. By using Remark 3.3.3.6, the functor g is
a Kan extension of gh precisely if for any presheaf F : A→ PShB(C) the functor h/F : C/F → PShB(C)/F
induces an equivalence

colim g(πF )!h/F ≃ g(F )

in E. Since Proposition 3.3.1.1 implies that the canonical map colim(πF )!h/F → F is an equivalence in
PShB(C) and since g is cocontinuous, this is immediate. □

Remark 3.4.1.4. In the situation of Theorem 3.4.1.1, suppose that E is in addition locally small. If
f : C→ E is an arbitrary functor, its left Kan extension h!(f) is not only cocontinuous, but even admits
a right adjoint. In fact, by the explicit construction of h!(f) in the proof of Theorem 3.4.1.1, we may
compute

mapE(h!(f)(−),−) ≃ mapE(Lf!i∗(−),−)

≃ mapPSh
B̂

(C)(i∗(−), f∗hE(−))

and since E is locally small, the functor f∗hE takes values in PShB(C), hence the claim follows. By replacing
B with B/A and using Remark 3.3.3.2 and Example 2.1.14.7, the same argument works for arbitrary
objects A→ FunB(C,E), hence we conclude that the functor h! takes values in FunB(PShB(C),E)L and
therefore gives rise to an equivalence

FunB(PShB(C),E)L ≃ Funcc
B(PShB(C),E).
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This is a special (and in a certain sense universal) case of the adjoint functor theorem for presentable
B-categories. The general case will be treated in the next chapter, see Proposition 4.4.3.1.

Our next goal is to generalise Theorem 3.4.1.1 to an arbitrary internal class U of B-categories. For
this, we need to make the following general observation:

Lemma 3.4.1.5. Let E be a B-category, let C ↪→ E be a full subcategory and let U ⊂ V be two internal
classes of B-categories. Suppose that E is V-cocomplete. Then there exists a full subcategory D ↪→ E that
is closed under U-colimits (i.e. that is U-cocomplete and the inclusion into E is U-cocontinuous), contains
C and is the smallest full subcategory of E with these properties, in that whenever D′ ↪→ E has the same
properties there is an inclusion D ↪→ D′ over E.

Proof. Recall that the full subposet Subfull(E) ↪→ Sub(E) that is spanned by the fully faithful
functors is a reflective subcategory (cf. the discussion in [62, § 3.9]), which implies that this subposet
is closed under limits in Sub(E), i.e. meets. To complete the proof, we therefore only need to show
that the collection of full subcategories of E that contain C and that are closed under U-colimits in E
is closed under limits in Sub(E). Clearly, if (Di)i∈I is a collection of full subcategories in E that each
contain C, then so does their meet D =

∧
i Di. Similarly, suppose that each B-category Di is closed under

U-colimits in E, and let A ∈ B be an arbitrary context. Since π∗A commutes with limits and carries fully
faithful functors to fully faithful functors, we may assume without loss of generality that A ≃ 1. We thus
only need to show that the meet of the Di is closed under I-indexed colimits in E for any I ∈ U(1). Let
d : B → FunB(I,D) be a diagram in context B ∈ B. Since by assumption the object colim d is contained
in Di for every i ∈ I and thus defines an object in D, the result follows. □

In light of Lemma 3.4.1.5, we may now define:

Definition 3.4.1.6. For any B-category C and any internal class U of B-categories, we define the
large B-category PShU

B(C) as the smallest full subcategory of PShB(C) that contains C and is closed under
U-colimits.

Remark 3.4.1.7. Suppose that U is a small internal class of B-categories and C is a B-category.
Then PShU

B(C) is small as well. To see this, let us first fix a small full subcategory of generators G ⊂ B

(i.e. a full subcategory such that every object in B admits a small cover by objects in G). Since U is small,
there exists a small regular cardinal κ such that for every B-category I in U in context G ∈ G the object
I0 ∈ B/G is κ-compact. We construct a diagram E• : κ → Subfull(PShB(C)) by transfinite recursion as
follows: set E0 = C and Eλ =

∨
τ<λ Eτ for any limit ordinal λ < κ, where the right-hand side denotes

the join operation in the poset Subfull(PShB(C)). For λ < κ, we furthermore define Eλ+1 to be the full
subcategory of PShB(C) that is spanned by Eλ together with those objects that arise as the colimit of a
diagram of the form d : I→ π∗GEλ for G ∈ G and I ∈ U(G). Let us set E =

∨
τ<κ Eτ . Since κ is small and

Eτ is a small large B-category for every τ < κ, the large B-category E is small as well. We claim that
E is U-cocomplete. In fact, it suffices to show that for every G ∈ G and every diagram d : I→ π∗GE the
object colim d is contained in π∗GE as well. Since I0 is κ-compact in B/G and since κ is κ-filtered as it
is regular, the map d0 : I0 → E0 =

∨
τ<κ Eτ0 factors through Eτ0 for some τ < κ. As a consequence, the

colimit colim d is contained in Eτ+1 and therefore a fortiori in E, as claimed. Now since E is U-cocomplete
and contains C, it must also contain PShU

B(C), which is therefore small.

In the situation of Definition 3.4.1.6, Proposition 3.3.1.1 implies that there are inclusions

C ↪→ SmallUB(C) ↪→ PShU
B(C) ↪→ PShB(C).

In general, the middle inclusion is not an equivalence, as the following example shows.

Example 3.4.1.8. Let B = S be ∞-topos of spaces, let C = (∆1)op and let U be the smallest colimit
class that contains Λ2

0. An ∞-category is thus U-cocomplete precisely if it admits pushouts. An object in
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Fun(∆1, S) is representable when viewed as a presheaf on (∆1)op precisely if it is one of the two maps
0→ 1 and 1→ 1. Hence SmallUB(C) is the full subcategory of Fun(∆1, S) that is spanned by the maps
n→ 1 for natural numbers n ≤ 2. But this ∞-category is not closed under pushouts in Fun(∆1, S): for
example, the map S1 → 1 is a pushout of objects in SmallUB(C) which is not contained in SmallUB(C) itself.

Lemma 3.4.1.9. Let A ∈ B be an arbitrary object, let U be an internal class of B-categories and
let f : C → D be a π∗AU-cocontinuous functor of π∗AU-cocomplete B/A-category. Then (πA)∗(f) is a
U-cocontinuous functor of U-cocomplete B-categories.

Proof. Let B ∈ B be an arbitrary object. We need to show that for every I ∈ U(B) the B/B-categories
π∗B(πA)∗C and π∗B(πA)∗D admit I-indexed colimits and that π∗B(πA)∗(f) preserves these. Note that if
pr0 : A× B → A and pr1 : A× B → B are the two projections, the natural map π∗B(πA)∗ → (pr1)∗ pr∗0
is an equivalence, owing to the transpose map (pr0)! pr∗1 → π∗A(πB)! being one. Thus, we may identify
π∗B(πA)∗(f) with (pr1)∗ pr∗0(f). Now since f is a π∗AU-cocontinuous functor between π∗AU-cocomplete
B/A-categories, it follows that pr∗0(f) is a π∗A×BU-cocontinuous functor between π∗A×BU-cocomplete
B/A×B-categories (Remark 3.2.2.3). Therefore, by passing to B/B , we can assume that B ≃ 1. In other
words, we only need to show that for every I ∈ U(1) the two horizontal maps in the commutative square

(πA)∗C FunB(I, (πA)∗C)

(πA)∗C FunB(I, (πA)∗C)

(πA)∗(f)

diag

(πA)∗(f)∗
diag

have left adjoints and that the associated mate transformation is an equivalence. This is a consequence
of the equivalence FunB/A

(−, (πA)∗(−)) ≃ (πA)∗FunB(π∗A(−),−) (which follows by adjunction from the
evident equivalence π∗A(−×−) ≃ π∗A(−)×A π∗A(−)) and the fact that by Corollary 2.4.1.9 the geometric
morphism (πA)∗ preserves adjunctions. □

Lemma 3.4.1.10. Let U be an internal class of B-categories and let

Q P

D C

j

q p

i

be a pullback square in Cat(B) in which i and j are fully faithful. Assume furthermore that D, C and P
are U-cocomplete and p and i are U-cocontinuous. Then Q is U-cocomplete and j is U-cocontinuous.

Proof. We need to show that for every A ∈ B and every I ∈ U(A), the B/A-category π∗AQ admits
I-indexed colimits and the functor π∗Aj preserves them. Since π∗A preserves pullbacks and fully faithful
functors and on account of Remark 3.2.2.3, we may replace B with B/A and can therefore assume that
A ≃ 1. Now we obtain a commutative diagram

FunB(I,Q) FunB(I,P)

FunB(I,D) FunB(I,C)

Q P

D C

colim

colim colim

where the dashed arrow exists on account of the lower square being a pullback. Thus Proposition 3.1.2.8
yields that Q admits I-indexed colimits and that j preserves these, as desired. □
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Proposition 3.4.1.11 (locality of PShU
B(C)). For any B-category C, any internal class U of B-

categories and any object A ∈ B, there is a natural equivalence

π∗APShU
B(C) ≃ PShπ

∗
AU

B/A
(π∗AC).

Proof. It follows from Example 2.1.14.7 that there is a commutative diagram

π∗AC

π∗APShU
B(C)

π∗APShB(C) PShB/A
(π∗AC),

hπ∗
A

Cπ∗Ah

≃

and it is clear that π∗APShU
B(C) is closed under π∗AU-colimits in PShB/A

(π∗AC). It therefore suffices to
show that if D ↪→ PShB/A

(π∗AC) is a full subcategory that contains π∗AC and that is likewise closed under
π∗AU-colimits in PShB/A

(π∗AC), this subcategory must contain π∗APShU
B(C). Consider the commutative

diagram
C D′ PShB(C)

(πA)∗π∗AC (πA)∗D (πA)∗π∗APShB(C)

ηA ηA

in which ηA denotes the adjunction unit of π∗A ⊣ (πA)∗ and in which D′ is defined by the condition that
the right square is a pullback. Note that the triangle identities for the adjunction π∗A ⊣ (πA)∗ imply that D
contains π∗AD′. The proof is therefore finished once we show that D′ is closed under U-colimits in PShB(C).
To prove this claim, note that we may identify (πA)∗π∗A ≃ FunB(A,−). With respect to this identification,
the unit ηA corresponds to precomposition with the unique map πA : A→ 1. Thus, Proposition 3.2.2.7
implies that ηA is a U-cocontinuous functor between U-cocomplete B-categories. Also, Lemma 3.4.1.9
implies that the inclusion (πA)∗D ↪→ (πA)∗π∗APShB(C) is closed under U-colimits. Therefore, the result
follows from Lemma 3.4.1.10. □

Lemma 3.4.1.12. Let U be an internal class and let C and D be U-cocomplete B-categories. Let
α : f → g be a map in FunU -cc

B (C,D) in context 1 ∈ B. Then α is U-cocontinuous when viewed as a
functor C→ D∆1 (where D∆1 is indeed U-cocomplete by Proposition 3.2.2.7).

Proof. We need to show that for every A ∈ B and every I ∈ U(A), the functor π∗Aα preserves
I-indexed colimits. Since by Remark 2.1.14.1 the base change functor π∗A commutes with cotensoring, we
may replace B with B/A and can therefore assume that A ≃ 1. Now consider the commutative diagram

C FunB(I,C)

D∆1 FunB(I,D∆1)

D× D FunB(I,D× D).

α

diag

α∗

diag

(d1,d0) (d1,d0)∗
diag

In order to show that α preserves I-indexed colimits, we need to verify that the mate transformation
φ of the upper square is an equivalence. On account of Proposition 3.1.3.1, the mate of the lower
square is an equivalence. We claim that the mate of the composite square is an equivalence as well, i.e.
that (f, g) : C → D × D preserves I-indexed colimits. To see this, let d : A → FunB(I,C) be a diagram
in context A ∈ B. Using Remark 3.1.2.2, we may once again replace B by B/A and can thus assume
that A ≃ 1 (see Remark 2.1.14.4). Now as FunB(I,−) commutes with limits, we obtain an equivalence
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(D×D)(f,g)∗d/ ≃ Df∗d/×Dg∗d/, so that the claim follows once we show that the image of the initial cocone
1→ Cd/ along the functor

(f∗, g∗) : Cd/ → Df∗d/ × Dg∗d/
is initial as well. This in turn follows from the assumption that both f and g preserve I-indexed colimits,
together with the fact that the product of two initial maps is again initial.

As a consequence of what we’ve shown so far and the functoriality of mates, we conclude that
postcomposing φ with the functor (d1, d0) : C∆1 → D× D yields an equivalence. Therefore, φ is itself an
equivalence since (d1, d0) is conservative by Remark 2.2.3.2. □

Theorem 3.4.1.13. Let C be a B-category, let U be an internal class of B-categories and let E be a
U-cocomplete large B-category. Then the functor of left Kan extension along hC : C ↪→ PShU

B(C) exists
and determines an equivalence

(hC)! : FunB(C,E) ≃ FunU -cc
B (PShU

B(C),E).

In other words, the B-category PShU
B(C) is the free U-cocompletion of C.

Proof. Let us define E′ = FunB(E,Ω
B̂

)op. By Proposition 3.2.2.9, the inclusion hop
E : E ↪→ E′ that is

given by the Yoneda embedding is U-cocontinuous. Let j : PShU
B(C) ↪→ PShB(C) be the inclusion. By

Theorem 3.3.3.5, the functors of left Kan extension along hC and j exist and define inclusions

FunB(C,E′)
(hC)!
↪−−−→ FunB(PShU

B(C),E′)
j!
↪−→ FunB(PShB(C),E′),

and by Theorem 3.4.1.1 the essential image of the composition is the full subcategory spanned by
those objects in FunB(PShB(C),E′) which define cocontinuous functors. Since j is by construction
U-cocontinuous, the restriction functor j∗ : FunB(PShB(C),E′)→ FunB(PShU

B(C),E′) restricts to a functor

j∗ : Funcc
B(PShB(C),E′)→ FunU -cc

B (PShU
B(C),E′).

Consequently, we deduce that the left Kan extension functor (hC)! : FunB(C,E′) ↪→ FunB(PShU
B(C),E′)

factors through an inclusion

(hC)! : FunB(C,E′) ↪→ FunU -cc
B (PShU

B(C),E′).

We claim that this functor is essentially surjective and therefore an equivalence. On account of Re-
marks 3.2.3.4 and 3.3.3.2 as well as Proposition 3.4.1.11, it suffices to show (by replacing B with B/A,
see Remark 2.1.14.4) that any U-cocontinuous functor f : PShU

B(C)→ E′ is a left Kan extension along
its restriction to C. Let ϵ : (hC)!h

∗
Cf → f be the adjunction counit, and let D be the full subcategory

of PShU
B(C) that is spanned by those objects F in PShU

B(C) (in arbitrary context) for which ϵF is an
equivalence. We need to show that D = PShU

B(C). By construction, we have C ↪→ D, so that it suffices to
show that D is closed under U-colimits in PShU

B(C). Note that the inclusion D ↪→ PShU
B(C) is precisely

the pullback of s0 : E′ ↪→ (E′)∆1 along ϵ : PShU
B(C)→ (E′)∆1 . Since Proposition 3.2.2.7 implies that s0 is

cocontinuous and Lemma 3.4.1.12 shows that ϵ is U-cocontinuous, we deduce from Lemma 3.4.1.10 that
the inclusion D ↪→ PShU

B(C) is indeed closed under U-colimits.
To finish the proof, we need to show that the equivalence (hC)! : FunB(C,E′) ≃ FunU -cc

B (PShU
B(C),E′)

restricts to the desired equivalence

(hC)! : FunB(C,E) ≃ FunU -cc
B (PShU

B(C),E).

As clearly h∗C restricts in the desired way, it suffices to show that (hC)! restricts as well. By the same
reduction steps as above, this follows once we show that for every functor f : C→ E, the left Kan extension
(hC)!f : PShU

B(C)→ E′ factors through E. Consider the commutative diagram

C D E

PShU
B(C) E′

h

(hC)!f
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in which the square is a pullback. Since both hC)!f and E ↪→ E′ are U-cocontinuous, it follows from
Lemma 3.4.1.10 that the inclusion D ↪→ PShU

B(C) is closed under U-colimits and must therefore be an
equivalence. As a consequence, the functor (hC)!f factors through E, as needed. □

Corollary 3.4.1.14. Let C be a B-category and let U ⊂ V be internal classes such that PShU
B(C) is

V-cocomplete. Then the inclusion i : PShU
B(C) ↪→ PShV

B(C) admits a left adjoint. In particular, if C itself
is V-cocomplete, the inclusion hC : C ↪→ PShV

B(C) admits a left adjoint.

Proof. By choosing U = ∅ (i.e. the initial object in Cat(B)), the second claim is an immediate
consequence of the first. To prove the first statement, let j : C ↪→ PShU

B(C) be the inclusion. Then
Theorem 3.4.1.13 allows us to construct a candidate for the left adjoint L : PShV

B(C)→ PShU
B(C) of i as

the left Kan extension of j along ij. By construction, L is V-cocontinuous. As i is U-cocontinuous and
since we have equivalences j∗(Li) ≃ (ij)∗(L) ≃ j, Theorem 3.4.1.13 moreover gives rise to an equivalence
Li ≃ idPShU

B
(C). Similarly, since j∗(i) ≃ ij, one obtains an equivalence i ≃ j!(ij). Therefore, transposing

the identity on ij across the adjunction (ij)! ⊣ (ij)∗ gives rise to a map η : idPShV
B

(C) → iL such that ηi
is an equivalence, being a map between U-cocontinuous functors that restricts to an equivalence along
j. By making use of Corollary 2.4.4.3, we conclude that L is a left adjoint once we verify that Lη is an
equivalence as well. As both domain and codomain of this map are V-cocontinuous functors, this is the
case already if its restriction along ij is an equivalence, which follows from the construction of η. □

Corollary 3.4.1.15. Let U be a small internal class of B-categories. Then the inclusion CatU -cc
B ↪→

CatB admits a left adjoint that carries a B-category C to its free U-cocompletion. Moreover, the adjunction
unit is given by the Yoneda embedding C ↪→ PShU

B(C).

Proof. By Remark 3.4.1.7, the free U-cocompletion PShU
B(C) is indeed a small B-category. Therefore,

the Yoneda embedding hC : C ↪→ PShU
B(C) is a well-defined map in CatB. By Corollary 2.4.3.5, it suffices

to show that the composition

φ : mapCatU -cc
B

(PShU
B(C),−) ↪→ mapCatB(PShU

B(C),−)→ mapCatB(C,−)

is an equivalence of functors CatU -cc
B → Ω. Using that equivalences of functors are detected object-wise [62,

Corollary 4.7.17], this follows once we show that the evaluation of this map at any object A→ CatU -cc
B

yields an equivalence of B/A-groupoids. By combining Remark 3.2.3.2 with Proposition 3.4.1.11 and with
Example 2.1.14.7, we may pass to B/A and can therefore assume that A ≃ 1 (see Remark 2.1.14.4). In
this case, the result follows from Theorem 3.4.1.13 in light of the observation that by Remark 3.2.3.4,
the evaluation of φ at a U-cocomplete B-category E is precisely the restriction of the equivalence from
Theorem 3.4.1.13 to core B-groupoids. □

3.4.2. Detecting cocompletions. In this section we give a characterisation when a functor
f : C → D exhibits D as the free U-cocompletion of C. To achieve this, we need the notion of U-
cocontinuous objects, which is in a certain way an internal analogue of the notion of a κ-compact object
in an ∞-category:

Definition 3.4.2.1. Let D be a U-cocomplete B-category. We define the full subcategory DU -cc ↪→ D
of U-cocontinuous objects as the pullback

DU -cc FunU -cc
B (D,Ω)op

D FunB(D,Ω)op.
hDop

Remark 3.4.2.2 (locality of U-cocontinuous objects). In the situation of Definition 3.4.2.1, we
may combine Example 2.1.14.7 with Remark 3.2.3.4 to deduce that there is a canonical equivalence
π∗A(DU -cc) ≃ (π∗AD)π∗AU -cc of full subcategories of π∗AD, for every A ∈ B.
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Remark 3.4.2.3 (étale transposition invariance of U-cocontinuous objects). By Remark 3.4.2.2, an
object d : A→ D is contained in DU -cc if and only if its transpose d̄ : 1→ π∗AD is π∗AU-cocontinuous.

The following proposition and its proof is an adaptation of [57, Proposition 5.1.6.10].

Proposition 3.4.2.4. Let f : C→ D be a functor between B-categories such that D is U-cocomplete,
and let f̂ : PShU

B(C)→ D be its unique U-cocontinuous extension. Then the following are equivalent:
(1) f̂ is an equivalence;
(2) f is fully faithful, takes values in DU -cc, and generates D under U-colimits.

Proof. We first note that PShU
B(C)U -cc contains C. Indeed, Yoneda’s lemma implies that the

composition

C hC
↪−→ PShU

B(C)
hPShU

B
(C)op

↪−−−−−−→ FunB(PShU
B(C),Ω)op

can be identified with the opposite of the transpose of the evaluation functor ev : Cop × PShU
B(C)→ Ω.

Together with Proposition 3.4.1.11 and Remark 2.1.14.1, this implies that the image of c : A→ C along
this composition transposes to the functor

PShπ
∗
AU

B/A
(π∗AC) ↪→ PShB/A

(π∗AC) evc−−→ ΩB/A

which is π∗AU-cocontinuous by Proposition 3.2.2.7. Therefore, (1) implies (2).
Conversely, suppose that condition (2) is satisfied. We first prove that f̂ is fully faithful. Tot that

end, if c : A→ C is an arbitrary object, we claim that the morphism

mapPShU
B

(C)(c,−)→ mapD(f̂(c), f̂(−))

is an equivalence. By combining Remarks 3.3.3.2 and 3.3.2.2 with Proposition 3.4.1.11 and Exam-
ple 2.1.14.7, we may replace B by B/A and can thus assume that A ≃ 1 (see Remark 2.1.14.4). In this
case, the fact that C is contained in PShU

B(C)U -cc and condition (2) imply that both domain and codomain
of the morphism are U-cocontinuous functors. By using Lemma 3.4.1.12 and the fact that the above
morphism restricts to an equivalence on C, the universal property of PShU

B(C) thus implies that this map
is an equivalence of functors. By what we just have shown, if F : A→ PShU

B(C) is an arbitrary object,
the natural transformation

mapPShU
B

(C)(−, F )→ mapD(f̂(−), f̂(F ))

restricts to an equivalence on C. As this map transposes to a morphism of π∗AU-cocontinuous functors
(using Proposition 3.2.2.9 and the fact that f̂ is U-cocontinuous), the same argument as above shows
that the entire natural transformation is in fact an equivalence and therefore that f̂ is fully faithful,
as desired. As therefore f̂ exhibits PShU

B(C) as a full subcategory of D that is closed under U-colimits
and that contains C, the assumption that D is generated by C under U-colimits implies that f̂ is an
equivalence. □

3.4.3. Cocompletion of the point. Let U be an internal class of B-categories. Our goal in this
section is to study the B-category PShU

B(1) ↪→ Ω. To that end, let us denote by gpd(U) ↪→ Ω the image
of U along the groupoidification functor (−)gpd : CatB → Ω from Proposition 2.4.2.14.

Definition 3.4.3.1. We call an internal class U closed under groupoidification, if for any A ∈ B and
I ∈ U(A) the groupoidification Igpd is also contained in U. For any internal class U we can form its closure
under groupoidification, denoted U, that is defined as the internal class spanned by U and gpd(U).

Remark 3.4.3.2. Since for any B-category I, the morphism I → Igpd is final, it follows that any
colimit class (in the sense of Definition 3.2.3.5) is closed under groupoidification. Furthermore, for any
internal class U, we have inclusions U ⊆ U ⊆ Ucolim. In particular the discussion after Definition 3.2.3.5
shows that a B-category is U-cocomplete if and only if it is U-cocomplete. The same statement holds for
U-cocontinuity.
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Remark 3.4.3.3. If U is closed under groupoidification, the adjunction (−)gpd ⊣ ι : CatB ⇆ Ω
restricts to an adjunction

((−)gpd ⊣ i) : U ⇆ gpd(U).

Proposition 3.4.3.4. For any internal class U of B-categories, there is an inclusion gpd(U) ↪→
PShU

B(1) which is an equivalence whenever U is closed under U-colimits in CatB.

Proof. By construction, the canonical map U ↪→ U induces an equivalence gpd(U) ≃ gpd(U).
Therefore we may assume that U is closed under groupoidification. For any B-category I contained in
U(1), its groupoidification Igpd is the colimit of the functor I → 1 ↪→ Ω (see Proposition 3.1.4.1) and
therefore by definition contained in PShU

B(1). Note that by using Remarks 2.1.14.1 and 2.3.1.3 as well
as Corollary 2.4.1.9, for every A ∈ B the functor π∗A carries the adjunction (−)gpd ⊣ ι : CatB ⇆ Ω
to the adjunction (−)gpd ⊣ ι : CatB/A

⇆ ΩB/A
. Together with Proposition 3.4.1.11, this observation

and the above argument also yields that for every I ∈ U(A) the groupoidification Igpd defines an object
A→ PShU

B(1). Thus, the groupoidification functor (−)gpd : CatB → Ω restricts to a functor U→ PShU
B(1)

and therefore gives rise to the desired inclusion gpd(U) ↪→ PShU
B(1). Now by definition of PShU

B(1), this
inclusion is an equivalence if and only if gpd(U) is closed under U-colimits in Ω. But if the subcategory
U ↪→ CatB is closed under U-colimits in CatB it follows by Remark 3.4.3.3 that gpd(U) = U ∩ Ω, hence
the claim follows from Lemma 3.4.1.10. □

Example 3.4.3.5. Let S be a local class of maps in B and let ΩS ↪→ Ω be the associated full
subcategory of Ω (cf. Proposition 2.1.10.7). Then ΩS is clearly closed under groupoidification. Recall
that ΩS is closed under ΩS-colimits in Ω precisely if the local class S is stable under composition (see
Example 3.2.4.3). Therefore, if S is stable under composition, Proposition 3.4.3.4 provides an equivalence
ΩS ≃ PShΩS

B (1).
If S is not closed under composition, the free cocompletion PShΩS

B (1) still admits an explicit description.
Namely, an object c : A→ Ω in context A ∈ B defines an object of PShΩS

B (1) if and only if it is locally a
composition of two morphisms in S. To be more precise, c is in PShΩS

B (1) if and only if there is a cover
(si) :

⊔
iAi ↠ A in B such that every s∗i c ∈ Ω(Ai) = B/Ai

can be written as a composition gifi of two
morphisms gi : Pi → Qi and fi : Qi → Ai that are in S. This description holds since the full subcategory
spanned by these objects is clearly closed under ΩS-indexed colimits and it is easy to see that it is the
smallest full subcategory of Ω with this property.

Example 3.4.3.6. The following observation is due to Bastiaan Cnossen: Let B = PShS(C) for some
small ∞-category C with pullbacks and let S be a class of morphisms in C that is closed under pullbacks
in C. It generates a local class in B = PShS(C) that we denote by W . As in Example 3.2.4.11, we obtain
an internal class US = ⟨W,Cat∞⟩, so that we may now consider the free US-cocompletion PShUS

B (1) of
the point. It may be explicitly described as the presheaf on C given by

PShUS

B (1) : Cop → Cat∞, c 7→ PShS(S/c)

where S/c denotes the full subcategory of C/c spanned by the morphisms in S. In particular it agrees
with the PSh(C)-category underlying the initial cocomplete pullback formalism described in [23, § 4].

We conclude this section by showing that any U-cocomplete large B-category E is tensored over
PShU

B(1) in the following sense:

Definition 3.4.3.7. A large B-category E is tensored over PShU
B(1) if there is a functor − ⊗

− : PShU
B(1)× E→ E together with an equivalence

mapE(−⊗−,−) ≃ mapΩ
B̂

(−,mapE(−,−)).

Proposition 3.4.3.8. If E is a U-cocomplete large B-category, then E is tensored over PShU
B(1).
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Proof. Since E is U-cocomplete, Proposition 3.1.3.1 implies that the functor B-category FunB(E,E)
is U-cocomplete as well. As a consequence, we may apply Theorem 3.4.1.13 to extend the identity
idE : 1→ FunB(E,E) in a unique way to a U-cocontinuous functor f : PShU

B(1)→ FunB(E,E). We define
the desired bifunctor − ⊗ − as the transpose of f . To see that it has the desired property, note that
mapE(−⊗−,−) is the transpose of the composition

PShU
B(1)op fop

−−→ FunB(Eop,Eop)
(hEop )∗
↪−−−−→ FunB(Eop × E,Ω

B̂
),

whereas the functor mapΩ
B̂

(−,mapE(−,−)) transposes to the functor

PShU
B(1)op i

↪−→ Ωop
B̂

hΩop

B̂
↪−−−→ FunB(Ω

B̂
,Ω

B̂
) map∗E−−−→ FunB(Eop × E,Ω

B̂
).

As the opposite of either of these functors is U-cocontinuous, Theorem 3.4.1.13 implies that they are
both uniquely determined by their value at the point 1: 1→ Ω. Since mapΩ

B̂

(1,−) is equivalent to the
identity functor, we find that both of these functors send 1: 1→ Ω to mapE and that they are therefore
equivalent, as required. □

Remark 3.4.3.9. By dualising Proposition 3.4.3.8, one obtains that a U-complete large B-category E is
powered over PShop(U)

B (1): since PShop(U)
B (1)op is the free U-completion of the final B-category 1 ∈ Cat(B),

there is a functor (−)(−) : PShop(U)
B (1)op × E→ E that fits into an equivalence

mapE(−, (−)(−)) ≃ mapΩ
B̂

(−,mapE(−,−)).

3.4.4. Decomposition of colimits II. In § 3.1.9 we showed that whenever C is a B-category that
admits colimits indexed by κ-small constant B-categories and K→ Cat(B), k 7→ Jk is a diagram that is
indexed by a κ-small constant B-category K, then C admits colimits indexed by J = colimk Jk as soon as
it admits Jk-indexed colimits for all k ∈ K. In this section, our goal is to generalise this result by allowing
K to be an arbitrary B-category instead of merely a constant one. More precisely, we will show:

Proposition 3.4.4.1. Let U be an internal class, let d : I→ U be a diagram such that I ∈ U(1), and let
K = colim d. Then every U-cocomplete B-category admits K-indexed colimits, and every U-cocontinuous
functor between U-cocomplete B-categories preserves K-indexed colimits.

Our strategy for the proof of Proposition 3.4.4.1 is to take the colimit of a K-indexed diagram in the
free cocompletion of C (i.e. in PShB(C)) and to show that this colimit can be reflected back into C. We
therefore need to study such K-indexed colimits in PShB(C) first.

Lemma 3.4.4.2. For every B-category C, the large B-category RFibC is a reflective subcategory of
(CatB)/C.

Proof. To begin with, we note that the sheaf associated with (CatB)/C is given by Cat(B)/C×−. In
fact, the latter defines a PSh

Ŝ
(B)-category, and there is a right fibration of PSh

Ŝ
(B)-categories

p : Cat(B)/C×− → Cat(B)/−

that is section-wise given by postcomposition with the projection onto the second factor. By [62,
Proposition 3.3.5], the codomain can be identified with (the underlying PSh

Ŝ
(B)-category of) the large

B-category CatB. Since Cat(B)/C×− has a final object (in the PSh
Ŝ
(B)-categorical sense, which is easily

deduced from Examples 3.1.1.11 and 3.1.1.14) that is carried to C along the right fibration p, we thus
obtain an equivalence (CatB)/C ≃ Cat(B)/C×− of PSh

Ŝ
(B)-categories. Since the domain is a (large)

B-category, so is the codomain, and this equivalence defines an identification of (large) B-category. Now
using this identification, we find that the inclusion RFib(C×−) ↪→ Cat(B)/C×− determines a fully faithful
functor i : RFibC ↪→ (CatB)/C such that i(A) admits a left adjoint LA for every A ∈ B. Moreover, if
s : B → A is an arbitrary map in B, the fact that s is smooth implies that the natural map LBs∗ → s∗LA

is an equivalence (see the discussion in [62, § 4.4]), hence the claim follows. □
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Proposition 3.4.4.3. Let U be an internal class of B-categories and let C be a small B-category.
Then, for any diagram d : I → U with colimit K in CatB and any diagram p : K → C with colimit F in
PShB(C), there is a diagram d′ : I→ SmallUB(C) such that F ≃ colim d′.

Proof. The cocone d→ diag(C) implies that we may view d as a diagram d : I→ U/C ↪→ (CatB)/C.
By Proposition 3.1.6.3, the colimit of this diagram is p : K→ C. Since F ≃ colim p, there is a final functor
K→ C/F over C, hence Lemma 3.4.4.2 implies that the localisation functor L : (CatB)/C → RFibC carries
p : K → C to the right fibration C/F → C. In other words, the presheaf F arises as the colimit of the
diagram d′ = Ld : I→ U/C → RFibC ≃ PShB(C). It now suffices to observe that by construction of L, this
functor takes values in SmallUB(C). □

Proof of Proposition 3.4.4.1. Let f : C→ D be a U-cocontinuous functor between U-cocomplete
B-categories. Consider the commutative diagram

C D

PShU
B(C) PShU

B(D)

f

hC hD

f̂

that arises from applying the universal property of PShU
B(C) to the composition C→ D ↪→ PShU

B(D). As
C and D are U-cocomplete, the vertical inclusions admit left adjoints LC and LD by Corollary 3.4.1.14.
Now if p : K → C is a diagram, Proposition 3.4.4.3 implies that there is a diagram p′ : I → PShU

B(C)
such that colim p′ is equivalent to the colimit of hCp. In particular, the colimit of hCp is contained in
PShU

B(C). Consequently, LC colim p′ defines a colimit of p by Proposition 3.1.2.11. By replacing C with
D, this argument also shows that every diagram K → D admits a colimit in D. Moreover, as f and f̂

are U-cocontinuous, the universal property of PShU
B(C) implies that the canonical map LDf̂ → fLC is an

equivalence. Consequently, as LDf̂ preserves the colimit of hCp, so does fLC. As the colimit cocone of p
is the image of the colimit cocone of hDp along LC, we conclude that f preserves the colimit of p. Now by
replacing B with B/A and repeating the above argumentation, one concludes that both C and D admit
K-indexed colimits and that f commutes with such colimits. □





CHAPTER 4

Presentable B-categories

Our theory of presentable B-categories relies on the interplay between internal classes U of B-categories
and their associated internal classes FiltU of U-filtered B-categories. We study the concept of U-filteredness
in § 4.1. In particular, we study certain conditions on the internal class U which guarantee that every
B-category can be decomposed into a U-filtered colimit of objects in U. This is a technical condition which
is crucial for the development of accessibility in the world of B-categories. In § 4.2, we discuss how one can
construct an ample amount of internal classes U which satisfy these conditions. Building upon these rather
technical preparations, we then define the concept of U-accessibility in § 4.3 and prove a few basic results
that we will need for our discussion of presentable B-categories. For example, we give a characterisation
of U-accessible B-categories by making use of the notion of U-compactness. In § 4.4, we introduce and
study presentable B-categories. Aside from discussing multiple characterisations of these B-categories,
we prove an adjoint functor theorem and discuss limits and colimits of presentable B-categories. In the
final two sections of this chapter, we switch gears and study a few concepts of higher algebra in the world
of B-categories. In § 4.5, we set up the main framework and use it to characterise dualisable objects in
the B-category of modules over an E∞-ring in B. In § 4.6, we discuss tensor products of B-categories
and in particular a symmetric monoidal structure on the B-category of presentable B-categories. We
then use this structure to realise B-modules in the ∞-category of presentable ∞-categories as presentable
B-categories.

4.1. Filtered B-categories

Classically, if κ is a (regular) cardinal, a 1-category J is said to be κ-filtered if the colimit functor
colimJ : Fun(J,Set)→ Set commutes with κ-small limits. In [57], Lurie generalised this concept to the
notion of a κ-filtered ∞-category J, which is an ∞-category for which colimJ : Fun(J, S)→ S preserves
κ-small limits. The main goal of this section is to discuss an analogous concept for B-categories. Following
ideas originally introduced in 1-category theory by Adámek-Borceux-Lack-Rosický [1] and later generalised
to∞-categories by Charles Rezk [78], we will introduce the notion of a U-filtered B-category, where U is an
arbitrary internal class, i.e. a full subcategory of the large B-category CatB of B-categories (cf. § 2.1.10).
The main definitions and basic properties of such U-filtered B-categories are discussed in § 4.1.1. In
§ 4.1.2, we introduce a slightly weaker notion, that of a weakly U-filtered B-category. Classically, a
κ-filtered (∞-)category can be equivalently described as an (∞-)category in which every κ-small diagram
has a cocone. The notion of weak U-filteredness is a generalisation of this condition. However, as the
terminology suggests, this notion is a priori weaker than that of U-filteredness. Following [1], we will
call an internal class U a doctrine if both conditions happen to be equivalent. In § 4.1.3 and § 4.1.4, we
will study two other important properties of internal classes: regularity and the decomposition property.
Recall that a cardinal κ is said to be regular if κ-small sets are closed under κ-small sums. The notion
of regularity for internal classes aims at capturing this property in the world of B-categories. The
decomposition property, on the other hand, is the condition that every B-category can be obtained as a
U-filtered colimit of objects in U. Hence, this notion can be viewed as an analogue to the fact that every
(∞-)category is a κ-filtered colimit of κ-small (∞-)categories. We will make use of this property when we
discuss the notion of U-compactness in § 4.1.5.
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4.1.1. U-filtered B-categories. In this section, we introduce and study the notion of U-filteredness
in the world of B-categories, where U is an arbitrary internal class. We begin with the following definition,
which is an evident generalisation of the classical concept of a κ-filtered (∞-)category:

Definition 4.1.1.1. For any internal class U of B-categories, a B-category J is said to be U-filtered if
the colimit functor colim: FunB(J,Ω)→ Ω is U-continuous. We define the internal class FiltU of U-filtered
categories as the full subcategory of CatB that is spanned by those B/A-categories J that are π∗AU-filtered,
for every A ∈ B.

Remark 4.1.1.2. In the situation of Definition 4.1.1.1, the fact that U-continuity is a local condition
by Remark 3.2.2.3 implies that every object A→ FiltU is π∗AU-filtered (which a priori has no reason to
be true). In particular, the sheaf associated with FiltU is given on local sections over A ∈ B by the full
subcategory of Cat(B/A) that is spanned by the π∗AU-filtered categories. For any A ∈ B, we therefore
obtain a canonical equivalence π∗A FiltU ≃ Filtπ∗

A
U.

Remark 4.1.1.3. Clearly, if U ↪→ V is an inclusion of internal classes, every V-filtered B-category is
in particular U-filtered. Therefore, one obtains an inclusion FiltV ↪→ FiltU.

Remark 4.1.1.4. If I and J are B-categories, note that the horizontal mate of the commutative square

FunB(I× J,Ω) FunB(J,Ω)

FunB(I,Ω) Ω

diag∗

colim∗ colim

diag

(with respect to the two adjunctions diag ⊣ lim and diag∗ ⊣ lim∗) is equivalent to the horizontal mate of
the commutative square

FunB(I,Ω) FunB(I× J,Ω)

Ω FunB(J,Ω).

diag∗

lim lim∗
diag

(with respect to the two adjunctions colim ⊣ diag and colim∗ ⊣ diag∗). As a consequence, the functor
colim: FunB(J,Ω) → Ω commutes with I-indexed limits if and only if the functor lim: FunB(I,Ω) → Ω
commutes with J-indexed colimits. Thus, if U is an internal class of B-categories, a B-category J is
U-filtered precisely if for all A ∈ B and all I ∈ U(A) the limit functor lim: FunB(I,ΩB/A

) → ΩB/A

commutes with π∗AJ-indexed colimits.

Recall from [62, § 4.2] the definition of the right cone J▷ of a B-category J. It comes with an inclusion
ι : J ↪→ J▷ such that for every B-category C that admits J-indexed colimits, the functor of left Kan
extension ι! exists and carries an I-indexed diagram in C to its colimit cocone, see Proposition 3.3.3.8.
We now obtain:

Proposition 4.1.1.5. A B-category J is U-filtered with respect to some internal class U if and only
if the inclusion ι! : FunB(J,Ω) ↪→ FunB(J▷,Ω) is U-continuous.

Proof. By definition, the functor ι! is U-continuous if and only if for all A ∈ B the functor
π∗A(ι!) ≃ (π∗Aι)! (cf. [62, Lemma 4.2.3] and Corollary 2.4.1.9) preserves limits of I-indexed diagrams for
all I ∈ U(A), and J is U-filtered if and only if the colimit functor colim: FunB/A

(π∗AJ,ΩB/A
) → ΩB/A

commutes with I-indexed limits for all I ∈ U(A). By replacing B with B/A, it therefore suffices to show
that for any I ∈ U(1), the functor ι! commutes with I-indexed limits if and only if colim: FunB(J,Ω)→ Ω
preserves I-limits. Note that by combining Proposition 3.1.8.1 with the fact that the cone point∞ : 1→ I▷

is final, one finds that the colimit functor colim: FunB(J▷,Ω) → Ω is given by evaluation at ∞. As
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a consequence, Proposition 3.1.3.1 implies that the colimit functor colim: FunB(J▷,Ω) → Ω preserves
I-indexed limits. Owing to the commutative diagram

FunB(J,Ω)

FunB(J▷,Ω) Ω,

colimJι!

colimJ▷

the functoriality of mates thus implies that i! preserving I-indexed limits implies that colimJ commutes with
I-indexed limits as well. The converse direction, on the other hand, follows from combining the functoriality
of the mate construction with the straightforward observation that (ι∗,∞∗) : FunB(J▷,Ω)→ FunB(J,Ω)×Ω
is a conservative functor. □

By an analogous argument as in the proof of Proposition 4.1.1.5 and by furthermore using Re-
mark 4.1.1.4, one obtains:

Proposition 4.1.1.6. A category J in B is U-filtered with respect to some internal class U if and
only if for all A ∈ B and all I ∈ U(A) the functor of right Kan extension

ι∗ : FunB(I,ΩB/A
) ↪→ FunB(I◁,ΩB/A

)

preserves π∗AJ-indexed colimits. □

Remark 4.1.1.7. By Proposition 4.1.1.6 and Proposition 3.1.8.1, if J→ K is a final functor such that
J is U-filtered, then K must be U-filtered as well. Since the final B-category 1 is trivially U-filtered for
every choice of internal class U, this means that FiltU is a colimit class in the sense of Definition 3.2.3.5.

For later use, let us note the following closure property of U-filtered B-categories:

Proposition 4.1.1.8. For any internal class U, the internal class FiltU is closed under FiltU-colimits
in CatB.

Proof. By Remark 4.1.1.2, it suffices to show that if J is a U-filtered B-category and d : J→ FiltU is
a diagram, its colimit K in CatB is also U-filtered. Given any I ∈ U(1), Proposition 3.4.4.1 shows that
the functor of right Kan extension ι∗ : FunB(I,Ω) ↪→ FunB(I◁,Ω) commutes with K-indexed colimits. As
for any A ∈ B the B/A-category π∗AK is the colimit of π∗Ad, the same argument also shows that for all
I ∈ U(A) the functor ι∗ : FunB(I◁,ΩB/A

) ↪→ FunB(I,ΩB/A
) commutes with π∗AK-indexed colimits. Hence

Proposition 4.1.1.6 implies that K is U-filtered. □

4.1.2. Weakly U-filtered B-categories. Recall from Remark 3.2.2.2 that if U is an internal class, we
denote by op(U) the internal class that arises as the image of U along the equivalence (−)op : CatB ≃ CatB.
In practice, we will often require that every op(U)-cocomplete B-category is U-filtered. However, this is
not true for every internal class U, not even in the case B = S [78, §6]. In this section, we will therefore
study a slightly weaker notion than that of a filtered U-category, which will encompass the class of
op(U)-cocomplete B-categories. We adopted the idea of weak U-filteredness from Charles Rezk [78], who
in turn generalised ideas from [1] to ∞-categories.

Definition 4.1.2.1. If U is an internal class of B-categories, a B-category J is weakly U-filtered if
for every A ∈ B and every I ∈ U(A) the diagonal functor π∗AJ → FunB/A

(Iop, π∗AJ) is final. We define
the internal class wFiltU as the full subcategory of CatB that is spanned by the weakly π∗AU-filtered
B/A-categories, for every A ∈ B.

Remark 4.1.2.2. In the situation of Definition 4.1.2.1, as the condition of a functor of B-categories
being final is local in B [62, Remark 4.4.9], every object A→ wFiltU is weakly π∗AU-filtered. In particular,
there is a canonical equivalence π∗A wFiltU ≃ wFiltπ∗

A
U for all A ∈ B.
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Remark 4.1.2.3. If U ↪→ V is an inclusion of internal classes, every weakly V-filtered B-category is
in particular weakly U-filtered. One therefore obtains an inclusion wFiltV ↪→ wFiltU.

Example 4.1.2.4. By Quillen’s theorem A for B-categories [62, Corollary 4.4.8], every functor that
admits a left adjoint is final. Consequently, every op(U)-cocomplete B-category I is in particular weakly
U-filtered.

Proposition 4.1.2.5. A B-category J is weakly U-filtered if and only if for every A ∈ B and
every I ∈ U(A) the colimit functor colim: FunB/A

(π∗AJ,ΩB/A
) → ΩB/A

preserves I-indexed limits of
corepresentables.

Proof. To begin with, note that since the colimit of a diagram f : J→ Ω is given by the groupoidifi-
cation of the associated left fibration Jf/ by Proposition 3.1.4.1, the colimit of every corepresentable is
given by the final object in Ω. In other words, there is a commutative square

Jop FunB(J,Ω)

1 Ω.

hJop

πJop colim
1Ω

As a result, for any diagram d : I → Jop, the presheaf colim hJopd is equivalent to the constant functor
1ΩπJop : Jop → Ω. As the inclusion 1Ω ↪→ Ω admits a left adjoint (see Example 3.1.1.11) and is therefore
continuous by Proposition 3.2.2.5, we conclude that the limit lim(colim hJopd) is given by the final object
in Ω. Hence the canonical map

colim(lim hJopd)→ lim(colim hJopd)

is an equivalence if and only if the domain of this map is the final object as well. On account of the chain
of equivalences

lim hJopd ≃ mapFun
B

(J,Ω)(hJop(−), lim hJopd)

≃ mapFun
B

(I,Fun
B

(J,Ω))(diag hJop(−), hJopd)

≃ mapFun
B

(I,Jop)(diag(−), d),

the functor lim hJopd classifies the left fibration Jdop/ → J. Hence colim(lim hJopd) is the final object if and
only if (Jdop/)gpd ≃ 1. By replacing B with B/A, the same argumentation goes through for any I ∈ U(A)
and any diagram d : I→ π∗AJop. By Quillen’s theorem A for B-categories [62, Corollary 4.4.8], the result
thus follows. □

Corollary 4.1.2.6. For every internal class U of B-categories, any U-filtered B-category is weakly
U-filtered. In other words, there is an inclusion FiltU ↪→ wFiltU of internal classes. □

Following the terminology introduced in [1], we may now make the following definition:

Definition 4.1.2.7. An internal class U of B-categories is said to be sound if the inclusion wFiltU ↪→
FiltU is an equivalence. It is called weakly sound if for every A ∈ B, every op(π∗AU)-cocomplete B/A-category
is π∗AU-filtered.

Remark 4.1.2.8. On account of Remark 4.1.1.2 and Remark 4.1.2.2, the étale base change of a
(weakly) sound internal class is (weakly) sound as well.

We finish this section with another characterisation of weakly U-filtered B-categories that will be
useful later. Recall from Definition 3.3.2.1 that if C is an arbitrary B-category and V is an arbitrary
internal class of B-categories, we denote by SmallVB(C) ↪→ PShB(C) the full subcategory that is spanned
by those objects F : A→ PShB(C) for which the domain of the associated right fibration C/F is contained
in Vcolim(A) (where Vcolim is the smallest colimit class containing V, see Definition 3.2.3.5). We now
obtain:
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Proposition 4.1.2.9. A B-category J is weakly U-filtered if and only if the inclusion

J ↪→ Smallop(U)
B (J)

induced by the Yoneda embedding is final.

Proof. By Quillen’s theorem A for B-categories [62, Corollary 4.4.8], the inclusion J ↪→ Smallop(U)
B (J)

is final if and only if for every A ∈ B and every op(U)-small presheaf F : A → Smallop(U)
B (J) the

groupoidification of the B/A-category JF/ is the final object in B/A. By the same reasoning, J is weakly
U-filtered if and only if for every I ∈ U(A) and every diagram d : Iop → π∗AJ the groupoidification of
the B/A-category π∗AJd/ is final in B/A. Hence it suffices to show that for every such diagram d, there
is an object F : A → Smallop(U)

B (J) such that (π∗AJ)d/ ≃ JF/, and vice versa. By replacing B with B/A

and by using Remark 3.3.2.2, we may assume that A ≃ 1. Now by Proposition 3.3.2.6, the colimit
of hJd : I → PShB(J) is contained in Smallop(U)

B (J) and therefore defines a U-small presheaf F . By
construction, we have an equivalence SmallUB(J)F/ ≃ SmallUB(J)hJd/ whose pullback along the Yoneda
embedding determines an equivalence Jd/ ≃ JF/. Hence, if Jgpd

F/ is final, so is Jgpd
d/ . Conversely, if we are

given an arbitrary U-small presheaf F , the fact that Jgpd
F/ being final is local in B implies (by definition of

what it means for a presheaf to be U-small) that we may safely assume that there is a diagram d : Iop → J
with I ∈ U(1) such that F ≃ colim hJd. By the same argument as above, we thus conclude that if Jgpd

d/ is
final, so is JF/, which finishes the proof. □

4.1.3. Regular classes. Recall that a cardinal κ is said to be regular if it is infinite and if any
κ-small union of κ-small sets is still κ-small. In this section, we will study an analogue of this condition
in the context of internal classes of B-categories. To that end, recall from the discussion in [61, § 6.1] that
the Yoneda embedding ∆ ↪→ PShB(∆) (where ∆ is implicitly regarded as a constant B-category) factors
through the embedding CatB ↪→ PShB(∆), so that we may regard ∆ as an internal class of B-categories.
We may now define:

Definition 4.1.3.1. An internal class U is said to be right regular if U contains ∆ and if U is closed
under U-colimits in CatB. We define the right regularisation Ureg

→ of U to be the smallest right regular
class that contains U.

Dually, U is called left regular if it contains ∆ and is closed under op(U)-colimits in CatB, and we
define the left regularisation Ureg

← as the smallest left regular class that contains U.
Finally, we say that U is regular if it is both left and right regular, and we define the regularisation

Ureg of U as the smallest regular class that contains U.

Remark 4.1.3.2. An internal class U of B-categories is left regular if and only if op(U) is right regular,
and there is an evident equivalence op(Ureg

← ) ≃ op(U)reg
→ of internal classes. In particular, if we have an

equivalence U ≃ op(U) of internal classes, then the notions of left and right regularity collapse to the
notion of regularity, and the left/right regularisation of U is already its regularisation (cf. Corollary 4.1.3.5
below).

Remark 4.1.3.3. By the same argument as in the proof of Proposition 3.4.1.11, there is an equivalence
π∗A(Ureg

→ ) ≃ (π∗AU)reg
→ for any internal class U and any A ∈ B. In particular, the étale base change of a

right regular class is still right regular. Similar observations can be made for the (left) regularisation of U.

Proposition 4.1.3.4. For every internal class U of B-categories, a B-category is U-cocomplete if
and only if it is Ureg

→ -cocomplete, and a functor between B-categories is U-cocontinuous if and only if it is
Ureg
→ -cocontinuous.

Dually, a B-category is U-complete if and only if it is Ureg
← -complete, and a functor between B-categories

is U-complete if and only if it is Ureg
← -continuous.

Proof. We only prove the first statement, the second one follows by dualisation. So let C be a
U-cocomplete B-category, and let V be the largest internal class of B-categories subject to the condition
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that C is V-cocomplete. Clearly V contains ∆ since every B-category is ∆-cocomplete. Moreover,
Proposition 3.4.4.1 implies that for any I ∈ V(1) and any diagram d : I→ V with colimit K, the B-category
C admits K-indexed colimits, which implies that K ∈ V(1) by maximality of V. Upon replacing B with
B/A and repeating the same argument, one concludes that V is closed under V-colimits in CatB and
must therefore contain Ureg

→ . An analogous argument also shows that every U-cocontinuous functor is
Ureg
→ -cocontinuous. □

Corollary 4.1.3.5. The right (left) regularisation of an internal class U is the smallest internal
class that contains U and ∆ and that is closed under U-colimits (op(U)-colimits) in CatB.

Proof. This is an immediate consequence of the observation that by Proposition 4.1.3.4, an internal
class V of B-categories is closed under U-colimits (op(U)-colimits) in CatB if and only if it is closed under
Ureg
→ -colimits (op(Ureg

← )-colimits) in CatB. □

Proposition 4.1.3.6. For every internal class U, the inclusion FiltUreg
← ↪→ FiltU is an equivalence.

Proof. In light of Remark 4.1.3.3 and Remark 4.1.1.2, it suffices to show that every U-filtered
B-category J is already Ureg

← -filtered. This amounts to showing that the functor colimJ : FunB(I,Ω)→ Ω
is Ureg

← -continuous. By Proposition 4.1.3.4, this is immediate. □

Corollary 4.1.3.7. The left regularisation of a (weakly) sound internal class is also (weakly) sound.

Proof. Suppose that U is sound, i.e. that FiltU ↪→ wFiltU is an equivalence. Since U ↪→ Ureg
←

implies that we have an inclusion wFiltUreg
← ↪→ wFiltU, Proposition 4.1.3.6 implies that the inclusion

FiltUreg
← ↪→ wFiltUreg is also an equivalence, hence Ureg

← is sound. The case where U is weakly sound follows
from a similar argument. □

For the study of accessibility and presentability of B-categories, we will generally need to restrict our
attention to those internal classes of B-categories that are themselves small B-categories. It will therefore
be useful to give such internal classes a dedicated name. Again following [1], we thus define:

Definition 4.1.3.8. An internal class U of B-categories is a doctrine if U is a small B-category.

Proposition 4.1.3.9. The (left/right) regularisation of a doctrine is still a doctrine.

Proof. It suffices to show that any doctrine U is contained in a regular doctrine V. We will explicitly
construct such a doctrine in § 4.2.2 below, cf. Remark 4.2.2.22. □

4.1.4. The decomposition property. It is well-known that for every regular cardinal κ, any ∞-
category can be written as a κ-filtered colimit of κ-small ∞-categories. In order to obtain a well-behaved
notion of accessibility internal to B, it will be crucial to have an analogue of this property for B-categories.
This leads us to the following definition:

Definition 4.1.4.1. An internal class U of B-categories is said to have the decomposition property
if for every A ∈ B and every B/A-category C, there is a π∗AU-filtered B/A-category J and a diagram
d : J→ π∗AU with colimit C.

Remark 4.1.4.2. In the situation of Definition 4.1.4.1, by applying the decomposition property to
D = Cop, one deduces that C can also be obtained as a π∗AU-filtered colimit of a diagram in op(π∗AU).

The main goal of this section is to show:

Proposition 4.1.4.3. Every left regular and weakly sound internal class U has the decomposition
property.

Before we can prove Proposition 4.1.4.3, we need a few preparations.
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Lemma 4.1.4.4. Let C be a small B-category and let D ↪→ PShB(C) be a full subcategory that contains
C. Then any presheaf F : Cop → Ω is the colimit of the diagram D/F → D ↪→ PShB(C).

Proof. By Proposition 3.1.6.3, it suffices to show that the final object in PShB(C)/F is the colimit of
the inclusion D/F ↪→ PShB(C)/F . In light of the inclusions C/F ↪→ D/F ↪→ PShB(C)/F and by making use
of the equivalence PShB(C)/F ≃ PShB(C/F ) from Lemma 3.3.1.5, we may thus assume that F is the final
object in PShB(C). Moreover, since the inclusion ΩB ↪→ Ω

B̂
is cocontinuous by Example 3.2.2.8, we may

enlarge our universe and thus assume without loss of generality that D is small. Now let i : C ↪→ D and
j : D ↪→ PShB(C) be the inclusions. Since the identity on PShB(C) is the left Kan extension of the Yoneda
embedding h along itself by Theorem 3.4.1.1, we obtain equivalences j ≃ j∗j!i!(h) ≃ i!(h), where the
functor i! exists by Corollary 3.3.3.7 since D is small. Therefore, the identity on PShB(C) is also the left
Kan extension of j along itself. The claim now follows from the explicit description of the left Kan extension
in Remark 3.3.3.6, which implies that we have equivalences 1PSh

B
(C) ≃ j!(j)(1PSh

B
(C)) ≃ colim j. □

Lemma 4.1.4.5. Let U be an internal class of B-categories and let

Q P

D C

g

q p

f

be a pullback square in Cat(B) in which D, C and P are U-cocomplete and both f and p are U-cocontinuous.
Then Q is U-cocomplete and both q and g are U-cocontinuous.

Proof. By replacing B with B/A for A ∈ B if necessary and using Remarks 3.1.1.3 and 3.1.2.2, it
will suffice to prove that any diagram d : K→ Q with K ∈ U(1) admits a colimit in Q and that furthermore
q preserves this colimit. The pullback square in the statement of the lemma induces a commutative
diagram

1 1

Qd/ Pgd/

1 1

Dqd/ Cpgd/

d gd

q∗

g∗

qd pgd

f∗

p∗

in which the front square is a pullback, the three cocones qd, gd and pgd are colimit cocones and the
cocone d is determined by the universal property of pullbacks. To finish the proof, it suffices to show that
d is a colimit cocone, i.e. initial. Given any d′ : 1→ Qd/, we obtain a pullback square

mapQd/
(d, d′) mapPgd/

(gd, g∗d
′)

mapDfd/
(qd, q∗d

′) mapCpgd/
(pgd, p∗g∗d

′)

in B. Since qd, gd and pgd are initial, it follows that the cospan in the lower right corner is constant on
the final object 1 ∈ B, hence mapQd/

(d, d′) ≃ 1. By replacing B with B/A and d with π∗A(d), the same is
true for any object d′ : A→ Qd/. As a consequence, d must be initial. □

Proof of Proposition 4.1.4.3. By Remark 4.1.3.3 and Remark 4.1.2.8, it suffices to show that
every B-category C is a U-filtered colimit of a diagram in U. As U by regularity contains ∆ and since the
localisation functor PShB(∆)→ CatB is cocontinuous, we deduce from Lemma 4.1.4.4 that C arises as the
colimit of the diagram U/C → U ↪→ CatB. We therefore only need to show that U/C is U-filtered. Using
that U is weakly sound, it will suffice to show that U/C is op(U)-cocomplete. By Corollary 3.2.2.11, the
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B-category (CatB)/C is cocomplete and the projection (πC)! is cocontinuous. As the inclusion U ↪→ CatB
is closed under op(U)-colimits, the desired result follows from Lemma 4.1.4.5. □

Corollary 4.1.4.6. Let U be a weakly sound internal class of B-categories. Then a (large) B-category
C is cocomplete if and only if C is both op(U)- and FiltU-cocomplete. Similarly, a functor f : C→ D between
cocomplete (large) B-categories is cocontinuous if and only if it is both op(U)- and FiltU-cocontinuous.

Proof. We prove the first statement, the second one follows by a similar argument. Since the
claim is clearly necessary, it suffices to prove the converse. So let us assume that C is both op(U)-
and FiltU-cocomplete. By Proposition 4.1.3.4 and Proposition 4.1.3.6, we may assume without loss of
generality that U is left regular. Proposition 4.1.4.3 now implies that U has the decomposition property.
By definition and in light of Remark 4.1.4.2, this means that (op(U) ∪ FiltU)reg

→ = CatB. Appealing once
more to Proposition 4.1.3.4, the claim follows. □

4.1.5. U-compact objects. Recall from § 3.4.2 that if V is an internal class and if C is a V-cocomplete
B-category, we say that an object c : A→ C is V-cocontinuous if the functor mapC(c,−) : π∗AC→ ΩB/A

is π∗AV-cocontinuous. In this section, we specialise this concept to the case where V = FiltU for some
internal class U. This leads us to the notion of a U-compact object, which is the internal analogue of the
concept of a κ-compact object in an ∞-category, where κ is a cardinal.

Definition 4.1.5.1. Let U be an internal class of B-categories, and let C be a FiltU-cocomplete
B-category. An object c : A→ C in context A ∈ B is said to be U-compact if it is FiltU-cocontinuous, i.e. if
the functor mapC(c,−) : π∗AC→ ΩB/A

is Filtπ∗
A

U-cocontinuous. We denote by CU -cpt the full subcategory
of C that is spanned by the U-compact objects.

Remark 4.1.5.2. In the situation of Definition 4.1.5.1, an object c : A→ C is contained in CU -cpt if and
only if it is U-compact. This is a direct consequence of Remark 3.4.2.2. Together with Remark 4.1.1.2, this
implies that if A ∈ B is an arbitrary object in B, there is a natural equivalence π∗A(CU -cpt) ≃ (π∗AC)π∗AU -cpt.

Lemma 4.1.5.3. Let U be an internal class of B-categories, and let C be a FiltU-cocomplete B-category.
Then the full subcategory FunFiltU -cc

B (C,Ω) ↪→ FunB(C,Ω) of FiltU-cocontinuous functors is closed under
U-limits.

Proof. Using Remarks 3.2.3.4 and 4.1.1.2, it will suffice to show that whenever I is a B-category
that is contained in U(1) and d : I→ FunFiltU -cc

B (C,Ω) is a diagram, then the limit lim d in FunB(C,Ω) is
FiltU-cocontinuous. We may compute lim d as the composition

C FunB(I,Ω) Ω,d′ limI

where d′ is the transpose of d. Since limI is FiltU-cocontinuous by Remark 4.1.1.4, it thus suffices to show
that d′ is FiltU-cocontinuous as well. This can be extracted as a special case of Lemma 4.6.1.3 below. □

Proposition 4.1.5.4. Let U be an internal class and let C be an op(U)- and FiltU-cocomplete
B-category. Then the subcategory CU -cpt ↪→ C is closed under op(U)-colimits in C.

Proof. By using Remark 4.1.5.2, it suffices to show that whenever I is a B-category that is contained
in U(1) and d : Iop → CU -cpt is a diagram, the colimit colim d in C is U-compact. As we have noted in
Proposition 3.2.2.9, the Yoneda embedding hCop : Cop ↪→ FunB(C,Ω) is op(U)-continuous, so that we can
identify mapC(colim d,−) with the limit of the diagram hCopdop. The desired result now follows from
Lemma 4.1.5.3. □

Definition 4.1.5.5. If C ↪→ D is a fully faithful functor of B-categories, the B-category RetD(C) of
retracts of C in D is the full subcategory of D that is spanned by those objects d : A → D in context
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A ∈ B for which there is an object c : A→ C and a commutative diagram
c

d d.id

Remark 4.1.5.6. In the situation of Definition 4.1.5.5, there are inclusions C ↪→ RetD(C) ↪→ D.
Furthermore, an object d : A→ D is contained in RetC(D) precisely if there is a cover (si) :

⊔
iAi ↠ A

such that s∗i (d) : Ai → D is a retract of an object c : Ai → C. Therefore, if C is small and D is locally small
(in the sense of [62, Definition 4.7.1]), then RetD(C) is small as well: in fact, by [62, Proposition 4.7.4],
this follows once we verify that RetD(C)0 is small. Since the latter admits a small cover⊔

G∈G

⊔
d∈RetD(G)(C(G))

G↠ RetD(C)0

where G ⊂ B is a small generating subcategory and where RetD(G)(C(G)) denotes the full subcategory of
D(G) that is spanned by the retracts of C(G), which is clearly a small ∞-category, this is immediate.

Lemma 4.1.5.7. Let U be an internal class of B-categories and let C be a U-cocomplete B-category.
Then the full subcategory FunU -cc

B (C,Ω) ↪→ FunB(C,Ω) of U-cocontinuous functors is closed under retracts.

Proof. By Remark 3.2.3.4, it will suffice to show that whenever a copresheaf F : C→ Ω is a retract of
a U-cocontinuous functor G : C→ Ω, then F is U-cocontinuous as well. Let R = ∆2⊔∆1 ∆0 be the walking
retract diagram, i.e. the quotient of ∆2 that is obtained by collapsing d1 : ∆1 ↪→ ∆2 to a point. Then the
datum of retract F → G→ F is tantamount to a map r : C→ ΩR. Since the retract of an equivalence is
an equivalence as well, the functor d{1} : ΩR → Ω that is obtained by evaluation at {1} ∈ ∆2 ↠ R must
be conservative. By combining this observation with the fact that d{1} is cocontinuous, the equivalence
d{1}r ≃ G and the functoriality of mates, we conclude that the map colimI r∗ → r colimI is an equivalence
for every I ∈ U(1). Upon replacing B with B/A and repeating the same argument, we thus find that r is
U-cocontinuous. As we recover F by postcomposing r with the cocontinuous functor d{0} : ΩR → Ω, the
claim follows. □

Proposition 4.1.5.8. Let U be an internal class of B-categories and let C be a FiltU-cocomplete B-
category. Then CU -cpt is closed under retracts in C, in the sense that the inclusion CU -cpt ↪→ RetC(CU -cpt)
is an equivalence.

Proof. It suffices to show that the retract of a U-compact object in C is U-compact as well, which
immediately follows from Lemma 4.1.5.7. □

We conclude this section with a characterisation of U-compact objects in presheaf B-categories. This
will require the following lemma:

Lemma 4.1.5.9. Let U be an internal class of B-categories and let C ↪→ D be a full inclusion of
B-categories such that D is FiltU-cocomplete. Let J be a U-filtered B-category, let d : J → C ↪→ D be a
diagram and suppose that F = colim d is a U-compact object in D. Then F is contained in RetD(C).

Proof. The object F being U-compact implies that the canonical map

φ : colim mapD(F, d(−))→ mapD(F, F )

must be an equivalence. Thus the identity on F gives rise to a global section

idF : 1→ colim mapD(F, d(−)).

Let p : P→ J be the left fibration that is classified by the copresheaf mapD(F, d(−)). Since the map
P → Pgpd ≃ colim mapD(F, d(−)) is essentially surjective (by [62, Lemma 3.8.8]), the map P0 → Pgpd

is a cover in B [62, Corollary 3.9.5], so that we can find a cover s : A ↠ 1 in B and a local section
x : A→ P such that the composite with P→ Pgpd recovers π∗A idF . Let j = p(x). Then x defines an object
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f : A→ P|j ≃ mapD(π∗AF, d(j)) that is carried to π∗A idF by the canonical morphism mapD(π∗AF, d(j))→
mapD(π∗AF, π∗AD). In other words, composing f : π∗AF → d(j) with the map d(j)→ π∗AF into the colimit
yields π∗AF . As this precisely means that π∗AF is a retract of d(j), the claim follows. □

Proposition 4.1.5.10. Let U be an internal class of B-categories that has the decomposition property,
and let C be a B-category. Then there is an equivalence

PShB(C)U -cpt ≃ RetPSh
B

(C)(Smallop(U)
B (C))

of full subcategories in PShB(C). In particular, PShB(C)U -cpt is small.

Proof. Yoneda’s lemma implies that every representable presheaf is U-compact. By combining this
observation with Proposition 4.1.5.8 and Proposition 4.1.5.4, one thus obtains an inclusion

RetPSh
B

(C)(Smallop(U)
B (C)) ↪→ PShB(C)U -cpt.

As for the converse inclusion, suppose that F : Cop → Ω is a U-compact presheaf. By Remark 4.1.4.2,
there exists a U-filtered B-category J and a diagram d : J → op(U) such that C/F ≃ colim d in CatB.
Proposition 3.4.4.3 then shows that F is the colimit of a J-indexed diagram in Smallop(U)

B (C). As F is U-
compact and J is U-filtered, Lemma 4.1.5.9 shows that F is locally a retract of an object in Smallop(U)

B (C).
By Remarks 4.1.5.2 and 3.3.2.2, if F : A → PShB(C)U -cpt is an arbitrary object, we can replace B

by B/A and carry out the same argument as above, which shows that PShB(C)U -cpt is contained in
RetPSh

B
(C)(Smallop(U)

B (C)). □

Corollary 4.1.5.11. Let U be an internal class of B-categories that has the decomposition property,
and let J be a weakly U-filtered B-category. Then the inclusion J ↪→ PShB(J)U -cpt is final.

Proof. Proposition 4.1.5.10 shows that any U-compact presheaf F : Jop → Ω arises as a retract of
some object G : 1 → Smallop(U)

B (J) after passing to a suitable cover of 1 ∈ B. Thus, the right fibration
Smallop(U)

B (J)/F → Smallop(U)
B (J) is locally a retract of a representable right fibration, so that we must have

(Smallop(U)
B (J)/F )gpd ≃ 1 as the latter property can be checked locally in B. By Remarks 4.1.5.2 and 3.3.2.2,

we may replace B with B/A to arrive at the same conclusion for any object F : A→ PShB(J)U -cpt. Using
Quillen’s theorem A [62, Corollary 4.4.8], this shows that the inclusion Smallop(U)

B (J) ↪→ PShB(J)U -cpt is
final. Hence the claim follows from Proposition 4.1.2.9. □

Corollary 4.1.5.12. A left regular class U is sound if and only if it is weakly sound.

Proof. Using Remarks 4.1.1.2 and 4.1.2.8, it suffices to show that whenever U is weakly sound,
every weakly U-filtered B-category J is U-filtered. Since Proposition 4.1.4.3 implies that U has the
decomposition property, Corollary 4.1.5.11 shows that the inclusion J ↪→ PShB(J)U -cpt is final. By
Proposition 4.1.5.4, the B-category PShB(J)U -cpt is op(U)-cocomplete and therefore U-filtered since U is
by assumption weakly sound. Now if I ∈ U(1) is chosen arbitrarily, the fact that FunB(I,Ω) is cocomplete
allows us to extend any diagram d : J→ FunB(I,Ω) to a diagram d′ : PShB(J)U -cpt → FunB(I,Ω), using
the universal property of presheaf B-categories. As the inclusion J ↪→ PShB(J)U -cpt is final, the limit
functor limI : FunB(I,Ω)→ Ω preserves the colimit of d if and only if it preserves the colimit of d′ (see
Proposition 3.1.8.1), which is indeed the case as PShB(C)U -cpt is U-filtered. By replacing B with B/A and
carrying out the same argument (which is possible by Remark 4.1.5.2), this already implies that J must
be U-filtered, as desired. □

4.2. Cardinality in internal higher category theory

In our treatment of accessibility and presentability for B-categories later in this paper, we will rely on
the existence of an ample amount of doctrines that satisfy the decomposition property. Therefore, it will
be crucial to know that there are sufficiently many (left) regular and sound doctrines in any ∞-topos B.
The main objective of this section is to construct such internal classes. More precisely, our approach is to
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first construct what we call the canonical bifiltration of the B-category CatB, i.e. a 2-dimensional filtration
by internal classes which can be regarded as a way to order B-categories by size. The first dimension
of this bifiltration is parametrised by cardinals, and the second one by the poset of local classes in B.
The canonical bifiltration will be exhaustive, so that every B-category can be assigned an upper bound
in size, and it will be exclusively comprised of regular doctrines. We carry out the construction of this
bifiltration in § 4.2.1. In § 4.2.2, we discuss how one can extract a particularly well-behaved subfiltration
from the canonical bifiltration that is still exhaustive and in which each member is sound. The latter will
be parametrised by a class of cardinals that satisfy a property which depends on the ∞-topos B and that
we refer to as B-regularity. Finally, we discuss a particular member of the canonical bifiltration in § 4.2.3,
that of finite B-categories.

4.2.1. The canonical bifiltration of the B-category of B-categories. Recall that when K is
an arbitrary class of ∞-categories (i.e. a full subcategory of Cat∞), we denote by LConstK the essential
image of the canonical functor K ↪→ Cat∞ → CatB in which the second map is obtained as the transpose
of constB : Cat∞ → Cat(B) = Γ CatB. If S is a local class of morphisms in B, we denote by ⟨K, S⟩ the
internal class of B-categories that is generated by LConstK and ΩS .

Definition 4.2.1.1. Let K ⊂ Cat∞ be a class of∞-categories and let S be a local class of morphisms
in B. We define the internal class Cat⟨K,S⟩B of ⟨K, S⟩-small B-categories as the left regularisation of ⟨K, S⟩.
We denote its underlying ∞-category of global sections by Cat(B)⟨K,S⟩.

Remark 4.2.1.2. In the situation of Definition 4.2.1.1, let us denote by π∗AS the class of those maps
in B/A whose underlying map in B is contained in S. Since (πA)! preserves small colimits and covers,
this is still a local class, and one has a natural equivalence π∗AΩS ≃ Ωπ∗

A
S of subuniverses. With this

understood, Remark 4.1.3.3 gives rise to a canonical equivalence π∗A Cat⟨K,S⟩B ≃ Cat⟨K,π
∗
AS⟩

B/A
for every

A ∈ B.

By combining Proposition 4.1.3.4 with Example 3.2.4.11, one finds:

Proposition 4.2.1.3. A (large) B-category C is Cat⟨K,S⟩B -complete precisely if
(1) The ∞-category C(A) admits limits indexed by objects in K, and for every map s : B → A the

transition functor s∗ : C(A)→ C(B) preserves these limits;
(2) For every map p : P → A in S, the functor s∗ admits a right adjoint s∗ : C(P )→ C(A) and for

every cartesian square
Q P

B A

t

q p

s

in B in which p (and therefore q) are contained in S, the natural map s∗p∗ → q∗t
∗ is an

equivalence.
Moreover, a functor f : C→ D of Cat⟨K,S⟩B -complete B-categories is Cat⟨K,S⟩B -continuous precisely if for
all A ∈ B the functor f(A) preserves limits indexed by objects in K, and for all maps p : P → A in S the
natural morphism f(A)p∗ → p∗f(P ) is an equivalence.

The dual statements about cocompleteness and cocontinuity (both understood with respect to the right
regular class op(Cat⟨K,S⟩B )) hold as well. □

In the situation of Definition 4.2.1.1, note that whenever K is a doctrine (i.e. a small ∞-category)
and S is bounded (i.e. the subuniverse ΩS that corresponds to S is small), Proposition 4.1.3.9 implies
that Cat⟨K,S⟩B is a doctrine. Therefore, assigning to a pair (K, S) the regular class Cat⟨K,S⟩B defines a map
of posets

Subsmall
full (Cat∞)× Subsmall

full (Ω)→ Subsmall
full (CatB)

that we refer to as the canonical bifiltration of CatB.
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Remark 4.2.1.4. The canonical bifiltration is exhaustive. In fact, if C is an arbitrary B/A-category,
we may find a small ∞-category J and a diagram d : J→ Cat(B/A) with colimit C such that for all j ∈ J

one has d(j) ≃ ∆n ⊗B for some n ≥ 0 and some B ∈ B/A. Note that ∆n ⊗B can be identified with the
B-indexed colimit of the constant diagram in CatB/A

with value ∆n. Therefore, by choosing K to be the
doctrine of ∞-categories spanned by the single object J ∈ Cat∞ and choosing S to be the bounded local
class that is generated by the maps B → A, we find that C is ⟨K, S⟩-small.

Example 4.2.1.5. Since every B-category is a small colimit of objects of the form ∆n⊗A with n ≥ 0
and A ∈ B, we deduce that the regularisation of ⟨Cat∞, all⟩ is CatB (where the local class all is the class
of all morphisms in B).

4.2.2. κ-small B-categories. Let κ be a cardinal. Recall from [57, § 6.1.6] that a map p : P → A in
B is said to be relatively κ-compact if for every κ-compact B ∈ B and every map s : B → A, the pullback
s∗P is κ-compact as well. We denote by κ -cpt the local class of morphisms in B that is generated by
the relatively κ-compact morphisms, and we let Ωκ

B be the associated subuniverse. Explicitly, a map
p : P → A is contained in κ -cpt precisely if there is a cover (si)i :

⊔
iAi ↠ A such that s∗i p is relatively

κ-compact for each i.
Let us denote by Catκ∞ the doctrine of κ-small ∞-categories. We may now define:

Definition 4.2.2.1. A B-category is said to be κ-small if it is ⟨Catκ∞, κ -cpt⟩-small. We will use the
notation CatκB = Cat⟨Catκ

∞,κ -cpt⟩
B to denote the internal class of κ-small B-categories, and we denote its

underlying ∞-category of global sections by Cat(B)κ.

Remark 4.2.2.2. Note that for general A ∈ B there is no reason to expect an equivalence π∗AΩκB ≃
Ωκ

B/A
. Therefore, we can also not expect to have an equivalence π∗A CatκB ≃ CatκB/A

. The situation
improves, however, when A is assumed to be κ-compact. In this case, the observation that an object in
B/A is κ-compact if and only if its underlying object in B is κ-compact implies that a map in B/A is
relatively κ-compact if and only its underlying map in B is relatively κ-compact, so that we obtain an
equivalence π∗AΩκ

B ≃ Ωκ
B/A

. By using Remark 4.2.1.2, this equivalence in turn induces an equivalence
π∗A CatκB ≃ CatκB/A

.

The internal class CatκB is not very well-behaved for arbitrary cardinals κ. Therefore, we will restrict
our attention to a certain class of cardinals that are in a sense adapted to the ∞-topos B.

Definition 4.2.2.3. We say that cardinal κ is B-regular if
(1) κ is regular and uncountable;
(2) B is κ-accessible;
(3) the full subcategory Bκ -cpt ↪→ B of κ-compact objects in B is closed under finite limits and

subobjects in B.

Remark 4.2.2.4. Every uncountable regular cardinal κ is S-regular. In fact, condition (2) is immediate,
and 1 ∈ S is certainly κ-compact. Moreover, if P = A ×C B is a pullback of κ-compact ∞-groupoids,
descent implies P ≃ colima∈A P |a. Since κ-compact∞-groupoids are precisely those which are κ-small [57,
Corollary 5.4.1.5] and since κ-compact objects in S are stable under κ-small colimits, it suffices to show
that P |a is κ-compact. We may therefore reduce to the case where A ≃ 1. By the same reasoning, we can
assume B ≃ 1 as well. But then P can be identified with a mapping ∞-groupoid of C, which is κ-small
by again making use of [57, Corollary 5.4.1.5]. Finally, the identification of κ-compact ∞-groupoids with
κ-small ∞-groupoids also shows that these are stable under subobjects. Hence condition (3) is satisfied
as well.

Remark 4.2.2.5. Note that there is an ample amount of B-regular cardinals, in the sense that if κ′ is
an arbitrary cardinal one can always find a larger cardinal κ ≥ κ′ that is B-regular. Indeed, by enlarging
κ′ if necessary one can always arrange for B to be κ′-accessible. Then for any (uncountable) κ ≫ κ′
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(in the sense of [57, Definition A.2.6.3]) for which Bκ
′ -cpt is κ-small, an object in B is κ-compact if and

only if the underlying presheaf on Bκ
′ -cpt takes values in the full subcategory Sκ -cpt ↪→ S of κ-compact

∞-groupoids [57, Lemma 5.4.7.5]. In combination with Remark 4.2.2.4, this shows that κ is B-regular.
In particular, this argument shows that we can always find a B-regular κ such that κ≫ κ′.

Remark 4.2.2.6. If κ is a B-regular cardinal, then κ is also B/A-regular for every κ-compact object
A ∈ B. In fact, since an object in B/A is κ-compact if and only if its image along (πA)! is κ-compact, every
object in B/A is a κ-filtered colimit of κ-compact objects, which shows that (2) is satisfied. Condition (3)
follows from A being κ-compact, together with the fact that (πA)! preserves pullbacks (and consequently
also subobjects).

Remark 4.2.2.7. For every B-regular cardinal κ, the ∞-topos B admits a presentation by the full
subcategory Bκ -cpt ⊂ B of κ-compact objects, in the sense that its Yoneda extension PSh(Bκ -cpt)→ B

is a left exact and accessible Bousfield localisation [57, Proposition 6.1.5.2]. Moreover, the inclusion
B ↪→ PSh(Bκ -cpt) commutes with κ-filtered colimits. In particular, the global sections functor Γ: B→ S

commutes with κ-filtered colimits, so that constB restricts to a functor Sκ -cpt → Bκ -cpt.

The first main result in this section will be the following characterisation of κ-small B-categories
when κ is B-regular:

Proposition 4.2.2.8. Let κ be a B-regular cardinal, and let C be a B-category. Then the following
are equivalent:

(1) C is κ-small;
(2) C is a κ-compact object in Cat(B);
(3) C is contained in the smallest full subcategory of Cat(B) that is spanned by objects of the form

∆n ⊗G for n ≥ 0 and G ∈ Bκ -cpt and that is closed under κ-small colimits;
(4) C is a κ-compact object in B∆;
(5) C0 and C1 are κ-compact objects in B.

Remark 4.2.2.9. On account of Remark 4.2.2.2, Proposition 4.2.2.8 implies that for every κ-compact
object A ∈ B, we can identify CatκB(A) with the full subcategory of κ-compact objects in Cat(B/A).

The proof of Proposition 4.2.2.8 requires a few preparations. We begin by establishing that the class
of relatively κ-compact maps in B is already local.

Lemma 4.2.2.10. Let κ be a B-regular cardinal and let I be a small set. For every i ∈ I, let Pi → Ai

be a relatively κ-compact map in B. Then
⊔
i Pi →

⊔
iAi is relatively κ-compact.

Proof. Let G be κ-compact, and let s : G →
⊔
iAi be a map. Write I = colimj Ij as a κ-

filtered union of its κ-small subsets, so that one obtains equivalences
⊔
iAi ≃ colimj

⊔
i∈Ij

Ai and⊔
i Pi ≃ colimj

⊔
i∈Ij

Pi. As G is κ-compact, there is some j such that s factors through the inclusion⊔
i∈Ij

Ai ↪→
⊔
iAi. By descent, we obtain a pullback diagram⊔

i∈Ij
Pi

⊔
i Pi

⊔
i∈Ij

Ai
⊔
iAi,

which implies that the pullback of
⊔
i Pi →

⊔
iAi to G is equivalent to the pullback of

⊔
i∈Ij

Pi →
⊔
i∈Ij

Ai

to G. By again using descent, this pullback can be identified with the coproduct
⊔
i∈Ij

Pi ×Ai Gi, where
Gi = G×⊔

i
Ai
Ai. As Gi is a subobject of G and therefore κ-compact, the fibre product Pi ×Ai

Gi is
κ-compact as well. Since Ij is κ-small, we conclude that also

⊔
i∈Ij

Pi×Ai Gi is κ-compact, as desired. □

Proposition 4.2.2.11. Let κ be a B-regular cardinal. Then every object in ΩκB is already relatively
κ-compact. In other words, the class of relatively κ-compact maps in B is local.
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Proof. Let P → A be an object in Ωκ
B(A). By definition, there is a cover (si) :

⊔
i∈I Ai ↠ A

such that s∗iP → Ai is relatively κ-compact. By Lemma 4.2.2.10, the map
⊔
i Pi →

⊔
iAi is relatively

κ-compact. The result therefore follows once we show that relatively κ-compact maps are stable under
∆op-indexed colimits in Fun(∆1,B). By [57, Lemma 6.1.6.6] they are stable under pushouts, so we only
need to consider the case of small coproducts, which again follows from Lemma 4.2.2.10. □

Remark 4.2.2.12. In [57, Proposition 6.1.6.7], Lurie shows that the class of relatively κ-compact
maps in B is local already when B is κ-accessible and Bκ -cpt is stable under finite limits in B. However,
we failed to understand how Lurie derives this result without the additional assumption that Bκ -cpt

is also stable under subobjects in B. Therefore, we decided to reiterate Lurie’s proof with this added
assumption.

Next, we need to establish that every B-regular cardinal is also B∆-regular. This will be a consequence
of the following characterisation of κ-compact simplicial objects in B:

Proposition 4.2.2.13. If κ is a B-regular cardinal, then the ∞-topos B∆ is κ-accessible, and if C is
a simplicial object in B, the following are equivalent:

(1) C is κ-compact;
(2) Cn ∈ Bκ -cpt for all n ≥ 0;
(3) C is contained in the smallest subcategory of B∆ that is spanned by objects of the form ∆n ⊗G

for n ≥ 0 and G ∈ Bκ -cpt and that is closed under κ-small colimits;

Proof. Remark 4.2.2.7 implies that the inclusion B∆ ↪→ PSh(∆×Bκ -cpt) commutes with κ-filtered
colimits, which immediately implies that B∆ is κ-accessible. Moreover, since ∆ is a κ-small ∞-category,
every simplicial object in B that is level-wise κ-compact is also κ-compact in B∆ [57, Proposition 5.3.4.13],
hence (2) implies (1). If C satisfies (3), the fact that for every k ≥ 0 the functor (−)k commutes with
small colimits implies that Ck is contained in the smallest full subcategory of B that contains all objects
of the form ∆n

k ×G for G ∈ Bκ -cpt and n ≥ 0 and that is closed under κ-small colimits. Since ∆n
k is a

finite set, this implies that Ck is κ-compact, hence (2) follows. Finally, suppose that C is κ-compact. We
may write C as a small colimit of objects of the form ∆n ⊗G for n ≥ 0 and G ∈ Bκ -cpt and therefore
by [57, Corollary 4.2.3.10] as a κ-filtered colimit C ≃ colimi C

i where each Ci is a κ-small colimits of
objects of the form ∆n ⊗ G. As C is κ-compact, there is some i0 such that the identity on C factors
through Ci0 → C. In other words, C is a retract of Ci0 . As retracts are countable and therefore a fortiori
κ-small colimits, (3) follows. □

Corollary 4.2.2.14. If κ is a B-regular cardinal, then κ is B∆-regular as well. Moreover, a map
in B∆ is relatively κ-compact if and only if it is level-wise given by a relatively κ-compact morphism in
B. □

Lemma 4.2.2.15. If κ is a B-regular cardinal and if C is a κ-compact simplicial object in B, then
CK is κ-compact for every ω-compact simplicial ∞-groupoid K.

Proof. As κ-compact objects in B∆ are stable under retracts and as every ω-compact simplicial
∞-groupoid is a retract of a finite colimit of n-simplices, we may assume without loss of generality
that K is a finite colimit of n-simplices. Therefore CK is a finite limit of objects of the form C∆n ,
so that Corollary 4.2.2.14 implies that we may reduce to the case K = ∆n. Now on account of the
identity (C∆n)k ≃ (C∆n×∆k )0 and by using the fact that ∆n ×∆k is again ω-compact, we can identify
(C∆n)k as a finite limit of objects of the form (C∆l)0 ≃ Cl, which shows that (C∆n)k is κ-compact. By
Proposition 4.2.2.13, one concludes that C∆n is κ-compact in B∆. □

Lemma 4.2.2.16. For every ω-compact simplicial ∞-groupoid K, the functor (−)K : B∆ → B∆

commutes with filtered colimits.
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Proof. As every ω-compact simplicial ∞-groupoid K is a retract of a finite colimit of n-simplices,
we may assume without loss of generality K = ∆n. As it suffices to show that(−)∆n

k commutes with
filtered colimits for all k ≥ 0, the same argumentation as in the proof of Lemma 4.2.2.15 shows that
we may reduce to showing that (−)∆n

0 commutes with filtered colimits. On account of the equivalence
(−)∆n

0 ≃ (−)n, this is immediate. □

Lemma 4.2.2.17. Let κ be a B-regular cardinal, let C be a κ-compact simplicial object in B∆ and let
C → L(C) be the unit of the adjunction (L ⊣ i) : Cat(B) ⇆ B∆. Then L(C) is κ-compact as well.

Proof. We will make use of the ∞-categorical version of the small object argument as developed
in [4, § 2.3]. For the convenience of the reader, we briefly explain the setup, at least in the special case
that is relevant for this proof. Suppose that S is a finite set of maps in S∆ such that for every map
s : K → L in S the functors (−)K and (−)L commute with filtered colimits in B∆. Let (L,R) be the
factorisation system in B∆ that is internally generated by the set S. To any object C ∈ B∆, we can now
assign a sequence

N→ B∆, k 7→ C(k)
by setting C(0) = C and by recursively defining a map C(k)→ C(k + 1) via the pushout⊔

s : K→L L⊗ C(k)L ⊔K⊗C(k)L K ⊗ C(k)K C(k)

⊔
s : K→L L⊗ C(k)K C(k + 1)

in which the coproduct ranges over all maps s : K → L in S. Then [4, Theorem 2.3.4] shows that the
object colimk C(k) is internally local with respect to the maps in S, i.e. contained in R/1, and that
furthermore the map C → colimk C(k) is contained in L, so that it is equivalent to the unit of the
adjunction R/1 ⇆ B∆ evaluated at C ∈ B∆.

Now if we let S be the set {E1 → 1, I2 ↪→ ∆2}, Lemma 4.2.2.16 shows that we are in the above
situation. Consequently, if C is a κ-compact object in B∆, the B-category L(C) can be computed as a
countable colimit of the objects C(k) as constructed above. Hence it suffices to show that each C(k) is
κ-compact, which easily follows from κ being B∆-regular (Corollary 4.2.2.14) and Lemma 4.2.2.15. □

Proof of Proposition 4.2.2.8. We first show that (2)–(5) are equivalent. By combining Propo-
sition 4.2.2.13 with the Segal conditions, one finds that (4) and (5) are equivalent. Moreover, since
Cat(B) is an ω-accessible localisation of B∆, the localisation functor preserves κ-compact objects, which
shows that (4) implies (2). Suppose now that C is a κ-compact object in Cat(B). As in the proof of
Proposition 4.2.2.13, we can find a κ-filtered ∞-category J such that C ≃ colimj∈J Cj where each Cj is a
κ-small colimit of objects of the form ∆n ⊗G, where n ≥ 0 and G ∈ Bκ -cpt. Hence C is a retract of some
Cj , so that (3) holds. Lastly, since we can compute any small colimit in Cat(B) by first taking the colimit
of the underlying diagram in B∆ and then applying the reflector L : B∆ → Cat(B), Lemma 4.2.2.17
implies that every κ-small colimit in Cat(B) of objects of the form ∆n ⊗G with n ≥ 0 and G ∈ Bκ -cpt is
also κ-compact in B∆. Thus (3) implies (4).

Finally, since CatκB is closed under both LConstCatκ
∞

- and Ωκ
B-colimits and since ∆n ⊗ G can be

regarded as the colimit of the constant G-indexed diagram with value ∆n, it is clear that (3) implies (1).
To show the converse, let V be the internal class that is spanned by those B/A-categories (for A ∈ Bκ -cpt)
that satisfy the B/A-categorical analogue of (3). Note that if

⊔
iAi ↠ 1 is a cover by κ-compact objects

and if D is a B-category such that π∗Ai
D satisfies the B/Ai

-categorical analogue of condition (3), then D
satisfies (3): in fact, since we have already established that (3) and (4) are equivalent, this is a consequence
of Proposition 4.2.2.11 and Corollary 4.2.2.14. As a consequence, for every κ-compact object A ∈ B, we
can identify V(A) with the class of B/A-categories that satisfy the B/A-categorical version of condition (3).
As V clearly contains both LConstCatκ

∞
and ΩκB, the proof will be complete once we show that V is closed

under both LConstCatκ
∞

- and Ωκ
B-colimits. By our description of V(A) for every κ-compact A ∈ B and



110 4. PRESENTABLE B-CATEGORIES

the fact that colimits can be computed locally by Remark 3.1.1.8, this is clear for the first case. To
show the second case, we need to verify that for every relatively κ-compact map p : P → A, the functor
p! : Cat(B/P ) → Cat(B/A) restricts to a map V(P ) → V(A). Using again that the class of relatively
κ-compact maps is local, it is enough to consider the case where A (and therefore also P ) is κ-compact.
To show the claim, we may again use the explicit description of V(A) and V(P ) to deduce that it suffices
to verify that p! carries κ-small colimits of objects in Cat(B/P ) of the form ∆n⊗Q (with Q→ P relatively
κ-compact) to κ-small colimits of objects in Cat(B/A) of the form ∆n ⊗ Q (with Q → A κ-compact).
Since p! preserves small colimits and acts by postcomposition with p, this follows from the fact that
relatively κ-compact maps are closed under composition. □

Corollary 4.2.2.18. For every B-regular cardinal κ, the internal class CatκB is a doctrine.

Proof. As B is generated by Bκ, Remark 4.2.2.2 implies that we only need to show that the collection
of κ-small B-categories is small, which is an immediate consequence of (2) in Proposition 4.2.2.8 □

By construction, the internal class CatκB is regular for every cardinal κ. We conclude this section by
proving that whenever κ is B-regular, the doctrine CatκB is sound.

Lemma 4.2.2.19. Let κ be a B-regular cardinal, and let J be a κ-filtered ∞-category. Then J is
CatκB-filtered when viewed as a constant B-category.

Proof. By Proposition 4.1.1.5, we need to show that the inclusion FunB(J,Ω) ↪→ FunB(J▷,Ω) is
CatκB-continuous. Since J is κ-filtered, the inclusion section-wise preserves κ-small limits. It therefore
suffices to show that it is Ωκ-continuous. This amounts to showing that for every A ∈ B and every
G ∈ Ωκ(A) the geometric morphism B/G → B/A commutes with J-indexed colimits. As the preservation
of colimits is a local condition 3.1.2.1 and as B is generated by the κ-compact objects in B, we may assume
that A is κ-compact. In light of Remark 4.2.2.6, we may thus replace B with B/A and can therefore
reduce to the case A ≃ 1. As κ is B-regular, the collection of κ-compact objects in B is stable under finite
limits. Therefore, for every H ∈ Bκ -cpt the functor mapB(G ×H,−) preserves J-filtered colimits. By
Yoneda’s lemma, this implies that the functor HomB(G,−) also preserves J-filtered colimits. On account
of the pullback square

(πG)∗ HomB(G, (πG)!(−))

diag(1) diag(HomB(G,G))idG

in Fun(B/G,B) and the fact that the cospan in the lower right corner consists of functors which preserve
J-indexed colimits, the claim follows from the fact that J-indexed colimits commute with finite limits. □

Lemma 4.2.2.20. Let κ be a B-regular cardinal, and let J be a CatκB-cocomplete B-category. Then the
canonical functor ΓJ→ J that is obtained from the counit of the adjunction constB ⊣ Γ is final.

Proof. For every G ∈ Bκ -cpt, the functor J(1) → J(G) admits a left adjoint and is therefore
in particular final. In other words, if i : B ↪→ PSh(Bκ -cpt) denotes the inclusion, then the functor
ϵ : ΓPSh(Bκ -cpt)iJ→ iJ is section-wise final. But since the local sections functor evG : PSh(Bκ -cpt)→ S

defines an algebraic morphism of ∞-topoi and since every algebraic morphism preserves both final
functors and right fibrations, applying evG to any factorisation of ϵ in Cat(PSh(Bκ -cpt)) into a final
functor and a right fibration yields a factorisation of ϵ(G) into a final functor and a right fibration in
Cat∞. Consequently, the map ϵ must already be final. As we recover the map ΓJ→ J by applying the
algebraic morphism L : PSh(Bκ -cpt)→ B to ϵ, the claim follows. □

Proposition 4.2.2.21. If κ is a B-regular cardinal, then CatκB is sound.

Proof. On account of Corollary 4.1.5.12, it suffices to show that CatκB is weakly sound. Together
with the fact that B is generated by its κ-compact objects and Remark 4.2.2.2, it is therefore enough to



4.2. CARDINALITY IN INTERNAL HIGHER CATEGORY THEORY 111

prove that every CatκB-cocomplete B-category J is CatκB-filtered. By Lemma 4.2.2.20 and Remark 4.1.1.7,
we can furthermore assume that J is the constant B-category associated with an ∞-category that admits
κ-small colimits and that is therefore κ-filtered [57, Proposition 5.3.3.3]. As a consequence, the result
follows from Lemma 4.2.2.19. □

Remark 4.2.2.22. As a consequence of Proposition 4.2.2.21, if C is an arbitrary B-category, there is
always a regular and sound doctrine U such that C ∈ U(1). In fact, we only need to choose a B-regular
cardinal κ such that C is κ-compact (and therefore κ-small by Proposition 4.2.2.8) and set U = CatκB.
More generally, if V is a doctrine, we can find a B-regular cardinal κ such that V0 is κ-compact and such
that the tautological object τ : V0 → V corresponds to a κ-small B/V0 -category. As every object of V (in
arbitrary context A ∈ B) arises as a pullback of τ , this implies that V is contained in CatκB.

Corollary 4.2.2.23. For every B-regular cardinal κ, there is an equivalence

ΩCatκ
B -cpt

B ≃ ΩκB
of full subcategories in Ω.

Proof. Since CatκB is a sound doctrine by Proposition 4.2.2.21, it has the decomposition property.
We may therefore apply Proposition 4.1.5.10 to deduce an equivalence

ΩCatκ
B -cpt

B ≃ RetΩ(SmallCatκ
B

B (1)).

Note that if G : 1→ SmallCatκ
B

B (1) is an arbitrary object, there is a cover
⊔
iAi ↠ 1 of B (without loss of

generality by κ-compact objects) and for each i a κ-small B/Ai
-category J such that π∗Ai

G ≃ Jgpd. Since
κ is by definition uncountable, we thus find that π∗Ai

G arises as a κ-small colimit of κ-compact objects
in B/Ai

(using the characterisation of κ-small B/Ai
-categories in Proposition 4.2.2.8) and is therefore

itself κ-compact. Using Proposition 4.2.2.11, this implies that G is κ-compact itself. By Remark 3.3.2.2,
the same argument can be carried out for every object in SmallCatκ

B

B (1) in context A ∈ Bκ -cpt, and since
the collection of κ-compact objects in B generate B under small colimits, this implies that we have an
inclusion

SmallCatκ
B

B (1) ↪→ ΩκB.
Using again that κ is uncountable, the collection of κ-compact objects in B is closed under retracts, and
as the same is true for the class of κ-compact objects in B/A for every A ∈ Bκ -cpt, we find that Ωκ

B is
closed under retracts in Ω, so that we obtain an inclusion

ΩCatκ
B -cpt

B ↪→ ΩκB.

Conversely, it is clear that whenever G is a κ-small B-groupoid, the associated object G : 1→ Ω is contained
in SmallCatκ

B

B (1). Again, the same is true for every κ-small B/A-groupoid whenever A is κ-compact. Hence
we obtain an inclusion

ΩκB ↪→ ΩCatκ
B -cpt

B ,

which finishes the proof. □

4.2.3. Finite B-categories. In this section we will discuss another important example of a regular
and sound doctrine. Recall that a quasicategory C is called finite if there is a finite simplicial set and a
Joyal equivalence K → C. This is equivalent to C being contained in the smallest subcategory of Cat∞
that contains ∅, ∆0 and ∆1 and is closed under pushouts (see [87, Proposition 2.5]). We denote the
associated doctrine of ∞-categories by FinS. Let us denote by eq the local class of equivalences in B. We
may now define:

Definition 4.2.3.1. A B-category is said to be finite if it is (FinS, eq)-small, and we shall denote
by FinB = Cat⟨FinS,eq⟩

B the associated regular doctrine of finite B-categories. We will denote by Fin(B)
the underlying ∞-category of global sections. We say that a B-category I is filtered if it is FinB-filtered.
We will say that a B-category has finite (co)limits if it is FinB-(co)complete, and a functor preserves
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finite (co)limits if it is FinB-(co)continuous. Dually, we say that a B-category has filtered colimits if it is
Filt-cocomplete, and a functor preserves filtered colimits if it is Filt-cocontinuous. If C is a B-category that
has filtered colimits, an object c : A→ C is said to be compact if it is FiltFinB

-compact, and we denote the
full subcategory of compact objects in C by Ccpt.

Remark 4.2.3.2. By Remark 4.2.1.2 and the evident fact that π∗Aeq = eq as local classes in B/A,
there is a canonical equivalence π∗A FinB ≃ FinB/A

for all A ∈ B.

Remark 4.2.3.3. Every filtered B-category J satisfies Jgpd ≃ 1. In fact, by Corollary 4.1.2.6 it is
weakly filtered, thus in particular the unique functor I → FunB(∅, I) ≃ 1 is final.

Proposition 4.2.3.4. There is an equivalence FinB ≃ LConstFinS
of internal classes. In other words,

a finite B-category is simply a locally constant sheaf of finite ∞-categories.

Proof. Since Ωeq ≃ 1Ω as full subcategories, we can describe FinB as the regularisation of LConstFinS
.

But since Cat∞ is compactly generated, we may apply Corollary A.4 and conclude that LConstFinS
is

already closed under LConstFinS
-colimits in CatB. Hence the claim follows. □

By Proposition 4.2.1.3, finite limits and preservation of finite limits can be checked section-wise:

Proposition 4.2.3.5. Let C be a B-category. Then

(1) C has finite limits if and only if C(A) has finite limits for every A ∈ B and for every s : B → A

the functor s∗ : C(A)→ C(B) preserves finite limits.
(2) A functor f : C → D between B-categories that have finite limits preserves such limits if and

only if f(A) : C(A)→ D(A) preserves finite limits for every A ∈ B.

The dual statements about finite colimits hold as well. □

One can construct an ample amount of filtered B-categories from presheaves of filtered ∞-categories:

Proposition 4.2.3.6. Say that B is given as a left exact accessible localisation L : PSh(C) → B

where C is a small ∞-category. Let J be any PSh(C)-category such J(c) is filtered for every c ∈ C. Then
LJ is a filtered B-category.

Proof. Let i : B ↪→ PSh(C) be the inclusion. Since L is left exact, it induces a functor of PSh(C)-
categories L : ΩPSh(C) → iΩB that for every A ∈ PSh(C) is given by

L/A : PSh(C)/A → B/LA.

By Proposition 4.2.3.5, the functor L thus preserves finite limits. Furthermore, it readily follows from
Proposition 2.4.2.9 that L admits a right adjoint i that is fully faithful. Therefore, we have a commutative
diagram

FunB(J,ΩPSh(C)) ΩPSh(C)

FunB(J, iΩB) iΩB.

colimJ

L

colimJ

L∗

Since there is an equivalence iFunB(J, iΩB) ≃ FunB(LJ,ΩB) that is natural in J, the lower colimit
functor in the above diagram can be identified with the functor i colimLJ : iFunB(LJ,ΩB)→ iΩB. Using
that i is fully faithful, we get that this map is equivalent to the composition L colimJ i∗. Therefore,
it suffices to show that the upper colimit functor in the above diagram preserves finite limits. To see
this, since PSh(C)/c ≃ PSh(C/c) for every c ∈ C and since C ↪→ PSh(C) generates PSh(C) under small
colimits, it suffices to show that the functor (−)gpd : LFib(J)→ PSh(C) commutes with finite limits, cf.
Propositions 3.1.4.1 and 4.2.3.5. Since for every c ∈ C the evaluation functor evc : PSh(C)→ S commutes
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with small colimits, the lax square

LFibPSh(C)(J) PSh(C)

LFibS(J(c)) S

(−)gpd

evc evc

(−)gpd

is commutative. By assumption and the fact that evc preserves limits, the functor (−)gpd ◦ evc commutes
with finite limits, hence so does evc ◦(−)gpd. The claim now follows from the fact that (evc)c∈C : PSh(C)→∏
c∈C S is a conservative functor. □

This leads to the main result of this section:

Proposition 4.2.3.7. The doctrine FinB is sound.

Proof. Since FinB is by definition regular, Corollary 4.1.5.12 implies that suffices it to show that
FinB is weakly sound. Using Remark 4.2.3.2, we only need to show that every B-category J that has finite
colimits is already filtered. But since J in particular admits finite constant colimits, it is section-wise
filtered, hence the result follows from Proposition 4.2.3.6. □

As a result of Proposition 4.2.3.7, we can now classify the compact objects of Ω. To that end, Let us
denote by LConstScpt the full subcategory of Ω that arises as the essential image of the map Scpt → Ω
(which is defined as the transpose of constB : Scpt → B). We now obtain:

Corollary 4.2.3.8. There is an equivalence

Ωcpt
B ≃ LConstScpt

of full subcategories in Ω.

Proof. Since FinB is a sound doctrine by Proposition 4.2.3.7, it has the decomposition property.
We may therefore apply Proposition 4.1.5.10 to deduce an equivalence

Ωcpt
B ≃ RetΩ(SmallFinB

B (1)).

Hence, if G : A → Ωcpt is an arbitrary object, there is a cover (si) :
⊔
iAi ↠ A in B such that s∗iG is

a retract of an object in SmallFinB

B (1) in context Ai, for every i. By further refining this cover, we can
furthermore assume that for each i there is a finite B/Ai

-category Ji such that π∗Ai
G is a retract of Jgpd

i .
Hence s∗iG is a retract of an object in LConstScpt in context Ai, so that Corollary A.4 implies that s∗iG is
itself contained in LConstScpt , which necessarily implies that G is contained in LConstScpt . Conversely, if
G is an object of LConstScpt in context A ∈ B, we can find a cover (si) :

⊔
iAi ↠ A in B such that s∗iG is

a constant B/Ai
-groupoid coming from a compact ∞-groupoid, which in turn implies that s∗iG is a retract

of a constant B/Ai
-groupoid coming from a finite ∞-groupoid. As this implies that s∗iG is a retract of

an object in SmallFinB

B (1) in context Ai, we conclude that s∗iG must be contained in Ωcpt, so that G is
contained in Ωcpt as well. □

The goal for the remainder of this section is to discuss a more explicit description of filtered B-
categories in the case where B is hypercomplete. To that end, recall that the filtered ∞-categories can
be characterised as those ∞-categories C for which every map K→ C from a finite ∞-category K can
be extended to a map from the cone K▷ → C. In other words, the ∞-category C is filtered if and only
if for any finite ∞-category K the functor j∗ : Fun(K▷,C) → Fun(K,C) induced by restricting along
the inclusion j : K ↪→ K▷ is essentially surjective. This characterisation admits an immediate internal
analogue:

Definition 4.2.3.9. A B-category J is called quasi-filtered if for every finite∞-category K the functor
j∗ : FunB(K▷, J)→ FunB(K, J) is essentially surjective.
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As the terminology suggests, every filtered B-category is quasi-filtered. To prove this, we require the
following lemma, which gives a very explicit description of the notion of quasi-filteredness:

Lemma 4.2.3.10. Let J be a B-category. Then J is quasi-filtered if and only if for any A ∈ B and any
diagram K→ J(A) where K is a finite ∞-category there exists a cover (si)i :

⊔
iAi ↠ A in B such that

for every i we can find a map K▷ → J(Ai) making the diagram

K J(A)

K▷ J(Ai)

s∗ij

commute.

Proof. Let us first assume that J is quasi-filtered. Choose a diagram K→ J(A) that corresponds to
a map A→ FunB(K, J), and let us form the pullback square

P FunB(K▷, J)≃

A FunB(K, J)≃.

(j∗)≃s

Since j∗ is essentially surjective, (j∗)≃ is a cover [62, Corollary 3.8.12], hence so is the map s. Thus
s : P ↠ A gives the desired cover. For the converse, we may pick the diagram K→ J(FunB(K, J)≃) that
is determined by the identity id : FunB(K, J)≃ → FunB(K, J)≃. By assumption we may now find a cover
(si)i :

⊔
iAi → FunB(K, J)≃ such that the diagram⊔

iAi FunB(K▷, J)≃

FunB(K, J)≃ FunB(K, J)≃id

j∗

commutes. Thus j∗ is also a cover, as desired. □

Proposition 4.2.3.11. Every filtered B-category is quasi-filtered.

Proof. Suppose that J is a filtered B-category. In light of Lemma 4.2.3.10, it suffices to show that
for every finite ∞-category K, every diagram d : K→ J locally extends to a map K▷ → J. Note that J
being filtered implies that Jgpd

d/ ≃ 1. Therefore there is a cover A↠ 1 in B such that Jd/(A) is non-empty.
Unwinding the definitions, this exactly provides the desired local extension of d. □

In [15, Éxpose V, Definition 8.11] Deligne chose (a 1-categorical analogue of) Definition 4.2.3.9 to
define filtered 1-categories internal to a 1-topos, so one might be inclined to surmise that the notions of
filteredness and quasi-filteredness coincide. In light of Proposition 4.2.3.11, the second is always implied
by the first, and the converse is in fact true in the case where B ≃ S (see [57, Proposition 5.4.1.22]). For
general ∞-topoi, however, this is no longer the case, the obstruction being the presence of non-trivial
∞-connected objects:

Proposition 4.2.3.12. Let G ∈ B be an ∞-connective object. Then G is a quasi-filtered B-category.

Proof. It is well-known (see [70]) that G is ∞-connective if and only if for an arbitrary finite
∞-category K, the diagonal map G→ FunB(K,G) is a cover. This clearly implies the claim. □

Since any filtered B-groupoid is necessarily equivalent to the final object, Proposition 4.2.3.12 shows
that any non-trivial ∞-connective object gives rise to a B-category that is quasi-filtered but not filtered.
In the remainder of this section we will show that is essentially the only obstruction. More precisely we
will show that if B is hypercomplete, then any quasi-filtered B-category is filtered.
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Lemma 4.2.3.13. Let C be a quasi-filtered B-category and assume that B is hypercomplete. Then
Cgpd ≃ 1.

Proof. Since B is hypercomplete, it suffices to see that the diagonal map Cgpd → mapΩ(K,Cgpd)
is a cover for any finite ∞-groupoid K, as in this case Cgpd is ∞-connective (see [70] again). So it is
enough to see that for every A ∈ B, every map f : K → Cgpd(A) from a finite ∞-groupoid K locally
factors through the point. Replacing B by B/A we may assume that A = 1, so that f corresponds to a
map g : K → Cgpd. Now recall that since the doctrine of finite B-categories is sound and regular, we can
find a filtered B-category J and a diagram d : J→ FinB with colimit C. Since (−)gpd is cocontinuous and
K is a compact object of Ω by Corollary 4.2.3.8, the canonical map

colim
J

mapΩ(K, d(−)gpd)→ mapΩ(K,Cgpd)

is an equivalence. If we denote the left fibration classifying mapΩ(K, d(−)gpd) by p : P→ J it follows from
Proposition 3.1.4.1, that we have an essentially surjective functor

P→ Pgpd ≃ colim
J

mapΩ(K, d(−)gpd.

In particular the global section g : 1 → mapΩ(K,Cgpd) lifts locally to a section of P . In other words,
we may find a cover

⊔
k Ak ↠ 1 and objects jk : Ak → J for each k such that π∗Ak

g factors through the
canonical map d(jk)gpd → π∗Ak

Cgpd. Since d(jk) is a finite B/A-category we may pass to a further cover
and can therefore assume that d(jk) is the constant B/Ak

-category associated to a finite ∞-category.
Therefore, the assumption that C is quasi-filtered implies that locally the map d(jk)gpd → π∗Ak

Cgpd factors
through the final object, hence the claim follows. □

Proposition 4.2.3.14. Suppose that B is hypercomplete. Then any quasi-filtered B-category is
filtered.

Proof. Let C be quasi-filtered. Since FinB is sound, we only have to verify that for any finite
B-category K the diagonal functor C→ FunB(K,C) is final. Since being final is a local property, we may
assume that K is the constant B-category attached to some finite ∞-category K (see Proposition 4.2.3.4).
Now for any diagram d : K→ C, we will show that the slice B-category Cd/ is again quasi-filtered. To
see this, let K′ be a finite ∞-category and consider an arbitrary map f : K′ → Cd/(A) for some A ∈ B.
Passing from B to B/A and using that π∗A(Cd/) ≃ (π∗AC)π∗

A
d/ we may assume that A ≃ 1. Since K is

constant, the global sections of C/d recover the slice ∞-category (ΓC)d/. Therefore f is given by a map
f ′ : K ⋄K′ → C(1) out of the join such that the restriction along K ↪→ K ⋄K′ recovers d. But since finite
∞-categories are stable under the join construction, we may find a covering (si)i :

⊔
Ai ↠ 1 and for

every i an extension (K ⋄K′)▷ → C(Ai) of π∗Ai
f ′. But these precisely correspond to maps (K′)▷ → C(Ai)

extending s∗i ◦ f : K′ → C(Ai), which shows that Cd/ is quasi-filtered and that therefore Cgpd
d/ ≃ 1 by

Lemma 4.2.3.13. Repeating the above argument with B/A instead of B we get that the same holds for a
diagram d in any context A, so the claim follows from Quillen’s Theorem A [62, Corollary 4.4.8]. □

4.3. Accessible B-categories

In the classical 1-categorical literature, a κ-accessible 1-category is one that can be obtained as the free
cocompletion of a small 1-category under κ-filtered colimits [53, 60]. In [57, § 5.4], Lurie generalises this
concept to ∞-categories. In this section we will introduce and study an analogous notion for B-categories,
that of a U-accessible B-category for any sound doctrine U. As with our discussion of U-filteredness,
we draw much of our inspiration from ideas in [1] and [78]. Our exposition is tailored to the study
of presentable B-categories in § 4.4, so we will not provide an exhaustive treatment of accessibility
for B-categories, but rather set up only the basic machinery that we will need for our discussion of
presentability later on. We begin in § 4.3.1 by giving the definition of a U-accessible B-category and
proving some basic results that will be useful later. In § 4.3.2, we discuss accessible functors. In § 4.3.3,
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we give a characterisation of U-accessible B-categories as those that are generated by U-compact objects
under U-filtered colimits. Finally, we discuss the notion of U-flatness in § 4.3.4.

4.3.1. Accessibility. If U is an arbitrary internal class of B-categories and if C is a B-category,
we will use the notation IndU

B(C) = PShFiltU
B (C) to denote the free FiltU-cocompletion of U. We write

IndU
B(C) for the underlying ∞-category of global sections. If U = FinB, we will simply write IndB(C) for

the associated free FiltFinB
-cocompletion and IndB(C) for its underlying ∞-category of global sections.

We may now define:

Definition 4.3.1.1. Let U be a sound doctrine. A large B-category D is U-accessible if there is a
B-category C and an equivalence D ≃ IndU

B(C). A large B-category is called accessible if it is U-accessible
for some sound doctrine U.

Remark 4.3.1.2. By combining Remark 4.1.1.2 with Proposition 3.4.1.11, we find that for every
A ∈ B there is a canonical identification π∗AIndU

B(C) ≃ Indπ
∗
AU

B/A
(π∗AC) for every B-category C and every

sound doctrine U.

Remark 4.3.1.3. In light of Proposition 4.1.3.6 one has IndU
B(C) ≃ IndUreg

←
B (C) for every B-category

C and every internal class U. In particular, a large B-category D is U-accessible if and only if it is
Ureg
← -accessible. When arguing about accessible B-categories, we can therefore always assume that U is in

addition left regular (cf. Corollary 4.1.3.7).

Suppose that D is a U-accessible B-category, i.e. that we have D ≃ IndU
B(C) for some B-category C.

Recall from § 3.4.1 that there is an inclusion SmallFiltU
B (C) ↪→ IndU

B(C). The following proposition shows
that this inclusion is in fact an equivalence.

Proposition 4.3.1.4. For any internal class U of B-categories and any B-category C, the fully faithful
functor SmallFiltU

B (C) ↪→ IndU
B(C) is an equivalence. In other words, the Yoneda embedding C ↪→ SmallFiltU

B (C)
exhibits SmallFiltU

B (C) as the free FiltU-cocompletion of C.

Proof. It will be enough to show that SmallFiltU
B (C) is closed under FiltU-colimits in PShB(C). By

combining Remark 4.1.1.2 with Remark 3.3.2.2, this follows once we prove that for any U-filtered B-
category J, the colimit of any diagram d : J→ SmallFiltU

B (C) in PShB(C) is contained in SmallFiltU
B (C). Let

us set F = colim d and let p : C/F → C be the associated right fibration. We need to show that C/F
is U-filtered. On account of the equivalence PShB(C) ≃ RFibC and in light of Lemma 3.4.4.2, we may
regard d as a diagram d : J→ RFibC ↪→ (CatB)/C that takes values in the full subcategory (FiltU)/C (as
FiltU is a colimit class by Remark 4.1.1.7). Let K → C be the colimit of d in (CatB)/C. As the right
fibration p : C/F → C is the image of K → C along the localisation functor L : (CatB)/C → RFibC (see
Proposition 3.1.2.11), there is a final map K→ C/F over C. It therefore suffices to show that K is U-filtered.
Now Proposition 3.1.6.3 implies that K is the colimit of the diagram (πC)!d : J→ (CatB)/C → CatB. By
construction, this diagram takes values in FiltU. Therefore, the result follows from Proposition 4.1.1.8. □

Remark 4.3.1.5. In light of Proposition 4.3.1.4, if C is a B-category and if U is a sound doctrine,
Remark 4.1.1.7 implies that a presheaf F : A→ PShB(C) in context A ∈ B is contained in IndU

B(C) if and
only if the B/A-category C/F is π∗AU-filtered.

For later use, let us record that our notion of accessibility is stable under the formation of slice
B-categories:

Proposition 4.3.1.6. Let U be a sound doctrine and let D be a U-accessible B-category. Then D/d is
π∗AU-accessible, for any choice of object d : A→ D.

Proof. Using Remark 4.3.1.2, we may assume that A ≃ 1. Choose a B-category C such that
D ≃ IndU

B(C). Let F : Cop → Ω be the presheaf that corresponds to d under this equivalence. We then
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obtain a commutative diagram

C/F IndB(C)/F PShB(C)/F

C IndB(C) PShB(C)

p (πF )! (πF )!

hC

in which both squares are cartesian. By Lemma 3.3.1.5, the vertical map on the right can be identified
with p! : PShB(C/F ) → PShB(C) such that the upper row in the above diagram recovers the Yoneda
embedding hC/F

. With respect to this identification, a presheaf on C/F is contained in IndB(C)/F
precisely if the domain of the associated right fibration is U-filtered. We therefore obtain an equivalence
IndU

B(C)/F ≃ IndU
B(C/F ), hence the result follows. □

4.3.2. Accessible functors. It will be convenient to also have a notion of accessibility for functors
between accessible B-categories at our disposal:

Definition 4.3.2.1. Let U be a sound doctrine. A functor f : C → D of large B-categories is
U-accessible if C and D are FiltU-cocomplete and f is FiltU-cocontinuous. We will call f accessible if it
is U-accessible for some sound doctrine U. We denote by Funacc

B (C,D) the full subcategory spanned by
those objects A→ FunB(C,D) such that the corresponding B/A-functor π∗AC→ π∗AD is accessible. We
will denote by Funacc

B (C,D) the underlying ∞-category of global sections.

Remark 4.3.2.2. Let f : C→ D be U-accessible for some sound doctrine U. By Remark 4.2.2.22 we
may find a B-regular cardinal κ such that U ⊂ CatκB. It follows that a functor is accessible if and only if
it is CatκB-accessible for some B-regular cardinal κ.

Remark 4.3.2.3. Let f : A → Funacc
B (C,D) be an arbitrary object. By definition, this means that

there is a cover (si) :
⊔
iAi ↠ A in B such that the functors s∗i f : π∗Ai

C→ π∗Ai
D are accessible for all i ∈ I.

By Remark 4.3.2.2, we may find a B/A-regular cardinal κ such that all Ai are κ-compact (in B/A) and
s∗i f is CatκB/Ai

-accessible for every κ. Hence Remarks 4.1.1.2 and 4.2.2.2 together with Remark 3.2.2.3
imply that f is FiltCatκ

B/A
-cocontinuous, so in particular accessible. Thus, an object f : A→ FunB(C,D)

is contained in Funacc
B (C,D) if and only if f defines an accessible functor between B/A-categories. In

particular, one obtains a canonical equivalence π∗AFunacc
B (C,D) ≃ Funacc

B/A
(π∗AC, π∗AD) for every A ∈ B.

Somewhat surprisingly, provided that both domain and codomain have a sufficient amount of colimits,
accessibility of a functor between B-categories is an entirely section-wise concept:

Proposition 4.3.2.4. Let κ be a B-regular cardinal and let f : C→ D be a functor between cocomplete
B-categories that is section-wise κ-accessible. Then the functor f is FiltCatκ

B
-accessible.

Proof. As κ is B-regular, Remarks 4.2.2.2 and 4.1.1.2 imply that it suffices to show that f preserves
the colimit of every diagram d : J→ C with J a CatκB-filtered B-category. As C is cocomplete, there exists
an extension d′ : PShB(J)Catκ

B -cpt → C of d. By Corollary 4.1.5.11, the inclusion J ↪→ PShB(J)Catκ
B -cpt

is final, hence we may replace J by PShB(J)Catκ
B -cpt and d by d′ and can thus assume that J is CatκB-

cocomplete (see Proposition 4.1.5.4). Using Lemma 4.2.2.20 and Remark 4.1.1.7, we can further reduce to
the case where J is the constant B-category that is associated with an ∞-category with κ-small colimits.
As by [57, Proposition 5.3.3.3] every such ∞-category is κ-filtered, the result follows. □

Corollary 4.3.2.5. Let f : C→ D be a functor of cocomplete large B-categories. Then f is accessible
if and only if f is section-wise accessible.

Proof. By Remark 4.3.2.2, we can assume that f is CatκB-accessible for some B-regular cardinal κ.
Then it follows from Lemma 4.2.2.19 that f commutes with colimits indexed by constant B-categories
attached to κ-filtered ∞-categories. In other words, f(A) commutes with κ-filtered colimits for every
A ∈ B and is thus section-wise accessible. For the converse, we pick a small full subcategory G ↪→ B that
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generates B under small colimits. Then we may find a B-regular cardinal κ such that f(G) is κ-accessible
for every G ∈ G. Since the preservation of colimits is a local condition by Remark 3.1.2.1 and since every
object A ∈ B admits a cover by objects in G, we conclude that f(A) preserves κ-filtered colimits for all
A ∈ B. Therefore f is accessible by Proposition 4.3.2.4. □

4.3.3. U-compact objects in accessible B-categories. In [57, Proposition 5.4.2.2], Lurie charac-
terises κ-accessible ∞-categories as those that are generated by a small collection of κ-compact objects
under κ-filtered colimits. In this section, our goal is to obtain an analogue of this statement for accessible
B-categories. We begin with the following characterisation of the U-compact objects in a U-accessible
B-category:

Proposition 4.3.3.1. Let U be an internal class of B-categories, let C be a B-category and let
D = IndU

B(C). Then there is an equivalence DU -cpt ≃ RetD(C) of full subcategories in D. In particular,
DU -cpt is small.

Proof. In light of Remark 4.1.5.6, the second claim follows immediately from the first. Now by
Yoneda’s lemma and the fact that the inclusion D ↪→ PShB(C) is closed under FiltU-colimits, every
representable presheaf on C defines a U-compact object in D. In other words, one obtains an inclusion
C ↪→ DU -cpt. By combining this observation with Proposition 4.1.5.8, one obtains an inclusion RetD(C) ↪→
DU -cpt. Conversely, let F : A→ DU -cpt be an arbitrary object. We need to show that F is contained in
RetD(C). Upon replacing B with B/A (which is made possible by Remark 4.1.5.2 and 4.3.1.2), we can
assume A ≃ 1. The desired result thus follows from Lemma 4.1.5.9. □

We can now state and prove our characterisation of U-accessible B-categories. To that end, if D is
a FiltU-cocomplete B-category and C ↪→ D is a full subcategory, we shall say that D is generated under
FiltU-colimits by C if D is the smallest full subcategory of itself that is closed under FiltU-colimits and
contains C. We now obtain:

Proposition 4.3.3.2. Let U be a sound doctrine and let D be a large B-category. Then the following
are equivalent:

(1) D is U-accessible;
(2) D is locally small and FiltU-cocomplete, the (a priori large) B-category DU -cpt is small and

generates D under FiltU-colimits;
(3) D is FiltU-cocomplete, and there is a small full subcategory C ↪→ D such that C ↪→ DU -cpt and

such that C generates D under FiltU-colimits.

Proof. If D is U-accessible, there is a small B-category C and an equivalence D ≃ IndU
B(C). In

particular, D is locally small and FiltU-cocomplete. Furthermore, Proposition 4.3.3.1 implies that DU -cpt

is small. Since D is generated by C under FiltU-colimits and therefore by DU -cpt, we conclude that (1)
implies (2). Moreover, (2) trivially implies (3), and the fact that (3) implies (1) immediately follows from
Proposition 3.4.2.4. □

Recall from Definition 2.4.4.7 that a localisation L : D→ E is a Bousfield localisation if L admits a
(necessarily fully faithful) right adjoint i. Proposition 4.3.3.2 now implies:

Corollary 4.3.3.3. Let U be a sound doctrine and let D be a U-accessible B-category. Suppose
that E is a Bousfield localisation of D such that the inclusion i : E ↪→ D is FiltU-cocontinuous. Then E is
U-accessible as well.

Proof. Let C ↪→ E be the image of DU -cpt along the localisation functor L : D→ E. As E is locally
small and DU -cpt is small by Proposition 4.3.3.2, the B-category C is small as well [62, Lemma 4.7.5].
In light of the adjunction L ⊣ i, the assumption that i is FiltU-cocontinuous implies that L preserves
U-compact objects. In other words, we have C ↪→ DU -cpt. By Proposition 4.3.3.2, the large B-category D
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is generated by DU -cpt under FiltU-colimits, i.e. D is the smallest full subcategory of itself that contains
DU -cpt and that is closed under FiltU-colimits. Let E′ ↪→ E be the smallest full subcategory that contains
C and that is closed under FiltU-colimits, and let us consider the commutative diagram

DU -cpt D′ D

C E′ E

L

in which the right square is a pullback. Since L is cocontinuous, the inclusion D′ ↪→ D is closed under
FiltU-colimits (using Lemma 4.1.4.5) and must therefore be an equivalence. As the inclusion i is a section
of L, this implies that the inclusion E′ ↪→ E is an equivalence as well. By using Proposition 4.3.3.2, we
thus conclude that D is U-accessible. □

Definition 4.3.3.4. A Bousfield localisation L : D→ E of a U-accessible B-category D is said to be
U-accessible if the inclusion E ↪→ D is U-accessible. More generally, a Bousfield localisation L : D → E
is accessible if there is a sound doctrine U such that D is U-accessible and the inclusion E ↪→ D is
FiltU-cocontinuous.

Remark 4.3.3.5. Proposition 4.3.3.2 also shows that accessibility is a local condition: if
⊔
iAi ↠ 1 is

a cover in B and if U is a sound doctrine, then a large B-category D being U-accessible is equivalent to
each π∗Ai

D being π∗Ai
U-accessible. In fact, Remark 4.3.1.2 shows that we have an equivalence π∗AIndU

B(C) ≃
Indπ

∗
AU

B/A
(π∗AC) for every B-category C and every A ∈ B, hence the condition is necessary. To show that it

is sufficient, first recall that since FiltU-cocompleteness is a local condition by Remark 3.2.2.3 we deduce
that D must be FiltU-cocomplete. Moreover, if E ↪→ D is the smallest full subcategory that is closed
under FiltU-colimits in D and that contains DU -cpt, the fact that π∗Ai

E is closed under Filtπ∗
Ai

U-colimits
and Remark 4.1.5.2 imply that the inclusion E ↪→ D is locally an equivalence and therefore already an
equivalence. To show that D is U-accessible, Proposition 4.3.3.2 thus implies that it suffices to verify
that also the condition of a large B-category to be (locally) small is local in B, which is clear from the
definitions.

Proposition 4.3.3.2 can furthermore be used to show that presheaf B-categories are U-accessible for
every choice of a sound doctrine U:

Proposition 4.3.3.6. For every B-category C and every sound doctrine U, the B-category PShB(C)
is U-accessible.

Proof. In light of Remark 4.3.1.3, we can assume that U is a left regular doctrine. By Propo-
sition 4.1.5.10, the B-category PShB(C)U -cpt is small. Using Proposition 4.3.3.2, it therefore suffices
to show that every object in PShB(C) can be obtained as a U-filtered colimit of U-compact objects.
If F : Cop → Ω is an arbitrary presheaf, Lemma 4.1.4.4 shows that F is the colimit of the diagram
PShB(C)U -cpt

/F → PShB(C)U -cpt ↪→ PShB(C). By Lemma 4.1.4.5, the B-category PShB(C)U -cpt
/F is

op(U)-cocomplete and therefore in particular U-filtered (Example 4.1.2.4). Hence F is contained in
IndU

B(PShB(C)U -cpt). Finally, upon replacing B with B/A (which is made possible by Remark 4.1.5.2),
the same conclusion holds for objects in PShB(C) in context A, which finishes the proof. □

4.3.4. Flatness. Recall from § 3.4.1 that if C is a B-category, the functor of left Kan extension
along the Yoneda embedding hCop : Cop ↪→ FunB(C,Ω) induces an equivalence

(hCop)! : PShB(C) ≃ Funcc
B(FunB(C,Ω),Ω)

where the right-hand side denotes the large B-category of cocontinuous functors between FunB(C,Ω) and
Ω.
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Definition 4.3.4.1. Let C be a B-category and let U be an arbitrary internal class of B-categories.
A presheaf F : A→ PShB(C) is said to be U-flat if the functor

FunB/A
(π∗AC,ΩB/A

)→ ΩB/A

that is encoded by (hCop)!(F ) is π∗AU-continuous. We denote the full subcategory of PShB(C) that is
spanned by the U-flat presheaves by FlatU

B(C), and we denote its underlying ∞-category of global sections
by FlatU

B(C).

Remark 4.3.4.2. In the situation of Definition 4.3.4.1, the fact that U-continuity is a local condition
by Remark 3.2.2.3 together with Remark 3.3.3.2 and [62, Lemma 4.7.14] implies that the presheaf F is
U-flat if and only if for every cover (si) :

⊔
Ai ↠ A in B the presheaf s∗iF is U-flat. In particular, every

object in FlatU
B(C) is U-flat, and there is a canonical equivalence π∗AFlatU

B(C) ≃ Flatπ
∗
AU

B/A
(π∗AU) for every

A ∈ B.

Lemma 4.3.4.3. Let C be a B-category and let F : Cop → Ω be a presheaf. Then the Yoneda extension
(hCop)!(F ) is equivalent to the composition

FunB(C,Ω) FunB(C/F ,Ω) Ω,p∗ colim

where p : C/F → C is the right fibration that is classified by F .

Proof. As both p∗ and colim are cocontinuous functors, the universal property of presheaf B-
categories implies that it suffices to find an equivalence colim p∗hCop ≃ F . Let us denote by h/F : C/F ↪→
PShB(C)/F the functor that is induced by the Yoneda embedding hC by taking slice B-categories. Now
there is a commutative diagram

Cop FunB(C,Ω) FunB(C/F ,Ω)

PShB(C)op FunB(PShB(C),Ω) FunB(PShB(C)/F ,Ω) Ω

hCop

hop
C

p∗

(hC)!

colim

(h/F )!

hPSh
B

(C) (πF )∗! id∗F

in which the commutativity of the right square follows from the straightening equivalence for right
fibrations (Theorem 2.1.11.5) together with p being a right fibration and therefore proper in the sense
of [62, § 4.4], see [62, Proposition 4.4.7]. In light of Yoneda’s lemma, it is now immediate that the
composition of the left vertical map with the lower row in the above diagram recovers F , as desired. □

Recall from Example 3.1.1.11 that if C is a B-category that admits a final object 1C : 1→ C, then
this object is the limit of the unique diagram ∅→ C. In other words, the map 1C : 1 ≃ FunB(∅,C)→ C
is right adjoint to the unique functor πC : C → 1. We will denote by π : idC → 1CπC the associated
adjunction unit.

Lemma 4.3.4.4. If p : P→ C is a right fibration of B-categories, the commutative square

idPSh
B

(P) p∗p!

1PSh
B

(P)πPSh
B

(P) p∗p!1PSh
B

(P)πPSh
B

(P)

π

η

p∗p!π

η1PSh
B

(P)πPSh
B

(P)

is a pullback square in FunB(PShB(P),PShB(P)).

Proof. By Proposition 3.1.3.2, it suffices to show that for every object F : A→ PShB(P) in context
A ∈ B the induced diagram

F p∗p!(F )

π∗A(1PSh
B

(C)) p∗p!(π∗A(1PSh
B

(C)))

π

ηF

p∗p!π

ηπ∗A(1PSh
B

(C))
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is a pullback. Upon replacing B with B/A, we can assume A ≃ 1. In light of the straightening equivalence
for right fibrations, this diagram corresponds to the commutative square

P/F P/F ×C P

P P×C P

of right fibrations over P. As this square is clearly a pullback, the claim follows. □

Lemma 4.3.4.5. Let I be a B-category and let

d h

diag(G) diag(H)

φ

diag(s)

be a pullback square in FunB(I,Ω), where s : G → H is an arbitrary map of B-groupoids. Then the
commutative square

colim(d) colim(h)

G H

colim(φ)

s

that is obtained by transposing the first square across the adjunction colim ⊣ diag is a pullback square as
well.

Proof. In light of the Grothendieck construction, the above pullback square corresponds to a
pullback square

I/d I/h

G Hs

in Cat(B). By Proposition 3.1.4.1, we need to show that the groupoidification functor carries this diagram
to a pullback square in B. As s is a right fibration and therefore proper [62, Proposition 4.4.7], this is
immediate. □

Proposition 4.3.4.6. Let U be a sound internal class and let C be a B-category. Then there is an
equivalence FlatU

B(C) ≃ IndU
B(C) of full subcategories in PShB(C).

Proof. In light of Remarks 4.3.1.2 and 4.3.4.2, it will be enough to show that a presheaf F : Cop → Ω
defines an object of IndU

B(C) if and only if it is U-flat. So suppose first that F is contained in IndU
B(C).

Then C/F is U-filtered. Let p : C/F → C be the projection. By Lemma 4.3.4.3, the Yoneda extension
(hCop)!F can be computed as the composition

FunB(C,Ω) FunB(C/F ,Ω) Ω,p∗ colim

and since both p∗ and colim are U-continuous, we deduce that F is U-flat.
Conversely, suppose that F is U-flat. By Lemma 4.3.4.4, the commutative square

hC/F
p∗p!hC/F

1PSh
B

(C/F )πC/F
p∗p!1PSh

B
(C/F )πC/F

diagC/F
(1PSh

B
(C/F )) diagC/F

(p∗F )

ηhC/F

πhC/F
p∗p!πhC/F

η1PSh
B

(C/F )πC/F

≃ ≃
diagC/F

(η1PSh
B

(C/F ))
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is a pullback in FunB(C/F ,PShB(C/F )). By Proposition 3.3.1.1, the composition of the two vertical maps
on the left is a colimit cocone, hence so is the composition of the two vertical maps on the right, for
p∗p! preserves all colimits. Let d : K→ (C/F )op be a diagram with K ∈ U(1). By postcomposition with
limK d

∗ : PShB(C/F )→ FunB(K,Ω)→ Ω, the above pullback square induces a cartesian square

limK d
∗hC/F

limK d
∗p∗p!hC/F

diagC/F
(1Ω) diagC/F

(limK d
∗p∗F ).

We claim that the right vertical map in the this last diagram is still a colimit cocone. To see this, note
that the equivalence FunB(C/F ,FunB(K,Ω) ≃ FunB(K,FunB(C/F ,Ω)) carries the diagram d∗p∗p!hC/F

to
the composition

K (C/F )op Cop FunB(C,Ω) FunB(C/F ,Ω).d pop hCop p∗

Now the functor limK preserving the colimit of d∗p∗p!hC/F
is equivalent to the colimit functor colimC/F

preserving the limit of the diagram p∗hCoppopd (cf. the argument in Remark 4.1.1.4). As the functor p∗

commutes with all limits, this in turn follows once colimC/F
p∗ preserves the limit of hCoppopd, which

follows from the equivalence colimC/F
p∗ ≃ (hCop)!(F ) from Lemma 4.3.4.3 and the assumption that F is

U-flat. As a consequence, we now deduce from Lemma 4.3.4.5 that the map colimC/F
limK d

∗hC/F
→ 1Ω

must be an equivalence. Now observe that the proof of Proposition 4.1.2.5, shows that (C/F )dop/ classifies
limK d

∗hC/F
and thus we get (C/F )gpd

dop/ ≃ 1 by Proposition 3.1.4.1. As d was chosen arbitrarily and as
replacing B with B/A allows us to derive the same conclusion for any diagram d : A→ FunB(K, (C/F )op)
in context A ∈ B, this shows that C/F is weakly U-filtered by Quillen’s Theorem A and therefore U-filtered
by soundness of U. Hence F is contained in IndU

B(C). □

4.4. Presentable B-categories

In this section we introduce and study presentable B-categories. Classically, a (locally) presentable
1-category is one that is locally small and is generated by a small collection of κ-compact objects under
small colimits [26]. In [57, § 5.5], Lurie generalised this concept to ∞-categories. In particular, his
treatment contains a multitude of equivalent characterisations of presentability [57, Theorem 5.5.1.1].
One of the main goals of this section is to obtain a comparable result for B-categories. As a starting
point, we chose to define a presentable B-category as a Bousfield localisation of a presheaf B-category at
a (small) subcategory. To make sense of this, we need to study the notion of local objects in a B-category,
which we do in § 4.4.1. In § 4.4.2, we formally define presentable B-categories and prove our main result
about various different characterisations of this condition (Theorem 4.4.2.4), building upon our work on
accessible B-categories. In § 4.4.3, we discuss adjoint functor theorems for presentable B-categories, and
in § 4.4.4 we construct large B-categories of presentable B-categories and show that these are complete
and cocomplete. We apply some of the preceding results to generalize the construction of § 3.4.1 in order
to define free cocompletions with relations in § 4.4.5. Finally, we discuss the notion of U-sheaves in § 4.4.6:
these are U-continuous functors Cop → D, where C is an op(U)-cocomplete B-category and D is a large
complete B-category. We show that if D is presentable, such U-sheaves form a presentable B-category as
well, and that this provides yet another equivalent characterisation of the notion of presentability.

4.4.1. Local objects. Recall from § 2.2.3 the definition of a localisation of a B-category. If j : S→ D
is a functor of B-categories, we obtain a localisation functor L : D → S−1D = D ⊔S Sgpd. If E is an
arbitrary B-category, L satisfies the universal property that L∗ : FunB(S−1D,E) → FunB(D,E) is fully
faithful and identifies the domain with the full subcategory FunB(D,E)S that is spanned by those functors
π∗AS → π∗AD whose restriction along π∗A(j) factors through the inclusion π∗AD≃ ↪→ π∗AD. We may now
define:
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Definition 4.4.1.1. If S→ D is a functor, we define the associated B-category LocS(D) of S-local
objects in D as the full subcategory of D that is defined via the pullback

LocS(D) PShB(S−1D)

D PShB(D)
i L∗

h

in Cat(B̂). We refer to an object d : A→ D as being S-local if it is contained in LocS(D).

Remark 4.4.1.2. If A ∈ B is an arbitrary object, we deduce from [62, Lemma 4.2.3 and Lemma 4.7.14]
that there is a canonical equivalence π∗A LocS(D) ≃ Locπ∗

A
S(π∗AD) of full subcategories in π∗AD. In particular,

this implies that an object d : A → D is S-local if and only if its transpose d : 1B/A
→ π∗AD defines a

π∗AS-local object.

Remark 4.4.1.3. Explicitly, an object d : 1→ D is contained in LocS precisely if the restriction of
the presheaf h(d) along j factors through the inclusion Ω≃ ↪→ Ω, which is the case if and only if for every
map s : e → e′ in S in context A ∈ B the morphism j(s)∗ : mapD(j(e′), π∗Ad) → mapD(j(e), π∗Ad) is an
equivalence of B/A-groupoids. By Remark 4.4.1.2, an analogous description holds for S-local objects in
arbitrary context.

Remark 4.4.1.4. In the situation of Definition 4.4.1.1, we deduce from Proposition 2.2.3.9 that
if T ↪→ D is the 1-image of the map S → D (in the sense of Definition 2.2.2.6), the canonical map
S−1D → T−1D is an equivalence. Consequently, the induced map LocT(D) → LocS(D) must be an
equivalence as well. Therefore, we may always assume that S is a subcategory of D.

Remark 4.4.1.5. Suppose that (fi : ci → di)i∈I is a (small) family of maps in D, with Ai ∈ B being
the context of fi. By the discussion in § 2.2.2, the subcategory S ↪→ D that is generated by this family is
given by the 1-image of the induced map

⊔
i ∆1 ⊗Ai → D. By combining Remark 4.4.1.3 and 4.4.1.4, an

object d : 1→ D is S-local if and for each i ∈ I the map

f∗i : mapD(di, π∗Ai
d)→ mapD(ci, π∗Ai

d)

is an equivalence in B/Ai
.

The theory of local objects is intimately connected to the notion of Bousfield localisations, i.e. of
reflective subcategories:

Proposition 4.4.1.6. Let D be a B-category and let L : D → C be a Bousfield localisation. Let
S = L−1(C≃) ↪→ D. Then the inclusion : C ↪→ D of L induces an equivalence C ≃ LocS(D) of full
subcategories in D. Furthermore, if D is U-accessible and L is a U-accessible Bousfield localisation, there
is a small subcategory T ↪→ S such that C ≃ LocT(D).

Proof. We begin with the first statement. By Proposition 2.4.4.6, the functor L : D→ C identifies
C with the localisation S−1D. In light of the very definition of LocS(D), the claim thus follows once we
show that the commutative square

C PShB(C)

D PShB(D)

hC

L∗

hD

is a pullback. Using [62, Lemma 4.7.14], it will be enough to show that if F : Cop → Ω is a presheaf
such that L∗(F ) : Dop → Ω is representable by an object d : 1→ Ω, then F is representable as well. This
immediately follows from the computation

F ≃ L!L
∗F ≃ L!hD(d) ≃ hCL(d),



124 4. PRESENTABLE B-CATEGORIES

see Corollary 2.4.3.3. Now if D is U-accessible and L is a U-accessible Bousfield localisation, let us set
E = DU -cpt and T = i−1(S) ↪→ E, where i : E ↪→ D is the inclusion. Since E is small by Proposition 4.3.3.1,
so is T, and we obtain a full inclusion LocS(D) ↪→ LocT(D). We need to show that this is an equivalence.
By Remark 4.4.1.2, it will be enough to show that every T-local object d : 1→ D is already S-local. Let
η : idD → iL be the adjunction unit. We then obtain a map

η∗ : mapD(iL(−), d)→ mapD(−, d),

and since d is T-local the restriction of η∗ to E is an equivalence. But as both domain and codomain of
this map are FiltU-cocontinuous when viewed as functors D→ Ωop, the fact that we have D ≃ IndU

B(E)
immediately implies that η∗ is already an equivalence, so that d is S-local. □

In the situation of Proposition 4.4.1.6, the question naturally arises whether the converse is true:
namely, whether the inclusion i : LocS(D) ↪→ D always defines a Bousfield localisation (i.e. admits a left
adjoint) for every B-category D and every functor S→ D. In general, this is false, but there is a large
class of B-categories D and functors S→ D for which this is nonetheless the case:

Proposition 4.4.1.7. Let D be an Ω-cocomplete large B-category that takes values in the ∞-category
PrL
∞ of presentable ∞-categories. Let furthermore i : S → D be a functor where S is small. Then the

inclusion i : LocS(D) ↪→ D admits a left adjoint and therefore exhibits LocS(D) as a Bousfield localisation
of D. Moreover, this Bousfield localisation is accessible.

Proof. By Remark 2.2.3.10, we may assume without loss of generality that S is a subcategory of D,
i.e. that i is a monomorphism. Let us first show that i(A) : LocS(D)(A) ↪→ D(A) admits a left adjoint
for every object A ∈ B. Choose a small subcategory of generators G ↪→ B. Then an object d : A→ D is
contained in LocS(D)(A) precisely if for every g : G→ A with G ∈ G and every map s : p→ q in S(G) the
induced map

s∗ : mapD(G)(q, g∗d)→ mapD(G)(p, g∗d)
is an equivalence in S (cf. [62, Corollary 4.6.8]). As g∗ admits a left adjoint g!, the object d is thus
contained in LocS(D)(A) if and only if d is local with respect to the set of maps

TA =
⋃
G→A

{g!(s) | s ∈ S(G)∆1
}

in D(A). By construction, TA is a small set, and since D(A) is by assumption a presentable ∞-category,
we deduce from [57, Proposition 5.5.4.15] that i(A) admits a left adjoint LA and that i(A) is accessible.

Next, we show that for every map p : P → A in B the natural map LBp
∗ → p∗LA is an equivalence.

By Remark 2.4.2.10, we only need to show that p∗LG sends the adjunction unit of LA ⊣ i(A) to an
equivalence. Recall from [57, Section 5.5.4] that the set of maps in D(A) that is inverted by LA coincides
with the strong saturation of TA, which is the smallest set of maps in D(A) containing TA that is stable
under pushouts, satisfies the two out of three property and is stable under small colimits in D(A)∆1 .
Therefore the adjunction unit η is contained in the strong saturation of TA, and since p∗ commutes with
colimits (being a morphism in PrL

∞) we conclude that it will suffice to show that p∗ sends maps in TA

to maps in the strong saturation of TG. Let us therefore fix a map g : G → A with G ∈ G as well as a
map s ∈ S(G)∆1 . Since D is Ω-cocomplete, we find p∗g!(s) ≃ h!q

∗(s), where h and q are defined via the
pullback square

Q P

G A.

h

q b

g

Now q∗(s) is a map in S(P ) and therefore inverted by LP , hence h!q
∗(s) is inverted by LB whenever h!

sends maps in TP to maps in the strong saturation of TB , which is immediate by definition of TP .
Finally, we may employ Proposition 2.4.2.9 to deduce that i admits a left adjoint L. Furthermore, as

D is by assumption both Ω- and LConst-cocomplete and therefore cocomplete by Proposition 3.2.4.1, and
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since every reflective subcategory of a cocomplete B-category is cocomplete as well by Proposition 3.2.2.6,
the fact that i is section-wise accessible already implies that i is accessible (see Corollary 4.3.2.5). □

Corollary 4.4.1.8. Let C and S be (small) B-categories and let j : S→ PShB(C) be a functor. Then
there is a sound doctrine U such that LocS(PShB(C)) is a U-accessible Bousfield localisation of PShB(C).
Conversely, any U-accessible Bousfield localisation of PShB(C) can be identified with the full subcategory
LocS(PShB(C)) ↪→ PShB(C) for some small B-category S and some functor S→ PShB(C).

Proof. By the straightening equivalence for right fibrations, for any A ∈ B there is a natural
equivalence of ∞-categories PShB(C)(A) ≃ RFib(C×A), and since the right-hand side is a localisation of
the presentable ∞-category Cat(B)/A×C at a small set of objects, we find that PShB(C) is section-wise
given by a presentable ∞-category. Moreover, if s : B → A is a map in B, the functor s∗ : PShB(C)(A)→
PShB(C)(B) admits a right adjoint s∗ by the theory of Kan extensions and therefore in particular commutes
with small colimits. As PShB(C) is cocomplete, we are therefore in the situation of Proposition 4.4.1.7,
which implies the claim. □

4.4.2. Presentability. In this section we define the concept of a presentable B-category and discuss
various characterisations of this notion.

Definition 4.4.2.1. A large B-category is said to be presentable if there exist B-categories C and S
as well as a functor S→ PShB(C) such that D is equivalent to LocS(PShB(C)).

Remark 4.4.2.2. In the situation of Definition 4.4.2.1, the fact that PShB(C) is locally small implies
that the 1-image S′ of the functor S → PShB(C) (i.e. the subcategory of PShB(C) that is obtained by
factoring the functor S→ PShB(C) into a strong epimorphism and a monomorphism) is small as well.
In fact, by combining Proposition 2.2.3.3 with [62, Proposition 4.7.2] it is clear that S′ is locally small,
hence [62, Proposition 4.7.4] implies that S′ is small whenever S′0 is contained in B, which follows in
turn from the observation that S′ is a subcategory of the essential image of S→ PShB(C), which is small
by [62, Lemma 4.7.5]. As a consequence, Remark 2.2.3.10 shows that we may always assume that S is a
subcategory of PShB(C).

Definition 4.4.2.3. We call a large B-category C section-wise accessible if the associated sheaf takes
values in the subcategory Acc ↪→ Ĉat∞ of accessible ∞-categories. Analogously, we call C section-wise
presentable if it factors through the inclusion PrL

∞ ↪→ Ĉat∞.

We now come to the main characterisation of presentable B-categories.

Theorem 4.4.2.4. For a large B-category D, the following are equivalent:
(1) D is presentable;
(2) there is a B-category C and an accessible Bousfield localisation L : PShB(C)→ D;
(3) D is accessible and cocomplete;
(4) D is cocomplete, and there is a B-regular cardinal κ such that D is CatκB-accessible;
(5) D is cocomplete and section-wise accessible;
(6) D is Ω-cocomplete and section-wise presentable.

Proof. The fact that (1) and (2) are equivalent is an immediate consequence of Corollary 4.4.1.8.
Now if we assume that (2) is satisfied, we may find a B-regular cardinal κ such that the inclusion
D ↪→ PShB(C) is FiltCatκ

B
-cocontinuous (see Remark 4.3.2.2), which by Corollary 4.3.3.3 implies that D

is CatκB-accessible. As any reflective subcategory of a cocomplete B-category is cocomplete as well by
Proposition 3.2.2.6, we conclude that (4) is satisfied. Trivially, (4) implies (3). Lastly, if D ≃ IndU

B(C)
for some sound doctrine U and some B-category C and if D is furthermore cocomplete, we deduce from
Corollary 3.4.1.14 that the inclusion IndU

B(C) ↪→ PShB(C) admits a left adjoint, hence (3) implies (2).
To show that (2) implies (5), since Proposition 3.2.2.6 already shows that D is cocomplete, it remains

to see that D is section-wise accessible. For every A ∈ B, the ∞-category D(A) is a Bousfield localisation
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of the presentable ∞-category PShB(C)(A) ≃ RFib(C × A). Since Corollary 4.3.2.5 implies that this
Bousfield localisation is accessible, one concludes that D(A) is an accessible ∞-category. Furthermore,
since D is also complete, the functor s∗ : D(A)→ D(B) preserves colimits for any map s : B → A in B,
so it is in particular accessible. Thus D is section-wise accessible. The fact that (5) implies (6) is an
immediate consequence of Proposition 3.2.4.1 and Proposition 3.2.4.5.

To complete the proof, we show that (6) implies (2). For this, let C be a small ∞-category such that
there is a left exact and accessible localisation L : PSh(C)→ B. Let F : Cop → Ĉat∞ be the composition

F : Cop ↪→ PSh(C)op L−→ Bop D−→ Ĉat∞.

Since C is small we may find a regular cardinal κ and a functor F0 : Cop → Cat∞ such that F is given by
composing F0 with the functor Indκ(−) : Cat∞ → Ĉat∞. We let C denote the sheafification of F0, which
is a small B-category. Let U be the internal class that is spanned by the constant B-categories associated
to κ-filtered ∞-categories. We claim that D is the free U-completion of C. Note that by assumption,
D is both Ω and LConst-cocomplete, hence D must be cocomplete (Proposition 3.2.4.1) and therefore a
fortiori U-cocomplete. As a consequence, it suffices to verify the universal property. Let E be an arbitrary
U-cocomplete (large) B-category. By Proposition 3.2.4.5 and Remark 3.2.4.9, a functor f : D → E is
U-cocontinuous if only if for every c ∈ C the functor f(c) preserves κ-filtered colimits (where we slightly
abuse notation and implicitly identify c ∈ C with its image along L : PShS(C) → B). Let us write
FunU -cc

B (D,E) for the global sections of FunU -cc
B (D,E), i.e. the full subcategory of FunB(D,E) spanned by

the U-cocontinuous functors. By Lemma 2.3.2.14 it follows that we have a chain of equivalences

FunU
B(D,E) ≃

∫
c∈C

Funκ(D(c),E(c))

≃
∫
c∈C

Fun(F0(c),E(c))

≃ FunPSh(C)(F0,E)

≃ FunB(C,E)

that is natural in E. Using Yoneda’s lemma, this already shows that D is the free U-cocompletion of C. In
particular, it follows from the explicit description of the free U-cocompletion that we have a commutative
triangle of fully faithful functors

D PShB(C)

C

j

i
h

Since D is cocomplete, the inclusion j admits a left adjoint by Corollary 3.4.1.14. In particular, the
inclusion j(A) : D(A) → PShB(C)(A) is a right adjoint functor between presentable ∞-categories for
each object A ∈ B, so it follows from [57, Proposition 5.5.1.2] that j(A) is an accessible functor. Hence
Corollary 4.3.2.5 implies that j is accessible, which completes the proof. □

We end this section by recording a few consequences of Theorem 4.4.2.4. We begin by noting that
as Theorem 4.4.2.4 implies that every presentable B-category is a reflective subcategory of PShB(C) for
some B-category C, we deduce from Proposition 3.2.2.6:

Corollary 4.4.2.5. Every presentable B-category is complete and cocomplete. □

Corollary 4.4.2.6. Let D be a presentable B-category and let K be a B-category. Then FunB(K,D)
is presentable.

Proof. By Theorem 4.4.2.4, we may choose a B-category C and a sound doctrine U such that D is a
U-accessible Bousfield localisation of PShB(C). In light of Proposition 3.2.2.7, this implies that the large
B-category FunB(K,D) is a U-accessible Bousfield localisation of FunB(K,PShB(C)) ≃ PShB(Kop × C),
hence the result follows. □
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Corollary 4.4.2.7. Let D be a presentable B-category and let d : A → D be an arbitrary object.
Then D/d is a presentable B/A-category.

Proof. We may assume that A ≃ 1 (cf. Remark 4.4.2.9 below). Using Corollary 3.2.2.11, one finds
that D/d is cocomplete. By Theorem 4.4.2.4, it therefore suffices to show that D/d is accessible, which is a
consequence of Proposition 4.3.1.6. □

Corollary 4.4.2.8. Let D be a presentable B-category and let S→ D be a functor where S is small.
Then there is a sound doctrine U such that LocS(D) is a U-accessible Bousfield localisation of D. In
particular, LocS(D) is presentable.

Proof. Since D is cocomplete by Corollary 4.4.2.5 and section-wise presentable by Theorem 4.4.2.4,
the claim follows from Proposition 4.4.1.7. □

Remark 4.4.2.9. As yet another consequence of Theorem 4.4.2.4, the condition of a large B-category
to be presentable is a local condition: if

⊔
iAi ↠ 1 is a cover in B, then a B-category D is presentable if

and only if each π∗Ai
D is a presentable B/Ai

-category. This follows from condition (3) in Theorem 4.4.2.4,
together with cocompleteness being a local condition (see Remark 3.2.2.3 and Remark 4.3.3.5).

4.4.3. The adjoint functor theorem. Recall from Proposition 3.2.2.5 that any left adjoint functor
between cocomplete large B-categories is cocontinuous. Therefore, if D and E are cocomplete large
B-categories, there is a canonical inclusion

FunL
B(D,E) ↪→ Funcc

B(D,E).

If D is presentable and E is locally small, then this inclusion is in fact an equivalence:

Proposition 4.4.3.1 (Adjoint functor theorem I). Let D and E be large B-categories such that D is
presentable and E is cocomplete and locally small. Then every cocontinuous functor f : D→ E admits a
right adjoint. In particular, there is an equivalence

FunL
B(D,E) ≃ Funcc

B(D,E)

of (large) B-categories.

Proof. In light of Remark 4.4.2.9, it is clear that the second statement immediately follows from the
first. Now choose B-categories C and S as well as a functor S→ PShB(C) such that D ≃ LocS(PShB(C)).
If f : D→ E is a cocontinuous functor, then fL : PShB(C)→ E is cocontinuous as well and therefore a left
adjoint by Remark 3.4.1.4. To show that f admits a right adjoint, we therefore only need to verify that
the right adjoint r of fL factors through D. Since D ≃ LocS(PShB(C)) as full subcategories of PShB(C)
by Theorem 4.4.2.4, this is in turn equivalent to hPSh

B
(C)r factoring through the functor

L∗ : PShB(D) ↪→ PShB(PShB(C)),

which is clear on account of r being right adjoint to fL. □

Recall from Corollary 4.4.2.8 that if D is a presentable B-category and S→ D is a functor where S
is small, the B-category LocS(D) is an accessible Bousfield localisation of D and therefore in particular
presentable. We may now use Proposition 4.4.3.1 to derive a universal property of LocS(D) among
presentable B-categories. To that end, recall from § 2.2.3 that if E is another presentable B-category, we
denote by FunB(D,E)S the full subcategory of FunB(D,E) that is spanned by those objects A→ FunB(D,E)
for which the restriction of the associated functor π∗AD → π∗AE along π∗AS → π∗AD takes values in the
subcategory π∗AE≃. We will denote by Funcc

B (D,E)S its intersection with the full subcategory Funcc
B (D,E).

We now obtain:
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Corollary 4.4.3.2. Let S→ D be a functor of B-categories where S is small and D is presentable,
and let E be another presentable B-category. Then precomposition with the left adjoint L : D→ LocS(D)
induces an equivalence

Funcc
B(LocS(D),E) ≃ Funcc

B(D,E)S.

Proof. To begin with, note that as L is in particular a localisation functor (see Proposition 2.4.4.6),
the universal property of localisations Proposition 2.2.3.14 implies that

L∗ : Funcc
B(LocS(D),E)→ Funcc

B(D,E)

is fully faithful. Therefore, it suffices to identify its essential image with Funcc
B (D,E)S. Since the restriction

of L along S → D takes values in LocS(D)≃, it is clear that L∗ takes values in Funcc
B(D,E)S, so that

it suffices to show that every object A → Funcc
B(D,S)S is contained in the essential image of L∗. By

combining Remark 4.4.1.2 with Remarks 3.2.3.4 and 2.2.3.12, it will be enough to verify that any
cocontinuous functor f : D → E whose restriction along S → D takes values in E≃ factors through L.
Note that the assumption on f precisely means that f factors through the localisation l : D→ S−1D, so
that f∗ : PShB(E) → PShB(D) factors through l∗ : PShB(S−1D) ↪→ PShB(D). Since f∗ ≃ g! where g is
the right adjoint of f that is provided by Proposition 4.4.3.1, the very definition of LocS(D) implies that
g factors through the inclusion i : LocS(D) ↪→ D via a functor g′ : E→ Loc(D). Since the composite fi
defines a left adjoint of g′, the claim follows by passing to left adjoints. □

There is also a dual version to Proposition 4.4.3.1 that classifies right adjoint functors between
presentable B-categories.

Proposition 4.4.3.3 (Adjoint functor theorem II). Let f : D→ E be a functor between presentable
B-categories. Then the following are equivalent:

(1) f admits a left adjoint;
(2) f is continuous and accessible;
(3) f is continuous and section-wise accessible.

Proof. By Corollary 4.3.2.5, (2) and (3) are equivalent. Moreover, since Theorem 4.4.2.4 implies
that f is section-wise given by a functor between presentable ∞-categories, the adjoint functor theorem
for presentable ∞-categories [57, Corollary 5.5.2.9] shows that (1) implies (3). For the converse, note that
the same result implies that f(A) admits a left adjoint lA for every A ∈ B. By Proposition 2.4.2.9, it now
suffices to see that the natural map lBs∗ → s∗lA is an equivalence for every map s : B → A in B. This is
equivalent to seeing that the transpose map f(A)s∗ → s∗f(B) that is given by passing to right adjoints
is an equivalence. But this is just another way of saying that f is Ω-continuous. □

4.4.4. The large B-category of presentable B-categories. Recall from § 3.2.3 that we defined
the (very large) B-category Catcc

B̂
of cocomplete large B-categories as the subcategory of Cat

B̂
which is

determined by the subobject of (Cat
B̂

)1 that is spanned by the cocontinuous functors between cocomplete
large B/A-categories for every A ∈ B. By Remark 3.2.3.2 a functor of large B/A-categories is contained in
Catcc

B̂
precisely if it is a cocontinuous functor between cocomplete large B-categories. We may now define:

Definition 4.4.4.1. The large B-category PrL
B of presentable B-categories is defined as the full

subcategory of Catcc
B̂

that is spanned by the presentable B/A-categories for every A ∈ B. We denote by
PrL(B) the ∞-category of global sections of PrL

B.

Remark 4.4.4.2. As presentability is a local condition (Remark 4.4.2.9) and by Remark 3.2.3.2, a
large B/A-category defines an object in PrL

B if and only if it is presentable, and a functor between such
large B/A-categories is contained in PrL

B if and only if it is cocontinuous. Consequently, the inclusion
PrL

B ↪→ Cat
B̂

identifies PrL
B with the sheaf PrL(B/−) on B. In particular, one obtains a canonical

equivalence π∗APrL
B ≃ PrL

B/A
for every A ∈ B.
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Remark 4.4.4.3. A priori, PrL
B is a very large B-category. However, note that the set of equivalence

classes of presentable B-categories is V-small as it admits a surjection from the V-small union⊔
C∈Cat(B)

Subsmall(PShB(C))

where Subsmall(PShB(C)) denotes the V-small poset of small subcategories of PShB(C). As Cat
B̂

is
furthermore locally V-small, this shows that PrL

B is in fact only a large B-category.

Recall from [61, § 6.2] that we denote by CatL
B̂

the subcategory of Cat
B̂

that is determined by the
subobject L ↪→ (Cat

B̂
)1 of left adjoint functors. By Proposition 4.4.3.1, the inclusion PrL

B ↪→ Cat
B̂

factors through the inclusion CatL
B̂
↪→ Cat

B̂
. Suppose now that D and E are presentable B-categories.

By combining Remark 3.1.5.3 and Corollary 3.1.5.4 with the fact that L ↪→ (Cat
B̂

)1 is closed under
equivalences and composition in the sense of Proposition 2.2.2.9 and by furthermore making use of
Remark 3.2.3.2, we find that the induced inclusion mapPrL

B
(D,E) ↪→ mapCatL

B̂

(D,E) is obtained by
applying the core B-groupoid functor to the equivalence

Funcc
B(D,E) ≃ FunL

B(D,E)

from Proposition 4.4.3.1. Upon replacing B with B/A and using Remark 4.4.4.2, the same assertion holds
for objects in PrL

B in context A ∈ B, so that we conclude:

Proposition 4.4.4.4. The inclusion PrL
B ↪→ CatL

B̂
is fully faithful. □

Dually, let us denote by CatR
B̂

the subcategory of Cat
B̂

that is determined by the subobject R ↪→
(Cat

B̂
)1 of right adjoint functors.

Definition 4.4.4.5. The B-category PrR
B of presentable B-categories is defined as the full subcategory

of CatR
B̂

that is spanned by the presentable B/A-categories for every A ∈ B. We denote by PrR(B) the
underlying ∞-category of global sections.

Remark 4.4.4.6. As in Remark 4.4.4.2, a large B/A-category defines an object in PrR
B if and only if

it is presentable, and a functor between such large B/A-categories is contained in PrR
B if and only if it is

a right adjoint. As a consequence, the large B-category PrR
B corresponds to the sheaf PrR(B/−) on B

that is spanned by the presentable B/A-categories and right adjoint functors. In particular, one obtains a
canonical equivalence π∗APrR

B ≃ PrR
B/A

for every A ∈ B.

Proposition 4.4.4.7. There is a canonical equivalence (PrR
B)op ≃ PrL

B that carries a right adjoint
functor between presentable B-categories to its left adjoint.

Proof. By [61, Proposition 6.2.1], there is such an equivalence (CatR
B̂

)op ≃ CatL
B̂

, and since this
functor necessarily acts as the identity on the underlying core B-groupoids, it restricts to the desired
equivalence by virtue of Proposition 4.4.4.4. □

Example 4.4.4.8. We are now in the position to provide a large class of examples of presentable
B-categories: recall from Construction 2.3.1.1 that there is a functor −⊗ Ω : PrR

∞ → Cat(B̂) that sends
a presentable ∞-category E to the large B-category E ⊗ Ω = E ⊗ B/− (where − ⊗ − is Lurie’s tensor
product of presentable ∞-categories). By Example 3.2.4.8, the B-category E⊗ Ω is cocomplete, so that
Theorem 4.4.2.4 implies that it is presentable as it takes values in PrL

∞. Moreover, we deduce from
Example 2.4.2.12 that whenever g : E→ E′ is a map in PrR

∞, the induced functor g ⊗ Ω is a right adjoint.
Consequently, we conclude that the functor −⊗Ω takes values in PrR(B). In particular, by applying this
observation to E = Cat∞, we find that CatB is presentable.

Our next goal is to show that PrL
B is complete and cocomplete. For completeness, we first need

a lemma. To that end, recall from § 3.2.3 that we denote by CatΩ -cc
B̂

the subcategory of Cat
B̂

that is
spanned by the ΩB/A

-cocontinuous functors between ΩB/A
-cocomplete (large) B-categories. We now find:
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Lemma 4.4.4.9. The B-category CatΩ -cc
B̂

is LConst-complete, and the inclusion CatΩ -cc
B̂

↪→ Cat
B̂

is
LConst-continuous.

Proof. By Remark 3.2.3.2, it is enough to show that for any small ∞-category K and any functor
d : K→ CatΩ -cc

B̂
↪→ Cat

B̂
, the following two conditions are satisfied:

(1) lim d is Ω-cocomplete;
(2) for every Ω-cocomplete large B-category C, a functor f : C→ lim d is Ω-cocontinuous if and only

if the compositions C→ lim d→ d(k) are Ω-cocontinuous for all k ∈ K.
Recall from [56, Corollary 4.7.4.18] that the subcategory FunLAdj(∆1, Ĉat∞) ↪→ Fun(∆1, Ĉat∞) that is
spanned by the right adjoint functors and the left adjointable squares (i.e. those commutative squares of
∞-categories whose associated mate transformation is an equivalence) admits small limits and that the
inclusion preserves small limits. Let us fix a map p : P → A in B, and let us denote by Cat(B̂)Ω -cc the
∞-category of global sections of CatΩ -cc

B̂
. Now evaluation at p defines a functor Cat(B̂)→ Fun(∆1, Ĉat∞)

that restricts to a map Cat(B̂)Ω -cc → FunLAdj(∆1, Ĉat∞). Since limits in Cat(B̂) are computed section-
wise, this already shows that p∗ : lim d(A) → lim d(P ) admits a left adjoint. Similarly, if s : B → A is
a map in B and if q : Q → B denotes the pullback of p along s, evaluating large B-categories at this
pullback square yields a morphism ∆1×Cat(B̂)Ω -cc → FunLAdj(∆1, Ĉat∞). Consequently, applying lim d

to the very same pullback square must yield a left-adjointable square of ∞-categories, which implies
that condition (1) is satisfied. By the same argument, if C is Ω-cocomplete and if f : C → lim d is a
functor, evaluating f at p yields a commutative square of ∞-categories that is left-adjointable if and only
if the evaluation of the composition C → lim d → d(k) at p is left-adjointable for all k ∈ K. Hence (2)
follows. □

Proposition 4.4.4.10. The B-category PrL
B is complete, and the inclusion PrL

B ↪→ Cat
B̂

is continuous.

Proof. By the dual of Proposition 3.2.4.1, it suffices to show that PrL
B is both Ω- and LConst-

complete and that the inclusion PrL
B is both Ω- and LConst-continuous. Using Remark 4.4.4.2, this follows

once we show that whenever K is either given by the constant B-category Λ2
0 or by a B-groupoid, the

large B-category PrL
B admits K-indexed limits and the inclusion PrL

B ↪→ Cat
B̂

preserves K-indexed limits.
Let us first assume that K = Λ2

0, i.e. suppose that

Q P

D C

q

g

p

f

is a pullback diagram in Cat(B̂) in which f and p are cocontinuous functors between presentable B-
categories. By Theorem 4.4.2.4, the cospan determined by f and p takes values in PrL

∞. Therefore, [57,
Proposition 5.5.3.13] implies that Q takes values in PrL

∞ and that g and q are section-wise cocontinuous.
Moreover, Lemma 4.4.4.9 shows that Q is Ω-cocomplete and that g and q are Ω-cocomplete. By again
making use of Theorem 4.4.2.4, we thus conclude that the Q is presentable and that g and q are
cocontinuous. Now if Z is another presentable B-category, a similar argumentation shows that a functor
Z→ Q is cocontinuous if and only if its composition with both g and q are cocontinuous. In total, this
shows that PrL

B admits pullbacks and that the inclusion PrL
B ↪→ Cat

B̂
preserves pullbacks.

Let us now assume K = G for some B-groupoid G. In order to show that PrL
B has G-indexed limits

and that the inclusion PrL
B ↪→ Cat

B̂
preserves G-indexed limits, another application of Remark 4.4.4.2

allows us to reduce to showing that the adjunction (πG)∗ ⊣ π∗G)) : Cat(B̂/G) ⇆ Cat(B̂) restricts to
an adjunction between PrL(B/G) and PrL(B). Recall that on the level of Ĉat∞-valued sheaves, the
functor (πG)∗ is given by precomposition with π∗G. By combining the characterisation of presentable
B-categories as Ω-cocomplete PrL

∞-valued sheaves (Theorem 4.4.2.4) with the explicit description of
Ω-cocompleteness from Proposition 3.2.4.2 and the section-wise characterisation of left adjoint functors
(Proposition 2.4.2.9), it is therefore immediate that (πG)∗ restricts to a functor PrL(B/G) → PrL(B).
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Moreover, the adjunction unit idCat(B̂) → (πG)∗π∗G is given by precomposition with the adjunction counit
(πG)!π

∗
G → idB, and the adjunction counit π∗G(πG)∗ → idCat(B̂/A) is given by precomposition with the

adjunction unit idB/A
→ π∗G(πG)!. Thus, by the section-wise characterisation of left adjoint functors and

the fact that presentable B-categories are Ω-cocomplete, these two maps must also restrict in the desired
way, hence the result follows. □

Proposition 4.4.4.11. The large B-category PrR
B is complete, and the inclusion PrR

B ↪→ Cat
B̂

is
continuous.

Proof. As in the proof of Proposition 4.4.4.10, it suffices to show that for either K = Λ2
0 or K = G

for G a B-groupoid, the large B-category PrR
B admits K-indexed limits and the inclusion PrR

B ↪→ Cat
B̂

preserves K-indexed limits. The first case follows as in the proof of Proposition 4.4.4.10, by making
use of the dual version of Lemma 4.4.4.9, [57, Theorem 5.5.3.18] and the fact that a continuous and
section-wise accessible functor between presentable B-categories admits a left adjoint (Proposition 4.4.3.3).
The argument for the second case is carried out in a completely analogous way as the one in the proof
of Proposition 4.4.4.10, the only difference being that one must use the Ω-completeness of presentable
B-categories and not their Ω-cocompleteness. □

Remark 4.4.4.12. As a consequence of Proposition 4.4.4.11, we can furthermore deduce that PrR
B is

generated under pullbacks by presheaf B-categories. In fact, if D is a presentable B-category, we may find
small B-categories C and S and a functor j : S→ PShB(C) so that D ≃ LocS(PShB(C)). By definition of
the right-hand side, we therefore obtain a pullback square

D PShB(Sgpd)

PShB(C) PShB(S)

γ∗

j∗hPSh
B

(C)

in Cat(B̂), where γ : S→ Sgpd is the natural map. By Remark 3.4.1.4, the functor j∗hPSh
B

(C) is a right
adjoint: its left adjoint is the left Kan extension (hS)!(j) of j along the Yoneda embedding hS. Since γ∗

is a right adjoint as well, Proposition 4.4.4.11 implies that this diagram is a pullback square in PrR
B.

Finally, by combining Proposition 4.4.4.10 and Proposition 4.4.4.11 with Proposition 4.4.4.7, we
conclude:

Corollary 4.4.4.13. Both PrL
B and PrR

B are complete and cocomplete. □

4.4.5. Cocompletion with relations. Let U be an internal class, and let C be a B-category.
In § 3.4.1, we constructed the free U-cocompletion PShU

B(C) of C, i.e. the universal U-cocomplete B-
category that is equipped with a functor C → PShU

B(C). The goal of this section is to generalise this
result by imposing that a chosen collection of cocones in C (that are indexed by objects of U) become
colimit cocones in the free U-cocompletion. Our proof of this result is a straightforward adaptation of the
discussion in [57, § 5.3.6].

4.4.5.1. Let us fix a small collection R = (di : K▷i → π∗Ai
C)i∈I of cocones with Ai ∈ B and Ki ∈ U(Ai)

for all i ∈ I. Let SR ↪→ PShB(C) be the (non-full) subcategory that is spanned by the canonical maps
(fi : colim hCdi → hCdi(∞))i∈I in PShB(C) (with each fi being in context Ai for i ∈ I), where di denotes
the restriction of di along the inclusion Ki ↪→ K▷i and where ∞ : Ai → K▷i denotes the cone point.

Let us set D = LocSR
(PShB(C)). By Corollary 4.4.1.8, the inclusion i : D ↪→ PShB(C) admits a left

adjoint L : PShB(C)→ D. In particular, D is cocomplete by Proposition 3.2.2.6. We define the (large)
B-category PShB(C)(U,R)(C) as the smallest full subcategory of D that contains the essential image of
LhC : C→ D and that is closed under U-colimits in D, and we let jC : C→ PSh(U,R)

B (C) be the map that
is obtained by composing LhC with the inclusion.
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Remark 4.4.5.2. Given any object A ∈ B, we denote by π∗AR the set of cocones (π∗A(di))i∈I . We
then obtain an equivalence π∗ASR ≃ Sπ∗

A
R of subcategories in PShB/A

(π∗AC). Hence Remark 4.4.1.2 and
the same argument as in the proof of Proposition 3.4.1.11 shows that one obtains a canonical equivalence
of large B/A-categories

π∗APSh(U,R)
B (C) ≃ PSh(π∗AU,π∗AR)

B/A
(π∗AC)

with respect to which π∗AjC corresponds to the map jπ∗
A

C.

For any U-cocomplete large B-category E, we will denote by FunB(C,E)R the full subcategory of
FunB(C,E) that arises as the pullback

FunB(C,E)R FunB(C,E)

FunB(PShB(C),E)SR
FunB(PShB(C),E).

(hC)!

We now obtain:

Proposition 4.4.5.3. For every i ∈ I the cocone (jC)∗(di) is a colimit cocone in PSh(U,R)
B (C), and

for every U-cocomplete large B-category E, precomposition with jC induces an equivalence

j∗C : FunU -cc
B (PSh(U,R)

B (C),E) ≃ FunB(C,E)R.

Proof. Note that by construction of D, the map jC carries each of the cocones di to a colimit cocone
in PSh(U,R)

B (C), hence the first claim follows immediately. The proof of the second claim employs a similar
strategy as in the proof of Theorem 3.4.1.13. First, if E is an arbitrary U-cocomplete B-category, note
that the Yoneda embedding induces a U-cocontinuous functor E ↪→ E′ = FunB(E,ΩB)op into a cocomplete
B-category. By Corollary 4.4.3.2 and the universal property of presheaf B-categories, we now obtain an
equivalence

(LhC)! : FunB(C,E′)R ≃ Funcc
B(PShB(C),E′)SR

≃ Funcc
B(D,E′)

As the inclusion PSh(U,R)
B (C) ↪→ D is by construction U-cocontinuous, we therefore obtain an induced

inclusion
(jC)! : FunB(C,E′)R ↪→ FunU -cc

B (PSh(U,R)
B (C),E′).

Now if f : PSh(U,R)
B (C)→ E′ is a U-cocontinuous functor, precisely the same argument as the one employed

in the proof of Theorem 3.4.1.13 shows that the adjunction counit ϵ : (jC)!j
∗
Cf → f is an equivalence and

that f is therefore contained in the essential image of (jC)!. Together with Remark 4.4.5.2, this shows that
(jC)! is an equivalence. Finally, the same argumentation as in the proof of Theorem 3.4.1.13 also shows
that this equivalence restricts to the desired equivalence FunB(C,E)R ↪→ FunU -cc

B (PSh(U,R)
B (C),E). □

Remark 4.4.5.4. In the situation of Proposition 4.4.5.3, if U is assumed to be small (i.e. a doctrine
in the terminology of § 4.1.3) implies that PSh(U,R)

B (C) is small as well. In fact, as D is locally small, the
essential image of LhC : C→ PShB(C)→ D is small [62, Lemma 4.6.5]. Hence we can make use of the
same argument as in Remark 3.4.1.7 to deduce that PSh(U,R)

B (C) must also be small.

Construction 4.4.5.5. For the remainder of this section, let us fix B-categories C1, . . . ,Cn and a
doctrine U. Let G ⊂ B be a small subcategory of generators, and let us set

Rk =
⊔
G∈G

{
d : K▷ → π∗GCk | K ∈ U(G)

}
as well as

Sk =
⊔
G∈G

{
d : K▷ → π∗GPSh(U,Rk)

B (Ck) | K ∈ U(G), d is a colimit cocone
}
.

Furthermore, let □nk=1Rk be the set of all diagrams of the form

(c1, . . . , cl−1, id, cl+1, . . . , cn)d : K▷ → π∗GCl →
n∏
k=1

π∗GCk
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where d is an element of Rl and ck : G→ Ck is an arbitrary object for each k ≠ l. Let □nk=1Sk be defined
analogously. Then for any internal class V that contains U, the composition

C1×· · ·×Cn → PSh(U,R1)
B (C1)×· · ·×PSh(U,Rn)

B (Cn)→ PSh(V,□n
k=1Sk)

B (PSh(U,R1)
B (C1)×· · ·×PSh(U,Rn)

B (Cn))

carries each cocone in □nk=1Rk to a colimit cocone, hence Proposition 4.4.5.3 determines a functor

φ : PSh(V,□n
k=1Rk)

B (C1 × · · · × Cn)→ PSh(V,□n
k=1Sk)

B (PSh(U,R1)
B (C1)× · · · × PSh(U,Rn)

B (Cn)).

Proposition 4.4.5.6. The canonical map

φ : PSh(V,□n
k=1Rk)

B (C1 × · · · × Cn)→ PSh(V,□n
k=1Sk)

B (PSh(U,R1)
B (C1)× · · · × PSh(U,Rn)

B (Cn))

is an equivalence.

Proof. Note that in light of Remark 4.4.5.4, the map φ is a well-defined morphism in the B-category
CatV -cc

B of V-cocomplete B-categories and V-cocontinuous functors. By combining Yoneda’s lemma with
Remark 4.4.5.2 and Remark 3.2.3.2, the result thus follows once we verify that for every V-cocomplete
B-category E the restriction functor

FunV -cc
B (PSh(V,□n

k=1Sk)
B (PSh(U,R1)

B (C1)×· · ·×PSh(U,Rn)
B (Cn)),E)→ FunV -cc

B (PSh(V,□n
k=1Rk)

B (C1×· · ·×Cn),E)

that we denote φ∗is an equivalence. Using Proposition 4.4.5.3, this is in turn equivalent to the map

FunB(PSh(U,R1)
B (C1)× · · · × PSh(U,Rn)

B (Cn),E)□n
k=1Sk

→ FunB(C1 × · · · × Cn,E)□n
k=1Rk

being an equivalence. We will use induction on n to show that this functor is an equivalence. If n = 1,
this is precisely the content of Proposition 4.4.5.3. For n > 1, the construction of □nk=1Rk and □nk=1Sk

together with Lemma 4.6.1.3 imply that the above map can be identified with the morphism

FunB(PSh(U,R1)
B (C1)× · · · × PSh(U,Rn−1)

B (Cn−1),FunU -cc
B (PSh(U,Rn)

B (Cn),E))□n−1
k=1Sk

FunB(C1 × · · · × Cn−1,FunB(Cn,E)Rn)□n−1
k=1Rk

.

As Proposition 4.4.5.3 implies that the map FunB(Cn,E)Rn
→ FunU -cc

B (PSh(U,Rn)
B (Cn),E) is an equivalence,

the claim thus follows by the induction hypothesis. □

4.4.6. U-sheaves. The main goal in this section is to derived yet another characterisation of
presentable B-categories: that of B-categories of U-sheaves on an op(U)-cocomplete B-category. These
are defined as follows:

Definition 4.4.6.1. Let U be an internal class and suppose that C is an op(U)-cocomplete B-category.
For any (not necessarily small) U-complete B-category E, we denote by ShU

E(C) the full subcategory of
FunB(Cop,E) that is spanned by those presheaves F : A→ FunB(Cop,E) (in arbitrary context A ∈ B) that
are π∗AU-continuous when viewed as functors π∗ACop → π∗AE. We refer to such presheaves as U-sheaves.
For the case where U = CatB, we will simply call them sheaves, and we will write ShE(C) = ShCatB

E (C) for
the associated B-category

Remark 4.4.6.2. By Remark 3.2.3.2, if A ∈ B is an arbitrary object, we obtain a canonical equivalence
π∗AShU

E(C) ≃ Shπ
∗
AU
π∗

A
E(π∗AC).

We first focus on Ω-valued U-sheaves.

Proposition 4.4.6.3. Let D be a presentable B-category and let F : Dop → Ω be a presheaf on D.
Then F is representable if and only if F is continuous. In particular, the Yoneda embedding induces an
equivalence D ≃ ShΩ(D).
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Proof. By Remark 4.4.6.2, the first claim implies the second, and by Proposition 3.2.2.9, every
representable functor is continuous, so that it suffices to prove that every continuous presheaf F : Cop → Ω
is representable. Now F being continuous is equivalent to F op : D→ Ωop being cocontinuous, which by
Proposition 4.4.3.1 is in turn equivalent to it being a left adjoint. Hence F is continuous if and only
if F is a right adjoint. Let l : Ω→ Dop be the left adjoint of F . Since the final B-groupoid 1Ω : 1→ Ω
corepresents the identity on Ω, we find equivalences

F ≃ mapΩ(1Ω, F (−)) ≃ mapDop(l(1Ω),−) ≃ mapD(−, l(1Ω)),

hence F is represented by l(1Ω). □

Next, we use Proposition 4.4.6.3 to deduce that whenever U is a doctrine, the B-category of Ω-valued
U-sheaves on a small B-category is presentable, and that it satisfies a universal property:

Proposition 4.4.6.4. For any doctrine U, the large B-category ShU
Ω(C) is presentable. Moreover, for

any complete large B-category E, restriction along the Yoneda embedding hC induces an equivalence

h∗C : ShE(ShU
Ω(C)) ≃ ShU

E(C)

of large B-categories.

Proof. Fix a small full subcategory G ↪→ B of generators, and define the small set

R =
⊔
G∈G

{f : colim hCd→ hC colim d | d : K→ π∗GC, Kop ∈ U(G)}

(where each f is to be considered as a map in PShB(C) in context G ∈ G). We let SR ↪→ PShB(C) be
the subcategory that is spanned by R. Note that since R is a small set, the subcategory SR is small,
so that D = LocSR

(PShB(C)) is a presentable B-category. Moreover, if E is an arbitrary complete large
B-category, the construction of SR (together with the fact that the preservation of limits can be checked
locally, see Remark 3.1.1.8) makes it evident that a cocontinuous functor PShB(C) → Eop carries the
maps in SR to equivalences precisely if its restriction to C is op(U)-cocontinuous. By replacing B with
B/A, the same assertion holds for any object A→ Funcc

B (PShB(C),Eop). As a consequence, the universal
property of presheaf B-categories implies that restriction along the Yoneda embedding hC determines an
equivalence of large B-categories h∗C : Funcc

B (PShB(C),Eop)SR
≃ Funop(U) -cc

B (C,Eop). Upon taking opposite
B-categories and using Corollary 4.4.3.2, one thus obtains an equivalence (LhC)∗ : ShE(D) ≃ ShU

E(C). By
plugging in E = Ω into this equivalence and using proposition 4.4.6.3, one ends up with an equivalence
D ≃ ShU

Ω(C) of full subcategories of PShB(C), which completes the proof. □

Whenever U is a sound doctrine, we can identify the B-category of U-sheaves on an op(U)-cocomplete
B-category C with the free FiltU-cocompletion of C:

Proposition 4.4.6.5. Let U be a sound internal class and let C be an op(U)-cocomplete B-category.
Then there is an equivalence ShU

Ω(C) ≃ IndU
B(C) of full subcategories of PShB(C).

Proof. On account of Proposition 4.3.4.6 as well as Remarks 4.4.6.2 and 4.3.4.2, it suffices to show
that a presheaf F : Cop → Ω is U-flat if and only if F is U-continuous. As the inclusion hCop : Cop ↪→
FunB(C,Ω) commutes with all limits that exist in C, the presheaf F being U-flat immediately implies
that F is U-continuous. Conversely, suppose that F is U-continuous. By Proposition 4.3.4.6, it suffices to
show that C/F is weakly U-filtered. By applying Lemma 4.1.4.5 to the pullback square

C/F Ωop
/1Ω

C Ωop,F op

(which satisfies the conditions of the lemma by Proposition 3.1.6.3), we conclude that C/F is op(U)-
cocomplete, hence the claim follows from Example 4.1.2.4. □
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Corollary 4.4.6.6. Let U be a sound doctrine and let C be an op(U)-cocomplete B-category. Then
IndU

B(C) is presentable. Moreover, for any cocomplete large B-category E, restriction along the Yoneda
embedding hC induces an equivalence

h∗C : Funcc
B(IndU

B(C),E) ≃ Funop(U) -cc
B (C,E)

of large B-categories. □

Corollary 4.4.6.7. Let D be a large B-category. Then the following are equivalent:
(1) D is presentable;
(2) there is a sound doctrine U such that D is U-accessible and DU -cpt is op(U)-cocomplete;
(3) there is a doctrine U and a small op(U)-cocomplete B-category C such that one has an equivalence

D ≃ ShU
Ω(C).

Proof. By combining Theorem 4.4.2.4 with Proposition 4.1.5.4, it is clear that (1) implies (2). If (2) is
satisfied, Proposition 4.3.3.2 implies that DU -cpt is small and that there is an equivalence D ≃ IndU

B(DU -cpt).
In light of Proposition 4.4.6.5, this shows that (3) is satisfied. Finally, Proposition 4.4.6.4 shows that (3)
implies (1). □

We complete this section by noting that as a consequence of the results that we have established so
far, we may deduce that the B-category of sheaves between presentable B-categories is presentable as
well:

Corollary 4.4.6.8. For every two presentable B-categories D and E, the B-category ShE(D) is
presentable as well.

Proof. By Corollary 4.4.6.7, we may find a doctrine U and a small op(U)-cocomplete B-category C
such that D ≃ ShU

Ω(C). Consequently, Proposition 4.4.6.4 gives rise to an equivalence ShE(D) ≃ ShU
E(C).

Therefore, it suffices to show that the right-hand side is presentable. Choose a small B-category C′ such
that E ≃ LocS′(PShB(C′)) for some S′ → PShB(C′) with S′ small. We obtain a commutative square

ShU
E(C) FunB(Cop,E)

ShU
PSh

B
(C′)(C) FunB(Cop,PShB(C′)).

We first claim that this square is a pullback. To see this, note that by Remarks 4.4.6.2 and 4.4.1.2, it
will be enough to verify that a functor Cop → E is U-continuous if Cop → E ↪→ PShB(C′) is U-continuous.
This is a straightforward consequence of the fact that fully faithful functors are conservative. To proceed,
note that by Corollary 4.4.2.6, the vertical map on the right in the above diagram defines a map in PrR

B.
Using Proposition 4.4.4.11, the proof is thus complete once we verify that the lower horizontal map is a
map in PrR

B as well. To see this, observe that by Lemma 4.6.1.3 below, we may identify this map with
the inclusion

FunB(Cop,ShU
Ω(C)) ↪→ FunB(Cop,PShB(C′))

that is induced by postcomposition with the inclusion ShU
Ω(C) ↪→ PShB(C). As the latter is a map in PrR

B

by Proposition 4.4.6.4, the claim thus follows by again appealing to Corollary 4.4.2.6. □

4.5. Digression: Aspects of internal higher algebra

The goal of this section is to set up the basic framework of higher algebra (in the sense of [56])
in the context of internal higher category theory. As our main goal is to use this framework to define
tensor products of B-categories in § 4.6, we will restrict our attention to a few selected results instead of
giving a comprehensive account of this machinery. We begin in § 4.5.1 by defining symmetric monoidal
B-categories (and more generally B-operads), and in § 4.5.2 we study algebras and modules in symmetric
monoidal B-categories. As a first application of this framework, § 4.5.4 contains a characterisation of
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dualisable objects in the B-category of modules over an E∞-ring in B. The proof of this characterisation
requires a few results about the notion of stability in the world of B-categories, which we briefly discuss
in § 4.5.3.

4.5.1. B-operads, symmetric monoidal B-categories and commutative monoids. Recall
from [56, § 2.3.2] the definition of the presentable ∞-category Opgen

∞ of generalised ∞-operads. By
construction, this ∞-category is the (non-full) subcategory of (Cat∞)/Fin∗ (where Fin∗ denotes the
1-category of finite pointed sets) that is spanned by the generalised ∞-operads and the morphisms of
generalised ∞-operads. The full subcategory of Opgen

∞ that is spanned by the ∞-operads is denoted
by Op∞. By [56, Corollary 2.3.2.6] the inclusion Op∞ ↪→ Opgen

∞ admits a left adjoint, and by [56,
§ 2.1.4] the ∞-category Op∞ is presentable as well. Finally, recall from [56, Variant 2.1.4.13] that the
(presentable)∞-category Cat⊗∞ is defined to be the subcategory of Op∞ that is spanned by the symmetric
monoidal ∞-categories and the symmetric monoidal functors. By [56, Proposition 2.2.4.9] the inclusion
Cat⊗∞ ↪→ Op∞ also admits a left adjoint. In light of Construction 2.3.1.1 we may now define:

Definition 4.5.1.1. A generalised B-operad is an Opgen
∞ -valued sheaf on B, and the B-category of

generalised B-operads is defined as the large B-category Opgen
B = Opgen

∞ ⊗Ω. A generalised B-operad is
said to be a B-operad if it takes values in Op∞, and the large B-category OpB of B-operads is defined as
the full subcategory of Opgen

B that is spanned by the B/A-operads for each A ∈ B. Finally, a (generalised)
B-operad is said to be a symmetric monoidal B-category if it takes values in Cat⊗∞, and similarly a
morphism of symmetric monoidal B-categories is said to be a symmetric monoidal functor if it takes values
in Cat⊗∞. The large B-category Cat⊗B of symmetric monoidal B-categories is defined as the subcategory
of OpB that is spanned by the symmetric monoidal functors between symmetric monoidal B-categories,
and the large B-category Cat⊗,lax

B is defined as the essential image of the inclusion Cat⊗B ↪→ OpB. We
refer to the maps in Cat⊗,lax

B as lax symmetric monoidal functors.

Remark 4.5.1.2. By construction, we have canonical equivalences OpB ≃ Op∞⊗Ω and Cat⊗B ≃
Cat⊗∞⊗Ω with respect to which the inclusions OpB ↪→ Opgen

B and Cat⊗B ↪→ OpB correspond to the image
of the inclusions Op∞ ↪→ Opgen

∞ and Cat⊗∞ ↪→ Op∞ under the functor − ⊗ Ω : PrR
∞ → PrR(B) from

Example 4.4.4.8. Consequently, the chain of inclusions

Cat⊗B ↪→ OpB ↪→ Opgen
B

defines morphisms in PrR
B.

Remark 4.5.1.3. Taking the fibre over ⟨1⟩ ∈ Fin∗ defines a forgetful functor Op∞ → Cat∞. By the
discussion in [56, § 2.1.4], this functor defines a map in PrR

∞. Consequently, applying −⊗ Ω to this map
yields a well-defined morphism OpB → CatB in PrR

B (cf. 4.4.4.8). Given a B-operad O⊗, we denote its
image under this functor by O.

Remark 4.5.1.4. By making use of [56, Proposition B.2.9], the inclusion Opgen
∞ ↪→ (Cat∞)/Fin∗

admits a left adjoint and thus defines a morphism in PrR
∞. Upon applying the functor −⊗ Ω, we thus

obtain a monomorphism Opgen
B ↪→ (Cat∞)/Fin∗ ⊗ Ω ≃ (CatB)/Fin∗ . Unwinding the definitions, one finds

that a functor p : O⊗ → Fin∗ is contained in Opgen
B precisely if

(1) for all A ∈ B the pullback (ηA)∗O⊗(A)→ Fin∗ of p(A) along the adjunction unit ηA : Fin∗ →
ΓB/A

Fin∗ defines a generalised ∞-operad, and
(2) for all maps s : B → A in B the induced map (ηA)∗O⊗(A)→ (ηB)∗O⊗(B) defines a morphism

of generalised ∞-operads.

Similarly, a morphism f : O⊗ → O′⊗ in (CatB)/Fin∗ between generalised B-operads is contained in Opgen
B

precisely if for all A ∈ B the pullback (ηA)∗f(A) defines a morphism of generalised ∞-operads. One can
make analogous observations for the subcategories OpB, Cat⊗,lax

B and Cat⊗B.
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Remark 4.5.1.5. By combining Remarks 4.5.1.4 and 2.3.2.5, we may identify Cat⊗B with the full
subcategory of CocartFin∗ that is spanned by those cocartesian fibrations p : C⊗ → Fin∗ (in arbitrary
context A ∈ B) for which the induced cocartesian fibration (ηB)∗C⊗(B) → Fin∗ defines a symmetric
monoidal ∞-category for every B ∈ B/A.

For later use, recall from [56, Proposition 2.3.2.9] that the functor C 7→ Fin∗×C determines a fully
faithful map Cat∞ ↪→ Opgen

∞ in PrR
∞. By applying the functor −⊗ Ω, we thus obtain:

Proposition 4.5.1.6. The map C 7→ Fin∗×C determines a fully faithful functor CatB ↪→ Opgen
B . □

Recall that under the straightening equivalence, symmetric monoidal ∞-categories can be identified
with commutative monoids in Cat∞. Our next goal is to derive an analogous result internally. To that
end, we let ρi : ⟨n⟩ → ⟨1⟩ be the pointed map that carries i to 1 and every other element to 0. Given
any functor C• : Fin∗ → C, ⟨n⟩ 7→ Cn with values in an arbitrary ∞-category C, we will denote by
pi : Cn → C1 the image of ρi under C•. We may now define:

Definition 4.5.1.7. A commutative monoid in a B-category C is a functor M : Fin∗ → C such that
for all n ≥ 0 the functors (pi : Mn → M1)1≤i≤n exhibit Mn as the product

∏n
i=1 M1 in C. We define

the B-category CMon(C) as the full subcategory of FunB(Fin∗,C) that is spanned by those functors
Fin∗ → π∗AC that define commutative monoids in π∗AC for all A ∈ B.

Remark 4.5.1.8. Since the condition of a morphism in a B-category to be an equivalence is local
in B, an object A→ FunB(Fin∗,C) is contained in CMon(CatB) if and only if it defines a commutative
monoid in π∗AC. In particular, one obtains a canonical equivalence π∗A CMon(C) ≃ CMon(π∗AC) for every
A ∈ B.

Remark 4.5.1.9. Evaluation at ⟨1⟩ : 1 → Fin∗ defines a forgetful functor CMon(C) → C. We will
usually abuse notation and identify a commutative monoid M with its underlying object in C. By
evaluating such a monoid M at the unique active map ⟨2⟩ → ⟨1⟩ in Fin∗, one obtains a multiplication
map µ : M ×M →M that is associative and commutative up to infinite coherent homotopies. Moreover,
evaluation at the unique pointed map ⟨0⟩ → ⟨1⟩ induces a unit e : 1C →M such that the induced maps
µ(e,−) and µ(−, e) are equivalences.

By combining Remark 4.5.1.5 with the straightening equivalence for cocartesian fibrations Theo-
rem 2.3.2.7, one now finds:

Proposition 4.5.1.10. The straightening equivalence restricts to an equivalence of large B-categories
Cat⊗B ≃ CMon(CatB). □

Remark 4.5.1.11. Upon composing the equivalence Cat⊗B ≃ CMon(CatB) from Proposition 4.5.1.10
with the forgetful functor CMon(CatB) → CatB, one recovers the functor Cat⊗B → CatB from Re-
mark 4.5.1.3. If C⊗ is a symmetric monoidal B-category, the multiplication map thus defines a bifunctor
−⊗− : C× C→ C, and the unit is an object 1⊗ : 1→ C.

A rich source for symmetric monoidal B-categories are those B-categories that admit finite products.
We will denote by CatΠ

B the subcategory of CatB that is spanned by the LConstFin-continuous functors
between LConstFin-complete B/A-categories for all A ∈ B, where Fin is the 1-category of finite sets.
By the dual of Corollary 3.2.4.6 and the fact that CatΠ

∞ is presentable [56, Lemma 4.8.4.2], we may
identify CatΠ

B ≃ CatΠ
∞⊗Ω. Now recall from [56, Corollary 2.4.1.9] that there is a fully faithful functor

(−)× : CatΠ
∞ ↪→ Cat⊗∞ that assigns to an ∞-category C with finite products the associated cartesian

monoidal ∞-category C× and that fits into a commutative diagram

CatΠ
∞ Cat⊗∞

Cat∞

(−)×
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in which the right diagonal map is the forgetful functor. Note that this diagram takes values in PrR
∞.

Upon applying the functor −⊗ Ω, we thus obtain:

Proposition 4.5.1.12. There is a fully faithful functor (−)× : CatΠ
B ↪→ Cat⊗B that carries a B-category

C to the cartesian monoidal B-category C× and that fits into a commutative diagram

CatΠ
B Cat⊗B

CatB

(−)×

of large B-categories.

Remark 4.5.1.13. Suppose that C⊗ is a symmetric monoidal B-category and that D is a full
subcategory of C such that the tensor functor −⊗− : C× C→ C restricts to a functor D× D→ D and
the unit object 1⊗ : 1→ C is contained in D. Then we can canonically equip D with the structure of a
symmetric monoidal B-category: indeed, C⊗ is determined by a functor C⊗(−,−) : Bop × Fin∗ → Cat∞
and we may consider the full subfunctor that consists for A ∈ Bop and ⟨n⟩ ∈ Fin∗ of the full subcategory
of C⊗(A, ⟨n⟩) that corresponds under the equivalence

C⊗(A, ⟨n⟩) ≃
n∏
i=1

C⊗(A, ⟨1⟩) ≃
n∏
i=1

C(A)

to the subcategory
∏n
i=1 D(A) ⊆

∏n
i=1 C(A). By our assumption on − ⊗ − this yields a well-defined

functor D⊗(−,−) : Bop × Fin∗ → Cat∞, and by [56, Remark 2.2.1.12] the functor D⊗(A,−) defines
a symmetric monoidal ∞-category for every A ∈ B. So we get a functor D⊗ : Bop → Cat⊗∞ whose
composition with the forgetful functor Cat⊗∞ → Cat∞ recovers D and which therefore defines the desired
monoidal structure on D.

4.5.2. Algebras and modules in symmetric monoidal B-categories. Recall from [56, § 2.1.3]
that a commutative algebra in a symmetric monoidal ∞-category C⊗ is a map of ∞-operads Fin∗ → C⊗,
and an associative algebra in C⊗ is a map of ∞-operads Assoc→ C⊗, where Assoc denotes the associative
operad. One obtains functors Alg : Cat⊗∞ → Cat∞ and CAlg : Cat⊗∞ → Cat∞ that assign to a symmetric
monoidal∞-category C⊗ the∞-category Alg(C) of associative algebras in C⊗ and the∞-category CAlg(C)
of commutative algebras in C⊗, respectively. Note that either of these functors defines a map in PrR

∞. In
light of Example 4.4.4.8, we may thus define:

Definition 4.5.2.1. We define the maps Alg : Cat⊗B → CatB and CAlg : Cat⊗B → CatB in PrR(B) as
the maps that arise from applying −⊗Ω to the functors Alg : Cat⊗∞ → Cat∞ and CAlg : Cat⊗∞ → Cat∞,
respectively. For a symmetric monoidal B-category, we refer to the B-category Alg(C) (CAlg(C)) as the
B-category of associative (commutative) algebras in C.

By construction, an associative/commutative algebra in C⊗ is simply an associative/commutative
algebra in the symmetric monoidal ∞-category Γ(C⊗).

Recall from [56, Proposition 2.4.2.5] that there is a commutative triangle

CatΠ
∞ Cat⊗∞

Cat∞
CMon

(−)×

CAlg

in PrR
∞. By applying −⊗ Ω to this diagram, we therefore obtain:

Proposition 4.5.2.2. Let C be a B-category with finite products. Then there is a canonical equivalence

CMon(C) ≃ CAlg(C×)

of B-categories that is natural in C. □
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Our next goal is to define B-categories of modules in a symmetric monoidal B-category. To that
end, let us briefly recall the setup from [56, § 3.3.3]: we let K be the full subcategory of Fun(∆1,Fin∗)
that is spanned by the semi-inert maps, and we denote by K0 ↪→ K the full subcategory that is spanned
by the null maps. We say that a morphism f in K or K0 is inert if both d0(f) and d1(f) are inert. By
making use of the projections d1 : K → Fin∗ and d1 : K0 → Fin∗, we may regard both K and K0 as
preoperads (with the marked edges given by the inert maps). Now the two spans Fin∗

d1←− K
d0−→ Fin∗

and Fin∗
d1←− K0 d0−→ Fin∗ (viewed as spans of marked simplicial sets) satisfy the conditions of [56,

Theorem B.4.2] and therefore determine left Quillen endofunctors − ×Fin∗ K and − ×Fin∗ K
0 on the

1-category POp∞ of preoperads with respect to the model structure for generalised ∞-operads (see in
particular [56, Proposition 3.3.3.18] for a proof of the first case, the second case follows by analogous
arguments). Passing to right adjoints thus gives rise to right Quillen endofunctors Mod(−)⊗ and pCAlg(−)
on POp∞, and the inclusion K0 ↪→ K determines a morphism Mod(−)⊗ → pCAlg(−). Similarly, the
span Fin∗ ← Fin∗×Fin∗ → Fin∗ of marked simplicial sets satisfies the conditions of [56, Theorem B.4.2]
as well and therefore gives rise to a left Quillen endofunctor whose right adjoint recovers the functor
Fin∗×CAlg(−) : POp∞ → POp∞. By [56, Remark 3.3.3.7] the map K0 → Fin∗×Fin∗ induces a
categorical equivalence Fin∗×CAlg(−)→ pCAlg(−) and therefore in particular a weak equivalence in
the model structure for generalised ∞-operads.

In total, these observations imply that upon passing to the underlying∞-categories, one ends up with
a map Mod(−)⊗ : Opgen

∞ → Opgen
∞ in PrR

∞ together with a morphism Mod(−)⊗ → Fin∗×CAlg(−), or
equivalently a map Opgen

∞ → Fun(∆1,Opgen
∞ ) in PrR

∞. By making use of the evident equivalence of large B-
categories Fun(∆1,Opgen

∞ )⊗ Ω ≃ (Opgen
B )∆1 , applying −⊗ Ω yields a functor Mod(−)⊗ : Opgen

B → Opgen
B

in PrR
B together with a morphism p : Mod(−)⊗ → Fin∗×CAlg(−) of generalised B-operads. Given

a symmetric monoidal B-category C⊗ and a commutative algebra R : 1 → CAlg(C), we will denote
by ModR(C)⊗ → Fin∗ the pullback of p along the map (id, R) : Fin∗ → Fin∗×CAlg(C). By [56,
Theorem 3.3.3.9] and Remark 4.5.1.4, the map ModR(C)⊗ → Fin∗ defines a B-operad.

Definition 4.5.2.3. Let C be a symmetric monoidal B-category and let R : 1 → CAlg(C) be a
commutative algebra in C. We define the B-category ModR(C) of modules over R as the underlying
B-category of the B-operad ModR(C)⊗.

Our next goal is to investigate the functoriality of ModR(C)⊗ in R. To that end, note that the
diagonal embedding Fin∗ ↪→ K induces a forgetful functor Mod(−)⊗ → idPOp∞ and therefore, by the
same procedure as above, a morphism Mod(−)⊗ → idOpgen

B
. It thus follows from [56, Corollary 3.4.3.4]:

Proposition 4.5.2.4. For any symmetric monoidal B-category C, the projection Mod(C)⊗ → CAlg(C)
is a cartesian fibration, and a map in Mod(C)⊗ is cartesian if and only if its image along the forgetful
functor Mod(C)⊗ → C⊗ is an equivalence. □

Corollary 4.5.2.5. For any symmetric monoidal B-category C, the projection Mod(C)→ CAlg(C)
is a cartesian fibration. □

Next we would like to establish functoriality in the opposite direction, i.e. to construct base change
functors ModR(C)⊗ → ModS(C)⊗ along any algebra map R→ S. The existence of these functors requires
the existence of geometric realisations. For the remainder of this section, we shall therefore fix an internal
class U of B-categories that contains ∆op and assume that C⊗ is a symmetric monoidal B-category such
that C is U-cocomplete and the tensor functor − ⊗ − : C × C → C is U-bilinear in the sense of § 4.6.1
below. We now obtain:

Proposition 4.5.2.6. The projection p : Mod(C)⊗ → Fin∗×CAlg(C) is a cocartesian fibration.

Proof. By using [61, Remark 3.2.7], it suffices to show that for any map α : ⟨m⟩ → ⟨n⟩ of finite
pointed sets and any map f : ∆1 ⊗A→ CAlg(C), the pair (π∗A(α), f) admits a cocartesian lift. By [56,
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Theorem 4.5.3.1], the map Mod(C(A))⊗ → Fin∗×CAlg(C(A)) is a cocartesian fibration of ∞-categories,
so we may choose a cocartesian lift h of (α, f) in Mod(C(A)). By construction, this map defines a lift of
(π∗Aα, f) in Mod(C)⊗ in context A. To show that h is cocartesian in the internal sense, it now suffices
to show that for any map s : B → A in B the map s∗(h) defines a cocartesian morphism with respect
to Mod(C(B))⊗ → Fin∗×CAlg(C(B)). According to the proof of [56, Theorem 4.5.3.1], we may find a
factorisation h ≃ h′′h′, where h′ defines a cocartesian morphism of the fibre ModR(C(A))→ Fin∗ over
some R ∈ CAlg(C(A)) and where h′′ is contained in the fibre Mod(C(A))⊗|⟨n⟩ and satisfies the following
property: for any 1 ≤ i ≤ n, there is a commutative diagram

y z

yi zi

h′′

h′′i

where the vertical maps are inert morphisms lying over ρi : ⟨n⟩ → ⟨1⟩ and h′′i is a cocartesian morphism
of Mod(C(A))→ CAlg(C(A)). Since every map that admits such a factorisation must be cocartesian, it
is enough to show that s∗(h′) is a cocartesian morphism of Mods∗R(C(B))⊗ → Fin∗ and that s∗(h′′i ) is a
cocartesian morphism of Mod(C(B))→ CAlg(C(B)). To see the first case we equivalently have to see that
the functor ModR(C(A))⊗ → Mods∗R(C(B))⊗ induced by s∗ is symmetric monoidal. This in turn follows
from the description of the symmetric monoidal structure on ModR(C(A))⊗ via the bar-construction
[56, Theorem 4.5.2.1, Propositions 4.4.3.12 and 4.4.2.8] because s∗ commutes with ∆op-indexed colimits.
Similarly, the second case follows from the fact that the cocartesian maps in Mod(C(A))→ CAlg(C(A))
are given by the relative tensor product (see e.g. [56, Lemma 4.5.3.5, Proposition 4.6.2.17 and Corollary
4.5.1.6]) and the latter is again described via the Bar-construction. □

Corollary 4.5.2.7. For every commutative algebra A in C, the B-operad ModA(C)⊗ is a symmetric
monoidal B-category, and the cocartesian fibration Mod(C)⊗ → Fin∗×CAlg(C) straightens to a functor

CAlg(C)→ CMon(CatB) ≃ Cat⊗B
that maps A to ModA(C)⊗. □

For later use we note the following observation:

Proposition 4.5.2.8. Suppose that C is a complete and cocomplete symmetric monoidal B-category
and that the tensor product −⊗− : C× C→ C is bilinear. Let R : 1→ CAlg(C) be a commutative algebra.
Then

(1) The B-category ModR(C) is complete and cocomplete.
(2) The canonical functor F : ModR(C)→ C is continuous and cocontinuous.
(3) The tensor product −⊗R − : ModR(C)×ModR(C)→ ModR(C) is bilinear.

Furthermore if C is presentably symmetric monoidal (in the sense of Definition 4.6.2.10) then so is
ModR(C).

Proof. Since by Corollary 4.5.2.5 and Proposition 4.5.2.6 the functor Mod(C)→ CAlg(C) is both
cartesian and cocartesian, the essentially unique map 1⊗ → R of algebras induces an adjunction

−⊗R : C ≃ Mod1⊗ ⇆ ModR(C) : F.

Therefore, the functor F preserves all limits that exist in ModR(C). For fixed A ∈ B the functor F (A)
is equivalent to the forgetful functor Modπ∗

A
R(C(A)) → C(A), which creates colimits by [56, Corollary

3.4.4.6]. Furthermore F (A) has a left adjoint given by −⊗ π∗AR. Since the diagram

Modπ∗
A
R(C(A)) Modπ∗

B
R(C(B))

C(A) C(B)

s∗

F (B)F (A)

s∗
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commutes for any map s : B → A in B, this shows that ModR(C) is LConst-cocomplete and F is
LConst-cocontinuous. Next we show that s∗ : Modπ∗

A
R(C(A)) → Modπ∗

B
R(C(B)) admits a left adjoint

s! that is compatible with F in the obvious way. By [56, Remark 4.7.3.15] we may find a functor
G : Modπ∗

B
R(C(B))→ Fun(∆op,C(B)) such that the composite

Modπ∗
B
R(C(B)) G−→ Fun(∆op,C(B)) −⊗π

∗
BR−−−−−→ Fun(∆op,Modπ∗

B
R(C(B))) colim−−−→ Modπ∗

B
R(C(B))

is equivalent to the identity. Note that since C is cocomplete, the functor s∗ : C(A)→ C(B) admits a left
adjoint s!. Therefore, the composition

Modπ∗
B
R(C(B)) G−→ Fun(∆op,C(B)) ((−⊗π∗AR)◦s!)∗−−−−−−−−−−→ Fun(∆op,Modπ∗

A
R(C(A))) colim−−−→ Modπ∗

A
R(C(A))

defines a left adjoint of the transition functor s∗. Next, we claim that the canonical natural transformation
α : s!F (B)→ F (A)s! is an equivalence. Since all functors commute with colimits it suffices to check this
for objects of the form M ⊗π∗BR for some M ∈ C(B). In this case α identifies with the projection formula
transformation

s!(M ⊗ π∗BR)→ s!M ⊗ π∗AR
which is an equivalence since the tensor products commutes with Ω-indexed colimits in the first variable.
It follows that for any pullback square

Q P

B A

t

pq

s

in B the canonical transformation q!t
∗ → s∗p! is an equivalence since we may check this after composing

with the forgetful functor F (B) and since C is cocomplete. Thus we have shown that ModR(C) is
cocomplete and that the forgetful functor F is cocontinuous. Furthermore, we note that the functor
s∗ : Modπ∗

A
R(C(A))→ Modπ∗

B
R(C(B)) admits a right adjoint given by the composite

Modπ∗
B
R(C(B)) s∗−→ Mods∗π∗BR(C(A))→ Modπ∗

A
R(C(A))

where the second functor is given restriction of scalars along π∗AR → s∗s
∗π∗AR = s∗π

∗
BR. Since s∗ is

compatible with the forgetful functor F , the same argument as above shows that ModR(C) is Ω-complete
and therefore complete. Thus we have shown (1) and (2).

We will now show (3). It follows from [56, Corollary 3.4.4.6] that for some fixed M ∈ ModR(C) in
context A, the functor −⊗RM is LConst-cocontinuous, so it suffices to show that it is also Ω-cocontinuous.
For this we have to see that for any s : C → B in B/A the canonical map

s!(N)⊗π∗
B
R π
∗
BM → s!(N ⊗π∗

C
R π
∗
CM)

is an equivalence, by Proposition 3.2.4.2. Again using that the relative tensor product is the colimit of
the bar construction, it follows that we only have to see that the canonical map

s!(N)⊗ (π∗BR)⊗nπ∗BM → s!(N ⊗ (π∗CR)⊗nπ∗CM)

is an equivalence for all n This follows because π∗B is symmetric monoidal and the projection formula
holds for C .

Finally, if C is presentably symmetric monoidal then ModR(C) is section-wise presentable by [56,
Theorem 3.4.4.2] and therefore presentably symmetric monoidal by what we have seen above. □

4.5.3. Stable B-categories. In this section we will define and study a few basic properties of stable
B-categories. All definitions and results are straightforward adaptions of [56, §1.4.2].

Definition 4.5.3.1. A B-category C is called pointed if there is an object 0C : 1→ C which is both
initial and final in C.

Remark 4.5.3.2. It follows from Example 3.1.1.14 that C is pointed if and only if the associated
functor C : Bop → Cat∞ factors through the subcategory Cat∞,∗ of pointed ∞-categories.
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Definition 4.5.3.3. A pointed B-category C is called stable if it is finitely complete and cocomplete
and a square ∆1 ×∆1 → π∗AC in any context A ∈ B is a pushout square if and only if it is a pullback
square. A functor between stable B-categories is said to be exact if it preserves finite colimits. We define
the large B-category Catex

B of stable B-categories as the subcategory of CatB that is spanned by the exact
functors between stable B/A-categories, for every A ∈ B.

Remark 4.5.3.4. Since existence and preservation of (co)limits are both local properties (see
Remark 3.2.2.3) and since the collection of exact functors of stable B/A-categories is closed under
composition and equivalences in the sense of Proposition 2.2.2.9, it follows as in Remark 3.2.3.2 that a
functor f : C→ D of B/A-categories is contained in Catex

B (A) if and only if it is an exact functor between
stable B/A-categories. In particular, one obtains a canonical equivalence π∗A Catex

B ≃ Catex
B/A

for every
A ∈ B.

Remark 4.5.3.5. It follows from Proposition 4.2.3.5 and Example 3.1.1.14 that a B-category C is
stable if and only of the associated sheaf C : Bop → Cat∞ factors through the subcategory Catex

∞ ↪→ Cat∞
spanned by the stable∞-categories and exact functors. Consequently, we obtain a canonical identification
Catex

B ≃ Catex
∞⊗Ω.

Following the terminology of [56], we write Sfin
∗ for the ∞-category of pointed finite ∞-groupoids.

Definition 4.5.3.6. Let C be a B-category with finite limits. We let Sp(C) be the full subcategory
of FunB(Sfin

∗ ,C) spanned by those functors Sfin
∗ → π∗AC in context A ∈ B that preserve the final object

and send pushout squares to pullbacks. We denote by Ω∞ : Sp(C)→ C the functor that is obtained by
evaluation at S0 ∈ Sfin

∗ .

Remark 4.5.3.7. Let d : ∆1 ×∆1 → π∗AS
fin
∗ be a square in the constant B-category Sfin

∗ in context
A ∈ B. Since ∆1 ×∆1 is a finite B-category we may find a cover s : B ↠ A such that s∗f is given by
a square in the ∞-category Sfin

∗ , cf. Appendix 7.3.3. Since being a pullback square is a local condition,
this implies that a functor f : Sfin

∗ → C is contained in Sp(C) if and only if for every A ∈ B, the functor
Sfin → C(A) that corresponds to π∗Af preserves finite limits.

Proposition 4.5.3.8. The inclusion functor Catex
B → Catlex

B from stable B-categories to B-categories
with finite limits admits a right adjoint Sp : Catlex

B → Catex
B , that sends a B-category C to Sp(C).

Proof. By [56, Corollary 1.4.2.23] we have an adjunction

(i ⊣ Sp): Catex
∞ ⇆ Catlex

∞ ,

hence Sp defines a morphism in PrR
∞. By applying − ⊗ Ω, we thus obtain the desired adjunction of

B-categories Catex
B ⇆ Catlex

B . Now Remark 4.5.3.7 implies that if C is a stable B-category, the composition
Bop C−→ Catlex

∞
Sp−→ Catex

∞ is precisely Sp(C). □

Definition 4.5.3.9. We call Sp(Ω) the B-category of B-spectra.

Lemma 4.5.3.10. Suppose that C is a presentable B-category. Then Sp(C) is also presentable and the
functor Ω∞ : Sp(C)→ C admits a left adjoint.

Proof. Since Sp(C) is given by the composite Bop → PrL
∞

Sp−→ PrL
∞, the first claim is clear as the

functor Sp = Exc∗(Sfin
∗ ,−) is compatible with the mate construction. For the second claim we observe

that for any A ∈ B, the functor Ω∞(A) may be identified with Ω∞ : Sp(C(A)) → C(A). Since the
compatibility with étale base change is clear, it follows from Corollary 3.2.4.7 that Ω∞ is continuous.
Also Ω∞(A) is accessible since it admits a left adjoint [56, Proposition 1.4.4.4]. Thus the claim follows
from Proposition 4.4.3.3. □

Proposition 4.5.3.11. The functor Ω∞ : Sp(Ω)→ Ω commutes with filtered colimits.
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Proof. By construction Ω∞ is given as the composition

Sp(Ω) ↪→ FunB(Sfin
∗ ,Ω)

evS0−−−→ Ω

and therefore it suffices to see that the inclusion Sp(Ω) ↪→ FunB(Sfin
∗ ,Ω) commutes with filtered colimits.

By a similar argument as in the proof of Lemma 4.1.5.3, this follows from the fact that filtered colimits
in Ω commute with finite limits. □

Remark 4.5.3.12. By construction, there is a canonical equivalence Sp(Ω) ≃ Sp⊗Ω. Since the
functor −⊗Ω is symmetric monoidal (see the discussion before Proposition 4.6.3.7), it follows that Sp(Ω)
canonically admits the structure Sp(Ω)⊗ of a presentably symmetric monoidal B-category.

Definition 4.5.3.13. A commutative B-ring spectrum is a commutative algebra in Sp(Ω)⊗. We
denote the unit object of Sp(Ω) by S and call it the B-sphere spectrum. If R is a commutative B-ring
spectrum we denote the B-category of modules over R by ModB

R . We will write ModB
R for the ∞-category

of global sections of ModB
R .

Remark 4.5.3.14. Since Sp(Ω) is a presentably symmetric monoidal B-category, it receives a unique
symmetric monoidal left adjoint functor Ω → Sp(Ω), see Remark 4.6.2.6. By uniqueness, this functor
automatically agrees with the functor that is given by applying − ⊗ Ω to the symmetric monoidal
functor Σ∞+ : S → Sp. It follows that the right adjoint of Σ∞+ ⊗ Ω is explicitly given by the map
ShB/−(Sp)→ ShB/−(S) determined by precomposing with (Σ∞+ )op. Since we have a commutative square

ShB/−(Sp) ShB/−(S)

Sp(B/−) B/−

≃≃

Ω∞

it follows that Σ∞+ ⊗Ω is a left adjoint of Ω∞ : Sp(Ω)→ Ω. In particular Ω∞ is the left adjoint of the unique
colimit preserving functor Ω→ Sp(Ω) and thus there is a natural equivalence Ω∞ ≃ mapSp(Ω)(S,−).

Remark 4.5.3.15. In [71], Denis Nardin develops a notion of stability in parametrised higher category
theory, and he shows that if G is a finite group, the G-parametrised stabilisation of G-spaces recovers
genuine G-spectra. However, Nardin’s definition of stability is fundamentally different from ours: the
key difference is that the class of parametrised ∞-category that he declares finite is much larger than
ours. Consequently, the notion of finite limits and colimits are much more complicated than the finite
limits and colimits we consider here, and as a result the associated notions of stability differ significantly.
In particular, it is not possible to obtain genuine G-spectra by making use of our internal stabilisation
procedure, which rather recovers naive G-spectra.

4.5.4. Application: dualisable objects in module B-categories. If R is an E∞-ring, let us
denote by Sh(B;R) = B⊗ModR the ∞-category of sheaves of R-modules on B. In many geometrically
interesting situations, the ∞-category Sh(B;R) is quite far from being compactly generated. For example,
if M is a non-compact connected manifold of dimension at least 1, the only compact object in Sh(M ;Z)
is the zero object by [72, Theorem 0.1]. In this section we will see that one may fix this issue by working
internally to the ∞-topos B itself: the B-category ModB

R (whose underlying ∞-category is Sh(B;R))
is always internally compactly generated (see Theorem 4.5.4.8). Furthermore, the internally compact
objects can be completely characterised in terms of the symmetric monoidal structure on ModB

R , namely
as the dualisable objects. In particular, this provides a classification result for the dualisable objects in
Sh(B;R) (see Corollary 4.5.4.12).

Definition 4.5.4.1. If C is a B-category that admits filtered colimits (i.e. is FiltFinB
-cocomplete),

let us write Ccpt for the full subcategory of FinB-compact objects. We will also simply refer to these
as internally compact objects. We say that a cocomplete B-category C is compactly generated if the
canonical map IndB(Ccpt)→ C is an equivalence.
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Remark 4.5.4.2. An internally compact object d : 1→ C does not necessarily yield a compact object
in the ∞-category C(1). For example, the final object 1Ω : 1→ Ω is always internally compact, but in
general 1 ∈ B is not compact. Since the mapping ∞-groupoid functor mapC(1)(d,−) : C(1)→ S is given
by composing Γ(mapC(d,−)) : C(1)→ B with the global sections functor Γ ≃ mapB(1,−), we see that
internal compactness implies compactness (for any B-category C) if and only if 1 ∈ B is compact.

Definition 4.5.4.3. An object c in context A of a symmetric monoidal B-category C is called
dualisable if it is dualisable in the symmetric monoidal ∞-category C(A). In other words, c is dualisable if
there is an object c∨ : A→ C together with maps η : π∗A(1⊗)→ c∨ ⊗ c and ε : c∨ ⊗ c→ π∗A(1⊗) such that
(c∨ ⊗ ϵ) ◦ (η ⊗ c∨) ≃ id and (c⊗ η) ◦ (ϵ⊗ c) ≃ id. We denote the full subcategory of C that is spanned by
the dualisable objects by Cdual.

Remark 4.5.4.4. It follows from [56, Proposition 4.6.1.11] that an object c ∈ C(A) is contained in
Cdual(A) if and only if it is dualisable.

A first easy consequence of the definitions is the following:

Lemma 4.5.4.5. Let C be a symmetric monoidal B-category and let c : 1→ C be a dualisable object.
Then the functor −⊗ c∨ : C→ C is a right adjoint of the functor −⊗ c. □

Suppose now that R is an E∞-ring object in B. Since ModB
R is a presentably symmetric monoidal

B-category by Proposition 4.5.2.8, for every object x : 1→ ModB
R the functor −⊗x admits a right adjoint

HomR(x,−) : ModB
R → ModB

R .

Also, recall from Corollary 4.5.2.5 and Proposition 4.5.2.6 that the forgetful functor F : ModB
R → ModB

S ≃
Sp(Ω) has a symmetric monoidal left adjoint − ⊗ R : Sp(Ω) → ModB

R . We may therefore consider the
composite

G : ModB
R

Hom
R

(x,−)
−−−−−−−→ ModB

R
F−→ Sp(Ω) Ω∞−−→ Ω.

We claim that G is equivalent to the functor mapModB
R

(x,−). Indeed we have a chain of natural equivalences

G ≃ mapΩ(1Ω, G(−)) ≃ mapModB
R

(R,HomR(x,−)) ≃ mapModB
R

(R⊗ x,−) ≃ mapModB
R

(x,−).

Now if x is furthermore dualisable, the functor HomR(x,−) is of the form − ⊗ x and therefore in
particular cocontinuous. Since both F and Ω∞ are FiltFinB

-cocontinuous by Propositions 4.5.2.8 and
4.5.3.11, we have shown:

Lemma 4.5.4.6. Let x : 1→ ModB
R be dualisable. Then x is internally compact. □

Definition 4.5.4.7. We define the B-category PerfBR to be the smallest full subcategory of ModB
R

that is closed under finite colimits, retracts and contains the monoidal unit R. We call the objects in
PerfBR perfect objects.

We now obtain:

Theorem 4.5.4.8. The B-category ModB
R is compactly generated, and the following full subcategories

of ModB
R are equivalent :

(1) The full subcategory ModB,dual
R spanned by the dualisable objects.

(2) The full subcategory ModB,cpt
R spanned by the internally compact objects.

(3) The full subcategory PerfBR spanned by the perfect objects.

Proof. In light of Remarks 4.1.5.2 and 4.5.4.4, Lemma 4.5.4.6 implies that we have an inclusion
ModB,dual

R ↪→ ModB,cpt
R . Furthermore, dualisable objects form a stable full subcategory that is closed under

retracts, so that PerfBR ↪→ ModB,dual
R is clear. It remains to see that every compact object is perfect. On

account of the inclusion PerfBR ↪→ ModB,cpt
R , we deduce from Proposition 3.4.2.4 and Corollary 4.4.6.6 that

the inclusion PerfBR ↪→ ModB
R extends to a fully faithful cocontinuous functor i : IndB(PerfBR) ↪→ ModB

R .
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If we can show that i is an equivalence we are done by Proposition 4.3.3.1. Since ModB
R is cocomplete,

we may now apply the adjoint functor theorem (Proposition 4.4.3.1) to deduce the existence of a right
adjoint r of i. We complete the proof by showing that the counit ε : ir → id is an equivalence. For this
we pick an object X ∈ ModB

R(A) and consider the fibre sequence

fib(ε)→ irX
ε−→ X

in ModB
R(A). We need to show that fib(ε) ≃ 0. For every n, we obtain a fibre sequence

mapModB
R

(Σn(π∗AR),fib(ε))→ mapModB
R

(Σn(π∗AR), irX) ε∗−→ mapModB
R

(Σn(π∗AR), X)

in B/A. As Σnπ∗AR is in the essential image of i, the map ε∗ is an equivalence. Therefore, we conclude
that we have equivalences

1 ≃ mapModB
R

(Σn(π∗AR),fib(ε)) ≃ mapModB
R

(π∗AR,Ωn fib(ε)) ≃ Ω∞Ωn fib(ε)

for any n. Thus fib(ε) ≃ 0, which shows that ε is an equivalence, as desired. □

Remark 4.5.4.9. Let B0 be a 1-topos and R a ring object in B0. Let us denote the hypercomplete
∞-topos associated to B0 by B. Then by [58, Theorem 2.1.2.2] there is an equivalence of ∞-categories

D(Sh(B0;R))) ≃ ModB
R

where we consider R as a discrete ring object in B. Furthermore one can check that the induced symmetric
monoidal structure on the homotopy category of D(Sh(B0;R)) is indeed the usual one. With these
identifications in mind, the result that an object in ModB

R is dualisable if and only if it is perfect appears
as [Stacks, Tag 0FPV].

Example 4.5.4.10. Let X be a (spectral/derived) scheme and consider the Zariski-topos XZar of
X. The structure sheaf OX of X is a sheaf of (E∞-)rings on X and thus gives rise to an object in
CAlg(Sh(XZar,Sp)). Thus we may consider the XZar-category ModXZar

OX
. By Theorem 4.5.4.8 an object

F ∈ ModXZar
OX

(∗) = Mod(OX) is internally compact if and only if it is perfect, i.e. if and only if there
is an open covering X =

⋃
i Ui by affines such that F|Ui

is contained in the smallest stable idempotent
complete subcategory containing (OX)|Ui

= OUi
. Thus the full subcategory of ModOX

spanned by the
internally compact objects is equivalent to the usual category of perfect complexes on X.

Remark 4.5.4.11. Let R be an E∞-ring. The stable constant sheaf functor const : Sp→ ShSp(B)
is symmetric monoidal, therefore R := constR defines a commutative B-ring spectrum. Let us denote
the ∞-category of sheaves of R-modules by Sh(B;R) Then by [56, Theorem 4.8.4.6] there is a canonical
equivalence of symmetric monoidal ∞-categories Sh(B;R) ≃ ModR(ShSp(B)) = ModB

R .

Combining Theorem 4.5.4.8 with Corollary A.4 we arrive at the following classification result for
dualisable objects:

Corollary 4.5.4.12. Let R be an E∞-ring. Then an object in Sh(B;R) is dualisable if and only if
it is locally constant with perfect values. □

Remark 4.5.4.13. In the case of étale hypersheaves on a scheme X and where R is a discrete ring,
the above corollary already appears in [18, Remark 6.3.27] and for pro-étale sheaves on X this is shown
in [41, Corollary 3.4.3]. The proofs in both references rely on features of the specific geometric situation,
more specifically on the existence of enough points and w-contractible objects, respectively. Having a
sufficient amount of machinery from internal higher category theory at our disposal, we can recover these
observations with a now completely formal proof.

https://stacks.math.columbia.edu/tag/0FPV
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4.6. The tensor product of presentable B-categories

In [56], Lurie establishes a symmetric monoidal structure on the ∞-category of K-cocomplete ∞-
categories with K-cocontinuous functors, for any class K of ∞-categories. In particular, his construction
gives rise to a symmetric monoidal structure on the ∞-category PrL

∞ of presentable ∞-categories. In this
section, our goal is to obtain an internal analogue of these results, i.e. to construct a symmetric monoidal
structure on the large B-category CatU -cc

B of U-cocomplete B-categories and U-cocontinuous functors, for
any choice of internal class U. Our construction will be entirely analogous to the one in [56]: we will
define the desired symmetric monoidal B-category CatU -cc,⊗

B → Fin∗ as the subcategory of the cartesian
monoidal B-category Cat×B → Fin∗ that is spanned by what we call U-multilinear functors. We define
and study this concept in § 4.6.1, before we go on and discuss the symmetric monoidal structure on
CatU -cc

B in § 4.6.2. In particular, our construction will yield a symmetric monoidal structure on the large
B-category PrL

B. In § 4.6.3, we make use of this structure to identify B-modules as a full subcategory of
the ∞-category PrL(B) of presentable B-categories.

4.6.1. Bilinear functors. Recall that a bilinear functor of cocomplete ∞-categories C×D→ E is
a functor that preserves small colimits separately in each variable. We will now introduce this notion in
the internal setting. It will be useful to consider functors that only preserve certain (internal) classes of
colimits in each variable, so that we arrive at the following general definition:

Definition 4.6.1.1. Let U and V be two internal classes of B-categories. Suppose that C,D and E
are B-categories such that C is U-cocomplete, D is V-cocomplete and E is U ∪ V-cocomplete. We will
say that a functor f : C× D→ E is (U,V)-bilinear if for any A ∈ B and any two objects c : A→ C and
d : A→ D the functor

f(c,−) : π∗AD c×id−−−→ π∗AC× π∗AD π∗Af−−−→ π∗AE

is π∗AV-cocontinuous and the functor

f(−, d) : π∗AC id×d−−−→ π∗AC× π∗AD π∗Af−−−→ π∗AE

is π∗AU-cocontinuous. We write Fun(U,V)
B (C× D,E) for the full subcategory spanned by the (π∗AU, π∗AV)-

bilinear functors for every A ∈ B. If U = V = CatB (and C,D and E are large), we will simply say that f
is bilinear and write Funbil

B (C× D,E) for the associated B-category of bilinear functors.

Remark 4.6.1.2. In the situation of Definition 4.6.1.1, the fact that U- and V-cocontinuity are
local conditions by Remark 3.2.2.3, implies that for any cover

⊔
iAi ↠ 1 in B, a functor f is (U,V)-

bilinear if and only if for each i the functor π∗Ai
f is (π∗Ai

U, π∗Ai
V)-bilinear. In particular, an object

A → FunB(C × D,E) in context A ∈ B is contained in FunB(C × D,E)(U,V) if and only if it defines a
(π∗AU, π∗AV)-bilinear functor, and there consequently is a canonical equivalence

π∗AFun(U,V)
B (C× D,E) ≃ Fun(π∗AU,π∗AV)

B/A
(π∗AC× π∗AD, π∗AE)

of B/A-categories.

Lemma 4.6.1.3. Let U and V be two internal classes and let C,D and E be B-categories such that
C is U-cocomplete, D is V-cocomplete and E is U ∪ V-cocomplete. Then FunV -cc

B (D,E) ⊆ FunB(D,E) is
closed under U-colimits, FunU -cc

B (C,E) is closed under V-colimits, and there are natural equivalences

Fun(U,V)
B (C× D,E) ≃ FunU -cc

B (C,FunV -cc
B (D,E)) ≃ FunV -cc

B (D,FunU -cc
B (C,E)).

Proof. By symmetry, it is enough to show that FunV -cc
B (D,E) is closed under U-colimits and to

construct the first of the two equivalences. To begin with, we claim that a functor f : C×D→ E is (U,V)-
bilinear if and only if its transpose f ′ : C→ FunB(D,E) is U-cocontinuous and takes values in FunV -cc

B (D,E).
To see this, note that for any A ∈ B and any object c : A → C, the functor f ′(c) : π∗AD → π∗AE is by
definition given by f(c,−), which in turn implies that f(c,−) is V-cocontinuous if and only if f ′ factors
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through the full subcategory FunV -cc
B (C,E). Moreover, given any object d : A→ D in context A ∈ B, note

that the functor f(−, d) is given by the composite

π∗AC π∗Af
′

−−−→ π∗AFunB(D,E) ≃ FunB/A
(π∗AD, π∗AE) d∗−→ π∗AE.

Therefore, Proposition 3.1.3.2 implies that f ′ is U-cocontinuous if and only if f(−, d) is U-cocontinuous
for all d : A→ D and all A ∈ B. Hence the claim follows. In light of Remarks 4.6.1.2 and 3.2.3.2, this
already implies that the equivalence FunB(C× D,E) ≃ FunB(C,FunB(D,E)) induces a pullback square

Fun(U,V)
B (C× D,E) FunU -cc

B (C,FunB(D,E))

FunB(C,FunV -cc
B (D,E)) FunB(C× D,E).

To complete the proof, it is now enough to show that FunV -cc
B (D,E) is closed under U-colimits. In light of

Remark 3.2.3.2, this follows once we show that for any I ∈ U(1) the colimit functor

colim
I

: FunB(I,FunB(D,E))→ FunB(D,E)

restricts to a functor FunB(I,FunV -cc
B (D,E)) → FunV -cc

B (D,E). As colimI is cocontinuous, we get a
commutative diagram

FunV -cc
B (D,FunB(I,E)) FunB(D,FunB(I,E))

FunV -cc
B (D,E) FunB(D,E).

(colimI)∗ (colimI)∗

By what we have already shown above, the equivalence FunB(I,FunB(D,E)) ≃ FunB(D,FunB(I,E)) restricts
to an equivalence FunB(I,FunV -cc

B (D,E)) ≃ FunV -cc
B (D,FunB(I,E)). Hence the previous diagram shows

that the colimit functor colimI restricts as desired. □

We will now generalise the above situation to so-called multilinear functors. For the sake of simplicity,
we will only do this in the case of one fixed internal class.

Definition 4.6.1.4. Let U be an internal class of B-categories and suppose that C1, . . . ,Cn,E are
U-cocomplete B-categories. A functor f : C1 × .... × Cn → E is said to be U-multilinear if for every
i = 1, . . . , n and all objects cj : Aj → Cj in context A ∈ B for i ̸= j the functor

π∗ACi
(c1,...,id,...,cn)−−−−−−−−−→

n∏
k=1

π∗ACk
f−→ π∗AD

is π∗AU-cocontinuous. We will write FunU -mult
B (

∏n
k=1 Ck,E) for the full subcategory spanned by the

π∗AU-multilinear functors for all A ∈ B.

Remark 4.6.1.5. By a similar argument as in Remark 4.6.1.2, the condition of a functor as in
Definition 4.6.1.4 to be U-multilinear is local in B, which implies that there is a canonical equivalence
π∗AFunU -mult

B (
∏n
k=1 Ck,E) ≃ Funπ

∗
AU -mult

B/A
(
∏n
k=1 π

∗
ACk, π∗AE) for each A ∈ B.

Remark 4.6.1.6. In the situation of Definition 4.6.1.4 we can construct the universal U-multilinear
functor using Proposition 4.4.5.3. Namely, we may consider the collection of cocones □nk=1Rk from
Construction 4.4.5.5 with respect to the internal class U. Then by construction a functor

∏n
k=1 Ck → E

is U-multilinear if and only if it is contained in the full subcategory FunB(
∏n
k=1 Ci,E)□n

k=1Rk
. By

Proposition 4.4.5.3, we thus have a canonical functor j :
∏n
k=1 Ci → PSh(U,□n

k=1Rk)
B (

∏n
k=1 Ci) that induces

an equivalence

j∗ : FunU -cc
B (PSh(U,□n

k=1Rk)
B (

n∏
i=1

Ci),E) ≃−→ FunU -mult
B (

n∏
k=1

Ck,E).
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4.6.2. The tensor product of U-cocomplete B-categories. The goal of this section is to extend
the results from [56, § 4.8.1] to the setting of B-categories. Namely, we will construct a symmetric
monoidal structure CatU -cc,⊗

B on the large B-category CatU -cc
B of U-cocomplete B-categories. For this we

will roughly follow the arguments in [56].
Recall that the (large) B-category CatB is complete. By Proposition 4.5.1.12, we therefore obtain a

symmetric monoidal structure p : Cat×B → Fin∗ on CatB. By construction, the pullback of p(A) along the
adjunction unit Fin∗ → ΓB/A

Fin∗ yields the cocartesian fibration classifying the symmetric monoidal
∞-category Cat(B/A)×.

Construction 4.6.2.1. We define a subcategory CatU -cc,⊗
B of Cat×B as follows: Let f : x → y be

a morphism in Cat×B in context A ∈ B, and assume that p(f) is contained in the image of the functor
constB/A

and thus given by a map α : ⟨n⟩ → ⟨m⟩ in the 1-category Fin∗. We now obtain equivalences
x ≃ (C1, . . . ,Cn) and y ≃ (D1, . . . ,Dm) where the Ci and Dj are B/A-categories, and the map f is
determined by a collection of maps fj :

∏
i∈α−1(j) Ci → Dj for j = 1, . . . ,m. We shall say that f is

U-multilinear if the Ci and Dj are π∗AU-cocomplete and the functors fj are π∗AU-multilinear. Finally, we
say that an arbitrary map g : x→ y in Cat×B in context A ∈ B is locally U-multilinear if there is a cover
(si) :

⊔
iAi ↠ A such that s∗i (g) is U-multilinear for each i. We let CatU -cc,⊗

B be the subcategory of Cat×B
that is spanned by the locally U-multilinear maps.

Remark 4.6.2.2. Since every map in the constant B-category Fin∗ is locally of the form α : ⟨n⟩ → ⟨m⟩
(i.e. is locally contained in the image of the constant sheaf functor Proposition A.2), for every map
g : x→ y in Cat×B in context A ∈ B there is a cover (si) :

⊔
Ai ↠ A in B such that p(s∗i g) is given by a

map α : ⟨n⟩ → ⟨m⟩ of pointed finite sets. As moreover the condition that a functor is π∗AU-multilinear is
local in B (see Remark 4.6.1.5), one finds that g is locally U-multilinear if and only if s∗i (g) is U-multilinear.

Lemma 4.6.2.3. The inclusion (CatU -cc,⊗
B )1 ↪→ (Cat×B)1 identifies (CatU -cc,⊗

B )1 with the subobject of
(Cat×B)1 that is spanned by the locally U-multilinear maps.

Proof. We first show that U-multilinear maps are closed under composition. To that end, suppose
that f : x→ y and f ′ : y → z are U-multilinear maps in context A ∈ B, and consider the commutative
diagram

x y z

x′ z′

y′

f f ′

hy
gy

h′y g′y

hz
gz

in which hy, h′y and hz are cocartesian and the maps gy, g′y and gz are sent to identity maps in Fin∗.
Then f ′f being U-multilinear precisely means that gzg′y is determined by a tuple of π∗AU-multilinear
functors between π∗AU-cocomplete B/A-categories. Unwinding the definitions, this follows immediately
from the observation that π∗AU-multilinear functors compose in the expected way. Together with the
fact that equivalences between π∗AU-cocomplete B-categories are automatically π∗AU-cocontinuous, this
already implies that the subobject of (Cat×B)1 that is spanned by the locally U-multilinear maps is closed
under composition and equivalences in the sense of Proposition 2.2.2.9, hence the very same proposition
proves the claim. □

To proceed, recall that the three maps id0, 0 < 1 and id1 of the poset ∆1 give rise to a decomposition
∆1

1 ≃ 1 ⊔ 1 ⊔ 1, both when viewing ∆1 as an ∞-category and as a constant B-category. Therefore, if C is
an arbitrary B-category, we obtain an induced decomposition (∆1 ⊗ C)1 ≃ C1 ⊔ C1 ⊔ C1. By applying
this observation to the case where C = Cat×B, we may thus define a subcategory M⊗U ↪→ ∆1 ⊗ Cat×B via
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the subobject of morphisms

(Cat×B)1 ⊔ (Cat×B)1|(CatU -cc,⊗
B

)0
⊔ (CatU -cc,⊗

B )1 ↪→ ∆1 ⊗ (Cat×B)1

where the middle summand denotes the pullback of d0 : (Cat×B)1 → (Cat×B)0 along the inclusion of the
subobject (CatU -cc,⊗

B )0 ↪→ (Cat×B)0. Evidently, this subobject is closed under composition and equivalences
in the sense of Proposition 2.2.2.9, hence the inclusion (M⊗U )1 ↪→ ∆1⊗ (Cat×B)1 gives rise to an equivalence

(M⊗U )1 ≃ (Cat×B)1 ⊔ (Cat×B)1|(CatU -cc,⊗
B

)0
⊔ (CatU -cc,⊗

B )1.

By construction, the pullback of the composition q : M⊗U ↪→ ∆1 ⊗ Cat×B → ∆1 × Fin∗ along the inclusion
d1 : Fin∗ ↪→ ∆1 × Fin∗ recovers the cocartesian fibration p : Cat×B → Fin∗, and the pullback of q along
d0 : Fin∗ ↪→ ∆1 × Fin∗ recovers the restriction of p to the subcategory CatU -cc,⊗

B . We now obtain:

Proposition 4.6.2.4. The composition q : M⊗U ↪→ ∆1 ⊗ Cat×B → ∆1 × Fin∗ is a cocartesian fibration.

Proof. Let us begin by fixing maps α : ⟨n⟩ → ⟨m⟩ in the 1-category Fin∗ and ϵ ≤ δ in the poset
∆1, and let x : A→ M⊗U |(ϵ,⟨n⟩) be an arbitrary object in context A ∈ B. Let us write V0 = and V1 = U.
By construction of M⊗U , the object x corresponds to a tuple (π∗Aϵ,C1, . . . ,Cn) where C1, . . . ,Cn are
π∗AVϵ-cocomplete B/A-categories. Let f : x→ y be a cocartesian lift of α in Cat×B. For each j = 1, . . . ,m,
the construction in § 4.4.5 now allows us to define a map

gj :
∏

i∈α−1(j)

Ci → Dj = PSh(Vδ,□iRi)
B (

∏
i∈α−1(j)

Ci),

and by setting z = (δ,D1, . . . ,Dm), precomposing the tuple g = (ϵ ≤ δ, g1, . . . , gm) with (idϵ, f) defines a
lift of (ϵ ≤ δ, α) in M⊗U . By Remark 4.6.1.6, precomposition with each gj induces an equivalence

g∗j : Funπ
∗
AVϵ -mult

B/A
(
∏
i

Ci,E) ≃ Funπ
∗
AVδ -cc

B/A
(Dk,E)

for every π∗AVδ-cocomplete B/A-category E. By construction of M⊗U and Lemma 4.6.2.3, the underlying
core B/A-groupoids of both domain and codomain of g∗j recover the mapping B/A-groupoids in the
pullback of q along the map id×⟨1⟩ : ∆1 → ∆1 × Fin∗. As A ∈ B was chosen arbitrarily and in light of
Remark 4.4.5.2, this shows that the functor M⊗U ×∆1×Fin∗ ∆1 → ∆1 that is obtained as the pullback of
q along (ϵ ≤ δ, α) : ∆1 → ∆1 × Fin∗ must be a cocartesian fibration (see [61, Lemma 6.5.2]). As every
map in the constant B-category ∆1 × Fin∗ is locally contained in the image of the constant sheaf functor
(see Proposition A.2), the pullback of q along any map ∆1 → ∆1 × Fin∗ in Cat(B) is a cocartesian
fibration after passing to a suitable cover

⊔
iA↠ 1 in B and must therefore be a cocartesian fibration

itself, using that Cocart∆1 is a sheaf by Theorem 2.3.2.7. In particular, q(A) is a locally cocartesian
fibration of ∞-categories for every A ∈ B, and since it follows from Proposition 4.4.5.6 that the locally
cocartesian maps are closed under composition, we conclude that q(A) is a cocartesian fibration. Since
cocompletions with relations are compatible with étale base change (Remark 4.4.5.2), the transition
functors s∗ : M⊗U (A)→ M⊗U (B) preserve cocartesian morphisms, so that q is a cocartesian fibration, as
claimed. □

Corollary 4.6.2.5. The functor CatU -cc,⊗
B → Fin∗ is a cocartesian fibration that gives rise to a

symmetric monoidal structure on the B-category CatU -cc
B .

Proof. Since the map CatU -cc,⊗
B → Fin∗ is a pullback of the functor q from Proposition 4.6.2.4, the

same proposition immediately implies the first claim. Moreover, the straightforward observation that for
every n ≥ 0 the equivalence

(Cat×B)n ≃
n∏
i=1

(Cat×B)1

restricts to an equivalence

(CatU -cc,⊗
B )n ≃

n∏
i=1

(CatU -cc,⊗
B )1
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shows the second claim. □

Remark 4.6.2.6. By unstraightening the cocartesian fibration q from Proposition 4.6.2.4 we get a
functor ∆1 → CMon(CatB) and therefore a morphism of symmetric monoidal B-categories L : Cat×B →
CatU -cc,⊗

B . Note that the pullback ∆1 ×∆1×Fin∗ M⊗U → ∆1 of q along id×⟨1⟩ : ∆1 → ∆1 × Fin∗ is
also a cartesian fibration: in fact, by making use of [61, Proposition 6.5.1] this follows from the
straightforward observation that the adjunction (d1 ⊣ s0) : ∆1 ⊗ CatB ⇆ CatB restricts to an adjunction
∆1 ×∆1×Fin∗ M⊗U ⇆ CatB. By [61, Corollary 6.5.5], this means that L is the left adjoint of the inclusion
CatU -cc

B ↪→ CatB as provided by Corollary 3.4.1.15. In particular we see that the B-category underlying
the tensor unit of CatU -cc,⊗

B is equivalent to the free U-cocompletion of the point PShU
B(1).

Remark 4.6.2.7. By a similar argument as in Remark 4.6.2.6, the projection M⊗U → ∆1 is both
cartesian and cocartesian. Therefore, one also obtains an adjunction (L ⊣ i) : CatU,⊗ -cc

B ⇆ Cat×B in which
i is simply the inclusion. Since the projection M⊗U → Fin∗ carries every map in M⊗U that is cartesian
over ∆1 to an equivalence, taking global sections and pulling back along the map Fin∗ → Γ Fin∗ yields a
relative adjunction Cat(B)U -cc,⊗ ⇆ Cat(B)× over Fin∗. As both maps are morphisms of ∞-operads, we
obtain an induced adjunction

(L ⊣ i) : CAlg(Cat(B)U -cc) ⇆ CAlg(Cat(B)) ≃ Cat(B)⊗

of ∞-categories. By unwinding the definitions, we see that a symmetric monoidal B-category C⊗

lies in CAlg(Cat(B)U -cc) if and only if its underlying B-category is U-cocomplete and the functor
− ⊗ − : C × C → C is U-bilinear. In particular it follows from Remark 4.6.2.6 that PShU

B(1) can
be canonically equipped with the structure of a symmetric monoidal B-category PShU

B(1)⊗ such that
− ⊗ − : PShU

B(1) × PShU
B(1) → PShU

B(1) is U-bilinear and that the canonical functor 1 → PShU
B(1)⊗

induced by the adjunction unit is symmetric monoidal. So in particular we have a commutative diagram

1× 1 1

PShU
B(1)× PShU

B(1) PShU
B(1).−⊗−

By the universal property of PShU
B(1) and Lemma 4.6.1.3 there is a unique such functor −⊗−, which

must therefore coincide with the product functor PShU
B(1)× PShU

B(1)→ PShU
B(1), see Proposition 3.4.3.8.

Example 4.6.2.8. Let B = PSh(C) for some small ∞-category C and let P ⊆ C be a subcategory
that is closed under pullbacks. Then P generates a local class W in PSh(C) and therefore a full
subcategory ΩW ↪→ Ω. Then Propositions 3.2.4.2 and 3.2.4.5 imply together with Remark 4.6.2.7 that
the ∞-category CAlg(Cat(B)ΩW -cc) is equivalent to the ∞-category of pullback formalisms in the sense
of [23, §2.2]. By Remarks 4.6.2.6 and 4.6.2.7 the initial object of CAlg(Cat(B)ΩW -cc) is equivalent to
the free ΩW -cocompletion of the point PShΩW

B (1) equipped with the cartesian monoidal structure. Since
Example 3.4.3.6 shows that PShΩW

B (1) agrees with the geometric pullback formalism constructed in [23,
§4], this gives a new proof of [23, Theorem 3.25]. Furthermore our proof yields a slightly more general
result because in loc. cit. the assumption that C is a 1-category was made.

We will now move one universe up and consider the case where U = CatB is the internal class of
small B-categories in Cat

B̂
. By the above we obtain a symmetric monoidal structure Catcc,⊗

B̂
on the very

large B-category Catcc
B̂

of cocomplete large B-categories and cocontinuous functors.

Proposition 4.6.2.9. The tensor product −⊗− : Catcc
B ×Catcc

B → Catcc
B of cocomplete B-categories

restricts to a functor − ⊗ − : PrL
B × PrL

B → PrL
B. Therefore PrL

B inherits the structure of a symmetric
monoidal B-category from Cat(B)cc,⊗.

Proof. In light of the observation that the tensor unit in Catcc
B is given by the presentable B-category

Ω by Remark 4.6.2.6, the second claim follows from Remark 4.5.1.13, so it suffices to show the first
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one. It will be enough to see that if D and E are presentable then so is their tensor product D⊗ E. By
Corollary 4.4.6.7, we may find a sound doctrine U and U-cocomplete (small) B-categories C and C′ such
that D ≃ Shop(U)

Ω (C) and E ≃ Shop(U)
Ω (C′). If X is an arbitrary cocomplete large B-category, we compute

Funcc
B(D⊗ E,X) ≃ Funcc

B(D,Funcc
B(E,X))

≃ FunU -cc
B (C,FunU -cc

B (C′,X))

≃ FunU -mult
B (C× C′,X)

≃ FunU -cc
B (C⊗U C′,X),

where the first and third equivalence are consequences of Lemma 4.6.1.3, the second equivalence follows
from Corollary 4.4.6.6 and where −⊗U − denotes the tensor product in CatU -cc

B . Now U being a doctrine
implies that the tensor product C ⊗U C′ is small (see Remark 4.4.5.4), hence another application of
Corollary 4.4.6.6 gives rise to an equivalence FunU -cc

B (C⊗U C′,X) ≃ Funcc
B(Shop(U)

Ω (C⊗U C′),X). As the
same corollary shows that Shop(U)

Ω (C⊗U C′) is presentable and as all of the above equivalences are natural
in X, the result follows. □

Definition 4.6.2.10. A symmetric monoidal B-category D is called presentably symmetric monoidal
if D is contained in the image of the inclusion CAlg(PrL(B)) ↪→ CAlg(Cat(B̂) ≃ Cat(B̂)⊗. In other words,
D is presentably symmetric monoidal if D is a presentable B-category and the tensor functor −⊗− is
bilinear.

Proposition 4.6.2.11. Let D and E be presentable B-categories. Then there is an equivalence of
B-categories

FunL
B(ShE(D),X) ≃ Funbil

B (D× E,X)
that is natural in X ∈ PrL(B) and therefore in particular an equivalence ShE(D) ≃ D⊗ E.

Proof. Let us denote by Funcont
B (−,−) ↪→ FunB(−,−) the full subcategory spanned by the continu-

ous functors. We claim that we have a chain of equivalences

Funbil
B (D× E,X) ≃ FunL

B(D,FunL
B(E,X))

≃ Funcont
B (Dop,FunL

B(E,X)op)op

≃ Funcont
B (Dop,FunR

B(X,E))op

≃ FunR
B(X,Funcont

B (Dop,E))op

≃ FunL
B(Funcont

B (Dop,E),X)

≃ FunL
B(ShE(D),X)

that are natural in E. The first equivalence follows from Lemma 4.6.1.3 and the last equivalence is obvious.
The second equivalence follows from Proposition 4.4.3.1 and the third and fifth equivalences follow from
Corollary 2.4.3.8 and Proposition 4.4.3.3. Therefore it remains to argue that the fourth equivalence holds.

We may choose a sound doctrine U such that D ≃ ShU
Ω(C) for some small U-cocomplete B-

category C (cf. Corollary 4.4.6.7). Using Corollary 4.4.6.6, we only need to see that the equivalence
FunB(Cop,FunB(X,E)) ≃ FunB(X,FunB(Cop,E)) restricts to an equivalence

FunU -cont
B (Cop,FunR

B(X,E)) ≃ FunR
B(X,FunU -cont

B (Cop,E))

(where FunU -cont
B (−,−) denotes the full subcategory of FunB(−,−) that is spanned by the π∗AU-continuous

functors of B/A-categories, for all A ∈ B). We already know from (the dual version of) Lemma 4.6.1.3
that we have an equivalence

FunU -cont
B (Cop,Funcont

B (X,E)) ≃ Funcont
B (X,FunU -cont

B (Cop,E)).

Furthermore note that because FunU -cont
B (Cop,E) ↪→ FunB(Cop,E) is FiltU-cocontinuous by Proposi-

tion 4.4.6.5 a functor f : X → FunU -cont
B (Cop,E) is accessible if and only if it is so after composing
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with FunU -cont
B (Cop,E) ↪→ FunB(Cop,E). Hence Proposition 4.4.3.3 together with Remark 3.2.3.2 and

Remark 4.3.2.3 implies that the proof is finished once we verify that a functor f : X→ FunB(Cop,E) is
accessible if only if its transpose f ′ : Cop → FunB(X,E) takes values in the full subcategory Funacc

B (X,E)
spanned by the accessible functors. If f is accessible there is some sound doctrine V such that f is
FiltV-cocontinuous. But then it follows from Lemma 4.6.1.3 that f ′ takes values in the B-category
FunFiltV -cc

B (X,E) ↪→ Funacc
B (X,E), as desired. For the converse, suppose that f ′ takes values in Funacc

B (X,E).
Let z : C0 → C be the tautological object. Then f ′(z) : π∗C0

X→ π∗C0
E is π∗C0

V-accessible for some sound
doctrine V. Since every object in C is a pullback of z, this already shows that f ′ takes values in
FunFiltV -cc

B (X,E), hence Lemma 4.6.1.3 shows that f is accessible. □

For later use we also record the following explicit description of the universal bilinear functor if one
of the factors is presheaf category:

Lemma 4.6.2.12. Let C be small B-category and D a presentable B-category. Then under the
identification PShB(C)⊗D ≃ FunB(Cop,D) the universal bilinear functor τ : PShB(C)×D→ FunB(Cop,D)
is given by the transpose of the composite

τ ′ : Cop × PShB(C)× D ev−→ ΩB × D −⊗−−−−→ D.

Proof. We at first prove the claim when D = PShB(D0) as well. In this case it is an easy
consequence of Theorem 3.4.1.1 that the universal bilinear functor τ is the unique bilinear functor
PShB(C)× PShB(D0)→ FunB(Cop,PShB(D0)) ≃ PShB(C× D0) such that the composite

C0 × D0
hC×hD0−−−−−→ PShB(C)× PShB(D0)→ PShB(C× D0)

is given by the Yoneda-embedding hC×D0 (see also the proof of Proposition 4.6.2.9). Recall that the
functor −⊗− is the unique bilinear functor that corresponds to the identity under the equivalence

Funbil
B (ΩB × PShB(D0),PShB(D0)) ≃ FunLB(PShB(D0),PShB(D0)).

From this it follows that the composite

Cop × PShB(C)× PShB(D0) ev−→ ΩB × PShB(D0) −⊗−−−−→ PShB(D0)

transposes to the functor

Cop × PShB(C)× Dop
0 × PShB(D0) ev× ev−−−−→ Ω× Ω −×−−−−→ ΩB.

But after composing with Cop × C × D0
op × D0

id×hC×id×hD−−−−−−−−−→ Cop × PShB(C) × Dop
0 × PShB(D0) this

functor yields mapC×D0(−,−) and thus transposes to the Yoneda-embedding hC×D0 , as desired. Now for
the case of a general presentable B-category D we pick a Bousfield localization L : PShB(D0)→ D. Note
that we have two commutative squares

Cop × PShB(C)× PShB(D0) PShB(D0)

Cop × PShB(C)× D D

τ ′

τ

id×L L

τ ′

τ

with and without the prime. But by the first part of the proof the upper two functors agree and thus so
do the lower two because id×L has a section . □

4.6.3. B-modules as presentable B-categories. By the discussion in the previous section, there
is a symmetric monoidal functor L : Cat×

B̂
→ Catcc,⊗

B̂
whose underlying functor of very large B-categories

is the left adjoint of the inclusion Catcc
B̂
↪→ Cat

B̂
. Upon taking global sections, we thus deduce from [56,

Corollary 7.3.2.7] that the inclusion determines a lax symmetric monoidal functor Cat(B̂)cc,⊗ ↪→ Cat(B̂)×

(of symmetric monoidal ∞-categories, i.e. a map of ∞-operads) and therefore a fortiori a lax symmetric
monoidal functor PrL(B)⊗ ↪→ Cat(B̂)×. Moreover, as the global sections functor Γ preserves limits, it
defines a symmetric monoidal functor Cat(B̂)× → Ĉat

×
∞. Since a multilinear functor in Cat(B) induces a
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multilinear functor on the underlying ∞-categories of global sections, it is evident that the induced map
Cat(B̂)cc,⊗ → Ĉat

×
∞ takes values in Ĉat

cc,⊗
∞ ↪→ Ĉat

×
∞ and therefore defines a lax symmetric monoidal

functor Γcc,⊗ : Cat(B̂)cc,⊗ → Ĉat
cc,⊗
∞ . Upon restricting this functor to presentable B-categories, we now

end up with a lax symmetric monoidal functor Γcc,⊗ : PrL(B)⊗ → (PrL
∞)⊗ that in turn induces a map

Γlin : PrL(B) ≃ ModΩ(PrL(B))→ ModB(PrL
∞)

(where B is regarded as the algebra in PrL
∞ that is given by image of the trivial algebra Ω in PrL(B)

along Γcc,⊗). Note that this is precisely the cartesian monoidal structure on B as the product bifunctor
Ω× Ω→ Ω is bilinear, cf. [61, Lemma 6.2.7].

The main goal of this section is to show that Γlin admits a fully faithful left adjoint that embeds
ModB(PrL

∞) into PrL(B) and to give an explicit description of this embedding. As a preliminary step,
we need to show that the global sections functor Γ: PrL(B)→ PrL

∞ admits a left adjoint. To that end,
recall from Example 4.4.4.8 that there is a functor −⊗ Ω : PrR

∞ → PrR(B) that assigns to a presentable
∞-category D the presentable B-category that is given by the sheaf D⊗B/−. Using Proposition 4.4.4.7,
we may equivalently regard this map as a functor PrL

∞ → PrL(B). We now obtain:

Proposition 4.6.3.1. The functor −⊗ Ω is left adjoint to the global sections functor Γ: PrL(B)→
PrL
∞.

Proof. The composite Γ ◦ (−⊗Ω) is by definition given by the endofunctor −⊗B : PrL
∞ → PrL

∞ so
that the functor Γ∗ : ShB(−)→ idPrR

∞
defines a natural transformation η : idPrL

∞
→ −⊗B upon passing

to opposite ∞-categories. We need to show that the composition

(∗) mapPrL(B)(D⊗ Ω,E)→ mapPrL
∞

(D⊗B,ΓE) η∗D−−→ mapPrL
∞

(D,ΓE)

is an equivalence. Choose a regular cardinal κ such that D ≃ ShκS(C) for some small ∞-category C that
admits κ-small colimits. Using Proposition 4.4.6.4, we obtain an equivalence D⊗ Ω ≃ ShLConstκ

Ω (C) with
respect to which the map ηD corresponds to the left adjoint of Γ∗ : ShκB(C) → ShκS(C). Again using
Proposition 4.4.6.4, we have equivalences

mapPrL(B)(D⊗ Ω,E) (hB
C )∗

−−−−→ mapCat(B̂)LConstκ -cc(C,E) ≃ mapĈat
κ -cc
∞

(C,ΓE) (hS
C)!−−−→ mapPrL

∞
(D,ΓE)

where hBC is the Yoneda embedding in Cat(B̂) and hSC is the Yoneda embedding in Ĉat∞. On account of
the commutative square

C ShκS(C)

ΓC ShκB(C)

hS
C

ηD

Γ(hB
C )

in which the vertical map on the left is the unit of the adjunction constB ⊣ Γ (see [61, Lemma 6.4.5]), the
composition of the above chain of equivalences recovers the map in (∗), hence the claim follows. □

Proposition 4.6.3.2. The functor Γlin : PrL(B)→ ModB(PrL
∞) admits a fully faithful left adjoint.

Proof. Note that since PrL(B) ≃ PrR(B)op it follows from Proposition 4.4.4.11 that the global
sections functor Γ: PrL(B)→ PrL

∞ preserves colimits. So in light of Proposition 4.6.3.1 we may apply [56,
Corollary 4.7.3.16] to the commutative triangle

PrL(B) ModB(PrL
∞)

PrL
∞

Γ

Γlin

U

(where U denotes the forgetful functor), which yields the claim. □



154 4. PRESENTABLE B-CATEGORIES

We will now give a more explicit description of the left adjoint from Proposition 4.6.3.2. To that
end, observe that the functor FunB(−,Ω) : Ωop → Cat

B̂
takes values in PrR

B and therefore determines
a limit-preserving map Bop → PrR(B) ≃ (PrL(B))op which by postcomposition with Γlin results in a
limit-preserving functor B/− : Bop → ModB(PrL

∞)op. We now get a map

ModB(PrL
∞)op ×Bop (−⊗BB/−)op

−−−−−−−−→ ModB(PrL
∞)op → (PrL

∞)op ≃ PrR
∞ ↪→ Ĉat∞

and hence by adjunction a functor ModB(PrL
∞)op → PShĈat∞

(B).

Lemma 4.6.3.3. The functor ModB(PrL
∞)op → PShĈat∞

(B) factors through PrR(B) and thus defines
a functor

−⊗B Ω : ModB(PrL
∞)→ PrL(B).

Proof. First we prove that the functor factors through Cat(B̂). This amounts to showing that the
functor D⊗B B/− : Bop → Ĉat∞ is continuous for every D ∈ ModB(PrL

∞). As the functor B/− : Bop →
ModB(PrL

∞)op preserves limits, this follows from the fact that D ⊗B −, viewed as an endofunctor on
ModB(PrL

∞)op, preserve limits as well [56, Corollary 4.4.2.15]. Next, we show that the resulting B-category
D⊗B Ω is presentable. As it by construction takes values in PrR

∞, Theorem 4.4.2.4 implies that it suffices
to show that D⊗B Ω is Ω-cocomplete and that the transition functors are cocontinuous. Both statements
follow from the observation that the functor D⊗B − : ModB(PrL

∞)→ ModB(PrL
∞) can be upgraded to

an (∞, 2)-functor (see [45, §4.4] for details) and that for any s : B → A in B the adjunction s! ⊣ s∗ is
B-linear, see [56, Corollary 7.3.2.7]. To finish the proof, it remains to see that for any map of B-modules
D→ E the induced map E⊗B Ω→ D⊗B Ω admits a left adjoint. By construction, it has one section-wise,
so it suffices to check that for any map s : B → A in B the vertical mate of

D⊗B B/B E⊗B B/B

D⊗B B/A E⊗B B/A

commutes. Using again (∞, 2)-functoriality of the relative tensor product, this follows by essentially the
same argument as in the proof of Lemma 3.1.2.10. □

Remark 4.6.3.4. It also seems natural to consider the functor

ModB(PrL
∞)×Bop id×B/−−−−−−→ ModB(PrL

∞)×ModB(PrL
∞) −⊗B−−−−−→ ModB(PrL

∞)→ Cat∞

which by transposition also gives rise to a functor ModB(PrL
∞)→ Fun(Bop,Cat∞). We expect that this

functor takes values in Cat(B) and is equivalent to −⊗B Ω. It is easy to see that for fixed C ∈ ModB(PrL
∞)

the two resulting presheaves of categories on B have the same value on objects and morphisms. However,
a proof that they agree as functors seems two require (∞, 2)-categorical techniques that are not quite
available yet.

Lemma 4.6.3.5. The functor −⊗B Ω : ModB(PrL
∞)→ PrL(B) preserves colimits.

Proof. As limits in Cat(B̂) are computed section-wise, it suffices to show that for every A ∈ B the
functor

ModB(PrL
∞)op (−⊗BB/A)op

−−−−−−−−→ ModB(PrL
∞)op → (PrL

∞)op ≃ PrR
∞ → Ĉat∞

preserves limits, which is obvious. □

Proposition 4.6.3.6. The functor −⊗B Ω defines a left adjoint of Γlin.

Proof. We show that − ⊗B Ω is equivalent to the left adjoint L of Γlin from Proposition 4.6.3.2.
Let us denote by − ⊗ B : PrL

∞ → ModB(PrL
∞) the left adjoint to the forgetful functor. Then by the

associativity of the relative tensor product ([56, Proposition 4.4.3.14] we have equivalences

(∗) (−⊗B Ω) ◦ (−⊗B) ≃ −⊗ Ω ≃ L ◦ (−⊗B)
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of functors from PrL
∞ to PrL(B). By [56, Remark 4.7.3.15] we may find a functor

F : ModB(PrL
∞)→ Fun(∆op,PrL

∞)

such that the composite

ModB(PrL
∞) F−→ Fun(∆op,PrL

∞) (−⊗B)∗−−−−−→ Fun(∆op,ModB(PrL
∞)) colim∆op−−−−−−→ ModB(PrL

∞)

is equivalent to the identity. From (∗) and Lemma 4.6.3.5 it follows that the diagram

Fun(∆op,PrL
∞) Fun(∆op,ModB(PrL

∞)) ModB(PrL
∞)

Fun(∆op,ModB(PrL
∞)) Fun(∆op,PrL(B)) PrL(B)

(−⊗B)∗

(−⊗B)∗

colim∆op

(−⊗BΩ)∗ −⊗BΩ

L∗ colim∆op

commutes. Since L commutes with colimits as well, we get an equivalence L ≃ (−⊗B Ω), as desired. □

The functor −⊗B Ω can be naturally extended to a strong monoidal functor. To see this, observe
that since the global sections functor Γ: PrL(B)→ PrL

∞ admits an extension to a lax monoidal functor
Γcc,⊗ : PrL(B)⊗ → (PrL)⊗, the commutative diagram

PrL(B) ModB(PrL
∞)

PrL
∞

Γ

Γlin

U

can be naturally extended to a diagram of lax monoidal functors. By passing to left adjoints, we thus
obtain a commutative triangle

PrL(B)⊗ ModB(PrL
∞)⊗

(PrL)⊗
−⊗Ω

−⊗BΩ

−⊗B

of oplax monoidal functors, see [39]. In order to show that the functor −⊗B Ω is strong monoidal, it thus
suffices to show that the natural map

(−⊗B −)⊗B Ω→ (−⊗B Ω)⊗ (−⊗B Ω)

is an equivalence. As both sides of this map preserve colimits in both variables and since every B-module
can be written as a colimit of objects that are contained in the image of −⊗B, it suffices to show that
the natural map

(−⊗−)⊗ Ω→ (−⊗ Ω)⊗ (−⊗ Ω)

is an equivalence, i.e. that − ⊗ Ω is strong monoidal. Recall (e.g. from Remark 4.4.4.12) that every
presentable ∞-category can be obtained as a pushout (in PrL

∞) of presheaf ∞-categories. The claim
therefore follows from the observation that −⊗ Ω fits into a commutative square

Cat(B̂)× Ĉat
×
∞

PrL(B)⊗ (PrL)⊗
L

constB

L

−⊗Ω

of oplax monoidal functors (which is again constructed from the associated commutative square of lax
monoidal functors by passing to left adjoints) in which both vertical maps as well as constB are strong
monoidal. We conclude:

Proposition 4.6.3.7. The functor −⊗B Ω : ModB(PrL
∞) ↪→ PrL(B) admits a natural enhancement

to a strong monoidal functor. □
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The functor −⊗B Ω being fully faithful raises the question what can be said about its essential image.
First, we observe that there is an explicit criterion when a presentable B-category arises from a B-module:

Remark 4.6.3.8. Let C be a presentable B-category. Then the unit of the adjunction −⊗B Ω ⊣ Γlin

gives a canonical map Γlin(C)⊗B Ω→ C. For A ∈ B the induced map ε(A) : B/A ⊗B Γlin(C)→ C(A) is
the map underlying the essentially unique map of B/A-modules that makes the diagram

B/A ⊗B Γlin(C) C(A)

Γlin(C) Γlin(C)id

π∗A

ε(A)

of B-modules commute. It follows that a presentable B-category is in the essential image of −⊗B Ω if
and only if ε(A) is an equivalence for all A ∈ B.

Using the criterion from Remark 4.6.3.8, we are now able to write down an example of a presentable
B-category that is not in the essential image of − ⊗B Ω. We learned about this example from David
Gepner and Rune Haugseng.

Example 4.6.3.9. Let us write Fin for the category of finite sets and let B = PSh(Fin). Let X
be a set with more than one element that we consider as an object in B via the Yoneda embedding.
Then FunB(X,ΩB) is a presentable B-category that is not in the essential image of − ⊗B Ω. In fact,
by Remark 4.6.3.8 this would imply that the canonical map ε(X) being an equivalence. In our specific
situation ε(X) is the canonical left adjoint functor PSh(Fin/X)⊗PSh(Fin) PSh(Fin/X)→ PSh(Fin/X×X).
Explicitly this functor is constructed by applying PSh(−) to the augmented cosimplicial diagram

Fin/X×X → Fin/X ×Fin/X ⇒ Fin/X ×Fin×Fin/X · · ·

and then taking the induced map colimn∈∆op PSh(Fin/X ×Finn×Fin/X) → PSh(Fin/X×X) in PrL
∞.

Thus, upon passing to right adjoints, we conclude that if the B-category FunB(X,ΩB) is contained in the
essential image of −⊗B Ω, the cosimplicial diagram

PSh(Fin/X×X)→ PSh(Fin/X ×Fin/X) ⇒ PSh(Fin/X ×Fin×Fin/X) · · ·

in PrR
∞ must be a limit diagram. We show that this cannot be true. Let us denote the map Fin/X×X →

Fin/X ×Finn×Fin/X by fn. It is given explicitly by the assignment

(A→ X ×X) 7→ (A→ X ×X pr0−−→ X,A, . . . , A,A→ X ×X pr1−−→ X).

Now for any n ≥ 1 the map PSh(Fin/X×X) → PSh(Fin/X ×Finn×Fin/X) is the functor of right
Kan extension (fop

n )∗ along fop
n . Hence, if the above cosimplicial diagram is a limit cone, the counit

of the adjunctions (fop
n )∗ ⊣ (fop

n )∗ yields an equivalence colimn∈∆op(fop
n )∗(fop

n )∗F → F for any F ∈
PSh(Fin/X×X). For any object a = (A → X,B1, ..., Bn, C → X) ∈ Fin/X ×Finn×Fin/X we can
compute (fop

n )∗F (a) via the point-wise formula for right Kan extensions as a limit indexed by (Fin/X×X)op
a/.

But A×B1 × ...×Bn ×X → X ×X defines an initial object of this category, hence we find

F (A→ X ×X) ≃ colim
n∈∆op

F (A×An ×A→ X ×X).

In particular, this shows that the map F (A×A→ X ×X)→ F (A→ X ×X) induced by A→ A×A is
a cover in S. By taking F to be the presheaf represented by the diagonal X → X ×X, it in turn follows
that the map

mapFin/X×X
(X ×X,X)→ mapFin/X×X

(X,X)



4.6. THE TENSOR PRODUCT OF PRESENTABLE B-CATEGORIES 157

is surjective. In particular, there is a preimage of the identity X → X. But since X has at least two
elements there is no map α making the diagram

X ×X X

X ×X

α

∆id

commute, which yields the desired contradiction.

There is, however, a class of ∞-topoi B for which the functor −⊗B turns out to be essentially
surjective, namely those that are generated by (−1)-truncated objects:

Proposition 4.6.3.10. Assume that B is generated under colimits by (−1)-truncated objects. Then
−⊗B Ω is an equivalence.

Proof. By Propositions 4.6.3.2 and 4.6.3.6 it remains to show essential surjectivity. Since −⊗BΩ pre-
serves colimits and every presentable B-category is a pushout of presheaf B-categories (see Remark 4.4.4.12)
it suffices to see that PShB(C) is in the essential image for any small B-category C. Furthermore, we can
write C as a colimit of B-categories of the form ∆n⊗U , where U ∈ B is (−1)-truncated. Since the functor
PShB(−) : Cat(B) → PrL(B) that is determined by the universal property of presheaf B-categories is
a (partial) left adjoint (see Corollary 3.4.1.15) and therefore preserves colimits, it suffices to see that
PShB(∆n ⊗ U) is in the essential image. Since PShB(−) is also symmetric monoidal by Remark 4.6.2.6,
we have a canonical equivalence

PShB(∆n ⊗ U) ≃ PShB(∆n)⊗ PShB(U).

Furthermore, we have PShB(∆n) ≃ PSh(∆n)⊗Ω ≃ (PSh(∆n)⊗Ω)⊗B Ω, and since −⊗B Ω is symmetric
monoidal by Proposition 4.6.3.7, it thus suffices to see that PShB(U) is in the essential image. By
Remark 4.6.3.8, it follows that we need to check that for any A ∈ B the canonical map

B/A ⊗B PShB(U)(1)→ PShB(U)(A)

of B/A-modules is an equivalence. Since B is generated under colimits by (−1)-truncated objects, we
may assume that A = V is also (−1)-truncated. Thus, we have to show that the canonical map

B/V ⊗B B/U → B/U×V

is an equivalence. For this, note that because U is (−1)-truncated, we have a canonical commutative
square

∆1 B

B B/U

U→1

−×Uid1

−×U

By adjunction and the universal property of presheaf ∞-categories, this induces a commutative square

PSh(∆1)⊗B B

B B/U

(U→1)⊗B

−×U(id1)⊗B

−×U

in ModB(PrL
∞). We claim that this square is a pushout. For this it suffices to see that the underlying

square in PrL
∞ is a pushout, i.e. it is a pullback after passing to right adjoints. The right adjoint of id1⊗B

is simply the diagonal map B→ B∆1 , and the right adjoint of (U → 1)⊗B sends an object A ∈ B to the
arrow

A→ HomB(U,A).
Thus, we may identify the pullback, with the full subcategory of B spanned by those objects for which the
canonical map A→ HomB(U,A) is an equivalence. But because U is (−1)-truncated, this subcategory
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is canonically equivalent to B/U , so that the above square is indeed a pushout. Repeating the same
argument with B/V in place of B and U × V in place of U , we get a similar pushout in ModB/U

(PrL
∞)

with B/U×V in the lower right corner. But applying −⊗BB/V to the above square, we also get a pushout

PSh(∆1)⊗B/V B/V

B/V B/U ⊗B B/V

(U×V→V )⊗B/V

(id1)⊗B/V

and thus an equivalence of B/V -modules B/U×V ≃ B/U ⊗B B/V . Furthermore this equivalence is by
construction compatible with the canonical map from B. Thus it is indeed the map of Remark 4.6.3.8,
and the claim follows. □

Our next goal will be to show that if R is a commutative B-ring spectrum, the presentable B-category
ModB

R constructed in § 4.5.2 is in the essential image of −⊗BΩ. For this we need the following observation.
Let f : C→ D be a map in CAlg(PrL) and let A ∈ CAlg(C). The the commutative square

ModA(C) Modf(A)(D)

C D

shows that there is a unique map of D-modules ψ : ModA(C)⊗C D→ Modf(A)(D) making the triangle
of C-module maps commute

ModA(C)⊗C D Modf(A)(D)

D

Lemma 4.6.3.11. The map ψ : ModA(C)⊗C D→ Modf(A)(D) is an equivalence.

Proof. This can be extracted from the discussion in [56, §4.8.4 and 4.8.5]. More specifically, we
observe that the D-module ModA(C)⊗CD together with the object A⊗ 1D satisfies the conditions (1)-(6)
of [56, p. 4.8.5.8]. Indeed, we have a C-linear adjunction in PrL

−⊗A : C ⇆ ModA : G

so that after applying −⊗C D we get a D-linear adjunction and thus all conditions except (5) are obvious.
To see that (5) also holds, one can argue as in the proof of [56, Theorem 4.8.4.6]. By [56, Proposition
4.8.5.8] there is thus an equivalence of D-modules sending

φ : Modf(A)(D)→ ModA(C)⊗C D

f(A) to the unit of ModA(C)⊗C D. Furthermore the construction of the equivalence in [56, Theorem
4.8.5.8] shows that φ makes the triangle

Modf(A)(D) ModA(C)⊗C D

D

φ

of D-modules commute and thus the inverse of φ has to agree with our map ψ from above. □

Proposition 4.6.3.12. Let R be a commutative B-ring spectrum. Then ModB
R is in the essential

image of −⊗B ΩB.

Proof. Unwinding the definitions, we need to see that for any A ∈ B the canonical map of
B/A-modules

ModR(Sp(B))⊗B B/A → Modπ∗
A
R(Sp(B/A))
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is an equivalence. Since Sp is an idempotent algebra in PrL we may identify the above map with the
canonical map

ModR(Sp(B))⊗Sp(B) Sp(B/A)→ Modπ∗
A
R(Sp(B/A))

which is an equivalence by Lemma 4.6.3.11. □

Proposition 4.6.3.13. The functor Γlin : PrL(B) → ModB(PrL) is ModB(PrL)-linear. In other
words for C ∈ PrL(B) and D ∈ ModB(PrL), the canonical map

γD,C : D⊗B Γlin(C)→ Γlin((D⊗B Ω)⊗B C)

given by composing the map Γlin(−) ⊗ Γlin(−) → Γlin(− ⊗ −) with the unit id → Γlin(− ⊗B Ω), is an
equivalence

Proof. Note that by the proof of Proposition 4.6.3.2 the functor Γlin commutes with all colimits.
Since −⊗B − and −⊗B − are both bilinear and because Γ is conservative, we may reduce to the case
where D is a free B-module on some E ∈ PrL and only have to show that the canonical map

E⊗ Γ(C)→ Γ(E⊗ Ω)⊗ Γ(C)→ Γ((E⊗ Ω)⊗B C)

is an equivalence. Since any presentable ∞-category is a pushout of presheaf categories, we may further
reduce to the case where E = PSh(C0). Recall from the proof of Proposition 4.6.3.1 that we have a
canonical equivalence PSh(C0) ⊗ Ω ≃ FunB(C0,Ω). Therefore it follows that we have an equivalence
(PSh(C0)⊗ Ω)⊗B C ≃ FunB(Cop

0 ,C) and we claim that the composite

PSh(C0)⊗ Γ(C)
γPSh(C0),C−−−−−−→ Γ((PSh(C0)⊗ Ω)⊗B C) ≃ FunB(Cop

0 ,C)

is an equivalence. For this observe that by construction, the canonical map

Γ(PSh(C0)⊗ Ω)⊗ Γ(C)→ Γ((PSh(C0)⊗ Ω)⊗B C)

is the unique colimit preserving functor corresponding to the bilinear functor

Γ(PSh(C0)⊗ Ω)× Γ(C) ≃−→ Γ((PSh(C0)⊗ Ω)× C) Γ(τ)−−−→ Γ((PSh(C0)⊗ Ω)⊗B C).

Here τ is the universal bilinear functor of B-categories. We now consider the commutative square

C
op
0 × PSh(C0)× Γ(D) C

op
0 × PSh(C0)× Γ(D)

S× Γ(D) B× Γ(D)

Γ(D) Γ(D)

id×(constB)∗×id

ev× id ev× id

constB× id

−⊗− −⊗−

id

By Lemma 4.6.2.12, the composite of the left vertical maps transposes to the universal bilinear functor
PSh(C0)× Γ(C)→ Fun(Cop

0 ,Γ(C)). But combining Lemma 4.6.2.12 with the equivalence FunB(Cop
0 ,D) ≃

Fun(Cop
0 ,Γ(D)), the composite of the right vertical maps transposes to Γ(τ), where τ : PShB(C0)× D→

FunB(Cop
0 ,D) is the universal bilinear functor of B-categories. Since the unit map PSh(C0)→ Γ(PSh(C0)⊗

Ω) can be identified with (constB)∗ : PSh(C0) → Fun(Cop
0 ,B) (see the proof of Proposition 4.6.3.1) it

follows that the composite

PSh(C0)× Γ(C)→ PSh(C0)⊗ Γ(C)
γPSh(C0),C−−−−−−→ Γ((PSh(C0)⊗ Ω)⊗B C) ≃ FunB(Cop

0 ,C) ≃ Fun(Cop
0 ,Γ(C))

can be identified with the universal bilinear functor and therefore γPSh(C0),C is an equivalence, as
desired. □





CHAPTER 5

B-topoi

Our definition of a B-topos will be that of a presentable B-category that satisfies the descent property.
Therefore, we will begin by setting up the theory of descent for B-categories in Section 5.1. We also
relate the notion of descent to universality and disjointness of colimits.

In Section 5.2, we then proceed by developing the main concepts of B-topos theory. Using the results
from Section 5.1, we characterize B-topoi in terms of an internal version of the Giraud axioms, see
Theorem 5.2.1.5. We also prove the expected result that any B-topos is a left exact accessible localisation
of a presheaf B-category in Theorem 5.2.3.1. As a consequence, we show another main result of this
chapter, the equivalence of B-topoi and relative topoi over B, see Theorem 5.2.5.1. We then also give
some applications of these results in ∞-topos theory, see for example Proposition 5.2.7.1.

Finally, Section 5.3 is dedicated to the discussion of localic B-topoi. The main result of this section is
that if B is itself a localic ∞-topos, then there is an equivalence between localic B-topoi and locales over
the locale of subobjects of the terminal object SubB. We also study a number compactness conditions for
B-locales, which we will be useful in the next chapter.

5.1. Descent

Recall that if C is an ∞-category with finite limits, the codomain fibration d0 : Fun(∆1,C)→ C is
a cartesian fibration and therefore classified by a functor C/− : Cop → Cat∞. If C furthermore has all
colimits, one says that C satisfies descent if C/− preserves limits [57, § 6.1.3]. The goal of this section is
to discuss an analogues concept for B-categories. We begin in § 5.1.1 with defining the descent property.
In § 5.1.2, we bring this condition into a more explicit form using the notion of cartesian transformations.
As we later want to compare descent with a B-categorical version of the Giraud axioms, we use the
remainder of this section to relate the descent property with the notions of universality (§ 5.1.3) and
disjointness (§ 5.1.4) of colimits as well as effectivity of groupoid objects (§ 5.1.5).

5.1.1. The definition of descent. In order to define the descent property of a B-category C,
we first need to construct the functor C/− : Cop → CatB. As we have the straightening equivalence for
cartesian fibrations at our disposal [61, Theorem 6.3.1], we may proceed in the same fashion as in [57].
We begin with the following lemma:

Lemma 5.1.1.1. For any B-category C, the codomain fibration d0 : C∆1 → C is a cocartesian fibration.

Proof. This is an immediate consequence of the analogous statement for ∞-categories and the
explicit description of the cocartesian edges [57, Corollary 2.4.7.12]. □

By the B-categorical straightening equivalence, the cocartesian fibration d0 : C∆1 → C gives rise to
a functor C/− : C → CatB. Note that the map (d1, d0) : C∆1 → C × C can be regarded as a morphism
of cocartesian fibrations over C, where we regard the codomain as a cocartesian fibration over C by
virtue of the projection onto the second factor. Therefore, one obtains an induced map C/− → diagC in
FunB(C,CatB), where diagC is the constant functor with value C. Alternatively, we may regard C/− as a
functor C→ (CatB)/C. By construction, if c : A→ C is an arbitrary object in context A ∈ B, the induced
map C/c → π∗AC is precisely given by the projection (πc)! and therefore in particular a right fibration.
Thus, the functor C/− takes values in RFibC. In particular, this implies that for any map f : c→ d in C
(in arbitrary context), the induced functor C/c → C/d is a right fibration. On account of the orthogonality

161



162 5. B-TOPOI

between right fibrations and final functors, this map is uniquely determined by the image of the final
object idc. As it is moreover evident from the construction of C/− that the image of idc is given by f , we
thus conclude that C/− acts on maps by carrying f to the functor f! : C/c → C/d that is obtained as the
image of f under the Yoneda embedding C ↪→ RFibC.

Proposition 5.1.1.2. Let C be a B-category. Then the following are equivalent:
(1) The codomain fibration d0 : C∆1 → C is a cartesian fibration;
(2) for every map f : c→ d in C, the functor f! : C/c → C/d admits a right adjoint f∗;
(3) C admits pullbacks.

Proof. The fact that (1) and (3) are equivalent is an immediate consequence of the analogous
statements and the explicit description of the cocartesian edges [57, Lemma 6.1.1.1]. That (2) and (3) are
equivalent is the content of Corollary 3.1.7.5. □

Remark 5.1.1.3. It follows from [57, Lemma 6.1.1.1], that a morphism ∆1 ⊗A→ C∆ is cocartesian
with respect to d0 if and only if it defines a pullback square in C(A).

Remark 5.1.1.4. If C is a B-category with pullbacks, straightening the cartesian fibration d0 : C∆1 → C
yields a functor C/− : Cop → CatB. By the discussion in [61, § 7.2], this functor is equivalently obtained
by observing that the straightening of the cocartesian fibration C∆1 → C takes values in CatL

B and by
applying the equivalence CatL

B ≃ (CatR
B)op from [61, Proposition 7.2.1].

We may now define:

Definition 5.1.1.5. Let U be an internal class of B-categories and let C be a U-cocomplete B-category
with finite limits. We say that C satisfies U-descent if the functor C/− : Cop → Cat

B̂
is op(U)-continuous.

If X is a cocomplete large B-category, we simply say that C satisfies descent if C satisfies CatB-descent.

Remark 5.1.1.6. The property of a U-cocomplete B-category C with pullbacks to satisfy U-descent
is local in B: if

⊔
iAi ↠ 1 is a cover in B, then C satisfies U-descent if and only if π∗Ai

C satisfies
π∗Ai

U-descent for all i. This follows immediately from the locality of U-continuity, see Remark 3.2.2.3,
and from Remark 2.3.1.3.

Example 5.1.1.7. Let K be a class of ∞-categories and let C be an LConstK-cocomplete B-category
with pullbacks (where LConstK is the essential image of the functor constB : K → CatB). Then C
satisfies LConstK-descent if and only if for all A ∈ B the ∞-category C(A) satisfies K-descent. In fact,
by [61, Corollary 6.4.10] the composition ΓB/A

◦ C/−(A) recovers the functor C(A)/− : C(A)op → Ĉat∞.
Consequently, if s : B → A is an arbitrary map in B, postcomposing C/−(A) with the evaluation functor
evB : Cat(B/A)→ Ĉat∞ recovers the composition C/−(B) ◦ s∗. Using that C is LConstK-cocomplete, the
functor s∗ : C(A)op → C(B)op is op(K)-continuous, and since limits in Cat(B/A) are detected section-wise,
the claim follows.

5.1.2. Cartesian transformations. The main goal of this section is to obtain a more explicit
description of the descent property which will rely on the notion of cartesian morphisms of functors:

Definition 5.1.2.1. Let I and C be B-categories such that C admits pullbacks. We say that a map
φ : d→ d′ in FunB(I,C) in context 1 ∈ B is cartesian if for every map i→ i′ in I in context A ∈ B the
induced commutative square

d(i) d′(i)

d(i′) d′(i′)
is a pullback in C(A). A map d→ d′ in context A ∈ B is called cartesian if it is cartesian when viewed
as a map in FunB/A

(π∗AI, π∗AC) in context 1 ∈ B/A. We denote by FunB(I,C)cart
/d the full subcategory of

FunB(I,C)cart
/d that is spanned by the cartesian maps in arbitrary context A ∈ B.
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Remark 5.1.2.2. In the situation of Definition 5.1.2.1, the property of a map φd→ d′ in context
A ∈ B being cartesian is local in B: if (si) :

⊔
iAi ↠ A is a cover in B, then φ is cartesian if and

only if each s∗i (φ) is. In fact, by unwinding the definition, this follows from the fact that the property
of a commutative square being a pullback is local in that sense. As a consequence, every object of
FunB(I,C)cart

/d in context A encodes a cartesian map d → d′, and there is a canonical equivalence
π∗AFunB(I,C)cart

/d ≃ FunB/A
(π∗AI, π∗AC)cart

/π∗
A
d of B/A-categories.

Lemma 5.1.2.3. Let I and C be B-categories, and suppose that C admits pullbacks. Then a map
d→ d′ in FunB(I,C) (in arbitrary context) is cartesian if and only if the associated object in FunB(I,C∆1)
is contained in FunB(I, (C∆1)♯), where (C∆1)♯ ↪→ C∆1 is the subcategory that is spanned by the cartesian
morphisms over d0 : C∆1 → C.

Proof. This follows immediately from the description of the cartesian morphisms in C∆1 as pullback
squares in C, see Remark 5.1.1.3. □

The main goal of this section is to prove the following description of the descent property:

Proposition 5.1.2.4. Let C be a cocomplete B-category with pullbacks and let d : I→ C be a diagram
that admits a colimit in C. Let d : I▷ → C be the corresponding colimit cocone. Then the functor
C/− : Cop → CatB carries d to a limit cone in CatB if and only if the restriction map FunB(I▷,C)/d →
FunB(I,C)/d restricts to an equivalence

FunB(I▷,C)cart
/d
≃ FunB(I,C)cart

/d

of B-categories.

The main idea for the proof of Proposition 5.1.2.4 is to identify the left-hand side of the equivalence
with C/ colim d and the right-hand side with lim C/d(−). In order to do so, we will need the formula for
limits in CatB derived in [61, Proposition 7.1.2]. For the convenience of the reader, we will briefly recall
the main setup from [61]. The ∞-topos of marked simplicial objects in B is defined as B+

∆ = Fun(∆op
+ ,B),

where ∆+ denotes the marked simplex 1-category. Precomposition with the inclusion ∆ ↪→ ∆+ induces
a forgetful functor (−)|∆ : B+

∆ → B∆ which admits a left adjoint (−)♭ and a right adjoint (−)♯. Every
cartesian fibration p : P→ C can be equivalently encoded by a marked cartesian fibration p♮ : P♮ → C♯,
where P♮ is the marked simplicial object that is obtained from P by marking the cartesian arrows and
where a marked cartesian fibration is by definition a map that is internally right orthogonal to the
collection of marked right anodyne maps (see [61, Definition 4.2.1]). Now if d : Iop → CatB is a functor
and if p : P→ I is the associated cartesian fibration, one obtains a canonical equivalence

lim d ≃ (HomB+
∆

(I♯,P♮)/I♯)|∆,

where the right-hand side is defined via the pullback diagram

(HomB+
∆

(I♯,P♮)/I♯)|∆ HomB+
∆

(I♯,P♮)|∆

1 HomB+
∆

(I♯, I♯)|∆
idI♯

(in which HomB+
∆

(−,−) denotes the internal hom in B+
∆).

Lemma 5.1.2.5. Let K be a simplicial object in B and let p : P → C be a cartesian fibration.
Then the canonical map K♭ → K♯ of marked simplicial objects in B induces a fully faithful functor
HomB+

∆
(K♯,P♮)|∆ ↪→ HomB+

∆
(K♭,P♮)|∆ of B-categories.
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Proof. Let M be the marked simplicial object in B that fits into the pushout square

(∆0 ⊔∆0)♭ ⊗K♭ (∆0 ⊔∆0)♭ ⊗K♯

(∆1)♭ ⊗K♭ M.

Unwinding the definitions, we need to show that P♮ is internally local with respect to the induced map
φ : M → (∆1)♭ ⊗K♯. Since C♯ is easily seen to be internally local with respect to φ, this follows once we
show that p♮ is internally right orthogonal to this map. We therefore need to verify that φ is marked
right anodyne. Writing K as a colimit of objects of the form ∆n ⊗A, we may assume that K = ∆n ⊗A.
Moreover, since marked right anodyne morphisms are closed under products, we can assume that A ≃ 1.
Using that the two maps (In)♭ ↪→ (∆n)♭ and (In)♯ ↪→ (∆n)♯ that are induced by the spine inclusions
are marked right anodyne, we may further reduce this to K = ∆1. In this case, one can apply [61,
Lemma 4.2.3] to deduce that φ is an equivalence. Hence the claim follows. □

Lemma 5.1.2.6. Let s : B → A be a map in B, and let P → A be an arbitrary map. Let ηs : idB/A
→

s∗s
∗ be the adjunction unit. Then the value of the natural transformation (πA)∗

(πA)∗ηs−−−−−→ (πA)∗s∗s∗ ≃
(πB)∗s∗ at an object p : P → A in B/A can be identified with the map

HomB(A,P )/A → HomB(B, s∗P )/B

that is induced by precomposition with s. Here HomB(−,−) denotes the internal hom in B, HomB(A,P )/A
is the fibre of the map HomB(A,P ) → HomB(A,A) over idA, and HomB(B, s∗P )/B is the fibre of the
map HomB(B, s∗P )→ HomB(B,B) over idB.

Proof. Since the morphism id×s : −×B → −×A can be identified with the composition

(πB)!π
∗
B
≃−→ (πA)!s!s

∗π∗A
(πA)!ϵsπ

∗
A−−−−−−→ (πA)!π

∗
A

(in which ϵs is the counit of the adjunction s! ⊣ s∗), it follows by adjunction that the map (πA)∗ηsπ∗A can
be identified with s∗ : HomB(A,−)→ HomB(B,−). Now if p : P → A is any map, the unique morphism
p → idB/A

in B/A is the pullback of π∗A(πA)!p → π∗A(πA)!1B/A
along the unit 1B/A

→ π∗A(πA)!1B/A
.

Together with naturality of ηs, this implies that the map (πA)∗ηs(p) fits into a commutative diagram

s∗s
∗(πA)∗(p) HomB(B,P )

(πA)∗(p) HomB(A,P )

1 HomB(B,A)

1 HomB(A,A)

p∗

(πA)∗ηs(p) s∗

s

idA

p∗

s∗

in which the front and the back square are pullbacks. As the fibre of

p∗ : HomB(B,P )→ HomB(B,A)

over s can be identified with HomB(B, s∗P )/B , the claim follows. □

Proof of Proposition 5.1.2.4. Let ι : I ↪→ I◁ be the inclusion. Since CatB is complete, the theory
of Kan extensions gives rise to an adjunction

(ι∗ ⊣ ι∗) : FunB(I◁,CatB) ⇆ FunB(I,CatB),

see § 3.3.3. Given any diagram h : I◁ → CatB, we will let h = ι∗h, and we denote by ηh : h → ι∗h the
adjunction unit. Now let us set h = C/d(−), so that we get h = C/d(−). Furthermore, let p : P → I▷ be
the pullback of d0 : C∆1 → C along d, and let q : Q→ I be the pullback of d0 along d. According to [61,
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Proposition 7.1.2] and Lemma 5.1.2.6 (applied to the ∞-topos B+
∆ and the map ι♯), the canonical map

lim ηh : lim h→ lim ι∗h can be identified with the functor

(∗) HomB+
∆

((I▷)♯,P♮)/(I▷)♯ |∆ → HomB+
∆

(I♯,Q♮)/I♯ |∆

that is induced by precomposition with the inclusion ι : I ↪→ I▷. As C/− preserving the limit of d is
therefore equivalent to (∗) being an equivalence, we only need to identify this map with the functor
FunB(I▷,C)cart

/d
→ FunB(I,C)cart

/d .
To see this, first note that there is an equivalence HomB+

∆
((−)♭,−)|∆ ≃ FunB(−, (−)|∆). Therefore,

we obtain a commutative diagram

HomB+
∆

((I▷)♯,P♮)/(I▷)♯ |∆ HomB+
∆

((I▷)♯,P♮)|∆ HomB+
∆

((I▷)♯, (C∆1)♮)|∆

FunB(I▷,C)/d FunB(I▷,P) FunB(I▷,C∆1)

1 FunB(I▷, I▷) FunB(I▷,C)idI▷ d∗

in which the upper three vertical maps are induced by precomposition with the canonical map (I▷)♭ → (I▷)♯.
By Lemma 5.1.2.5, they are fully faithful. Furthermore, all but the upper right square are pullbacks.
But since the map (I▷)♭ → (I▷)♯ is internally right orthogonal to every map that is contained in the
image of (−)♯ : B∆ ↪→ B+

∆, it must also be internally right orthogonal to P♮ → (C∆1)♮ as the latter
is the pullback of d♯. Therefore, the upper right square must also be a pullback. Note, furthermore,
that since the map (−)♭ → (−)♯ is an equivalence when restricted along the inclusion B ↪→ B∆, the
upper right inclusion in the above diagram identifies the domain with the essential image of the map
HomB+

∆
(I▷, (C∆1)♯) ↪→ HomB+

∆
(I▷,C∆1). Therefore, Lemma 5.1.2.3 implies that there is an equivalence

HomB+
∆

((I▷)♯,P♮)/(I▷)♯ |∆ ≃ FunB(I▷,C)cart
/d

. By an analogous argument, one obtains an equivalence
HomB+

∆
(I♯,Q♮)/I♯ |∆ ≃ FunB(I,C)cart

/d , hence the claim follows. □

Remark 5.1.2.7. In the situation of Proposition 5.1.2.4, let ∞ : 1→ I◁ be the cone point, and let

(∞∗ ⊣ ∞∗) : FunB(I◁,CatB) ⇆ Cat

be the induced adjunction. Let η : idFun
B

(I◁,CatB) →∞∗∞∗ be the adjunction unit. By the same argument
as in the proof of Proposition 5.1.2.4, evaluating limI◁ η at the cone C/d recovers the restriction map

FunB(I▷,C)cart
/d
→ C/c.

Since limI◁ can be identified with ∞∗ (owing to ∞ : 1 → I◁ being initial), the triangle identities imply
that this map must be an equivalence. Furthermore, note that by Corollary 3.1.7.6 the restriction functor
FunB(I▷,C)/d → C/c admits a right adjoint that is is given by the composition

C/c
diag/c−−−−→ FunB(I▷,C)/ diag(c)

η∗−→ FunB(I▷,C)/d
(where η : d → diag(c) denotes the adjunction unit). Now if c′ → c is a map in C, Corollary 3.1.7.5
implies that the counit η!η

∗ diag(c′) → diag(c′) of the adjunction η! ⊣ η∗ is given by the pullback of η
along diag(c′)→ diag(c). Since evaluation at ∞ preserves pullbacks and since diag/c is fully faithful, we
conclude that evaluating the counit of the adjunction C/c ⇆ FunB(I▷,C)/d at c′ → c must result in an
equivalence. Upon replacing B with B/A and repeating the same argument, we conclude that the entire
counit must be an equivalence, so that the functor C/c → FunB(I▷,C)/d is fully faithful. Now combining
the evident observation that this map takes values in FunB(I▷,C)cart

/d
with the fact that the restriction

functor FunB(I▷,C)cart
/d
→ C/c is an equivalence, one concludes that the inclusion C/c ↪→ FunB(I▷,C)/d

identifies C/c with FunB(I▷,C)cart
/d

. In particular, the inclusion FunB(I▷,C)cart
/d

↪→ FunB(I▷,C)/d admits a
left adjoint.
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Remark 5.1.2.8. In the situation of Remark 5.1.2.7, let d′ → d be a map in FunB(I▷,C), and let us
set c′ =∞∗(d′). Then the unit of the adjunction C/c ⇆ FunB(I▷,C)/d evaluates at d′ to the natural map
d
′ → η∗ diag(c′). Therefore, the map d

′ → d is cartesian precisely if the square

d
′ diag(c′)

d diag(c)

is a pullback. As the functor (ι∗,∞∗) : FunB(I▷,C)→ FunB(I,C)× C is conservative (on account of the
map (ι,∞) : I ⊔ 1 ↠ I▷ being essentially surjective) and as the image of the above square along ∞∗ is
always a pullback, the map d

′ → d is cartesian precisely if the square

d′ diag(c′)

d diag(c)

in FunB(I,C) is a pullback.

Suppose that U is an internal class of B-categories and let C be a U-cocomplete B-category with
pullbacks. Given any I ∈ U(1) and any diagram d : I→ C with colimit cocone d : I▷ → C, Proposition 3.1.7.1
implies that the functor

ι∗
/d

: FunB(I▷,C)/d → FunB(I,C)/d
has a left adjoint that is given by (ι!)/d. Combining this observation with Remark 5.1.2.7, we thus
end up with a left adjoint FunB(I,C)cart

/d → FunB(I▷,C)cart
/d

to the restriction functor FunB(I▷,C)cart
/d
→

FunB(I,C)cart
/d that we will refer to as the glueing functor. In light of Proposition 5.1.2.4, the functor C/−

preserves the limit of d precisely if both unit and counit of this adjunction are equivalences, i.e. if both
the restriction functor and the glueing functor are fully faithful. We may therefore split up the notion of
U-descent into two separate conditions:

Definition 5.1.2.9. Let U be an internal class and let C be a U-cocomplete B-category with pullbacks.
We say that C has faithful U-descent if for every A ∈ B, every I ∈ U(A) and every diagram d : I→ π∗AC
with colimit cocone d : I▷ → π∗AC, the restriction functor FunB/A

(I▷, π∗AC)cart
/d
→ FunB/A

(I, π∗AC)cart
/d is fully

faithful. We say that C has effective U-descent if for every A ∈ B, every I ∈ U(A) and every diagram
d : I→ π∗AC with colimit cocone d : I▷ → π∗AC, the glueing functor FunB/A

(I, π∗AC)cart
/d → FunB/A

(I▷, π∗AC)cart
/d

is fully faithful. If C is a cocomplete large B-category, we simply say that C has faithful/effective descent
if it has faithful/effective CatB-descent.

Remark 5.1.2.10. As a consequence of Remark 5.1.2.2, the property of C having faithful/effective
U-descent is local in B, in the sense that whenever

⊔
iAi ↠ 1 is a cover in B, the B-category C

satisfies faithful/effective U-descent precisely if for each i the B/Ai
-category π∗Ai

C has faithful/effective
π∗Ai

U-descent.

By unwinding how the unit and counit of the adjunction FunB(I▷,C)cart
/d

⇆ FunB(I,C)cart
/d are computed

(cf. Remark 3.1.7.4) and by using Remark 5.1.2.8, we may characterise the notion of faithful and effective
U-descent as follows:

Proposition 5.1.2.11. Let U be an internal class and let C be a U-cocomplete B-category with
pullbacks. Then the following are equivalent:

(1) C has faithful U-descent;
(2) for every A ∈ B, every I ∈ U(A) and every cartesian map d′ → d in FunB/A

(I▷, π∗AC) in which d
is a colimit cocone, d′ is a colimit cocone as well;
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(3) for every A ∈ B, every I ∈ U(A) and every pullback diagram

d′ diag(c′)

d diag colim d

diag(g)
η

in FunB/A
(I, π∗AC) in which η is the unit of the adjunction colim ⊣ diag, the transpose map

colim d′ → c′ is an equivalence. □

Proposition 5.1.2.12. Let U be an internal class and let C be a U-cocomplete B-category with
pullbacks. Then the following are equivalent:

(1) C has effective U-descent;
(2) for every A ∈ B, every I ∈ U(A) and every cartesian map d′ → d in FunB/A

(I, π∗AC), the induced
map between colimit cocones d′ → d is cartesian as well;

(3) for every A ∈ B, every I ∈ U(A) and every cartesian map d′ → d in FunB/A
(I, π∗AC), the

naturality square
d′ diag(colim d′)

d diag colim d

η

η

is a pullback. □

Corollary 5.1.2.13. Let S be a local class of maps in B and let C be an ΩS-cocomplete B-category
with pullbacks. Then the following are equivalent:

(1) C has ΩS-descent;
(2) for every map p : P → A in S the functor p! : C(P )→ C(A) is a right fibration;
(3) for every map p : P → A in S the functor (p!)/1C(P ) : C(P )→ C(A)/p!(1C(P )) is an equivalence.

Proof. Since (p!)/1C(P ) is always final, this functor is an equivalence if and only if it is a right
fibration, which is in turn equivalent to p! being a right fibration. Hence (2) and (3) are equivalent
conditions. Now in light of the adjunction p! ⊣ p∗, a map f : c′ → c in C(P ) is cartesian with respect to
p! precisely if the naturality square

c′ p∗p!c
′

c p∗p!c

f p∗p!f

is a pullback. Therefore, Proposition 5.1.2.12 and the fact that every map of diagrams indexed by a
B-groupoid is cartesian imply that C has effective ΩS-descent if and only if for every map p : P → A in S,
every morphism in C(P ) is cartesian with respect to p!. By the same observation, Proposition 5.1.2.11
shows that C has faithful ΩS-descent if and only if for every map p : P → A in S, every object c ∈ C(P )
and every morphism g : c′′ → p!(c) in C(A), the pullback of p∗(g) along the adjunction unit c → p∗p!c

defines a cartesian lift of g. In other words, C has faithful ΩS-descent if and only if p! is a cartesian
fibration. Hence (1) and (2) are equivalent. □

For the next corollary, recall from § 4.2.1 that if K is a class of ∞-categories and S is a local class of
morphisms in B, we denote by Cat⟨K,S⟩B the left regularisation of the internal class LConstK ∪ΩS , i.e. the
smallest internal class that contains ∆ ∪ LConstK ∪ΩS and that is closed under LConstop(K) ∪ΩS-colimits
in CatB (where op(K) is the image of K under the equivalence (−)op : Cat∞ ≃ Cat∞). We now obtain:

Corollary 5.1.2.14. Let K be a class of ∞-categories and let S be a local class of maps in B. Let C
be a Cat⟨K,S⟩B -cocomplete B-category with pullbacks. Then CatB satisfies Cat⟨K,S⟩B -descent if and only if

(1) for all A ∈ B the ∞-category C(A) satisfies K-descent, and
(2) for every map p : P → A in S the functor p! is a right fibration.
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Proof. By Proposition 4.1.3.4, the B-category C has Cat⟨K,S⟩B -descent precisely if it satisfies both
LConstK- and ΩS-descent. By Example 5.1.1.7 the first condition is equivalent to (1), and by Corol-
lary 5.1.2.13 the second one is equivalent to (2). □

Example 5.1.2.15. Let S be a local class of morphisms in B that is closed under pullbacks in
Fun(∆1,B) and that is left cancellable, i.e. satisfies the condition that whenever there is a composable
pair of morphisms f and g in B for which g is contained in S, then gf is contained in S if and only if f
is. Then the associated subuniverse ΩS ↪→ Ω is closed under pullbacks and under ΩS-colimits, and for
every map s : B → A in S the functor s! : ΩS(B)→ ΩS(A) is a right fibration. Hence ΩS has ΩS-descent.
These conditions are for example satisfied if S is the right complement of a factorisation system.

5.1.3. Universality of colimits. The goal of this section is to establish that the notion of faithful
U-descent is equivalent to universality of U-colimits:

Definition 5.1.3.1. Let U be an internal class of B-categories and let C be a U-cocomplete B-category
with pullbacks. We say that U-colimits are universal in C if for every map f : c → d in C in context
A ∈ B the functor f∗ : C/d → C/c is π∗AU-cocontinuous. If C is a cocomplete large B-category, we simply
say that colimits are universal in C if CatB-colimits are universal in C.

Remark 5.1.3.2. In the situation of Definition 5.1.3.1, note that by Corollary 3.2.2.11 the B/A-
category C/c ≃ (π∗AC)/c̄ (where c̄ : 1→ π∗AC is the transpose of c) is π∗AU-cocomplete for every c : A→ C.
Therefore, asking for f∗ to be π∗AU-cocontinuous makes sense.

Remark 5.1.3.3. The condition that U-colimits are universal in C is local in B: if
⊔
iAi ↠ 1 is a

cover in B, then U-colimits are universal in C if and only if π∗Ai
U-colimits are universal in π∗Ai

C for each i.
This is easily seen using the fact that U-cocontinuity is a local condition by Remark 3.2.2.3.

Example 5.1.3.4. Let K be a class of ∞-categories and let C be an LConstK-cocomplete B-category
with pullbacks. Then LConstK-colimits are universal in C if and only if K-colimits are universal in C(A)
for all A ∈ B. In fact, this follows immediately from the observation that for every map f : c → d

in C in context A ∈ B and for every map s : B → A in B the functor f∗(B) can be identified with
(s∗f)∗ : C(B)/d → C(B)/c.

Proposition 5.1.3.5. Let U be an internal class of B-categories and let C be a U-cocomplete B-category
with pullbacks. Then U-colimits are universal in C if and only if C has faithful U-descent.

Proof. Let I be an object in U(1), and let f : c′ → c be an arbitrary map in C in context 1 ∈ B.
Suppose that d : I→ C/c is a diagram with colimit cocone d : d→ diag colim d, which we may equivalently
regard as a diagram d : I → C/ colim d. Let g : colim d → c be the induced map. On account of the fact
that the (vertical) mate of the commutative square

C/f∗(colim d) C/c′

C/ colim d C/c

(f∗(g))!

(g∗f)! f!

g!

commutes and since the horizontal maps in this diagram are conservative and U-cocontinuous, the functor
f∗ preserves the colimit of d if and only if the functor (g∗f)∗ preserves the colimit of d : I→ C/ colim d. By
(the proof of) Proposition 3.1.6.3, the colimit of the latter is the final object in C/ colim d. Therefore, in
order to show that C has U-universal colimits, it suffices to consider those diagrams in C/c whose colimit
is the final object.
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Now on account of the commutative square

FunB(I,C)/ diag(c′) FunB(I,C/c′)

FunB(I,C)/ diag(c) FunB(I,C/c)

diag(f)!

≃

(f!)∗

≃

we may identify diag(f)∗ with (f∗)∗. Therefore, if d→ diag(c) is a colimit cocone, the upper horizontal
equivalence in the above diagram identifies its pullback d′ → diag(c′) along diag(f) with the composition
I d−→ C/c

f∗−→ C/c′ . Thus, by again using Proposition 3.1.6.3, the map d′ → diag(c′) is a colimit cocone
if and only if the colimit of f∗d is the final object in C/c′ , which is in turn equivalent to f∗ preserving
the colimit of d. As replacing B with B/A allows us to arrive at the same conclusion for any I ∈ U(A),
Proposition 5.1.2.11 yields the claim. □

Example 5.1.3.6. Let S be a local class of morphisms in B and let C be a ΩS-cocomplete B-category
with pullbacks. Then ΩS-colimits are universal in C if and only if for every map p : P → A in S the
functor p! : C(P )→ C(A) is a cartesian fibration. In fact, in light of Proposition 5.1.3.5 this follows from
the argument in the proof of Corollary 5.1.2.13.

We end this section by relating universality of colimits with the property of being locally cartesian
closed:

Proposition 5.1.3.7. Let X be a presentable B-category. Then X has Ω-universal colimits if and
only if for every object x : A→ X, the B/A-category (π∗AX)/x is cartesian closed, which is to say that there
exists a bifunctor Homπ∗

A
X(−,−) : (π∗AX)op

/x × (π∗AX)/x → (π∗AX)/x that fits into an equivalence

map(π∗
A

X)/x
(−×−,−) ≃ map(π∗

A
X)/x

(−,Homπ∗
A

X(−,−)).

Proof. It will be enough to show that X is cartesian closed if and only if for every y : A→ X the
functor (πy)∗ : π∗AX→ (π∗AX)/y is ΩB/A

-cocontinuous. Using Remark 5.1.3.3, we can assume that A ≃ 1.
Recall that the forgetful functor (πy)! : X/y → X is Ω-cocontinuous (Corollary 3.2.2.11). As this functor is
moreover a right fibration and therefore in particular conservative, we find that π∗y is Ω-cocontinuous
if and only if the composition (πy)!π

∗
y is. Together with Proposition 3.1.7.3, this shows that π∗y being

Ω-cocontinuous is equivalent to y×− being Ω-cocontinuous. As X is presentable, this is in turn equivalent
to y ×− having a right adjoint HomX(y,−) (see Proposition 4.4.3.1). Clearly, this holds if X is cartesian
closed. Conversely, if y ×− admits a right adjoint for all y : A→ X, then mapX(−×−,−), viewed as a
functor Xop×X→ PShB(X), takes values in X ↪→ PShB(X) and therefore gives rise to the desired internal
hom. □

5.1.4. Disjoint colimits. If C is an ∞-category with pullbacks and finite coproducts, one says that
a coproduct c0 ⊔ c1 in C is disjoint if the fibre product ci ×c0⊔c1 cj is equivalent to ci if i = j and the
initial object otherwise. In this section, our goal is to study an internal analogue of this concept. In
fact, we will define what it means for arbitrary B-groupoidal colimits to be disjoint. To that end, recall
that if S is an arbitrary local class of morphisms in B, the associated subuniverse ΩS is contained in
the free ΩS-cocompletion PShΩS

B (1), see Example 3.4.3.5. Therefore, if C is an arbitrary ΩS-cocomplete
B-category, the tensoring bifunctor

−⊗− : ΩS × C→ C

(see Proposition 3.4.3.8) is well-defined. Furthermore, note that S is closed under diagonals if and only if
for every G ∈ ΩS(A) and every pair of objects g, g′ : A ⇒ G the mapping B/A-groupoid mapG(g, g′) is
contained in ΩS(A) as well. Therefore, we may define:

Definition 5.1.4.1. Let S be a local class of morphisms in B that is closed under diagonals, and
let C be an ΩS-cocomplete B-category with pullbacks. If G ∈ ΩS(1) is an arbitrary object, we say that
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G-indexed colimits are disjoint in C if for all diagrams d : G→ C and for every pair of objects g, g′ in G in
context 1 ∈ B the diagram

mapG(g, g′)⊗ d(g) d(g′)

d(g) colim d

is a pullback. We say that ΩS-colimits are disjoint in C if for all A ∈ B and all G ∈ U(A) all G-indexed
colimits are disjoint in π∗AC.

Remark 5.1.4.2. In the situation of Definition 5.1.4.1, let d : G▷ → C be the colimit cocone associated
with d. Then the commutative square in the definition is obtained by transposing the commutative
diagram

mapG▷(g, g′) mapC(d(g), d(g′))

mapG▷(g,∞) mapC(d(g), colim d)

d

d

across the equivalence mapC(− ⊗ −,−) ≃ mapΩ(−,mapC(−,−)), noting that since ι : G ↪→ G▷ is fully
faithful the upper left corner can be identified with mapG(g, g′) and since ∞ : 1→ G▷ is final the lower
left corner is equivalent to the final object.

Example 5.1.4.3. Let us unwind Definition 5.1.4.1 in the case where B = S and where G = {0, 1}.
Then a diagram d : {0, 1} → C in an ∞-category C is simply given by a pair (c0, c1) of objects in C, and
its colimit is the coproduct c0 ⊔ c1. Furthermore, the square in Definition 5.1.4.1 is explicitly given by

map{0,1}(i, j)× ci cj

ci c0 ⊔ c1

(for i, j ∈ {0, 1}) and is therefore a pullback for all pairs (i, j) precisely if coproducts are disjoint in C in
the usual sense.

Remark 5.1.4.4. The property of ΩS-colimits to be disjoint in C is a local condition. More precisely,
if G ∈ U(1) is an arbitrary object and if

⊔
iAi ↠ 1 is a cover in B, then G-indexed colimits are disjoint

in C if and only if π∗Ai
G-indexed colimits are disjoint in π∗Ai

C for all i. This follows immediately from
the fact that both limits and colimits are determined locally by Remark 3.1.1.8. As a consequence, if
ΩS is generated by a family of objects (Gi : Ai → ΩS)i, then ΩS-colimits are disjoint in C precisely if
Gi-indexed colimits are disjoint in π∗Ai

C for all i.

Example 5.1.4.5. Let S be the local class of morphisms in B that is generated by ∅, 1 and 2 = 1⊔ 1.
Then S is closed under diagonals. By using Remark 5.1.4.4 and Example 5.1.4.3, one finds that ΩS-colimits
are disjoint in C if and only if coproducts are disjoint in C(A) for all A ∈ B.

Example 5.1.4.6. Let G be a finite group. Then BG colimits are disjoint in some ∞-category C if
for any object X ∈ Fun(BG,C) the canonical square

G×X X

X XhG

pr2

mult

in C is a pullback.

The main goal of this section is to show:
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Proposition 5.1.4.7. Let S be a local class of morphisms in B that is closed under diagonals, and
let C be an ΩS-cocomplete B-category with pullbacks in which ΩS-colimits are universal. Then C has
effective ΩS-descent if and only if ΩS-colimits are disjoint.

In order to prove Proposition 5.1.4.7, we will need a more explicit description of the notion of disjoint
ΩS-colimits. The key input is the following construction:

Construction 5.1.4.8. Let S be a local class of morphisms in B that is closed under diagonals, and
let C be an ΩS-cocomplete B-category with pullbacks. Suppose that p : P → A is a map in S, and let
c : P → C be an arbitrary object. Let η : c → p∗p!c be the adjunction unit, and consider the pullback
square

z pr∗1(c)

pr∗0(c) pr∗0 p∗p!(c)

pr∗1(η)
pr∗0(η)

in C(P ×AP ) (where we implicitly identify pr∗0 p∗ ≃ pr∗1 p∗). Note that if ∆p : P → P ×AP is the diagonal
map, the pullback of the above square along ∆p yields the pullback square

c×p∗p!(c) c c

c p∗p!(c)

in C(P ). Therefore, the diagonal map c→ c×p∗p!(c) c transposes to a map δp(c) : (∆p)!(c)→ z.

Proposition 5.1.4.9. Let S be a local class of morphisms in B that is closed under diagonals, and
let C be an ΩS-cocomplete B-category with pullbacks. Then ΩS-colimits are disjoint in C if and only if for
all maps p : P → A and all objects c : P → C the map δp(c) from Construction 5.1.4.8 is an equivalence.

Proof. By identifying p : P → A with a B/A-groupoid G, the object c : P → C corresponds to a
diagram d : G→ π∗AC. Also, the two maps pr0,pr1 : P ×A P ⇒ P correspond to objects g and g′ in G in
context P ×A P . In light of these identifications, the two cospans

pr∗1(c) d(g′)

pr∗0(c) pr∗0 p∗p!(c) d(g) pr∗0 p∗(colim d)

pr∗1(ηP )
pr∗0(ηP )

(in context P ×A P ) are translated into each other. Next, we note that pulling back g and g′ along the
diagonal ∆: P → P ×A P recovers the tautological object τ of G (i.e. the one corresponding to idP ). As
there is a section idτ : P → mapG(τ, τ), we thus obtain a commutative diagram

d(τ)

mapG(τ, τ)⊗ d(τ) d(τ)

d(τ) p∗(colim d)

id

id

in context P . Observe that value of the unit of the adjunction (∆! ⊣ ∆∗) : B/P ⇆ B/P×AP at the final
object precisely recovers the map idτ : P → mapG(τ, τ). As the functor

−⊗ d(τ) : π∗PΩ→ π∗PC

is by construction π∗PU-cocontinuous, one thus finds that the map d(τ) → mapG(τ, τ) ⊗ d(τ) can be
identified with the unit of the adjunction (∆! ⊣ ∆∗) : C(P ) ⇆ C(P ×A P ). But this precisely means
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that the transpose map ∆!d(τ)→ mapG(g, g′)⊗ d(g). must be an equivalence. As d(τ) is simply c, we
therefore find that the two diagrams

∆!(c) pr∗1(c) mapG(g, g′)⊗ d(g) d(g′)

pr∗0(c) pr∗0 p∗p!(c) d(g) pr∗0 p∗(colim d)

pr∗1(η)
pr∗0(η)

are equivalent. To complete the proof, we still need to show that the right square being cartesian is
equivalent to ΩS-colimits being disjoint in C. Certainly, this is a necessary condition since this square
is precisely of the form as in Definition 5.1.4.1 (after identifying pr∗0 p∗(colim d) with colim pr∗0 p∗d and
regarding g and g′ as objects of pr∗0 p∗G in context 1 ∈ B/P×AP ). The converse follows from the observation
that every pair of objects h, h′ : A⇒ G must be a pullback of g and g′, i.e. that the above diagram is the
universal one. □

Proof of Proposition 5.1.4.7. We will freely make use of the setup from Proposition 5.1.4.9.
Therefore, let us fix a map p : P → A in S, and let us denote the unit and counit of the associated
adjunction p! ⊣ p∗ by ηp and ϵp, respectively. We first assume that C has effective ΩS-descent. Choose an
arbitrary object c : P → C and consider the pullback

z pr∗1(c)

pr∗0(c) pr∗0 p∗p!(c)

g

pr∗1(ηp)
pr∗0(ηp)

in C(P ×A P ). By making use of the commutative diagram

pr∗0(c) pr∗1 p∗p!(c)

pr∗1(pr1)! pr∗0(c),

pr∗0 ηpc

ηpr1 pr∗0(c)
pr∗1(α)

(where α is an equivalence owing to C having ΩS-colimits), we may identify the above square with the
pullback square

z pr∗1(c)

pr∗0(c) pr∗1(pr1)! pr∗0(c).

g

pr∗1(αηp)
ηpr1 pr∗0(c)

Since by assumption ΩS-colimits are universal in C, Proposition 5.1.3.5 implies that C has faithful ΩS-
descent. Hence Proposition 5.1.2.11 implies that the transpose (pr1)!(z)→ c of g must be an equivalence.
Together with the commutative diagram

(pr1)!∆!(c) (pr1)!∆!∆∗(z) (pr1)!(z)

c ∆∗(z) c,

≃

(pr1)!(δp(c))

≃

(pr1)!ϵ∆z

id

∆∗(g)

this observation implies that (pr1)!(δp(c)) is an equivalence. But since C has effective and faithful ΩS-
descent, Proposition 5.1.2.13 implies that (pr1)! is a right fibration and therefore in particular conservative.
Hence δp(c) is already an equivalence.
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Conversely, suppose that ΩS-colimits in C are disjoint and let f : c→ d be an arbitrary map in C in
context P . Consider the diagram

c

e p∗p!(c)

d p∗p!(d)

φ

ηP c

f

p∗p!(f)

ηd

in C(P ) in which the square is a pullback. By Proposition 5.1.2.12, the result follows once we show that
φ is an equivalence. We now obtain a pullback diagram

(∗)

x pr∗1(c)

pr∗0(e) pr∗0 p∗p!(c)

y pr∗1(d)

pr∗0(d) pr∗0 p∗p!(d)

in Fun(∆1,C(P ×A P )) in which the front square is obtained by applying pr∗0 to the pullback square in
the previous diagram and the right square is given by applying pr∗1 to the outer square in the previous
diagram. Note that by applying the functor ∆∗ to this cube, we obtain a commutative diagram

c

∆∗(x) c

e p∗p!(c)
d

∆∗(y) d

d p∗p!(d)

id
φ

id
id

in which the cube defines a pullback in Fun(∆1,C(P )). Now by disjointness of ΩS-colimits, the map
∆!(d)→ y must be an equivalence. Since this map fits into a commutative diagram

d ∆∗∆!(c)

∆∗(y)

η′d

≃

(in which η′ denotes the unit of the adjunction ∆! ⊣ ∆∗) and since we have a pullback square

c ∆∗(x)

d ∆∗(y),

the assumption that ΩS-colimits are universal in C and Proposition 5.1.2.11 imply that the transpose
map ∆!(c)→ x is an equivalence as well. By the argument in the beginning of the proof, applied to the
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top square in (∗), the commutative diagram

pr∗1(c) pr∗0 p∗p!(c)

pr∗0(pr0)! pr∗1(c)

pr∗1 ηpc

ηpr0 pr∗1(c)
≃

implies that the map (pr0)!(x) → e is an equivalence too. Taken together, we thus conclude that the
composition

c
≃−→ (pr0)!∆!(c)→ (pr0)!(x)→ e

is an equivalence. By its very construction, this map can be identified with φ, hence the claim follows. □

5.1.5. Effective groupoid objects. In this section we briefly review the notion of groupoid objects
and their relation to descent (as discussed in [57, § 6.1]) in the context of B-category theory.

Definition 5.1.5.1. Let C be a B-category with pullbacks. A groupoid object in C is a functor
G• : ∆op → C such that for all n ≥ 0 and every decomposition ⟨n⟩ ≃ ⟨k⟩⊔⟨0⟩ ⟨l⟩ the map Gn → Gk×G0 Gl

is an equivalence. We denote by Seg≃(C) the full subcategory of FunB(∆op,C) spanned by the groupoid
objects in π∗AC for every A ∈ B.

Definition 5.1.5.2. Let C be a B-category that admits ∆op-indexed colimits and pullbacks. We say
that a groupoid object G• in C is effective if the map G1 → G0 ×colimG• G0 is an equivalence in C. We
denote by Seg≃eff(C) the full subcategory of Seg≃(C) that is spanned by the effective groupoid objects in
π∗AC for every A ∈ B. We say that groupoid objects are effective in C if the inclusion Seg≃eff(C) ↪→ Seg≃(C)
is an equivalence.

Remark 5.1.5.3. Since the property of a map being an equivalence is local in B, it follows immediately
from the definition that an object A→ FunB(∆op,C) is contained in Seg≃(C) if and only if it encodes a
groupoid object in π∗AC, which is in turn equivalent to its transpose ∆op → C(A) being a groupoid object
in the conventional sense. An analogous remark can be made for effective groupoid objects. In particular,
groupoid objects are effective in C if and only if they are effective in C(A) for each A ∈ B.

Let Pos be the 1-category of posets, which we always identify with 0-categories. Observe that the
functor (−)▷ : Pos→ Pos that freely adjoins a final object to a partially ordered set restricts to a functor
(−)▷ : ∆◁ → ∆, and the map idPos ↪→ (−)▷ restricts to a map id∆ → (−)▷ι, where ι : ∆ ↪→ ∆◁ is the
inclusion. By precomposition, we thus obtain a functor (−)+1 : FunB(∆op,C)→ FunB((∆op)▷,C) together
with a morphism ι∗(−)+1 → idFun

B
(∆op,C). Now using Remark 5.1.5.3, one finds:

Proposition 5.1.5.4 ([57, Lemma 6.1.3.7 and Remark 6.1.3.18]). Let C be a B-category that admits
∆op-indexed colimits and pullbacks, and let G• : ∆op → C be a simplicial object. Then G•+1 is a colimit
cocone, and G• is a groupoid object if and only if the morphism of functors ι∗G•+1 → G• is cartesian. □

By combining Proposition 5.1.5.4 with Proposition 5.1.2.12, we conclude:

Corollary 5.1.5.5. Let U be the internal class that is spanned by ∆op : 1→ CatB and let C be a
U-cocomplete B-category with pullbacks that has effective U-descent. Then groupoid objects are effective
in C. □

5.2. Foundations of B-topos theory

In this section we develop the basic theory of B-topoi. We begin in § 5.2.1 by giving an axiomatic
definition of this concept using the notion of descent that has been established in the previous section. By
unwinding the descent condition, we furthermore establish an explicit characterisation of B-topoi in terms
of the underlying Ĉat∞-valued sheaves on B. In § 5.2.2, we construct the free B-topos on an arbitrary
B-category, which we use in § 5.2.3 to establish a characterisation of B-topoi as left exact and accessible
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Bousfield localisations of presheaf B-categories. In § 5.2.4, we make use of this characterisation to show
that the B-category of B-topoi is tensored and powered over CatB. In § 5.2.5, we prove that B-topoi are
entirely determined by their global sections, in the sense that the ∞-category of B-topoi is equivalent to
that of geometric morphisms of ∞-topoi with codomain B. Having this simple description of B-topoi at
our disposal, it is straightforward to construct limits and colimits of B-topoi, which is the topic of § 5.2.6.
Also, we provide an explicit formula for the coproduct of B-topoi in § 5.2.7, which in particular yields a
formula for the pushout in TopL

∞. In § 5.2.8, we discuss a B-categorical version of Diaconescu’s theorem
for B-topoi, from which we deduce a universal property of étale B-topoi in § 5.2.9. Lastly, we discuss
subterminal B-topoi in § 5.2.10, where we derive a general formula for left exact localisations in terms of
internal colimits.

5.2.1. Definition and characterisation of B-topoi. In this section we introduce the notion of a
B-topos and prove several equivalent characterisations of this concept.

Recall from Proposition 4.2.3.5 that a B-category C admits finite limits if and only if for all A ∈ B

the ∞-category C(A) admits finite limits and for each map s : B → A in B the functor s∗ : C(A)→ C(B)
preserves finite limits. Similarly, a functor f : C→ D between such B-categories preserves finite limits
precisely if it does so section-wise. We may now define:

Definition 5.2.1.1. A large B-category X is a B-topos if it is presentable and satisfies descent. A
functor f∗ : X→ Y between B-topoi is called an algebraic morphism if f is cocontinuous and preserves
finite limits. A functor f∗ : Y → X between B-topoi is called a geometric morphism if f∗ admits a left
adjoint f∗ that defines an algebraic morphism.

The large B-category TopL
B of B-topoi is defined as the subcategory of Cat

B̂
that is spanned by the

algebraic morphisms between B/A-topoi, for all A ∈ B. Dually, the large B-category TopR
B of B-topoi

is defined as the subcategory of Cat
B̂

that is spanned by the geometric morphisms between B/A-topoi,
for all A ∈ B. We denote by TopL(B) and TopR(B), respectively, the underlying ∞-categories of global
sections.

If X and Y are B-topoi, we will denote by Funalg
B (X,Y) the full subcategory of FunB(X,Y) that is

spanned by the algebraic morphisms π∗AX→ π∗AY for each A ∈ B. We define the B-category Fungeom
B (Y,X)

of geometric morphisms in the evident dual way.

Remark 5.2.1.2. The fact that both TopL
B and TopR

B are large and not very large follows from
Remark 4.4.4.3.

Remark 5.2.1.3. The subobject of (Cat
B̂

)1 that is spanned by the algebraic morphisms between
B/A-topoi (for each A ∈ B) is stable under composition and equivalences in the sense of Proposition 2.2.2.9.
Since moreover cocontinuity and the property that a functor preserves finite limits are local conditions
by Remark 3.2.2.3 and on account of Remark 5.2.1.8 below, we conclude that a map A → (Cat

B̂
)1 is

contained in (TopL
B)1 if and only if it defines an algebraic morphism between B/A-topoi. In particular, if

X and Y are B/A-topoi, the image of the monomorphism

(∗) mapTopL
B

(X,Y) ↪→ mapCat
B̂

(X,Y)

is spanned by the algebraic morphisms. Moreover, the sheaf associated to TopL
B is given by sending

A ∈ B to the subcategory TopL(B/A) ↪→ Cat(B̂/A), and there is consequently a canonical equivalence
π∗ATopL

B ≃ TopL
B/A

. Analogous observations can be made for the B-category TopR
B.

By the same argument, we have a canonical equivalence π∗AFunalg
B (X,Y) ≃ Funalg

B/A
(π∗AX, π∗AY) for all

B-topoi X and Y and all A ∈ B. Furthermore, by using Corollary 3.1.5.4, we deduce that the inclusion in
(∗) is obtained by applying the core B-groupoid functor to the inclusion of Funalg

B (X,Y) into FunB(X,Y).
Again, analogous observations can be made for geometric morphisms.

By restricting the equivalence CatR
B̂
≃ (CatL

B̂
)op from [61, Proposition 7.2.1], one finds:
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Proposition 5.2.1.4. There is an equivalence (TopL
B)op ≃ TopR

B that acts as the identity on objects
and that carries an algebraic morphism to its right adjoint. □

Let us denote by TopL,ét
∞ the subcategory of TopL

∞ that is spanned by the étale algebraic morphisms (i.e.
those that are of the form π∗U : X→ X/U for some∞-topos X and some U ∈ X). By [57, Theorem 6.3.5.13],
this ∞-category admits small limits, and the inclusion TopL,ét

∞ ↪→ TopL
∞ preserves small limits. The main

goal of this section is to prove the following characterisation of B-topoi:

Theorem 5.2.1.5. For a large B-category X, the following are equivalent:
(1) X is a B-topos;
(2) X satisfies the internal Giraud axioms:

(a) X is presentable;
(b) X has universal colimits;
(c) groupoid objects in X are effective;
(d) Ω-colimits in X are disjoint.

(3) X is Ω-cocomplete and takes values in TopL,ét
∞ ;

(4) X is a TopL,ét
∞ -valued sheaf that preserves pushouts.

Remark 5.2.1.6. It is crucial to include the condition that all Ω-groupoidal colimits are disjoint
into the internal Giraud axioms, instead of just all coproducts. As a concrete example, let κ be an
uncountable regular cardinal and let C ↪→ Cat∞ be the subcategory spanned by the κ-small ∞-categories
and cocartesian fibrations between them. Let us set B = PSh(C) and let X ∈ Cat(B̂) be the large
B-category that is determined by the presheaf PSh(−) : Cop → Ĉat∞. Since X takes values in TopL

∞
and since cocartesian fibrations are smooth [57, Proposition 4.1.2.15], we deduce from Theorem 4.4.2.4,
Remark 5.1.5.3 and Example 5.1.4.5 that X is presentable, has effective groupoid objects and that
coproducts in X are disjoint. Moreover, again by using that cocartesian fibrations are smooth, one easily
finds that X has universal colimits. Yet, the B-category X cannot be a B-topos since the transition
functors are in general not étale.

Before we prove Theorem 5.2.1.5, let us us first record the following immediate consequence:

Corollary 5.2.1.7. The universe Ω is a B-topos. □

Remark 5.2.1.8. As another consequence of Theorem 5.2.1.5, a large B-category X is a B-topos if
and only if there is a cover

⊔
iAi ↠ 1 in B such that for all i the large B/i-category π∗Ai

X is a B/Ai
-topos.

In fact, this most easily follows from part (3) of the theorem, together with the fact that Ω-cocompleteness
can be checked locally by Remark 3.2.2.3.

The proof of Theorem 5.2.1.5 requires the following lemma:

Lemma 5.2.1.9. Let
X Z

Y W

h∗

f∗ g∗

k∗

be a commutative square in TopL
∞, and suppose that h∗ and k∗ are étale. Then the square is a pushout in

TopL
∞ if and only if the mate transformation k!g

∗ → f∗h! is an equivalence.

Proof. As h∗ is étale, we may replace Z with X/U and h∗ with π∗U , where U = h!(1Z). By using [57,
Remark 6.3.5.8], the pushout of π∗U along f∗ is given by the commutative diagram

X X/U

Y Y/f∗(U).

π∗U

f∗ f∗/U

π∗f∗(U)
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It is immediate that the mate of this square is an equivalence, so it suffices to prove the converse. Since
k∗ is étale, we may replace k∗ with π∗V : Y → Y/V , where V = k!(1W). By [57, Remark 6.3.5.7], the
induced map Y/f∗(U) → Y/V is uniquely determined by a morphism V → f∗(U) in Y. Unwinding the
definitions, this map is precisely the value of the mate transformation (πV )!g

∗ → f∗(πU )! at 1X/U
and

therefore an equivalence. Hence the functor Y/f∗(U) → Y/V must be an equivalence as well, which finishes
the proof. □

Proof of Theorem 5.2.1.5. Let X be a B-topos. By combining Propositions 5.1.3.5 and 5.1.4.7
with Corollary 5.1.5.5, we find that X satisfies the internal Giraud axioms, so that (1) implies (2).
If X satisfies the internal Giraud axioms, then X being presentable implies that it is Ω-cocomplete.
Moreover, Examples 5.1.3.4 and 5.1.4.5 together with Remark 5.1.5.3 imply that X(A) satisfies the
∞-categorical Giraud axioms in the sense of [57] for all A ∈ B, so that each X(A) is an ∞-topos. Now
by Propositions 5.1.4.7 and 5.1.3.5, the B-category X has Ω-descent, hence Corollary 5.1.2.13 implies
that for every map s : B → A in B the functor s! is a right fibration. This implies that s∗ is an étale
geometric morphism, hence (3) holds. The equivalence between (3) and (4), on the other hand, is an
immediate consequence of Lemma 5.2.1.9. Finally, if X satisfies condition (3), then X is presentable (see
Theorem 4.4.2.4), hence the claim follows from Corollary 5.1.2.14. □

5.2.2. Free B-topoi. The goal of this section is to construct a partial left adjoint to the forgetful
functor TopL

B ↪→ Cat
B̂

that is defined on the full subcategory CatB ↪→ Cat
B̂

and that carries a B-category
C to the associated free B-topos ΩB [C]. To that end, first note that if Catlex

B ↪→ CatB denotes the
subcategory spanned by the left exact (i.e. FinB/A

-continuous) functors between B/A-categories with
finite limits for all A ∈ B, then the dual of Corollary 3.4.1.15 implies that the inclusion admits a left
adjoint (−)lex : CatB → Catlex

B that carries a B-category C to its free FinB-completion Clex. Moreover,
the same result implies that we have a functor PShB(−) : CatB → PrL

B that is obtained by restricting the
free cocompletion functor Cat

B̂
→ Catcc

B̂
in the appropriate way. By combining these two constructions,

we thus end up with a well-defined functor ΩB [−] = PShB((−)lex) : CatB → PrL
B. Our goal is to show:

Proposition 5.2.2.1. For any B-category C, the large B-category ΩB [C] is a B-topos. Moreover, if
X is another B-topos, precomposition with the canonical map C→ ΩB [C] induces an equivalence

Funalg
B (ΩB [C] ,X) ≃ FunB(C,X)

of B-categories.

The proof of Proposition 5.2.2.1 requires a few preparations and will be given at the end of this
section. For now, let us record a few consequences of this result.

Corollary 5.2.2.2. The functor ΩB [−] takes values in TopL
B and fits into an equivalence

mapTopL
B

(ΩB [−] ,−) ≃ mapCat
B̂

(−,−)

of bifunctors Catop
B ×TopL

B → Ω
B̂

.

Proof. Note that if A ∈ B is an arbitrary object, we deduce from Proposition 3.4.1.11 that the
base change of the canonical map C → ΩB [C] along π∗A can be identified with the canonical map
π∗AC → ΩB/A

[π∗AC]. Thus, in light of Remark 5.2.1.3, the result is an immediate consequence of
Proposition 5.2.2.1. □

Corollary 5.2.2.2 already implies the existence of certain colimits in TopL
B:

Corollary 5.2.2.3. For any diagram d : I→ CatB, the induced cocone ΩB [d(−)]→ ΩB [colim d] is
a colimit cocone in TopL

B.

Proof. Combine Proposition 5.2.2.1 with Proposition 3.1.4.9. □
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By combining Corollary 5.2.2.3 with the evident equivalence 1 ≃ ∅lex, we in particular obtain:

Corollary 5.2.2.4. The universe Ω defines an initial object in TopL
B. □

In light of Corollary 5.2.2.4, we may now define:

Definition 5.2.2.5. Let X be a B-topos. The unique algebraic morphism constX : Ω→ X is referred
to as the constant sheaf functor, and its right adjoint ΓX : X→ Ω is called the global sections functor.

Remark 5.2.2.6. If X is a B-topos, then the global sections functor ΓX is equivalent to mapX(1X,−),
where 1X denotes the final object in X. In fact, since the unique algebraic morphism constX : ΩB → X is
left exact and since mapΩB

(1Ω,−) ≃ idΩ by [62, Proposition 4.6.3], this follows immediately from the
adjunction constB ⊣ ΓB.

We now turn to the proof of Proposition 5.2.2.1. As a first step, we need to establish that presheaf
B-categories are B-topoi:

Proposition 5.2.2.7. For every B-category C, the large B-category PShB(C) is a B-topos.

Proof. Since PShB(C) is presentable, we only need to show that it satisfies descent. Let us first show
that PShB(C) has universal colimits. Let therefore f : F → G be an arbitrary map of presheaves on C in
context A ∈ B. By [62, Lemma 4.7.14], we may replace B with B/A, so that we can assume that A ≃ 1. By
Lemma 3.3.1.5 there are equivalences PShB(C)/F ≃ PShB(C/F ) and PShB(C)/G ≃ PShB(C/G) with respect
to which the functor PShB(C/F )→ PShB(C/G) that corresponds to f! carries the final presheaf on C/F to
the presheaf that classifies the right fibration f! : C/F → C/G. As the functor PShB(C/F )→ PShB(C/G) is
a morphism of right fibrations over PShB(C), this map is uniquely specified by the image of the final
object. We thus conclude that this functor must be equivalent to the functor of left Kan extension along
f! : C/F → C/G. Its right adjoint is simply given by precomposition with f!, which defines a cocontinuous
functor. Hence f∗ : PShB(C)/G → PShB(C)/F must be cocontinuous as well, and we conclude that
PShB(C) has universal colimits.

To conclude the proof, we need to show that PShB(C) has effective descent. By Proposition 5.1.2.12,
this is equivalent to the condition that for every A ∈ B, every small B/A-category I and every cartesian
map d′ → d in FunB/A

(I, π∗APShB(C)), the naturality square

d′ diag(colim d′)

d diag(colim d)

η

η

is a pullback. Upon replacing B by B/A, we may assume without loss of generality A ≃ 1. Moreover,
since limits and colimits in functor B-categories are detected object-wise by Proposition 3.1.3.2, we can
reduce to C ≃ 1. In this case, the result follows from Corollary 5.2.1.7. □

Next, we need to establish an internal analogue of the well-known statement that left exact functors
with values in an ∞-topos are equivalently flat functors [57, Proposition 6.1.5.2]. The key ingredient to
this result is the following lemma:

Lemma 5.2.2.8. Let C be a B-category, let X be a B-topos and let f : C→ X be a functor. Suppose
that the Yoneda extension h!(f) : PShB(C) → X of this functor preserves the limit of every cospan in
PShB(C) (in arbitrary context A ∈ B) that is contained in the essential image of the Yoneda embedding
h : C ↪→ PShB(C). Then h!(f) preserves pullbacks.

Proof. Suppose that
Q P

G F
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is a pullback square in PShB(C). We need to show that the image of this square along (hC)!(f) is a
pullback in X. By combining [62, Lemma 4.7.14] with Remark 3.3.3.2, we may assume without loss of
generality that the above square is in context 1 ∈ B.

Let us first show that the claim is true whenever F is representable by an object c : 1→ C. In this
case, Lemma 3.3.1.5 implies that there is an equivalence PShB(C)/h(c) ≃ PShB(C/c) with respect to which
the composition (h!f)(πh(c))! can be identified with the left Kan extension of f(πc)! along the Yoneda
embedding C/c ↪→ PShB(C/c). Therefore, by replacing C with C/c, one can assume that F ≃ 1PSh

B
(C).

Now the product functor G×− : PShB(C)→ PShB(C) being cocontinuous (by Proposition 5.2.2.7) implies
that the canonical map h!f(G×−)→ h!f(G)× h!f(−) is a morphism between cocontinuous functors.
On account of the universal property of presheaf B-categories, this means that we may further reduce to
the case where H is representable. By the same argument, the presheaf G can also be assumed to be
representable. In this case, the claim follows from the assumption on h!(f).

We now turn to the general case. By Proposition 3.3.1.1, there is a diagram d : I→ PShB(C) such
that F ≃ colim d and such that d takes values in C ↪→ PShB(C). Let us write d for the associated
colimit cocone. In light of the equivalence PShB(C)/F ≃ FunB(I,PShB(C))cart

/d
from Remark 5.1.2.7 and

by identifying the above pullback square with a diagram in PShB(C)/F , we obtain a pullback diagram

q p

g d

in FunB(I▷,PShB(C))cart
/d

. By the above and the fact that limits in functor B-categories can be computed
object-wise by Proposition 3.1.3.2, the composition

FunB(I▷,PShB(C))cart
/d
→ FunB(I,PShB(C))cart

/d

(h!f)∗−−−−→ FunB(I,X)/(h!f)∗d

carries the above pullback diagram of cocones to a pullback and therefore in particular to a diagram in
FunB(I,X)cart

/(h!f)∗d. By using descent in X and in PShB(C) (cf. Proposition 5.2.2.7) together with the fact
that h!(f) is cocontinuous, this implies that the functor (h!f)∗ : FunB(I▷,PShB(C))cart

/d
→ FunB(I▷,X)/d

preserves the above pullback. Upon evaluating the latter at the cone point ∞ : 1→ I▷, we recover the
image of the original pullback square along h!(f), hence the claim follows. □

Proposition 5.2.2.9. Let C be a B-category with finite limits, and let X be a B-topos. Then a functor
f : C→ X preserves finite limits if and only if its left Kan extension h!(f) : PShB(C)→ X preserves finite
limits.

Proof. Since the Yoneda embedding h : C ↪→ PShB(C) preserves finite limits, it is clear that the
condition is sufficient. Conversely, suppose that f preserves finite limits. Since the final object in PShB(C)
is contained in C, it is clear that h!(f) preserves final objects. We therefore only need to show that this
functor also preserves pullbacks, which is an immediate consequence of Lemma 5.2.2.8. □

By combining Proposition 5.2.2.9 with the universal property of presheaf B-categories, Remark 5.2.1.3
and Remark 3.2.3.2, we now conclude:

Corollary 5.2.2.10. For any B-category C with finite limits and any B-topos X, the functor of left
Kan extension along the Yoneda embedding C ↪→ PShB(C) gives rise to an equivalence

Funlex
B (C,X) ≃ Funalg

B (PShB(C),X),

where Funlex
B (C,X) is the full subcategory of FunB(C,X) that is spanned by the left exact functors in

arbitrary context. □

Proof of Proposition 5.2.2.1. Combine Proposition 5.2.2.7 with Corollary 5.2.2.10 and the
universal property of free FinB-completion, see Theorem 3.4.1.13. □
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5.2.3. Presentations of B-topoi. Recall from Definition 4.3.3.4 that if C is a B-category, a
Bousfield localisation L : PShB(C) → D is said to be accessible if the inclusion D ↪→ PShB(C) is FiltU-
cocontinuous for some choice of sound doctrine U (see Definitions 4.1.3.8 and 4.1.2.7). We will say that
the localisation is left exact if L preserves finite limits. The main goal of this section is to prove the
following characterisation of B-topoi:

Theorem 5.2.3.1. A large B-category X is a B-topos if and only if there is a B-category C such that
X arises as a left exact and accessible localisation of PShB(C).

The proof of Theorem 5.2.3.1 relies on the following two lemmas:

Lemma 5.2.3.2. Suppose that
X X/U

Y Z

π∗U

L L′

h∗

is a commutative square in TopL
∞ in which L and L′ are Bousfield localisations. Suppose furthermore

that h∗ admits a left adjoint h! and that the mate transformation φ : h!L
′ → L(πU )! is an equivalence.

Then h∗ is étale.

Proof. We would like to apply [57, Proposition 6.3.5.11], which says that the functor h∗ is étale
precisely if h! is conservative and if for every map f : W → V in Y and every object P ∈ Z/h∗(V ), the
canonical map α : h!(h∗(W )×h∗(V ) P )→W ×V h!(P ) is an equivalence.

Let us begin by showing that h! is conservative. To that end, note that if f : V → W is a map in
X/U such that L(πU )!(f) is an equivalence, then L′(f) is an equivalence. In fact, since the adjunction
unit of (πU )! ⊣ π∗U exhibits f as a pullback of π∗U (πU )!(f), the localisation functor L′ being left exact
implies that L′(f) is a pullback of L′π∗U (πU )!(f) ≃ h∗L(πU )!(f). Since the latter is an equivalence, the
claim follows. Applying this observation to a map f that is contained in Z and using the assumption that
the mate transformation φ : h!L

′ → L(πU )! is an equivalence, we deduce that h! is indeed conservative.
To conclude the proof, we show that the map α is an equivalence. From the map f : W → V in Y we

obtain a commutative diagram

X/V X/U×V

Y/V Z/h∗(V )

X/W X/U×W

Y/W Z/h∗(W )

(π∗U )/V

f∗

L/V

(π∗Uf)∗

L′
/π∗

U
(V )h∗/V

f∗

(π∗U )/W

L/W L′
/π∗

U
(W )h∗/W

(h∗f)∗

in TopL
∞ in which all of the four maps pointing to the right admit a left adjoint. Note that α being

an equivalence for all P ∈ Z/h∗(V ) precisely means that the front square is left adjointable (i.e. has an
invertible mate transformation). Now since the mate φ : h!L

′ → L(πU )! is by assumption an equivalence,
it follows that both the top and the bottom square in the above diagram are left adjointable. Since π∗U is
an étale algebraic morphism, the back square is left adjointable as well. Therefore, by combining the
functoriality of the mate construction with the fact that the four maps in the above diagram pointing to
the front are localisation functors and thus in particular essentially surjective, we conclude that the front
square must be left adjointable as well, as desired. □

Lemma 5.2.3.3. Let D be a presentable B-category. Then there exists a sound doctrine U such that D
is U-accessible and DU -cpt is closed under finite limits in D.
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Proof. Since D is presentable, there exists a B-category C and a sound doctrine U such that D
arises as a U-accessible Bousfield localisation of PShB(C) (cf. Theorem 4.4.2.4). In particular, for every
sound doctrine V that contains U, the B-category D is V-accessible (Corollary 4.3.3.3). Therefore, for
any cardinal κ we can always find a B-regular cardinal τ ≥ κ such that D is CatτB-accessible. By
Remark 4.2.2.5, we can always choose τ such that τ ≫ κ. Now D being presentable implies that D is
section-wise accessible (Theorem 4.4.2.4). Therefore, if G ↪→ B is a small generating subcategory, we may
find a regular cardinal κ such that D(G) is κ-accessible for all G ∈ G. Let us choose a B-regular cardinal
τ ≫ κ such that

(1) G is contained in Bτ -cpt;
(2) D is CatτB-accessible;
(3) D(G)κ -cpt is τ -small for all G ∈ G.

Then [57, Proposition 5.4.7.4] implies that the inclusion D(G)τ -cpt ↪→ D(G) is closed under finite limits
for all G ∈ G. Recall from [62, Corollary 4.6.8] that for every object d : A → D the mapping functor
mapD(A)(d,−) can be identified with the composition

D(A) mapD(d,−)(A)−−−−−−−−−→ B/A
ΓB/A−−−→ S.

By combining this observation with Proposition 4.3.2.4 and the fact that B is generated by G, we find
that for any G ∈ G an object d : G→ D is contained in DCatτ

B -cpt if and only if for every H ∈ G and every
map s : H → G the object s∗(d) ∈ D(H) is contained in D(H)τ -cpt. Since s∗ commutes with limits, this
implies that the inclusion DCatτ

B -cpt ↪→ D is closed under finite limits. □

Proof of Theorem 5.2.3.1. Suppose that X is a left exact and U-accessible localisation of PShB(C),
and let us show that X is a B-topos. We would like to apply Theorem 5.2.1.5. First, note that by
choosing a B-regular cardinal κ such that U ↪→ CatκB, we may assume that X is a CatκB-accessible Bousfield
localisation of PShB(C). Therefore, for every A ∈ B the ∞-category X(A) is a κ-accessible and left exact
Bousfield localisation of PShB(C)(A), and since the latter is an ∞-topos by Proposition 5.2.2.7, it follows
that X(A) is an ∞-topos as well. Moreover, if s : B → A is a map in B, the fact that X is a presentable
B-category (see Theorem 4.4.2.4) implies that s∗ : X(A) → X(B) is continuous and cocontinuous and
therefore in particular an algebraic morphism that admits a left adjoint s! : X(B) → X(A). We are
therefore in the situation of Lemma 5.2.3.2 and may thus conclude that s∗ is an étale algebraic morphism.
Theorem 5.2.1.5 thus implies that X is a B-topos.

Conversely, suppose that X is a B-topos. Then X is presentable, hence Lemma 5.2.3.3 implies that there
exists a sound doctrine U such that X is U-accessible and XU -cpt is closed under finite limits in X. Then
we may identify X ≃ IndU

B(XU -cpt), and since X is cocomplete the induced inclusion X ↪→ PShB(XU -cpt)
admits a left adjoint L : PShB(XU -cpt)→ X which is obtained as the left Kan extension of the inclusion
XU -cpt ↪→ X (see Corollary 3.4.1.14). By Proposition 5.2.2.9, the functor L is left exact, hence the claim
follows. □

Corollary 5.2.3.4. For any B-topos X and any B-category D, the functor B-category FunB(D,X) is
again a B-topos.

Proof. Choose a left exact and accessible Bousfield localisation L : PShB(C) → X. Then the
postcomposition functor L∗ : PShB(C×Dop)→ FunB(D,X) is again an accessible and left exact Bousfield
localisation, hence the claim follows. □

Corollary 5.2.3.5. A large B-category X is a B-topos if and only if there is a B-category C and a
left exact and accessible Bousfield localisation L : ΩB [C]→ X.

Proof. By Theorem 5.2.3.1, it suffices to show that every presheaf B-topos arises as a left exact and
accessible Bousfield localisation of a free B-topos. But if C is a B-category, the fact that i : C ↪→ Clex is
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fully faithful implies that i∗ : PShB(C) ↪→ ΩB [C] is fully faithful as well (see the dual of Theorem 3.3.3.5),
hence i∗ is a left exact and accessible Bousfield localisation. □

Corollary 5.2.3.6. Any B-topos X is a pushout of free B-topoi.

Proof. By Corollary 5.2.3.5, we may choose a small B-category C and a left exact and accessible
Bousfield localisation L : ΩB [C] → X. We can therefore find a small subcategory W ↪→ ΩB [C] such
that L induces an equivalence LocW(ΩB [C]) ≃ X (see Theorem 4.4.2.4). Note that a functor X → Y
between B-topoi is an algebraic morphism if and only if its precomposition with L is one (this is easily
deduced from Remark 5.2.1.3 and the explicit computation of colimits in a Bousfield localisation, see
Proposition 3.1.2.12). Therefore, by combining Corollary 4.4.3.2 with Proposition 5.2.2.1, we deduce that
the induced square

ΩB [W] ΩB [C]

ΩB

[
Wgpd]

X

is a pushout in TopL(B). □

5.2.4. The Cat
B̂

-enrichment of TopL
B. Recall from Proposition 3.1.5.2 that Cat

B̂
is cartesian

closed, i.e. that forming functor B-categories defines a bifunctor FunB(−,−) : Catop
B̂
×Cat

B̂
→ Cat

B̂

and therefore in particular a bifunctor (TopL
B)op × TopL

B → Cat
B̂

. Let p : P → (TopL
B)op × TopL

B be
the unstraightening of the latter (in the sense of [61]). Explicitly, an object A → P is given by a
functor π∗AX → π∗AY between B/A-topoi. Let Q ↪→ P be the full subcategory that is spanned by
those objects that correspond to algebraic morphisms. By Lemma 5.2.4.1 below, the induced functor
q : Q → (TopL

B)op × TopL
B is a cocartesian fibration as well and therefore classified by a bifunctor

Funalg
B (−,−) : (TopL

B)op × TopL
B → Cat

B̂
.

Lemma 5.2.4.1. Let p : P → C be a cocartesian fibration of B-categories. Let Q ↪→ P be a full
subcategory such that for each map f : c → d in C in context A ∈ B the induced functor f! : P|c → P|d
restricts to a functor Q|c → Q|d. Then the induced functor q : Q→ C is a cocartesian fibration as well,
and the inclusion Q ↪→ P is a cocartesian functor.

Proof. It will be enough to show that for any cocartesian lift φ : x → y of f in P in which x is
contained in Q|c, the object y is contained in Q|d. This immediately follows from the assumptions. □

Definition 5.2.4.2. We define the functor of B-points as the functor PtB = Funalg
B (−,Ω) : TopR

B →
Cat

B̂
.

Recall that by Corollary 5.2.3.4, if C is a B-category and X is a B-topos, then XC = FunB(C,X) is
a B-topos as well. Moreover, as precomposition and postcomposition preserves all limits and colimits,
the bifunctor FunB(−,−) restricts to a bifunctor (−)(−) : Catop

B ×TopL
B → TopL

B which we refer to as the
powering of TopL

B over CatB. This terminology is justified by the following proposition:

Proposition 5.2.4.3. The powering bifunctor (−)(−) fits into an equivalence

mapTopL
B

(−, (−)(−)) ≃ mapalg
Cat

B̂

(−,FunB(−,−)).

Proof. If C is a B-category and X and Y are B-topoi, then Lemma 4.6.1.3 and its dual imply that
a functor X → YC defines an algebraic morphism if and only if the transpose functor C → FunB(X,Y)
takes values in Funalg

B (X,Y). By replacing B by B/A (which is made possible by Remark 5.2.1.3 and [62,
Lemma 4.2.3]) , one obtains that the same is true for any object A→ Catop

B ×(TopL
B)op × TopL

B. Hence,
the equivalence

mapCat
B̂

(i(−),FunB(−,−)) ≃ mapCat
B̂

(−,FunB(i(−),−))

of functors Catop
B ×Catop

B̂
×Cat

B̂
→ Ω

B̂
(where i : CatB ↪→ Cat

B̂
is the inclusion) restricts in the desired

way. □
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Corollary 5.2.4.4. The functor of B-points Pt is a partial right adjoint of the functor

Ω(−) : CatB → TopR
B,

in the sense that there is an equivalence

mapTopR
B

(Ω(−),−) ≃ mapCat
B̂

(−,Pt(−))

of functors Catop
B ×TopR

B → Ω
B̂

. □

In light of Corollary 5.2.4.4, it is reasonable to define:

Definition 5.2.4.5. If C is a B-category, we refer to the B-topos Cdisc = ΩC as the discrete B-topos
associated with C.

Lastly, we note that the large B-category TopL
B is also tensored over CatB:

Proposition 5.2.4.6. There is a bifunctor −⊗− : CatB×TopL
B → TopL

B that fits into an equivalence

mapTopL
B

(−⊗−,−) ≃ mapTopL
B

(−, (−)(−))

of functors Catop
B ×(TopL

B)op × TopL
B → Ω

B̂
.

Proof. As an immediate consequence of the constructions, if C and D are B-categories, we obtain a
chain of equivalences

mapTopL
B

(ΩB [C] , (−)D) ≃ mapCat
B̂

(C,FunB(D,−)) ≃ mapCat
B̂

(C× D,−) ≃ mapTopL
B

(ΩB [C× D] ,−),

which implies that the functor mapTopL
B

(X, (−)D) is representable whenever X is in the image of ΩB [−].
But since every B-topos is a pushout of such B-topoi (see Corollary 5.2.3.6), this functor must be
representable for any B-topos X. As by Remark 5.2.1.3 the same argument shows that this is the case for
every object X : A→ TopL

B and every B/A-category D, the result follows. □

5.2.5. Relative ∞-topoi as B-topoi. By Theorem 5.2.1.5 and the evident fact that an algebraic
morphism between B-topoi induces an algebraic morphism of ∞-topoi upon taking global sections, we
obtain a functor Γ: TopL(B)→ TopL

∞. By making use of the fact that the universe Ω is an initial object
in TopL(B) (Corollary 5.2.2.4), this functor factors through the projection (TopL

∞)B/ → TopL, so that we
end up with a functor

Γ: TopL(B)→ (TopL
∞)B/.

The main goal in this section is to prove:

Theorem 5.2.5.1. The global sections functor Γ: TopL(B) → (TopL
∞)B/ is an equivalence of ∞-

categories.

Remark 5.2.5.2. Theorem 5.2.5.1 implies that the datum of a B-topos X is equivalent to that of a
geometric morphism f∗ : X→ B. We will refer to the latter as the geometric morphism that is associated
with X.

Remark 5.2.5.3. One can describe the inverse to the equivalence Γ: TopL(B) ≃ (TopL
∞)B/ from

Theorem 5.2.5.1 explicitly as follows: Given any algebraic morphism f∗ : B → X, recall that we get
an induced functor f∗ : Cat(X̂) → Cat(B̂). Then Theorem 5.2.1.5 easily implies that the large B-
category X = f∗ΩX is a B-topos (since the associated sheaf on B is simply given by X/f∗(−)). Moreover,
the functor f∗ induces a map B/− → X/f∗(−) of sheaves on B that recovers the unique algebraic
morphism constX : ΩB → X. This implies that X is the image of f∗ : B→ X under the equivalence from
Theorem 5.2.5.1.

The proof of Theorem 5.2.5.1 requires a few preparations. We begin with the following lemma:
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Lemma 5.2.5.4. Let C be an ∞-category with an initial object ∅C, and let D be an ∞-category that
admits pushouts. Then the evaluation functor ev∅C

: Fun(C,D)→ D is a cocartesian fibration. Moreover,
a morphism φ : F → G in Fun(C,D) is cocartesian if and only if for every map f : c→ c′ in C the induced
commutative square

F (c) G(c)

F (c′) G(c′)

α(c)

F (f) G(f)
α(c′)

is a pushout in D.

Proof. Note that the diagonal functor diag : D→ Fun(C,D) defines a left adjoint to ev∅C
. Therefore,

we deduce from [38, Proposition 4.51] that a map α : F → G in Fun(C,D) is cocartesian if and only if for
every c ∈ C the square

F (∅C) G(∅C)

F (c) G(c)

α(∅C)

α(c)

is a pushout in D. The assumption that D admits pushouts guarantees that there are enough such
cocartesian maps, see [38, Corollary 4.52]. □

By Lemma 5.2.5.4, the global sections functor Γ: PShTopL
∞

(B)→ TopL
∞ is a cocartesian fibration and

therefore induces a left fibration Γ: PShTopL
∞

(B)cocart → TopL
∞, where PShTopL

∞
(B)cocart ↪→ PShTopL

∞
(B)

is the subcategory that is spanned by the cocartesian morphisms. Moreover, observe that by Theo-
rem 5.2.1.5 we may regard the ∞-category TopL(B) as a (non-full) subcategory of PShTopL

∞
(B). Now the

key step towards the proof of Theorem 5.2.5.1 consists of the following proposition:

Proposition 5.2.5.5. The (non-full) inclusion TopL(B) ↪→ PShTopL
∞

(B) fits into a commutative
diagram

TopL(B) PShTopL
∞

(B)cocart

PShTopL
∞

(B)

in which the horizontal map is fully faithful. Moreover, if X is a B-topos and if X → F is a map in
PShTopL

∞
(B)cocart, then F is contained in TopL(B).

Proof. If f∗ : X→ Y is an algebraic morphism between B-topoi, Lemma 5.2.1.9 and the fact that
f∗ is cocontinuous imply that for every map s : B → A in B the induced commutative square

X(A) Y(A)

X(B) Y(B)

f∗(A)

s∗ s∗

f∗(B)

is a pushout in TopL
∞. By Lemma 5.2.5.4, this means that the underlying map of TopL

∞-valued presheaves
on B defines a cocartesian morphism over TopL

∞. Hence the inclusion TopL(B) ↪→ PShTopL
∞

(B) factors
through the inclusion PShTopL

∞
(B)cocart ↪→ PShTopL

∞
(B). To finish the proof, it now suffices to show that

for any cocartesian morphism f : X→ F of TopL
∞-valued presheaves on B, the presheaf F is contained in

TopL(B) and the map f defines an algebraic morphism of B-topoi. Since f is a cocartesian morphism and
since étale algebraic morphisms are closed under pushouts in TopL

∞, we find that for every s : B → A in B

the induced functor s∗ : F (A)→ F (B) is an étale algebraic morphism of ∞-topoi. Moreover, the pasting
lemma for pushouts (and the fact that X is a B-topos) imply that F : Bop → TopL,ét

∞ preserves pushouts.
Hence Theorem 5.2.1.5 implies that F must be contained in TopL(B) whenever F is a sheaf. But if
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d : I → B is an arbitrary diagram, then we deduce from [56, Corollary 4.7.4.18] that the commutative
square

X(colim d) F (colim d)

lim X ◦ d limF ◦ d
is left adjointable and therefore a pushout in TopL

∞, using Lemma 5.2.1.9. Hence, since the left vertical
map is an equivalence, so is the right one, which means that F is a sheaf. Finally, since f is already
section-wise given by an algebraic morphism of ∞-topoi, the map defines an algebraic morphism of
B-topoi precisely if it is Ω-cocontinuous, which again follows from Lemma 5.2.1.9. □

Corollary 5.2.5.6. The global sections functor Γ: TopL(B)→ TopL
∞ is a left fibration.

Proof. By the first part of Proposition 5.2.5.5, every map in TopL(B) is cocartesian. By its second
part, if X is a B-topos and f∗ : Γ(X) → Z is an arbitrary algebraic morphism, the codomain of the
cocartesian lift X→ F of f∗ in PShTopL

∞
(B) is again a B-topos. Hence the claim follows. □

Proof of Theorem 5.2.5.1. By Corollary 5.2.5.6, the global sections functor Γ: TopL(B)→ TopL
∞

is a left fibration, hence so is the functor Γ: TopL(B)→ (TopL
∞)B/. Since this functor carries the initial

object Ω to the initial object idB, it must be an initial functor as well. Hence Γ is an equivalence. □

5.2.6. Limits and colimits of B-topoi. In this section, we discuss how one can construct limits
and colimits in the B-category TopL

B of B-topoi. The construction of limits in TopL
B is rather easy: they

are simply computed in Cat
B̂

. This is analogous to how limits are computed in the B-category PrL
B of

presentable B-categories, cf. Proposition 4.4.4.10. The proof of this statement follows along similar lines
as well.

Proposition 5.2.6.1. The large B-category TopL
B is complete, and the inclusion TopL

B ↪→ Cat
B̂

is
continuous.

Proof. As in the proof of Proposition 4.4.4.10, it will be enough to show that whenever K is either
given by the constant B-category Λ2

0 or by a B-groupoid, the large B-category TopL
B admits K-indexed

limits and the inclusion TopL
B ↪→ Cat

B̂
preserves K-indexed limits.

We begin with the case were K is a B-groupoid. Let us set A = K0. Since (πA)∗ : Cat(B̂/A)→ Cat(B̂)
is given by precomposition with π∗A, Theorem 5.2.1.5 implies that (πA)∗ takes objects in TopL(B/A) to
objects in TopL(B). Furthermore it easily follows from Propositions 3.2.4.2 and 3.2.4.5 that (πA)∗ therefore
defines a functor TopL(B/A) → TopL(B). Moreover, since the adjunction unit idCat(B̂) → (πA)∗π∗A is
given by precomposition with the adjunction counit (πA)!π

∗
A → idB and vice versa for the adjunction

counit, the same argument shows together with the fact that B-topoi are Ω-cocomplete that these two
maps must also restrict in the desired way. Hence (πA)∗ : TopL(B/A)→ TopL(B) defines a right adjoint
of π∗A.

Now let us assume that K = Λ2
0, i.e. let

X ×Z Y Y

X Z

pr1

pr0 g

f

be a pullback square in Cat(B̂) in which the cospan in the lower right corner is contained in TopL(B).
By Proposition 4.4.4.10 this square defines a pullback in PrL(B), and [57, Proposition 6.3.2.3] implies
that both pr0 and pr1 preserve finite limits. Hence the above pullback square is contained in TopL(B)
whenever X ×Z Y satisfies descent. But the codomain fibration (X ×Z Y)∆1 → X ×Z Y can be identified
with the pullback of the cospan pr∗0(X∆1) → pr∗0 f∗(Z∆1) ← pr∗1(Y∆1) of cartesian fibrations over
X ×Z Y, which implies that we may identify (X ×Z y)/− with the pullback X/pr∗0(−) ×Z/pr∗0 f∗(−) Y/pr∗1(−)
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in FunB((X ×Z Y)op,Cat
B̂

). Since all four functors in the initial pullback square are continuous, we
conclude that X ×Z Y satisfies descent provided that continuous functors are closed under pullbacks
in FunB((X×Z Y)op,Cat

B̂
), which follows immediately from the fact that limit functors are themselves

continuous (see the proof of Lemma 4.1.5.3 for more details). We complete the proof by showing that
if we are given another B-topos E and algebraic morphisms h : E→ X and k : E→ Z together with an
equivalence f ◦ h ≃ g ◦ k, the induced map E→ X ×Y Z is an algebraic morphism as well. That this map
is cocontinuous follows from Proposition 4.4.4.10, and that it preserves finite limits is a consequence of
the fact that this property can be checked section-wise. □

As a consequence of Proposition 5.2.6.1, we can now upgrade the equivalence from Theorem 5.2.5.1
to a functorial one:

Corollary 5.2.6.2. Let (TopL
∞)(B/−)/ be the Ĉat∞-valued presheaf on B whose associated cocartesian

fibration on Bop is given by the pullback of d1 : Fun(∆1,TopL
∞)→ TopL

∞ along B/− : Bop → TopL
∞. Then

this presheaf is a sheaf whose associated large B-category is equivalent to TopL
B.

Proof. To begin with, note that the functor Ω/− : Ωop → Cat
B̂

takes values in TopL
B (see the

discussion before Definition 5.2.9.1 below). Thus, by combining descent with Proposition 5.2.6.1, we
obtain an Ω-continuous functor Ωop → TopL

B. Hence, the underlying map of Ĉat∞-valued presheaves on
B can be regarded as a morphism in FunLAdj(Bop, Ĉat∞) (in the sense of [56, § 4.7.4]). On account of
the equivalence FunLAdj(Bop, Ĉat∞) ≃ FunRAdj(B, Ĉat∞) from [56, Corollary 4.7.4.18] that is furnished
by passing to right adjoints, we thus obtain a morphism of functors φ : (B/−)op → TopL(B/−) in
which the functoriality on both sides is given by the right adjoints of the transition functors. Let
η : φ→ diagB(φ(1)) be the commutative square in Fun(B, Ĉat∞) that is obtained from the unit of the
adjunction ev1 ⊣ diagB : Fun(B, Ĉat∞) ⇆ Ĉat∞. We may regard η as a morphism in Fun(B, (Ĉat∞)∆1).
Note that for every map s : B → A in B one has a commutative triangle

TopL(B/B) TopL(B/A)

TopL
∞,

s∗

ΓB/B
ΓB/A

hence Corollary 5.2.5.6 implies that s∗ is a left fibration. As the functor sop
! : Bop

/B → B
op
/A is a left

fibration too, the map η thus defines a morphism in Fun(B,LFib) (where LFib is the full subcategory of
Fun(∆1, Ĉat∞) that is spanned by the left fibrations). Explicitly, this morphism carries A ∈ B to the
commutative square η(A) : φ(A) → φ(1). Now observe that the domain of η is contained in the fibre
LFib(Bop) ↪→ LFib and the codomain is contained in the fibre LFib(TopL(B)) ↪→ LFib. Moreover, for
each A ∈ B the functor φ(A) : (B/A)op → TopL(B/A) carries the final object in B/A to the initial object
B/A ∈ TopL(B/A) (see Corollary 5.2.2.4), hence φ is section-wise initial. Altogether, these observations
imply that

TopL(B/−) : B→ LFib(TopL(B))

is equivalent to the composition of (B/−)op : B→ LFib(Bop) (which is just the Yoneda embedding) with
the functor of left Kan extension φ(1)! : LFib(Bop)→ LFib(TopL(B)) along φ(1) : Bop → TopL(B). But
the latter composition is equivalent to the composition of φ(1)op : B → TopL(B)op with the Yoneda
embedding TopL(B)op ↪→ LFib(TopL(B)). By making use of the commutative diagram

B TopL(B)op (TopL
∞)op

LFib(TopL(B)) LFib(TopL
∞),

φ(1)

B/−

Γ

Γ!
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the claim now follows. □

Remark 5.2.6.3. Corollary 5.2.6.2 in particular implies that for any map s : B → A in B the
transition functor s∗ : TopL(B/A)→ TopL(B/B) can be identified with the pushout functor

− ⊔B/A
B/B : (TopL

∞)B/A/ → (TopL
∞)B/B/.

As opposed to limits in TopL
B, general colimits of B-topoi can not be computed on the underlying

B-categories, not even after passing to the opposite B-category TopR
B. The existence of constant colimits

follows easily from Theorem 5.2.5.1:

Lemma 5.2.6.4. The large B-category TopL
B is LConst-cocomplete.

Proof. In light of Remark 5.2.6.3, this follows from the fact that for any map s : B → A in B the
∞-categories (TopL

∞)B/A/ and (TopL
∞)B/B/ have colimits by [57, Proposition 6.3.4.6] and − ⊔B/A

B/B

preserves all colimits. □

Lemma 5.2.6.5. The B-category TopL
B is Ω-cocomplete.

Proof. By Remark 5.2.1.3, it suffices to show that whenever G is a B-groupoid and d : G→ TopL
B is

a diagram, the functor mapFun
B

(G,TopL
B

)(d,diag(−)) is corepresentable. Note that we have an equivalence
FunB(G,−) ≃ (πG)∗π∗G. Therefore, Corollary 5.2.3.6 implies that we can assume that d is in the image of
ΩB [−]∗ : FunB(G,Cat

B̂
)→ FunB(G,TopL

B). In this case, the claim follows from Corollary 5.2.2.3. □

Proposition 5.2.6.6. The B-category TopL
B is cocomplete.

Proof. By Proposition 3.2.4.1, this follows from, Lemmas 5.2.6.4 and 5.2.6.5. □

5.2.7. A formula for the coproduct of B-topoi. The goal of this section is to give an explicit
description of the coproduct in TopL

B. To that end, recall that by the discussion in § 4.6.2 the large
B-category PrL

B of presentable B-categories is symmetric monoidal. Explicitly, if D and E are presentable
B-categories, their tensor product D⊗ E is equivalent to the B-category ShE(D) of E-valued sheaves on
D (i.e. the full subcategory of FunB(Dop,E) spanned by the continuous functors π∗ADop → π∗AE for each
A ∈ B). In light of this identification, the proof of Proposition 4.6.2.11 shows that if f∗ : D → D′ and
g∗ : E→ E′ are maps in PrL

B with right adjoints f∗ and g∗, then the functor id⊗f∗ : D⊗ E→ D⊗ E′ can
be identified with the left adjoint of (f∗)∗ : ShE′(D)→ ShE(D), and the functor g∗ ⊗ id : D⊗ E→ D′ ⊗ E
can be identified with the left adjoint of (g∗)∗ : ShE(D′)→ ShE(D).

Proposition 5.2.7.1. If X and Y are B-topoi, then their tensor product X ⊗ Y is a B-topos as well,
and the functors id⊗ constY : X ≃ X⊗ Ω→ X⊗ Y and constX⊗ id : Y ≃ Ω⊗ Y → X⊗ Y exhibit X⊗ Y as
the coproduct of X and Y in TopL

B.

Combining the above result with Proposition 4.6.3.10, we obtain the following generalisation of [7,
Corollary 1.10]:

Corollary 5.2.7.2. Assume that B is generated under colimits by (−1)-truncated objects. Then for
X,Y ∈ TopL

B/ the canonical map
X⊗B Y→ X ⊔B Y

is an equivalence.

The proof of Proposition 5.2.7.1 requires a few preparations and will be given at the end of this
section. First, let us observe that this result provides an explicit formula for the pushout of ∞-topoi:

Corollary 5.2.7.3. Given a cospan X
f∗←− Z

g∗−→ Y in TopL
∞, there is a canonical equivalence

X ⊔Z Y ≃ Funcont
Z (f∗(ΩX)op, g∗ΩY)

in which the right-hand side denotes the full subcategory of FunZ(f∗(ΩX)op, g∗ΩY) that is spanned by the
continuous functors. □
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Remark 5.2.7.4. In light of Corollary 5.2.7.3, the ∞-topos X ⊔Z Y admits the following explicit
description: It is the full subcategory of the∞-category of natural transformations between the two Ĉat∞-
valued sheaves X/f∗(−) and Y/g∗(−) on Z that is spanned spanned by those maps φ : (X/f∗(−))op → Y/g∗(−)

which satisfy that
(1) the functor φ(A) preserves limits for all A ∈ Z, and
(2) for any map s : B → A in Z the canonical lax square

(X/f∗(B))op Y/g∗(B)

(X/f∗(A))op Y/g∗(A)

φ(B)

g∗(s)∗f∗(s)!

φ(A)

commutes. □

Admittedly, the description of the pushout of∞-topoi in Remark 5.2.7.4 is rather unwieldy in general.
However, we can paint a more concrete picture in the following case:

Example 5.2.7.5. Let X be a B-topos and let C be an arbitrary B-category. Then Proposition 5.2.7.1
implies that the commutative square

Ω PShB(C)

X FunB(Cop,X)

constX

diag

(constX)∗
diag

is a pushout in TopL
B. Furthermore, if f : X→ B is the geometric morphism associated to X, then the

lower horizontal map can be identified with the image of diag : ΩX → PShX(f∗C) along f∗.

We now turn to the proof of Proposition 5.2.7.1. It is a straightforward adaption of the proof
presented in [3, §2.3] to the setting of B-categories. We begin with the following lemma:

Lemma 5.2.7.6. Let C and D be B-categories with finite limits. Then precomposition with the canonical
maps idC×1D : C→ C× D and 1C × idD : D→ C× D induces an equivalence

Funlex
B (C× D,E) ≃ Funlex

B (C,E)× Funlex
B (D,E)

for any B-category E with finite limits. In other words, these two maps exhibit C× D as the coproduct of
C and D in Catlex

B .

Proof. The composition

Funlex
B (C,E)× Funlex

B (D,E) pr∗0 × pr∗1−−−−−−→ Funlex
B (C× D,E)× Funlex

B (C× D,E)
≃−→ Funlex

B (C× D,E× E)
(−×−)∗−−−−−→ Funlex

B (C× D,E)

defines an inverse. □

The rough strategy of the proof of Proposition 5.2.7.1 is to first prove the claim for free B-topoi,
which will follow from Lemma 5.2.7.6. In order to reduce the general case to this setting we need to
understand the compatibility of tensor products with localisations:

Lemma 5.2.7.7. Suppose that C and D are presentable B-categories and that W ↪→ C and S ↪→ D are
small subcategories. Let C′ ↪→ C be a small full subcategory that exhibits C as the free FiltU-cocompletion
of C′ for some sound doctrine U. Let D′ ↪→ D be chosen similarly. We write τ : C × D → C ⊗ D for
the universal bilinear functor. Let us set W ⊠ S = (W × (D′)≃) ⊔ ((C′)≃ × S). Then the canonical map
C⊗ D→ LocW(C)⊗ LocS(D) induces an equivalence

LocW⊠S(C⊗ D) ≃−→ LocW(C)⊗ LocS(D),
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where the left-hand side is the B-category of local objects with respect to (τ, τ) : W ⊠ S→ C⊗ D.

Proof. Let E be any other presentable B-category and let us denote by Funbil
B (C × D,E)W⊠S the

full subcategory of Funbil
B (C × D,E) that is spanned by those bilinear functors π∗AC × π∗AD → π∗AE (in

arbitrary context A ∈ B) whose precomposition with π∗A(W ⊠ S)→ π∗AC× π∗AD factors through π∗AE≃.
By combining the universal property of the tensor product with Corollary 4.4.3.2, we now obtain a chain
of equivalences

Funcc
B(LocW⊠S(C⊗ D),E) ≃ Funcc

B(C⊗ D,E)W⊠S ≃ Funbil
B (C× D,E)W⊠S.

Note that a bilinear functor f : C× D→ E is contained in Funbil
B (C× D,E)W⊠D if and only if

(1) for any c : A→ C′ in context A ∈ B the functor π∗AS ↪→ π∗AD f(c,−)−−−−→ π∗AE factors through π∗AE≃,
and

(2) for any d : A → D′ in context A ∈ B the functor π∗AW ↪→ π∗AC f(−,d)−−−−→ π∗AE factors through
π∗AE≃.

Let f ′ : C→ Funcc
B (D,E) be the image of f under the equivalence Funbil

B (C×D,E) ≃ Funcc
B (C,Funcc

B (D,E))
from Lemma 4.6.1.3. Now the first condition is equivalent to the composition C′ ↪→ C f ′−→ Funcc

B(D,E)
taking values in Funcc

B(LocS(D),E). Note that the inclusion Funcc
B(LocS(D),E) ↪→ Funcc

B(D,E) is given by
precomposition with D→ LocS(D) and is therefore cocontinuous. Since C′ generates C under FiltU-colimits,
it thus follows that (1) is equivalent to f ′ being contained in Funcc

B(C,Funcc
B(LocS(D),E)). Similarly,

if f ′′ : D → Funcc
B(C,E) is the other transpose of f , condition (2) is equivalent to f ′′ taking values in

Funcc
B (LocW(C),E). Thus the naturality of the equivalence in Lemma 4.6.1.3 implies that f satisfies (1) and

(2) if and only if f is contained in Funbil
B (LocW(C)×LocS(D),E). As the same argument can be carried out

for bilinear functors in arbitrary context, this shows that the equivalence Funcc
B (C⊗D,E) ≃ Funbil

B (C×D,E)
restricts to an equivalence Funcc

B(LocW⊠S(C⊗ D),E) ≃ Funbil
B (LocW(C)× LocS(D),E), which proves the

claim. □

A similar argument as above shows the following:

Lemma 5.2.7.8. Let C and D be presentable B-categories and let W ↪→ C and S ↪→ D be small
subcategories. Then the commutative square

C⊗ D C⊗ LocS(D)

LocW(C)⊗ D LocW(C)⊗ LocS(D)

is a pushout in PrL
B. □

Proof of Proposition 5.2.7.1. To simplify notation, we shall write i0 = id⊗ constY as well as
i1 = constX⊗ id. First, let us show the claim in the special case where X = ΩB [C] and Y = ΩB [D]. In this
situation, we have an equivalence X ⊗ Y ≃ PShB(Clex × Dlex) with respect to which the functors i0 and
i1 are given by left Kan extension along id×1Dlex : Clex → Clex × Dlex and 1Clex × id : Dlex → Clex × Dlex,
respectively. By Lemma 5.2.7.6, the latter two functors exhibit Clex × Dlex as the coproduct Clex ⊔ Dlex

in Catlex
B . As the functor (−)lex is a left adjoint and thus preserves coproducts, we end up with an

equivalence X⊗ Y ≃ ΩB [C ⊔ D] with respect to which i0 and i1 correspond to the image of the inclusions
C ↪→ C ⊔ D and D ↪→ C ⊔ D along the functor ΩB [−]. The claim thus follows from Corollary 5.2.2.3.

In the general case, we may choose left exact and accessible Bousfield localisations L : ΩB [C]→ X
and L′ : ΩB [D]→ Y, cf. Corollary 5.2.3.5. By Lemma 5.2.7.8 we have a pushout square

ΩB [C]⊗ ΩB [D] X ⊗ ΩB [D]

ΩB [C]⊗ Y X ⊗ Y
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in PrL(B). The upper horizontal functor is equivalent to the functor

L∗ : FunB((Dlex)op,ΩB [C])→ FunB((Dlex)op,X)

Thus X ⊗ Y is equivalent to the intersection of two accessible and left exact Bousfield localisations of
ΩB [C]⊗ ΩB [D] and therefore by [57, Lemma 6.3.3.4] in particular a B-topos. and therefore a left exact
and accessible Bousfield localisation. By symmetry, the same holds for the left vertical functor. Since the
square

ΩB [C] X

ΩB [C]⊗ ΩB [D] X ⊗ ΩB [D]

i0 i0

commutes, it follows that i0 : X→ X ⊗ ΩB [D] is left exact. Since i0 : X→ X ⊗ Y factors as the composite
X i0−→ X⊗ΩB [D]→ X⊗ Y it is therefore also left exact. The same argument shows that i1 : Y → X⊗ Y is
left exact. Finally, note that L and L′ induce a commutative square

Funalg
B (X ⊗ Y,Z) Funalg

B (X,Z)× Funalg
B (Y,Z)

Funalg
B (ΩB [C]⊗ ΩB [D] ,Z) Funalg

B (ΩB [C] ,Z)× Funalg
B (ΩB [D] ,Z)

(i∗0 ,i
∗
1)

≃

for any B-topos Z. As the lower horizontal map being an equivalence implies that (i∗0, i∗1) is fully faithful, it
thus suffices to see that this functor is also essentially surjective. Using Remark 5.2.1.3, it will be enough to
show that for any two algebraic morphisms f : X→ Z and g : Y → Z the induced map ΩB [C]⊗ΩB [D]→ Z
factors through ΩB [C]⊗ ΩB [D]→ X ⊗ Y. This is a direct consequence of Lemma 5.2.7.7. □

5.2.8. Diaconescu’s theorem. In classical category theory, Diaconescu’s theorem states that for
any 1-category C and any 1-topos X, a functor f : C → X is internally flat if and only if its left Kan
extension h!f : PShSet(C)→ X preserves finite limits, see for example [46, Theorem B.3.2.7]. Here f being
internally flat precisely means that its internal unstraightening results in a filtered internal category in X.
For ∞-categories, a comparable result has been proved by Lurie [57, Proposition 6.1.5.2] in the special
case where the ∞-category C already admits finite limits. In the general case, Raptis and Schäppi proved
Diaconescu’s theorem under the assumption that the codomain X is a hypercomplete ∞-topos [75].

The main goal of this section is to establish a general version of Diaconescu’s theorem for B-topoi
and therefore also a general version of Diaconescu’s theorem for ∞-topoi, without any hypercompleteness
assumptions. To that end, let us say that a presheaf F : Cop → Ω on an arbitrary B-category C is flat if
it is FinB-flat in the sense of Definition 4.3.4.1. We will denote by FlatB(C) ⊆ PShB(C) the associated
B-category of flat functors. Recall from Proposition 4.2.3.7 that the doctrine FinB is sound. Therefore,
Proposition 4.3.4.6 implies:

Proposition 5.2.8.1. For any B-category C, a functor F : Cop → Ω is flat if and only if the B-category
C/F is filtered. □

Diaconescu’s theorem for B-topoi can now be stated as follows:

Theorem 5.2.8.2. Let X be a B-topos with associated geometric morphism f∗ : X→ B and let C be
an arbitrary B-category. The precomposition with the Yoneda embedding induces an equivalence

Funalg
B (PShB(C),X) ≃ f∗FlatX(f∗Cop).

Specialising to the case where B ≃ S, Theorem 5.2.8.2 implies:

Corollary 5.2.8.3. For any small ∞-category C, a functor f : C→ B is flat if and only if its Yoneda
extension h!f : PShS(C)→ B preserves finite limits. In particular, the functor of left Kan extension along
hC induces an equivalence

h! : FlatB(Cop) ≃ Funalg(PShS(C),B)
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of ∞-categories. □

Remark 5.2.8.4. Corollary 5.2.8.3 can be used to define morphisms of general ∞-sites: if C and
D are ∞-sites, a functor f : C → D is a morphism of ∞-sites if the associated functor f ′ : C → Sh(D)
(which is obtained by composing f with the sheafified Yoneda embedding Lh : D→ Sh(D)) is flat and if
for every covering (ci → c)i∈I in C the induced functor

⊔
i f
′(ci)→ f ′(c) is a cover in Sh(D). Using this

definition, Corollary 5.2.8.3 and [57, Lemma 6.2.3.19] imply that every morphism of ∞-sites f : C→ D

induces an algebraic morphism F : Sh(C)→ Sh(D).

The proof of Theorem 5.2.8.2 relies on the following two elementary lemmas:

Lemma 5.2.8.5. Let X be a B-topos and let f : X → B be the corresponding geometric morphism.
Suppose that p : P→ C is a left fibration of X-categories that is classified by a functor g : C→ ΩX. Then
the left fibration f∗(p) of B-categories is classified by the composition f∗C

f∗(g)−−−→ X ΓX−→ ΩB.

Proof. Since the functor f∗ commutes with pullbacks and with powering by ∞-categories, the
image of the universal left fibration (ΩX)1/ → ΩX along f∗ can be identified with (π1X )! : X1X/ → X and is
therefore classified by mapX(1X,−) ≃ ΓX. Hence the claim follows. □

Lemma 5.2.8.6. Let X be a B-topos and let f : X → B be the corresponding geometric morphism.
Then for any B-category C, there is a commutative square

C PShB(C)

f∗f
∗C FunB(Cop,X).

hC

η (constX)∗
f∗(hf∗C)

Proof. Transposing the Yoneda embedding hf∗C : f∗C ↪→ PShX(f∗C) across the adjunction f∗ ⊣ f∗
yields the composition

C η−→ f∗f∗C
f∗(hf∗C)
↪−−−−−→ FunB(Cop,X)

in which η is the adjunction unit. By transposing the above map across the adjunction Cop × − ⊣
FunB(Cop,−), one ends up with the functor

Cop × C η−→ f∗f
∗(Cop × C)

f∗(mapf∗C)
−−−−−−−→ X.

On the other hand, the transpose of the composition C ↪→ PShB(C)→ FunB(Cop,X) yields

Cop × C mapC−−−→ ΩB
constX−−−−→ X,

so it suffices to show that these two functors are equivalent. By Lemma 5.2.8.5 the functor mapf∗f∗C is
equivalent to the composition ΓX ◦f∗(mapf∗C) : f∗Cop×f∗C→ X→ ΩB. As a consequence, the morphism
of functors mapC → mapf∗f∗C ◦η that is induced by the action of η on mapping B-groupoids determines
a morphism mapC → ΓX ◦ f∗(mapf∗C) ◦ η which in turn transposes to a map

constX ◦mapC → f∗(mapf∗C) ◦ η.

To show that this is an equivalence, it will be enough to show that it induces an equivalence when
evaluated at (τ, τ), where τ is the tautological object in C, i.e. the one given by the identity of C0. But by
construction, the resulting map is simply the transpose of η : C1 → f∗f

∗C1 across the adjunction f∗ ⊣ f∗
and therefore an equivalence, as desired. □

Proof of Theorem 5.2.8.2. To begin with, we note that the universal property of presheaf B-
categories together with Remarks 5.2.1.3 and 4.3.4.2 implies that it suffices to show that a functor g : C→ X
transposes to a flat functor g′ : f∗C → ΩX if and only if its Yoneda extension (hC)!(g) : PShB(C) → X
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preserves finite limits. Note that by Lemma 5.2.8.6 (and the fact that base change along f∗ preserves
cocontinuity), we have a commutative diagram

PShB(C)

FunB(Cop,X) X.

(constX)∗

(hC)!(g)

f∗(hf∗C)!(g′)

Therefore, g′ being flat immediately implies that (hC)!(g) is an algebraic morphism, so it suffices to
consider the converse implication. Suppose therefore that the left Kan extension (hC)!(g) preserves
finite limits. We wish to show that the functor (hf∗C)!(g′) preserves finite limits as well. In light of
the previous commutative diagram and the fact that (constX)∗ preserves finite limits, it is clear that
it preserves the final object, so we only need to consider the case of pullbacks. By Lemma 5.2.2.8, we
may reduce to pullbacks of cospans in PShX(f∗C) (in arbitrary context U ∈ X) which are contained
in the essential image of the Yoneda embedding hf∗C. Since any such cospan is determined by a map
U → (f∗C)Λ2

0 , it factors through the core inclusion τf∗C : f∗(C1 ×C0 C1)→ (f∗C)Λ2
0 , which we may regard

as the tautological cospan. Therefore, it is enough to show that the pullback of τf∗C is preserved by
(hf∗C)!(g′). As this diagram is in context f∗(C1 ×C0 C1), we may make use of the adjunction f∗ ⊣ f∗ to
regard τf∗C as a cospan in f∗f

∗C in context C1 ×C0 C1. As such, it is precisely the cospan that arises as
the image of the tautological cospan τC in C (i.e. the one given by the core inclusion τC : C1×C0 C1 ↪→ CΛ2

0)
along η : C→ f∗f

∗C. By again making use of Lemma 5.2.8.6, we thus conclude that the image of τf∗C

along f∗(hf∗C) : f∗f∗C ↪→ FunB(Cop,X) can be identified with the image of τC along the composition
(constX)∗ ◦ hC. In particular, the cospan f∗(hf∗C)(τf∗C) is contained in the image of (constX)∗, hence the
above commutative diagram yields the claim. □

In the remainder of this section we will explain how our version of Diaconescu’s theorem for ∞-topoi
(Corollary 5.2.8.3) relates to that of Raptis and Schäppi [75] when B is hypercomplete. More precisely, in [75,
Theorem 1.1 (3)] Raptis and Schäppi give an explicit characterisation of flat functors C→ X valued in a
hypercomplete∞-topos X, and a priori it is not clear how to relate this description to our substantially less
explicit characterisation of flat functors in terms of internal filteredness (Proposition 5.2.8.1). Therefore,
our goal is to recover the description in [75, Theorem 1.1 (3)] from Proposition 5.2.8.1. To that end,
suppose that there is a left exact and accessible localisation L : PSh(D)→ B for some small ∞-category
D, and let i : B ↪→ PSh(D) be its right adjoint. We denote by Cf/ → C the left fibration (in Cat(B)) that
is classified by f : C→ Ω. By definition, it sits inside a pullback square

Cf/ Ω1/

C Ωf

in Cat(B). If B is hypercomplete, we deduce from Propositions 5.2.8.1 and 4.2.3.14 that f being flat is
equivalent to (Cf/)op being quasi-filtered. In order to obtain a more explicit understanding of the latter
condition, let us first consider the constant presheaf C : Dop → Cat∞ with value C and compute the
pullback

Cf ′/ i(Ω1/)

C i(Ω)f ′

in Cat(PSh(D)) ≃ Fun(Dop,Cat∞). Here f ′ is the transpose of f : C → Ω across the adjunction L ⊣ i.
Note that L(Cf ′/) ≃ Cf/ since L is left exact. Upon evaluating the previous pullback square at any d ∈ D,
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we obtain a commutative rectangle

Cf ′/(d) BLd/ BL(d)//L(d)

C B B/Ld
f π∗L(d)

where the lower composite is is equivalent to f ′(d) and all squares are pullback squares. Here BL(d)//L(d)

denotes the ∞-category of pointed objects in B/L(d). It follows that we can explicitly describe Cf ′/(d)
as the pullback in the left square and that for any map s : d→ e in D the functor s∗ : Cf ′/(e)→ Cf ′/(d)
is induced by pulling back the canonical functor s∗ : BLe/ → BLd/ along f . To proceed, we now need
the following lemma that characterises those Cat∞-valued presheaves on D which yield quasi-filtered
B-categories upon sheafification:

Lemma 5.2.8.7. Let C ∈ Cat(PSh(D)). Then LC is a quasi-filtered B-category if and only if for any
finite ∞-category K, any d ∈ D and any map β : K → C(d) there exist morphisms (si : di → d)i such
that (Lsi) :

⊔
i L(di) ↠ L(d) is a cover in B, and there are maps αi : K▷ → C(di) for every i that fit into

commutative diagrams
K▷ C(di)

K C(d)β

s∗i

αi

of ∞-categories.

Proof. The if part of the statement is a direct consequence of Proposition A.2. For the converse
we note that for any finite ∞-category K the canonical map LFunPSh(D)(K,C)≃ → FunB(K, LC)≃

is an equivalence. Now for some β : K → C(d) corresponding via Yoneda’s lemma to a morphism
d → FunB(K,C)≃ this shows that the projection map pr1 : d ×FunPSh(D)(K,C)≃ FunPSh(D)(K▷,C)≃ → d

becomes a cover after applying L. We now pick a cover (ti) :
⊔
i di → d×FunPSh(D)(K,C)≃FunPSh(D)(K▷,C)≃

in PSh(D) by representables. Then the si = pr1 ◦ti yield a cover after applying L, and by Yoneda’s
lemma every si gives a commutative square as in the claim. □

By combining Lemma 5.2.8.7 with the discussion preceding it, we recover the following characterisation
of flat functors in the hypercomplete case:

Proposition 5.2.8.8 ([75, Definition 3.1 and Theorem 3.5]). Suppose that B is hypercomplete, and
let f : C→ B be a functor. Then f is flat if and only if for every d ∈ D, every functor α : K→ C (where
K is a finite ∞-category) and every map β : K◁ → B with cone point L(d) such that fα ≃ β|K, there are
maps (si : di → d)i in D such that

(1) L(si) :
⊔
i L(di) ↠ d is a cover in B;

(2) for each i there is a cocone αi : K◁ → C extending α, together with a morphism of cones
h : ∆1 ⋄K→ B from the cocone β ◦ si (which is given by composing the cone point of β with si)
to f ◦ αi. □

5.2.9. Étale B-topoi. By Theorem 5.2.5.1, geometric morphisms f∗ : X→ B are in correspondence
with B-topoi f∗(ΩX). In this section, we study those B-topoi that correspond to étale geometric morphisms.
To prepare our discussion, note that Corollary 5.2.4.4 implies that the functor (−)disc = Ω(−) : Ω ↪→
CatB → TopR

B from Definition 5.2.4.5 is cocontinuous. Moreover, as this functor carries the final object
1Ω to Ω itself, the universal property of Ω implies that we have a functorial equivalence (−)disc ≃ Ω/−. In
particular, the functor Ω/− takes values in TopR

B too. We may therefore define:

Definition 5.2.9.1. A B-topos X is étale if there is an equivalence X ≃ Ω/G for some B-groupoid G.
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In [57, Proposition 6.3.5.5], Lurie proved a universal property for étale geometric morphisms of
∞-topoi. In light of Theorem 5.2.5.1, such étale geometric morphisms precisely correspond to étale B-topoi.
The main goal of this section is to discuss how Lurie’s result can also be deduced from Diaconescu’s
theorem. To that end, note that if X is a B-topos with associated geometric morphism f∗ : X→ B and if
G is a B-groupoid, the fact that we may identify X ≃ f∗ΩX implies that precomposition with the Yoneda
embedding hG : G ↪→ FunB(G,Ω) ≃ Ω/G induces a map FunB(Ω/G,X) → f∗FunX(f∗G,ΩX) ≃ X/ constX G.
The universal property of étale B-topoi can now be formulated as follows:

Proposition 5.2.9.2. Let G be a B-groupoid and let X be a B-topos. Precomposition with the Yoneda
embedding hG induces a fully faithful functor h∗G : Funalg

B (Ω/G,X) ↪→ X/ constX G that fits into a pullback
square

Funalg
B (Ω/G,X) X/ constX G

1 X.

h∗G

(πconstX G)!

1X

In particular, there is a canonical equivalence Funalg
B (Ω/G,X) ≃ mapX(1X, constX G).

The proof of Proposition 5.2.9.2 requires the following lemma:

Lemma 5.2.9.3. For any B-groupoid G, the full embedding G ↪→ Ω/G that is obtained by combining
the Yoneda embedding hG the equivalence FunB(G,Ω) ≃ Ω/G fits into a pullback square

G Ω/G

1 Ω.

(πG)!

1Ω

Proof. Since we have a commutative diagram

Ω/G FunB(G,Ω)

Ω,

≃

(πG)!
colimG

the claim follows once we show that a copresheaf F : G→ Ω is representable if and only if colimG F ≃ 1Ω.
But F is representable if and only if G/F admits an initial object, and since the latter is a B-groupoid,
this is in turn equivalent to G/F ≃ 1. Since by Proposition 3.1.4.1 we have G/F ≃ colimG F , the claim
follows. □

Proof of Proposition 5.2.9.2. Let f∗ : X→ B be the geometric morphism that corresponds to the
B-topos X. Since for every U ∈ X an X/U -groupoid is filtered if and only if it is final (see Remark 4.2.3.3),
the Yoneda embedding hf∗G : f∗G ↪→ FunX(f∗G,ΩX) induces an equivalence f∗G ≃ FlatX(f∗G). By
combining this observation with Theorem 5.2.8.2, we thus find that precomposition with the Yoneda
embedding G ↪→ FunB(G,Ω) yields an equivalence

Funalg
B (Ω/G,X) ≃ f∗(f∗G).

Hence the claim follows from Lemma 5.2.9.3. □

Corollary 5.2.9.4. The functor Ω/− : Ω→ PrR
B factors through a cocontinuous and fully faithful

embedding Ω/− : Ω ↪→ TopR
B whose essential image is spanned by the étale B-topoi.

Proof. It is clear that this functor takes values in TopR
B, and by combining the descent property

of Ω with Proposition 5.2.6.1, this functor must be cocontinuous. It therefore suffices to show that
it is fully faithful. As we have seen above, we may identify Ω/− with the restriction of the functor
(−)disc : CatB → TopR

B from § 5.2.4 along the inclusion Ω ↪→ CatB. Using Corollary 5.2.4.4, the claim
thus follows once we show that for every B-groupoid G the (partial) adjunction unit G → PtB(Gdisc)
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is an equivalence. By construction, this map is obtained by the transpose of the evaluation map
ev: G × FunB(G,Ω) → Ω, which by Yoneda’s lemma is precisely the inverse of the equivalence from
Proposition 5.2.9.2. This finishes the proof. □

Remark 5.2.9.5. The functor Ω/− : Ω ↪→ TopR
B also preserves finite limits. In fact, this is clear

for the final object, and the case of binary products is an immediate consequence of the formula from
Example 5.2.7.5 (together with the fact that the étale base change of this functor along π∗A recovers
the functor (ΩB/A

)/−). This is already enough to deduce that Ω/− preserves pullbacks: in fact, since
Corollary 5.2.6.2 and Corollary 5.1.2.13 imply that TopR

B has Ω-descent, this follows from the argument
in the second part of the proof of Lemma 5.2.2.8.

5.2.10. Subterminal B-topoi. The goal of this section is to study subterminal B-topoi. To begin
with, observe that if f∗ : X→ B and g∗ : Y→ B are geometric morphism where f∗ is fully faithful, then
the formula that we derived in § 5.2.7 immediately implies that the geometric morphism X×B Y→ Y

(whose domain is the pullback in TopR
∞) is fully faithful as well. Thus, we may define:

Definition 5.2.10.1. A B-topos X is said to be subterminal if the global sections functor ΓX is fully
faithful, or equivalently if the associated geometric morphism f∗ : X→ B is fully faithful.

By Theorem 5.2.5.1, any subterminal B-topos X determines is determined by a left exact and accessible
Bousfield localisation of B and therefore in particular by a class of maps S in B for which Γ(X) ≃ LocS(B).
The main goal of this section is to characterise those collections of maps S that arise from and give rise
to a subterminal B-topos X in this way, and to describe the associated endofunctor

ΓX constX : Ω→ Ω

by an explicit colimit formula in terms of S, akin to Lurie’s sheafification formula from [57, § 6.2.2].
We begin with the following definition:

Definition 5.2.10.2. Let d : I → Ω be a functor of B-categories, where I is small. We define the
+-construction (−)+

d : Ω→ Ω relative to d as the composition

Ω hΩ
↪−→ PShB(Ω) d∗−→ PShB(I) colimIop−−−−−→ Ω,

i.e. by the formula (−)+
d = colimIop mapΩ(d(−),−).

Remark 5.2.10.3. If I is cofiltered, i.e. if Iop is filtered, then the +-construction (−)+
d is left exact.

Remark 5.2.10.4. If I is cofiltered, then the diagonal functor diagIop : Ω→ PShB(I) is fully faithful
(which follows from I being weakly contractible, see Remark 4.2.3.3, and from the explicit formula of the
colimit in Ω from Proposition 3.1.4.1). Therefore, by applying the limit functor limIop : PShB(I)→ Ω to
the adjunction unit id→ diagIop colimIop , we end up with a natural map limIop → colimIop . Now suppose
furthermore that the colimit of d : I→ Ω is the final object 1Ω : 1B → Ω. Then the composition

Ω hΩ
↪−→ PShB(Ω) d∗−→ PShB(I) limIop−−−−→ Ω

is equivalent to the identity: in fact, this follows from the observation that its left adjoint is given by the
composition of diagIop with the Yoneda extension of d (see Remark 3.4.1.4) and therefore preserves final
objects. Thus, we obtain a natural map φ : idΩ → (−)+

d .

To proceed, let us fix a (small) cofiltered B-category I and a functor d : I → Ω whose colimit is
the final object. Since I is small, there is a B-regular cardinal κ such that the essential image of d is
contained in the full subcategory ΩκB ↪→ Ω determined by the local class of relatively κ-compact objects
in B (cf. Proposition 4.2.2.11). We will call such a B-regular cardinal κ adapted to d. We will identify
κ with the linearly ordered set of ordinals < κ. Using transfinite induction, we may now construct a
diagram T d• : κ→ FunB(Ω,Ω) by setting T d0 = id, by defining the map Tτ → Tτ+1 to be the morphism
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φ : T dτ → (T dτ )+
d from Remark 5.2.10.4 and finally by setting T dτ = colimτ ′<τ T

d
τ ′ whenever τ is a limit

ordinal.

Definition 5.2.10.5. Let d : I→ Ω be a functor whose colimit is the final object and whose domain is
a cofiltered small B-category. We define the sheafification functor (−)sh

d relative to the functor d : I→ Ω
as the colimit (−)sh

d = colimτ<κ T
d
τ in FunB(Ω,Ω), where κ is an arbitrary B-regular cardinal that is

adapted to d.

Remark 5.2.10.6. A priori, the sheafification functor (−)sh
d depends on the choice of B-regular cardinal

κ. However, since d takes values in Ωκ and therefore in κ-compact objects in Ω (see Corollary 4.2.2.23),
and since κ (when viewed as a linearly ordered set) is κ-filtered, one can show that whenever τ ≥ κ is
another B-regular cardinal, the sheafification functor that is constructed with respect to τ is equivalent
to the one constructed with respect to κ.

Remark 5.2.10.7. In the situation of Definition 5.2.10.5, the sheafification functor (−)sh
d is left exact

since by Remark 5.2.10.4 it is a filtered colimit of left exact functors (see the argument in the proof of
Lemma 4.1.5.3).

Example 5.2.10.8. Let S be a bounded local class of morphisms in B which is closed under finite
limits in Fun(∆1,B), and let ι : ΩS ↪→ Ω be the associated inclusion. Then ΩS is small and closed under
finite limits in Ω. In particular, ΩS is cofiltered by Proposition 4.2.3.7 and contains the final object of Ω,
so that the sheafification functor (−)sh

ι is well-defined.

Example 5.2.10.9. Let f∗ : X→ B be a geometric morphism, and let S and ι be as in Example 5.2.10.8.
Then the functor constf∗(ΩX) ι : ΩS → f∗(ΩX) transposes to a map ι′ : f∗(ΩS)→ ΩX of X-categories. As
constf∗(ΩX) ι preserves the final object, its colimit is 1f∗(ΩX), hence the colimit of ι′ is the final object as
well. Moreover, the fact that ΩS is a cofiltered B-category implies that f∗ΩX is a cofiltered X-category:
in fact, the colimit functor colimf∗(ΩS)op : PShX(f∗(ΩS))→ ΩX preserves finite limits if and only if the
underlying functor of ∞-categories PShX(f∗(ΩS))→ X preserves finite limits, and as the latter can be
identified with the global sections of

colimΩop
S

: FunB(Ωop
S , f∗(ΩX))→ f∗(ΩX),

the claim follows from the fact that filtered colimits commute with finite limits in every B-topos (which
one can see by reducing to the case of a presheaf B-topos where it readily follows from the definitions).
Thus, we are in the situation of Definition 5.2.10.5, so that (−)sh

ι′ is well-defined.

Construction 5.2.10.10. Suppose that S is a bounded local class of maps in B. Since S is bounded,
there is a B-regular cardinal κ that is adapted to ι : ΩS ↪→ Ω. Let Sκ ⊂ S be the class of maps in S

between κ-compact objects. We let E ↪→ Ω1 be the subobject that is spanned by the maps f : P → Q in
B/A (for arbitrary A ∈ B) for which (πA)!(f) is contained in S and the two maps P → A and Q→ A are
relatively κ-compact. Since both S and the class of relatively κ-compact maps are local, a map f in Ω
in context A is contained in E if and only if (πA)!(f) ∈ S and both P → A and Q → A are relatively
κ-compact. In particular, E is small. We define W ↪→ Ω as the subcategory that is generated by E in the
sense of § 2.2.3. Note that as E is small, the subcategory W is small as well.

We can now state the first main result of this section:

Proposition 5.2.10.11. Let S be a bounded local class of morphisms in B such that S is closed
under finite limits in Fun(∆1,B). Let W ↪→ Ω be as in Construction 5.2.10.10. Then X = LocW(Ω) is
a subterminal B-topos with the property that Γ(X) ≃ LocS(B). Moreover, the adjunction unit η : id→
ΓX constX can be identified with the map id→ (−)sh

ι , where ι : ΩS ↪→ Ω is the inclusion.
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Lemma 5.2.10.12. Let S be a bounded local class of morphisms in B. Let W ↪→ Ω be as in
Construction 5.2.10.10. Then there is an equivalence

Γ(LocW(Ω)) ≃ LocS(B)

of full subcategories in B.

Proof. By Corollary 4.4.1.8, the inclusion i : LocW(Ω) ↪→ Ω admits a left adjoint L that exhibits
LocW(Ω) as an accessible Bousfield localisation of Ω. Note that every map in S can be written as a colimit
of maps in Sκ, which implies that every map in S is inverted by L. Consequently, we have an inclusion
Γ(LocW(Ω)) ↪→ LocS(B), so that the claim follows once we verify that every S-local object G ∈ B is
W-local. This amounts to showing that for every A ∈ B and and every map s : P → Q in B/A for which
(πA)!(f) ∈ S and both P → A and Q→ A are relatively κ-compact, the map

s∗ : mapΩ(Q, π∗AG)→ mapΩ(P, π∗AG)

is an equivalence (cf. Remark 4.4.1.5). By Proposition 3.1.4.12, we may identify this morphism with the
map

HomB/A
(Q, π∗AG)→ HomB/A

(P, π∗AG).

By evaluating the latter at any object B → A in B/A, we recover the morphism

mapB(Q×A B,G)→ mapB(P ×A B,G),

which is indeed an equivalence as the maps in S are closed under base change. Hence G is W-local, as
claimed. □

Before we can prove Proposition 5.2.10.11, we first need to make a few remarks on the internal hom
of a B-topos X. Recall from Proposition 5.1.3.7 that colimits being universal in X precisely means that X
is cartesian closed. We denote by

HomX(−,−) : Xop × X→ X

the internal hom of X that results from this observation. Note that if f∗ : X → B is the geometric
morphism associated with X, we deduce from combining Proposition 3.1.4.11 with Corollary 2.4.1.9
and [61, Lemma 5.2.1] that HomX(−,−) is explicitly given by the image of the bifunctor of X-categories

mapΩX
(−,−) : Ωop

X × ΩX → ΩX

along f∗.

Remark 5.2.10.13. If X is a B-topos, then the composition ΓX ◦HomX(−,−) recovers the mapping
bifunctor mapX(−,−). In fact, as Remark 5.2.2.6 implies that ΓX is corepresented by 1X, we deduce that
there is a pullback square

X1X/ (ΩB)1ΩB
/

X ΩB.
ΓX

On the other hand, [61, Lemma 5.2.1] implies that there also is a pullback square

Tw(X) X1X/

Xop × X X.

pX

HomB
X (−,−)

By pasting these two pullback squares together, the claim follows.
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Proof of Proposition 5.2.10.11. Let κ and W ↪→ Ω be as in Construction 5.2.10.10, and let us
denote by

(L ⊣ i) : Ω ⇆ LocW(Ω)

the associated Bousfield localisation provided by Corollary 4.4.1.8. In light of Lemma 5.2.10.12, we only
need to show that LocW(Ω) is a subterminal B-topos and to identify the adjunction unit id→ iL with
the sheafification map id→ (−)sh

ι . In light of Theorem 5.2.3.1 and Example 5.2.10.8, the former claim is
implied by the latter one, so that the proof is finished once we identify id→ iL with id→ (−)sh

ι .
We only need to show that for every object G : A→ Ω in arbitrary context A ∈ B, the object Gsh

ι is
W-local and the map G→ Gsh

ι is inverted by the localisation functor L. Note that as B is generated by
its κ-compact objects (as κ is assumed to be B-regular), we may assume that A is κ-compact. In this
case, note that κ is also B/A-regular and adapted to π∗A(ι) (by Remark 4.2.2.6) and that we may identify
the base change of (−)+

ι along π∗A with (−)+
π∗

A
(ι) : ΩB/A

→ ΩB/A
. Therefore, we may also identify the base

change of (−)sh
ι along π∗A with (−)sh

π∗
A

(ι). Together with Remark 4.4.1.2, this implies that we may replace
B with B/A and G with its transpose Ĝ : 1B/A

→ ΩB/A
, so that we may assume without loss of generality

that A ≃ 1B.
We first show that the map G→ Gsh

ι is inverted by L, for which it will be enough to show that the
map φ : G→ G+

ι is inverted by L, or equivalently that the map

φ∗ : mapΩ(G+
ι , i(−))→ mapΩ(G, i(−))

is an equivalence. Note that by the triangle identities, the map limΩop
S
→ colim(ΩS)op can be identified

with the composition
lim
Ωop

S

≃ colim
Ωop

S

diagΩop
S

lim
Ωop

S

→ colim
Ωop

S

where the first map is induced by the inverse of counit of colim(ΩS)op ⊣ diagΩop
S

and the second map is
induced by the counit of diagΩop

S
⊣ limΩop

S
. Moreover, observe that as limΩop

S
is given by evaluation at the

final object 1Ω : 1→ ΩS , this functor is cocontinuous and therefore given by the left Kan extension of its
restriction along the Yoneda embedding hΩS

: ΩS ↪→ PShB(ΩS). As the restriction of limΩop
S

along hΩS

can be identified with mapΩS
(1Ω,−) and the latter is equivalent to the inclusion ι, it follows that the left

adjoint of limΩop
S

is given by ι∗hΩ (see Remark 3.4.1.4). Altogether, these observations imply that we
may decompose φ∗ into the chain of morphisms

mapΩ(G+
ι , i(−)) ≃ mapΩ(colim

Ωop
S

ι∗hΩ(G), i(−))

≃ mapPSh
B

(ΩS)(ι∗hΩ(G),diagΩop
S
i(−))

→ mapPSh
B

(ΩS)(ι∗hΩ(G), ι∗hΩ lim
Ωop

S

diagΩop
S
i(−))

≃ mapΩ(G, i(−))

in which the penultimate map is induced by the adjunction unit id → ι∗hΩ limΩop
S

and where the last
equivalence follows from both diagΩop

S
and ι∗hΩ being fully faithful functors. Hence, it suffices to show

that the map
diagΩop

S
i→ ι∗hΩ lim

Ωop
S

diagΩop
S
i

is an equivalence, i.e. that diagΩop
S
i takes value in the essential image of ι∗hΩ. To see this, note that

since the restriction of the localisation functor L : Ω → LocW(Ω) to ΩS factors through the inclusion
1Ω : 1 ↪→ LocW(Ω), it follows that we may identify ι∗hΩi ≃ mapΩ(ι(−), i(−)) with the transpose of the
composition

Ωop
S × LocW(Ω) pr1−−→ LocW(Ω)

mapLocW
(1Ω,−)

−−−−−−−−−→ Ω,

which is precisely diagΩop
S
i, as desired.
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We finish the proof by showing that Gsh
ι is W-local. By the same reduction steps as above, it is enough

to show that for every map s : P → Q in S between κ-compact objects, the map s∗ : mapΩ(Q,Gsh
ι )→

mapΩ(P,Gsh
ι ) is an equivalence. Note that in light of the adjunction (πQ)! ⊣ π∗Q : Ω/Q ⇆ Ω, the map s∗

can be interpreted as the morphism s∗ : mapΩ/Q
(Q, π∗QGsh

ι )→ mapΩ/Q
(P, π∗QGsh

ι ). By Remark 5.2.10.13,
we can identify mapΩ/Q

(−,−) with the global sections of the internal hom HomΩ/Q
(−,−). Hence we may

as well show that the map

s∗ : HomΩ/Q
(Q, π∗QGsh

ι )→ HomΩ/Q
(P, π∗QGsh

ι )

is an equivalence. In other words, by replacing B with B/Q, we can reduce to the case where Q ≃ 1. Thus,
what is left to show is that t∗ : Gsh

ι → mapΩ(P,Gsh
ι ) is an equivalence for every κ-compact P : 1→ ΩS ,

where t : G→ 1Ω is the terminal map. Note that by Corollary 4.2.2.23, the fact that P is κ-compact even
implies that P is CatκB-compact when viewed as an object of Ω. Hence, the map t∗ can be identified with
the colimit

colim
τ<κ

t∗τ : colim
τ<κ

T ιτG→ colim
τ<κ

mapΩ(P, T ιτG).

To show that this map is an equivalence, it will be sufficient to prove that for every ordinal τ < κ the
map colimn∈N t

∗
τ+n is one. To see the latter claim, observe that for every H ∈ B we have a commutative

diagram
H mapΩ(P,H)

colim(Ωop
S

)P/
mapΩ(ι(πP )!(−), H) colim(ΩS)op mapΩ(ι(−), H)

colim(ΩS)op mapΩ(ι(−), H) mapΩ(P, colim(ΩS)op mapΩ(ι(−), H)).

t∗

α

≃

≃ β

t∗

Here the composition of the two vertical maps on the left and right can be identified by φ and φ∗,
respectively. Moreover, the equivalences in this diagram are induced by the initial map (πP )! : (ΩS)/P →
ΩS , the map α is induced by P : 1→ ΩS and β is given by the composition

colim
(ΩS)op

mapΩ(ι(−), H)→ colim
(ΩS)op

mapΩ(P,mapΩ(ι(−), H))

→ mapΩ(P, colim
(ΩS)op

mapΩ(ι(−), H)).

By substituting H = T ιτ+nG for any n ∈ N, we deduce that the map t∗τ+n → t∗τ+n+1 factors through an
equivalence and thus colimn∈N t

∗
τ+n is an equivalence by an easy cofinality argument. □

We finish this section with the following converse of Proposition 5.2.10.11:

Proposition 5.2.10.14. Let X be a subterminal B-topos. Then there is a bounded local class S that
is closed under finite limits in Fun(∆1,B) such that Γ(X) ≃ LocS(B). Moreover, for any such local class
S, we obtain an equivalence X ≃ LocW(Ω), where W is as in Construction 5.2.10.10, and the adjunction
unit η : id→ ΓX constX can be identified with the map id→ (−)sh

ι , where ι : ΩS ↪→ Ω is the inclusion.

Proof. Let us denote by j∗ : X ↪→ B the geometric morphism associated with X. We begin by
proving the second statement, i.e. suppose that S is a bounded local class that is closed under finite
limits in Fun(∆1,B) such that we have X ≃ LocS(B). Let W ↪→ Ω be as in Construction 5.2.10.10. By
Lemma 5.2.10.12, we may identify Γ(LocW(Ω)) with X. As Proposition 5.2.10.11 moreover implies that
LocW(Ω) is a subterminal B-topos, Theorem 5.2.5.1 implies that we must necessarily have LocW(Ω) ≃ X.
Hence the same proposition gives rise to the desired identification of the adjunction unit η : id→ ΓX constX.

To complete the proof, it is therefore enough to show that there always exists a bounded local class S
that is closed under finite limits in Fun(∆1,B) such that X ≃ LocS(B). To that end, choose a B-regular
cardinal κ for which ΓX is FiltCatκ

B
-cocontinuous. We let S be the class of relatively κ-compact maps in

B that are inverted by j∗. Since by Proposition 4.2.2.11 the class of relatively κ-compact maps in B
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is local, we find that S is local as well. Moreover, S is closed under finite limits in Fun(∆1,B) as j∗

is left exact and as κ-compact objects in B are closed under finite limits (by choice of κ). Since S is
inverted by j, we already have an inclusion X ↪→ LocS(B), so that it suffices to prove that every S-local
object in B is contained in B. Since X is a κ-accessible localisation of B (using Proposition 4.3.2.4) and
B itself is κ-accessible, we deduce from the proof of [57, Proposition 5.5.4.2] (or alternatively the proof of
Proposition 4.4.1.6 applied in the case B = S) that X is the Bousfield localisation at the class S′ of those
maps in B between κ-compact objects which are inverted by j. Since every such map must be relatively
κ-compact (using that κ-compact objects are closed under finite limits in B), every such map is contained
in S. Hence the claim follows. □

Remark 5.2.10.15. We can use our understanding of subterminal B-topoi to obtain a quite explicit
understanding of pushouts in TopL

∞ in which one of the two maps is a Bousfield localisation. In fact,
suppose that f∗ : X → B and i∗ : Z ↪→ B be geometric morphisms, where i∗ is fully faithful. Then
i∗(ΩZ) is a subterminal B-topos, so that Proposition 5.2.10.14 implies that we can find a bounded local
class S that is closed under compositions and finite limits in Fun(∆1,B) such that Z = LocS(B). Let
f∗S denote the smallest local class of maps in X that contains f∗(S). Then we claim that the functor
j∗ : Z ×B X ↪→ X exhibits Z ×B X as the Bousfield localisation of X at f∗S. To see this, note that
Proposition 5.2.7.1 and Lemma 5.2.7.7 imply that the morphism in TopR

B corresponding to j∗ is given by
LocW⊠f∗(ΩX)≃(Ω ⊗ f∗(ΩX)) ↪→ f∗(ΩX), where W ↪→ Ω is the subcategory from Construction 5.2.10.10.
Since Ω⊗ f∗(ΩX) ≃ f∗(ΩX), the left-hand side can be identified with the full subcategory of local objects
with respect to

W × f∗(ΩX)≃
consti∗ΩX

(−)×−
−−−−−−−−−−−→ f∗(ΩX).

By the same argument as in the proof of Lemma 5.2.10.12, this means that an object U ∈ X is contained
in Z×B X if and only if it is local with respect to every map in X of the form

f∗(s)×f∗A X : f∗(P )×f∗A X → f∗(Q)×f∗A X

where s : P → Q is a map in W(A) and X is an arbitrary object in X/f∗A. By construction of W, the map
(πA)!(f) is contained in S, which in turn implies that f∗(s)×f∗A X is in f∗S. Hence the claim follows.

5.3. Localic B-topoi

In higher topos theory, the 1-category of locales (with left exact left adjoints as maps) arises as a
coreflective subcategory of the ∞-category TopL

∞ of ∞-topoi. The inclusion is given by sending a locale
L to the ∞-topos Sh(L) of sheaves on L, and the coreflection carries an ∞-topos X to the locale Sub(X)
of subterminal (i.e. (−1)-truncated) objects in X. An ∞-topos X is said to be localic if it is equivalent to
Sh(Sub(X)).

In this section, we give a brief exposition of the analogous story in the world of B-topoi. We do
not aim to provide a comprehensive study of localic B-topoi, but rather restrict our attention to those
aspects of the theory that allow us to define the notion of a localic B-topos and to provide an external
characterisation of this concept in the case where B is itself localic.

We begin in § 5.3.1 and 5.3.2 by providing the necessary background material on B-posets. In § 5.3.3
we define and characterise B-locales, and in § 5.3.4 we construct the B-topos of sheaves on a B-locale,
which we use in § 5.3.5 to show that B-locales are a coreflective localisation of B-topoi. In § 5.3.6 we
discuss how localic B-topoi correspond to localic ∞-topoi over B in the case where B is itself localic.
Lastly, § 5.3.7 discusses some compactness conditions of B-locales and how they are inherited by the
associated B-topoi of sheaves. Finally in § 5.3.8, we study B-locales arising from maps of topological
spaces.
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5.3.1. B-posets. Recall that an ∞-category C is (equivalent to) a poset precisely if if for all
objects c and d in C the mapping ∞-groupoid mapC(c, d) is (−1)-truncated. In this section we discuss a
generalisation of this concept to B-categories.

Recall that the class of (−1)-truncated maps in B is precisely the collection of morphisms that are
internally right orthogonal to the map 1 ⊔ 1→ 1 (in the sense of [62, § 2.5]). In particular, this class is
local, so that we may define:

Definition 5.3.1.1. The subuniverse SubB ↪→ ΩB of subterminal B-groupoids is the full subcategory
of ΩB that is determined by the local class of (−1)-truncated morphisms in B. A B/A-groupoid G is said
to be a subterminal B/A-groupoid if it defines an object of SubB (in context A).

Remark 5.3.1.2. As the functor (πA)! : B/A → B creates pullbacks, a map P → B in B/A defines an
object B → SubB/A

if and only if the underlying map in B defines an object (πA)!(B) → SubB. Thus,
the equivalence π∗AΩ ≃ ΩB/A

restricts to an equivalence π∗A SubB ≃ SubB/A
for every A ∈ B.

By [6, Example 3.4.2] the internal saturation of the map 1 ⊔ 1→ 1 (i.e. the class of covers) in B is
closed under base change, so that the factorisation system between these and (−1)-truncated maps even
forms a modality. As a consequence, one finds:

Proposition 5.3.1.3. The B-category SubB is an accessible Bousfield localisation of ΩB (in the
sense of Definition 4.3.3.4) and therefore in particular presentable.

Proof. By Example 5.1.2.15 the subcategory SubB ↪→ ΩB is reflective. Since the inclusion SubB ↪→
ΩB is section-wise accessible, Corollary 4.3.2.5 implies that the localisation must be accessible. □

Definition 5.3.1.4. A B-category C is said to be a B-poset if the mapping bifunctor mapC takes
values in SubB. The full subcategory of CatB that is spanned by the B/A-posets for each A ∈ B is denoted
by PosB and its underlying ∞-category of global sections by Pos(B).

Remark 5.3.1.5. A B-category C is a B-poset precisely if the map C1 → C0×C0 is (−1)-truncated. In
fact, since this map exhibits C1 as the mapping B/C0×C0 -groupoid between the two objects pr0,pr1 : C0 ×
C0 ⇒ C, this is clearly a necessary condition. The fact that it is also sufficient follows from the observation
that every mapping B/A-groupoid of C is a pullback of this map.

Remark 5.3.1.6. Since the class of (−1)-truncated maps in B is local, we deduce from Remark 5.3.1.5
that if (si) :

⊔
iAi ↠ A is a cover in B, a B/A-category C : A→ CatB defines a B/A-poset if and only if

the B/Ai
-category s∗iC defines a B/Ai

-poset for every i. In particular, every object of PosB in context
A ∈ B encodes a B/A-poset, and one has a canonical equivalence π∗A PosB ≃ PosB/A

.

Remark 5.3.1.7. Remark 5.3.1.5 and the fact that a map is (−1)-truncated precisely if it is so
section-wise imply that a B-category C is a B-poset if and only if C(A) is an poset for every A ∈ B.
Together with Remark 5.3.1.6, this implies that we obtain an equivalence PosB ≃ Pos⊗Ω (where Pos is
the 1-category of posets).

Remark 5.3.1.8. Recall that if C is a B-category, then the map s0 : C0 → C1 is a monomorphism in
B. Together with Remark 5.3.1.5, this implies that if P is a B-poset, then each P0 is contained in the
underlying 1-topos Disc(B) ↪→ B of 0-truncated objects. Consequently, we may identify Pos(B) with
the full subcategory of Disc(B)∆ that is spanned by the complete Segal objects P for which the map
P1 → P0 × P0 is a monomorphism. Hence Pos(B) is equivalent to the 1-category of internal posets in the
1-topos Disc(B) in the sense of [46, § B2.3].

5.3.2. Presentable B-posets. In this section we study presentable B-posets. We begin with the
following definition:

Definition 5.3.2.1. If C is a B-category, we define the full subcategory Sub(C) ↪→ C of subterminal
objects as the pullback C×PSh

B
(C) FunB(Cop,SubB).
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Remark 5.3.2.2. If C is a B-category and A ∈ B is an arbitrary object, then there is a canonical
equivalence π∗A Sub(C) ≃ Sub(π∗AC) of full subcategories in π∗AC.

Proposition 5.3.2.3. For every presentable B-category D there is a canonical equivalence Sub(D) ≃
D⊗ SubB of full subcategories in D. In particular, Sub(D) is an accessible Bousfield localisation of D and
therefore presentable as well.

Proof. Recall from Proposition 4.4.6.3 that the Yoneda embedding D ↪→ PShB(D) identifies D
with the full subcategory ShB(D) ↪→ PShB(D) that is spanned by the continuous functors (in arbitrary
context). Therefore, it will be enough to show that the square

D⊗ SubB FunB(Dop,SubB)

ShB(D) PShB(D)

is a pullback. Together with the usual base change arguments, this means that we only need to check that
a functor F : Dop → SubB is continuous if and only if its postcomposition with the inclusion SubB ↪→ Ω
is. This follows immediately from the fact that the inclusion SubB ↪→ Ω has a left adjoint and is therefore
continuous and conservative. □

For every presentable B-category D, we will denote the left adjoint of the inclusion Sub(D) ↪→ D by
(−)Sub and refer to it as the subterminal truncation functor.

Example 5.3.2.4. If C is an arbitrary B-category, then Proposition 5.3.2.3 provides us with an
equivalence of B-categories Sub(PShB(C)) ≃ FunB(Cop,SubB). Moreover, in light of the equivalence
PShB(C) ≃ RFibC, we may identify FunB(Cop,SubB) with the full subcategory of RFibC that is spanned
by the right fibrations p : P→ π∗AC (in arbitrary context A ∈ B) which are fully faithful, i.e. which are
sieves in the B/A-poset π∗AC. To see the latter claim, first note that by Remark 5.3.2.2, we may replace B

with B/A so that we can assume that A ≃ 1. In this case, since p0 : P0 → C0 can be identified with the
image of the tautological object C0 → C along the functor F : Cop → Ω that classifies p and since every
object in C (in arbitrary context) arises as a pullback of the tautological object, F takes values in SubB if
and only if p0 is a monomorphism. Therefore it suffices to show that p0 is monic if and only if p is fully
faithful. This follows from considering the commutative diagram

P1 P1 C1

P0 × P0 C0 × P0 C0 × C0

(d1,d0)

id

(d1,d0)
p0×id id×p0

in which the right square is a pullback as p is a right fibration and where the left square is a pullback
since p0 is a monomorphism.

Furthermore, the above observation implies that we may compute the subterminal truncation
functor (−)Sub : PShB(C)→ Sub(PShB(C)) on the level of right fibrations by taking essential images: If
F : Cop → Ω is a presheaf, then F Sub classifies the essential image of the right fibration C/F → C. In fact,
this is a consequence of the straightforward observation that the essential image is still a right fibration.

By definition, if C is a B-category, then Sub(C) is a B-poset. Our next goal is to show that if C is
presentable, then Sub(C) can be characterised as the largest accessible Bousfield localisation of C with
that property.

Lemma 5.3.2.5. Let (l ⊣ r) : D ⇆ C be an adjunction of B-categories. Then there is a commutative
square

Sub(D) Sub(C)

D C

r

r
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which is a pullback when r is fully faithful.

Proof. Unwinding the definitions, it will be enough to show that we have a commutative square

FunB(Dop,SubB) FunB(Cop,SubB)

PShB(D) PShB(C)

r!

r!

that is a pullback when r is fully faithful. The existence of this square follows from observing that r! can
be identified with l∗. If r is moreover fully faithful, then l is a localisation and therefore in particular
essentially surjective. Thus, the second claim follows. □

Proposition 5.3.2.6. Let D be a presentable B-category and P be a presentable B-poset. Then
composition with the inclusion SubB(D) ↪→ D induces an equivalence

FunRB(P,Sub(D)) ↪→ FunRB(P,D).

Proof. By Remark 5.3.2.2, it will be enough to show that every right adjoint functor P→ D factors
through Sub(D). This follows immediately from Lemma 5.3.2.5. □

In light of Remark 5.3.2.2, Proposition 5.3.2.6 implies:

Corollary 5.3.2.7. The full subcategory of PrL
B that is spanned by the presentable B/A-posets for

all A ∈ B is reflective, with the left adjoint given by sending a presentable B-category D to Sub(D). □

Remark 5.3.2.8. Lemma 5.3.2.5 furthermore implies that if D is a presentable B-category and
d : 1 → D is an arbitrary object, then d is subterminal if and only if the diagonal d → d × d is an
equivalence. In fact, by choosing a presentation of D as an accessible Bousfield localisation of a presheaf
B-category and making use of Lemma 5.3.2.5, we may assume that D ≃ PShB(C) and hence that d can
be identified with a right fibration over C. Then the claim follows immediately from Example 5.3.2.4. In
particular, this observation implies that Sub(D) can be identified with the sheaf Sub(D(−)) on B.

Finally, we arrive at the following characterisation of presentable B-posets:

Proposition 5.3.2.9. For an (a priori large) B-category D, the following are equivalent:

(1) D is a presentable B-poset;
(2) D ≃ Sub(E) for some presentable B-category E;
(3) D is small and cocomplete;
(4) D is small, and the Yoneda embedding h : D ↪→ PShB(D) admits a left adjoint;
(5) D is a small B-poset, and the Yoneda embedding h : D ↪→ FunB(Dop,SubB) admits a left adjoint.

Proof. (1) and (2) are equivalent by Proposition 5.3.2.3. If D is a presentable B-poset, then
Lemma 5.3.2.5 combined with Example 5.3.2.4 shows that there is a small B-category C such that D arises
as a Bousfield localisation of FunB(Cop,SubB) for some small B-category C. Hence, as the latter is small,
so is D. Therefore (1) implies (3). Conversely, every small and cocomplete B-category is presentable (this
follows from our characterisation of presentable B-categories as the accessible and cocomplete ones, see
Corollary 4.4.6.7), and since every small and cocomplete ∞-category is a poset, we conclude by employing
Remark 5.3.1.7 that (3) implies (1). Furthermore, (3) and (4) are equivalent by the universal property of
presheaf B-categories (see Theorem 3.4.1.1). Finally, (4) implies (5) by Lemma 5.3.2.5 (and since we
already know that (3) forces D to be a B-poset), and (5) implies (3) since SubB is cocomplete. □

We end this section with the observation that all colimits in a presentable B-poset are B-groupoidal
and can be computed by an explicit formula:
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Proposition 5.3.2.10. Let D be a presentable B-poset and let d : I → D be a diagram. Then the
inclusion I≃ → I induces an equivalence colim d|I≃ ≃ colim d. Moreover, this colimit can be explicitly
computed as

colim d ≃
∨

i : G→I
G∈G

(πG)!(d(i)),

where G ↪→ B is a small dense full subcategory.

Proof. Consider the full subcategory E ⊂ Cat(B)/D spanned by the diagrams d : I→ D for which
the inclusion I≃ → I induces an equivalence colim d|I≃ ≃ colim d. To prove the first statement, we need to
show that E = Cat(B)/D.

To that end, first observe that if hD : D ↪→ PShB(D) denotes the Yoneda embedding, then colim hDd

classifies the right fibration p : P→ D that arises from factoring d into a final functor and a right fibration.
In other words, p is the image of d under the localisation functor L : Cat(B)/D → RFib(D), and we may
compute the colimit of d by applying the left adjoint l : RFib(D)→ D (which exists by Proposition 5.3.2.9)
to p. Since both l and L are cocontinuous, it follows that for every ∞-category K and every diagram
φ : K→ Cat(B)/D with colimit d : I→ D, we have a canonical equivalence colim lLφ ≃ colim d.

Now let φ≃ : K → Cat(B)/D be the composition of φ with the core B-groupoid functor (−)≃. We
then obtain a natural comparison map colimφ≃ → I≃ which has the property that the composition of
this map with the inclusion I≃ → I can be identified with the colimit of the canonical morphism φ≃ → φ.
As a consequence, we obtain maps

colim lLφ≃ → colim d|I≃ → colim d

in which the composition can be identified with colim lLφ≃ → colim lLφ. Hence, if φ takes values in E,
the latter map is an equivalence, which implies that the map colim d|I≃ → colim d is one as well since D
is a poset. Thus, we conclude that E is closed under colimits in Cat(B)/D.

Consequently, since every B-category can be written as a colimit of B-categories of the form G⊗∆n

for G ∈ B and n ∈ N (cf. [62, Lemma 4.5.2]), it suffices to see that every diagram of the form
d : G ⊗∆n → D is in E. To that end, note that the colimit of a diagram d : G ⊗∆n → D is given by
applying (πG)! : D(G) → D(1) to the colimit of the transposed map d′ : ∆n → D(G), which is simply
d′(n). Likewise, the colimit of the induced diagram

⊔
nG = (G⊗∆n)≃ → D is given by applying (πG)!

to the supremum of the objects d′(i) for i ∈ ∆n. Since d′(i) ≤ d′(n) for all i ∈ ∆n, we deduce that d ∈ E,
as desired.

As for the second statement of the proposition, note that we have an equivalence

I≃ ≃ colim
i : G→I
G∈G

G

since G is dense in B. Thus the description of colim d|I≃ follows from the observation at the beginning of
the proof. □

5.3.3. B-locales. In this section we define what it means for a B-poset to be a B-locale and provide
a first characterisation of this notion.

Definition 5.3.3.1. A B-category L is said to be a B-locale if

(1) L is a B-poset,
(2) L is presentable, and
(3) colimits are universal in L (in the sense of § 5.1.3).

A functor f : K → L between B-locales is called an algebraic morphism of B-locales if it is cocontinuous
and preserves finite limits. We denote by LocL

B ↪→ PosB the subcategory that is spanned by the algebraic
morphisms of B/A-locales for all A ∈ B.
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Remark 5.3.3.2. In the situation of Definition 5.3.3.1, note that colimits are universal in L if and
only if for every A ∈ B and every U : A → L the functor U × − : π∗AL → π∗AL is cocontinuous. In fact,
since for every V : A→ L with a map U → V the diagram

(π∗AL)/V (π∗AL)/V

π∗AL π∗AL

U×V −

(πV )! (πV )!

U×−

commutes, the composition (πV )!(U ×V −) is cocontinuous. As (πV )! is conservative, this implies that
U ×V − is already cocontinuous.

Remark 5.3.3.3. Since the property of a B-category L to be a presentable B-poset is local in B

(combine Remark 4.4.2.9 with Remark 5.3.1.6) and since the property of a functor to be cocontinuous is
local in B as well Remark 3.2.2.3, one concludes that for every cover

⊔
Ai ↠ 1 in B, the B-category L is

a B-locale if and only if the B/Ai
-category π∗Ai

L is a B/Ai
-locale.

Remark 5.3.3.4. The subobject of (Cat
B̂

)1 that is spanned by the algebraic morphisms between B/A-
locales (for each A ∈ B) is stable under composition and equivalences in the sense of Proposition 2.2.2.9.
Since moreover cocontinuity and the property that a functor preserves finite limits are local conditions
and on account of Remark 5.3.3.3, we conclude that a map A→ (Cat

B̂
)1 is contained in (LocL

B)1 if and
only if it defines an algebraic morphism between B/A-locales. In particular, if L and M are B/A-locales,
the image of the monomorphism

mapLocL
B

(L,M) ↪→ mapCat
B̂

(L,M)

is spanned by the algebraic morphisms, and there is a canonical equivalence π∗A LocL
B ≃ LocL

B/A
.

Remark 5.3.3.5. In light of Remark 5.3.1.8, it is easy to see that LocL(B) ↪→ Pos(B) can be identified
with the category of internal locales in Disc(B) in the sense of [46, § C1.6]. In other words, our notion of
an internal locale coincides with the classical one.

Lemma 5.3.3.6. Let D be a presentable B-category with universal colimits, and let l : D → L be a
Bousfield localisation that preserves binary products. Suppose furthermore that L is a B-poset. L is a
B-locale.

Proof. We need to show that colimits are universal in L, i.e. that for every A ∈ B and every object
U : A → L the functor U × − : π∗AL → π∗AL is cocontinuous, or equivalently has a right adjoint. Now
l preserving binary products implies that U ×− carries every map in D (in arbitrary context) that is
inverted by l to one that is inverted by l as well. Hence the functor HomD(i(U), i(−)) (where HomD(−,−)
is the internal hom in D) takes values in L, which yields the claim. □

Proposition 5.3.3.7. For a B-category L, the following are equivalent:
(1) L is a B-locale.
(2) (a) L takes values in the 1-category LocL of locales;

(b) L is ΩB-cocomplete;
(c) for every map s : B → A in B, the functor s! : L(B)→ L(A) is a cartesian fibration.

(3) L is small, and the Yoneda embedding L ↪→ PShB(L) admits a left adjoint which preserves finite
products;

(4) L is a small B-poset, and the Yoneda embedding L ↪→ FunB(Lop,SubB) admits a left exact left
adjoint.

Proof. First, we show that (1) and (2) are equivalent. To that end, if L is a B-locale, then for each
A ∈ B the ∞-category L(A) is a presentable poset in which colimits are universal. Therefore, L(A) is a
locale. Moreover, L being cocomplete implies that for every map s : B → A in B the transition functor
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s∗ : L(A)→ L(B) is cocontinuous. Likewise, L having finite limits implies that s∗ preserves finite limits.
Therefore (2a) follows. Moreover, condition (2b) is part of the definition of a B-locale, and condition (2c)
is a reformulation of the condition that Ω-colimits are universal in L (see Example 5.1.3.6). Conversely,
if the three conditions in (2) are satisfied, then L is both Ω- and LConst-cocomplete and section-wise
presentable. Hence Theorem 4.4.2.4 implies that L is presentable. By Remark 5.3.1.7, the assumption
that L is section-wise given by a poset implies that L is a B-poset. Finally, the fact that L takes values
in Loc implies that LConst-colimits are universal in L, so that it suffices to verify that Ω-colimits are
universal in L as well. Again, this is a consequence of Example 5.1.3.6.

Next, if L is a B-locale, then Proposition 5.3.2.9 implies that the Yoneda embedding L ↪→ PShB(L)
has a left adjoint l. Moreover, as colimits are universal in L and as PShB(L) is generated by L under
colimits, the comparison map l(− × −) → l(−) × l(−) is an equivalence already when its restriction
to L is one, which is trivially true. Hence (1) implies (3). If we assume (3), then Proposition 5.3.2.9
implies that L is a small B-poset and that the Yoneda embedding L ↪→ FunB(Lop,SubB) has a left adjoint.
Explicitly, this left adjoint arises as the restriction of the left adjoint PShB(L)→ L and therefore preserves
finite products. But since pullbacks in B-posets coincide with binary products, this is already enough
to conclude that this functor is left exact. Hence (4) follows. Finally, if (4) holds, then L is presentable
by Proposition 5.3.2.9. Moreover, using Lemma 5.3.3.6 it will be enough to show that the subterminal
truncation functor (−)Sub : PShB(L)→ FunB(Lop,SubB) preserves binary products, which is an immediate
consequence of Example 5.3.2.4. □

Using Proposition 5.3.3.7, it is now easy to show that the B-poset of subterminal objects in a B-topos
is a B-locale. More precisely, one has:

Proposition 5.3.3.8. The functor Sub : PrL
B → PrL

B from Corollary 5.3.2.7 restricts to a functor
Sub : TopL

B → LocL
B.

Proof. By combining Remark 5.3.2.2 and Remark 5.3.3.4, it is enough to show that for every
algebraic morphism f∗ : X→ Y of B-topoi the induced map Sub(f∗) : Sub(X)→ Sub(Y) is an algebraic
morphism of B-locales. First, let us show that Sub(X) (and therefore by symmetry also Sub(Y)) is a
B-locale. To that end, choose a presentation of X as a left exact and accessible Bousfield localisation
L : PShB(C)→ X. Then Remark 5.3.2.8 implies that L restricts to a left exact and accessible Bousfield
localisation FunB(Cop,SubB)→ Sub(X), hence the claim follows from Proposition 5.3.3.7. Second, since
we already know that Sub(f∗) is cocontinuous, it is enough to show that it is left exact as well. But
on account of Remark 5.3.2.8, this functor arises as the restriction of f∗ to subterminal objects, which
immediately yields the claim. □

5.3.4. Sheaves on a B-locale. In this section we introduce and study the B-category of sheaves
on a B-locale.

Definition 5.3.4.1. Let L be a B-locale and let U : A→ L be an object. A covering of U is a diagram
d : G→ π∗AL with colimit U , where G is a B/A-groupoid.

Remark 5.3.4.2. Explicitly, a covering of U is given by a map s : B → A in B together with an
object V : B → L such that s!(V ) ≃ U .

Example 5.3.4.3. Let L be a B-locale and U : A→ L be an object. Then every covering (ji : Ui →
U)i∈I in L(A) (in the conventional sense) can be regarded as a covering in the sense of Definition 5.3.4.1
by setting G = I and d = (ji)i∈I .

Recall from Proposition 5.3.3.7 that if L is a B-locale, the Yoneda embedding hL : L ↪→ FunB(Lop,SubB)
admits a (left exact) left adjoint l. We denote by η : idFun

B
(Lop,SubB) → hLl the adjunction unit.
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Definition 5.3.4.4. Let L be a B-locale and let d : G→ π∗AL be a covering of an object U : A→ L.
Then the induced map η colim hLd : Sd = colim hLd ↪→ hL(U) in FunB(Lop,SubB) is referred to as the
covering sieve associated with d.

Remark 5.3.4.5. Let L be a B-locale and d : G→ π∗AL be a covering of an object U : A→ L. Then,
for every map s : B → A in B, we obtain an equivalence s∗Sd ≃ Ss∗d that commutes with the canonical
equivalence s∗hL(U) ≃ hL(s∗U).

Definition 5.3.4.6. If L is a B-locale, we denote by Cov ↪→ FunB(Lop,SubB) ↪→ PShB(L) the
subcategory that is spanned by the covering sieves in arbitrary context.

Remark 5.3.4.7. For every A ∈ B, one may identify π∗A Cov ↪→ FunB(π∗ALop,SubB/A
) with the

subcategory of covering sieves in π∗AL.

Remark 5.3.4.8. The B-category Cov is small. In fact, first note that by Remark 5.3.4.5, the
subcategory Cov ↪→ PShB(L) is already spanned by all covering sieves of objects in context G ∈ G, where
G is a small full subcategory of B that generates B under colimits. Furthermore, since L is small, the
collection of all coverings of objects in fixed context G is parametrised by a small set. Hence, the full
subcategory of PShB(L)∆1 that is spanned by the covering sieves must be small. In light of the very
construction of a subcategory from a collection of morphisms (see § 2.2.2), the claim thus follows from
the fact that the 1-image of a small B-category in a locally small B-category must also be small (see for
example [62, Lemma 4.7.5]).

Definition 5.3.4.9. Let L be a B-locale. We define the B-category ShB(L) of sheaves on L to be the
Bousfield localisation LocCov(PShB(C)). We will furthermore denote the underlying ∞-category of global
sections of ShB(L) by ShB(L).

Remark 5.3.4.10. By Remark 5.3.4.7, for every A ∈ B there is a canonical equivalence π∗AShB(L) ≃
ShB/A

(π∗AL) of full subcategories of PShB/A
(π∗AL).

Remark 5.3.4.11. If L be a B-locale, then Proposition 5.3.3.7 implies that the Yoneda embedding
L ↪→ PShB(L) admits a left adjoint l : PShB(L)→ L. By construction, this functor carries Cov into L≃. In
other words, l factors through the sheafification functor PShB(L)→ ShB(L). By passing to right adjoints,
this implies that the Yoneda embedding factors through the inclusion ShB(L) ↪→ PShB(L), which means
that every representable presheaf on L is already a sheaf.

The main goal of this section is to prove that ShB(L) is a B-topos. More precisely, we will show:

Proposition 5.3.4.12. For any B-locale L, the localisation functor PShB(L) → ShB(L) preserves
finite limits. In particular, ShB(L) is a B-topos.

The proof of Proposition 5.3.4.12 is based on the following three lemmas:

Lemma 5.3.4.13. For every B-locale L, the ∞-category ShB(L) is the Bousfield localisation of PShB(L)
at the set

W = {(πA)!(S) ↪→ (πA)!h(U) | A ∈ B, U : A→ L, S ↪→ h(U) covering sieve}

of morphisms in PShB(L).

Proof. A presheaf F : Lop → Ω is a sheaf if and only if for every A ∈ B and every covering
sieve S ↪→ h(U) in context A the morphism φ : mapPSh

B
(L)(h(U), π∗AF ) → mapPSh

B
(L)(S, π∗AF ) is an

equivalence in B/A. Recall from [62, Corollary 4.6.8] that if s : B → A is a map in B, then on local
sections over A the map φ recovers the morphism

mapPSh
B

(L)(B)(s∗h(U), π∗BF )→ mapPSh
B

(L)(B)(s∗S, π∗BF )
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of mapping ∞-groupoids, which by adjunction can in turn be identified with the map

mapPShB(L)((πB)!s
∗h(U), F )→ mapPShB(L)(πB)!s

∗S, F ).

Hence F is a sheaf precisely if the latter map is an equivalence for every covering sieve S ↪→ h(U) in
context A and every map s : B → A in B. Together with Remark 5.3.4.5, this yields the claim. □

Lemma 5.3.4.14. Let L be a locale and let S ↪→ h(U) be a covering sieve on an object U : A → L.
Then for every map V → U in L(A) the map h(V )×h(U) S ↪→ h(V ) is a covering sieve.

Proof. We may assume without loss of generality that A ≃ 1. Now if d : G→ L is a covering of U
giving rise to the covering sieve S, then universality of colimits in FunB(Lop,SubB) and the fact that h
preserves limits implies that h(V )×h(U) S is the colimit of the diagram

G d−→ L −×V−−−→ L h
↪−→ FunB(Lop,SubB).

Since universality of colimits in L implies that the diagram d(−)× V : G→ L is a covering of V , the claim
follows. □

Lemma 5.3.4.15. Let L be a B-locale and let S0 ↪→ h(U) and S1 ↪→ h(U) be covering sieves on an
object U : A→ L. Then S0 ×h(U) S1 ↪→ h(U) is a covering sieve as well.

Proof. We may assume without loss of generality that A ≃ 1. Let d0 : G0 → L be a covering giving
rise to the covering sieve S0, and let d1 : G1 → L be a covering giving rise to S1. Define G = G0 × G1 and
let d : G→ L be the diagram given by the composition

G0 × G1
d0×d1−−−−→ L× L −×−−−−→ L.

Then we have colim d ≃ U since colimits are universal in L and since U × U ≃ U in L. Therefore, it
is enough to show that the induced map colim hLd ↪→ h(U) in FunB(Lop,SubB) can be identified with
S0 ×h(U) S1 ↪→ h(U) This follows from the fact that hLd is given by the composition

G0 × G1
hLd0×hLd1−−−−−−−→ FunB(Lop,SubB)× FunB(Lop,SubB) −×−−−−→ FunB(Lop,SubB)

and the very same argument as above, using that colimits are universal in FunB(Lop,SubB) as well. □

Proof of Proposition 5.3.4.12. Since the localisation is already accessible (being a Bousfield
localisation at a small subcategory, see Theorem 4.4.2.4), the second claim follows from the first by
Theorem 5.2.3.1. To prove the first, let T ′(A) be the class of monomorphisms f : G ↪→ H in the ∞-topos
PShB(L)(A) (for arbitrary A ∈ B) satisfying the condition that for every map s : B → A in B, every
U : B → L and every map h(U)→ s∗H the pullback s∗G×s∗H h(U) ↪→ h(U) is a covering sieve in context
B. Then T ′(A) has the following properties:

(1) the maps in T ′(A) are closed under pullbacks in PShB(L)(A);
(2) the maps in T ′(A) are closed under finite limits in Fun(∆1,PShB(L)(A));
(3) every map in T ′(A) is inverted by the localisation functor PShB(L)(A)→ ShB(L)(A);
(4) every covering sieve in context A ∈ B is contained in T ′(A).

In fact, the first property is evident, and the second property follows from combining the first one with
Lemma 5.3.4.15. Property (3) follows from the observation that by descent in the B/A-topos PShB/A

(π∗AL),
every map in T ′(A) is a (B/A-internal) colimit of covering sieves, which implies (using Remark 5.3.4.10)
that it is inverted by the localisation functor PShB(L)(A)→ ShB(L)(A). The last property is an immediate
consequence of Lemma 5.3.4.14.

Let us set T ′ =
⋃
A∈B(πA)!T

′(A) and let T be the smallest local class of morphisms in PShB(L) that
contains T ′. Then T is bounded since it only contains monomorphisms. Moreover, T is closed under
finite limits in Fun(∆1,PShB(L)). To see this, the fact that every map in T is locally (in the ∞-topos
PShB(L)) contained in T ′ implies that it suffices to show that for every cospan f0 → f ← f1 with f0

and f1 in T ′, their pullback is in T ′ as well. Note that if s : B → A is a map in B and if g is a map in
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PShB(L)(B) such that s!(g) ∈ T ′(A), we have g ∈ T ′(B). Therefore, we may assume that both f0 and f1

are in T ′(A) for some A ∈ B. In this case, the claim immediately follows from properties (1) and (2) of
T ′(A). The same argument moreover shows that every map in T is inverted by the localisation functor
PShB(L)→ ShB(L) as it can be written as a ∆op-indexed colimits of maps in T ′.

By employing Lemma 5.3.4.13 and property (4) above, we now conclude that there is an equivalence
ShB(L) ≃ LocT (PShB(L)) of Bousfield localisations of PShB(L). Using Proposition 5.2.10.11, we thus
obtain hat PShB(L) → Sh[B](L) is left exact. In light of Remark 5.3.4.10, this is already sufficient to
conclude that the entire functor of B-categories PShB(L)→ ShB(L) is left exact. □

5.3.5. The localic reflection of B-topoi. In the previous section, we introduces the B-topos of
sheaves on a B-locale. In this section, we show that this construction is the universal way to attach a
B-topos to a B-locale. More precisely, we show:

Proposition 5.3.5.1. Let L be a B-locale. Then the Yoneda embedding h : L ↪→ ShB(L) induces an
equivalence L ≃ Sub(ShB(L)), and for every B-topos X precomposition with h induces an equivalence

Funalg
B (ShB(L),X) ≃ Funalg

B (L,Sub(X)),

where the left-hand side denotes the B-category of algebraic morphisms between the B-topoi ShB(L) and
X and the right-hand side denotes the B-category of algebraic morphisms between the B-locales L and
Sub(X).

Proof. We begin by showing the first claim. To that end, note that by Lemma 5.3.2.5 a sheaf
F : Lop → Ω is subterminal if and only if it takes values in SubB. Together with the usual base change
arguments, this implies that the first claim follows once we verify that every such sheaf F : Lop → SubB

is representable. Note that by Example 5.3.2.4, the associated right fibration p : L/F → L is fully faithful.
Let U : 1 → L be the colimit of p. We then obtain a canonical map F → h(U) in SubB(ShB(L)). To
show the claim, it is therefore enough to produce a map in the opposite direction, which by Yoneda’s
lemma is equivalent to show that F (U) ≃ 1Ω. To see this, note that by Proposition 5.3.2.10 the
object U is the colimit of the restriction of p to G = (L/F )≃. In other words, we have a covering of
U given by p|G. Let S ↪→ h(U) be the associated covering sieve. Then, since F is a sheaf, we obtain
an equivalence F (U) ≃ mapPSh

B
(L)(S, F ). To complete the proof of the first claim, we therefore need

to show that the right-hand side can be identified with 1Ω. But as F is subterminal, we may in turn
identify mapPSh

B
(L)(S, F ) with mapFun

B
(Lop,SubB)(S, F ) ≃ limFp|G. Thus, the claim follows once we show

that Fp|G : G→ SubB is final in FunB(G,SubB). Note that the associated object P ↪→ G in Sub(B/G) is
explicitly obtained as the fibre of p : L/F → Ω over p|G. Thus, the inclusion G ↪→ L/F induces a section
G→ P , which immediately yields the claim.

We now show the second claim. Let l : PShB(L)→ ShB(L) be the localisation functor. We now have
maps

Funalg
B (ShB(L),X) l∗

↪−→ Funalg
B (PShB(L),X) ≃ Funlex

B (L,Sub(X))←↩ Funalg
B (L,Sub(X))

in which the fact that l∗ is fully faithful follows from the universal property of localisations and where the
equivalence in the middle follows from Diaconescu’s theorem 5.2.2.10 and the straightforward observation
that by Remark 5.3.2.8 every left exact functor π∗AL → π∗AX necessarily factors through π∗A Sub(X).
Thus, by using Remarks 5.3.4.10 and 5.3.2.2 together with Remark 3.2.2.3, the claim follows once we
show that a left exact functor f : L → Sub(X) is cocontinuous if and only if the left Kan extension
h!(if) : PShB(L) → X (where i : Sub(X) ↪→ X is the inclusion) carries Cov into X≃. To see this, note
that as h!(if) is an algebraic morphism, it restricts to a functor FunB(Lop,SubB) → Sub(X) which is
cocontinuous as well. Consequently, for every object U : A → L and every covering d : G → π∗AL of U ,
the image of the associated covering sieve Sd ↪→ h(U) along h!(if) can be identified with the canonical
morphism colim fd→ f(U). In other words, h!(if) carries Cov into X≃ precisely if f is Ω-cocontinuous.
But by using Proposition 5.3.2.10, this already implies that f is cocontinuous. Hence the claim follows. □
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Corollary 5.3.5.2. The B-category LocL
B is a coreflective subcategory of TopL

B, where the inclusion
is given by carrying a B-locale to its associated sheaf B-topos and the coreflection sends a B-topos to its
underlying B-locale of subterminal objects.

Proof. Combine Proposition 5.3.3.8 with Proposition 5.3.5.1. □

Definition 5.3.5.3. A B-topos X is localic if it is contained in the essential image of ShB(−) : LocL
B ↪→

TopL
B.

5.3.6. Localic B-topoi as relative locales. If B is a localic ∞-topos, then B-locales precisely
correspond to locales under Sub(B). More precisely, note that as a consequence of Corollary 5.3.5.2, the
B-locale SubB is the initial B-locale. Since moreover the global sections functor ΓB restricts to a functor
LocL(B)→ LocL, we thus obtain an induced functor LocL(B)→ LocL

Sub(B)/.

Proposition 5.3.6.1. If B is a localic ∞-topos, then the functor Γ: LocL(B) → LocL
Sub(B)/ is an

equivalence of ∞-categories.

Proof. Since by Remark 5.3.3.5 the ∞-category LocL(B) can be identified with the 1-category of
internal locales in Disc(B), the statement reduces to the analogous result in 1-topos theory, see [46,
Theorem C1.6.3]. □

Corollary 5.3.6.2. For every B-locale L, the ∞-topos ShB(L) can be canonically identified with
Sh(ΓL).

Proof. As a result of Remark 5.3.2.8, we have a commutative diagram

TopL(B) (TopL
∞)B/

LocL(B) LocL
Sub(B)/

Sub

Γ

Sub

Γ

(where we note that as LocL is a 1-category coherence issues do not arise). Therefore, the claim follows
from Proposition 5.3.6.1 and the fact that by Theorem 5.2.5.1 the upper horizontal map is an equivalence
as well. □

Remark 5.3.6.3. The inverse to the equivalence from Proposition 5.3.6.1 can be made explicit
as follows: Given an algebraic morphism of locales f∗ : Sub(B) → L, let f∗ : B → Sh(L) be the
associated algebraic morphism of ∞-topoi. Then f∗ SubSh(L) is a B-locale (as can be easily verified using
Proposition 5.3.3.7) whose underlying locale recovers L and is therefore the B-locale associated to L.
Explicitly, this B-locale can be described as the sheaf L/f∗(−) on Sub(B), i.e. the Ĉat∞-valued functor
that is classified by the cartesian fibration Sub(B)×L Fun(∆1, L)→ Sub(B).

5.3.7. Compactness conditions for B-locales. In this section, we study how certain compactness
properties of B-locales are inherited by their associated localic B-topoi. To that end, recall that if D
is a presentable B-category, we say that D is compactly generated if the inclusion Dcpt ↪→ D of the full
subcategory of compact objects induces via left Kan extension an equivalence IndB(Dcpt) ≃ D. We
will furthermore say that D is compactly assembled if D is a retract (in PrL

B) of a compactly generated
B-category. We may now define:

Definition 5.3.7.1. A B-locale L is said to be locally coherent if it is compactly generated and if Lcpt

is closed under binary products in L. We say that L is coherent if it is locally coherent and 1L is compact.
Furthermore, L is said to be (locally) stably compact if it is a retract in LocL

B of a (locally) coherent
B-locale.

Remark 5.3.7.2. Since the existence and preservation of limits is local in B by Remark 3.2.2.3 and
one has π∗AIndB(Lcpt) ≃ IndB/A

(π∗ALcpt) by Remark 4.1.5.2 and Remark 4.3.1.2 for every A ∈ B, we
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deduce that for every cover (πAi
) : :

⊔
iAi ↠ 1 in B, a B-locale L is (locally) coherent if and only if π∗Ai

L
is a (locally) coherent B/Ai

-locale for every i.

Then main goal of this section is to relate sheaves on a locally coherent locale with finitary sheaves
on its compact objects:

Definition 5.3.7.3. Let P be a B-poset with finite colimits and binary products. A presheaf
F : Pop → Ω is said to be a finitary sheaf if

(1) F (∅P) ≃ 1Ω;
(2) for every two objects U, V : A⇒ P in arbitrary context A ∈ B, the commutative square

F (U ∨ V ) F (V )

F (U) F (U ∧ V )

is a pullback.
We let Shfin

B (P) be the full subcategory of PShB(P) that is spanned by those presheaves π∗APop → ΩB/A

(in arbitrary context A ∈ B) which are finitary sheaves on π∗AP.

Remark 5.3.7.4. As preservation of (co)limits is a local property Remark 3.1.1.8, we deduce that
for every cover

⊔
iAi ↠ 1 in B a presheaf F : Pop → Ω is a finitary sheaf if and only if the presheaf

π∗Ai
(F ) is a finitary sheaf on π∗AP. In particular, an object A→ PShB(P) is contained in Shfin

B (P) if and
only if it transposes to a finitary sheaf on π∗AP, and we obtain a canonical equivalence of B-categories
π∗AShfin

B (P) ≃ Shfin
B/A

(π∗AP) for every A ∈ B.

Recall from § 4.4.6 that if C is a Filt-cocomplete B-category, we denote by ShFilt
B (C) the full subcategory

of PShB(C) that is spanned by the Filt-sheaves, i.e. by those functors π∗ACop → ΩB/A
(in arbitrary context

A ∈ B) whose opposite is Filt-cocontinuous. We now obtain the following characterisation of sheaves on a
B-locale:

Proposition 5.3.7.5. Let L be a B-locale. Then ShB(L) ≃ Shfin
B (L) ∩ ShFilt

B (L) as full subcategories in
PShB(L).

Proof. By combining Remarks 5.3.7.4 and 5.3.4.10 with Remark 3.2.2.3, we need to show that for
every A ∈ B, a presheaf F : π∗ALop → ΩB/A

is a sheaf if and only if
(1) F op : π∗AL→ Ωop

B/A
is π∗A Filt-cocontinuous;

(2) F (∅π∗
A

L) ≃ 1ΩB/A
;

(3) for every two objects U, V : B ⇒ L in arbitrary context B ∈ B/A, the commutative square

F (U ∨ V ) F (V )

F (U) F (U ∧ V )

is a pullback.
By replacing B with B/A, we may assume that A ≃ 1. Now suppose first that F is a sheaf. To show
that (1) is satisfied, we need to verify that for every diagram d : I→ π∗AL where I is a filtered B/A-category
and A ∈ B is arbitrarily chosen, the natural map (π∗AF )(colim d) → lim(π∗AF )d is an equivalence. By
replacing B with B/A, we may again assume without loss of generality that A ≃ 1. As I is filtered, the
functor colimI : FunB(I,PShB(L)) → PShB(L) preserves finite limits and therefore (by Remark 5.3.2.8)
subterminal objects. Therefore, we deduce that colim hLd is subterminal. Now by Proposition 5.3.2.10,
we may replace I by I≃ and can thus assume that I is a B-groupoid. Therefore, the sheaf condition implies
that we obtain an equivalence

F (colim d) ≃ mapPSh
B

(L)(colim hLd, F ) ≃ limFd.
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This shows that F is a Filt-sheaf. Condition (2) follows from the observation that as ∅L is the colimit of
the unique diagram ∅ → L, we obtain an equivalence F (∅L) ≃ mapPSh

B
(L)(∅PSh

B
(L), F ) ≃ 1Ω. Lastly,

to show that condition (3) is met, we may again replace B with B/B and can therefore assume that
B ≃ 1. Now as U ∨ V is the coproduct of U and V in L, the claim follows from the fact that the pushout
hL(U) ⊔hL(U∧V ) hL(V ) in PShB(L) computes the coproduct of hL(U) and hL(V ) in FunB(Lop,SubB).

Conversely, suppose that F satisfies the three conditions. To show that F is a sheaf, we need to
verify that for every covering d : G→ π∗AL of an object U : A→ L the functor mapPSh

B
(L)(−, F ) carries

the induces covering sieve Sd ↪→ h(U) to an equivalence. By replacing B with B/A, we may again assume
that A ≃ 1. First, let us show the claim in the case where G is finite, i.e. a locally constant sheaf of finite
∞-groupoids. Upon passing to a suitable cover, we can even assume that G is (the constant B-category
associated with) a finite ∞-groupoid. Since L is a B-poset, we can even assume that G is a finite set. By
induction, it suffices to cover the cases G = ∅ and G = 1 ⊔ 1. By the above argumentation, these two
cases follow immediately from conditions (2) and (3).

For the general case, let FinB be the internal class of finite B-categories. Since FinB has the
decomposition property (see § 4.1.4 and § 4.2.3), we may find a filtered B-category I and a diagram k : I→
FinB ↪→ CatB such that G ≃ colim k. Note that since G is a B-groupoid and since the groupoidification
of a finite B-category is a finite B-groupoid, postcomposing k with the groupoidification functor yields a
diagram k′ : I→ Ω∩ FinB ↪→ CatB that also has colimit G. Therefore, we deduce from Proposition 3.4.4.3
and by making use of the subterminal truncation functor (−)Sub : PShB(L)→ FunB(Lop,SubB) that there
is a diagram d′ : I→ FunB(Lop,SubB) such that (a) we have colim d′ ≃ colim hLd and such that (b) for
every object i : A→ I in arbitrary context A ∈ B there is a finite B/A-groupoid Hi together with a diagram
di : Hi → π∗AL such that d′(i) ≃ colim hLdi. From (a) we deduce that if l : FunB(Lop,SubB) → L is the
left adjoint of the Yoneda embedding, the unit of the adjunction l ⊣ hL determines morphisms

colim hLd ≃ colim d′
α−→ colim hLld

′ β−→ hL(colim ld′) ≃ hL(colim d)

in FunB(Lop,SubB). As I is filtered, the same argumentation as above implies that the colimit in the
middle is already the colimit in PShB(L). Thus condition (1) implies that mapPSh

B
(L)(−, F ) carries β to

an equivalence. To finish the proof, it is therefore enough to show that this functor also sends α to an
equivalence. For this, we only need to show that for every object i : A→ I in arbitrary context A ∈ B the
map d′(i) → hLld

′(i) is sent to an equivalence. By (b), we find that d′(i) is of the form colim hLdi for
some diagram di : Hi → π∗AL where Hi is a finite B/A-groupoid. Since this case has already been shown
above, the result follows. □

Lemma 5.3.7.6. Let L be a locally coherent B-locale and let F : Lop → Ω be a Filt-sheaf on L. Then F

is a sheaf on L if and only if F |Lcpt is a finitary sheaf on Lcpt.

Proof. By Proposition 5.3.7.5, we need to show that F is a finitary sheaf on L if and only if F |Lcpt

is a finitary sheaf on Lcpt. As L is locally coherent and therefore Lcpt is closed under binary products
in L, it is clear that the condition is necessary. Moreover, as Lcpt contains the initial object, it is clear
that F satisfies condition (1) of the definition of a finitary sheaf if and only if F |Lcpt does. Therefore, we
only need to show that if F |Lcpt is a finitary sheaf, then for every pair of objects U, V : A⇒ L, the map
F (U ∨ V )→ F (U)×F (U∧V ) F (V ) is an equivalence. Using Remark 5.3.7.4 and Remark 4.1.5.2, we may
replace B with B/A and can therefore assume that A ≃ 1. Note that it follows from the bifunctoriality
of − ∧ − that for a fixed U , both the map U ∧ V → V and the map U ∧ V → U are natural in V , i.e.
define morphisms in FunB(L, L). Therefore, we obtain a cospan diag(U) ← U ∧ − → idL in FunB(L, L)
(where diag : L→ FunB(L, L) is the diagonal map). By taking the colimit of this diagram, we end up with
a commutative square

U ∧ − idL

diag(U) U ∨ −
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in FunB(L, L). Since colimits are universal in L, the functor U ∧ − is cocontinuous. Furthermore, the
functor diag(U) is Filt-cocontinuous: in fact, as it can be identified with U ∧ diag(1L)(−), it suffices to see
that diag(1L) ≃ 1Fun

B
(L,L) is Filt-cocontinuous. As in the proof of Lemma 4.1.5.3, this is a consequence

of the fact that filtered colimits in L are left exact, which is easily shown using Lemma 5.3.8.7 below
and the fact that L is a left exact localisation of FunB(Lop,SubB), see Proposition 5.3.3.7. Thus, as
Filt-cocontinuous functors are clearly closed under pushouts in FunB(L, L), the above commutative diagram
is a square of Filt-cocontinuous functors. By again using that filtered colimits in L are left exact, this
observation now implies that by postcomposition with (the opposite of) F , we end up with a morphism
F (U ∨ −) → F (U) ×F (U∧−) F (−) of Filt-cocontinuous functors L → Ωop. Since L ≃ IndB(Lcpt), the
universal property of IndB(Lcpt) thus implies that this morphism is an equivalence already when its
restriction to Lcpt is one. Together with our assumption on F , it follows that if U is compact, then
the map F (U ∨ V ) → F (U) ×F (U∧V ) F (V ) is an equivalence for all V : 1 → L. By symmetry and
the fact that the context of U and V has been arbitrarily chosen, this now implies that the morphism
F (− ∨ V ) → F (−) ×F (−∧V ) F (V ) is an equivalence when restricted to Lcpt and must therefore be an
equivalence on all of L. Hence the claim follows. □

For later use we also record the following Lemma:

Lemma 5.3.7.7. Let P be a poset with finite colimits and binary products. Then Shfin
B (P) is closed

under Filt-colimits in PShB(P).

Proof. We need to show that for every A ∈ B and every diagram d : I → π∗AShfin
B (P) where I is a

filtered B/A-category, the colimit of d is contained in Shfin
B (P). Using Remark 5.3.7.4, we may replace B

with B/A and can therefore assume that A ≃ 1. We may compute the colimit of d as the composition

Pop d′−→ FunB(I,Ω) colimI−−−−→ Ω

where d′ is the transpose of d : I→ PShB(P). As I is filtered, the functor on the right preserves finite limits.
Moreover, the assumption that d takes values in Shfin

B (P) and the fact that limits in functor B-categories
can be computed objectwise imply that d′ is a FunB(I,Ω)-valued finitary sheaf on P. Hence the claim
follows. □

The main result of this section is the following description of sheaves on a locally coherent locale:

Proposition 5.3.7.8. Let L be a locally coherent locale. Then there is a canonical equivalence of
B-topoi

ShB(L) ≃ Shfin
B (Lcpt).

Proof. By Proposition 5.3.7.5, we have an identification ShB(L) ≃ Shfin
B (L) ∩ ShFilt

B (L) of full
subcategories of PShB(L). In particular, we obtain an inclusion ShB(L) ↪→ ShFilt

B (L) ≃ PShB(Lcpt) (where
we use that L ≃ IndB(Lcpt) and the universal property of IndB(Lcpt)). Using Remark 5.3.4.10 together
with Lemma 5.3.7.6, we now find that an object A→ PShB(Lcpt) is contained in ShB(L) if and only if it
transposes to a finitary sheaf on π∗ALcpt, proving the claim. □

Corollary 5.3.7.9. Let L be a B-locale.
(1) If L is locally coherent then ShB(L) is compactly generated.
(2) If L is locally stably compact then ShB(L) is compactly assembled.

Proof. Note that (2) is an immediate consequence of the definitions and (1). To see (1) note that
we have an inclusion

ShB(L) ≃ Shfin
B (Lcpt) ↪→ PShB(Lcpt)

which by Lemma 5.3.7.7 preserves filtered colimits. Thus the claim follows from Corollary 4.3.3.3. □
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5.3.8. The internal locale of a locally proper and separated map. The goal of this section is
to show that for a proper and separated map of topological spaces f : Y → X, the Sh(X)-locale given
by U 7→ O(f−1(U)) is a stably compact locale. This is a direct consequence of [47] but we decided to
also provide a separate proof of Johnstone’s result in the language of Sh(X)-locales that we developed
above. With future applications in mind, we will prove a slightly more general statement about locally
proper and separated maps of topological spaces (which Johnstone also mentions in [46, § C4.1] but never
explicitly spells out).

We begin by recalling the definition of a locally proper map from [81]:

Definition 5.3.8.1. A continuous map f : Y → X of topological spaces is said to be locally proper
if for every y ∈ Y and every open neighbourhood V of y there is a neighbourhood K ⊂ V of y and an
open neighbourhood U of f(y) such that f(K) ⊂ U and such that the induced map K → U is proper (i.e.
universally closed).

Remark 5.3.8.2. The property of a map f : Y → X to be locally proper and separated is local in
the target: if X =

⋃
i Ui is an open covering, then f is locally proper and separated if and only if each of

the restrictions f−1(Ui)→ Ui has that property [81, Lemma 2.7].

Remark 5.3.8.3. Every proper and separated morphism is also locally proper [81, Proposition 2.12].
This is the relative version of the fact that compact Hausdorff spaces are locally compact as well.

Remark 5.3.8.4. In the situation of Definition 5.3.8.1, if f is separated and locally proper, then for
every y ∈ Y and every open neighbourhood V of y there is an open neighbourhood V ′ ⊂ V and an open
neighbourhood U of f(y) such that f(V ′) ⊂ U and such that the closure of V ′ in f−1(U) is proper over
U . In fact, f being separated implies that its restriction f−1(U)→ U is separated as well. Therefore, [81,
Lemma 9.12] implies that if K ⊂ V is as in Definition 5.3.8.1, then K is closed in f−1(U). Hence the
closure of the interior of K (again in f−1(U)) is a closed subset of K and therefore also proper over U .

To proceed, recall that if f : Y → X is a map of topological spaces, we obtain an algebraic morphism
of locales f∗ : O(X) → O(Y ), where O(X) and O(Y ) denote the locales of open subsets of X and Y ,
respectively. By Proposition 5.3.6.1, f∗ gives rise to a Sh(X)-locale OX(Y ) that is explicitly given by
the sheaf on X that carries an open U ∈ O(X) to the locale O(f−1(U)) (see Remark 5.3.6.3). Recall,
furthermore, that we refer to a B-locale L as (locally) stably compact if it arises as a retract in LocL

B of a
(locally) coherent B-locale (see Definition 5.3.7.1). Now the main goal of this section is to show:

Proposition 5.3.8.5. If f : Y → X is a locally proper and separated morphism of topological spaces,
then OX(Y ) is a locally stably compact Sh(X)-locale. If f is even proper, then OX(Y ) is stably compact.

The proof of Proposition 5.3.8.5 requires a few preparations first. To begin with, we need to construct
a candidate for a (locally) coherent Sh(X)-locale of which OX(Y ) is a retract. We will use the following
general observation:

Proposition 5.3.8.6. Let L be a B-locale and let j : P ↪→ L be a full subposet that is closed under
binary products and finite colimits. Then

(1) the left Kan extension h!(j) : IndB(P)→ L is cocontinuous;
(2) IndB(P) is a locally coherent B-locale which is coherent if P contains the final object of L;
(3) a right fibration over P (in arbitrary context A ∈ B) is contained in the essential image of the

inclusion IndB(P) ↪→ RFibP if and only if it the inclusion of a sieve in π∗AP (i.e. a fully faithful
right fibration) that is closed under finite colimits.

The proof of Proposition 5.3.8.6 requires the following two lemmas:

Lemma 5.3.8.7. The inclusion SubB ↪→ Ω preserves filtered colimits



5.3. LOCALIC B-TOPOI 215

Proof. Using Remark 5.3.2.2 and Example 5.3.2.4, it suffices to show that for every filtered B-
category I, the functor colimI : FunB(I,Ω)→ Ω restricts to subterminal objects. By Remark 5.3.2.8, this
is an immediate consequence of colimI being left exact. □

Lemma 5.3.8.8. Let C be a B-poset with finite colimits and let p : P ↪→ C be a sieve (i.e. a fully
faithful right fibration). Then P is filtered if and only if it is closed under finite colimits in C.

Proof. It will be sufficient to show that whenever d : K→ P is a finite diagram, then Pd/ admits
an initial object which is carried to the initial object in Cpd/ along the induced functor p∗ : Pd/ → Cpd/.
Note that p : P → C being a sieve implies that p∗ is one as well. Now since C has finite colimits, Cpd/
admits an initial object colim(pd). Since p∗ is a right fibration, the inclusion Pd/|colim(pd) ↪→ Pd/ of p∗
over colim(pd) is initial [62, Proposition 4.4.7]. Since P is assumed to be filtered, we furthermore have
(Pd/)gpd ≃ 1. Therefore, we must have Pd/|colim(pd) ≃ 1 as this is already a subterminal B-groupoid (since
p is fully faithful, see Example 5.3.2.4). Hence Pd/ admits an initial object which is preserved by p∗. □

Proof of Proposition 5.3.8.6. The fact that P has finite colimits implies that the B-category
IndB(P) is presentable and that the left Kan extension h!(j) : IndB(P) → L is cocontinuous by Corol-
lary 4.4.6.6, which shows (1).

To show (2), since IndB(P) is by definition compactly generated and since we may always identify
IndB(P)cpt ≃ P (as P is a B-poset), we only need to verify that IndB(P) is indeed a B-locale. To
that end, note that IndB(P) being presentable implies that the inclusion IndB(P) ↪→ PShB(P) admits
a left adjoint l : PShB(P) → IndB(P) by Corollary 3.4.1.14. Moreover, Lemma 5.3.8.7 implies that the
inclusion FunB(Pop,SubB) ↪→ PShB(P) preserves filtered colimits. Therefore, IndB(P) must be contained
in FunB(Pop,SubB) and is therefore in particular a B-poset. Hence, we only need to check that l preserves
binary products (see Lemma 5.3.3.6). This is equivalent to IndB(P) being an exponential ideal in PShB(P),
i.e. that for every object F : A → IndB(P) and every object G : A → PShB(P) (in arbitrary context
A ∈ B), the internal hom HomPSh

B
(P)(G,F ) is contained in IndB(P). By using Proposition 3.4.1.11, we

can assume that A ≃ 1. Upon writing G as a colimit of representables and using that the inclusion
IndB(P) ↪→ PShB(P) is continuous, we may assume without loss of generality that G is itself representable
by an object U : 1→ P. Thus, Yoneda’s lemma and the fact that the Yoneda embedding is continuous imply
that HomPSh

B
(P)(G,F ) can be identified with the presheaf F (U ×−). Note that by Proposition 4.4.6.5

a presheaf is contained in IndB(P) if and only if it carries finite colimits in P to limits. Thus, as F by
assumption has this property and since colimits are universal in L, the claim follows.

Lastly, in light of Example 5.3.2.4, statement (3) is an immediate consequence of Lemma 5.3.8.8. □

In light of Proposition 5.3.8.6, our task is now to find a full subposet of OX(Y ) that is closed under
binary products and finite colimits. To that end, note that the datum of an object in OX(Y ) in context
U ⊂ X is precisely given by an open subset V ⊂ f−1(U). With that in mind, we may now define:

Definition 5.3.8.9. Let f : Y → X be a locally proper and separated map of topological spaces. We
say that an object V ⊂ f−1(U) has proper closure if its closure V in f−1(U) is proper over U . We define
the subposet Opc

X (Y ) ↪→ OX(Y ) as the full subposet of OX(Y ) that is spanned by these objects.

Remark 5.3.8.10. In the situation of Definition 5.3.8.9, note that f being separated implies that if
V is proper over U , then V is also closed in Y (see [81, Lemma 9.12]). Therefore, V is also the closure of
V in Y in this case.

A priori, the subposet Opc
X (Y ) is only spanned by the objects with proper closure, so there could

potentially be more objects. Our next result shows that this cannot happen:

Lemma 5.3.8.11. An object V ⊂ f−1(U) in OX(Y ) is contained in Opc
X (Y ) if and only if it has proper

closure.
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Proof. By definition, the condition is sufficient, so it suffices to prove that it is also necessary. This
amounts to showing that the property of having proper closure is local on the target: if U =

⋃
i Ui is

a covering and if V ∩ f−1(Ui) ⊂ f−1(Ui) is proper over Ui, then V ⊂ f−1(U) is proper over U . Since
properness is local on the target [81, § 9.5], this follows from the identity V ∩ f−1(Ui) = V ∩ f−1(Ui). □

Remark 5.3.8.12. Note that if U ⊂ X is an arbitrary open subset, we may identify Sh(X)/U ≃ Sh(U).
In light of this identification, the Sh(U)-locale π∗UOX(Y ) can be identified with OU (f−1(U)). Moreover,
Lemma 5.3.8.11 implies that we obtain a canonical equivalence π∗UOpc

X (Y ) ≃ Opc
U (f−1(U)) of full subposets

in O(f−1(U)/U) (see also Remark 5.3.8.2).

Having an explicit description of the full subposet Opc
X (Y ) ↪→ OX(Y ), we now proceed by showing

that it satisfies the conditions of Proposition 5.3.8.6:

Lemma 5.3.8.13. Opc
X (Y ) is closed under binary products and finite colimits in OX(Y ).

Proof. Since the map ∅→ X is always proper, Lemma 5.3.8.11 implies that it is enough to show
that for every two objects V ⊂ f−1(U) and V ′ ⊂ f−1(U) whose closure (in f−1(U)) is proper over U ,
both V ∪ V ′ → U and V ∩ V ′ → U are proper. The first map is proper by [81, § 9.7] and the fact that
union and closure commute. The second map is proper as it can be decomposed into the composition
V ∩ V ′ ↪→ V → U where the first map is a closed embedding (hence proper) and the second map is
proper by assumption. □

Proposition 5.3.8.14. The Sh(X)-category IndSh(X)(O
pc
X (Y )) is a locally coherent Sh(X)-locale, and

the left Kan extension IndSh(X)(O
pc
X (Y ))→ OX(Y ) of the inclusion is a Bousfield localisation.

Proof. In light of Lemma 5.3.8.13, the first claim follows from Proposition 5.3.8.6, so that it suffices
to show the second one. We need to prove that the counit of the adjunction OX(Y ) ⇆ IndSh(X)(O

pc
X (Y ))

is an equivalence. Using Remark 5.3.8.12, it will be enough to check this on a global object V ⊂ Y .
By Remark 3.3.3.6, this amounts to showing that V is the colimit of the diagram Opc

X (Y )/V → OX(Y ).
Using Proposition 5.3.2.10, we only need to verify that V ≃

⋃
V ′⊂f−1(U)∩V V

′, where U runs though all
open subsets of X and V ′ runs through all objects in Opc

X (Y )(U) which are contained in V . This is an
immediate consequence of the fact that Y is locally proper and separated over X (see Remark 5.3.8.4). □

The following Lemma is a suitable relative analogue of the fact that in a locally compact Hausdorff
space, every open covering of a compact subset has a finite refinement:

Lemma 5.3.8.15. Let V ⊂ f−1(U) be an object in Opc
X (Y )(U), let (V ′j ⊂ f−1(Uj))j∈J be a family of

objects in OX(Y ) and suppose that V ⊂
⋃
j∈J V

′
j . Then there is a covering U =

⋃
i Ui in X such that for

each i there is a finite subset Ji ⊂ J such that Ui ⊂ Uj for all j ∈ Ji and such that V ∩f−1(Ui) ⊂
⋃
j∈Ji

V ′j .

Proof. In light of Remark 5.3.8.12, we may replace Y/X by f−1(U)/U and each object V ′j ⊂ f−1(Uj)
by its intersection V ′j ∩f−1(U) ⊂ f−1(Uj ∩U) and can thus assume without loss of generality that U = X.
Now since V is proper over X, its fibre V |x over every x ∈ X is compact (as being proper is stable under
base change). Therefore, for each x ∈ X we have a finite subset Jx ⊂ J such that V |x ⊂

⋃
j∈Jx

V ′j . We
can assume that x ∈ Uj for all j ∈ Jx, since otherwise V ′j |x would be empty. Now let Z be the complement
of

⋃
j∈Jx

V ′j in Y . Then V ∩ Z is closed in Y , hence f(V ∩ Z) is closed in X (as proper maps are always
closed). By construction, a point x′ ∈ X is contained in f(V ∩ Z) precisely if V |x′ is not contained in⋃
j∈Jx

V ′j . Therefore, if U is the complement of f(V ∩ Z) in X, then U contains precisely those points
x′ ∈ X for which V |x′ ⊂

⋃
j∈Jx

V ′j . In other words, we have V ∩ f−1(U) ⊂
⋃
j∈Jx

V ′j . Since x ∈ U , we
may shrink U if necessary so that it is contained in

⋂
j∈Jx

Ux. Now the claim follows. □

Proof of Proposition 5.3.8.5. By Proposition 5.3.8.14, the left Kan extension l : IndB(Opc
X (Y ))→

OX(Y ) is a Bousfield localisation. Therefore, we only need to show that l admits a left adjoint λ which
preserves finite limits.
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We begin by showing that l(X) has a left adjoint λX . On account of Proposition 5.3.8.6, this amounts
to showing that for every V ⊂ Y , there is sieve λX(V ) : P ↪→ Opc

X (Y ) which is closed under finite colimits
such that for every other sieve q : Q ↪→ Opc

X (Y ) with the same property and for which V ⊂ colim q, we
have P ↪→ Q. We define P to be the full subposet of Opc

X (Y ) which is spanned by those V ′ ⊂ f−1(U)
whose closure is contained in V . This property is clearly local in X, so that every object of P in context
U ⊂ X will be of this form. Moreover, if V ′′ ⊂ V ′ and V ′ is in P(U), so is V ′′. Therefore, P ↪→ Opc

X (Y ) is
a sieve. Furthermore, P is closed under finite colimits. Now let V ′ ⊂ f−1(U) be an arbitrary object in
P in context U ⊂ X and let q : Q ↪→ Opc

X (Y ) be a sieve which is closed under finite colimits such that
V ⊂ colim q. We need to show that V ′ is contained in Q. By assumption, the closure V ′ is contained in
colim q. Using Proposition 5.3.2.10, we may identify

colim q ≃
⋃

V ′′∈Q(U)
U⊂X

V ′′.

Therefore, Lemma 5.3.8.15 implies that there is a covering U =
⋃
i∈I Ui such that for each i there are

finitely many V ′′i1 , . . . , V
′′
in
∈ Q(Ui) with the property that V ′ ∩ f−1(Ui) ⊂

⋃n
j=1 V

′′
ij

. As Q is closed under
finite colimits, the right-hand side is contained in Q(Ui). Consequently, V ′ is locally contained in Q and
must therefore also be globally contained in Q.

Now by carrying out the above argument with f |f−1(U) in place of f , Remark 5.3.8.12 implies that
l(U) admits a left adjoint λU for every U ⊂ X. Furthermore, for every pair of opens U ⊂ U ′ ⊂ X and
every V ′ ⊂ f−1(U ′), it follows readily from the constructions that the restriction of λU ′(V ′) to U can
be identified with λU (V ′ ∩ f−1(U)). Therefore, we deduce from Corollary 2.4.2.11 that l admits a left
adjoint, as desired. It is then clear from its explicit construction that this left adjoint preserves finite
limits.

Lastly, if f is proper, then Opc
X (Y ) contains the final object of OX(Y ), which immediately implies

that OX(Y ) is stably compact. □





CHAPTER 6

Application: Smooth and proper morphisms of ∞-topoi

In this chapter we will use the results of the previous chapters to study geometric properties of
morphisms of ∞-topoi. We begin by studying smooth geometric morphism in § 6.1. Recall that a
geometric morphism is called smooth if it satisfies smooth base change (see Definition 6.1.3.1 for a precise
statement). The main goal of § 6.1.1 will be to show that a geometric morphism is smooth if and only
if it is locally contractible. Here a geometric morphism p∗ : X → B is called locally contractible if the
associated constant sheaf functor const : ΩB → p∗ΩX of B-topoi admits a further left adjoint.

We continue by studying the notion of a proper geometric morphism, which is dual to the notion of
smoothness, in § 6.2. Our main result will then be that a geometric morphism is proper if and only if it is
compact. Here we call a geometric morphism p∗ : X→ B compact if the associated global section functor
p∗ΩX → ΩB commutes with filtered colimits. Combining this criterion with the results of § 5.3 it will
follow that a proper and separated morphism of arbitrary topological spaces induces a proper geometric
morphism of ∞-topoi, generalizing [57, p. 7.3.1.16].

6.1. Smooth and locally contractible geometric morphisms

An ∞-topos X is said to be locally contractible if the constant sheaf functor constX : S→ X admits
a left adjoint πX : X → S which is to be thought of as the functor that carries an object U ∈ X to its
homotopy type (or shape) πX(U). In 1-topos theory, the corresponding notion is that of a locally connected
1-topos E, in which the additional left adjoint carries an object U ∈ E to its set of connected components
π0(E). In this section, we study the analogous concept for B-topoi.

We begin in § 6.1.1 by recalling the notion of a locally contractible B-topos and providing a few
characterisations of this concept. In § 6.1.2, we show that every locally contractible B-topos is generated
by its contractible objects in a quite strong sense. Finally, in § 6.1.3 we provide a characterisation of
locally contractible B-topoi in terms of smoothness of the associated geometric morphisms.

6.1.1. Local contractibility. The goal of this section is to define the condition of a B-topos to be
locally contractible and to derive a few explicit characterisations of this concept. Locally contractible
geometric morphisms have been introduced and studied, mostly in the context of sheaves of topological
spaces, in [2, §3.2] and [86, §3.2]. We give the following equivalent definition, which is a straightforward
generalisation of the notion of a locally contractible ∞-topos to the world of B-topoi:

Definition 6.1.1.1. A B-topos X is locally contractible if the unique algebraic morphism constX : Ω→
X admits a left adjoint πX : X → Ω. We call a geometric morphism f∗ : X → B locally contractible if
f∗(ΩX) is a locally contractible B-topos, in which case we denote by f! the additional left adjoint of f∗

(i.e. the functor Γ(πf∗(ΩX))).

Remark 6.1.1.2. As the property of a functor being a right adjoint is local in B (see Remark 2.4.3.6)
and by making use of Remark 5.2.1.3, we find that for any cover

⊔
iAi → 1 in B, the B-topos X is locally

contractible if and only if for every i the B/Ai
-topos π∗Ai

X is locally contractible.

Remark 6.1.1.3. Explicitly, a geometric morphism f∗ : X → B is locally contractible precisely if
f∗ : B→ X admits a left adjoint f! : X→ B such that for every map s : B → A in B the induced map

f!(f∗B ×f∗A −)→ B ×A f!(−)

219
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is an equivalence. In fact, this follows from the section-wise characterisation of internal adjunctions
(Proposition 2.4.2.9) together with the observation that if f∗ admits a left adjoint f!, one obtains an
induced left adjoint (f!)A of f∗/A : B/A → X/f∗A for every A ∈ B which is simply given by the composition

X/f∗A
(f!)/A−−−−→ B/f!f∗A

ϵ!−→ B/A

(in which ϵ : f!f
∗ → idB is the adjunction counit).

Example 6.1.1.4. Every étale B-topos is locally contractible. More precisely, one can characterise
the class of étale B-topoi as those locally contractible B-topoi X for which the additional left adjoint πX

is a conservative functor. This is an immediate consequence of [55, Proposition 6.3.5.11].

Recall from Theorem 5.2.5.1 and Remark 5.2.5.3 that every B-topos X corresponds uniquely to a
geometric morphism f∗ : X → B such that X can be recovered by f∗ΩX. The goal of this section is to
characterise the property that X is locally contractible in terms of the geometric morphism f∗. To that
end, recall that a product-preserving functor g : C→ D between cartesian closed∞-categories is said to be
cartesian closed if the natural map g(Hom(−,−))→ Hom(g(−), g(−)) (in which Hom(−,−) denotes the
internal hom in C and D, respectively) is an equivalence. If C and D are even locally cartesian closed and
g preserves finite limits, one says that g is locally cartesian closed if the induced functor g/c : C/c → D/g(d)

is cartesian closed for every c ∈ C. We now obtain:

Proposition 6.1.1.5. Let X be a B-topos and let f∗ : X→ B be the associated ∞-topos over B. Then
the following are equivalent:

(1) X is locally contractible;
(2) the unique algebraic morphism constX : ΩB → X is Ω-continuous;
(3) the functor constX : f∗(ΩB) → ΩX (which is obtained by transposing the algebraic morphism

constX : ΩB → X across the adjunction f∗ ⊣ f∗) is fully faithful.
(4) the functor f∗ : B→ X is locally cartesian closed.

Before we can prove Proposition 6.1.1.5, we need the following lemma:

Lemma 6.1.1.6. Let X be a B-topos and let f∗ : X → B be the associated ∞-topos over B. Let
A ∈ B be an arbitrary object and let P → A and Q → A be two B/A-groupoids. Then the morphism
of X/f∗A-groupoids mapf∗(ΩB)(P,Q) → mapΩX

(constX(P ), constX(Q)) that is induced by the action of
constX recovers the canonical map f∗(HomB/A

(P,Q))→ HomX/f∗A
(f∗P, f∗Q).

Proof. Using Remark 5.2.1.3, we may assume without loss of generality that A ≃ 1. Further-
more, by transposing across the adjunction f∗ ⊣ f∗, it suffices to show that the map HomB(P,Q) →
f∗HomX(f∗P, f∗Q) can be identified with the morphism of B-groupoids

mapΩB
(G,H)→ mapX(constX(G), constX(H)).

Now the latter can be identified with η∗ : mapΩB
(G,H) → mapΩB

(G,ΓX constX H) (where ΓX : X → Ω
denotes the unique geometric morphism and where η is the adjunction unit). In light of the equivalence
f∗Hom(f∗P, f∗Q) ≃ Hom(P, f∗f∗P ), we can also identify the former map with η∗ : HomB(P,Q) →
HomX(P, f∗f∗Q). Therefore, the claim follows from Proposition 2.1.10.3. □

Proof of Proposition 6.1.1.5. Since constX is cocontinuous and preserves finite limits, one de-
duces from Proposition 3.4.4.1 and the adjoint functor theorem (Proposition 4.4.3.1) that (1) and (2) are
equivalent. In light of Lemma 6.1.1.6, it is moreover clear that (3) and (4) are equivalent. To complete
the proof, we will show that (2) and (4) are equivalent. To that end, given any map p : P → A in B,
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consider the commutative diagram

X/f∗A X/f∗P X/f∗A

B/A B/P B/A.

p∗

f∗/A f∗/P

p!

f∗/A

p∗ p!

Given q : Q → A, the natural map f∗HomB/A
(P,Q) → HomX/f∗A

(f∗P, f∗Q) is precisely obtained by
evaluating the (horizontal) mate of the composite square at q. Since the horizontal mate of the left square
being an equivalence (for every such map p) precisely means that constX is Ω-continuous, we only need to
show that the mate of the left square is an equivalence if and only if the mate of the composite square
is one. One direction is trivial. As for the other direction, if we know that the map φ : f∗/Ap∗ → p∗f

∗
/P

is an equivalence for every object in the image of p∗ : B/A → B/P , then the entire map has to be an
equivalence since every object in B/P can be written as a pullback of such objects and since both domain
and codomain of φ preserves finite limits. □

6.1.2. Contractible objects. A topological space X is by definition locally contractible if it admits
a basis of contractible open subsets. A priori, the definition of a locally contractible B-topos does not
appear to be related to this condition at all. In this section, we reconcile the two notions by showing
that local contractibility of a B-topos can be characterised by the property of it being generated under
colimits by its contractible objects. We begin with the following definition:

Definition 6.1.2.1. Let X be a B-topos. An object U : A→ X is said to be contractible if the functor
mapX(U, constX(−)) : ΩB/A

→ ΩB/A
is an equivalence. We define the full subcategory Contr(X) ↪→ X as

the fibre of the functor
const∗X h

op
Xop : X ↪→ FunB(X,Ω)op → FunB(Ω,Ω)op

over the identity id : Ω→ Ω.

Remark 6.1.2.2. Note that as Ω is the initial B-topos, we find that the inclusion of the identity
idΩ : 1→ FunB(Ω,Ω) determines a fully faithful functor that identifies the domain with the full subcategory
Funalg

B (Ω,Ω). Therefore, the functor Contr(X) ↪→ X is indeed fully faithful. Moreover, as the universal
property of ΩB/A

implies that a functor ΩB/A
→ ΩB/A

is an equivalence if and only if it is equivalent to
the identity, we find that an object U : A→ X is contained in Contr(X) if and only if it is contractible.

Remark 6.1.2.3. If A ∈ B is an arbitrary object, we may combine Remark 5.2.1.3 with [62,
Lemma 4.7.14] and [62, Lemma 4.2.3] to deduce that there is a canonical equivalence π∗A Contr(X) ≃
Contr(π∗AX) of full subcategories in π∗AX.

Remark 6.1.2.4. In the situation of Definition 6.1.2.1, suppose that X is locally contractible. Then
we obtain an equivalence const∗X h

op
Xop ≃ hop

ΩopπX. Since hop
Ωop is fully faithful and since the identity on

Ω is corepresented by 1Ω (see [62, Proposition 4.6.3]), we thus find that Contr(X) arises as the fibre of
πX : X→ Ω over 1Ω : 1 ↪→ Ω. In particular, this means that an object U : A→ X is contractible precisely
if πX(U) : A→ Ω transposes to the final object in ΩB/A

.

For the remainder of this section, let us fix a B-topos X. Recall from Lemma 5.2.3.3 that we may
always find a sound doctrine U such that X is U-accessible and XU -cpt is closed under finite limits in X.
We will denote by ContrU -cpt(X) ↪→ X the intersection of Contr(X) with XU -cpt. The main goal of this
section is to prove the following proposition:

Proposition 6.1.2.5. Let X be a B-topos and let U be a sound doctrine such that X is U-accessible
and XU -cpt is closed under finite limits in X. Then the following are equivalent:

(1) X is locally contractible;
(2) the left Kan extension h!(j) : PShB(ContrU -cpt(X)) → X of j : ContrU -cpt(X) ↪→ X along the

Yoneda embedding defines a left exact and accessible Bousfield localisation;
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(3) X is generated by Contr(X) under colimits.

The proof of Proposition 6.1.2.5 is based on the following two lemmas:

Lemma 6.1.2.6. Let j : C ↪→ X be a (small) full subcategory such that the identity on X is the left
Kan extension of j along itself. Then j is flat.

Proof. We need to show that h!(j) : PShB(C) → X preserves finite limits. By virtue of Proposi-
tion 3.3.1.1, the final object 1PSh

B
(C) : 1 → PShB(C) is given by the colimit of the Yoneda embedding

h : C ↪→ PShB(C), hence h!(j)(1PSh
B

(C)) is the colimit of j. But as the left Kan extension of j along
itself is by assumption the identity on X, the formula from Remark 3.3.3.6 implies that every object
U : 1→ X is the colimit of the composition C/U ↪→ X/U → X. In particular, the final object in X must be
the colimit of j itself. Hence h!(j) preserves the final object. To complete the proof, it therefore suffices
to show that h!(j) also preserves pullbacks. By Lemma 5.2.2.8 and in light of Remark 3.3.3.2 and [62,
Lemma 4.7.14], it will be enough to show that if σ is an arbitrary cospan in C in context 1 ∈ B, the
functor h!(j) preserves the pullback P of h(σ). In other words, we need to prove that the induced functor
h!(j)∗ : PShB(C)/h(σ) → X/j(σ) preserves the final object. Let Q : 1→ X be the pullback of j(σ). We then
have a commutative diagram

C/P PShB(C)/P X/Q

C/σ PShB(C)/h(σ) X/j(σ)

≃ ≃ ≃
h!(j)∗

in which the upper right horizontal functor can be identified with the composition of h!(j)/P : PShB(C)/P →
X/h!(j)(P ) with the forgetful functor X/h!(j)(P ) → X/Q along the natural map h!(j)(P ) → Q. As both
of these functors are cocontinuous (see Corollary 3.1.7.6 and Proposition 3.1.7.3), the upper right
horizontal functor must be cocontinuous as well. By combining this observation with the identification
PShB(C)/P ≃ PShB(C/P ) from Lemma 3.3.1.5 and the universal property of presheaf B-categories, we
conclude that this functor is equivalent to the Yoneda extension of the inclusion C/P ↪→ X/Q. Therefore,
by using the first part of the proof, it will be enough to show that the identity on X/j(σ) is the left Kan
extension of the inclusion C/σ ↪→ X/j(σ) along itself. By using the criterion from Remark 3.3.3.6 together
with the fact that any slice B-category over X/j(σ) can be identified with a slice B-category over X, this
in turn follows from the assumption that the identity on X is the left Kan extension of j along itself. □

Lemma 6.1.2.7. If X is locally contractible, the identity on X is the left Kan extension of the inclusion
ContrU -cpt(X) ↪→ X along itself.

Proof. Note that we have inclusions ContrU -cpt(X) ↪→ XU -cpt ↪→ X in which the left Kan extension of
the second inclusion along itself is the identity on X. Consequently, it will be enough to show that the left
Kan extension of the inclusion ContrU -cpt(X) ↪→ X along the inclusion ContrU -cpt(X) ↪→ XU -cpt recovers
the inclusion XU -cpt ↪→ X. By using Remark 3.3.3.6 together with Remark 6.1.2.3, this follows once we
verify that for any U-compact object U : 1→ X, the colimit of the induced inclusion ContrU -cpt(X)/U ↪→
X/U is the final object. Now observe that the functor (πX)/U : X/U → Ω/πX(U) restricts to a functor
(πX)/U : ContrU -cpt(X)/U → πX(U). We claim that the right adjoint (constX)πX(U) : Ω/πX(U) → X/U (which
is constructed by composing the functor (constX)/πX(U) : Ω/πX(U) → X/ constX πX(U) with the pullback
morphism η∗ : X/ constX πX(U) → X/U along the adjunction unit η : U → constX πX(U), see § 3.1.7) restricts
to a map πX(U)→ ContrU -cpt(X)/U . In fact, by making use of Remark 6.1.2.3, it will be enough to verify
that if x : 1→ πX(U) is an arbitrary object in context 1 ∈ B, its image along (constX)πX(U) is U-compact
and contractible. By construction, this object fits into a pullback square

(constX)πX(U)(x) 1X

U constX πX(U).

constX(x)

η
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Note that both πX and constX are left adjoint to FiltU-cocontinuous functors and therefore preserve
U-compact objects. In combination with our assumption that the full subcategory of U-compact objects
in X is closed under finite limits, we thus find that (constX)πX(U)(x) is U-compact too. Furthermore, note
that we may regard η as an object in X/f∗(πX(U)) = X(πX(U)), i.e. as an object in X in context πX(U). As
such, η is contractible: in fact, by Remark 6.1.1.3 the object πX(η) ∈ ΩB(πX(U)) is explicitly computed
as the composition

πX(U) πX(η)−−−→ πX constX πX(U) ϵ−→ πX(U)

(where in the first map η is regarded as a morphism in X in context 1 ∈ B and where ϵ is the counit of the
adjunction πX ⊣ constX), hence the claim follows from the triangle identities. Now viewing η as an object
in X in context πX(U), the above pullback square exhibits the global object (constX)πX(U)(x) ∈ X(1) = X

as the image of η ∈ X(πX(U)) along the transition map x∗ : X(πX(U)) → X(1). Therefore, η being a
contractible object implies that (constX)πX(U)(x) must be contractible as well. Thus we conclude that
(constX)πX(U)(x) is contained in ContrU -cpt(X)/U , as claimed.

So far, our arguments have shown that we have a commutative square

ContrU -cpt(X)/U X/U

πX(U) Ω/πX(U).

(constX)πX(U)

Since the vertical maps in this diagram are right adjoints, they are in particular final. Since furthermore
(constX)πX(U) is cocontinuous, the colimit of the upper horizontal map is the image of the colimit of the
lower horizontal map along (constX)πX(U). To complete the proof, it is therefore enough to prove that the
colimit of the lower horizontal map is the final object in Ω/πX(U). But this is simply the statement that
πX(U) is the colimit of the constant diagram πX(U)→ 1 ↪→ Ω with value 1Ω, which is clear. □

Proof of Proposition 6.1.2.5. Suppose first that X is locally contractible. By combining Lem-
mas 6.1.2.7 and 6.1.2.6, the map h!(j) : PShB(ContrU -cpt(X)) → X is left exact, so it suffices to show
that this functor is a Bousfield localisation. Since it is cocontinuous, it has a right adjoint r (which is
automatically accessible). The counit of this adjunction carries an object U : A → X to the canonical
map from the colimit of π∗A ContrU -cpt(X)/U → π∗AX to U . By again using Lemma 6.1.2.7, this map is an
equivalence, hence the claim follows. If (2) is satisfied, the map h!(j) : PShB(ContrU -cpt(X))→ X being a
(left exact and accessible) Bousfield localisation in particular implies that X is generated under colimits
by Contr(-cpt U)(X), in the sense that the smallest full subcategory of X that contains Contr(-cpt U)(X) and
that is closed under CatB-colimits in X must already be X itself. In particular, (3) follows. Lastly, if (3)
is satisfied, consider the commutative diagram

Contr(X) P X

1 Ω FunB(Ω,Ω)op

const∗X h
op
Xop

1Ω hop
Ωop

in which both squares are pullbacks. Since hop
Ωop and hop

Xop are cocontinuous functors by Proposition 3.2.2.9,
the inclusion P ↪→ X is cocontinuous (see Lemma 4.1.4.5) and must therefore be an equivalence. Hence
const∗X h

op
Xop takes values in Ω ↪→ FunB(Ω,Ω)op, which precisely means that constX has a left adjoint πX.

Hence X is locally contractible. □

6.1.3. Classification of smooth geometric morphisms. In 1-topos theory, it is well-known
(see [46, Corollary C.3.3.16]) that locally connected geometric morphisms are precisely the smooth maps,
i.e. those that satisfy smooth base change. Our main goal in this section is to prove the ∞-toposic
analogue of this result. We begin with the following definition:
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Definition 6.1.3.1. Let f∗ : X→ B be a geometric morphism of ∞-topoi. We say that f∗ is smooth
if for every diagram

Y′ Y X

A′ A B

k′∗

g′∗ g∗

k∗

f∗

h′∗ h∗

in TopR
∞ in which both squares are pullbacks, the mate transformation g∗h′∗ → k′∗(g′)∗ is an equivalence.

We may now formulate the main result of this section as follows:

Theorem 6.1.3.2. Let X be a B-topos and let f∗ : X → B be the associated geometric morphism.
Then X is locally contractible if and only if f∗ is smooth.

The proof of Theorem 6.1.3.2 relies on a few reduction steps. Our first goal is to establish that
the property of a geometric morphism to be locally contractible is stable under taking powers by B-
categories: Recall from Proposition 5.2.4.3 that the large B-category TopL

B admits a powering bifunctor
(−)(−) : Catop

B ×TopL
B → TopL

B. We now find:

Lemma 6.1.3.3. Let C be a B-category and let X be a locally contractible B-topos. Then the geometric
morphism (ΓX)∗ : XC → ΩC exhibits FunB(C,X) as a locally contractible FunB(C,Ω)-topos.

Proof. Since the algebraic morphism associated with (ΓX)∗ is given by (constX)∗, the functor (πX)∗
defines a further left adjoint of (constX)∗. Therefore, Remark 6.1.1.3 implies that we only need to show
that for every map F → G in FunB(C,Ω) and every map H → (constX)∗(G) in FunB(C,X), the canonical
morphism

(πX)∗((constX)∗F ×(constX)∗G H)→ F ×H (πX)∗H

is an equivalence. It will be enough to show that this map becomes an equivalence after being evaluated
at an arbitrary object c : A→ C in context A ∈ B. In light of Remark 6.1.1.2 and [62, Lemma 4.2.3], we
can replace B with B/A, so that we can reduce to the case A ≃ 1. But as pullbacks in functor B-categories
are computed object-wise by Proposition 3.1.3.2 and as evaluating the unit and counit of the adjunction
(πX)∗ ⊣ (constX)∗ at c recovers the unit and counit of the adjunction πX ⊣ constX, the claim follows from
the assumption that X is locally contractible and Remark 6.1.1.3. □

Before we can prove Theorem 6.1.3.2, we also need the following result:

Lemma 6.1.3.4. Let X be a locally contractible B-topos and let U be a sound doctrine such that
X is U-accessible and XU -cpt is closed under finite limits in X. Then the diagonal map diag : Ω →
PShB(ContrU -cpt(X)) takes values in X ↪→ PShB(ContrU -cpt(X)).

Proof. We need to show that if η : id→ iL is the unit of the adjunction

L ⊣ i : X ⇆ PShB(ContrU -cpt(X)),

then the induced morphism η diag : diag→ iLdiag is an equivalence. As we may check this object-wise
and by using Remarks 6.1.1.2, 4.1.5.2, 4.3.1.2 and 6.1.2.3 together with [62, Lemma 4.2.3], we only need to
show that for any object U : 1→ ContrU -cpt(X) the map U∗η diag : U∗ diag→ U∗iLdiag is an equivalence
in Ω. Note that we have a chain of equivalences

U∗iLdiag ≃ mapX(U, constX) ≃ mapΩ(πX(U),−).

As πX(U) ≃ 1Ω, we thus find that U∗iLdiag ≃ id. Since also U∗ diag is equivalent to the identity and
since the universal property of Ω implies that mapFun

B
(Ω,Ω)(id, id) ≃ 1Ω, the claim follows. □
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Proof of Theorem 6.1.3.2. Suppose first that f∗ is smooth. Then f∗ in particular satisfies
condition (2) of Proposition 6.1.1.5 and is therefore locally contractible. To prove the converse direction,
suppose that we have two pullback squares

Y′ Y X

A′ A B

k′∗

g′∗

k∗

g∗ f∗

h′∗ h∗

of ∞-topoi in which f∗ is locally contractible. By viewing A as a B-topos and using Theorem 5.2.3.1, we
may factor h∗ into a composition A ↪→ FunB(Cop,ΩB)→ B. Since the commutative square

FunB(Cop,X) X

PShB(C) Ω

lim

(ΓX)∗ ΓX

lim

is a pullback in TopR
B (see Example 5.2.7.5) and on account of Lemma 6.1.3.3, this allows us to reduce to

the case where h∗ is already an embedding. But then k∗ must be an embedding as well, so that the mate
of the left square is an equivalence if and only if the mates of the right one and the composite one are
equivalences. Hence, to complete the proof, it will be enough to show that if we are given any pullback
square

Y X

A B

k∗

g∗ f∗

h∗

in which f∗ is locally contractible, the mate transformation f∗h∗ → k∗g
∗ is an equivalence. By the same

argument as above (and the fact that constX is continuous), we can moreover still assume that h∗ and k∗
are embeddings. To proceed, we make use of Proposition 6.1.2.5 to obtain a commutative diagram

Y X

FunB(ContrU -cpt(X)op, h∗(ΩA)) FunB(ContrU -cpt(X)op,ΩB)

A B

k∗

lim lim
h∗

in which both squares are pullbacks. Since the mate of the lower square is evidently an equivalence
and since Lemma 6.1.3.4 implies that the diagonal map diag : B→ FunB(ContrU -cpt(X)op,ΩB) factors
through X, it will be enough to show that the diagonal map diag : A → FunB(ContrU -cpt(X)op, h∗ΩA)
factors through Y as well. Let us therefore pick an arbitrary object A ∈ A. By [57, Lemmas 6.3.3.4], the
upper square in the above diagram is a pullback square of ∞-categories, hence it suffices to show that the
image of diag(A) in FunB(ContrU -cpt(X)op,ΩB) is contained in X. But as the mate of the lower square is
an equivalence, this latter object is equivalent to diag h∗(A), hence another application of Lemma 6.1.3.4
yields the claim. □

6.2. Proper geometric morphisms

In this section, we study the relationship between proper and compact geometric morphisms of
∞-topoi. Most of the chapter is devoted to the proof of Theorem 6.2.1.12, which states that a geometric
morphism X→ B is proper precisely if it is compact. We begin by defining these two notions in § 6.2.1.
In § 6.2.2 and § 6.2.3, we discuss two auxiliary steps that are required for the proof of Theorem 6.2.1.12:
the ∞-toposic cone construction and the compatibility of pullbacks with localisations of ∞-topoi. Lastly,
we put everything together in § 6.2.4 to finish the proof.
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In § 6.2.5 we discuss how we can apply Theorem 6.2.1.12 to show that the geometric morphism
associated with a proper and separated map of topological spaces is proper. Finally, in § 6.2.6 we discuss a
variant of Theorem 6.2.1.12 in which we allow coefficients in an arbitrary compactly generated∞-category.

6.2.1. Compactness and properness. In this section we will introduce the two main properties,
properness and compactness, of a geometric morphism that we want to study in this section. Let us begin
with the notion of properness, which is due to Lurie:

Definition 6.2.1.1 ([57, Definition 7.3.1.4]). Let p∗ : X→ B be a geometric morphism of ∞-topoi.
We say that f∗ is proper if for every commutative diagram

Y′ Y X

A′ A B

g∗

p∗q∗

f ′∗

q′∗

g′∗

f∗

in TopR
∞ in which both squares are cartesian, the left square is left adjointable, in the sense that the mate

transformation (f ′)∗q∗ → q′∗(g′)∗ is an equivalence.

Example 6.2.1.2. It follows from [57, Proposition 7.3.12 and Corollary 7.3.2.13] that any closed
immersion of ∞-topoi, in the sense of [57, Definition 7.3.2.6], is proper.

Example 6.2.1.3. Let p : Y → X be a proper and separated morphism of topological spaces. In
§ 6.2.5 we will prove that the geometric morphism p∗ : Sh(Y )→ Sh(X) is proper, generalising a result of
Lurie [57, Theorem 7.3.1.16].

Recollection 6.2.1.4. Recall from Definition 4.2.3.1 that a B-category I is called filtered if and
only if the functor colimI : FunB(I,ΩB) → ΩB is left exact. Let us denote by Filt the internal class of
filtered B-categories. We will say that a functor f : C→ D of B-categories preserves filtered colimits, if it
is Filt-cocontinuous.

Recall that one may call an ∞-topos compact if the global sections functor preserves filtered colimits.
Relativizing this condition we obtain the following definition

Definition 6.2.1.5. A B-topos X is said to be compact if the global sections functor ΓX : X→ ΩB

preserves filtered colimits. We say that a geometric morphism p∗ : X→ B is compact if the associated
B-topos p∗ΩX is compact.

Example 6.2.1.6. If A ∈ B is an arbitrary object, the étale geometric morphism (πA)∗ : B/A → B is
compact if and only if A is internally compact in B, i.e. if the functor mapΩ(A,−) : Ω→ Ω preserves filtered
colimits. To see this, first note that (πA)∗ corresponds to the étale B-topos FunB(A,ΩB) (see § 5.2.9)
and the unique geometric morphism into ΩB is given by the limit functor limA : FunB(A,ΩB) → ΩB

(as its left adjoint diagA is again a right adjoint and therefore preserves all limits Proposition 3.1.2.11).
Moreover, since A ≃ colimA diagA 1Ω, where 1Ω : 1B → Ω is the section encoding the final object 1B ∈ B

(see Proposition 3.1.4.1), the adjunctions colimA ⊣ diagA ⊣ limA imply that we obtain an identification
mapΩ(A,−) ≃ mapΩ(1Ω, limA diagA) ≃ limA diagA (since mapΩ(1Ω,−) is equivalent to the identity,
see [62, Proposition 4.6.3]). Hence limA preserving filtered colimits implies that A is internally compact.
To see the converse, note that by Corollary 4.2.3.8 A being internally compact is equivalent to A being
locally constant with compact values. If this is the case, then the fact that Filt-cocontinuity can be checked
locally in B (see Remark 3.2.2.3) allows us to reduce to the case where A is constant with compact value.
In other words, A is a retract of a finite B-groupoid, so that we may further reduce to the case where A
is already finite. In this case, limA preserves filtered colimits by the very definition of filteredness.

Warning 6.2.1.7. In the context of Definition 6.2.1.5, it is essential that we require ΓX : X→ ΩB

to be Filt-cocontinuous instead of just asking for the underlying functor p∗ to preserve ordinary filtered
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colimits. In fact, if A ∈ B is an arbitrary object, we saw in Example 6.2.1.6 that (πA)∗ : B/A → B is
compact if and only if A is internally compact. On the other hand, (πA)∗ preserves ordinary filtered
colimits if and only if the functor HomB(A,−) : B→ B does (where HomB denotes the internal hom of
B). By Proposition 3.1.4.11, A being internally compact implies that HomB(A,−) preserves ordinary
filtered colimits, but the converse is not true in general. For example, if X is a coherent topological
space, then any quasi-compact open U ⊂ X defines an object in the ∞-topos Sh(X) satisfying the latter
condition (since quasi-compact opens in X define compact objects in Sh(X) and generate this ∞-topos
under colimits). On the other hand, U is in general quite far from being locally constant and can therefore
not always be internally compact.

Remark 6.2.1.8. Let X be a 1-localic ∞-topos. If X is compact, the associated 1-topos Disc(X) of
0-truncated objects in X is tidy in the sense of [69]. However, the converse it not true in general. For
example, any coherent 1-topos is tidy, but 1-localic coherent ∞-topoi are not compact in general. An
explicit counterexample is Spec(R)ét ≃ Fun(B(Z/2Z), S), which cannot be tidy since B(Z/2Z) ≃ RP∞ is
not compact in S.

Example 6.2.1.9. Any ∞-topos of the form Shτ (C) where C is an ∞-category with an initial and a
terminal object and τ a topology generated by a cd-structure is compact. This follows since under these
assumption Shτ (C)→ PSh(C) commutes with filtered colimits and PSh(C) is always compact if C has a
terminal object. Example of such topologies from algebraic geometry include the Zariski-, Nisnevich- and
cdh-topology.

Lemma 6.2.1.10. Compact B-topoi are stable under retracts in TopR(B).

Proof. Let X be a compact B-topos and

Y s∗−→ X r∗−→ Y

a retract diagram of B-topoi. We thus get a retract diagram of functors

ΓY ≃ mapY(1,−) r∗−→ mapX(r∗1, r∗(−)) s∗−→ mapY(s∗r∗1, s∗r∗(−)) ≃ ΓY.

Furthermore mapX(r∗1, r∗(−)) ≃ ΓX ◦ r∗ and thus ΓY preserves filtered colimits as a retract of a filtered
colimit preserving functor. □

Example 6.2.1.11. Let L be a stably compact B-locale. Then ShB(L) is a compact B-topos. Indeed,
by it follows that ShB(L) is a retract of ShB(L′) for some coherent locale L′. Using Lemma 6.2.1.10, it
follows that we may assume that L is coherent. In this case recall from Proposition 5.3.7.8 that there is
an equivalence ShB(L) ≃ Shfin

B (Lcpt) and by Lemma 5.3.7.7 the embedding

Shfin
B (Lcpt) ↪→ PShB(Lcpt)

preserves colimits. So it suffices to see that ΓPSh
B

(Lcpt) preserves filtered colimits. Now note that because
Lcpt has a final object 1, it follows that ΓPSh

B
(Lcpt) ≃ ev1 by Proposition 3.1.8.1. In particular it preserves

filtered colimits.

We are now ready to state the main result of this paper:

Theorem 6.2.1.12. A geometric morphism p∗ : X→ B is proper if and only if it is compact.

The full proof of Theorem 6.2.1.12 is rather involved and will be given in § 6.2.4. One implication,
however, is straightforward:

Lemma 6.2.1.13. Let p∗ : X→ B be a proper geometric morphism. Then p∗ is compact.

Proof. Let us denote by X = p∗ΩX the B-topos that corresponds to p∗. Note that if A ∈ B is
an arbitrary object, the induced morphism X/p∗A → B/A is proper as well. As this is the geometric
morphism which corresponds to the B/A-topos π∗AX, we may (after replacing B with B/A) reduce to the
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case where we have to show that if I is a filtered B-category, then ΓX preserves I-filtered colimits. By
definition of filteredness, the colimit functor colimI : FunB(I,ΩB)→ ΩB is left exact, which implies that
diag : ΩB → FunB(I,ΩB) defines a geometric morphism of B-topoi. We may therefore consider the two
pullback squares

X FunB(I,X) X

ΩB FunB(I,ΩB) ΩB

ΓX

lim

(ΓX)∗

lim

diag

ΓX

diag

in TopR(B) (see Example 5.2.7.5). As for every A ∈ B the geometric morphism ΓX(A) : X/p∗A → B/A

is proper, it follows that the mate of the left square is an equivalence. This precisely means that ΓX

commutes with I-indexed colimits, as desired. □

6.2.2. The toposic cone. Every topological space X admits a closed immersion into a contractible
and locally contractible space Y , for example by setting Y = C(X), where C(X) is the cone of X. In
this section, we discuss a B-toposic analogue of this observation. To that end, if X is a B-topos, recall
that the comma B-category X ↓X Ω is defined via the pullback square

X ↓X Ω FunB(∆1,X)

Ω X

e∗

d0

constX

j∗

in Cat(B), where constX denotes the unique algebraic morphism ΩB → X, i.e. the left adjoint of ΓX. By
Proposition 5.2.6.1, this is a pullback diagram in TopL(B), so that X ↓X Ω is a B-topos and j∗ and e∗ are
algebraic morphisms.

Definition 6.2.2.1. For any B-topos X, we refer to the B-topos X ↓X Ω as its B-toposic right cone
and denote it by X▷.

If X is a B-topos, let i∗ : X▷ → X be the algebraic morphism that is obtained by composing the
functor d1 : FunB(∆1,X)→ X with the upper horizontal map in the defining pullback square of X▷.

Remark 6.2.2.2. Suppose that X is a B-topos and let f∗ : X → B be the associated geometric
morphism of∞-topoi. Then the∞-topos Cone(f) = ΓB(X▷) recovers the comma∞-category X ↓X B and
is therefore the recollement of B and X along f∗ in the sense of [56, § A.8]. In particular, j∗ : B→ Cone(f)
is an open and i∗ : X→ Cone(f) a closed immersion of ∞-topoi. Note that this in particular implies that
i∗ : X→ X▷ and j∗ : Ω→ X▷ are (section-wise) fully faithful.

Remark 6.2.2.3. In the situation of Remark 6.2.2.2, the ∞-topos Cone(f) sits inside a pushout
square

X B

X⊗∆1 Cone(f)

f∗

id⊗s0

in TopR
∞, where X⊗∆1 denotes the tensoring in TopR

∞ over Cat∞. Therefore Cone(f) is to be thought
of as the mapping cone of f∗.

Recall from § 6.1.1 that a B-topos X is said to be locally contractible if constX : ΩB → X has a left
adjoint πX. The following proposition expresses the fact that the B-toposic right cone X▷ is contractible
and locally contractible (in the B-toposic sense):

Proposition 6.2.2.4. For every B-topos X, the B-topos X▷ is locally contractible, and the additional
left adjoint πX of constX▷ is equivalent to j∗. In particular, πX preserves finite limits.



6.2. PROPER GEOMETRIC MORPHISMS 229

Proof. Since s0 : X→ FunB(∆1,X) is right adjoint to d0 (for example by using Proposition 2.4.1.15)
and by the dual of Lemma 3.3.3.9, the functor j∗ is the pullback of s0 along ϵ∗. Since s0 is cocontinuous
and as PrL(B) ↪→ Cat(B) preserves limits, this implies that j∗ must be cocontinuous as well and therefore
equivalent to constX▷ (by the universal property of Ω). As this shows that j∗ is left adjoint to constX▷ ,
the claim follows. □

Remark 6.2.2.5. It follows from Proposition 6.2.2.4 that if f∗ : X→ B is any geometric morphism,
we may factor it as h∗ ◦ i∗ where i∗ is a closed immersion and h∗ is locally contractible and the additional
left adjoint h♯ is left exact. For 1-topoi, the factorization constructed above appears in the proof of [46,
Theorem C.3.3.14].

6.2.3. Compatibility of pullbacks with localisations. The goal of this section is to establish the
main technical step towards the proof of Theorem 6.2.1.12, the fact that compact geometric morphisms
commute with localisations of subtopoi:

Proposition 6.2.3.1. Consider a pullback square in TopR
∞

Z′ X

Z B

j′∗

p∗p′∗

j∗

where j∗ is fully faithful and p∗ is compact. Then the mate natural transformation p′∗j
′∗ → j∗p∗ is an

equivalence.

Intuitively, Proposition 6.2.3.1 should hold because the localisation functor (j′)∗ : X→ Z′ is given by
an (internally) filtered colimit. Indeed, by Proposition 5.2.10.14 we may pick a bounded local class S′ of
morphism in X (in the sense of [62, Definition 3.9.10]) that is closed under finite limits in Fun(∆1,X)
such that there is a natural equivalence

j′∗(j′)∗(X) ≃ Xsh
ι′ = colim

τ<κ
T ι
′

τ X

where we denote by ι′ : ΩS′ ↪→ ΩX the associated full subcategory. Here the functors (−)sh
ι′ and T ι

′

τ are
the functors constructed in § 5.2.10 and κ is a suitably large cardinal. Furthermore recall that T ι′τ X
is defined recursively by the condition that we have T ι′τ+1X = colimΩop

S′
mapΩX

(ι′(−), T ι′τ X) and that
T ι
′

τ X = colimτ ′<τ T
ι′

τ ′X when τ is a limit ordinal. Since ΩS′ is cofiltered because S is closed under finite
limits, it follows that the endofunctor j′∗(j′)∗ is given by an (iterated) filtered colimit. So intuitively, p∗
being compact should imply that this functor carries j′∗(j′)∗ to j∗j∗, which precisely means that the mate
transformation p′∗(j′)∗ → j∗p∗ is an equivalence. However, we have to be a bit careful at this point: the
above formula for j′∗(j′)∗ exhibits j′∗(j′)∗(X) as a filtered colimit internal to X, whereas p∗ being compact
only implies that this functor commutes with filtered colimits internal to B. Hence, the main challenge is
to rewrite the above formula in terms of a filtered colimit internal to B.

Observation 6.2.3.2. Let f∗ : X → B be a geometric morphism, I a B-category and C an X-
category. Since the adjunction f∗ ⊣ f∗ : Cat(B) ⇆ Cat(X) yields an equivalence FunB(−, f∗(−)) ≃
f∗FunX(f∗(−),−), we obtain a commutative diagram

f∗C FunB(I, f∗C)

f∗FunX(f∗I,C)

diagI

f∗(diagf∗ I)
≃

of B-categories. Hence the B-category f∗C admits I-indexed colimits if and only if the X-category C
admits f∗I-indexed colimits, and we may identify the colimit functor colimI : FunB(I, f∗C)→ f∗C with
the composition

FunB(I, f∗C) ≃ f∗FunX(f∗I,C)
f∗(colimf∗ I)−−−−−−−−→ f∗C.
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By passing to global sections, this implies that for every diagram d : I→ f∗C with transpose d̄ : f∗I→ C,
we have a canonical equivalence colimB

I d
≃−→ colimX

f∗I d̄ in the ∞-category ΓX(C) = ΓB(f∗C) (where the
superscripts emphasise internal to which ∞-topos the colimits are taken). We will repeatedly use this
observation throughout this chapter.

Suppose that S is a bounded local class of morphisms in B that is closed under finite limits in
Fun(∆1,B) and let ι : ΩS ↪→ Ω be the associated full subcategory. The assumption on S makes sure
that ι is closed under finite limits, so that in particular ΩS is cofiltered. Let f∗ : X→ B be a geometric
morphism and let us denote by ι′ : f∗ΩS → ΩX the functor of X-categories that arises from transposing
constf∗ΩX

ι : ΩS → f∗ΩX across the adjunction f∗ ⊣ f∗. By Example 5.2.10.9, f∗ΩS is a cofiltered
X-category and the colimit of ι′ is the final object. Therefore, we are in the situation of Definition 5.2.10.5
and thus obtain an endofunctor (−)sh

ι′ : ΩX → ΩX via (−)sh
ι′ = colimτ<κ T

ι′

τ , where κ is a suitable regular
cardinal and where T ι′• : κ → FunX(ΩX,ΩX) is defined via transfinite induction by setting T ι

′

0 = id,
by defining the map T ι

′

τ → T ι
′

τ+1 to be the morphism φ : T ι′τ → (Tτ )+
ι′ = colimf∗Ωop

S
mapΩX

(ι′(−),−)
from Remark 5.2.10.4 and finally by setting T ι′τ = colimτ ′<τ T

ι′

τ ′ whenever τ is a limit ordinal. We will
slightly abuse notation and also denote by (−)sh

ι′ the underlying endofunctor on X that is obtained from
(−)sh

ι : ΩX → ΩX upon passing to global sections. It will always be clear from the context which variant
we refer to.

Proposition 6.2.3.3. Consider a pullback square Q in TopR
∞

Z′ X

Z B

j′∗

f∗g∗

j∗

where j∗ (and therefore also j′∗) is fully faithful. Let S be a bounded local class in B that is closed
under finite limits in Fun(∆1,B) such that j∗ is Bousfield localization at S (such a class always exists by
Proposition 5.2.10.14). Let ι : ΩS ↪→ ΩB be the associated full subcategory. Then we obtain an equivalence
j′∗(j′)∗ ≃ (−)sh

ι′ , where ι′ : f∗ΩS → ΩX is the transpose of constf∗ΩX
ι.

Remark 6.2.3.4. The above proposition can be thought of as an ∞-toposic version of [46, Theorem
C.3.3.14].

We first prove this proposition in a special case:

Lemma 6.2.3.5. Consider a pullback square Q in TopR
∞

Z′ X

Z B

j′∗

h∗h′∗

j∗

where j∗ is fully faithful and h∗ is locally contractible such that the additional left adjoint h! of h∗ preserves
finite limits. Let S and ι be as in Proposition 6.2.3.3. Then there is an equivalence j′∗(j′)∗ ≃ (−)sh

ι′ , where
ι′ : h∗ΩS → ΩX is the transpose of consth∗ΩX

ι.

Proof. By Proposition 6.1.1.5, the functor ι′ is fully faithful, and since h∗ is locally contractible the
X-category h∗ΩS is given by the sheaf ΩS(h!(−)). It follows that a map s : X → Y in X defines an object
of h∗ΩS(Y ) if and only if h!(s) ∈ S and the square

X h∗h!X

Y h∗h!Y
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is a pullback. Let W be the class of maps in X that satisfies these two conditions. Then, since h! is
cocontinuous and preserves finite limits, it easily follows that W is local. Hence we find h∗ΩS = ΩW as
full subcategories of ΩX. Moreover, by the explicit description of W , it is clear that W is closed under
finite limits in Fun(∆1,X). Thus, by appealing to Proposition 5.2.10.14, we only need to verify that Z′ is
the Bousfield localisation of X at W . We know from Remark 5.2.10.15 that Z′ ↪→ X is obtained as the
Bousfield localisation of X at the smallest local class h∗S that contains the image h∗S of S along h∗.
Since we clearly have h∗S ⊂W , this immediately implies W = h∗S, hence the claim follows. □

Lemma 6.2.3.6. Let p∗ : X→ B be a compact geometric morphism and let ι : I→ ΩB be a functor where
I is cofiltered and where colim ι is the final object. Let ι′ : p∗I→ ΩX be the transpose of constp∗ΩX

ι : I→
p∗ΩX. Then there is an equivalence p∗(−)sh

ι′ ≃ (−)sh
ι p∗.

Proof. Since (−)sh
ι′ and (−)sh

ι are obtained as filtered colimits of iterations of (−)+
ι′ and (−)+

ι ,
respectively, and as p∗ commutes with filtered colimits, it suffices to produce an equivalence p∗(−)+

ι′ ≃
(−)+

ι p∗. Now for every X ∈ X, we have a natural chain of equivalences

(p∗X)+
ι = colimB

Iop mapΩB
(ι(−),Γp∗ΩX

X)

≃ colimB
Iop mapp∗ΩX

(constp∗ΩX
ι(−), X)

≃ colimB
Iop Γp∗ΩX

(HomB
p∗ΩX

(constp∗ΩX
ι(−), X))

≃ Γp∗ΩX
(colimB

Iop HomB
p∗ΩB

(constp∗ΩX
ι(−), X))

≃ Γp∗ΩX
(colimX

p∗Iop mapp∗ΩX
(ι′(−), X))

≃ p∗X+
ι′

where the third step follows from Remark 5.2.10.13, the fourth step is a consequence of the fact that
Γp∗ΩX

preserves filtered colimits and the fifth step follows from Observation 6.2.3.2. Hence the result
follows. □

Proof of Proposition 6.2.3.3. Using Proposition 6.2.2.4, we may factor the pullback square Q

into two squares

Z′ X

Z′′ Y

Z B
j∗

j′′∗

i∗

j′∗

h∗
⌟

⌟

where h∗ is as in Lemma 6.2.3.5 and i∗ is a closed immersion (and therefore proper, see Example 6.2.1.2).
By Lemma 6.2.3.5, we have an equivalence j′′∗ (j′′)∗ ≃ (−)sh

ι′′ , where ι′′ : h∗ΩS → ΩY is the transpose
of consth∗ΩY

ι. Furthermore, since i∗ is a closed immersion and therefore proper, the upper square
is horizontally left adjointable. Therefore, we have an equivalence j′∗j

′∗ ≃ i∗j′′∗ j
′′∗i∗ and therefore

j′∗j
′∗ ≃ i∗(−)sh

ι′′i∗. Now as i∗ being proper implies that i∗ is compact (by Lemma 6.2.1.13), we may apply
Lemma 6.2.3.6 to deduce (−)sh

ι′′i∗ ≃ i∗(−)sh
ι′ , which yields the claim. □

We are finally ready to prove Proposition 6.2.3.1:

Proof of Proposition 6.2.3.1. It suffices to show that there is a natural equivalence p∗j′∗j′∗ ≃
j∗j
∗p∗. We pick a local class S in B, as in Proposition 6.2.3.3, and we let ι : ΩS ↪→ ΩB be the associated

full subcategory. Furthermore, we let ι′ : p∗ΩS → ΩX be the transpose of constp∗ΩX
ι : ΩS → p∗ΩX. We

then have equivalences j∗j∗ ≃ (−)sh
ι (by Proposition 5.2.10.11) and j′∗j′∗ ≃ (−)sh

ι′ (by Proposition 6.2.3.3).
Hence the claim follows from Lemma 6.2.3.6. □
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6.2.4. The proof of Theorem 6.2.1.12. We now turn to the proof of the main theorem. We
begin with the following small but useful observation:

Lemma 6.2.4.1. Let

Q P

Y X

g∗

q∗ p∗

f∗

be a commutative square in TopR(B). Then the mate transformation φ : f∗p∗ → g∗q
∗ is an equivalence if

and only if it induces an equivalence on global sections.

Proof. Since the condition is clearly necessary, it suffices to show that it is sufficient too. To that
end, we need to show that for any object A ∈ B, the horizontal mate φ(A) of the back square in the
commutative diagram

Q(A) P(A)

Q(1) P(1)

Y(A) X(A)

Y(1) X(1)

g∗(A)

q∗(A)

(πA)∗
(πA)∗

p∗(A)
g∗(1)

q∗(1)
f∗(A)(πA)∗

(πA)∗

f∗(1)

p∗(1)

is an equivalence, given that the mate φ(1) of the front square is one. But since the horizontal mate of
both the left and the right square is an equivalence, it follows that φ(A) is an equivalence when evaluated
at any object in the image of π∗A. Since P(A) is étale over P(1), every object in P(A) is a pullback of
objects that are contained in the image of π∗A. Therefore, the claim follows from the fact that φ(A) is a
morphism of left exact functors. □

In order to prove Theorem 6.2.1.12, we in particular need to show that compact morphisms are stable
under pullback. In fact it will suffice to prove this in a special case (see Corollary 6.2.4.4), which we will
turn to now.

Lemma 6.2.4.2. Let f∗ : X → B be a geometric morphism of ∞-topoi. Suppose we are given a
commutative square

W X

Z B

f∗

p∗

g∗

q∗

whose horizontal mate is an equivalence and such that g∗ is compact. Then, for every filtered B-category
I, the functor p∗ : B→ Z carries the horizontal mate of the commutative square

X FunB(I, f∗ΩX)

B FunB(I,ΩB)

diag

f∗ (Γf∗ΩX
)∗

diag

to an equivalence.
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Proof. Note that we have a commutative diagram of ∞-topoi

FunB(I, f∗ΩX) FunB(I, p∗g∗ΩW)

X W

FunB(I,ΩB) FunB(I, p∗ΩZ)

B Z

f∗

g∗

p∗

(p∗)∗

(q∗)∗

(f∗)∗

q∗ (g∗)∗

diag

diag diag

diag

where the horizontal mates of the front and the back square are invertible (the latter using Lemma 6.2.4.1).
Furthermore, the adjunction p∗ ⊣ p∗ allows us to identify the right square with

W FunZ(p∗I, g∗ΩW)

Z FunZ(p∗I,ΩZ)

(g∗)∗
diag

g∗

diag

whose horizontal mate is invertible since g∗ was assumed to be compact and p∗I is filtered. Therefore, the
functoriality of mates implies that the functor p∗ : B→ Z carries the horizontal mate of the left square to
the mate of the right square, so an equivalence. □

As a consequence of Lemma 6.2.4.2, we obtain that compactness can be checked locally on the base
in the following strong sense:

Proposition 6.2.4.3. Let f∗ : X→ B be a geometric morphism of ∞-topoi. Assume that there exists
a family of commutative squares

Wi X

Zi B

f∗

pi
∗

gi
∗

whose mate is an equivalence such that the (pi)∗ are jointly conservative and each gi∗ is compact. Then f∗

is compact.

Proof. First, let us verify that for any filtered B-category I the mate of the commutative square

f∗ΩX FunB(I, f∗ΩX)

ΩB FunB(I,ΩB)

diag

f∗ (Γf∗ΩX
)∗

diag

is an equivalence. By Lemma 6.2.4.1 it suffices to see this on global sections. Our assumptions guarantee
that we can check that the mate is an equivalence after applying (pi)∗ : B→ Zi for every i. But then the
claim follows from Lemma 6.2.4.2. Now if A ∈ B and I is a filtered B/A-category, we observe that the
family of squares obtained by pulling back along (πA)∗ : B/A → B again satisfy the assumptions of the
proposition. Thus we can replace B by B/A in the first part of the proof and the result follows. □

Corollary 6.2.4.4. Let p∗ : X→ B be a compact geometric morphism and let C be a B-category.
Then the geometric morphism (Γp∗ΩX

)∗ : FunB(C, p∗ΩX)→ FunB(C,ΩB) is again compact.

Proof. The core inclusion ι : C≃ ↪→ C gives rise to a geometric morphism

ι∗ : B/C≃ ≃ FunB(C≃,ΩB)→ FunB(C,ΩB)
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whose left adjoint is given by restriction along ι and is therefore conservative (which is easily seen using
Theorem 2.1.11.5 together with [62, Proposition 4.1.18]). Since in the commutative diagram

X/p∗(C≃) FunB(C, p∗ΩX) X

B/C≃ FunB(C,ΩB) B
lim

p∗

lim

both squares are pullbacks (the one on the right by Example 5.2.7.5), it follows that the left vertical
morphism is compact as an étale base change of a compact morphism. As a consequence, the left square
satisfies the assumptions of Proposition 6.2.4.3, which immediately yields the claim. □

Proof of Theorem 6.2.1.12. Suppose that p∗ : X→ B is a compact geometric morphism. First,
we show that for any pullback square

Z′ X

Z B

p∗

f∗

g∗

q∗

in TopR
∞ the mate natural transformation q∗g

∗ → f∗p∗ is invertible. To see this, we factor the above
square as

Z′ FunB(Cop, p∗ΩX) X

Z FunB(Cop,ΩB) B.

p∗(p∗)∗
j∗

limCopj′∗

q∗

limCop

(using again Example 5.2.7.5). It is clear that the mate of the right square is an equivalence, hence it
suffices to show the claim for the left square. In other words, by Corollary 6.2.4.4 we may reduce to the
case where f∗ is already fully faithful, which follows from Proposition 6.2.3.1.

To complete the proof, we now have to show that given a second pullback

W′ Z′ X

W Z B

p∗

f∗

g∗

q∗

r∗

q̄∗

s∗

in TopR
∞ the mate of the left square is an equivalence. For this we again use the factorisation from above

and consider the diagram

W′ Z′ FunB(Cop, p∗ΩX)

W Z FunB(Cop,ΩB)

(p∗)∗
j∗

j′∗

q∗

r∗

q′∗

s∗

By Corollary 6.2.4.4 the geometric morphism (p∗)∗ is compact. Together with what we have already
shown so far, this implies that both the outer square and the right square is left adjointable. As j′∗ is
fully faithful it now immediately follows that the left square is also left adjointable, as desired. □

6.2.5. Proper maps in topology. Recall that a map p : Y → X of topological spaces is called
proper if it is universally closed, and p is called separated if the diagonal Y → Y ×X Y is a closed
embedding. These are the relative versions of compactness and of being Hausdorff, respectively. Our
main goal in this section is to prove the following result about proper separated maps:

Theorem 6.2.5.1. Let p : Y → X be a proper and separated map of topological spaces. Then the
induced geometric morphism p∗ : Sh(Y )→ Sh(X) is proper.

Remark 6.2.5.2. A continuous map p : Y → X is separated as soon as Y is Hausdorff. Since any
completely regular topological space is Hausdorff, it follows that Theorem 6.2.5.1 includes [57, Theorem
7.3.1.6].
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Example 6.2.5.3. It follows from [46, Example C.3.4.1] that the separatedness assumption in
Theorem 6.2.5.1 cannot be dropped. We briefly recall the example for the convenience of the reader.
Consider the topological space Y that is given by taking two copies of the interval [0, 1] and identifying
both copies of x for 0 < x < 1. Then Y is compact, but Sh(Y ) is not. Indeed, consider the sequence
that takes n ∈ N to the sheaf represented by the map Yn → Y in which Yn is given by two copies of
[0, 1] where we identify both copies of x for 2−n < x < 1− 2−n. We note that all the maps Yn → Yn+1

and Yn → Y are local homeomorphisms, which implies that the colimit of the sheaves represented by
(Yn → Y )n∈N is the sheaf represented by colimn Yn = Y . In particular, we have ΓY (colimn Yn) = 1, but
since colimn ΓY (Yn) = ∅, the global sections functor ΓY does not commute with filtered colimits.

Before we prove Theorem 6.2.5.1, let us record that it implies the proper base change theorem in
topology, at least for sober spaces:

Corollary 6.2.5.4. For every pullback square

Q P

Y X

q

g

p

f

of sober topological spaces in which p is proper and separated, the induced commutative square

Sh(Q) Sh(P )

Sh(Y ) Sh(X)

q∗

g∗

p∗

f∗

is horizontally left adjointable.

Proof. Using Theorem 6.2.5.1, it suffices to show that the second square is a pullback in TopR
∞, or

equivalently that the underlying square of locales is a pullback. The latter fact follows from combining [47,
Corollary 3.6] with [47, Lemmas 2.1]. □

Using the results from § 5.3.8 on localic B-topoi arising from maps of topological spaces, the proof of
Theorem 6.2.5.1 is now remarkably short:

Proof of Theorem 6.2.5.1. The map p being proper and separated implies that it is also locally
proper in the sense of Definition 5.3.8.1 (see Remark 5.3.8.3). Therefore, Proposition 5.3.8.5 shows that
OX(Y ) is a stably compact Sh(X)-locale in the sense of Definition 5.3.7.1. Thus the claim follows from
Example 6.2.1.11 and Theorem 6.2.1.12. □

Remark 6.2.5.5. If one assumes that the topological space Y is completely regular (see [57, Definition
7.3.1.12]), one can alternatively apply a number of geometric reduction steps, as in the proof of [57,
Theorem 7.3.16], to reduce to the case where X = ∗ and then use that any compact Hausdorff space is
a retract of a coherent topological space. This proof strategy for Theorem 6.2.5.1 was explained to us
by Ko Aoki. In comparison, Lurie shows that Sh(Y ) is compact in [57, Corollary 7.3.4.12] by using the
theory of K-sheaves.

Remark 6.2.5.6. If p : Y → X is only assumed to be locally proper (see Definition 5.3.8.1 for a
precise definition), the same argumentation as in the proof of Theorem 6.2.5.1 shows that the Sh(X)-
topos ShSh(X)(OX(Y )) is compactly assembled. Therefore, by suitably internalising the arguments
in [58, § 21.1.6] (or alternatively those in [3]), one can deduce that p∗ is exponentiable (i.e. that
−×Sh(X) Sh(Y ) : TopR

∞ → TopR
∞ has a right adjoint) and that, as a consequence, the stable ∞-category

ShSp(Y ) of sheaves of spectra on Y is a dualisable ShSp(X)-module.
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6.2.6. Proper base change with coefficients. The goal of this section is to discuss a generalisation
of Theorem 6.2.1.12 where we allow coefficients in an arbitrary compactly generated ∞-category E. The
proof is is essentially the same as the one of Theorem 6.2.1.12, however this level of generality allows us
to apply the result to a wider range of examples.

Definition 6.2.6.1. Let E be a presentable ∞-category. Let f∗ : X→ B be a geometric morphism of
∞-topoi. We say that f∗ is E-proper if for every diagram

W′ W X

Z′ Z B

f∗

s∗

g∗

t∗

s′∗

t′∗

h∗

in TopR
∞ in which both squares are pullbacks, the square

W′ ⊗ E W⊗ E

Z′ ⊗ E Z⊗ E

g∗⊗E

p′∗⊗E f∗⊗E
q∗⊗E

is horizontally left adjointable. Here − ⊗ − : PrR
∞×PrR

∞ → PrR
∞ denotes Lurie’s tensor product of

presentable ∞-categories.

There is an natural way to enhance Lurie’s tensor products to B-categories, that we will need to
formulate our version of compactness with coefficients:

Construction 6.2.6.2. In Construction 2.3.1.1 we constructed a functor −⊗ ΩB : PrL → PrL(B)
that sends a presentable ∞-category E to the B-category

E⊗ ΩB : Bop → Cat∞; A 7→ E⊗B/A.

For a presentable B-category C, we can therefore consider the B-category C⊗ E := C⊗B (E⊗ ΩB). Here
−⊗B − denotes the tensor product of presentable B-categories introduced in § 4.6.2. In particular −⊗ E

defines a functor PrL(B)→ PrL(B).

Remark 6.2.6.3. If I is a B-category, C a presentable B-category and E is a presentable∞-category, it
follows from the explicit description of the tensor product of presentable B-categories Proposition 4.6.2.11
that we have a canonical equivalence FunB(I,C) ⊗ E ≃ FunB(I,C ⊗ E). In combination with Proposi-
tion 4.6.3.13, we in particular get an equivalence C(A)⊗ E ≃ (C⊗ E)(A) for every A ∈ B.

Definition 6.2.6.4. Let p∗ : X→ B be a geometric morphism and E a presentable ∞-category. Then
p∗ is called E-proper if Γp∗ΩX

⊗ E : p∗ΩX ⊗ E→ ΩB ⊗ E commutes with filtered colimits.

We now come to the main result of this section, the E-linear version of Theorem 6.2.1.12:

Theorem 6.2.6.5. Let p∗ : X→ B be a geometric morphism and E a compactly generated ∞-category.
Then p∗ is E-proper if and only if it is E-compact.

Remark 6.2.6.6. More generally one could define that p∗ : X→ B is E-compact for a presentable
B-category E, whenever p∗ΩX ⊗B E→ E commutes with filtered colimits. Similarly one can also define
a notion of E-properness. Then the analogue of Theorem 6.2.6.5 still holds whenever E is compactly
generated (in a suitable B-categorical sense). We decided to only prove the result in the case where
E = ΩB ⊗ E, since the proof is slightly less technical and since this case already contains most examples
of interest.

Remark 6.2.6.7. Let E be a compactly generated ∞-category and X a B-topos. Then for any A ∈ B

we may identify the tensor product X(A)⊗E with the∞-category Funlex((Ecpt)op,X(A)) (where Ecpt ↪→ E

is the full subcategory of compact objects). Furthermore, since for any map s : B → A the transition
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functors s∗ : X(A)→ X(B) is a left exact left adjoint, it follows that we may identify the transition map
s∗ ⊗ E : (X ⊗ E)(A)→ (X ⊗ E)(B) with the functor

Funlex((Ecpt)op,X(A))→ Funlex((Ecpt)op,X(B))

given by postcomposition with s∗. Now let f∗ : X→ Y be a geometric morphism of B-topoi. Since f∗ and
f∗ are both left exact if follows as in [32, Observation 2.9] that the induced morphism f∗ ⊗ E is given by
pointwise postcomposition with f∗ and its left adjoint is given by postcomposition with f∗.

We begin by establish the E-linear analogue of Corollary 6.2.4.4. This requires a few preparations:

Proposition 6.2.6.8. Let f∗ : X→ B be a geometric morphism of ∞-topoi and let E be a compactly
generated ∞-category. Assume that there exists a family of commutative squares

Wi X

Zi B

f∗

pi
∗

(gi)∗

such that for every A ∈ B the functor (−×B B/A)⊗ E carries these squares to left adjointable squares,
the p∗i ⊗ E are jointly conservative and each (gi∗) is E-compact. Then f∗ is E-compact.

Proof. The proof is essentially the same as the one of Proposition 6.2.4.3. We first check that for
every filtered B-category I the mate of the commutative square

f∗ΩX ⊗ E FunB(I, f∗ΩX ⊗ E)

ΩB ⊗ E FunB(I,ΩB ⊗ E)

diag

f∗⊗E (Γf∗ΩX
⊗E)∗

diag

is an equivalence. Let us first show that the mate colimI(Γf∗ΩX
⊗ E)∗ → (f∗ ⊗ E) colimI is an equivalence

after passing to global sections. For this, it suffices to see that the mate is an equivalence after composing
with the maps p∗i ⊗ E : B⊗ E→ Zi ⊗ E for all i. But now the claims follows from an E-linear version of
Lemma 6.2.4.2, which is proved in exactly the same way. To see that the mate is an equivalence after
evaluating at A ∈ B we may replace B by B/A and the above square by its base change along π∗A to reduce
to the case treated above. Finally, we have to see that for every A ∈ B the functor of B/A-categories
π∗A(f∗ΩX ⊗ E) : π∗A(f∗ΩX ⊗ E)→ π∗A(ΩB ⊗ E) commutes with colimits indexed by filtered B/A-categories.
But this follows again from the above after replacing B by B/A. □

Remark 6.2.6.9. Note that in Proposition 6.2.6.8, we require that the assumptions also hold
locally on B, while for the version without coefficients (Proposition 6.2.4.3) this was automatic due to
Lemma 6.2.4.1. To illustrate why Lemma 6.2.4.1 may fail when using coefficients, consider the example
where E = Sub(S) ≃ ∆1 is the ∞-category of (−1)-truncated spaces. Then, a square

Wi Y

Zi B

f∗

pi
∗

(gi)∗

being horizontally left adjointable after tensoring with Sub(S) simply means that the mate transformation
is an equivalence on (−1)-truncated objects in Y. However, after passing to a slice X/X , the mate
transformations now involves (−1)-truncated objects in X/X , i.e. subobjects of X. These need not be
(−1)-truncated in general, therefore there is no reason for the mate transformation to be an equivalence.

Remark 6.2.6.10. The proof of Proposition 6.2.6.8 shows that more generally we do not need the
existence of such squares for every A ∈ B, but it suffices to find these for a set of objects Ai ∈ B that
generates B under colimits.
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Lemma 6.2.6.11. For every B-category C and every geometric morphism f∗ : X→ B, the straightening
equivalences Fun(C,ΩB) ≃ LFibB(C) and FunB(C, f∗C) ≃ FunX(f∗C,ΩX) ≃ LFibX(f∗C) fit into a
commutative square

FunB(C,ΩB) LFibB(C)

FunB(C, f∗ΩX) LFibX(f∗C)

≃

constf∗ΩX f∗

≃

where f∗ is the restriction of f∗ : Cat(B)/C → Cat(X)/f∗C to left fibrations. Moreover, this commutative
square is natural in C.

Proof. This is shown in exactly the same fashion as [61, Lemma 4.6.4]. □

Corollary 6.2.6.12. Let f∗ : X → B be an E-compact geometric morphism and C a B-category.
Then the geometric morphism (Γf∗ΩX

)∗ : FunB(C, f∗ΩX)→ FunB(C,ΩB) is E-compact.

Proof. Let F ∈ FunB(C,ΩB) be an arbitrary functor and let us set G = (constf∗ΩX
)∗(F ). Fur-

thermore, let CF/ → C be the left fibration associated to F via the straightening equivalence. We then
deduce from Lemma 6.2.6.11 and the fact that left fibrations satisfy the left cancellation property (being
determined by a factorisation system) that we have a commutative diagram

FunB(C,ΩB)/F LFibB(C)/(CF/) LFibB(CF/) FunB(CF/,ΩB)

FunB(C, f∗ΩX)/G LFibX(f∗C)/f∗(CF/) LFibX(f∗(CF/)) FunB(CF/, f∗ΩX)

(constf∗ΩX
)∗

≃

f∗

≃ ≃

f∗ (constf∗ΩX
)∗

≃ ≃ ≃

which is natural in C. Thus, by passing to right adjoints, the base change of (Γf∗ΩX
)∗ along the geometric

morphism (πF )∗ : FunB(C,ΩB)/F → FunB(C,ΩB) can be identified with with the geometric morphism
(Γf∗ΩX

) : FunB(CF/, f∗ΩX)→ FunB(CF/,ΩB). Also, the base change of the right adjoint of the restriction
functor FunB(C,ΩB) → FunB(C≃,ΩB) ≃ B/C≃ along (πA)∗ can be identified with the right adjoint of
the restriction FunB(CF/,ΩB)→ B/(CF/)≃ (using that the pullback of CF/ → C along C≃ → C is (CF/)≃,
see [62, Corollary 4.1.16]). Consequently, we conclude that the pullback square

X/f∗C≃ FunB(C, f∗ΩX)

B/C≃ FunB(C,ΩB)

satisfies the assumptions of Proposition 6.2.6.8. Thus the claim follows. □

Proof of Theorem 6.2.6.5: By Remark 6.2.6.3, the same proof as in Lemma 6.2.1.13 shows that
an E-proper morphism is E-compact. Hence it remains to prove the converse. By Corollary 6.2.6.12,
the same reduction steps as in the proof of Theorem 6.2.1.12 imply that it suffices to see that for every
pullback square of B-topoi

Z′ X

Z B

p∗

j∗

j′∗

in which j∗ is fully faithful, the square is left adjointable after tensoring with E. By Remark 6.2.6.7, it
suffices to see that the square

Funlex((Ecpt)op,X) Funlex((Ecpt)op,X)

Funlex((Ecpt)op,B) Funlex((Ecpt)op,B)

(j′∗j
′∗)∗

(p∗)∗(p∗)∗

(j∗j∗)∗
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commutes. We pick a local class S of maps in B as in Proposition 6.2.3.3, so that we obtain equivalences
j′∗j
′∗ ≃ (−)sh

ι′ and j∗j
∗ ≃ (−)sh

ι . Now since the inclusions Funlex((Ecpt)op,X) ↪→ Fun((Ecpt)op,X)
and Funlex((Ecpt)op,B) ↪→ Fun((Ecpt)op,B) preserve filtered colimits and since colimits in functor ∞-
categories are computed object-wise, it follows that (j′∗j′∗)∗ and (j∗j∗)∗ are given by the κ-fold iteration
of postcomposition with the functors (−)+

ι′ and (−)+
ι , respectively. Therefore, it suffices to provide an

equivalence (p∗(−)+
ι′ )∗ ≃ ((−)+

ι p∗)∗.
To obtain such an equivalence, note that Remark 6.2.6.3 implies that we may identify the map

colimΩop
S
⊗E with colimΩop

S
: FunB(Ωop

S ,Ω⊗ E)→ Ω⊗ E. Therefore, we deduce that postcomposition with
(−)+

ι is equivalently given by the composition

Funlex((Ecpt)op,B)→ Funlex((Ecpt)op,PSh(ΩS)) ≃ FunB(Ωop
S ,Ω⊗ E) colim−−−→ Funlex((Ecpt)op,B)

in which the first functor is given by postcomposition with (the global sections of) mapΩ(ι(−),−).
Similarly, postcomposition with (−)+

ι′ can be identified with the composition

Funlex((Ecpt)op,X)→ Funlex((Ecpt)op,FunB(Ωop
S , p∗ΩX)) ≃FunB(Ωop

S , p∗ΩX ⊗ E)
colim−−−→Funlex((Ecpt)op,X)

where the first functor is given by postcomposing with (the global sections of) Homp∗ΩX
(constp∗ΩX

ι(−),−)
(since this is precisely the map we obtain when composing ΓX(mapΩX

(ι′(−),−)) : X→ PShX(p∗ΩS) with
the equivalence PShX(p∗ΩS) ≃ FunB(Ωop

S , p∗ΩX)). Thus, since Γp∗ΩX
⊗ E commutes with colimΩop

S
, it is

enough to provide a commutative diagram

X FunB(Ωop
S , p∗ΩX)

B PShB(ΩS),

p∗

Hom
p∗ΩX

(constp∗ΩX
ι(−),−)

(Γp∗ΩX
)∗

mapΩX
(ι(−),−)

which is evident from Remark 5.2.10.13. □

Example 6.2.6.13. For a scheme X let us denote by Xhyp
ét the∞-topos of étale hypersheaves of spaces

on X. If f : X → S is a proper morphism of schemes, then the geometric morphism f∗ : Xhyp
ét → Shyp

ét is
D(R)-proper for any torsion ring R. In fact, since Xhyp

ét has enough points by [58, Theorem A.4.0.5], the
family of all points s̄∗ : S→ Xhyp

ét yields a family of jointly conservative functors s̄∗⊗D(R). Furthermore,
proper base change for unbounded derived categories of étale sheaves (see [18, Theorem 1.2.1]) implies
that the squares

Xhyp
s̄,ét Xhyp

ét

S Shyp
ét

are left adjointable after applying − ⊗ D(R). Finally, [18, Corollary 1.1.15] implies that Xhyp
s̄,ét is

D(R)-compact so that we may apply Proposition 6.2.6.8 and Theorem 6.2.6.5 to conclude that f∗ is
D(R)-proper.

Definition 6.2.6.14. We call a geometric morphism f∗ : Y→ X n-proper if it is S≤n-proper, where
S≤n denotes the ∞-category of n-truncated spaces. We call f∗ almost proper if it is n-proper for all n.

Example 6.2.6.15. Recall that by [56, Example 4.8.1.22] one may identify X⊗ S≤n ≃ X≤n. Thus
it follows from [58, Proposition A.2.3.1] and Theorem 6.2.6.5 that for an n-coherent ∞-topos X the
geometric morphism Γ∗ : X→ S is n-proper. In particular it is almost proper if X is coherent. However it
is not proper in general (see Remark 6.2.1.8).

Example 6.2.6.16. A geometric morphism f∗ : X → B is Set-proper if and only if the underlying
morphism of 1-topoi is tidy in the sense of [69, §3].





CHAPTER 7

Applications in étale homotopy theory

The goal of this chapter is to present some applications of our results in algebraic geometry and more
specifically in étale homotopy theory. For this we will mostly work internally to the ∞-topos of condensed
or pyknotic spaces. In § 7.1, we begin this chapter by recalling the definition of pyknotic spaces and
pyknotic objects from [20],[10]. We also review a number of useful results about how to embed pro-finite
spaces or categories into pyknotic spaces/categories from [9]. Furthermore we give a brief recollection on
spectral ∞-topoi, that were also developed in [9].

In § 7.2 we prove that the ∞-topos of pro-étale hypersheaves on a qcqs scheme X, as introduced by
Bhatt-Scholze in [14], is equivalent to a presheaf topos when considered as Pyk(S)-category. The main
ingredients for our proof are the Exodromy equivalence for constructible étale sheaves from [9] and some
of the machinery developed in the previous chapters of this thesis.

Finally in § 7.3 we use the results of § 7.2 to introduce the pro-étale homotopy type of scheme, which
is a pyknotic refinement of the usual étale homotopy type. We prove an internal version of Quillen’s
Theorem B which we then employ to understand fibres of maps between pro-étale homotopy types of
schemes.

7.1. Preliminaries on pyknotic objects and spectral ∞-topoi

7.1.1. Background on pyknotic objects. In this section we recall a few basics and notations
about condensed or pyknotic mathematics, introduced by Clausen-Scholze in [20] and Barwick-Haine in
[10]. The only real difference between the two approaches is the way in which set-theoretic issues are
dealt with. Since we will directly build on the results in [9] which are all formulated in the framework of
[10], we will do the same in this chapter.

Notation 7.1.1.1. We fix a tiny and a small universe, respectively determined by two strongly
inaccessible cardinals

δ0 < δ1.

For a strongly inaccessible cardinal δ, we write Sδ) for the ∞-category of δ-small spaces. By default all
higher categorical notions are taken to be with respect to the cardinal δ1. For example a δ-∞-topos is a
left exact accessible localization of Fun(C, Sδ) for a δ-small ∞-category C. We will simply say ∞-topos
instead of δ1-∞-topos.

Definition 7.1.1.2. Let Proδ0(Setfin) denote the category of δ0-small pro-finite sets. We equip this
category with the Grothendieck-topology eff generated by finite families of jointly surjective maps. We
define the ∞-topos of pyknotic spaces to be the ∞-category Shhyp

eff (Proδ0(Setfin), Sδ1) of hypersheaves on
Proδ0(Setfin).

Observation 7.1.1.3 ([10, § 2.2]). Let us denote by Proj the full subcategory of those (δ0-small)
pro-finite sets K that have the property that any surjection T → K from another pro-finite set has a
section. We call the pro-finite sets in Proj projective. We equip the category Proj with the topology τ ,
generated by coverings of the form {U ↪→ U ⨿ V, V ↪→ U ⨿ V }. Since the Stone-Čech compactification
of a discrete set is projective, it follows that any pro-finite set admits a surjection from an extremally
disconnected (δ0-small) pro-finite set. Thus the ∞-categorical comparison lemma for hypersheaves (see

241
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e.g. [73, Proposition 2.22]) implies that we have an equivalence

Pyk(S) ≃ Shhyp
τ (Proj, S) ≃ Fun×(Projop, S).

Here Fun×(−,−) denotes the ∞-category of product preserving functors. In particular Pyk(S) is
projectively generated.

Definition 7.1.1.4. Let C be any ∞-category with finite products. Then we define the category of
pyknotic objects in C

Pyk(C) = Fun×(Projop,C).

Remark 7.1.1.5. Note that we evidently have a canonical equivalence Pyk(Cat∞) ≃ Cat(Pyk(S))
between pyknotic ∞-categories and Pyk(S)-categories.

Notation 7.1.1.6. As for any ∞-topos, we get a canonical adjunction S ⇄ Pyk(S). We denote the
left adjoint by (−)disc and the right adjoint by Un. More generally for any presentable ∞-category C,
applying −⊗ C yields an adjunction

(−)disc : C −⇀↽− Pyk(C) :Un .

Definition 7.1.1.7. The left exact functor (−)disc : S→ Pyk(S) extends to a right adjoint functor

Pro(S)→ Pyk(S)

whose left adjoint we denote by H. For X ∈ Pyk(S), we call H(X) ∈ Pro(S) the homotopy type of X.

Notation 7.1.1.8. We write S<∞ ⊂ S for the full subcategory spanned by those spaces which are
n-truncated for some n. We write Sπ for the full subcategory of S<∞ spanned by those spaces whose
homotopy sets are all finite. If Σ is a set of primes, we write SΣ for the full subcategory of Sπ spanned by
the spaces all of whose homotopy groups are finite Σ-groups (i.e. whose order is a product of powers of
primes in Σ).

7.1.1.9. The inclusion ι : S<∞ → S induces an adjunction

τ<∞ : Pro(S) ⇄ Pro(S<∞) : Pro(ι).

We call the right adjoint τ<∞ the pro-truncation functor. Similarly for a set of primes Σ, the inclusion
SΣ → S yields an adjunction

(−)∧Σ : Pro(S) ⇄ Pro(SΣ).

We call (−)∧Σ the pro-Σ-completion functor. In the case where Σ is the set of all primes, we write
Pro(Sπ) = S∧π and (−)∧Σ = (−)∧π and say pro-finite completion functor.

Definition 7.1.1.10. Composing the adjunction in Definition 7.1.1.7, with the above adjunctions we
obtain adjunctions

H<∞ : Pyk(S) ⇄ Pro(S<∞) and H∧Σ : Pyk(S) ⇄ Pro(SΣ).

For X ∈ Pyk(S) we call H<∞(X) the pro-truncated homotopy of X and H∧Σ(X) the pro-Σ-completed
homotopy type of X. If Σ is the set of all primes we write H∧Σ = H∧π and call H∧π (X) the pro-finite
homotopy type of X.

We will also the use the following result later:

Theorem 7.1.1.11 ([9, §13.4]). Extending the functor (−)disc : Sπ → Pyk(S) to pro-objects gives a
fully faithful functor

Pro(Sπ)→ Pyk(S).
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Recollection 7.1.1.12. Recall from [9, Definition 2.3.7] that an ∞-category C is called layered, if
every endomorphism in C is an equivalence. An ∞-category C is called π-finite if it has finitely many
objects up to equivalence and all its mapping spaces are π-finite. We write Layπ for the full subcategory
spanned by the π-finite and layered ∞-categories.

Also recall that a π-finite stratified space is a π-finite ∞-category Π together with a conservative
functor Π→ P to a finite poset P . In particular Π is layered. We write Strπ for the full subcategory of
Cat∆1

∞ spanned by the π-finite stratified spaces. Note that evaluating at 0 induces an evident functor
Strπ → Layπ.

If C is a π-finite layered ∞-category, it follows that C≃ ∈ Sπ. Since C∆1 is again π-finite and layered,
it follows that the nerve functor N : Cat∞ → CSS(S) restricts to a fully faithful functor

N : Layπ → CSS(Sπ).

We thus have the following Corollary of Theorem 7.1.1.11:

Corollary 7.1.1.13 ([9, §13.5]). Extending the functor (−)disc : Layπ → Pyk(Cat) to pro-objects,
yields a fully faithful functor

Pro(Layπ)→ Pyk(Cat∞).

Proof. The functor factors as

Pro(Layπ) Pro(N(−))−−−−−−−→ Pro(CSS(Sπ))→ CSS(S∧π )→ CSS(Pyk(S)) = Pyk(Cat∞),

where the second functor is the extension of the inclusion CSS(Sπ) ↪→ CSS(S∧π ) to pro-objects. By
Theorem 7.1.1.11, the third functor is fully faithful and thus the claim follows because the second functor
also is by [9, p. 13.1.3]. □

We also recall the following useful observation for later:

Lemma 7.1.1.14. The functor lim: Pro(Layπ)→ Cat∞ is conservative.

Proof. We have a commutative diagram

Pro(Layπ) Cat∞

CSS(S∧π ) CSS(S)

lim

≃

lim∗

and thus the claim follows from the fact that lim: S∧π → S is conservative by [58, Theorem E.3.1.6] □

7.1.2. Background on spectral ∞-topoi. In this section we briefly recall the notion of a spectral
∞-topos from [9].

Recollection 7.1.2.1. Recall from [58, Definition A.6.1.1] that an ∞-category X0 is called an
∞-pretopos if

(1) The ∞-category X0 has finite limits.
(2) Finite coproducts exist in X0 and are universal and disjoint.
(3) Groupoid objects in X0 are effective and their geometric realizations are universal.

An ∞-pretopos X0 is called bounded if X0 is small and every object in X0 is n-truncated for some integer
n. If X is a coherent ∞-topos in the sense of [58, Definition A.2.0.12], the full subcategory of Xcoh

<∞
spanned by the truncated and coherent objects is a bounded ∞-pretopos [58, Example 7.4.4]. In fact any
bounded ∞-pretopos arises this way by [58, Theorem 7.5.3]. Conversely, any bounded coherent ∞-topos
X is of the form Sheff(X0), where X0 is some bounded ∞-pretopos and eff is the topology generated by
finite families Ui → U such that ⨿iUi → U is an effective epimorphism. Furthermore in this case we have

Sheff(X0)coh
<∞ ≃ X0.
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Also recall that a geometric morphism f∗ : X → Y of coherent ∞-topoi is called coherent if f∗ sends
Y coh into Xcoh. We denote the ∞-category of tiny bounded coherent ∞-topoi and coherent geometric
morphisms between them by TopR,coh

∞ . For more background on ∞-pretopoi and coherent ∞-topoi, the
reader may consult [58, Appendix A] or [9, §3].

Example 7.1.2.2. If X is a qcqs scheme, the ∞-topos Xét of étale sheaves on X is bounded coherent.

Example 7.1.2.3. If X is a coherent∞-topos, the terminal geometric morphism Γ: X→ S is coherent.
To see this recall from [58, Example A.2.17] that an object A ∈ S is coherent if and only if all its homotopy
sets are finite. By [58, Lemma E.1.6.5] it follows that A is equivalent to the geometric realization of
a Kan-complex A• where all An are finite sets. If follows that constA ≃ |constA•|. Since the full
subcategory Xcoh ⊆ X is closed under coproducts and geometric realizations of groupoid objects (see the
proof of [56, Proposition A.6.1.6]) the claim follows.

Definition 7.1.2.4. ([9, Definition 9.2.1]) Let S be a spectral topological space. An S-stratified
∞-topos is a bounded coherent ∞-topos X, together with coherent geometric morphism X → Sh(S).
We will say that a S-stratified ∞-topos X is spectral, if the induced functor Pt(X) → Pt(Sh(S)) on
∞-categories of points is conservative. We define the ∞-category of spectral ∞-topoi Spec TopR

∞ to be
the full subcategory of (TopR,coh

∞ )∆1 spanned by the spectral ∞-topoi.

Example 7.1.2.5. If X is a qcqs scheme, the ∞-topos Xét together with it’s canonical geometric
morphism Xét → Sh(XZar) is spectral [9, Example 9.2.4]. In this case the∞-category Xcoh

ét,<∞ of truncated
coherent objects is equivalent to the ∞-category Xconstr

ét of constructible étale sheaves on X, which is
therefore an ∞-pretopos. In fact we more generally have an equivalence

Xcoh
<∞ ≃ XS -constr

for any spectral S-stratified ∞-topos X→ Sh(S) [9, Corollary 9.5.5].

Sending a π-finite stratified space Π→ P to the spectral ∞-topos Fun(Π, S)→ Fun(P, S) defines a
functor

λ : Strπ → (TopR,coh
∞ )∆1

.

Extending this functor to pro-objects, we obtain a functor λ∧ : Pro(Strπ)→ (TopR,coh
∞ )∆1 .

Theorem 7.1.2.6 ([9, Theorem 9.3.1]). The functor λ∧ : Pro(Strπ)→ (TopR,coh
∞ )∆1 is fully faithful

and the essential image is given by the full subcategory Spec TopR
∞ of the spectral ∞-topoi.

Definition 7.1.2.7 ([9, § 10.1]). Let X be a spectral S-stratified ∞-topos. We denote the inverse
under the equivalence of Theorem 7.1.2.6 by Π̂S

(∞,1)(X) = λ−1(X). We call Π̂S
(∞,1)(X) the pro-finite

stratified shape of X. If X is a qcqs scheme, we simply write Gal(X) = Π̂XZar
(∞,1)(Xét) and call Gal(X) the

Galois-category of X.

Via the composite Pro(Strπ)→ Pro(Layπ) ↪→ Pyk(Cat∞), we may consider Π̂S
(∞,1)(X) as a condensed

Pyk(S)-category. Theorem 7.1.2.6 allows us to give an explicit description of this Pyk(S)-category.

Proposition 7.1.2.8. The Pyk(S)-category underlying Π̂S
(∞,1)(X) is given by the sheaf

Π̂S
(∞,1)(X) : Pro(Setfin)→ Cat∞, K 7→ Funcoh

∗ (Sh(K),X).

Here Funcoh
∗ (Sh(K),X) denotes the full subcategory of Fun∗(Sh(K),X) spanned by the coherent geometric

morphisms, i.e. those geometric morphism f∗ : Sh(K) → X whose left adjoint f∗ preserves coherent
objects
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Proof. For a pro-finite set K, we may regard Sh(K) as a K-stratified spectral ∞-topos via the
identity. By Theorem 7.1.2.6, we obtain a chain of natural equivalences

mapPro(Cat∞)(K, Π̂S
(∞,1)(X)) ≃ mapStrπ

(K, Π̂S
(∞,1)(X)) ≃ mapSpec TopR

∞
(Sh(K),X)

≃ mapTopR,coh
∞

(Sh(K),X).

Furthermore replacing K with K ×∆n and using the naturality of the above equivalence in the first
variable we obtain a natural equivalence

FunPro(Cat∞)(K, Π̂S
(∞,1)(X)) ≃ Funcoh

∗ (Sh(K),X)

of ∞-categories. Since the composite Pro(Strπ) → Pro(Layπ) ↪→ Pyk(Cat∞) by construction sends
Π̂S

(∞,1)(X) to the sheaf

Pro(Setfin)→ Cat∞,K 7→ FunPro(Cat∞)(K, Π̂S
(∞,1)(X))

the claim follows. □

Remark 7.1.2.9. As a consequence of [9, Proposition 9.5.7] it follows that for a spectral ∞-topos X,
any point x∗ : S → X is automatically coherent. In particular the underlying ∞-category of Π̂S

(∞,1)(X) is
simply the category Pt(X) of points of X by Proposition 7.1.2.8. If X is a qcqs scheme the category of
points Pt(Xét) admits the following explicit description [15, Exposé VIII, Théorème 7.9]. The objects are
given by geometric points of X, so morphisms of schemes x̄→ X, where x̄ = Spec(k̄) for some separably
closed field x̄. A morphism between two geometric points x̄ and ȳ is given by an étale specialization
ȳ → x̄, so by a morphism of X-schemes

X(ȳ) → X(x̄).

Here we denote by X(x̄) = Spec(Osh
X,x̄) the strict henselisation of Y at ȳ (see [Stacks, Tag 0BSK]).

7.2. The pro-étale topos as pyknotic presheaves

The main goal of this section is to prove the following theorem:

Theorem 7.2.0.1. Let X be a qcqs scheme. Then the exodromy equivalence induces an equivalence
of ∞-topoi

Xhyp
proét

≃−−→ FunPyk(S)(Gal(X),Pyk(S)).

In fact we will prove a more general result for the pyknotification Xpyk = Shhyp
eff (Pro(Xcoh

<∞)) of a
spectral ∞-topos X. We introduce the pyknotification of a coherent ∞-topos in § 7.2.1. The two crucial
examples to keep in mind are that Spyk = Pyk(S) and Xpyk

ét = Xhyp
proét, see Examples 7.2.1.8 and 7.2.1.9.

Let us now briefly describe our strategy to prove Theorem 7.2.0.1. By the Exodromy Theorem [9,
Theorem 13.2.10] we have that (Xét)coh

<∞ ≃ FunPyk(S)(Gal(X), Sdisc
π ). And via the fully faithful embedding

Sπ → Pyk(S) we thus obtain an embedding

(Xét)coh
<∞ → FunPyk(S)(Gal(X),Pyk(S)).

As a next step we identify the essential image of this functor in terms of the corresponding left fibrations
of Pyk(S)-categories and conclude that the above functor remains fully faithful after extending it to
pro-objects. This is the content of § 7.2.2.

By a general ∞-toposic principle it suffices to show that any object in FunPyk(S)(Gal(X),Pyk(S))
admits an effective epimorphism form a coproduct of objects in Pro((Xét)coh

<∞). Since the ∞-category
FunPyk(S)(Gal(X),Pyk(S)) is a presheaf category and Pyk(S) is generated under colimits by pro-finite
sets it follows that any object admits admits an effective epimorphism from a coproduct of objects that
are colimits of diagrams of the form K → Gal(X), where K is some pro-finite set. Thus it remains to see
that these objects are contained in Pro((Xét)coh

<∞), which we prove in § 7.2.3.
The contents of this section originally appeared in [91]. However, using results from internal higher

category theory some parts of the proof are now simplified. Furthermore we use the tensor product of

https://stacks.math.columbia.edu/tag/0BSK
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presentable Pyk(S)-categories, developed in § 4.6 to extend the equivalence of Theorem 7.2.0.1 to more
general coefficients.

7.2.1. Pro-objects and Pyknotification. If X0 is an ∞-pretopos, the ∞-category Pro(X0) is in
general not an ∞-pretopos. The goal of this section is to show that even though this is case, the notion
of effective epimorphism still yields a reasonable Grothendieck-topology on Pro(X0). The majority of the
material presented here has been worked out in the 1-categorical case by Lurie in [59, §6.1] and most of
the arguments in this section are just very straight-forward adaptions of the ones presented there.

Lemma 7.2.1.1. Let X0 be a tiny bounded ∞-pretopos. Let f• : I → Fun(∆1,Pro(X0)) be a tiny
cofiltered diagram of effective epimorphisms. Then limi fi, considered as a morphism in Pro(X0), is an
effective epimorphism.

Proof. This is a straight-forward adaption of the argument given in [58, Prop. E.5.5.3]: Let us
denote the source and target of f• by X• and Y•, respectively. Let us write U• for the Čech-nerve of
f = limi fi. We would like to show that, for every C ∈ Pro(X0), the induced morphism

mapPro(X0)(lim
i
Xi, C) −→ lim

n∈∆
mapPro(X0)(Un, C)

is an equivalence. We observe that we may immediately assume that C ∈ X0 ⊆ Pro(X0). We now write
U•,i for the Čech-nerve of fi. Since we assumed that C is cocompact, the above map may be identified
with the composite

colim
i

mapPro(X0)(Xi, C) −→ colim
i

lim
n∈∆

mapPro(X0)(Ui,n, C)
α−−→ lim

n∈∆
colim
i

mapPro(X0)(Ui,n, C).

Since every fi was assumed to be an effective epimorphism, the first map is an equivalence. Thus it suffices
to see that α is an equivalence. Now, since X0 is bounded, there is an n ∈ N such that C is n-truncated.
We may thus replace the Ui,n with their n-truncations τ≤n(Ui,n). It follows from [42, Proposition A.1]
that in the commutative diagram

colimi limn∈∆ mapPro(X0)(Ui,n, C) limn∈∆ colimi mapPro(X0)(Ui,n, C)

colimi limn∈∆≤n mapPro(X0)(Ui,n, C) limn∈∆≤n colimi mapPro(X0)(Ui,n, C)

α

the horizontal arrows are equivalences and the bottom vertical arrow is an equivalence as well since taking
limits over ∆≤n commutes with filtered colimits. This completes the proof. □

Let us quickly recall the following from [58, Proposition A.6.2.1]:

Proposition 7.2.1.2. Let X0 be an ∞-pretopos. Then X0 admits a factorization system (SL, SR) (in
the sense of [57, §5.2.8]), where SL is the collection of effective epimorphisms and SR the collection of
(−1)-truncated morphisms.

Proposition 7.2.1.3. Let X0 be a tiny bounded ∞-pretopos. Then the following hold:
(1) The collection of effective epimorphisms and (−1)-truncated morphisms form a factorization

system on Pro(X0).
(2) A morphism in Pro(X0) is an effective epimorphism if and only if it can be written as a tiny

inverse limit of effective epimorphisms in X0.
(3) Effective epimorphisms are stable under pullback in Pro(X0).

Proof. It is clear that effective epimorphisms and (−1)-truncated morphisms are stable under
retracts. Furthermore we observe that effective epimorphisms are left orthogonal to (−1)-truncated
morphisms in any ∞-category with finite limits and geometric realizations. So let f : X → Z be a
morphism in Pro(X0). By (the dual of) [58, Proposition E.4.2.2] we can write f ≃ limi hi ◦ limj gj , where
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hi is a (−1)-truncated morphism in X0 and gj is an effective epimorphism in X0. By Lemma 7.2.1.1 it
follows that limi gi is an effective epimorphism. Furthermore the diagonal limi Yi → limi Yi×limi Zi

limi Yi

may be identified with the limit of the diagonals Yi → Yi ×Zi
Yi and is thus an equivalence. This proves

i).
One direction of ii) is simply Lemma 7.2.1.1 combined with the observation that the inclusion

X0 ↪→ Pro(X0) preserves effective epimorphisms. For the other direction assume that f : X → Z is an
effective epimorphism. We now pick a factorization f ≃ (limi hi) ◦ (limi gi) as above. By i) it follows from
[57, Proposition 5.2.8.6] that limi hi is both an effective epimorphism and (−1)-truncated. Thus it is left
orthogonal to itself, so it is an equivalence, which completes the proof of ii).

For iii) we may use [57, Proposition 5.3.5.15] again to assume that we are given a cofiltered diagram
I → Fun(Λ2

2,X0) depicted as
X•

T• Z•

f•

γ•

such that the induced map limiXi → limi Zi is an effective epimorphism. We have to show that the
induced map

lim
i
Ti ×limi Zi lim

i
Xi −→ lim

i
Ti

is an effective epimorphism. Again we get a functorial factorization

Xi
gi−−→ Yi

hi−−→ Zi

where gi is an effective epimorphism and hi is (−1)-truncated for all i. We now consider the diagram

limi(Ti ×Zi
Xi) limiXi

limi(Ti ×Zi Yi) limi Yi

limi Ti limi Zi .

g′ g=limi gi

h′ h=limi hi

Since f = h ◦ g is an effective epimorphism, it follows like in the proof of ii) that h is an equivalence.
Thus h′ is an equivalence. Since X0 is an ∞-pretopos, it follows that g′ is an inverse limit of effective
epimorphisms and so the claim follows from Lemma 7.2.1.1. □

Lemma 7.2.1.4. Let X0 be a tiny ∞-pretopos. Then finite coproducts are universal in Pro(X0).

Proof. Again we may use [57, Proposition 5.3.5.15] to reduce to the case where we are given a
cofiltered family of diagrams

Xi ⨿X ′i

Yi Zi

fi f
′
i

γi

and have to show that the induced map(
lim
i
Yi ×limi Zi lim

i
Xi

)
⨿

(
lim
i
Yi ×limi Zi lim

i
X ′i

)
−→ lim

i
Yi ×limi Zi lim

i

(
Xi

∐
X ′i

)
is an equivalence. But this map can be identified with the limit of the induced morphisms

(Yi ×Zi Xi)⨿ (Yi ×Zi X
′
i) −→ Yi ×Zi (Xi ⨿X ′i)

which are equivalences, as X0 is an ∞-pretopos. □

Finally we observe that, as a consequence of [56, Proposition 5.2.8.6] and Proposition 7.2.1.3, the
collection of effective epimorphisms in Pro(X0) is closed under composition and it is clearly closed under
finite coproducts. We may thus apply [58, Proposition A.3.2.1] to get the following:
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Corollary 7.2.1.5. Let X0 be a bounded ∞-pretopos. Define a collection of morphisms {Ci → D}i∈I
in Pro(X0) to be covering if and only if there is a finite subset J ⊆ I such that the induced map∐

j∈J
Cj −→ D

is an effective epimorphism in Pro(X0). This defines a topology on Pro(X0).

Definition 7.2.1.6. Let X0 be a tiny bounded ∞-pretopos. We call the topology on Pro(X0) from
Corollary 7.2.1.5 the effective epimorphism topology. For a bounded coherent δ0-∞-topos X, we define
the pyknotification of X to be the ∞-topos

Xpyk = Shhyp
eff

(
Pro(Xcoh

<∞)
)
.

Remark 7.2.1.7. The pyknotification of a bounded coherent ∞-topos appeared first in [10, Construc-
tion 3.3.2] under the name solidification. Since the word solidification is also used in [20] in an unrelated
way, a different name is used here.

Example 7.2.1.8. In the case where X = S, the ∞-category of bounded coherent objects in S is the
∞-category of π-finite spaces Sπ. It is shown in [9, Proposition 13.4.9] that any profinite space admits an
effective epimorphism from a profinite set. In other words the full subcategory Pro(Setfin) ⊆ S∧π is a basis
for the effective epimorphism topology. It follows that we have an equivalence of ∞-topoi

Spyk ≃ Pyk(S).

Example 7.2.1.9. More generally for a qcqs scheme X, any object in Pro(Xconstr
ét ) admits an effective

epimorphism from an object in Pro(Xconstr
≤0 ) by [10, Proposition 3.3.8]. It follows that Xpyk

ét is the
hypercomplete ∞-topos associated to the 1-topos Sheff(Pro(Xconstr

≤0 ),Set) introduced in [59, §7.1]. Thus
[59, Example 7.1.7] shows that Xpyk

ét is equivalent to the hypercomplete ∞-topos Xhyp
proét of pro-étale

sheaves on X defined by Bhatt-Scholze in [14].

Remark 7.2.1.10. In principle we can also consider a version of the pyknotification where we consider
the ∞-topos Sheff(Pro(X0)) of all sheaves with respect to the effective epimorphism topology instead of
just hypersheaves. However there are reasons to prefer the hypercomplete version in Definition 7.2.1.6.
For example in many cases of interest the ∞-topos Xpyk will be postnikov complete and even have a set
of compact projective generators (see Corollary 7.2.3.13), which makes it convenient to work with. This
will not hold for the non-hypercomplete version in general [10, Warning 2.2.2].

7.2.1.11. The construction of (−)pyk defines a functor

TopR,coh
∞ → TopR

∞ .

In particular it follows from Example 7.1.2.3 that the terminal geometric morphism Γ∗ : X→ S induces
adjunction

Γ∗pyk : Pyk(S)→ Xpyk : Γpyk
∗

where Γ∗pyk is left exact. Via the equivalence of Theorem 5.2.5.1 we therefore get an induced Pyk(S)-topos
that we denote by Xpyk.

7.2.2. Embedding pro-constructible sheaves. The goal of this section is to show that for a
spectral ∞-topos X, we have a fully faithful embedding

Pro(Xcoh
<∞) ↪→ Fun Pyk(S)((Π̂S

(∞,1)(X),Pyk(S)).

We will begin by showing that there is a fully faithful embedding if one removes the Pro(−) above.

Lemma 7.2.2.1. Let q : F → Π be a left fibration with π-finite fibres and let Π → P be a π-finite
stratified space. Then F → P is a π-finite stratified space.



7.2. THE PRO-ÉTALE TOPOS AS PYKNOTIC PRESHEAVES 249

Proof. The only thing that is not obvious is that the mapping space mapF(x, y) is π-finite for all
x, y ∈ F. Since q is a left fibration every morphism in F is q-cocartesian. Thus for every f : x → y in
mapF(x, y), the square

mapFp(y)
(y, y) mapF(x, y)

∗ mapΠ
(
f(x), f(y)

)
f∗

q(f)

is a pullback in S by [57, Proposition 2.4.4.2]. By assumption, the bottom right and the top left corner
are π-finite and thus the claim follows. □

Lemma 7.2.2.2. Consider the continuous functor j : Sdisc
π → Pyk(S) corresponding under adjunction

to the embedding (−)disc : Sπ → Pyk(S). Then j is a fully faithful functor of Pyk(S)-categories.

Proof. We need to check that j(K) : Sdisc
π (K) → Pyk(S)/K is fully faithful for every K ∈ Proj.

Write K = limi∈I Ki as an inverse limit of finite sets. Recall from [9, Construction 13.3.10] that

Sdisc
π (K) ≃ colim

i
SKi
π .

For i ∈ I, the functor j(K)(x) sends a π-finite space x over Ki to the pyknotic space over K given by the
pullback

j(K)(x) x

K Ki .
In particular j(K) factors through the full subcategory S∧π/K ⊆ Pyk(S)/K spanned by the profinite spaces
over K. Now let x, y ∈ Sdisc

π (K). Since I is filtered we may assume that there is some i ∈ I such that
x, y ∈ SKi

π . Replacing I by I/i, we may furthermore assume that i is the final object. For a map j → i in
I, let us denote the pullback x×Ki Kj by xj and analogously for y. We have to see that the map

colim
j

map
S

Kj
π

(xj , yj)→ mapS∧π /K

(
j(K)(x), j(K)(y)

)
induced by jK is an equivalence. Composing with the projection j(K)(y)→ y induces an equivalence

mapS∧π /K

(
j(K)(x), j(K)(y)

) ≃−→ mapS∧π /Ki

(
j(K)(x), y).

Analogously composing with the projections yj → y induces an equivalence

colim
j

map
S

Kj
π

(xj , yj)
≃−→ colim

j
map

S
Ki
π

(xj , y)

We obtain a commutative square

colimj map
S

Kj
π

(xj , yj) mapS∧π /K

(
j(K)(x), j(K)(y)

)

colimj map
S

Ki
π

(xj , y) mapS∧π /Ki

(
j(K)(x), y) .

≃≃

But it is clear that the lower horizontal map is an equivalence, since j(K)(x) ≃ limj xj in S∧π/Ki
and y is

cocompact in S∧π/Ki
. □

Remark 7.2.2.3. One can give an alternative prove of Lemma 7.2.2.2 as follows. Let K be an
extremally disconnected set. By [9, Proposition 4.4.18] the ∞-category Sdisc

π (K) is equivalent to the full
subcategory Lcc(K) of the ∞-topos Sh(K) of sheaves on K spanned by the locally constant constructible
sheaves in the sense of [58, Definition 2.5.1]. Then [33, Corollary 4.4] provides a fully faithful embedding

Sh(K) ↪→ Pyk(S)/K .

Therefore we also have a fully faithful embedding Sdisc
π (K) ↪→ Pyk(S)/K and one can check that this

embedding agrees with the functor j(K).
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Corollary 7.2.2.4. Let C be a pyknotic ∞-category. Then composition with j : Sdisc
π → Pyk(S)

induces a fully faithful functor

j∗ : FunPyk(S)(C, Sdisc
π )→ FunPyk(S)(C,Pyk(S)).

Remark 7.2.2.5. Let C be an ordinary∞-category and p : P → C a left fibration classifying a functor
f : C → S. Thus we also get an induced left fibration pdisc : P disc → Cdisc of Pyk(S)-categories. Recall
that the functoriality of the Grothendieck-construction (Lemma 5.2.8.5) shows that the diagram

LFib(C) Fun(C, S)

LFib(Cdisc) Fun(C,Pyk(S))

≃

Un

≃

Un

commutes. After passing to left adjoints vertically, it follows that the left fibration pdisc classifies the
composite

C
f−→ S

(−)disc

−−−−→ Pyk(S).

Notation 7.2.2.6. Let S be a spectral topological space and X a spectral S-stratified ∞-topos [9,
Definition 9.2.1]. Consider the profinite stratified shape Π̂S

(∞,1)(X) ∈ Pro(Strπ) of X [9, Definition 10.1.4].
Say that Π̂S

(∞,1)(X) ≃ limi(Ci → Si) where Ci → Si is a π-finite stratified space.

Recall that, by [9, Lemma 13.6.1], the canonical functor

colim
i∈I

Fun
(
Ci, Sπ

)
−→ FunPyk(S)

(
Π̂S

(∞,1)(X), Sdisc
π

)
is an equivalence. Thus, using Remark 7.2.2.5 we get the following explicit description of the essential
image of the functor j∗:

Lemma 7.2.2.7. With notations as in 7.2.2.6, consider the fully faithful functor

j∗ : FunPyk(S)(Π̂S
(∞,1)(X), Sdisc

π )→ FunPyk(S)(Π̂S
(∞,1)(X),Pyk(S)).

Then a continuous functor F : Π̂S
(∞,1)(X) → Pyk(S) is in the essential image of j∗ if and only if there

is a left fibration of usual ∞-categories Fi −→ Ci with π-finite fibers such that the left fibration of
Pyk(S)-categories

F = lim
j∈I/i

Fdisc
i ×Cdisc

i
Cdisc
j ≃ Fdisc

i ×Cdisc
i

Π̂S
(∞,1)(X)→ Π̂S

(∞,1)(X)

classifies F . In particular F → S is a profinite stratified space by Lemma 7.2.2.1.

We can now prove the desired fully faithfulness:

Proposition 7.2.2.8. The embedding FunPyk(S)(Π̂S
(∞,1)(X), Sdisc

π )→ FunPyk(S)(Π̂S
(∞,1)(X),Pyk(S))

extends to a fully faithful tiny limit preserving embedding

ι : Pro
(

FunPyk(S)
(
Π̂S

(∞,1)(X), Sdisc
π

))
↪−→ FunPyk(S)

(
Π̂S

(∞,1)(X),Pyk(S)
)
.

Proof. We have to see that, for a cofiltered diagram Y• : J → FunPyk(S)(Π̂S
(∞,1)(X), Sdisc

π ) and and
object X ∈ FunPyk(S)(Π̂S

(∞,1)(X), Sdisc
π ), the canonical map

(7.2.2.9) colim
j

map
FunPyk(S)

(
Π̂S

(∞,1)(X),Sdisc
π

)(Yj , X) −→ map
FunPyk(S)

(
Π̂S

(∞,1)(X),Pyk(S)
) (

lim
j
Yj , X

)
is an equivalence. Using Lemmas 7.2.2.1 and 7.2.2.7, we see that the embedding

FunPyk(S)
(
Π̂S

(∞,1)(X), Sdisc
π

)
↪−→ Pyk(Cat∞)/Π̂S

(∞,1)(X)
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factors through the full subcategory Pro(Layπ)/Π̂S
(∞,1)(X) ⊆ Pyk(Cat∞)/Π̂S

(∞,1)(X) (see [9, Proposition
13.5.2]). Again by Lemma 7.2.2.7, there is a map of stratified spaces

Π̂S
(∞,1)(X) Ci

S Pi

and a discrete left fibration Xi → Ci with π-finite fibres such that the map (7.2.2.9) is given by the
canonical map

colimj mapFunPyk(S)(Π̂S
(∞,1)(X),Sdisc

π )(Yj , X) ≃

colimj mapPro(Layπ)/Ci
(Yj , Xi) −→mapPro(Layπ)/Ci

(limj Yj , Xi)

≃mapFunPyk(S)(Π̂S
(∞,1)(X),Pyk(S))(limj Yj , X),

which is an equivalence as Xi and Ci are in Layπ ⊆ Pro(Layπ). □

7.2.3. The Proof of Theorem 7.2.3.1. We will now start with the proof the main result of this
section.

Theorem 7.2.3.1. Let S be a spectral topological space and X an S-stratified spectral ∞-topos. Then
the exodromy equivalence induces an equivalence of Pyk(S)-topoi

Xpyk ≃−−→ FunPyk(S)
(
Π̂S

(∞,1)(X),Pyk(S)
)
.

In order to prove Theorem 7.2.3.1 we will apply the following general topos-theoretic result [58,
Proposition A.3.4.2]:

Theorem 7.2.3.2. Let T be a hypercomplete ∞-topos. Let C ⊆ T be a full subcategory satisfying the
following:

(1) The ∞-category C is essentially small.
(2) All objects in C are coherent.
(3) The subcategory C ⊆ T is closed under finite coproducts and under fibre products.
(4) Every object in T admits a cover by objects in C.

Then the composite
T

h−−→ Fun(Top, S) restrict−−−−→ PSh(C)

induces an equivalence of ∞-topoi
T −→ Shhyp

can (C).

Here can denotes the topology given by declaring a family {Ui → X}i in C to be covering if there is a
finite subset J ⊆ I such that the induced morphism∐

j∈J
Uj −→ X

is an effective epimorphism in T.

In order to apply Theorem 7.2.3.2 we need the following:

Lemma 7.2.3.3. The ∞-topos FunPyk(S)
(
Π̂S

(∞,1)(X),Pyk(S)
)

is postnikov-complete, so in particular
hypercomplete.

Proof. The canonical functor Π̂S
(∞,1)(X)≃ → Π̂S

(∞,1)(X) induces an algebraic morphism of Pyk(S)-
topoi

FunPyk(S)
(
Π̂S

(∞,1)(X),Pyk(S)
)
→ FunPyk(S)

(
Π̂S

(∞,1)(X)≃,Pyk(S)
)
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that is continuous by Proposition 3.1.3.1 and conservative (this is e.g. an easy consequence of Theo-
rem 2.1.11.5). It follows that the induced morphism of underlying ∞-topoi

FunPyk(S)
(
Π̂S

(∞,1)(X),Pyk(S)
)
→ FunPyk(S)

(
Π̂S

(∞,1)(X)≃,Pyk(S)
)
≃ Pyk(S)/Π̂S

(∞,1)(X)≃

is conservative and in particular commutes with arbitrary small limits and colimits. Thus it also
commutes with the truncation functors τ≤n by [57, Proposition 5.5.6.28]. Since Pyk(S)/Π̂S

(∞,1)(X)≃ is

postnikov-complete (see [10, Lemma 2.4.10]), this implies that also FunPyk(S)
(
Π̂S

(∞,1)(X),Pyk(S)
)

is
postnikov-complete. □

7.2.3.4. We will now show that the full subcategory

ιPro
(

FunPyk(S)
(
Π̂S

(∞,1)(X), Sdisc
π

))
⊆ FunPyk(S)

(
Π̂S

(∞,1)(X),Pyk(S)
)

satisfies the conditions above. Note that i) and iii) are obvious.

We will now show that iv) of Theorem 7.2.3.2 is satisfied.

Lemma 7.2.3.5. Let C be any Pyk(S)-category. Then any object in F ∈ FunPyk(S)(C,Pyk(S)) admits
an effective epimorphism from a small coproducts of objects that arise as colimit of diagrams

d : K → Cop h−→ FunPyk(S)(C,Pyk(S))

where K is a pro-finite set.

Proof. By the co-Yoneda Lemma (Proposition 3.3.1.1), F is the colimit of some diagram d′ : I→
Cop h−→ FunPyk(S)(C,Pyk(S)). Since Pyk(S) is generated under colimits by pro-finite sets, we can find
some effective epimorphism

α : ⨿i Ki → F

where every Ki is a profinite set. Therefore by Corollary 3.1.4.4 we get an effective epimorphism

colim d′ ◦ α→ F.

Finally, (the proof of) Proposition 3.1.9.3 shows that colim d′ ◦ α is equivalent to ⨿i colimi(d′ ◦ α|Ki
) and

we are done. □

To simplify notation we from now on write C = Π̂S
(∞,1)(X) ∈ Cat(Pyk(S)) and furthermore we fix a

cofiltered diagram of π-finite stratified spaces Ci such that C ≃ limi C
disc
i .

Proposition 7.2.3.6. Let K be a pro-finite set. Then for any diagram of the form

d : K k−→ Cop h−→ FunPyk(S)(C,Pyk(S))

the colimit colim d is contained in ιPro
(

FunPyk(S)
(
C, Sdisc

π

))
.

Proof. Consider the pullback functor

k∗ : FunPyk(S)(C,FunPyk(S)(C,Pyk(S)))→ FunPyk(S)(K,FunPyk(S)(C,Pyk(S)))

and its left adjoint k!. Then colim d is given by applying the colimC to the functor k!k
∗h. Via the

straightening equivalence Theorem 2.1.11.5, we may thus describe colim d explicitly by forming the
pullback

P Tw(C)

K × C Cop × C
d×id

and then composing with the projection K × C → C. First we observe that, since the twisted arrow
construction is compatible with limits, it follows that the canonical map

Tw(C) −→ lim
i

Tw(Cdisc
i )×(Cdisc

i
)op×Cdisc

i
Cop × C
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is an equivalence. Since Pro(FunPyk(S)(C, Sdisc
π )) is closed under cofiltered limits, it suffices to see that Pi,

given by the pullback square
Pi Tw(Cdisc

i )

K × C (Cdisc
i )op × Cdisc

i

lies in Pro(FunPyk(S)(C, Sdisc
π )) when composed with the projection K × C→ C. Furthermore note that

because (−)disc : Cat∞ → Cat(Pyk(S)) is compatible with (−)op and Tw(−) it follows that the right
vertical map is (−)disc of an ordinary left fibration. Let us say that K = {Kj}j∈J as a profinite set. Then
the map K → Cop → Cdisc

i factors through some K → Kj . In particular we have a canonical equivalence

Pi −→ lim
j∈J/j0

(
Kj × C×(Cdisc

i
)op×Cdisc

i
Tw(Cdisc

i )
)

is an equivalence. Thus it suffices to see that the composite

Kj × C×(Cdisc
i

)op×Cdisc
i

Tw(Cdisc
i ) −→ Kj × C −→ C

is contained Pro(FunPyk(S)(C, Sdisc
π )) for all j. But by construction all squares in the diagram

Kj × C×(Cdisc
i

)op×Cdisc
i

Tw(Cdisc
i ) Kj × Cdisc

i ×(Cdisc
i

)op×Cdisc
i

Tw(Cdisc
i )

Kj × C Kj × Cdisc
i

C Cdisc
i

are pullback squares. Thus the claim follows from Lemma 7.2.2.7, as the map

Kj × Cdisc
i ×(Cdisc

i
)op×Cdisc

i
Tw(Ci)disc −→ Kj × Cdisc

i −→ Cdisc
i

is given by applying (−)disc to a discrete left fibration with π-finite fibres. □

We will now show that ii) of Theorem 7.2.3.2 is satisfied:

Proposition 7.2.3.7. The fully faithful embedding

ι : Pro
(

FunPyk(S)
(
Π̂S

(∞,1)(X), Sdisc
π

))
↪−→ FunPyk(S)

(
Π̂S

(∞,1)(X),Pyk(S)
)

factors through the full subcategory spanned by the coherent objects.

Proof. We will show that all objects in Pro(FunPyk(S)(Π̂S
(∞,1)(X), Sdisc

π )) are n-coherent using
induction on n. Let us start with n = 0. Recall that the functor

U : FunPyk(S)
(
Π̂S

(∞,1)(X),Pyk(S)
)
−→ Pyk(S)/Π̂S

(∞,1)(X)≃

is conservative and preserves all limits and colimits see the proof of Lemma 7.2.3.3. Thus it suffices to
see that, for an object F ∈ Pro(FunPyk(S)(Π̂S

(∞,1)(X), Sdisc
π )), the pyknotic space U(F) over Π̂S

(∞,1)(X)≃ is
quasi-compact. We now observe that the functor U takes objects in FunPyk(S)(Π̂S

(∞,1)(X), Sdisc
π ) to objects

in FunPyk(S)(Π̂S
(∞,1)(X)≃, Sdisc

π ) ⊆ S∧π/Π̂S
(∞,1)(X)≃ . Since the inclusion

S∧π/Π̂S
(∞,1)(X)≃ −→ Pyk(S)/Π̂S

(∞,1)(X)≃

preserves limits, it follows that U takes objects in Pro(FunPyk(S)(Π̂S
(∞,1)(X), Sdisc

π )) to objects in the full
subcategory S∧π/Π̂S

(∞,1)(X)≃ . Now [9, Corollary 13.4.10] and [58, Remark 2.0.5, Proposition 2.2.2 and
Proposition 3.1.3] imply that all object in S∧π/Π̂S

(∞,1)(X)≃ are coherent and thus in particular quasi-compact.
This completes the case n = 0. The induction step is now clear from [58, Corollary A.2.1.4]. □

To complete the proof of Theorem 7.2.3.1, we will need a few more technical details:
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Lemma 7.2.3.8. Let X• : I → bPretopδ0
∞ be a tiny filtered diagram in the ∞-category of tiny bounded

∞-pretopoi. Let X = colimiXi denote the colimit in bPretopδ0
∞ and let f : C → D be an effective

epimorphism in X. Then there is an i0 ∈ I and an effective epimorphism fi0 : Ci0 → Di0 mapping to f
under the canonical functor

ki0 : Xi0 −→ X.

Proof. By [58, Proposition A.8.3.1], the inclusion bPretopδ0
∞ → Catδ0

∞ preserves filtered colimits.
Thus we may find a morphism fj0 : Cj0 → Dj0 such that kj0(fj0) is equivalent to f . Since kj0 is a
morphism of ∞-pretopoi, we get an equivalence

kj0(Č(fj0)•) ≃ Č(f)•

of simplicial objects in X. Furthermore, since kj0 is a morphism of ∞-pretopoi, it preserves finite limits
and effective epimorphisms and thus geometric realizations of groupoid objects. It follows that the
canonical map

c : |Č(fj0)•| −→ Dj0

becomes an equivalence after applying kj0 . Thus there is a map γ : j0 → i0 such that Xγ(c) is an
equivalence and since Xγ is a morphism of∞-pretopoi, it follows that Xγ(fj0) is an effective epimorphism,
as desired. □

Corollary 7.2.3.9. Let K = {Ki}i be a profinite space. Then the fully faithful functor

FunPyk(S)(K, Sdisc
π ) −→ Pyk(S)/K

preserves effective epimorphisms.

Proof. By [9, Lemma 13.6.1] and Lemma 7.2.3.8, it suffices to see that, for all i, every effective
epimorphism f in Fun(Ki, Sπ) maps to an effective epimorphism in Pyk(S)/K . Denote by pi : K → Ki

the projection. Since we have a commutative diagram

Fun(Ki, S
disc
π ) Pyk(S)/Ki

FunPyk(S)(K, Sdisc
π ) Pyk(S)/K

p∗i

φ

p∗i

it suffices to see that the top horizontal functor φ preserves effective epimorphism. Picking a section of
the canonical morphism Ki → π0(Ki) and precomposing with it, we may assume that Ki is a finite set.
In this case φ is identified with the product of finitely many copies of the inclusion

Sπ −→ Pyk(S),

which clearly preserves effective epimorphisms. This completes the proof. □

We finally arrive at the following:

Proposition 7.2.3.10. A morphism f : X → Y in Pro(FunPyk(S)(Π̂S
(∞,1)(X), Sπ)disc) is an effective

epimorphism if and only if ι(f) is an effective epimorphism in FunPyk(S)
(
Π̂S

(∞,1)(X),Pyk(S)
)
.

Proof. Let us first assume that ι(f) is an effective epimorphism. We then may factor f ≃ g ◦ h,
where h is an effective epimorphism and g is (−1)-truncated. Since the inclusion ι preserves finite limits,
it follows that ι(g) is (−1)-truncated as well. But by [57, Corollary 6.2.3.12], the map ι(g) is an effective
epimorphism because ι(f) is. This implies that ι(g), and thus g, is an equivalence, as desired.

Now we show that ι preserves effective epimorphisms. Again we consider the inclusion K =
Π̂S

(∞,1)(X)≃ ↪→ Π̂S
(∞,1)(X). Pre-composing with this inclusion induces a morphism of ∞-pretopoi

FunPyk(S)
(
Π̂S

(∞,1)(X), Sdisc
π

)
−→ FunPyk(S)(K, Sdisc

π ).
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So it follows from Proposition 7.2.1.3 that the induced functor

Pro
(

FunPyk(S)
(
Π̂S

(∞,1)(X), Sdisc
π

))
−→ Pro

(
FunPyk(S)(K, Sdisc

π )
)

preserves effective epimorphisms. We may thus reduce to showing that the induced functor

j : Pro
(

FunPyk(S)(K, Sdisc
π )

)
−→ Pyk(S)/K

preserves effective epimorphisms. By Corollary 7.2.3.9, the inclusion

k : FunPyk(S)(K, Sdisc
π ) ↪−→ Pyk(S)/K .

preserves effective epimorphisms. Furthermore k factors through the full subcategory S∧π/K and hence
so does j. By Lemma 7.2.1.1 and since effective epimorphisms in slice categories are detected by the
projections, it suffices to see that the inclusion S∧π → Pyk(S) preserves effective epimorphisms, which is
clear by [9, Corollary 13.4.10]. □

We have finally collected all the necessary ingredients that are needed to prove our main theorem:

Proof of 7.2.3.1: Let us begin by showing that there is an equivalence of underlying ∞-topoi

Xpyk ≃−−→ FunPyk(S)
(
Π̂S

(∞,1)(X),Pyk(S)
)
.

that is natural in the spectral∞-tops X. The Exodromy Theorem [9, Theorem 13.2.11] provides a natural
equivalence of tiny ∞-pretopoi

FunPyk(S)
(
Π̂S

(∞,1)(X), Sdisc
π

)
≃ Xcoh

<∞.

We have seen above that the full subcategory

Pro
(

FunPyk(S)
(
Π̂S

(∞,1)(X), Sdisc
π

))
↪−→ Functs (

Π̂S
(∞,1)(X),Pyk(S)

)
satisfies the assumptions of Theorem 7.2.3.2 and thus we get a natural equivalence

Shhyp
can

(
Pro(FunPyk(S)

(
Π̂S

(∞,1)(X), Sdisc
π )

))
≃ Functs (

Π̂S
(∞,1)(X),Pyk(S)

)
.

Thus it remains to see that the topologies can and eff on Pro(FunPyk(S)(Π̂S
(∞,1)(X), Sπ)) agree, but this

is just a reformulation of Proposition 7.2.3.10. To prove the general claim about Pyk(S)-topoi note that
by naturality of the above equivalence the triangle

Xpyk FunPyk(S)
(
Π̂S

(∞,1)(X),Pyk(S)
)

Pyk(S)

≃

Γ∗pyk diag

commtes. This proves the claim by Theorem 5.2.5.1. □

In the case where X = Xét for some qcqs scheme X, we obtain using Example 7.2.1.9:

Corollary 7.2.3.11. Let X be a qcqs scheme. Then the exodromy equivalence induces an equivalence
of ∞-topoi

Xhyp
proét

≃−−→ FunPyk(S)(Gal(X),Pyk(S)).

Let us obtain some easy consequence:

Corollary 7.2.3.12. Let f : X → Y be any morphism of schemes. Then the induced pull-back
functor

f∗ : Y hyp
proét −→ Xhyp

proét

has both a left and a right adjoint.
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Proof. By the adjoint functor theorem [57, Corollary 5.5.2.9] it suffices to see that f∗ preserves all
limits and colimits. We may cover X by affine opens ji : Ui → X such that for every i we have an affine
open ti : Vi → Y and a commutative diagram

X Y

Ui Vi .

f

fi

tiji

Since the j∗i are jointly conservative and restrictions to open subschemes commute with all limits and
colimits, it suffices to see that each j∗i ◦ f∗ preserves limits. Because j∗i ◦ f∗ ≃ f∗i ◦ t∗i , it suffices to see
that f∗i preserves all limits and colimits and we may therefore assume that X and Y are affine, so in
particular quasi-compact. In this case f∗ corresponds to the functor

Gal(f)∗ : FunPyk(S)
(

Gal(Y ),Pyk(S)
)
−→ FunPyk(S)

(
Gal(X),Pyk(S)

)
given by precomposing with Gal(f) : Gal(X)→ Gal(Y ) via Corollary 7.2.3.11 and the claim follows. □

Corollary 7.2.3.13. Let X be a spectral ∞-topos. Then Xpyk is projectively generated (in the sense
of [57, Definition 5.5.8.23]).

Proof. By Theorem 7.2.3.1, we have to see that FunPyk(S)(Π̂S
(∞,1)(X),Pyk(S)) is projectively

generated. As in the proof of Lemma 7.2.3.3 the inclusion Π̂S
(∞,1)(X)≃ → Π̂S

(∞,1)(X) induces a conservative
limit and colimit preserving functor

FunPyk(S)(Π̂S
(∞,1)(X),Pyk(S))→ Pyk(S)/Π̂S

(∞,1)(X)≃ .

Since the domain is projectively generated, because Pyk(S) is (see Observation 7.1.1.3), the claim follows
from [56, Corollary 4.7.3.18]. □

Using the methods developed in Section 4.6 we can now easily extend Theorem 7.2.3.1 to arbitrary
coefficients.

Corollary 7.2.3.14. Let C be any presentable Pyk(S)-category and X a spectral ∞-topos. Then
there is a natural equivalence

Xpyk ⊗Pyk(S) C ≃ FunPyk(S)(Π̂S
(∞,1)(X),C).

Proof. By Theorem 7.2.3.1 and Proposition 4.6.2.11

Xpyk ⊗Pyk(S) C ≃ FunPyk(S)(Π̂S
(∞,1)(X),Pyk(S))⊗ C ≃ Funcont

Pyk(S)(PShPyk(S)(Π̂S
(∞,1)(X)op)op,Pyk(S)).

Thus the claim follows from the universal property of PShPyk(S)(−), Theorem 3.4.1.1. □

Let us also record the following more explicit variant. For this recall that if R is a condensed ring, we
constructed in Section 4.5.2 a presentable Pyk(S)-category ModRPyk(S), that can be explicitly described as
the sheaf

K 7→ Modπ∗
K
R(Pyk(S)/K ⊗ Sp).

Corollary 7.2.3.15. Let R be a pyknotic ring and X a qcqs scheme. We denote by Dproét(X,R)
the derived category of the abelian category of Γ∗pyk(R)-modules in pro-étale sheaves on X. Then there is
a natural equivalence

Dproét(X,R) ≃ FunPyk(S)(Gal(X),ModRPyk(S)).

Proof. This is an immediate consequence of the previous Corollary if we show that

Dproét(X,R) ≃ Γ(Xhyp
proét ⊗

Pyk(S) ModRPyk(S)).

But by Propositions 4.6.3.13 and 4.6.3.12 we find that

Γ(Xhyp
proét ⊗

Pyk(S) ModRPyk(S)) ≃ X
hyp
proét ⊗Pyk(S) ModR(Pyk(Sp))
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and furthermore Lemma 4.6.3.11 implies that

Xhyp
proét ⊗Pyk(S) ModR(Pyk(Sp)) ≃ ModΓ∗pyk(R)(Shhyp(Xproét,Sp)).

Thus the claim follows from [58, Theorem 2.1.2.2]. □

Remark 7.2.3.16. We will now roughly sketch how to circumvent the enlargement of universes which
appears in our results, following [10, §1.4]. Let X be a spectral ∞-topos and let β be an uncountable
regular cardinal such that Π̂S

(∞,1)(X) is a β-small inverse limit of π-finite layered ∞-categories. Let
Pro(Xcoh

<∞)β denote the small subcategory spanned by the β-cocompact objects. We define

Xpyk,β = Shhyp
eff (Pro(Xcoh

<∞)β)

and observe that Π̂S
(∞,1)(X) naturally defines a sheaf of ∞-categories on Pro(Sπ)β , i.e. an ∞-category

object in Spyk,β . Furthermore let us write Pyk(S)β = Spyk,β We can then reproduce the results of §3 and
§4 in this framework to obtain an equivalence

Xpyk,β ≃ FunPyk(S)β (Π̂S
(∞,1)(X),Pyk(S)β)

of ∞-topoi. Considering the left Kan-extensions along Pro(Xcoh
<∞)λ0 ↪→ Pro(Xcoh

<∞)λ1 for any β < λ0 < λ1,
we obtain an equivalence

Xpyk,acc := colim
λ>β

Xpyk,λ = Shhyp,acc
eff (Pro(Xcoh

<∞)) ≃−→ colim
λ>β

FunλPyk(S)(Π̂S
(∞,1)(X),Pyk(S)λ).

Furthermore the filtered colimit
colim
λ>β

Pyk(S)λ = Shhyp,acc
eff (S∧π )

is given by the ∞-category of accessible sheaves on S∧π , which we can further identify with the ∞-category
of condensed spaces Cond(S) of Clausen and Scholze. We may consider Cond(S) as a hypersheaf with
respect to the effective epimorphism topology on S∧π as follows. Denote by Cond(S)λ the sheaf given by
left Kan-extension of

Pyk(S)λ : Pro(Sπ)λ → Cat∞; K 7→ Pyk(S)λ/K
along (S∧π )λ → S∧π and define

Cond(S) ≃ colim
λ

Cond(S)λ.

We may also consider Π̂S
(∞,1)(X) as a sheaf of ∞-categories on S∧π via left Kan-extension. The resulting

sheaf is therefore an accessible sheaf and thus κ-compact for some regular cardinal κ. It follows that the
∞-category of natural transformations

FunCond(Π̂S
(∞,1)(X),Cond(S)) =

∫
K∈S∧π

Fun(Π̂S
(∞,1)(X)(K),Cond(S)(K))

is equivalent to the filtered colimit

colim
λ>κ

FunλPyk(S)(Π̂S
(∞,1)(X),Pyk(S)λ).

Thus the above equivalence shows that we have an equivalence

Xpyk,acc ≃ FunCond(Π̂S
(∞,1)(X),Cond(S)).

7.3. The pro-étale homotopy type of a scheme

We now apply the results of the last section to introduce and study the pro-étale homotopy type
Πproét
∞ (X) of a scheme X. We give the main definition and prove some first elementary results in § 7.3.1.

Also, we show that Πproét
∞ (X) agrees with the condensed shape of X, introduced in [41, Appendix A].

In § 7.3.2 we prove an internal version of Quillen’s Theorem B (see Theorem 7.3.2.11) up to localization
at a class of morphisms. While the result may be of independent interest, we mainly want to apply it in
the case where we work internally to Pyk(S) and localize at the class of morphisms that get inverted by
pro-finite completion.
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Finally we apply Theorem 7.3.2.11 to the functor of Pyk(S)-categories Gal(f) : Gal(X)→ Gal(Y )
induced by a smooth and proper morphism of schemes f : X → Y . Using the invariance under specialization
for étale homotopy types [35, Proposition 2.49], we deduce that the fibre of the map Πproét

∞ (f) : Πproét
∞ (X)→

Πproét
∞ (Y ) agrees with the pro-étale homotopy type of the geometric fiber, up to pro-finite completion.

7.3.1. Fundamentals of the pro-étale homotopy type. Let X be a qcqs scheme. It follows
from Theorem 7.2.0.1 that the Pyk(S)-topos Xhyp

proét is locally contractible. In particular the canonical
morphism Γ∗pyk : Pyk(S)→ Xhyp

proét admits a left adjoint that we will denote by π♯.

Definition 7.3.1.1. Let X be a qcqs scheme. We define the pro-étale homotopy type of X to be
Πproét
∞ (X) := π♯(1).

Proposition 7.3.1.2. There is canonical equivalence

Πproét
∞ (X) ≃ Gal(X)gpd ∈ Pyk(S).

Proof. This an immediate consequence of Theorem 7.2.0.1 and Proposition 3.1.4.1. □

Recollection 7.3.1.3. Let X be a scheme. We define the étale homotopy type Πét
∞(X) ∈ Pro(S) of

X to be the shape (in the sense of [57, Definition 7.1.6.1]) of the étale ∞-topos Xét. We call Πét
<∞(X) =

τ<∞Πét
∞(X) the pro-truncated étale homotopy type of X and similarly we call Π̂ét

∞(X) = Πét
∞(X)∧π the

pro-finite étale homotopy type of X.

Remark 7.3.1.4. Since the shape of Xét and Xhyp
ét agree up to pro-truncation, it follows from [44,

Corollary 5.6] that Πét
∞(X) and Friedlander’s étale topological type [24] agree up to pro-truncation.

Our next goal will be the promised result that the pro-étale homotopy type is a refinement of the
usual pro-truncated étale homotopy type.

7.3.1.5. Let X be a qcqs scheme. Then the inclusion j : Xconstr
ét → Pro(Xconstr

ét ) is a morphism of sites
and therefore induces an algebraic morphism of ∞-topoi

ν∗ : Shhyp
eff (Xconstr

ét ) ≃ Xhyp
ét → Xhyp

proét ≃ Shhyp
eff (Xconstr

ét ).

Proposition 7.3.1.6. Let n ∈ N. The functor ν∗ restricts to a fully faithful functor Xét,≤n →
Xproét,≤n on n-truncated objects.

Proof. The functor ν∗ is given by left Kan-extension j! along the inclusion Xconstr
ét → Pro(Xconstr

ét )
and then sheafifying the resulting presheaf. Since left Kan-extension along a fully faithful functor is
fully faithful, it suffices to show that j!(F) is already a sheaf whenever F is an n-truncated sheaf. So
let f : limi Ui → limi Vi be an effective epimorphism in Pro(Xconstr

ét ) and using Proposition 7.2.1.3, we
may assume that f = limi fi where fi is an effective epimorphism in Xconstr

ét . Let us write U• for the
Čech-nerve of f and Ui,• for the Čech-nerve of fi. We want to show that the canonical map

j!(F)(lim
i
Vi)→ lim

n∈∆
j!(F)(Un)

is an equivalence. But because j!(F) is by definition left Kan-extended, this map may be identified with
the composite

colim
i

F(Vi)→ colim
i

lim
n∈∆

F(Ui,n)→ lim
n∈∆

colim
i

F(Ui,n).

Now the first map is an equivalence because F is a sheaf on Xconstr
ét by assumption and the second map is

an equivalence by [42, Proposition A.1], since all spaces involved are n-truncated. □

Proposition 7.3.1.7. Let X be a qcqs scheme. Then there is a canonical equivalence

H<∞(Πproét
∞ (X)) ≃ Πét

<∞(X).

In particular we also have an equivalence H∧Σ(Πproét
∞ (X)) ≃ Πét

∞(X)∧Σ for any set of primes Σ.
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Proof. Recall that under the identification Pro(S<∞) ≃ Funlex,acc(S<∞, S)op, the pro-truncated
shape Πét

<∞(X) is given by the composite

S<∞
const−−−→ Xhyp

ét
Γ∗−→ S.

Note that the functor ν∗ evidently fits into a commutative square

Xhyp
ét Xhyp

proét

S Pyk(S).

ν∗

const

(−)disc

Γ∗pyk

Since ν∗ is fully faithful on truncated objects we have equivalences

Γ∗ ◦ const ≃ Γ∗ ◦ ν∗ ◦ ν∗ ◦ const ≃ Un ◦Γpyk
∗ ◦ Γ∗pyk ◦ (−)disc

in Pro(S<∞). Since the functor Un ◦Γpyk
∗ ◦ Γ∗pyk is representable by Πproét

∞ (X), the claim follows. □

Recollection 7.3.1.8. Recall that an affine scheme W is w-contractible if every weakly étale cover
(in the sense of [14, Definition 1.2]) Y →W has a section.

In general the pro-étale homotopy type can be very hard (in fact nearly impossible) to compute.
However we have the following useful observation:

Lemma 7.3.1.9. Let W be a w-contractible affine scheme. Then there is a canonical equivalence
Πproét
∞ (W ) → π0W ∈ Pyk(S). Here π0W is the set of connected components of W , equipped with the

topology induced by W .

Proof. Let us write W proét for the full subcategory of Sch/W spanned by pro-étale affine W -schemes.
Note that because W is affine, π0W is pro-finite. Recall from [14, Lemma 2.2.8] that there is an adjunction

π0 : W proét ⇄ Pro(Setfin)/π0(W ) : W ×π0(W ) −

where the right adjoint is fully faithful. In fact W ×π0(W ) − is a morphism of sites and therefore induces
a geometric morphism

ψ∗ : W hyp
proét → Pyk(S)/K .

Also W ×π0(W ) − commutes with the obvious functors from Pro(Setfin) and therefore ψ∗ refines to a
geometric morphism over Pyk(S). Note that the Lemma now immediately follows if the left adjoint
ψ∗ is fully faithful. For this we observe that by [14, Example 2.2.2 and Lemma 2.4.8], the above
adjunction restricts to the full subcategories W proj ⊆W proét of w-contractible pro-étale X-schemes and
Proj/π0(W ) ⊆ Pro(Setfin)/π0(W ). Since both subcategories are bases for the respective topologies it follows
that we may identify ψ∗ with the functor

Pyk(S)/π0(W ) ≃ Fun×(Projop
/π0(W ), S)→ Fun×((W proj)op, S) ≃W hyp

proét

given by left Kan-extension along Proj/π0(W ) → W proj. Thus ψ∗ is fully faithful as left Kan-extension
along a fully faithful functor. □

Remark 7.3.1.10. Note that if f : V → W is a map of w-contractible schemes we get an induced
commutative square

V hyp
proét Pyk(S)/π0(V )

W hyp
proét Pyk(S)/π0(W )

ψ∗

f∗ π0(f)∗

ψ∗

and thus the isomorphism in Lemma 7.3.1.9 is natural in W .
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Recall that for a scheme X, Hemo-Richarz-Scholbach defined the condensed shape of X in [41]. It
may be computed by taking a hypercover by w-contractibles W• → X and then taking the geometric
realization Πcond(X) = colim∆op π0(W•) in Pyk(S). As a consequence of Lemma 7.3.1.9 we therefore
obtain:

Proposition 7.3.1.11. Let X be a qcqs scheme. Then there is an equivalence Πcond(X) ≃ Πproét
∞ (X).

Proof. Let W• → X be a hypercover by w-contractible objects. Considering these schemes as objects
in Xhyp

proét via the Yoneda-embedding we get that colim∆op W• ≃ X by the definition of hyperdescent.
Since π♯ : Xhyp

proét → Pyk(S) preserves colimits, we get that

Πproét
∞ (X) ≃ π♯(colim

∆op
W•) ≃ colim

∆op
π♯(W•).

Therefore the claim follows from Lemma 7.3.1.9 and the obvious equivalence π♯(W•) ≃ Πproét
∞ (W•). □

Thus [41, Proposition A.1] also shows:

Proposition 7.3.1.12. Let R be condensed ring. Then there is an equivalence of ∞-categories

Dproét(X,R)dual ≃ FunPyk(S)(Πproét
∞ (X),PerfPyk(S)

R ).

Remark 7.3.1.13. The above proposition gives a reason to prefer the pro-étale homotopy type
Πproét
∞ (X) over the classical étale homotopy type. Even for R = Ql it is in general not true that arbitrary

dualisable Ql-sheaves on a scheme X can be recovered as representations of the classical étale homotopy
type. See [14, Example 7.4.9] for a concrete example. The pro-étale homotopy type fixes this issue, at the
cost of being significantly harder to compute.

7.3.2. Internal Theorem B up to completions. The goal of this section is to prove a general
version of Quillen’s Theorem B internal to any ∞-topos B. The main application that we have in mind is
in the case B = Pyk(S), however the general statement may also be of independent interest.

Definition 7.3.2.1. A map p : P → K in B∆ is a Kan-fibration if it is both a left and a right
fibration.

Lemma 7.3.2.2. Let f : P → C be a left fibration of B-categories and f̃ : C → ΩB the associated
functor. Then for any morphism α in C(A), given by α : ∆1 ×A→ C, the map f̃(α) in B/A is given by
composing

({0} ×A)×C P→ ((∆1 ×A)×C P)gpd

with the inverse of the equivalence ({1} ×A)×C P→ ((∆1 ×A)×C P)gpd.

Proof. By pulling back along α we may assume that α is the identity. Also we have an equivalence

LFibB(∆1 ×A) ≃ FunB(∆1 ×A,B) ≃ Fun(∆1,B/A)

Now observe that f̃(α) can be computed as

ev1(diag ev0 f̃ → f̃)

Here η denotes the unit of the adjunction ev0 ⊣ id (−). Translating to the fibrational perspective via
Theorem 2.1.11.5 we obtain a rectangle

{1} × P{0} P{0} ×{0}×A (∆1 ×A) ≃ ∆1 × P{0}

P{1} P

{1} ×A ∆1 ×A

ηf̃(α)

⌟

⌟
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and we are done once we see that the composite P{0} → P{0} ×{0}×A (∆1 ×A)→ P is equivalent to the
inclusion P{0} → P after applying (−)gpd. But this is clear, since the two inclusions {ε}×P{0} ↪→ ∆1×P{0}
become equivalent after applying (−)gpd and the composite

{0} × P{0} ↪→ ∆1 × P{0} → P

yields the inclusion P{0} → P by construction. □

Remark 7.3.2.3. In the situation of Lemma 7.3.2.2, we may more generally consider a map α : ∆n ×
A→ C corresponding to a composable sequence of n arrows in C(A). Let us denote by j : ∆1 → ∆n the
map that sends 0 to 0 and 1 to n. We then get a commutative square

({0} ×A)×C P ((∆1 ×A)×C P)gpd ({1} ×A)×C P

({0} ×A)×C P ((∆n ×A)×C P)gpd ({n} ×A)×C P

id

≃

id

≃

where the map in the middle is induced by j. Since left fibrations are smooth [62, Proposition 4.4.7], the
right horizontal maps are equivalences and thus also the vertical map in the middle is an equivalence. It
follows that the composite of the lower left map with the inverse of the lower right map is equivalent to f̃
applied to the composite of the n arrows determined by α.

Lemma 7.3.2.4. Let p : P → C be a Kan-fibration. Then the classified functor p̃ : C → ΩB factors
through the inclusion of the maximal subgroupoid Ω≃B → ΩB.

Proof. By Lemma 7.3.2.2, it follows that we only need to see that the map

({0} ×A)×C P→ ((∆1 ×A)×C P)gpd

is an equivalence. But this follows because ({0} × A)→ (∆1 × A) is initial and a pullback of a initial
map along a right fibration is initial by [62, Proposition 4.4.7]. □

Lemma 7.3.2.5. Consider a cartesian square of B-categories

Q P

D C

p

and assume that p is a Kan-fibration. Then the induced square

Qgpd Pgpd

Dgpd Cgpd

pgpd

in B is also cartesian.

Proof. The Kan-fibration p classifies a functor p̃ : C→ ΩB that by Lemma 7.3.2.4 factors through
the canonical map C→ Cgpd. It follows that there is some map of B-groupoids T→ Cgpd and a rectangle

Q P T

D C Cgpd

p

in which all squares are cartesian. Since geometric realizations are universal in B, the localization functor
(−)gpd : Cat(B)→ B is locally cartesian (in the sense of [28, § 1.2]) and the claim follows. □

The main technical input for our version of Theorem B is the following Proposition, which may be
seen as a variation of [68, Theorem 5.1]
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Proposition 7.3.2.6. Let C be a B-category and L : B→ C be a colimit preserving functor to some
∞-category C. Furthermore fix a collection of objects G in B that generate B under colimits. Let f : P→ C
be a left fibration and f̃ : C→ ΩB be the corresponding functor. Suppose that for any A ∈ G, the composite

C(A) f̃(A)−−−→ B/A → B
L−→ C

sends all morphisms to equivalences. Then for any K ∈ B and any map d : K → C the induced map

f̃(d) = K ×C P→ K ×Cgpd Pgpd

is an equivalence after applying L.

Proof. Since colimits in B∆ are universal, we may assume that K ∈ G. We factor K → C as
K

i−→ T
p−→ C where i is contained in the smallest saturated class in (B∆)/C containing all maps of the

form
{ε} ×A ∆n ×A

C
where ε ∈ {0, n}, A ∈ G and p is right orthogonal to these maps. It follows from [62, Lemma 4.1.2] that p
is a Kan-fibration. Therefore we have a canonical equivalence

K ×Cgpd Pgpd ≃ T gpd ×Cgpd Pgpd ≃ (T ×C P)gpd

by Lemma 7.3.2.5. Thus it suffices to see that the induced map K ×C P→ T ×C P induces an equivalence
after applying L◦(−)gpd. We note that by universality of colimits in B∆, the class S of all maps s : A→ B

in (B∆)/C that have the property that

L colim
∆op

(A×C P)→ L colim
∆op

(B ×C P)

is an equivalence is a saturated class. To see that i is contained in S it therefore suffices to check this
for the maps {ε} ×A→ ∆n ×A, where A ∈ G and ε ∈ {0, n}. Note that since the pulled back functor
(∆n ×A)×C P→ ∆n ×A is again a left fibration the induced map ({n} ×A)×C P→ (∆n ×A)×C P is
final as a pullback of a final map along a left fibration by [62, Proposition 4.4.7]. In particular

(({n} ×A)×C P)gpd → ((∆n ×A)×C P)gpd

is an equivalence, so {n} ×A→ ∆n ×A is in S. Furthermore under this equivalence the induced map

({0} ×A)×C P→ ((∆n ×A)×C P)gpd

is equivalent to the map ({0} × A)×C P→ ({n} × A)×C P induced by 0→ n (see Lemma 7.3.2.2 and
Remark 7.3.2.3). But this map is an L-equivalence by assumption. Therefore i is contained in S and the
proof is complete. □

Next we need to produce a suitable left fibration, to which we can apply the above proposition.

7.3.2.7. Let f : C→ D be a functor of B-categories. We consider the comma category C ↓D D defined
via the pullback

C ↓D D D∆1

C× D D× D
f×id

Furthermore the commutative diagram

C D∆1

C× D D× D

diag ◦f

(id,f)

f×id
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induces a functor j : C→ C ↓D D that composed with C ↓D D→ C× D pr2−−→ D recovers f .

Proposition 7.3.2.8. The composite C ↓D D→ C× D pr2−−→ D is a cocartesian fibration. Furthermore
for any morphism s : d→ d′ ∈ D(A) in context A the induced functor on fibres is the canonical functor

C/d = C×D D/x → C×D D/y = C/d′

in Cat(B/A) induced by s! : D/d → D/d′ .

Proof. The fact that C ↓D D→ C× D→ D is a cocartesian fibration follows immediately from [57,
Corollary 2.4.7.12]. The second claim follows because the pullback square

C ↓D D D∆1

C× D D× D
f×id

is in fact a pullback in CocartD. Under the equivalence of Theorem 2.3.2.7, it therefore corresponds to a
cartesian square of functors D→ CatB

C ↓D D D/−

diag C diag D
f

which proves the claim. □

Lemma 7.3.2.9. The functor j : C→ C ↓D D is a left adjoint, so in particular initial.

Proof. The functor j sits inside the commutative diagram

C D

C ↓D D D∆1

C D

f

j diag

ev0

f

in which all squares are cartesian. Since diag is the fully faithful left adjoint of ev0, the proof of
Lemma 3.3.3.9 shows that j is also a fully faithful left adjoint. □

7.3.2.10. Let C be a B-category. Composing with the inclusion ΩB → CatB fits into a commutative
square

FunB(D,ΩB) FunB(D,CatB)

LFib(D) Cocart(D)

≃ ≃

Let us denote the left adjoint of the lower horizontal functor by F . Recall that by general facts about
factorization systems, F is given by factoring a cocartesian fibration into an initial functor followed by a
left fibration. If follows by passing to left adjoints, that for a cocartesian fibration p : P→ D classifying a
functor p̃ : D→ CatB, the left fibration F (p) classifies the composite

D→ CatB
(−)gpd

−−−−→ ΩB.

We can now finally formulate the following version of Quillen’s Theorem B:
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Theorem 7.3.2.11. Let f : C → D be a functor of B-categories and let L : B → C be a colimit
preserving functor to some ∞-category C. Furthermore fix a collection of objects G in B that generate B

under colimits. Suppose that for any A ∈ G, and any map s : d→ d′ in D(A) the induced functor

(C/d)gpd → (C/d′)gpd

is an equivalence after applying L. Then for any K ∈ B and any object d : K → D in context K, the
canonical map

(C/d)gpd → K ×Dgpd Cgpd

induced by the cartesian square
C/d C

D/d D

f

(πd)!

and the equivalence K ≃ (D/d)gpd, is an equivalence after inverting L.

Proof. By Proposition 7.3.2.8 and Lemma 7.3.2.9 we have a factorization

C j−→ C ↓D D p−→ D

into an initial functor followed by a cocartesian fibration. Therefore also the induced left fibration
F (p) : P→ D fits into a factorization

C j′−→ P F (p)−−−→ D

where j′ is initial. Now our assumptions and Proposition 7.3.2.8 guarantee that we may apply Proposi-
tion 7.3.2.6 to the left fibration F (p). Thus the canonical map

(C/d)gpd → K ×Dgpd Pgpd

is an equivalence after applying L. Finally, we consider the commutative diagram

C/d C

C/d D/d ×D P P

K D/d D

i j′

f
i′

idd

Since j′ is initial and D/d ×D P→ P is a right fibration, i is initial as well. Also, since D/d ×D P→ D/d is
a left fibration, i′ is final as the pullback of idd. It follows that idd, i′, i and j′ all induce equivalences
after applying (−)gpd. Thus we may identify the map (C/d)gpd → K ×Dgpd Pgpd from above with the
canonical map

(C/d)gpd → K ×Dgpd Cgpd,

which completes the proof. □

7.3.3. Comparing geometric and homotopy theoretic fibres. One of the most fundamental,
but also quite difficult questions in étale homotopy theory is concerned with computing fibres of a map
of étale homotopy types Πét

∞(X)→ Πét
∞(Y ) induced by a map of schemes f : X → Y . The goal of this

section is to compare the homotopy theoretic fibre of the induced map Πproét
∞ (f) : Πproét

∞ (X)→ Πproét
∞ (Y )

with the scheme theoretic fibre if f is smooth an proper.
Whenever E ∈ Pro(Layπ) we will simply write Egpd ∈ Pyk(S) for the groupoidification of the Pyk(S)-

category, associated with E via the embedding Pro(Layπ)→ Cat(Pyk(S)). We then have the following
special case of our Theorem B:
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Theorem 7.3.3.1. Let Σ be a set of prime numbers Suppose that f : C→ D is a functor in Pro(Layπ)
such that for any map d→ d′ in D the induced morphism

H∧Σ((C/d)gpd)→ H∧Σ((C/d′)gpd)

in Pro(SΣ) is an equivalence. Then for any d ∈ D the induced map H∧Σ((C/d)gpd)→ H∧Σ(fibd(fgpd)) is
an equivalence.

For its proof we need the following small additional input:

Lemma 7.3.3.2. Consider a cartesian square

Y X

L K

⌟

in Pyk(S) where K,L ∈ Pro(SΣ) and X is the colimit of a simplicial diagram ∆op → Pro(Sπ)→ Pyk(S).
Then H∧Σ preserves this pullback square.

Proof. Since geometric realizations are universal in both Pyk(S) and Pro(SΣ) (see [34, Corollary
1.13 & Example 1.9]), we can assume that X is in the image of Pro(Sπ)→ Pyk(S). Now observe that
because Pro(Sπ) ↪→ Pyk(S) is fully faithful, the composite

Pro(Sπ) ↪→ Pyk(S) H∧Σ−−→ Pro(SΣ)

is equivalent to the left adjoint of the inclusion Pro(SΣ) → Pro(Sπ). Since this left adjoint is locally
cartesian closed, as a consequence of [36, Proposition 3.18], the claim follows. □

Example 7.3.3.3. Note that since the inclusion Pro(Layπ) → CatPyk(S) factors through the full
subcategory CSS(Pro(Sπ)) ⊆ CatPyk(S) (see the proof of Corollary 7.1.1.13) it follows that for C ∈
Pro(Layπ) its groupoidification Cgpd ∈ Pyk(S) satisfies the assumption of Lemma 7.3.3.2.

Proof of Theorem 7.3.3.1. We consider C→ D as a functor of Pyk(S)-categories. We want to
apply Theorem 7.3.2.6 in the case where B = Pyk(S), L is the functor H∧

Σ

(−)∧Σ : Pyk(S)→ Pro(SΣ),

and G = Proj is the collection of projective pro-finite spaces. Thus we need to see that for any K ∈ Proj
and map d→ d′ ∈ D(K) the induced map

(C/d)gpd → (C/d′)gpd

in Pyk(S)/K induces an equivalence after applying H∧Σ . Since equivalences of pro-finite spaces can be
checked fibrewise, it follows from Lemma 7.3.3.2 (which we may apply thanks to Example 7.3.3.3) that it
suffices to see that for any point x : ∗ → K the map

(C/d)gpd
x → (C/d′)gpd

x

on fibres is an equivalence after applying H∧Σ . But this map is by construction the map

(C/d◦x)gpd → (C/d′◦x)gpd

induced by the morphism d◦x→ d′◦x in D. Thus it is an equivalence after applyingH∧Σ by assumption. □

Lemma 7.3.3.4. Let f : C→ D be a functor in Pro(Layπ) considered as a functor of Pyk(S)-categories.
If the underlying functor of ∞-categories is a left fibration, then f is a left fibration of Pyk(S)-categories.
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Proof. The functor f is a left fibration if and only if for every profinite set K and every map
x : K → C the induced functor fx/ : Cx/ → Df(x)/ is an equivalence of Pyk(S)-categories.

Recall that Cx/ is defined via the pullback

Cx/ C∆1

K C,

ev0

x

and Df(x)/ is defined likewise. Observe that the functor fx/ is induced by a map in Pro(Layπ) and thus
it suffices to see that the functor on underlying ∞-categories is an equivalence by Lemma 7.1.1.14. This
map in turn can be identified with the functor induced by fx/ upon passing to global sections. Hence,
since the functor fx/ is a map of Pyk(S)-categories over K, it suffices to show that for every global
section k : ∗ → K the map of fibres (Cx/)|k → (Df(x)/)|k induces an equivalence on global sections. The
latter functor can in turn be identified with the map Cx◦k/ → Df(x◦k)/ and is therefore an equivalence by
assumption. □

Lemma 7.3.3.5. Let C ∈ Pro(Layπ), considered as a Pyk(S)-category. Then an object x : 1→ C is
initial if and only if it is an initial object of the underlying ∞-category of C.

Proof. Recall that x is initial if and only if the map of Pyk(S)-categories Cx/ → C is an equivalence.
Thus the claim follows from Proposition 7.1.1.14. □

Notation 7.3.3.6. If Y is a scheme and ȳ → Y a geometric point, we denote by Y(ȳ) = Spec(Osh
Y,ȳ)

the strict henselisation of Y at ȳ (see [Stacks, Tag 0BSK]). If f : X → Y is a morphism of schemes, we
write X(ȳ) = X ×Y Y(ȳ) for the Milnor fibre of f at ȳ.

Proposition 7.3.3.7. Let X be a qcqs scheme and let x̄ → X be a geometric point of X. Then
the functor Gal(X(x̄))→ Gal(X), induced by the map of schemes X(x) → X, induces an equivalence of
Pyk(S)-categories

Gal(X(x̄))→ Gal(X)x̄/

over Gal(X).

Proof. The claim follows immediately if we can show that Gal(X(x))→ Gal(X) is a left fibration
and that the closed point x : x̄→ X(x) in an initial object. Thus the claim follows from the corresponding
statements about the underlying categories by the last two lemmas. These are proven in [15, Expsoé
VIII, Corollary 7.6]. □

7.3.3.8. Let x̄, ȳ be geometric points of X and η : x̄→ ȳ an étale specialization, so a map of X-schemes
η : X(x̄) → X(ȳ). Note that in this case X(x̄) is also the strict henselisation of X(ȳ) at the image of x̄ along
η. Applying Proposition 7.3.3.7 twice, we get a commutative diagram

Gal(X(x̄)) Gal(X(ȳ))

Gal(X)x̄/ Gal(X)ȳ/

η

≃ ≃

of Pyk(S)-categories where the lower horizontal map is given by composition with the map ȳ → x̄ ∈ Gal(X)
given by η (see also Remark 7.1.2.9).

In order to apply our abstract Theorem B, we need the following additional input:

https://stacks.math.columbia.edu/tag/0BSK
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Proposition 7.3.3.9 ([36, Corollary 2.4]). Let f : X → Y be a morphism of qcqs schemes and ȳ → Y

a geometric point. Then the canonical commutative square

Gal(X(ȳ)) Gal(X)

Gal(Y(ȳ)) Gal(Y )

of Pyk(S)-categories is cartesian.

Theorem 7.3.3.10. Let f : X → Y be a smooth proper morphism of qcqs schemes and ȳ → Y a
geometric point of Y . Let Σ be a set of primes invertible on Y . Then the induced morphism

Πproét
∞ (Xȳ)→ fibȳ(Πproét

∞ (f))

is an equivalence after applying H∧Σ .

Proof. We want apply Theorem 7.3.3.1 to the functor of pro-finite categories

Gal(f)op : Gal(X)op → Gal(Y )op.

Let s : ȳ → ȳ′ be a map in Gal(Y ) corresponding to a specialization η : Y(ȳ′) → Y(ȳ). By combining 7.3.3.8
and Proposition 7.3.3.9, it follows that the induced functor

Gal(X)ȳ′/ → Gal(X)ȳ/
is identified with the functor

Gal(X(ȳ′))→ Gal(X(ȳ))
induced by the morphism of Milnor fibres X(ȳ′) → X(ȳ). Hence Proposition 7.3.1.7 shows that after
applying H∧Σ , the morphism Gal(X(x))gpd → Gal(X(y))gpd is identified with the map on Σ-complete étale
homotopy types

Πét
∞(X(x̄))∧Σ → Πét

∞(X(ȳ))∧Σ.
Therefore it is an equivalence by the invariance of the étale homotopy type under specialization [35,
Proposition 2.49]. Thus Theorem 7.3.3.1 implies that the canonical map

Πproét
∞ (X(ȳ))→ fibȳ(Πproét

∞ (f))

is an equivalence after applying H∧Σ . Since the canonical map Πproét
∞ (Xȳ) → Πproét

∞ (X(ȳ)) induced by
the inclusion of the fibre Xȳ → X(ȳ) is an equivalence after applying H∧Σ by Proposition 7.3.1.7 and [35,
Corollary 2.39], the theorem follows. □

Remark 7.3.3.11. Theorem 7.3.3.10 is a variant of Friedlander’s fibre sequence [25, Theorem 3.7]
for the pro-finite étale homotopy type. However, note that Friedlander in particular assumes that Y is
normal and that all geometric fibres of f are connected. These assumptions are not necessary for our
result.

Also observe that Theorem 7.3.3.10 does not directly imply Friedlander’s result, since H∧Σ typically
does not preserve fibre sequences.





Appendix: Locally constant sheaves

This appendix is devoted to the study of locally constant sheaves in ∞-topoi. For the entire section,
let us fix a compactly generated ∞-category E. Recall that we write ShE(B) = Funlim(Bop,E) = B⊗ E,
where − ⊗ − denotes the tensor product in PrL

∞. By applying − ⊗ E to the constant sheaf functor
constB : S→ B we obtain an adjunction

(constB ⊣ ΓB) : E ⇆ ShE(B).

Similarly, by applying −⊗ E to the adjunction (π∗A ⊣ (πA)∗) : B ⇆ B/A for some A ∈ B, we obtain an
induced adjunction

(π∗A ⊣ (πA)∗) : ShE(B) ⇆ ShE(B/A).

Furthermore, if there is an accessible left exact localisation L ⊣ i : PSh(C) → B we get an induced
localisation LE ⊣ iE : PShE(C)→ ShE(B).

Definition A.1. Let us fix the following terminology:

(1) We call constB(K) the constant sheaf associated to K ∈ E. The objects in the essential image
of constB are called constant E-valued sheaves.

(2) We call an E-valued sheaf F constant with compact values if it is of the form constB(K) for
some compact object K ∈ E.

(3) An E-valued sheaf F is called locally constant if there is a cover (πAi
) :

⊔
iAi ↠ 1 in B such

that for every i the E-valued sheaf π∗Ai
F ∈ ShE(B/Ai

) is constant.
(4) We call an E-valued sheaf F locally constant with compact values if we can find a cover

(si)i :
⊔
iAi ↠ 1 in B such that s∗iF is constant with compact values.

(5) We denote by LConstE(B) the full subcategory of ShE(B) spanned by the locally constant
sheaves, and by LConstEcpt(B) the full subcategory spanned by the locally constant sheaves with
compact values.

The key result that we will show in this section is the following:

Proposition A.2. Suppose that L : PSh(C)→ B is a left exact and accessible localisation, and let F
be an E-valued presheaf on C. Then for any c ∈ C, any K ∈ Eω and any map K → LEF (c) there is a
collection of morphisms (si : ci → c)i∈I in C such that (Lsi) :

⊔
i L(ci) ↠ L(c) is a cover in B and for

any i ∈ I the composite K → LEF (c) s∗i−→ LEF (ci) factors as a composite K mi−−→ F (ci)
εF (ci)−−−−→ LEF (ci)

for some mi : K → F (ci).

As an immediate consequence we obtain the following:

Corollary A.3. Let f : constB(K)→ constB(M) be a morphism in ShE(B) where K is compact.
Then there is a cover (πAi) :

⊔
iAi ↠ 1 in B and maps fi : K → M in E for each i such that π∗Ai

f is
equivalent to constB/Ai

(fi).

Proof. We may pick a left exact accessible localisation L : PSh(C)→ B where C has a final object
1. The morphism f corresponds to a map f̃ : K → Γ constB(M) = constB(M)(1). By Proposition A.2

269
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we may now find a covering (πLci
) :

⊔
i L(ci) ↠ 1 and commutative squares

M = M(ci) constB(M)(ci)

K constB(M)(1)f̃

π∗Lci
mi

where M denotes the constant M -valued presheaf. Let fi = constB(mi). Then the above square translates
to the statement that π∗Lci

(fi) is equivalent to constB/Lci
(fi), and the claim follows. □

Corollary A.4. The full subcategory LConstEcpt(B) ↪→ E ⊗ B is closed under finite colimits and
retracts.

Proof. We start by showing the claim about finite colimits. Since LConstEcpt(B) contains the
initial object it suffices to see that it is closed under pushouts. So let us consider a span F ← G→ H

in LConstEcpt(B). We may pass to a cover in B to assume that F,G and H are constant. Thus by
proposition A.3 we may further pass to a cover so that we can assume that the span above is given by
applying constB to a span in Ecpt. So the claim follows since Ecpt is closed under finite colimits and
constB preserves finite colimits. The proof that LConstEcpt(B) is closed under retracts proceeds in the
same way. □

In order to prove Proposition A.2, we first need to treat the special case where E = S and K = 1:

Lemma A.5. Let F ∈ PSh(C) and let f : 1 → LF (c) be a map for some c ∈ C. Then there is a
collection of morphisms (si : ci → c)i∈I in C such that (Lsi) :

⊔
i L(ci) ↠ L(c) is a cover in B and maps

mi : 1→ F (ci) for each i such that s∗i f is equivalent to the composite 1 mi−−→ F (ci)
εF (ci)−−−−→ LF (ci).

Proof. We pick a cover (tj) :
⊔
j dj ↠ F in PSh(C). Consider the pullback square⊔

j Aj
⊔
i dj

c LF
f

in PSh(C). Covering each Aj ∈ PSh(C) with representables cjk then yields the desired collection of maps
(sjk) :

⊔
j,k c

j
k ↠ c. □

To reduce the general case to the above lemma we use the ideas of [32, §2]. Indeed, the fact that E is
by assumption compactly generated means that we may identify E ≃ Funlex((Ecpt)op, S). Consequently, we
obtain an equivalence ShE(B) ≃ Funlex((Ecpt)op,B). In light of these identifications, the adjunction LE ⊣
iE : PShE(C) → ShE(B) translates into the adjunction Funlex((Ecpt)op,PSh(C)) ⇆ Funlex((Ecpt)op,B)
that is obtained by postcomposition with L ⊣ i. An analogous observation shows that for c ∈ C

the evaluation functor evE
c : ShE(B) → E is equivalent to the functor evc,∗ : Funlex((Ecpt)op,B) →

Funlex((Ecpt)op, S) given by composing with evc : B→ S.

Proof of Proposition A.2. Since K is compact, the above discussion and Yoneda’s lemma allow
us to identify K → LF (c) with a map f : 1→ LF (c)(K) ≃ L(F (K))(c). Therefore we are in the situation
of Lemma A.5 and get a collection of morphisms (si : ci → c)i∈I in C such that (Lsi) :

⊔
i L(ci) ↠ L(c) is

a cover in B and maps ni : 1→ F (K)(c) such that for each i we have a commutative square

F (K)(ci) L(F (K))(ci)

1 L(F (K))(c).f

s∗ini

Via Yoneda’s lemma the maps ni now yield the desired maps mi : K → F (ci). □
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[60] Michael Makkai and Robert Paré. Accessible categories: The foundations of categorical model

theory. Vol. 104. Contemp. Math. Providence, RI: American Mathematical Society, 1989. doi:
10.1090/conm/104.

[61] Louis Martini. Cocartesian fibrations and straightening internal to an ∞-topos. 2022. arXiv:
2204.00295 [math.CT].

[62] Louis Martini. Yoneda’s lemma for internal higher categories. 2021. arXiv: 2103 . 17141
[math.CT].

[63] Louis Martini and Sebastian Wolf. “Colimits and cocompletions in internal higher category
theory”. In: High. Struct. 8.1 (2024), pp. 97–192.

[64] Louis Martini and Sebastian Wolf. Internal higher topos theory. 2023. arXiv: 2303.06437
[math.CT].

[65] Louis Martini and Sebastian Wolf. Presentable categories internal to an ∞-topos. 2022. arXiv:
2209.05103 [math.CT].

[66] Louis Martini and Sebastian Wolf. Proper morphisms of ∞-topoi. 2024. arXiv: 2311.08051
[math.CT].
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[75] George Raptis and Daniel Schäppi. Flat functors in higher topos theory. 2022. arXiv: 2208.13897
[math.CT].

[76] Nima Rasekh. Introduction to Complete Segal Spaces. 2018. arXiv: 1805.03131 [math.CT].
[77] Charles Rezk. “A model for the homotopy theory of homotopy theory”. In: Trans. Am. Math.

Soc. 353.3 (2001), pp. 973–1007. doi: 10.1090/S0002-9947-00-02653-2.
[78] Charles Rezk. Generalizing accessible ∞-categories. https://faculty.math.illinois.edu/

˜rezk/accessible-cat-thoughts.pdf. 2021.
[79] Emily Riehl and Michael Shulman. “A type theory for synthetic ∞-categories”. In: High. Struct.

1.1 (2017), pp. 147–224.
[80] Emily Riehl and Dominic Verity. Elements of ∞-category theory. Vol. 194. Cambridge Studies

in Advanced Mathematics. Cambridge University Press, Cambridge, 2022, pp. xix+759. doi:
10.1017/9781108936880.
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