Convexification of differentiable
functions with applications in
relaxation models in soil
mechanics

- o "".. il " '-.__9'5:_.

:= -E I I||
W .:v:

»’/y’-w-'
s\
pﬁuu SI’J‘Q

DISSERTATION

7ZUR ERLANGUNG DES DOKTORGRADES DER
NATURWISSENSCHAFTEN (DR. RER. NAT.) DER
FAKULTAT FUR MATHEMATIK DER UNIVERSITAT
REGENSBURG

vorgelegt von
Florian Behr
aus
Weilburg
im Jahr 2024



Promotionsgesuch eingereicht am: 10.07.2024

Die Arbeit wurde angeleitet von: Prof. Dr. Georg Dolzmann



Contents

1

Introduction
1.1 Notation . . . . . . . . . .

Lipschitz Calculus
2.1 Basics . . . .o
2.2  Generalized derivatives . . . . . . . . ..o

Convexity

3.1 Convex functions . . . . . . .. ...
3.2 The Legendre transform . . . . . ... .. .. ... .. ....
3.3 Convex envelopes . . . . . . . . .. ...

Construction of the convex envelope

4.1 Motivation . . . . .. ..o L
4.2  Finding points with a common tangent plane. . . . . . . . ..
4.3 Generalcase . . . . . ...

Examples

Appendix
6.1 Topology . . . . . . . .
6.2 Linear Algebra . . . . . .. .. ...

14
14
19
22

34
34
36
44

63



1 Introduction

Calculating the convex envelope of multivariate functions plays an impor-
tant role in optimization and hence in many fields of applied mathematics,
physics and mechanics. It is well known that the convex envelope of some
lower semi-continuous, superlinear growing function f : R — R in some
point x € R can be obtained by affine interpolation of function values f
in not necessarily unique points (I, ..., 2@ € R? with ¢ < d + 1. If these
points are unique and affine independent, the simplex conv{x(l), 2@} s
called the phase simplex of x. Seeking to calculate the convex envelope of
f in a neighbourhood of z, a natural approach is to vary the vertices of
the phase simplex conv{z(®), ..., 2@} of x within respective neighbourhoods
UL, U@ of 20 . 2@ looking for further phase simplices. We show
that this procedure succeeds whenever the phase simplex of x is maximal
in the sense, that it is not the face of a larger phase simplex of some other
point 2/, and f is differentiable and strictly convex in each neighbourhood
UMD, ... U@, We derive a continuous parametrization of a neighbourhood of
the simplex Conv{x(l), ...,93(‘”}, such that we can give an expression of the
convex envelope in this neighbourhood in terms of the parametrization. This
parametrization especially characterizes all involved phase simplices of any
dimension. Additionally, we show that the regularity of this parametrization
improves to Lipschitz-continuity, if the restriction of f to each neighbourhood
UM, ..., U has Lipschitz-continuous gradient and is strongly convex.

This work is organized as follows: In Chapter 2, some frequently used
facts about Lipschitz continuity and generalized derivatives in the sense of
Clarke are collected. Chapter 3 concerns convexity and the connection of the
subdifferential and generalized derivatives, especially in view of characteriz-
ing strong convexity. We prove a duality result for the Legendre transform
of strongly convex functions with Lipschitz-continuous gradient similar to
the Fenchel-duality for the convex conjugate. The last part of the chapter
presents some useful properties and tools for the calculation of convex en-
velopes, embedded in the framework of Griewank and Rabier [18]. Since
their work already contains a similar approach of characterizing phase sim-
plices near a known maximal phase simplex, we dedicate the first part of
Chapter 4 to motivate this work by pointing out the differences to the as-
sumptions of [18]. Then we first consider a specialized setting in which one
of the points (M, ..., (9 is the origin and the other points are the first ¢ — 1
unit vectors, simplifying the algebraic calculations. We characterize all phase
simplices containing a vertex near the origin and give a suitable parametriza-
tion of a set, in which we can give an expression for the convex envelope in
terms of the parametrization. The general case is covered by applying for
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i € {1,...,q} an affine transformation, which maps 2 to the origin and
M0 D gHD 2(@) to the first ¢ — 1 unit vectors. Applying the re-
sults from the specialized setting to the transformed function and reverting
the affine transformation afterwards, we are able to obtain a characterization
of all phase simplices containing a vertex near z(¥. To make the parametriza-
tions compatible with each other, a recursive re-parametrization is required
in order to combine them to one paramterization of a whole neighbourhood
of conv{z™M, ..., 2(®} capturing all phase simplices of any dimension with ver-
tices near 2™, ..., (9 (or a subset of these points). Finally, the convex enve-
lope of f can be given in the parametrized set in terms of the parametrization
and is proven to admit the expected regularity. In the last chapter, three
examples of functions are presented, for which the convex envelope can be
calculated explicitly. The first two examples are designed to illustrate the
regularity of the derived parametrization. The last example arose from our
joint work [2] concerning relaxation models in soil mechanics. Although the
example does not completely match the assumptions of the main theorem, it
illustrates the interaction between one- and two-dimensional phase simplices
and gave the inspiration for the investigation of convexification of functions
with locally Lipschitz continuous derivative.

Acknowledgements [ would like to thank my advisor Prof. Dr. Georg
Dolzmann for his constant support as well as Prof. Dr. Klaus Hackl and
Ghina Jezdan from Ruhr University Bochum for the productive cooperation
within our project. I also gratefully acknowledge the support of the Priority
Program 2256 , Variational Methods for Predicting Complex Phenomena in
Engineering Structures and Materials®“ of the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation).

1.1 Notation

For any n € N, the Euclidean vector space R" will be always equipped with
the Euclidean norm || - || and for any m € N, the vector space of m x n-
matrices R™*™ will be always equipped with the induced matrix norm || - ||2.
In both cases, we simply write ||-|| instead of ||-||2. Furthermore the following
conventions are used:
Ry :={zeR |z >0}
Rep:={xeR|z>t}, (t€R)
ngfjf ={AcR™ | AT = A},
GL(d) := {A € R | det(A) # 0},
PD(d) := {A € R¥¢ | vh € R\ {0} : KT Ah > 0}.
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The set of affine functions and affine transformations is denoted as follows:
Aff(m,n) :={h:R™—>R"| 3 3V h(z)=b+ Ax},
A€Rnxm bER™ zER™
AFT(d):=={h:R*=R*| 3 3 VvV h(x)=0b+ Ax}.
AeGL(d) beR4 zeR4
For any A € GL(d) we write A~7 := (AT)™! = (A™1)?. The d-dimensional
identity matrix is written as Idy and for z € R?, we define diag(z) € R*?
as the unique diagonal matrix satisfying for any i, j € {1, ..., d}, diag(x); ; =

i - X5 (1).
For any subset M C R?, the affine hull and the convex hull are defined as

Vo (tiz) ERX MY t;=1} CR?,

{1,...,m} i—1

aff (M) = tZZL'Z m & N,
(M) {; | y
conv(M) :={) tiw; |meN, v (t,x;)€[0,1]x M,y t;=1} CR".
=1 =1

A set C' C R" is called affine if and only if C' = aff(C') and C' is called convex
if and only if C' = conv(C).

For some set M C RY, relint(M) denotes the interior of M with respect to
the subspace topology of aff(M).

We denote with 0; € R? and 0,,,x,, € R™*" the respective neutral elements
of addition and omit the index if the dimension is clear from the context.
For d € N and zy € R? we denote with

By(w) = {z € R | ||z = zolla < 1}
the open ball with radius r centred at xy and with
Cr(xo) := {x € R | ||z — mo||oo < 7}

the closed hypercube with edge length 2r centred at xq. If o = 04 then we
abbreviate B? := B,.(04) and C¢ := C,(0g).

For a set X and a subset A C X, we denote with idy : X — X, = — x the
identity and with

1 ,0€A

: X = R, =
x4 Xa(@) {0 reX\A

the characteristic function of A.
For two sets X,Y and functions f : X - R and ¢ : Y — R, we write ¢ < f
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if for any z € X NY the inequality g(z) < f(2) is satisfied. If X C Y and
g < f, we say that g minorizes f on X.

For a finite set X, | X| € Ny denotes the number of elements in X.

Any vector x € R? can be interpreted as an element of R?*! which can be
transposed to 27 € R*4,

For any i € {1,...,d}, we denote with pr;, : R — R the projection onto the
i-th component and with pri : R? — R9! the mapping, which deletes the
1-th component.

For any I C {1,...,d} we define

pry R? — Rda pr(z) = (z; - XI(i))iE{l,-~~7d} )
pr%‘ R? — Rd, prj(ﬂi) = (3?1 : X{1,.4.,d}\1‘(i))ie{l,l..,d} )

where pr; replaces all entries of z € R? by zero except those indexed with
an element of I, while pr; produces zero exactly at the entries indexed with
an element of I, i.e. @ = pr;(x) + pri(z) for any I C {1,...,d}. Notice for
i € {1,...,d} the difference between pr;- and pr{ﬁ.}, since the former reduces
the dimension by deleting the i-th component while the latter retains the
dimension by setting the i-th component to zero.

For any k € N and § > 0, we define

k
A ={te[-600)f | Y t;=1},
=1
~ k—1
A)  ={te[-600)" | Y <1},
i=1

and abbreviate A, := A% and A,_; := AY . Notice that for any i €
{1,...,k} the projection pr;- maps AY bijective and bi-Lipschitz onto Agfy
For any a@ € R U {o0} we set a4+ 00 := oo and for any § € R, we set
B - 00 := 00. Other arithmetic calculations involving co will not appear.
IfU C R¥and f: U — R" is differentiable at x € int(U), then D f(z) € R4
denotes the Jacobian matrix of f in z. If U C R? is open and f : U — R®
is a differentiable function (i.e. differentiable at every x € U), then we set
Df:U = R™ s Df(z).
If n =1 and f is differentiable at « € int(U), then the gradient of f at x is
defined as Vf(z) := Df(z)T € R? identifying R = R? and the first order
Taylor polynomial is denoted by T,.f : R? = R, 2’ — f(z) +(Vf(z),2’ — )
describing the tangent plane of f at x. If U C R% is open and f : U — R is
a differentiable function, then we set Vf : U — R x +— Vf(x).



2 Lipschitz Calculus

2.1 Basics

2.1 Definition Fiz two metric spaces (X,dx) and (Y,dy) and a function
f: X =Y.

Then f is called Lipschitz, if there exists some L > 0, such that for any
x, 2 € X,

dy(f(z), f(z')) < L-dx(z,2). (2.1)

Any such L > 0 will be called a Lipschitz constant of f.
Furthermore, f is called bi-Lipschitz, if there exists some M > 0, such that
for any z, 2’ € X,

1

() < de(F(a), F() < M -dx (e, ). (2:2)
For xy € X, f is called locally Lipschitz (locally bi-Lipschitz) in xy, if there
exists some open neighbourhood U C X of xg, such that the restriction of f to
U is Lipschitz (bi-Lipschitz). We call f locally Lipschitz (locally bi-Lipschitz),
if f is locally Lipschitz (locally bi-Lipschitz) in any point.

An immediate consequence of the definition is, that for metric spaces
(X,dx) and (Y,dy) a function f : X — Y is bi-Lipschitz, if and only if f
is Lipschitz, injective and f~!: f(X) — X is Lipschitz. Since any Lipschitz
function is especially continuous, any bi-Lipschitz function is an embedding
(see Definition 6.1).

2.2 Proposition Assume (X,dx), (Y,dy),(Z,dz) are metric spaces and the
functions f, fi,fo: X =Y and g: Y — Z are Lipschitz.

Then g o f s Lipschitz and if g and f are bi-Lipschitz, then g o f s bi-
Lipschitz.

If Y is a normed space, for any a € R the functions f1 + fo and o - f are
Lipschitz. If Y = R and fi1, fo are bounded, then f- fy is Lipschitz. IfY =R
and there exists some m > 0, such that for any x € X we have |f(x)| > m,
then 1/ f is Lipschitz.

Proof. |5, Propositions 2.3.1, 2.3.3, 2.3.4, 2.3.7] ]

It is straightforward, that the previous Proposition remains valid, if we
replace everywhere ,, Lipschitz“ by ,locally Lipschitz“ and , bi-Lipschitz* by
wlocally bi-Lipschitz®.
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2.3 Proposition Assume (X, dx),(Y,dy) are metric spaces. If (X,dx) is
compact, then each locally Lipschitz function f : X — 'Y 1s Lipschitz.

Proof. [5, Theorem 2.1.6] O

2.4 Corollary Assume (X,dx),(Y,dy) are metric spaces. If (X,dx) is
compact, then each locally bi-Lipschitz injection f : X — Y is bi-Lipschitz.

Proof. By Proposition 6.2, f is an embedding, i.e. f~!': f(X) — X is
continuous. According to Proposition 2.3 the function f is Lipschitz and for
any y = f(z) € f(X), there is a neighbourhood U, C X of z, such that
the restriction of f to U, is bi-Lipschitz. Now V, := f(U,) = (f~')"*(U,) is
by continuity of f~! a neighbourhood of y, such that the restriction of f*
to V, is Lipschitz. So f~! is locally Lipschitz and by compactness of f(X),
Proposition 2.3 implies that f~! is Lipschitz. Altogether, f is bi-Lipschitz.[J

2.5 Lemma If C' C R™ is convezx, f € C — R" is continuous and {C; | i €

I} is a finite cover of C, i.e. |J C; = C, such that for anyi € I the restriction
iel
fle, is Lipschitz, then f is Lipschitz.

Proof. Denote for any i € I the Lipschitz constant of f|¢, with L; > 0 and set
L:=max{L; | i€ I}. Fixz,y € C. There is some i, € [ with 2y :=x € C;,.
Set tp := 0 and t; := sup{t € [0,1] | (1 —t)x +ty € C;,} > ty and x; =
(1—t)x+tiy. Ifne{l,....|I| —1} and for any m € {1,...,n} the elements
im €1, t, €10,1] and z,,, € C are constructed and ¢,, < 1, then there is some
int1 € I\ {i1,...,3,}, such that ¢, = inf{t € [t,,1] | 1 —t)z +ty € C;,,, }.
Set

tn+1 = Sup{t € [tm 1] | (1 - t).’L' + ty € Cin+1} > tn7

Try1 = (1= tp1)T + tn1y -

Since [ is finite and 4,1 € I\ {i1,...,7,}, this process terminates at some
in € {1,...,]1]} with tx = 1 and oy = y, since y lies in some of the sets

C;,i € I (not necessarily in C; ). Forany n € {1,..., N} there exist sequences
l—o0

(t )ien, ()ien C [tnoi, tn] with 77 := (1—t5 )z +t7y € C;, and t; —> t,
=00

and t7 —= t,,. Then ||f(z;")— f(z;)]| < Li,||z;" — 2, || and taking the limit
[ — oo on both sides gives us

1f(2n) = fl@n-2)|| < Liy[|l2n — 2nl]



by continuity of f. Altogether we get

N N
1) = F@)| < D11 (@n) = Flen-)ll Y Ligllwn = 2]
n=1 n=1
N N
<SLY Ntn—ta)ly =) = LY (tn = to-)lly — ]|
n=1 n=1
= Lty —to)lly —«|[ = L - [ly — ]
and hence the Lipschitz continuity of f with constant L. O

2.6 Corollary If C C R™ s convez, f : C — R" is an embedding and
{C; | i € I} is a finite partition of C, such that for any i € I the restriction
flo, is bi-Lipschitz, then for any compact set K C C with f(K) C int(f(C))
the restriction fx is bi-Lipschitz.

Proof. The function f is Lipschitz by Lemma 2.5 and f(K) is compact, hence
according to Proposition 2.3 it suffices to show that the restriction of f~! to
f(K) is locally Lipschitz. Fix y = f(z) € f(K) C int(f(C)) and some r > 0
with B,(y) C f(C). Since f~!|p, () is continuous and {f(C;) N B,(y) | i € I}
is a partition of the convex set B,.(y), such that for any i € I the restriction
of f~'to f(C;) N B,(y) is Lipschitz, by Lemma 2.5 the restriction of f~! to
B,.(y) is Lipschitz. By the fact that y € f(K) was arbitrary, the restriction
of f~1 to f(K) is locally Lipschitz. ]

2.2 Generalized derivatives

2.7 Definition For Q) C R" open and f : Q@ — R™ Lipschitz denote with
Ny C Q2 the set of points, in which f is not differentiable.

For 2 C R™ open and f : {2 — R™ locally Lipschitz, Ny C €) has measure
zero by Rademacher’s theorem. For any sequence (2;);en C €2\ Ny converging
to some xy € Q, the sequence (Df(x;))eny C R™ " is for sufficiently large
[ bounded by the local Lipschitz constant of f in a neighbourhood of x.
Therefore we can extract a subsequence, which converges to some M € R™*™.
This observation allows the definition of the generalized derivative in the
sense of Clarke (denoted by 0, to distinguish it from the subdifferential), see
for example [3, Chapter 2].
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2.8 Definition Assume Q2 C R™ is open and f :  — R™ is Lipschitz near
xg € Q. We define

Ty(0) = {Jim Df(er) € R™™ | (ep)iers € 2\ Ny,

T — To, llirglo Df(x;) exists}

and denote the generalized derivative of f at xy by O.f(xo) := conv(Ts(zo)).

The generalized derivative is indeed a generalization of the concept of
continuously differentiable functions. If  C R™ is open and f : 2 — R™ is
continuously differentiable, then Ny = () and for any sequence (z;)ey C €
converging to some xy € () the sequence D f(x;) converges to D f(xg) by
continuity of the derivative. The generalized derivative in any point zy € (2
therefore contains only one element, namely the classical derivative of f in
zo, L.e. Jy(xo) = {Df(x0)} = conv({Df(x0)}) = conv(Ty(z0)) = Ocf (o).

In [3], Clarke first defines for a (possibly infinite dimensional) Banach
space X and a function f : X — R, which is Lipschitz near some point
xo € X, the generalized gradient as

Ocf(x) :={v e X*| Vv limsup f(z+th) — f(z)

heX z—xq, t\0 t

>v(h)},

where X* denotes the topological dual of X.

He showed in [3, Theorem 2.5.1], that for @ C R™ open and f : Q@ — R
Lipschitz near xq € €2, for any set S C 2 with measure zero the gerenalized
gradient can be characterized by

O.f(xg) = conv({llirgo Vi(z)" € R™ | (z))ien € Q\ (N US),

;= To, llggo V f(x;) exists}),

where the transposition of the gradient (although not appearing in [3]) pro-
vides consistency with Definition 2.8. This raises the question, whether also
for a locally Lipschitz function f : 2 — R™ with m > 1 the generalized
derivative in some point zy € {2 remains unchanged, if we avoid with the ap-
proximating sequences (z;)eny C €\ Ny an additional set S C Q of measure
zero. Clarke already proved in [3, Proposition 2.4.6], that for any h € R™ the
image set 0.f(zo)h C R™ remains unchanged, later on Fabidn showed in [7]
that even the generalized derivative 0, f () itself is not altered by this mod-
ification. This especially implies, that the generalized derivative introduced
by Pourciau in [16] coincides with Clarke’s generalized derivative, as Fabidn
pointed out in [7, Remark 1].

We quote some basic properties of the generalized derivative, which are
stated in [3, Proposition 2.6.2]:

11



2.9 Proposition Let 2 C R™ be open and f : Q@ — R™ be Lipschitz near
xo € ). Then the generalized derivative has the following properties:

(i) O.f(xg) C R™*™ is non-empty, convex and compact,
(ZZ) ZfOé € R; then ac(a ’ f)('rO) Q- acf(x0)7
(11i) if g : Q — R™ is Lipschitz near xo, then 0.(f + g)(xo) C O.f(xo) +

ac.g(:L'O)‘
The following Proposition was already mentioned without a proof in [17,
Eq. (4.20)], the special case m; = ... =my = 1 can be found in [3, Proposi-

tion 2.6.2 (e)].

2.10 Proposition Fix k € N, mq,...,m; € N, Q C R" open and xq € ().
If for any i € {1,...,k} the function f; : Q@ — R™ is Lipschitz near xy, then

fi(z)
f 0 — le—&-...—‘rmk’ f(.’E) —
fu(@)
1s Lipschitz near xqo with
My
Ocf(zo) C{| * | | Mi€Ocfi(wo)}.
M,

Proof. For any i € {1,...,k} let U; C Q be an open neighbourhood of xy,
such that f; is Lipschitz on U; with some constant L; > 0. Then for any
k

v,y € Uy and L := (Ly, ..., L)’ € R¥ we can estimate
i=1

k k
1f (@) = FOI5 = D [1file) = filw)lls < Y Lille = yll3 < 11LIE 1z — wlf3
1=1

i=1
f is differentiable in some point x € € if and only if any f; is differen-

k
tiable in z, i.e. Ny = |J Ny,. For any sequence (x;)ieny C Q\ Ny, the se-
i=1

quence (D f(x;))ien convgrges if and only if for any ¢ € {1, ..., k} the sequence
(D fi(z;))1en converges. This implies for any zo €  the inclusion

M, M,

conv(Jy(xo)) C conv{ | : | M; € Tp(xo)} C {]| | M; € O.fi(xo)}-
Mk Mk

as asserted. ]
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Before we formulate Clarke’s inverse function theorem, we first state the
following result concerning the generalized Jacobian of Lipschitz inverse func-
tions, proven by the author in [1, Theorem 2.1].

2.11 Lemma Assume that U,V C R? are open and that f : U — R? and
g:V — R are Lipschitz continuous with go f = Idy and fog = 1dy. Then
f(Ny) = N, g(Ny) = Ny and for any xg € U the set Jr(xg) is invertible
with

Ti(zo) ™" = Ty(f(20)) -

In particular

0eg(f (w0)) = conv(Jy(f (20))) = conv(Ty(x0) ™).

Now we can state the inverse function theorem proven by Clarke in [4] and
supplement the conclusion by a statement about the generalized derivative
of the inverse function.

2.12 Theorem If Q C R? is open, f : Q — R? Lipschitz and for xo € Q
the generalized Jacobian O.f(xo) is of mazimal rank, i.e. O.f(xo) C GL(d),
then there exist neighbourhoods U and V' of xog and f(xq) respectively, and a
Lipschitz function g : V. — R®, such that

(@) ¥ gl =
0) v, fo@) =v
Furthermore, we have 0.g(f(z0)) = conv((J(xo)) ") C conv((def(xo) ™).

Proof. See [3, Theorem 7.1.1] for the existence of the inverse function g.
Then

0eg(f(w0)) = conv(Ty(f(20))) = conv((Ty(x0)) ") C conv((0ef(z0) ")

follows by Lemma 2.11 and the fact, that 0.f(zo) has maximal rank. O

In [8, Theorem 2|, under the assumptions of Clarke’s inverse function
theorem 0.f(xg) C GL(d), the inclusion J;(zo)™* C Jy(f(z0)) (eq. (10))
and the formula 9.9(f(x0)) = conv(J;(z0)~") (eq. (11)) was proven. Notice
that the authors of [8] denote the generalized derivative 0. f (o) with J f(zo)
and the set Jy(zo) with ﬁ (x0). Lemma 2.11 shows the stronger assertion

Ti(xo)™t = T,(f(x0)), which gives 0.9(f(zo)) = conv(T;(zo)™!) immedi-
ately by taking the convex hull, even under the weaker assumption that

13



g is a Lipschitz continuous inverse of f in respective open neighbourhoods
U C R of zp and V C RY of f(z0). [1, Example 2.1] provides an example
of a Lipschitz continuous inverse function where Lemma 2.11 allows us to
calculate the generalized derivative of the inverse function, while [8, Theo-
rem 2] is not applicable due to singular matrices in the generalized derivative.
This example is a special case of the one constructed in [15, Example 2.2]
and [9, Example 3.9] and provides a piecewise linear bi-Lipschitz function
with the generalized derivative containing the zero matrix.

Given open sets U C R¥, V C R™ and Lipschitz continuous functions
f:U—=R"and g:V — R" with f(U) C V, then we seek for a chain rule
at least giving us for x € U an upper estimate for d.(¢g o f)(z) in terms of
O.f(x) and 0.g(f(x)). A natural starting point characterizing the elements
of Jyor(z) is applying the classical chain rule at every point « € U, where f is
differentiable in x and ¢ is differentiable in f(x). Unfortunately, it is possible
that no such point exists, as a simple example like f : R — R, f(z) =0 and
g:R =R, g(x) = |z| shows. Then fog = 0 is differentiable everywhere,
but by f~'(N,) = R we cannot apply the classical chain at any single point.
Nevertheless the following chain rule is available for the composition of two
Lipschitz functions:

2.13 Proposition ( [14, Theorem 4]) If f : R™ — R™ is Lipschitz near
r € R" and g : R™ — R* is Lipschitz near f(z), then

(g 0 f)(x) C conv(Deg(f(2))0ef (x))-

If g is continuously differentiable near f(x), then equality holds (see [17,
Theorem 4.3]) and if f or g is continuously differentiable, the respective
generalized derivative reduces to a singleton and ,conv“ can be omitted.

A weaker version of this chain rule was already proven in [3, Corollary to
Proposition 2.6.5], with both sides of the inclusion applied to some arbitrary
but fixed vector h € R™.

3 Convexity

3.1 Convex functions

We start with the different notions of convex functions.

3.1 Definition Fiz a convex set Q@ C R? and a function f : Q — R. Then
f is called conver with modulus p > 0, if for all z,y € Q and t € (0,1):

fltz + (1= t)y) < tf(x) + (L= 1) f(y) = St =Dl = y|*.

14



f 1s called strictly convex if the above inequality is strict for p = 0 and x # y.
For some point zo € int(2), f is called locally conver with modulus pn > 0 in
xo, if there is a convex neighbourhood U C § of xg, such that f|y is convex
with modulus p. We call f locally convex with modulus p > 0, if €2 is open
and f 1s locally convex with modulus p > 0 in any xqy € €.

If f is (locally) convex with modulus 0, then f is called (locally) convex, and
if [ is (locally) convex with some modulus p > 0, then f is called (locally)
strongly conver.

It follows immediately from the definition, that any (locally) strongly
convex function is (locally) strictly convex and that any (locally) strictly
convex function is (locally) convex.

Convex functions have some special regularity properties.

3.2 Proposition If Q C RY is open, convex and f : Q — R is convez, then
f is locally Lipschitz and if additionally f is differentiable at any point x € 2,
then f is continuously differentiable.

Proof. The first part is [19, Corollary 10.4] and the second part is [19, Corol-
lary 25.5.1]. O

3.3 Definition For a set Q C R? and a function f : Q — R, the subdiffer-
ential of f in some point xg € Q) is defined as

0f(w) = {ve R | ¥ f(a)= flzo) +(v,x = a0)}.

It is a straightforward consequence of the definition, that the subdiffer-
ential is a convex set. There is a close relationship between the generalized
derivative and the subdifferential, for convex functions (which are necessarily
locally Lipschitz) the generalized derivative coincides with the subdifferen-
tial [3, Proposition 2.2.7]:

3.4 Proposition If U C R? is open, conver and f : U — R is convex, then
forany x € U, O.f(x) = 0f(x).

The subdifferential of a convex function can be empty in some point if the
function becomes arbitrarily steep, as the example f : [0,00) — R, f(z) =
—+v/x with 9f(0) = 0 illustrates. However, this is not possible for points
lying in the relative interior of ).

3.5 Proposition If Q C R? is convex and f : Q — R is convez, then for
any z € relint(Q) we have df (x) # 0.
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Proof. [11, IV, Proposition 2.5.1] O

If the subdifferential of a convex function reduces to a singleton at some
point of the interior of the domain, the function is differentiable at this point.

3.6 Proposition If Q C R? is convex and f : Q — R is convex, then for
any x € int(Q) the subdifferential Of (x) is a singleton if and only if f is
differentiable in x.

Proof. [19, Theorem 25.1] O

The next Proposition gives useful equivalent characterizations of convex-
ity with modulus p > 0 or strict convexity in terms of the subdifferential [11,
VI, Theorem 6.1.2 & Proposition 6.1.3].

3.7 Proposition Let Q C R? be convex and f : Q — R. Then the following
statements are equivalent

(1) f is convex with modulus p > 0,

(i) ¥ v fly) = f@)+ vy — )+ §lle -yl

z,y€Q vedf(z)

(iii) v % (vy = v,y — ) > plly — .

z,y€Q vz €0 f(x),vy €0 (y)
Furthermore, strict convezity of f is equivalent to (ii) and to (iii) with the
respective inequalities assumed to be strict for p =0 and x # y.

In view of Proposition 3.4 it is not surprising that for locally Lipschitz
functions the subdifferential can be replaced by the generalized derivative.

3.8 Corollary Let Q C R? be open, conver and f : @ — R be locally Lips-
chitz. Then, all equivalences of Proposition 3.7 remain true with the subdif-
ferential O replaced by the generalized derivative O,.

Proof. 1t suffices to show that each condition (i), (ii) and (iii) implies the
convexity of f, since then by Proposition 3.4 the generalized derivative and
the subdifferential coincide and the equivalences follow by Proposition 3.7.
If f is convex with modulus ¢ > 0 or strictly convex, then f is especially
convex.

(ii) implies (iii), since for z,y € Q and v, € J.f(x), vy, € O.f(y), (ii) gives us
the two inequalities

) 2 (@) + (yy — 2+ Sz =y,

F(@) = f) + (v z = ) + Sllz =yl
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and (iii) follows by addition of both inequalities. If ¢ = 0 and the inequality
in (ii) is strict whenever « # y, then the inequality in (ii) with u = 0 is also
strict whenever z # y.

If (iii) is satisfied with p = 0, then f is convex by [3, Proposition 2.2.9]. This
is especially the case if (iii) is satisfied with g > 0 or with 4 = 0 and the
inequality being strict whenever z # y. ]

For continuously differentiable functions, the generalized derivatives in
Corollary 3.8 reduce to singletons containing only the respective gradient
and we obtain as a special case the equivalences for convexity with modulus
g > 0 shown in [11, IV, Theorem 4.1.1, Theorem 4.1.4].

For 2 C R open, convex and f € C?(f2), it is well known that f is convex
if and only if for any x € Q the Hessian V2f(x) € R?¥? is positively semi-
definite. An analogue statement for f € C'ZIOCI(Q) is mentioned without proof
in [13, Example 2.2], here we give a proof for an equivalent characterization
of convexity with modulus > 0 in terms of generalized second derivatives.

3.9 Definition For 0 < p, L < oo define

L — dxd 2 T 2
PD,(d) :={A € Ropp | ¥ pllPl[" < hZAR < LRI}

Notice that for L < u the set PDﬁ (d) is empty, and that for p = 0 and
L = oo we obtain the set of symmetric positively semi-definite matrices.

3.10 Proposition Let Q C R? be open, conver and f € C’llocl(Q)
Then f is convex with modulus 1 > 0, if and only if
vV 0.V f(xzo) C PDy(d).

ToEN
Proof. Assume f is convex with modulus u > 0. Fix g € (), an open
neighbourhood U C 2 of xy on which f is Lipschitz with constant L > 0 and
x € U\ Nyy. Then f is twice differentiable in x with V2 f(z) € R&<. For
any h € R? and sufficiently small ¢+ > 0 we have x +th € U and

W2 f(2)h = (V2 f(x)h, h) = lim %((Vf(ﬂf +th) =V [f(x),th)).

=1l

t—
By Proposition 3.7 (iii), the Cauchy-Schwarz inequality and the Lipschitz
continuity of Vf we get

IR = S5 llthIP) < (9 G+ ) = V£ (@), 18)
1 1
< IV (e +th) = VF @) - l[th]] < S5 (Lllthl ) = LBl
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This implies V2f(x) € PD//(d) and

0.V f (o) = conv(Jvs(z0)) C conv(clos({V?f(x) | x € U\ Nys}))
C conv(clos(PD/(d))) = PD//(d)

where the first inclusion follows by definition of Jv f(zo), the second inclusion
by monotonicity of closure and convex hull and the last equality by Propo-
sition 6.5.

Now assume that for all zy €  the inclusion 0.V f(zg) C PD;7(d) is satis-
fied. Fix z,y € Q and consider v : [0,1] — Q, v(t) = (1 —t¢) -z +1t-y and
g:10,1] = R, g(t) = f(7(t)). The function g is continuously differentiable
with

g 0.1 =R, g'(t) = (VF(v(1).7'(1) = (VF(v(1),y — x)

and since ¢’ is locally Lipschitz as the composition of Lipschitz functions
and [0, 1] is compact, ¢’ is Lipschitz with some parameter L > 0. For any
te (0,1),

0.g'(t) C conv((y — 2)" - (V)(v(t)) -7 (1)) € (y — 2)" - PD;(d) - (y — @)
C{zeR |22 plly -z}
by Proposition 2.13, especially ¢”(t) > ul|ly — x||* whenever ¢t € (0,1) \

Ny . Since ¢’ is especially absolutely continuous and differentiable almost
everywhere, by the fundamental theorem of Lebesgue integral calculus

1 1 t

£6) =9 =g0) + [ 90) dt =9(0)+ [ (4O + [ (5) ds) a

zﬂ%@ﬂ%vﬂwwwﬂmwﬂ//Mw—ﬂﬁ%dt

= f(@)+ (Vf(2),y — )+ Slly - o]’

and the argument is completed by Proposition 3.7 (ii). ]

A main feature of a strictly convex function f € C'(U) defined on an
open convex set U C R? is, that the gradient mapping is an embedding.

3.11 Lemma Assume U C R? is an open, convex set and f : U — R is
differentiable and strictly convex.

Then V .=V f(U) is open, and Vf : U — R? is an embedding.
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Proof. By Proposition 3.2, f is continuously differentiable. For x,y € U
with  # y, we have 0.f(x) = {Vf(x)} and O.f(y) = {Vf(y)}, therefore
by strict convexity of f, Corollary 3.8 implies (Vf(y) — Vf(x),y — z) > 0
and especially V f(z) # V f(y). Now the assertion follows by injectivity and
continuity of V f with Proposition 6.3. ]

If f e CHY(U) and f is convex with modulus p > 0, then Vf is even
bi-Lipschitz. Lemma 2.11 allows us furthermore to estimate the generalized
derivative of the inverse of the gradient mapping.

3.12 Lemma Assume U C R? is an open, convex set and f : U — R is
convexr with parameter > 0 and differentiable with Lipschitz continuous
gradient with constant L > 0.

ThenV := V f(U) is open, Vf : U — R% is injective and the inverse function
(VF)™r: V — R? is Lipschitz with constant p=*. Especially, V f and (Vf)~*
are bi-Lipschitz and the generalized derivative of (V )1 in any pointv € V
can be estimated by

0.(V )" (v) € PD"_,(d).

Proof. For any u € U the generalized derivative of f in u can be estimated
with Proposition 3.10 by 9(V f)(u) C PD}(d) C GL(d). Theorem 2.12 gives
us the local invertibility of V f in any u € U, especially V' = V f(U) is open.
By Proposition 3.7 (iii) and the Cauchy-Schwarz inequality we get

IVF(y) = VI@I -y =2l 2 (V[ (y) = Vf(2),y —z) = plly —2[|* (3.1)

to see that V f is one-to-one. The inverse function (Vf)~: V — R? is Lips-
chitz with constant p~! by (3.1). The inclusion of the generalized derivative
of the (Vf)~! in some v € V is due to Lemma 2.11 and Proposition 6.5 with

1

= conv(PD¥ _,(d)) = PD%_,(d),

2:(VF)™!(v) € conv((A(V)(VF) ™ (v))) ) C conv((PD}(d)) )

which completes the proof. [

3.2 The Legendre transform

A useful concept in convex analysis is the Legendre transform, see for example
[19, Section 26].
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3.13 Definition Let U C R? be open and f : U — R be differentiable with
L (V@) = V) = (0 V) = ) = (W VD)) = (W)
(3.2)
Then, for V := NV f(U) the function
[V o R, () = (w) = fu)ifue (VHT ({0} (33)

1s well-defined and f* is called the Legendre transform of f.

Any differentiable and convex function defined on a convex set satisfies
(3.2), as well as any differentiable function whose gradient mapping is in-
jective. If the gradient mapping of f : U — R is injective, (3.3) simplifies
to

Fr) = (V)" (©),0) = F(V) 7 (v)).

For convex functions, the Legendre transform is closely related to the convex
conjugate, see for example [20, Theorem 26.4]. The following Proposition is
the counterpart of Fenchel’s inequality in terms of the Legendre transform.

3.14 Proposition IfU C R? is open, convex and f € C*(U) is convez, then
for any vo € V :=V f(U) the affine function

h:R* = R, h(u) = (vo,u) — f*(vo)
minorizes [ and for any ug € (V) ({vo}) we have f(ug) = h(uy).

Proof. For some arbitrary ug € (Vf)"'({vo}), by Proposition 3.7 (ii), we
have for any u € U,

f(u) = f(uo) +(Vf(uo), u—uo) = (vo,u) = f*(vo) = h(u),

with equality for u = wuy. O]

The following Proposition describes, how the Legendre transform behaves
under an affine transformation of the argument. In [19, Theorem 12.3] it was
formulated for the convex conjugate, the analogue statement for the Legendre
transform is an immediate consequence of the relation [20, Theorem 26.4]
between the Legendre transform and the convex conjugate.
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3.15 Proposition Let U C R% be open and convez, f: U — R be a strictly
conver function, A € GL(d), a,a* € R and o € R. Then with o* =
—a—(a,a®), V= VfU),U:=a+ A" U and V := a* + AT -V the
Legendre transform of the function

f:U—=R, f(x)= f(Alz —a)) + (z,a*) +
15 given by
VR, ) = AN (@ —a) + (@, a) + o .

3.16 Proposition Assume U C RY is an open, convex set and f : U — R
1s continuously differentiable and strictly convex.

Then the Legendre transform f* is continuously differentiable with V f* =
(V)™! and strictly convex on each convex subset C' of V f(U).

Proof. Fix x* € Vf(U) =:V and z := (Vf)"!(2*). Then z € 9f*(z*), since
for any y* € V with y := (Vf)"!(y*) we can estimate

W) = (@) =z, y" —27) = (y,y") — fly) — (2, 2") + f(2) — (2, y" —27)
() = fly) = (Vf(y),r—y) >0,

with the inequality being strict for x* # y* (since then x # y).

Now fix v € f*(z*). Since U is open, we can choose ¢ > 0 small enough,
such that z := (1 — t)z + tv € U and by convexity of df*(z*), z € Of*(x*).
Defining z* := V f(z), calculate for any w € U

flw) = f(z) + (" w —x) = f(z) — (2", 2) + (2%, 2) + (2", w — 2)

—fH(27) = (2, 2" —a") + (2%, 2) + (2", w — 2)

)+ 2) + (2% w— 2)
< *

i w— z),

*

| \/

= ()
giving z* € Jf(z). By differentiability of f, 0f(z) = {Vf(2)} and strict

convexity implies z = z, especially v = x and since v € Jf*(z*) was arbitrary,
Of*(xz*) = {x}. For any convex subset C' C V, Proposition 3.7 (ii) implies
the strict convexity of f* on C' and choosing C' as a convex neighbourhood
of z*, Proposition 3.6 gives us the differentiability of f* in x*. According to
Proposition 3.2, V f* is continuous in any convex open subset of the open set
V', therefore V f* is continuous. ]

3.17 Theorem Assume U C R? is an open, convex set and f : U — R
s convex with modulus > 0 and differentiable with Lipschitz continuous
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gradient with constant L > 0.

Then the Legendre transform f* is strongly convex with modulus L= on each
conver subset C' of V' and has Lipschitz continuous gradient (Vf)~! with
constant p1.

Proof. According to Proposition 3.16, the Legendre transform f* is con-
tinuously differentiable with Vf* = (Vf)™!. By Lemma 3.12, (Vf)™! is
Lipschitz with constant p~! and for any v € V the generalized derivative
can be estimated by O(Vf)™}(v) C PDﬁ:ll(d). The assertion follows by-
Proposition 3.10 applied to f*|c. ]

One may wonder, whether there is a subclass of convex functions, on
which the Legendre transform acts as an involution. Unfortunately the set
of gradients, which is the domain of the Legrendre transform is not necessarily
convex, as Rockafellar pointed out in his counterexample [20, Section 4]:

i

1
fce . R X R+ — R, fce(zlaxQ) = = (

1 +x%+x%).

X2

This problem can be solved, assuming that U C R? is open and f : U —
R is strictly convex and differentiable with lim ||V f(x,)|| = oo whenever
n—oo

n—oo

x, — x € OU. Such a function is called a function of Legendre type and
the Legendre transform of such a function is again a function of Legendre
type, whose Legendre transform is (U, f) [19, Theorem 26.5].

Notice that for U # R% no f € C1(U) is of Legendre type, since any such
function is required to be arbitrarily steep near the boundary of U.

3.3 Convex envelopes

In this section, Q C RY is always a non-empty set and f : Q@ — R is an
arbitrary function.

3.18 Proposition If f is minorized by some affine function, the function

conv(f) : conv(2) — R,
conv(f)(z) = sup{h(z) | h:conv(Q) - RU{oo} convex, h < f} (3.4)

1s well-defined and convex.

Proof. The fact, that f is minorized by some affine function h € Aff(d,1)
ensures that the set in the supremum is non-empty. If z € conv(Q2) and
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q .

r = > Nz is a convex combination with 2, ..., 29 € Q, then for any
i=1

convex function A : conv(€2) — R minorizing f we have

hz) < Xq: Aih(z®) < zq: Aif (21)

and hence conv(f) is well-defined, since the supremum is bounded from
above. For any z,y € 2 and X € [0, 1] there is a sequence (hy)nen of convex
functions minorizing f with

conv(f)((1 = Az + Ay) = limsup (h,((1 — Nz + Ay))

n—oo

< limsup ((1 — N)hy(z) + Ay (y))

n—oo

< (1= A) conv(f)(z) + Aconv(f)(y),

which implies the convexity of conv(f). O

3.19 Definition If f is minorized by some affine function, conv(f) from
Proposition 3.18 is called the convex envelope of f.

In [11, IV, Proposition 2.5.1], for any = € conv({2) the following expression
for the convex envelope was given:

q
conv(f)(z) = inf{z M) | geN, A e A,, 2. 2@ e
i=1

2‘1: Nz =z}
i=1

In (3.4), the convex envelope is obtained by approximation from below with
minorizing convex functions and in (3.5), the convex envelope is obtained by
approximation from above by convex combinations. If x € Q with df(x) # 0,
then for v € 9f(z) the affine function h : R? — R, h(z') = f(2') + (v,2’ — x)
minorizes f with f(z) = h(z) < (conv(f))(x) by (3.4) and (conv(f))(x) <
f(z) by (3.5) for ¢ = 1. Therefore, (conv(f))(z) = f(x).

(3.5)

3.20 Definition If f is minorized by some affine function and x € conv(S),
a convexr combination

T = 2‘1: Aix(i)
i=1
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with A € relint(A,) and pairwise distinct points z1), ... 29 € Q is called a
stable phase splitting of x, if

i.e. the infimum in (3.5) is a minimum achieved at (A, zV), ..., (N, 2(9).
Furthermore, the points x| ..., 29 are called phases of the stable phase split-
ting and the stable phase splzttmg 18 called a unique stable phase splzttmg of

x, if any other stable phase splitting x = Z No'® apith 2D 27 € Q and
N € relint(A,) satisfies ¢ = q, 2" = and N =\ forany i€ {1,...,q}.

Given a stable phase splitting of € conv({2), the subdifferential of the
convex envelope in x can be computed as the intersection of the subdifferen-
tials of the interpolating points [12, Theorem 1.5.6].

q .
3.21 Theorem If f is minorized by some affine function and v = > \;-x®
i=1
is a stable phase splitting, i.e. \ € relint(A,) and zW, 2@ e Q pairwise
distinct with

(conv(f))(x) = Z Aif ()

then
Oconv(f))(w) = [10f ().

Theorem 3.21 has a natural conversion. Given some points 2V, ..., 2@ €
Q with a common subgradient, we can give on conv{z™, .. (@} an expres-

sion for the convex envelope of f by convex interpolation of the values of f
in M, ... 2@,

3.22 Proposition Assume 2V, . ) € Q with ﬂ of (z) #£ 0.
Then f is minorized by some affine functwn and for each A € A, the convex

envelope of f in x = Z Nz € conv({zW, ..., 2 D}) is given by
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4q )
Proof. For v € () 0f (™), the function

=1
h:R* = R, h(z) = f(zD) + (v,z — W)

is by v € df (V) an affine function minorizing f. For any i € {1,...,q}, by
v € df(2) we have

h@(%’)) — f(x(l)) + (v, 20 x(1)> > f(:l:'(i)) + (v, 20— x(i)> + (v, 2@ x(1)>
= f(@) 2 h(=").

Now Proposition 6.8, equations (3.4) and (3.5) imply

Do AFE) =D Ah(a?) = h(Z m«@')) — h(z) < (conv(f))(z)

q q
= (conv(£)D_ Xa) <Y Nif()
i=1 i=1
and hence the claimed equality. ]

We can derive a corollary, which relates the representations (3.4) and
(3.5) with each other:

3.23 Corollary If f : Q — R is a function minorized by h € Aff(d, 1), then
for any V.. 29 € {z € Q| f(x) = h(z)} and Ay, ..., N, € [0,1] with

q q .
ST\ = 1, the convex envelope of f in x:= > \a is given by
i=1 =1

conv(f)(w) = 3" Aif (a) = hi).

3.24 Proposition Ifz(V, ... 29 € Q are pairwise distinct and X € relint(A,),

q )
such that x = Y Nz € conv(Q) is a unique stable phase splitting, then the
i=1

q )
points £V ..., 2D are affinely independent and for any v € () Of(2)) and
i=1
o' € aff{zW .. 2@\ {2V .. 2@} we have

f(&') > (conv(f))(z) + (v,2" — x).
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q .
Proof. Assume z = ) ;2™ is a unique stable phase splitting, especially

i=1

(conv(f))(x) = Z Aif ()

Fix A}, ..., A, € R with Z A; =0 and Z Mz = 0. Fix ¢ > 0 small enough,
=1
such that for any i € {1 L q} we have t’ |N;| < A;. Then

x—Z/\x Z/\+t’-/\;)x()
=1

q
is by > (A +t' - X)) =1 and Proposition 3.22 a stable phase splitting and
=1

uniqueness implies A} = ... = A} =0, i.e. W, .. 2@ are affine independent
according to Proposition 6.7.
By Theorem 3.21 and convexity of conv(f),

0 # d(conv(f))(x) = [)0f (=) .

=1

4q .
Assume v € () 0f(z™) and 2’ € aff{z(V), ..., (@} with

f(@) < (conv(f))() + (v, 2" — ).

Since v € d(conv(f))(x), for any 2" € ) we have

f(@") = (conv(f))(z) + (v, 2" —x) = f(2') + (v, 2" — 2')
and hence v € 0f(2') and v € df(z") N ( (q] af(a:(i)))

Now fix A, ..., A, € R with Z A, =1 and Z Nz = 2'. Choose ' > 0 small
enough, such that for any i E {1 L q} we have t' - [N| < Ao Then

x—Z)\x Zq:)\—t Ao 4t o

=1

q
is by Y (A —t' - X))+t = 1 and Proposition 3.22 a stable phase splitting,

which implies by uniqueness 2’ € {2, ..., 2(@}. O

26



4q )
If a stable phase splitting = > N2 € conv{z®, ..., 2D} is unique,
i=1
conv{z® .. @} is a (¢ — 1)-dimensional simplex, which is called the phase
simplex of x without ambiguity. Any face of this phase simplex is the
(¢ — 2)-dimensional phase simplex of each point in its relative interior. Con-
versely, it is also possible that conv{z®, ..., (@} is the face of a larger, ¢-

dimensional phase simplex. If there is some z(4*1) € Q\ aff{z(V) ... (@} with
g+1 ) q+1 ]
Dl Of(x®) # 0, then for any X, ..., N4 > 0,2 := 1—21 M2 is a stable phase

splitting of 2’ according to Proposition 3.22. If this stable phase splitting is
unique, then the (¢—1)-dimensional phase simplex conv{z("), ..., (@} is a face
of the g-dimensional phase simplex conv{z™", ..., (@D} of 2’. This leads us to
the notion of a maximal phase simplex as one, for which no such 2@+ exists.
By Theorem 3.21, the affinely independent vertices (1, ..., (9 share at least
one common subgradient and each common subgradient uniquely defines a
hyperplane minorizing f and touching the graph of f at (), ... 2@, Con-
sequently, if any such hyperplane strictly minorizes f except at z(1, ..., 2@,

q+1 )
no £+ € Q\ {2W, ... 2@} with N 0f(2®) # () exists.
i=1

3.25 Definition ForzW, ..., 29 € Q, the simplex conv{zV, ..., 2D} is called
a mazimal phase simplex of f, if the points ™V, ..., 29 are affinely inde-

pendent, '(g] Of (D) # 0 and for any v € .ﬁ Of (™), i € {1,...,q} and
r e Q\ {Z;(ll), ., 2D} we have -

f@) > f@D) + (2 =)
3.26 Corollary For affinely independent points z), ..., 29 € Q satisfying
‘(q]l Of (@) £ 0, conv{zW, ..., 2D} is a mazimal phase simplex of f if and

q .
only if for any o' € Q\ {zW, ..., 2D} we have df(z') N < N 3f(x(’))> = 0.
i=1
Proof. We show both directions of the equivalence by contraposition.
q )
If the simplex conv{z™, ..., (¥} is not maximal, then thereisv € () d.f(z®),
i=1
i€{l,...,q} and 2’ € Q\ {zW, ..., 2D} with
f@') < f(@9) + (v,a" = 2l).

By v € 0f(x®) we have f(2') = f(z¥) + (v, 2’ — ™) and hence for any
x €,

f@) 2 f@) + {v,x —2W) = f(a') + (v, — '),
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therefore v € 0 f(2).
Conversely, if there is some 2’ € Q\ {2, ... 2D} such that there exists

q .
vedf(x)n ( N 8f(m(’))>, then conv{z™, ..., 2@} is not maximal, since for
i=1

some arbitrary ¢ € {1,...,q} we have
F) 2 J@) + 0,00 - ).
Therefore the equivalence is shown. ]

At this point, it is worth mentioning that our notion of a maximal phase
simplex differs from the one given by Griewank and Rabier in the introduc-
tion (or again before Theorem 5.2) of [18], as one which is not the face of
a larger phase simplex. The reason is, that Griewank and Rabier only con-
sider functions, for which any stable phase splitting is unique. A maximal
phase simplex (according to our definition) cannot be the face of a larger
phase simplex, since our definition ensures that there is no z(¢t!) € Q sat-

g+l ,
isfying () 0f(z?) # 0. Conversely, given a phase simplex which is not
=1

the facel of a larger phase simplex, without uniqueness of stable phase split-
tings we cannot conclude that this phase simplex is maximal (according to
our definition). Consider for example an arbitrary function f : R? — R
with f(1,1) = f(1,-1) = f(-1,1) = f(=1,—1) = 0 and f > 0 oth-
erwise. Then conv{(1l,1),(1,—1)} is the phase simplex of (1,0), which is
not the face of a larger phase simplex, since the potential larger phase
simplices conv{(1,1), (1, —1), (—1,1)} and conv{(1,1), (1,—-1), (-1, —1)} dis-
qualify due to non-uniqueness of the corresponding stable phase splittings.
Therefore we stick with our notion of maximal phase simplices, emphasiz-
ing that our definition is equivalent to the one of Griewank and Rabier for
functions only admitting unique stable phase splittings.

3.27 Proposition Fiz 2, ..., 29 € Q, such that conv{z™, ..., 2D} is a
q ,
mazimal phase simplex of f. Then, for any A € A, and v = ) Nz we

i=1
have

(conv(f))(a) = > Aif (@)

and for I :=={i € {1,....q} | \i > 0}, z = > Nz is a unique stable phase
iel
splitting.
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q .
Proof. Since () 0f(x™) # () by definition of maximality of the phase simplex
i=1
conv{z® .. @} Proposition 3.22 implies the expression for the convex

envelope and especially, that z = ) Xz is a stable phase splitting. Assume

i€l
J is a finite set and z = ) N () is another stable phase splitting. Fix
j€J
q : ,
ve Nof(zD) c Nof(z™) = df(z) and some i € I. If there was some
i=1 iel

jE J with 2/0) ¢ {x® | i € I}, then
Z)\;f(x/(j)) > Z)\; (f(x(i)) + (v, 2’V — x(i)>)
= f@®) + (v, 2 = 2) > (conv(f) (@) + (v, 2 — 2'9)
> (conv(f))(@) + (v, 2 — 2) + (v, 2 — 2) = (conv(f))(x),

a contradiction. Therefore, we can assume without loss of generality J C I
and for any j € J, 2/¥) = 209, This implies

0= Z Nz — Z )\;a:(j) = Z Nz® + Z()" — )\;)x(j)

iel jeJ i€\J jeJ
and with > A + > (X — A}) = 0 and Proposition 6.7, we obtain \; = \;
€I\J jeJ
whenever j € J and \; = 0 whenever i € I\ J, which is by the assumption
on [ only possible if J = I. [

3.28 Corollary Under the assumptions and hypotheses of Theorem 3.21,
for any v € O(conv(f))(x) and j € {1,...,q} with \; > 0 we have

(conv(f))(z) = (v,2) = f(2) — (v, 2V).

If additionally ) € int(Q) and f is differentiable at V), then x € int (1)
and conv(f) is differentiable in x with v = V(conv(f))(z) = Vf(z9)) and
Ty(conv(f)) =Ty f-

Proof. Fix v € d(conv(f))(x), which is non-empty by convexity of conv(f),
and fix j € {1,...,q} with \; > 0. By v € d(conv(f))(x) C df(x)), we have

F(&D) = (conv(f))(27) > (conv(f))(z) + (v, 2" —z).

Since v € d(conv(f))(x) C df(2\9), the affine (especially convex) function
h:R* =R, h(z') = f(z9) + (v,2' — ) minorizes f and the definition of
the convex envelope implies

(conv(f))(z) = h(z) = f(aV) + (v, — 21V).
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The claimed equality follows by

Now assume that () € int(Q) and f is differentiable at 29). The mapping
T:RE=RE T(z)= > Na@+ Nz isby \; > 0 an affine transformation
ieJ\{j}

and for r > 0 small enough, such that B,(z")) C €, the image of B,(z")) is
an open subset of conv({2). Since conv(f) is convex, by Proposition 3.5 and
Theorem 3.21 we have () # d(conv(f))(z) C df(z")) and Proposition 3.6
implies the differentiability of conv(f) in  with V(conv(f))(x) = V f(z).
Finally, for any 2’ € R% we obtain

(conv(f)) () + {V(conv(f))(w),a’ - 2) = (conv(f))(x) + (v,2 — )
= @) + (0,0 = 20) = f@D) + (Vf(@D),2' - )

and therefore T, (conv(f)) = T,o) f. O

3.29 Definition The function f is said to have a common tangent plane
in a set {zM, ... 2@} C int(Q), if for any i € {1,...,q} the function f is
differentiable at 9 and

VW) = ... = V'),

FaW) = (Vf(aD),z0) = . = f(29) = (Vf(29), 2@} . (3.6)

Corollary 3.28 especially implies, that for (), ... 2@ ¢ int(Q) with f

q .
differentiable at each point z(M, ..., 2@ and A, ..., Ay >0 withz =) peL
i=1

q )
and (conv(f))(z) = 3. \if(2)), necessarily f has a common tangent plane
=1

in the set {zM, ..., 2@}, see [18, Remark 2.1].

The condition, that f has a common tangent plane in {z(), ..., 2@} C

q )
int(€2) is not sufficient for () df(z®) # (), since a gradient is in general not a
i=1

subgradient. However, since gradients are local objects while the calculation
of subgradients involve the evaluation of the function on the whole domain,
for a differentiable function it can be more convenient to solve (3.6) first and

g .
check afterwards, whether the solutions also satisfy () df(z¥) # () or not.
i=1
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In general, the infimum in (3.5) is not necessarily a minimum, as the
example f : R — R, f(z) = 2® + xqo3(z) shows, where (conv(f))(0) = 0
cannot be represented as the convex combination of values of f due to the
lack of lower semicontinuity of f.

3.30 Definition A function f : Q2 — R s called closed, if for any r € R the
sublevel-set f~1((—o0,r]) is closed in RY.

By [11, IV, Proposition 1.2.2] a function f : Q — R is closed if and only
if the extended function f.,; : R — R U {oo} coinciding with f on Q and
taking the value oo outside €2 (which has the same sublevel-sets) is lower
semi-continuous, i.e. if for any z € R? we have liminf, ., feut(y) > feu ().
It is not enough for f to be lower semi-continuous in order to be closed, since
for Q C R? open with Q # R? and f lower semi-continuous and bounded,
for sufficiently large r the sublevel set f~!((—ooc,r]) equals €, which is not
closed.

Since conv(f) is closed, according to [12, IV, Proposition 1.2.8] it is suf-
ficient to take in (3.4) the supremum over all affine functions h : R? — R
with h < f. Nevertheless, closedness alone is not enough to ensure that the
infimum in (3.5) is a minimum, for example consider g : R — R, g(z) = e™*’
with conv(g) = 0. In this case it is the absence of superlinear growth pre-
venting the minimum to exist.

3.31 Definition We say that a function f : ) — R satisfies the superlinear
growth, condition, if for any sequence (Zp)nen C Q with ||z,|| == oo we
have

lim f(@n) =

n=oo |||

(3.7)

For an extended-valued function f : R? — R U {oo} we write dom(f) :=
{z € R?| f(z) < oo} and note, that if f is minorized by an affine function, the
convex envelope of f can be defined by the same expression as in (3.4). The
convex envelope of such a function is exactly the extension of conv(f|dom(s))
with the value oo outside of dom(conv(f)) = conv(dom(f)).

Griewank and Rabier showed in [18, Theorem 2.1, Theorem 2.3], that
the convex envelope of a proper (dom(f) # (), lower semi-continuous func-
tion f: R? — R U {oo} satisfying the superlinear growth condition is again
a proper, lower semi-continuous and convex function with dom(conv(f)) =

conv(dom(f)). Moreover, any = € dom(conv(f)) admits a stable phase split-
q )
ting > \a®W =z with ¢ € {1,...,d + 1}, A1, ..., A\, > 0 and pairwise distinct
i=1
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xW . 2@ ¢ dom(f). We can assign to each z € conv(dom(f)) the min-
imal number ¢(z) € {1,...,d + 1}, for which a stable phase splitting of x
with ¢(z) phases exists, and call this function the phase-number function
of f. This phase-number function is according to [18, Theorem 2.2] lower
semi-continuous on the relative interior of conv(2) and a point in which the
phase-number function is not locally constant is called a point of phase bi-
furcation. If some point of a phase simplex is a point of phase bifurcation,
then by [18, Theorem 5.2] every point of the phase simplex is a point of phase
bifurcation and we will call the simplex a phase simplex of phase bifurcation.

Our construction of the convex envelope of a function f : 2 — R in
the subsequent section relies crucially on finding points in which the tangent
plane of f lies below the graph of f. If the tangent plane of f in some point
lies strictly below the graph of f outside of a neighbourhood of this point,
closedness and superlinear growth ensure that this property is stable under
small variations of the point.

3.32 Proposition Assume f : Q — R is a closed function, which satisfies
the superlinear growth condition (3.7) and denote for any y € int(QY), at which
[ is differentiable, with T,f : R = R, T,f(y') = f(y) + (V) y —y) the
first-order Taylor polynomial. If f is continuously differentiable near some
g € int(QQ) and U C Q is an open neighbourhood of y with Ty f < f|Q\U, then

there exists a neighbourhood UcuU of y, such that for any y € U we have
Tyf < flaw on Q\U.

Proof. In this proof, it is more convenient to work with lower semi-continuity
instead of closedness, so denote with f.p : R? = R U {o0} the extension of
f coinciding with f on  and taking the value co outside €2, which is lower
semi-continuous.

Fix a sequence (U, )nen of open neighbourhoods of g with Uy C U, U1 C U,

for any n € N and () U, = {gy}. Assume for any n € N there exists an
neN

Un € U, and some y,, € RA\U such that fe.:(yn) < Ty, fewt(yn). Then g, LimiaN

y and the sequence (y,)nen is either bounded or unbounded. If (y,)nen

was unbounded, then we could extract a subsequence (without relabelling)
n—)OO

satisfying ||y,|| —— oo. But this would imply

feat(Yn) < Tz?nfewt(yn) = Tﬁnf(yn) = f(n) + (Vf(Un) Yn — Un)

contradicting the superlinear growth condition of f by ¢, — v, f(9.) — f(¥)
and V f(9,) — Vf(y) for n — oo together with the fact that fe.:(v,.) = f(yn)
by finiteness of the right hand side. So assume (y,)nen is bounded. Then
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there exists a subsequence, which converges to some y* € R?\ U. By lower
semi-continuity of f and V feu¢(9,) — V fert(7) for n — oo, this would imply

fe:ct<y*) < ligr_l)ioglf fext<yn) < ligrl)iol.}f Tz?nfemt(yn> = Tz?(y*) )

a contradiction. Consequently there exists some ng € N, such that for any
g€ U,, =:U and any y € Q\ U we have

fW) = fear(y) > Ty feur(y) = Ty f (y) -
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4 Construction of the convex envelope

4.1 Motivation

The purpose of this subsection is to illustrate the ideas of our construction
of the convex envelope near a known maximal phase simplex and to explain,
how those ideas are related to the work of Griewank and Rabier in [18].

The approach of Griewank and Rabier

Griewank and Rabier investigated in [18] the convexification of smooth func-
tions and classified the points at which phase bifurcation occurs.

They restricted their analysis of convex envelopes to the case, where
Q C R? is non-empty and open, f € C®(Q) is closed, satisfies the su-
perlinear growth condition (3.7) and additionally f is generic, in the sense
that any stable phase splitting is unique. For a detailed characterization
of those generic functions, see [18, Section 4]. Assume § € conv({2) and
g, g+ € Q, such that conv({g®,...,g**Y}) is the phase simplex of
7. Necessarily, the set {7, ..., g1} satisfies (3.6) and equivalently, for
p:Q =R, ply) = fy) = (Vf(y),y) the (k + 1)-tuple (F,....,g*V) is a

zero of
F- Qk‘-i-l N (Rd-‘rl)k"
Fy®, . y™ ) = (VD) = V™), pu?) — py™))izs. k1 -

If conv({gW, ..., 7*+*D}) is the face of a larger phase simplex then it is neces-
sarily a phase simplex of phase bifurcation, since any neighbourhood of some
point in conv({g®", ..., 7**D}) contains points of the relative interior of the
larger phase simplex having a greater phase number.

If conv({g™, ..., g**1}) is a maximal phase simplex of phase bifurcation,
then for arbitrarily small neighbourhoods U, UKD c Qof g, .., gD

there are (§0),..., 10 € H U0, j€{l,...k+1} and 200 € UV {5}

with F(g, ..., gF+1)) = 0, Vf(z(J ) = V£(HY)) and p(2)) = p(§"9)) (see [18,
page 374]). Roughly speaking, there is a sequence of higher dimensional phase
simplices, whose vertices accumulate at the vertices of conv({g(V), ..., g**1})
having at least one extra vertex in one of the neighbourhoods U®. This
situation can be prevented assuming that f is strictly locally convex near
each gV, ..., gtk+1), sinoe by injectivity of any Vf|U<z), i =1,...,k+1, no z0)
arbitrarily close to 47 with Vf(20)) = V f(§9)) exists.

In [18, Definition 5.1], they call the given phase simplex Conv{g(l) L gy
non-degenerate, if either & = 0 or the Jacobian of F at (5, ..., g*+1) ) has full
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rank of (d+1)-k, which guarantees the solvability of F(y"), ...,y**Y) = 0ina
neighbourhood of (g, ..., *+1)) by the implicit function theorem. Those so-
lutions occupy a manifold V' of dimension (d—Fk) near (g™, ..., g+1) € QF+1
see the discussion before [18, Theorem 5.3]. If conv({g", ..., 7**11) is a non-
degenerate maximal phase simplex, which is not a phase simplex of phase
bifurcation, then according to [18, Theorem 5.3] any zero of F' close enough
to (7Y, ..., **+Y) defines the vertices of a phase simplex, which is not a sim-
plex of phase bifurcation. Furthermore, in the proof of [18, Theorem 5.3]
they constructed for a small neighbourhood N C 2 of § a parametrization of
the phase simplices of the elements of N. More precisely, they constructed
for any i € {1,...,k + 1} neighbourhoods N® C Q of 4 and continuous
functions v : N — N@ and [; : N — R, such that for any y € N,

WD), oo, 05V (Q), L (Y), oo B () € V7 x relint(Ayq)

k1
and conv{vM(y),...,v**Y(y)} is the phase simplex of y, i.e. y = > Li(y) -
i=1

v® (y) and

The ,, vertex functions® vV, ..., v**1) determine the phase simplex, while the

coordinate functions [y, ..., l[x+1 determine the barycentric coordinates of the
corresponding stable phase splitting. Altogether, the mapping

N3y D), ., o D) (1), ... e (y) €V x relint(Ajq)

is continuous, injective and open and the inverse mapping can be viewed as
a parametrization of the neighbourhood N, for which an expression of the
convex envelope in terms of the parametrization is available.

Our approach

We also consider some non-empty set  C R? (not necessarily open) and
some closed function f : €2 — R, which satisfies the superlinear growth
condition (3.7). Fix y € conv({2) and a unique stable phase splitting of ¥, i.e.

k € {0, ...,d}, pairwise distinct points gV, ..., g**1) € Q and ¢ € relint(Ag; 1)
k+1
with Y ;7 = § and

=1
k+1

(conv(f))(y) = Z tif(57).
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Furthermore, assume that conv{z", ..., 7**Y} is a maximal phase simplex
of y. Taking k41 instead of k£ as the number of phases simplifies the indexing
later on.

Just as the construction of Griewank and Rabier, our construction also
crucially relies on finding further solutions of (3.6) near our known solution
{gV, ..., gD}, The definition of non-degeneracy of a phase simplex requires
the existence of second derivatives, which we do not want to assume. Instead,
we assume that g™, ..., g**) € int(Q) and that f is (once) differentiable
and locally strictly convex near each point g, ..., g*+Y ie. for any i €
{1,...,k + 1} there exists an open convex neighbourhood U® C Q of 7®,
such that the restriction f|;u is strictly convex and differentiable. Notice
that differentiability and strict convexity of the respective restrictions already
imply f|yw € C*(U®) by Proposition 3.2. Then we are able to derive for
some sufficiently small 6 > 0 a continuous parametrization ® : Ai 1 X C’gl’k —
R? of a whole neighbourhood of conv{z®", ..., 7**Y} on which we can give
an expression for the convex envelope via a stable phase splitting in terms
of the parametrization. The idea is, that the d-dimensional set AJ , x C¢~*
can be partitioned into sets {S; | 0 # I C {1,...,k + 1}}, such that for each
0 # 1 cC{l,...,k+ 1} the restriction of ® to S; provides a parametrization
of exactly those phase simplices, whose corners lie in the neighbourhoods
U@ iel.

In the first step, we focus on solving (3.6) and parametrizing the solutions.
This will be done in a specialized setting, in which a known solution of (3.6) is
given by the origin 04 and the first & unit vectors eV, ..., e, This simplifies
the calculations while solving (3.6) and deriving a parametrization of those
phase simplices including a vertex near the origin. Afterwards, we are going
back to the general setting described above and use affine transformation in
the argument of f to create the situation of the specialized setting. Making
the above mentioned parametrization ® continuous at the interfaces of the
partitioning sets Sy requires several re-parametrizations.

Finally, we not only obtain a parametrization of all phase simplices in
a neighbourhood of conv{gW, ..., g* Y} we additionally observe that the
parametrization ® is bi-Lipschitz, if any restriction f| ), ¢ € {1,....k + 1}
is strongly convex and has Lipschitz continuous gradient.

4.2 Finding points with a common tangent plane

This section is dedicated to solve the system (3.6) in a neighbourhood of
a known solution and to parametrize the set consisting of the simplices of
those solutions. More precisely, assume throughout this section that € C R¢
is a non-empty set and f : Q — R. For the sake of notational convenience
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we write e(® := 04 and assume that k € {1,...,d}, e©® ... e® ¢ int(ﬁ) and
for any i € {0, ..., k}, U; C Qis an open convex neighbourhood of e such
that the restriction f |[7Z_ is differentiable and strictly convex. Finally, assume
that f(e©) = ... = f(e®) and Vf(e®) = ... = Vf(e®) = 0, especially,
{e® ... e®} is a solution of (3.6). Strict convexity of the restrictions allows
us to reformulate the problem of solving (3.6) in terms of the gradients, since
for any i € {0,...,k} by Lemma 3.11 the gradient mapping Vf|(7(i> is an
embedding.

4.1 Proposition For any I C {1,....k} and (y(i))ielu{o} e ]I U; the
1€IU{0}

set {y@ | 1 € TU{0}} satisfies (3.6), if and only if there is some v €
N V/(Us), such that for any i € 1U{0} we have y = (V f|z )" (v) and

1e1U{0}

v (f

il

5. () = (Flg,)"(v). (4.1)

where for any i € IU{0} the function (f|5l)* denotes the Legendre transform
of f|a as defined in Definition 3.13.

Proof. The first equation of (3.6) implies, that for any i € I, v := Vf(y©) =

VF(y®), especially v € () Vf(U;) and for any i € I U {0}, y@ =
ieIu{0}

(Vf\ﬁi)_l(v). Therefore replacing any y® by (Vf|5i)_1(v) in the second
equality of (3.6) gives the equality of the (negative) Legrendre transforms and

therefore implies (4.1). Conversely, if v € () V/f(U;) satisfies (4.1), then
1€Iu{0}

by definition of the Legendre transform the points {(Vﬂa_)’l(v) |1 e TU{0}}
satisfy both equalities of (3.6). O

4.2 Remark In the previous Proposition, for I = @ any y(© € U, satisfies
trivially (4.1) with v := V£(y(?), as well as y© satisfies trivially (3.6) with
q=1and 2z =y, *

~ k o~
Define V := (| Vf(U;) and

=0

N (flg) () = (flg,)" (v)
H:V >R Hw) = :
(flg)* (@) = (flg,)" (v)
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For fixed I C {1,...,k} and v € v, (4.1) is satisfied if and only if for any
i € I we have H;(v) = 0. Especially H(0) = 0, since {e©, ...,e®™} satisfies
(3.6) with Vf(e®) = ... = Vf(e®) = 0. The next Theorem allows us, to
encode all solutions of (4.1) near the origin for arbitrary I C {1,...,k} in one
diffeomorphism, if the restrictions f| g, t € {0,..., k}, are strictly convex.

4.3 Theorem Assume that for any i € {0,...,k} the restriction ﬂﬁ is
strictly conver.
Then V' is an open neighbourhood of the origin and there erists some open

neighbourhood W C R? of the origin and a diffeomorphism £:W =V onto
its image with £(0) = 0 and DE(0) = Idy, such that

V.V tHEwW) =0 w=0.

For any i € {0,...,k} the mapping §®» (Vf]U)_l of : W — U is an
embedding and for any I C {1,....,k} and (y( Jierugoy € 11 GOW) the
1€IU{0}

set {y® | i € TU{0}} satisfies (3.6), if and only if

(Y Mierugor € {(@7(w))ierugoy | w €W, ,gl w; = 0} .

Proof. For any i € {1, ...,k}, by Proposition 3.16 the i-th component of H is
continuously differentiable at the origin with the derivative given by

D(pr;oH)(0) = (V(f15,)"(0) = V(flg,)"(0))"

= ((Vf15)71(0) = (Vflz) " (O)T = ()T

Ifd=1,set hy: {0} > R, 0— 0.

If d > 1, then by the implicit function theorem there exist open neighbour-
hoods K; C R of the origin and J; C R of the origin with V/ = {v e
Re | pri(v) € K;,v; € J;} € V and a continuously differentiable function
h; : K; — J;, such that for any v € V/ we have H(v); = 0 if and only if

= hi(pr; i (v)). Furthermore, by the formula for the derivative of implicit
functions, Dh;(0) =171 0% =07 |
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~ ko
For the open neighbourhood V' := (| V// of the origin, the function
i=1

— I (pri (v))

i V' RY, fi(v) = Uk — Ek(pr,i‘(v))
Vk4+1

Vg

is continuously differentiable with 77(0) = 0 by h;(0) = 0 for any i € {1, ..., k}
and Dn(0) = Idy. Hence there exist by the inverse function theorem an
open neighbourhood W C R? _of the origin and a continuously differentiable
function € : W — R? with 5( )V, 5(0) =0 and DE(0) = (D7(0))™" =
Id,, such that for any w € W we have 7j(£(w)) = w and for any v € £(W)
we have £(7j(v )) = v. Especially ¢ is a diffeomorphism onto its image.

For any w € W and i € {1,...k} we have H({(w)); = 0 if and only if
£(w); = hi(pri(£(w))) which is equlvalent to

= ii(€(w)); = E(w)s — hi(pri (€(w))) = 0.
For any i € {0,...,k} the mapping ") = (Vﬂﬁi)_l o £ is well-defined by
3 (W) cVcv f ( ,) and the composition of the diffeomorphism & and the

embedding (V f ] U) according to Lemma 3.11, hence §® is an embedding.

Now fix I € {1,...,k} and (yD);cruy € [T §%9(W). Then
1€IU{0}

~ ~ —~ ~ ~ ~ ~ ~ ~

= Vi) e VGO W) = VI((Vlg) (W) = W),

and there exists some w € W with v = g(w) By Proposition 4.1, the set
{y® |ieT1uU{0}} satlsﬁes (3.6), if and only if v satisfies (4.1) and for any
i€ TU{0} we have y (Vf]U) "({v}), which is for f|5 strictly convex

equivalent to y® (Vf|U) 1(v). Now v satisfies (4.1) if and only if for

any i € I we have H(E(w)); = H(v); = 0, which is by the ﬁrst part of this
Theorem the case if and only if w; = 0. Therefore the set {y® | i € TU{0}}
satisfies (3.6), if and only if for any i € I U {0} we have

= (Vflz) () = (Vflz) (Ew)) = 39 (w)
and V w; = 0. O

el
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4.4 Corollary If § > 0 is small enough, such that Cg C W, then for any
we CY andi € {1,....k} we have
sign(H (§(w))); = sign(w;).

Proof. For any i € {1,...,k} the sets {w € C¢ | w; <0} and {w € Ce | w; >
0} are connected as well as the images (pr; oH o &)({w € C¢ | w; < 0}) and
(pr;oH o &)({w € Cgl | w; > 0}) by continuity of pr,oH o {. Since for any
w € C4 we have (H o §)(w); = 0 if and only if w; = 0, both images are
connected subsets of R\ {0}. With (H o £);(0) = 0 and calculating

Di(pr; oH 0 €)(0) = D(pr; oH)(£(0)) - DE(0)e™ = ()" Idge® =1,

we can conclude (pr;oH o &)({w € C? | w; < 0}) C R_ as well as (pr; oH o
{w e C¢ | w; > 0}) C R, O

4.5 Corollary If in the situation of Theorem 4.8 for i € {0,...,k} the re-
striction f|U 18 strongly convexr and Vf|U i1s Lipschitz, then g(l 1s locally
bi-Lipschitz satzsfymg

9.5 (0) Cc PD(d).

Proof. Since € is a diffeomorphism, ¢ is locally bi-Lipschitz. If g > 0 is the
modulus of convexity of f |U and L > 0 is a Lipschitz constant of Vf |U,

then by Lemma 3.12 the function (V. f \Ui)_ is bi-Lipschitz, ¢ is locally bi-
Lipschitz as the composition of locally bi-Lipschitz functions and by Propo-
sition 2.13,

2:9”(0) € 0(V fl,) 1 (£(0)) - DE(0) € PDY_(d) - 1 € PD(d),
where the last inclusion is due to Proposition 6.5. O
4.6 Definition For any I C {1,...,k} and 6 > 0 define the set

§8 = fw e R | pry(w) € Ay, pri(w) € C}.

4.7 Theorem For any § > 0 with C¢ C W and any I C {1,...,k} the
restriction of the function

(,; -<pr%>-1<’v?> E Rd

sz prl (1-— sz pl"] (w))

el i€l

to the set S¢ is an embedding.
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Proof. Fix § > 0 with C¢ C W, 1IcC {1,...,k}. Since S¢ is compact and
¢; is continuous as the composition and sum of continuous functions, by
Proposition 6.2, it suffices to show that ¢; is injective.

For any w € S the set {§® (pri(w)) | i € IU{0}} satisfies (3.6), i.e. for all
i € TU{0} we have v := V(5O (pry(w))) = V(G (prs (w))) and

F(@ " (prt (w))) = (0,5 (pr7 (w))) = F(G (017 (w))) = (0,3 (017 (w)))

Therefore, the affine function
hiR =R, hiy) = f(3 (pr7 (w)) + (v.y = §© (prr (w)))

satisfies for any i € I U {0} the equality h(GD (pri(w))) = f(§9 (pri(w)))
and for all y € U; by convexity of f ](71_ the inequality

+ (VG (prr (w),y — 39 (pry (w)))

T (VFEO (et (). — 5O (prt(w))) = h(y)

Defining U= U U; and wg := 1 — > wj, the affine function A minorizes
1€ITU{0} el

flz and Proposition 3.23 implies
conv(flz)(dr(w)) = Y w;- f(G7 (prf (w))). (4.2)

ie1U{0}

Since there is at least one i € TU{0} with w; > 0, by Corollary 3.28 conv(f|z)
is differentiable in ¢;(w) with

V conv(flg)(ér(w)) = V(3 (pry (w))) = £(pr7 (w)) -
Now assume w' € S§ with ¢;(w) = ¢;(w'). With w) := 1 — 3w/, by the

i€l
same argument as above we obtain

conv(flp)(@r(w))) = Y wi f(39(pr1(w)))

1€IU{0}

and
V conv(flz)(dr(w')) = &(pry (w')).

Since ¢ is injective it follows pry (w) = pry(w'), i.e. for all i € {1,...,d} \ I,
w; = w;.
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Since the points (§% (prf (w)))ier are affinely independent by assumption on
the sets U;, i € 1 U{0},

0= ¢s(w) — pr(w')

= Zwi-g()(p 1—sz pl”[ w))

— Zw; - 9 (prr (w (1- Zw (pry (w"))
= 3w ) 5o () — (s — ) -5 ek )
= 3 ) (5rF () — 5 e ()

implies w; = wj for all i € I. Altogether, w = w’ and since w and w’ were
arbitrary elements of S, the restriction of ¢; to S is injective. n

4.8 Theorem If for all i € {0,...,k} the restriction f|(~]l is convex with
parameter > 0 and Vf|[7i 18 Lipschitz with parameter L > 0, then there is

some & > 0, such that C§ C W and for any I C {1,...,k} the restriction of
¢1 from the previous theorem to the set S$ is bi-Lipschitz.

Proof. In this proof, denote for any subset J C {1, ...,d} the complement of

Jin {1,...,d} with J¢:= {1,...,d} \ J and set Id; := diag(d_ ¢;) € R,
e

which is the diagonal matrix associated to the projection pr J.J Especially for

any J C {1,,d} we have IdJ'IdJ/ :IdJmJ/. B

Fix I € {1,...k} and wo € {w € RY | pry(w) € Ay, prf( ) = 0} C

(pry)1(W). We want to use Theorem 2.12 to show that ¢; is locally bi-

Lipschitz in wy. In order to estimate d.¢;(wy) C GL(d), we write ¢; as the

composition of two other functions and use Proposition 2.13.

Define

(o}jr’(f”)
- — - q r+(w
Gy + (prb) () = (R, Gy(uw) = | T P11 (W)
¥ (pri(w))
and
t
B y(o) k k
o RS R G [T =D ey (1= )y ©
y(‘k) =1 =1
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Now ¢; = 1) o Gy, since for any w € (pri)~'(W) and any i € {1,...,k}\ I we
get (Gr(w)); = pry(w); = 0. The projections pr; and pry are continuously
differentiable with D pr; = Id; and D pr; = Idse. For any i € {0, ..., k} the
function 3@ is by Corollary 4.5 locally (bi-)Lipschitz with 9.5 (pry (wo)) =
0.3 (0) € PD(d), hence the composition §) o pri is locally Lipschitz. Ac-
cording to Proposition 2.10, G is locally Lipschitz with

D pr(wo)
. My (i) L
8.Gr(wp) C { _ |V M;€0.(3" opry)(wo)}
: 1€{0,....k}
M,
Dpr;(wo)
My ~(1) (L 1
c{ . |V M; € 0:.g" (prr(wo)) - Dpry(wo)}
: 1€{0,...,k}
M,
Id,
c{ : v M; € PD(d)}
: 1€{0,....,k}
3 k
1 is continuously differentiable and with ¢y := 1 — > ¢; we obtain for any
i=1
t,y®, ..,y® e R%:
t
| y© i
DI | = 0 =y ey =y | gy o< Td |-+ by - Tdg)
y)

and if y@ = e® = §g(0) = g9 (pry (wp)) for all i € {0, ..., k}, this expression
simplifies to

Dy (Gr(wo)) = (Idg1,. uy | to-1dg |---] tx-1da) .

The function ¢; is locally Lipschitz as composition of locally Lipschitz func-
tions and defining ¢ := pr;(wy) € A4, we can use again Proposition 2.13 to
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calculate the generalized derivative of ¢r in wy by

0:61(wo) = D (G1(w)) - .G (w)

77777

1€{0,....k}
C {Id;4+M -1d;. | M € PD(d)}.

Now we show, that for any M € PD(d) the matrix Id; +M -Id;. is invertible,
which especially implies 9,¢;(w) C GL(d).

Fix 2 € R? with 0 = (Id; +M - Idse)z = pry(x) + M - prj.(z). Multiplying
with (prj.(z))T from the left, leads to 0 = (prje(x))” - M - pr;(z), which is
by positive definiteness of M only possible if pr;.(x) = 0. Then 0 = pr;(z) +
M - pre(z) = pry(z) implies z = 0 and injectivity as well as invertibility
of Id;+M - Idje. By Theorem 2.12, qgf is locally Lipschitz in wy and since
wy € {w € R | pr;(w) € Ay, pri(w) = 0} was arbitrary, there exists some
open neighbourhood O; C (pri)~' (W) of {w € R% | pr,(w) € Ay, pri(w) =
0}, such that é[’o, is locally bi-Lipschitz. Now choose for any I C {1,...,k}
some 07 > 0 small enough, such that C’gj C W and 5’}51 C Oy. If no such d;
exists, then for any n € N there would be some

I(n) S {w S Rd | pr[(w) S Adv prIL(w) < Oii/n} =: K,

with z(™ ¢ Oy for all m € N. The sets K,, are compact with K, C K,.
By compactness of K there exists some subsequence (")), oy converging
to some z* € K; and by closedness of the sets K,,, necessarily

2" € () Ku={w € R? | pry(w) € Ay, prf(w) =0} C Oy,
neN

a contradiction.

Set § :=min{d; | I C {1,...,k}}. Then, for any I C {1,...,k} the restriction
of ¢; to the compact set S¢ € O; C (pr})’l(W) is locally bi-Lipschitz by
5'}5 C Oy and injective by Theorem 4.7, hence bi-Lipschitz by Corollary 2.4.C]

4.3 General case
Now we recapitulate the assumptions described in the motivation of this
chapter, which from now on will be kept throughout the rest of this chapter.
Assumptions

(i) Q ¢ R?is a non-empty set and f : Q — R is closed and satisfies the

superlinear growth condition (3.7),
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(ii) y € conv(f2) is some point with a unique stable phase splitting, given
k41 .
by g1, ..., g**Y € int(Q) and ¢ € relint(Ay1) with 5 = > ;- @ and
i=1

k+1

(conv(f))(y) = Z ti f(3), (4.3)

(iii) the phase simplex conv{gV), ..., g**V} of  is maximal,

(iv) for any i € {1,...,k+1} there exists an open neighbourhood U™ C Q of
7, such that the restriction f|; ) is strictly convex and differentiable.

Corollary 3.28 implies (3.6) with (zV,...,2@) = (g, ..., g*+D) that
y € int(conv(Q?)), the differentiability of conv(f) at y and that for any
i € {1,....,k + 1} we have Ty(conv(f)) = Tyw f. The points g, .., g*™) are
affinely independent according to Proposition 3.24 and by Proposition 3.27,
for any 3 € Q\{gV, ..., g**1} we have f(y') > Ty(conv(f))(y/). The geomet-
rical meaning is, that the common tangent plane of the points gV, ..., g*+V
lies strictly below the graph of f except at gV, ..., g*+1 since otherwise the
stable phase splitting would not be unique or the phase simplex would not
be maximal.

4.9 Proposition There exists for any i € {1,....k + 1} a neighbourhood

~ . ) . ) ~,. k+1 )

UD cUD of g9, such that for any 9 € UD and y € Q\ |J U we have
i=1

Fy) > f@) +(VFGY).y —9)

and for any (yV,...,y*+)) € kﬁl U the points yO, ..., y**D are affinely
independent. -
Proof. The mapping

re (RO S {1 k1), (W, y* D) s rank(yW Ly Y)

is lower semi-continuous, hence the sublevel-set r~!((—o0, k]) is closed and

r'({k +1}) = r7}((k,00)) is an open neighbourhood of (7, ..., gk+1).
K+l

Defining U := |J U, by Proposition 3.32 there exists for each i € {1, ..., k+
i=1

1} some neighbourhood U® < U® of 5, such that for any @ € U® and

y € Q\ U we have

F) > fG) +(VFGY),y = 99).
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Since r~!({k + 1}) is an open neighbourhood of (g9, ..., 5**1)  the neigh-
~ . k+1
bourhoods U™ can be chosen small enough, such that [] U® c r~*({k+1}),

=1
which implies for I C {1,...,k + 1} the affine independence of any points
k1
yW, Ly with (yW, . y* D)y e TT U9, O
i=1

k1 ‘
Defining V := (| Vf(U®) any information, which is needed for the con-
i=1

struction of the convex envelope in a neighbourhood of conv({g", ..., g#+1)}),
is encoded in the function

H:V — REFDERD,
HW)i; = (flv@) (v) = (flvw) (), i,j=1,...,k+1.

For each v € V', H(v) is a skew-symmetric matrix and the same calculation
as in Proposition 4.1 shows that v := Vf(5V)) = ... = Vf(g**1)) is a zero
of H, i.e. H(f}) = 0(k+1)><(k+1)-

The challenge of constructing the desired continuous (or bi-Lipschitz)
parametrization of a neighbourhood of conv{g), ..., g**1} is twofold. First,
the construction in the previous section assumes that the corners of the
given phase simplex coincide with the origin and the first k£ unit vectors.
For any | € {1,...,k 4+ 1} we can create this situation by applying an affine
transformation in the argument of f, which maps e® to g and {e® | i €
{1,.., kY to {g9 | i€ {1,....,k+1}\ {I}}. After applying Theorem 4.7 (or
Theorem 4.8) for the transformed function, we can transform back and get for
any I C {1,...,k+ 1} containing [ a parametrization of those potential phase
simplices, whose corners lie in the neighbourhoods U®, i € I. The second
step is, to make those parametrizations compatible with each other, in order
to ,,glue® them together to one continuous (or bi-Lipschitz) parametrization
of a neighbourhood of conv({g™, ..., **1}). The result is a parametrization
of a whole neighbourhood of conv({7V, ..., 7**Y}), in which we are able to
give an expression of the convex envelope of f in terms of the parametrization.

Fix [ € {1,...,k+1}. Then there is some (not necessarily unique) invert-
ible matrix A; € GL(d) with

Ay - el = g — gy Jdfie{1,..,1—1}
gy — g0 fie{l..k}

The function

h i RY—= R by(y) = g% + A -y
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is an affine transformation satisfying for any ¢ € {0, ..., k}
g ifi=0
h(eD)y = g0 lifie{1,..,1—1} .
gty ifie {l,.., k}

We can define ©; := (h;)"}(Q) and with o = Vf(y") = ... = Vf(5**Y) as
above,

fi: =R, fily) = f(lu(y)) = (u(y), ).

The function f; satisfies for any 7 € {1, ..., k},

file) = f(ha(e)) = (lu(e!), v)
{ (") — (59, v) Jifie {1,..,0—1}
T FEEY) — @Y ey ifie {1, k)
= £) = 5, ) = Fu(e®) = (a(e®), 5) = file®),

since {g), ..., gV} satisfies (3.6) for f.
By Proposition 6.8, for any i € {0, ..., k} the set

ot (UW) ifi=0
U = U9y ifie {1, 1—1}
hyH(UEHDY  ifd e {U, ..., k}

is a convex neighbourhood of e and fj| ) is strictly convex, which implies
by Proposition 3.11 that Vfl|U

then fi p 18 by Proposition 6. 8 also strongly convex.
!

lu
(i 18 1nvert1ble If f|ye is strongly convex,

For any y € €); we can calculate

Viily) = Dfily)" = (Df(h(y)) — ") Dhu(y))" = (A)"(Vf(hu(y)) —v),
especially for any i € {0, ..., k}, since Vf(g1) = ... = Vf(5**V) = v and
hl(e(i)) c {g(1)7 . g(’“rl)}7

VAi(e?) = (A4)" - (Vf(lu(e™)) —0) = 0.
With the affine transformation

T :R' = RY Ti(v) =0+ (4)"
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k+1

we have for any y € (J Ul' L (Tio V) (y) = (Vfoh)(y).

Defining -
Vii= (VAU = (@S @) = (@) (Y FUD)
= (1)7(V)

and since for any i € {0, ..., k} the restrictions V f|; ) and Vfl’h L) are
invertible, for any v € V:

(Vlue) (Ti(v) = (Y fil 1wy~ (0) (4.5)
The next proposition describes, how the function
(fily)* () = (fil yo)* ()
H : Vi = R H(v) = :
(filyw )" (v) = (fil yo )" (v)
is related to the [-th column of H.
4.10 Proposition For any v € V; we have H)(v) = pri-(H(T;(v)) - e®).
Proof. For any y € §; the function f; can be written as

fily) = f(h(y)) = (lu(y),v) = (A +7") — (A + 5", 9)
= f(Aily+ (A) ') + (. —A?@) SRVARE)

and applying Proposition 3.15 with A = A;, a = —(A4)"'g®, a* = —AT'D,

a=— (g, 1) and a* = —a — (a,a*) = 0 leads for any i € {0 k} and any
v eV to

(fily0) @) = (fly ) (A" (v = (= A7) + (v, =(A)"'5")
= (Flyoy)” (T0)) = {0, (4)'5)
This implies for any i € {1, ..., k} the equation
(Hi(v)): = (filyo)" () = (fil y0)"(v)
= (o)) (T(0)) = (Flyy o) (Ti(0))

{(f!mn) (Ti(v)) = (flow)*(Ti(v))  ,ifie{l,.,l -1}
(floa) (1) = (flow) (Ti(v) ifie€{l, ...k}

)il JAfie {1, ...l —1}
)

_{ (Ty(v)
H(T(0)igng ifi € {1, k)
= pri (H(Ti(v)) - e?),
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which completes the proof. ]

Since f; satisfies the assumptions of the previous section, we can apply
Theorem 4.3 and Theorem 4.7 or Theorem 4.8 to f; and then use the affine
transformation 7 to obtain analogue results for f.

4.11 Theorem There exists 60 > 0 and for any | € {1,....k + 1} a bi-
Lipschitz function 61(0) ; prﬁ} (C’;l(};l) — V with 51(0)(0) = v, such that for any
wE pr{Ll}(Cg(Jg)l) we have

v sign(H (G (w));) = sign(w;) (4.6)

and for any I C {1, ...k + 1} containing | the mapping
m{wGW“|mH) € i) pry(w) € Aua} — R,
01 () = Y wi - (Vflyw) " (§" (brr (w)))

el

is an embedding. If for any i € {1,...,k + 1} the restriction f|yu is strongly
convex and ¥ f|y is Lipschitz, then §© can be chosen small enough such
that for any I C {1,....,k + 1} containing | the mapping ¢z(,01) is bi-Lipschitz.

Proof. Fixl € {1,...,k+1}. Then f; € C*() satisfies f;(e?) = ... = fi(e®),

0=Vfi(e®) =..=Vfi(e®) and for any i € {0, ..., k} the restriction fil o
l

is strictly convex. By Theorem 4.3, there exists some open neighbourhood

W, C R? of the origin and a diffeomorphism & : W, — V; onto its image with
£(0) =0 and D& (0) = Idg, such that

Y Y Hl(fl(ﬂ)))j :0<:>U)J:O

weW, je{l,....k}

For 9; > 0 small enough, such that C’gz C W;, we have by Corollary 4.4

v sign(Hi(&(w));) = sign(w;) (4.7)

and for any I; C {1,...,k} with 5}5; from Definition 4.6 the function

du : gzz — R4,
¢l Il sz (Vfl|U< >) (&(prfl(w)))
iel;
1 - Z wz vfl|U(0>> (&(pri(w)))

’LEIZ
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is according to Theorem 4.7 an embedding. If for any i € {1,....k + 1}
the restriction f|,@ is strongly convex and V f|; ) Lipschitz, then for any

i € {0, ..., k} the restriction flIU(i) is strongly convex and Vf[|U(i) is Lipschitz
l l

and by Theorem 4.8 §; can be chosen small enough such that &l,lz is bi-
Lipschitz.

With ¢; and  being constructed for any [ € {1,...,k + 1} we can define
6O = min{8 | I € {1,....,k +1}} > 0 and for any [ € {1,...,k + 1} the
function

&" oy (Cie)) = Ve 67 (w) = Ti&(pr (w),

which is well-defined by
T(&(pry (prip (Cse))) = T(&(Chw)) € Ti(&(Wh) € Ti(Vi) = V.

The function 61(0) is bi-Lipschitz, since the restriction of pri- to pr{Ll}(Cg(Jg)l)

is bi-Lipschitz (it eliminates the [-th component, which is zero), the restric-

tion of the diffeomorphism &; to the compact set prf(pr{Ll}(Cgfg)l)) = C’g(o) is

bi-Lipschitz and the affine transformation 7; is bi-Lipschitz whenever I; C

{1, .., kY.

Now fix j € {1,....,k+ 1} and w € pr{Ll}(Cgﬁg)l). If j =1, then

sign(H (&” (w));,) = sign(H(&" (w))i;) = 0 = sign(w,) = sign(w;),
if j < [, then with Proposition 4.10 and (4.7),
sign(H (¢ (w)),1) = sign((H (£ (w)) - e®);)

= sign(pry" (H (Ty(&(pri (w)))) - eV);)
= sign(H,(&(prj-(w)));) = sign(pr; (w);) = sign(w;)

and if j > [, then with Proposition 4.10 and (4.7),
sign(H (£ (w));,) = sign((H(E (w)) - e®),)

= sign(pr; (H(Ty(&(pr" (w)))) - e);-1)
= sign(H, (& (prj (w)));-1) = sign(prj (w);_1) = sign(w;) .

Fix I C {1,...,k+1} containing I and w € R**! with pr{ (w) € C%f' and
pry(w) € Ay. Setting

Ii={i = X003 () | 1€ INA{I}} C {1, ..., k}
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we want to show
11 (w) = (b o i o pri)(w).
Now pri-opr; = pryoprj as mappings from R*' to R? and for any i €
{1,...,k 4+ 1} we can use (4.5) to infer
(V lpo) ™ (& (e (w)) = (Vflyw) ™ (L& pri (pry (w))))
= (Vi o)™ (@or (pr (@) )

With Proposition 6.8 we have

Cbl[ sz (Vflow) 1( (pl"]( )

el

= sz‘ : hl((Vfl’hl—l(ym))il(51(131"%1(13#(7”)))))

el

= (3w (il o)™ (Glort (or ()

el

Writing * := &(pr7, (pr; (w))) to shorten the notation, we obtain

Z w; - (Vfi |h;1(U<i)))_1 (fl(PTE(PFzL(w))))

= Z w - (Vfl|Ul(i>)_1(*) + wy - (Vfl|Ul<o>)_1(*) + Z w; - (sz|Ulu—1>)_1(*)
= Z (pry-(w))i - (Vfil )~ (%) + Z (pry-(w))im1 - (Vfil o) 7 (%)
+ (1 — Z wi) . (Vfl’Ul(o))fl(*)
ien\{1}
= Z(prf( w); - (Vilyo) ™ () + (1 - Z(prf(w))i) (VAily) ™ (+)
= Cgl,fl (prf(w))
giving

D w) = (h o gy 0 pri) (w) .

The function prj- maps the set {w € R | pry(w) € Cf), pry(w) € Ag} bi-
Lipschitz onto 5‘;;0), gz~517 1, is an embedding and Ay is an affine transformation,
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hence also bi-Lipschitz. Consequently qSlol is an embedding and if for any ¢ €
{1,...,k+ 1} the restriction f|; ¢ is strongly convex and V |« is Lipschitz,
then 5(0 can be chosen small enough such that any o 1, 1s bi-Lipschitz and

then (bl ; is bi-Lipschitz as a composition of bi-Lipschitz mappings. O]

The mappings 51(0) are not compatible with each other, in the sense that
for I € {1,...,k+ 1} and j,1 € I we cannot conclude that for any w € Cj(t)l
we have &;(pri(w)) = &(prf(w)). In order to achieve this property, we have

to modify the functions & without violating (4.6).

4.12 Theorem There exists 0* > 0 and for any | € {1,...k + 1} a bi-
Lipschitz mapping & - pr{Ll}(C'djl) — V with & (0) = v, such that the follow-
ing properties are satisfied:

(i) ¥ v osign(H (G (w));) = sign(w;),

l7]6{177k+1} prr{l}(C’d+1)

(i) v ' & (w) = & (w),

Lje{l,. .. k+1} prr{l }(Cd+1)
(1) for anyl € {1,....,k+1} and I C {1,...,k+1} containing | the mapping
o {w € RM | pri(w) € O pryw) € A} — RY
o (w sz (Vo) (& (prr (w)))

el

is an embedding/bi-Lipschitz.

The first condition says, that the sign of the j-th component of w determines,
whether the tangent plane of f in (V f[y,) ™" (& (w)) lies below (positive sign),
lies above (negative sign) or coincides (sign equals zero) with the tangent
plane of f in (Vf|y,) (& (w)). The fact that & is defined on pr{l}(Cdfl)
ensures compatibility with the case j = [.
The second condition ensures, that the value of the function ¢;; from (iii)
does not depend on the choice of [ € I.
The last condition provides a bi-Lipschitz parametrization of a neighbour-
hood of relint(conv{g® | i € I}), which will be used later on to construct
the convex envelope in this neighbourhood.

The construction of ¢* and the functions & will be done successively,
constructing for any i € {0, ..., k+1} some 6®) > 0 and bi-Lipschitz mappings

élz) pr{l}(Cgl(f 1) — R? such that conditions (i)-(iii) are satisfied (with 0*

and & replaced by 6 and §l(i)) with the restriction, that (ii) is only required
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to be satisfied whenever [, 5 < i. The functions §l(i+1) are then constructed
from fl(i) by a bi-Lipschitz transformation of the argument, which ensures
the validity of (ii) whenever j <1+ 1 without violating (i) and (iii). Finally,
§* = 60+ and & = ¢ for any I € {1, ...,k + 1} will satisfy (i)-(iii).

Proof. We show that for any i € {0,...,k + 1} there exists 6 > 0 and for

any [ € {1,...,k + 1} some bi-Lipschitz function fl( pr{l}(Cg(fl) — V with

fl(i)(O) = v, such that the following conditions are satisfied:

CL): | e v esign(H(E (w);0) = sign(uy).
Lje{1,..., k+1}w€pr{l}(cdt)1)

PO e Vo= gl =g w),
Lie{l okt 1t weprf  (CFE)

C3(i): foranyl e {1,...,k+1} and I C {1,...,k+ 1} containing  the mapping

7 {w e RM | pri(w >ecgi,f, pry(w) € Ag} — R,

Yw) =" w; - (Vflun) € (prf (w)))

jerl
is an embedding/bi-Lipschitz.

For i = 0, by Theorem 4.11 there exists 6(°) and for any [ € {1,...,k + 1}
a bi-Lipschitz function 51(0) : pr{Ll}(C’g(Jg)l) — V' with 51(0)(0) = 0, such that
C1(0) and C3(0) are satisfied, C2(0) is also trivially satisfied, since no [, j €
{1,..,k+ 1} with [, j <1i =0 exist.

Now assume that for some i € {0, ...k}, 6 > 0 and ¢ pr{l}(C’g(J[)l) v,
l€{l,...,k+ 1}, satisfying C1(i)-C3(i) are already constructed.

Since for any | € {1,...,k + 1} the set pr{Ll}(lnt(Cg(: )) is a relatively open
neighbourhood of 0, by Corollary 6.4 the set fl (pr{l}(Cgﬁ)) is a neigh-
bourhood of fl(i)(O) = ©u. Hence by continuity of fi(i)l, there exists 0 <
D < 5@ gmall enough such that for any [ € {1,...,k + 1} we have
fgfl(pr{ii+1}(0§@r+ll>)) c & (priy (Cstt)). This ensures, that for any I €
{1,...,k + 1} the mapping

01 priy (CIEL) — R 0 (w) = (67) 7 (e (i, (W) + prygy (w)

is well-defined.
By C1(i), we have for any [,j € {1,....,k+ 1} and w € pr{l}(C(‘;{(M)) using
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H(ED (prfsy 1y ()iar) = sign((prfs,y, (w)),) = 0:

sign (&) 1€, (priiy (w)));) = sign (H(€ ?((55”)*%5“ <pr{z+1}< w))));i)

1
= $gn(pr@+¢}( ))

sign(w;) , ifj#i+1
0 Jifj=i+1"

Especially, (fl( )) (51(21(Pr{z+1}( )))i+1 = 0 and therefore

09 (), = R &gﬂmpﬂﬁ w))); ,ifj#i+1
P win Cifj=i+1

as well as

. i sign ((& Eaprnan(w)));) S ifj#i+1

sgn (0 w),) = | 20 (0 ER Gy () i 21
sign(w;y1) yifj=i+1

) sign(wy) yifj#i4+1

| sign(wip) L ifj=i+1

= sign(w;) (4.8)

and in particular 61@( 0) = 0. The restriction of (§l N~1o Z(Jr)l to pry; ZH}(C(?(J;}I))

is bi-Lipschitz as the comp081t10n of bi- Llpschltz functions, hence there exist
0 < ¢ < C, such that for all w,w’ € pry; er1}((](?:;1)) we have:

¢ |lw —w'lli < |I(g7)7HED (w)) — () THE (WL £ C - ||w —w']]; -
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This implies for all w, w' € pr{Ll}(C’?ér ;) the estimate

min{c,1} - [|lw — w'[|;
<c-|| pr{lzﬂ}( ) — Pr{Li+1}(w/)Hl + wip1 — wiy,|
< ") <l+1<pr{z+l}< w))) — (67 HED (pr iy (W) + [wirs — wl |
=116 (w) — 0 (") |x
= 1) THED (Prfiny () — () THED rEi gy W) + [wigr — wy,|

<C- Pf{z+1}( w) — pf{i+1}(w/)\|1 + [wipr — wiy |
< max{C, 1} - |Jw —w'||1, (4.9)

hence 6" is bi-Lipschitz. By (§”)71(&l;(priy,,,(w))) € priy, (CLE) with
(Sl(z)) (fl(i)l(pr{zﬂ}( Niz1 = 0 and |wiq]| < 8D < 6@ we can conclude

0" (w) € pr{l}(C’gf)l) The mapping

F ek, (CHL) =V, e (w) = €961 (w))

is well- deﬁned and bi- Llpschltz as composition of bi-Lipschitz mappings with

&0 =g767(0) = 7(0) =

Now we show that the mappings 51 1), I € {1,...k+ 1}, satisfy C1(i+1)-
C3(i+1).

C1(i+1):

For any [,j € {1,....,k+ 1} and w € pr{Ll}(C’g(ﬁl)) we have

sign(H (& (w)) 1) = sign(H (& (0] (w)) ;1) = sign(6” (w);) = sign(w;) .

C2(i+1):
Assume [,j € {1,...,i+ 1} and w € pr{LlJ}(C’g(ﬁl)).

If j =i+1, then pry, y(w) = pryy(w) =0, pr{ﬁ.ﬂ}(w) = pr{Lj}(w) = w and

sf*”(w):&fit”( ) = €5 (o (w) = €7 ((67)™ <s,+1<pr{z+1}< w))))
= &7 (&) HED, (prizayy (W) + prypeyy (w)) = &7(01 (w))
=& w)

and if [ =7 + 1, analogously {’ZZH)( ) = fj(-iﬂ)(w).

If 4,1 < i, then by 31gn(9l( )(w )j) =w; =0=w = sign(@l(i)(w)l) we have

61" (w) € prfy (O and according to C2(0):

S

D (w) = 70 (w)) = €70 (w)) .
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Furthermore, by

sign ((67) 1€ (prEs o1y (0)))) = sign(w) = 0,

sign ((67) 71 (€1 (prisay (w);) = sign(w;) =0,
we can conclude (£l(i))_1(§,§21 (pr{LHl}(w))) € pr{lm}(C'gl(f)l) and again by C2(i),

i)

01" (w) = ()€l 1<pr{z+1}<w>>> + Pripyay (w)
= (Mg 1(5521<pr{1+1}< ) + Pryieny (w)
= (€)EUE) T E (prfpny () + Py (w)
= (&) 1(55’1 prw}(w )) + Priigay (w) = 657 (w),

which gives us & (w) = fj(-i)(ﬁl(i)(w)) g(‘)(ej(” (w)) = é“j(“l)(w) as asserted.
C3(i+1):
Fixle{l,..,k+ 1} and I C {1,...,k + 1} containing [. Then the mapping

07 - {w e R | prf(w) € Cotly), pri(w) € Agpr} — R,

)

(
0\)(w) = pr;(w) + 6, (prf (w))

)

is well-defined, since for any w € R, pri(w) € Ct,) and [ € I imply
L L Cd+1 1L Cd+1

pry (w) € pry ( 5(2‘+1)) C pr{z}( sG+1) )

For any w € R with pri(w) € C§l,) and pr(w) € Agi, equation (4.8)

implies pri (61 (pri (w))) = 6" (pri (w)) and with

pr(©))(w)) = pri (pr;(w) + 61 (prf (w))) = 6" (prf (w)) € C4H}!
pr; (6 )(w)) = pr; (pr;(w) + 0" (prf (w))) = pr;(w) € Agss

the image of © iI is a subset of {w € R | pri(w) € C4F', pr(w) € Aga}.

Therefore we obtain (ﬁ(lﬂ ¢5(21)~ o @l(fl), since

&0 (pr(O) (w))) = 7017 (pri(w))) = &7 (pr (w))

and for any j € I we have @l(l])( ); = pry(w); = w;.

The function @l(’} is bi-Lipschitz, since for any w, w’ in the domain of ©; ; we
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can use (4.9) to calculate:

min{c, 1} - ||w — w'||;
< | pr;(w) — pr;(w)[|1 +min{c, 1} - || pry (w) — pry (w)]];
< | pr(w) — pry ()1 + [16{” (pr7 (w) — 6" (pry (w'))|x
—||pr1<@§’ <w> 011 (@)l + || pr7 (8] (w) — ) (w))[|x
= ||6(w) — O (w")[;

—Hprf(@l“ (w) — 6} (w ))II1+Hpr1<@§Z() o) (w")|h
= || pr;(w) — pr(w)]| + 10" (prf (w)) — 61" (prs (w))]]1
< ||pr1<w>—pr1<w>||1+max{c,1}-||pr1< ) — pri (w')]];

< max{C, 1} - ||w — w'||1

Since @l(} is bi-Lipschitz and ¢l 7 is an embedding/bi-Lipschitz, (+ ) is an

embeddmg/ bi-Lipschitz.

Finally, for 0* := §**1) and & := fl(kﬂ) for any [ € {1, ..., k+1} the conditions

C1(k+1)- C3(k+1) are eqivalent to (i)-(iii). O
Recall for any i € {1, ...,k + 1} the set U from Proposition 4.9 with the

o k1l
property, that for any @ € U® and y € Q\ |J U® we have
i=1

F@) > F@) + (VFED),y - 99)

and for any (y®);e; € [JU® the points y@, ...,y**) are affinely indepen-
icl
dent. For any i € {1, ...,k + 1} the mapping (V f| ) "' o & is continuous.

4.13 Definition Fiz 0 < ¢ < 6 small enough, such that for any i €
il, o, k+1} we have (Vf|U(i))’1(§f(pr{li}(0§jl))) C UY and define the func-
on

g pri (G = U9, gO(s) = (Vlyw) ' (€()).
Furthermore, for any non-empty I C {1,...,k + 1} define the set

S i={we A}, x C&H | V  w;>0&iel}cRH
i€{1,...,k+1}

Due to the <-relation in the definition of SY, the sets S? form a partition
of A2, x C¥F c RIHL
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4.14 Proposition For any w € S9, the simplex conv{g® (pr(w)) | i € I}
15 a maximal phase simplex of f.

Proof. For any i € I, Vf(g"(pr(w))) = & (pry(w)) € V takes by Theo-
rem 4.12 (ii) the same value, denoted by v. Foranyi € I and j € {1, ..., k+1},
we have by definition of S}; and Theorem 4.12 (i),

0 ,ifjel

sign(H(v);) = sign(H(&; (prf (w);.) = sign(pr (w),) = {_1 fier’

According to Proposition 3.7, for any y¥) € UY) we can estimate using
formula (3.3)

f(y(j))Z F(g (prr (w))) + (V (g9 (pr7 (w))), yV (prz( )
TV flpw) 1) = (0, (Vflpw) ™ v)>+< y¥)
—(flpo)* W) + (0, y9) = =(flyw)*(v) - H( ) + (v,y9)

f((vf|U(1)) () - <v,(Vf|U< ) (W) + (v, yP) = H(v)j
= f(g" (pr7 (w))) + (v, 57 = gO(pr7 (w))) — H( )ji
> fg® (pr7 () + (v, 59 — 9O (pr7 (w)))

with the first inequality being strict whenever y9) # ¢\ (prf(w)) and the

second inequality being strict whenever j ¢ I.
4 -~ k+1
By Proposition 4.9 and g (pri(w)) € U®, for any y € R?\ |J U® we have
i=1

Fy) > F(g9(pr1 (W) + (V£(g(pr7(w))), y — ¢ (pr7 (w)))
= (g (pr7(w))) + (v, — g (pr7 (w))) .

Altogether, we conclude for any 3’ € Q,

F) = flgW (orr (w))) + (0,5 = g (prr (w))) |

with equality if and only if v/ € {g®(prf(w)) | i € I}. Especially, v €
N 9f(¢® (prf(w))) and by differentiability of f in any g (prj (w)), i € I, we
i€l

have {v} = ﬂ f (g™ (prf (w))) and conv{g® (pry (w)) | i € I'} is a maximal
phase sunplex O

In S9 the previous Proposition provides a parametrization of maximal
phase simplices whose vertices lie in U®, ¢ € I, using only the d + 1 —
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|I| components whose index is not an element of I. The components with
index in I (which are non-negative) are now supposed to parametrize the
position within the respective maximal phase simplex in terms of barycentric
coordinates, but first we have to do a normalization since in general they do
not sum up to 1.

4.15 Lemma For any 6 >0 and ) # I C {1,...,k + 1} the mapping

kr:S) = {w e R | pr(w) € Agiq, pry(w) € CFH'Y,

-1
(ij> + W ,iEI

Jjel

w; de{l, . .d+r1}\I

(kr(w))i =

is well-defined and a bi-Lipschitz bijection.

k+1

Proof. First recognise that by definition of S9 we have S~ w; = 1 with w; < 0
i=1
whenever ¢ € {1,...,k+1}\ I, which implies >  w; > 1 and prevents a division

jel
by zero. Furthermore, x; is well defined, since for any i € {1,...,k + 1} \ I,
kr(w); = w; € [—0,0) and

dt1 .
Zprl(/@(w))i :Z/ﬁ(w)i :Z (ij> cw; = 1.
i=1 iel el jel
The Lipschitz continuity follows by
k+1
1= w<) w=1- 3 w<l+ > uy
j=1 jel FE{L e k1T GE{L e k1T

<1+ (k+1)-9

and Proposition 2.2.
We prove that x; is bijective by giving the inverse function

ki {w € R | pry(w) € Agyy, pr7(w) € O} — 52,
(1 — > w») cw; 1 €T

(k7 (w)); = Jelld N ,
w; el d+1}\ I
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which is well-defined, since for any ¢ € {1,...,k+1}\ I, k;(w); = w; € [—0,0)
and

d+1
Y=Y (e Y w)ws Y ow
i=1 iel Je{1,.. k+1}\I ie{l,..k+1}\T
k+1
= Zprl(w)i : (1 - Z wj) + Z w; =1.
i=1 FE{L ekt TN i€{1,0 k1T
By Y w;=1- > w;, the function ;' is indeed inverse to x; and
jEI FE{1 kit 1N
Lipschitz, since each component is Lipschitz as the product of two bounded
Lipschitz functions according to Proposition 2.2. O

We are now able to prove the main Theorem, a parametrization of a
neighbourhood of the maximal phase simplex conv{g™", ..., 7**11} such that
an expression for the convex envelope of f can be given in this neighbourhood
in terms of the parametrization. The proof follows similar lines as the one of
Theorem 4.7.

4.16 Theorem Recall Definition 4.13 and consider the mapping P : Aiﬂ X
Cd=F — R, which is given for 0 # 1 C {1,....k+1} on S? by

1

D(w) =) (ij)_ w; - g (pry (w)).

iel  jel

The restriction of ® to the set Aiﬂ X Cg_k 1s an embedding and for any
D#TC{l,. k+1} and w € S¢ the convex envelope of f in ®(w) is given
by the convexr combination

-1

conv(1)(@(w) = > (S w;) wi f(g pri (w))) (4.10)

il jel
of function values of f.

Proof. For any non-empty I C {1,...,k+ 1} and w € S?, (4.10) follows im-
mediately by Proposition 4.141 and Proposition 3.27, since for any i € I we
have w; > 0 and ) <ij) w; = 1.

i€l N jel
By Proposition 6.2 and compactness of A2 4 X C’gl_k , it suffices to show that
® is a continuous injection.
We first prove the injectivity of ®. Fix non-empty sets [,I" C {1,...,k +
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1} and w € Sy and w' € Sp with ®(w) = (') := y. Define J =
ge{l, . ,k+1} [w; >0} C ITand J := {5 € {1,..,k+1} | ) >
0} € I' Then pry(w) = prj(w) and pry(w) = pry(w’). By Propo-
sition 4.14, conv{g® (pri(w)) | i € I} and conv{g®(pri(w')) | i € I'}
are maximal phasle simplices of f and Proposition 3.27 irlnplies, that both
y=% (S w) wig®pri@)andy =3 (5 w;) wl- g (prfi(w))
ieJ \jeJ ieJ’ N jel
are unique stable phase splittings. Since the sets U®) are pairwise disjoint,
uniqueness implies J = J' and for any i € J, g® (prf (w)) = ¢ (pry(w')) and
( > wj) lwi = ( > wé) lwg. For any i € J, ¢ is bi-Lipschitz as the com-
jeJ jET

position of bi-Lipschitz functions and hence prt(w) = pry(w) = pri;(w') =
pri,(w') = pry(w’). With the bi-Lipschitz bijection x; from Lemma 4.15, we
have kj(w) = Kk (w’) and hence w = w'.

Next we show that ® is continuous. Fix I,J C {1,...,k}, w € S¢ and a se-
quence (w™),cn C SY converging to w. For any i € J, the component w; is
non-negative as the limit of the sequence (w("))neN of non-negative numbers,

hence J C I. Furthermore, for any i € I'\ J the component wj is zero, since it
(n)

is non-negative and the limit of the sequence (w;"’),en of negative numbers.

Therefore pry (w) = pry(w) and

O(w) = Z <ij>

-1 -1

w; - g (pry(w)) = Z (ij) w; - g(i)(prﬁ(w))

i€l jerI e  jed
_ ™)) = 1 ™). . ¢ (prs (w™
=3 m(w)e- g (rs (lim w)) = tim 3k (™), - 6 (pri ()
i€J i€J
-1 ]
= Jim (Z (Zw§- )l i) = Jim (),
icJ geJ

where the continuity of the functions x; and ¢ for i € J was used. No-
tice that here was no loss in generality assuming that the whole sequence
(w™),en lies in the same set S4 of the finite partition of A, x C¢~*. If
not, the sequence can be partitioned into subsequences with each subsequence
lying entirely in one of the sets S5. Since the values of ® in any such subse-
quence with infinitely many elements converge to ®(w), the whole sequence
®(w™) converges to ®(w). O

4.17 Corollary If for any i € {1, ...,k + 1} the restriction f| ) is strongly

convexr and has Lipschitz continuous gradient, then for any 0 < & < & the
restriction of ® from Theorem 4.16 to the set Ak+1 X Cg,_k 1s bi-Lipschitz.
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Proof. Fix 0 < §' < §. The restriction of ® to the convex set A, x Cf~*
is an embedding and {S? | @ # I C {1,..,k + 1}} is a finite partition of
Aiﬂ X C’g_k, such that the restriction of ® to S¢ is given by the bi-Lipschitz
function ¢} o k7. Since ®(relint(A2,, x C¢~)) € R?is open by Corollary 6.4
and A, x C&7 is compact with ®(AY, | x C&) C ®(relint(A2, , x C¢H)),
the restriction of ® to Ailﬂ x C97F is bi-Lipschitz by Corollary 2.6. O

The convex envelope of a closed and continuously differentiable function
satisfying the superlinear growth condition (3.7) is known to be continuously
differentiable [10, Theorem 3.2]. Local Lipschitz-continuity of the gradient
(even local Holder-continuity with 0 < o < 1) is also inherited by the convex
envelope [10, Theorem 4.2]. We close this section by showing, that the convex
envelope conv( f) constreuted in Theorem 4.16 admits on int(® (A, , x C4F))
the expected regularity. It is worth noting, that global regularity of f is not
required.

4.18 Corollary Under the hypothesis of Theorem 4.16, the function conv(f)
is continuously differentiable on int(®(A],, x C4=FY). If additionally for any
i€ {1,....k + 1} the restriction flyw is strongly conver and has Lipschitz

continuous gradient, then for any 0 < ¢’ < § the gradient of conv(f) is locally
Lipschitz on int(®(AY,, x C&F)).

Proof. For the sake of convenience, we set throughout this proof f. :=

conv(f).

For the first part, fix yo € int(®(A], x C§")). By @~ '(y) € A, x CFF,
there is some iy € {1,...,k + 1} with pr; (®7'(yo)) > 0. Since pr;, and
d~! are continuous mappings, we can choose r > 0, such that B,(yy) C
int(®(A2,, x CF*)) and pr; (271(B,(y0))) C Ry. For any y € B, (yo) let
I C {1,...,k + 1} be the unique non-empty subset with w := ®~!(y) € S9.
Theorem 4.7 gives

1

feln) = 30 (Do ws) wi £ (g pri (w))

i€l jel
and defining I’ := {i € I | w; > 0} Theorem 3.21 implies with w;, > 0,
Ofely) = () 0f (9 (pr7 (w)) € 8f (9" (pr7 (w)) = {Vf (¢ (pr7 (w)))} -
iel’

Proposition 3.5 and convexity of f. imply Of.(y) # 0, hence Jf.(y) =
{Vf(g" (pr{(w)))} and by Proposition 3.6 f. is differentiable at y. Since
y € B,(yo) was arbitrary, fc|, ) is convex and differentiable, therefore con-
tinuously differentiable according to Proposition 3.2.
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Concerning the second part, assume y, € int(@(AilJr1 x C47%)) and r is
small enough, such that B,(yo) C int(®(AJ,, x C5*)). For any § # I C
{1,..,k + 1}, on B.(yo) N ®(S9) the gradient mapping of f. is given by
Vf.= Vfoglopr; od! which is Lipschitz as the composition of Lips-
chitz functions. Since {B,(yo) N®(S?¢) | 0 # I C {1,...,k+1}} is a partition
of B,(yo), continuity of V f. on B,(y) implies that V f, is Lipschitz on B, (y)

by Lemma 2.5. [
5 Examples
5.1 Example Consider the functions fo: R* = R, fo(z) = 5- (2} +23) and
f1 : R2 — R,
T —1 10 T —1 _
L. ! : N yif oy <ap—1

N

fl(x): 2 —1 9 _1> <x1_1> fo . 1 .
. . . , 9 1 —

'I‘Z _1 2 LEQ

The function fo s smooth with V fo = idg and Hy, = Ids, especially has Lip-
schitz continuous gradient and is convex with modulus 1 according to Propo-
sition 8.10. By (V fo)™' = idge, the Legendre transform of fo is given by

Is = Jo.
The function f1 is continuously differentiable with
rp—1
! ) ,ifre <mxp—1
2 X2
Vfl R4 — R, Vfl(l'> =
2(ZL‘1 — 1) — X9 X
s if o >x —1
—([L’l — 1) + 21‘2

and has Lipschitz continuous gradient by Lemma 2.5. Especially V fi is lo-
cally Lipschitz and we can calculate the generalized Hessian by

r{Idz} Cifay <y —1
1+t —t
IV f1(z) = { —t 1_|_t> | 0,1]} , ifxe =2 |
2 -1
‘ 1
k{ -1 2>} 7Zf5L‘2>ZL‘1
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For any © € R? we have 0,V fi(z) C PD3(2) (see Definition 3.9) and by
Proposition 3.10, f1 is convexr with modulus 1. By

(Vi) 1 R* = R?

1
(Ulv+ ) 77;fv2§01
Vi) tw) = 2 ,
(Vi) (@) 1 34 2v1 + vg )
3° v —|—2’U2 ,ZfU2>U1
1

a straightforward calculation shows that the Legendre transform of fi is given
by

fi i R* = R?
Fr () = %v% + v + %vg , if vg <y
! %-(v%+3v1—|—vlv2—l—v§) cifue >

Now define g : R — R, t+— 1/2+ xg, (t) - (t — /) and the sets Q= {x €
R? | 2y < g(z2)}, Q1 = {z € R? | 21 > g(z2)} and Q := Qo U Q. See
Figure 1 (a) for a visualization of the shape of Qo and ;. The function

f()(]f) s ZfI S Qo
f1 (ZL‘) s Zfl‘ S Ql
s continuously differentiable with locally Lipschitz continuous gradient and is
locally convex with modulus 1. Furthermore, (fla,)* = (f5)]a, and (fla,)* =

(fH)la,- Solving for v € R the equation fi(v) = ff(v) leads for vy < vy to
vy = 0 and for ve > vy to vy = 3 + vy — /9 + 6vg, hence with

h:R—=R, xg, (s) (3+s—+v9+6s)

f:Q—R, f(x):{

we have
fo(w) = fi(v) & v = h(vy).
With Proposition 3.16 we can calculate
(V(0) = V£5(0),e1) = (V1) 7H(0) = (Vfo) T (0), 1) = {er,e1) =1
and conclude
>0 , Zf’Ul > h(’l}g)

fi) = fo(0) =0 ifvi = h(v) - (5.1)
<0 , Y;f’Ul < h(’UQ)
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-3 L L L L I I Ul -3 [ L L I I I
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(a) blue: Qq, orange: O (b) blue: Vf(Qp), orange: Vf(£2;), black
line: {v € R? | (fla,)*(v) = (fla,)*(v)}

Figure 1: Visualization of the domain of f (left) and the gradient set of
fla, and flq, (right) with the solution curve of (f|q,)*(v) = (f|a,)*(v). The
dashed orange line indicates the discontinuous second derivative.

In order to show (fla,)*(v) = (fla,)"(v) < v1 = h(vy), we need to prove for
any s € R, (h(s),s) € V() NV [f(Q) (see Figure 1 (b)).
For s <0 we have h(s) =0 < 1/2 = g(s), hence (h(s),s) € Qy = V (), as
well as (h(s),s) = Vf(1,s) and hence (h(s),s) € Vf(21). Now we assume
s > 0 and infer (h(s),s) € V() by

h(s) < g(s)

1
(:)3+8—\/9+68<§+8—\/§
5
<:>§+\/§<\/9+65

25
@Z+5\/§—I—s<9—l—63

11
<:>0<Z—5\/§+5s

@O<3+5 L \/_2
5 9 S .

In order to show (h(s),s) € Vf(§21), we define the affine transformation

1 3+ 2v;+v
D2 2 _ 1 2
T:R %R,T('U)—B ( 1+ 200 )
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and show T(h(s),s) € Q; with T'(h(s),s)s > T(h(s),s)1 — 1, then the asser-
tion follows by V f(T(h(s),s)) = (h(s),s). Now calculate
1 [(342n(s)+s\ 1 [9+3s—2y9+6s
T(h(s), ) = 3 ( h(s) 4+ 2s ) T3 (3+35—\/m>

and by s >0 and h(s) =3+ s —+/9+6s < s we have

1 1

T(h(s),s)1 — 1= §(2h(s) +5) < g(h(s) +25) = T(h(s),s)a.
Substituting 3 =32-3+35s—v9+6s) >3- (3+3s—/(3+5)?)=2s>0
leads to s = ( 2+ 35 +v4+65) and therefore to

\/9+6s:\/9—4—|—63’—|—2\/4+6S’:\/1+2\/4+65’+4+65/

=1++v4+65
and

L /976s IV B ey e
T<h<s>,s>:(2” ;9+63>=(3+ 5 4”‘5).

s) € Qy by
T(h(s),s)1 > g(T'(h(s), 5)2)

5 1 1
<:>§+S/—§\/4+6S/>§+S/—\/;
7
<:>§+3\/3’>\/4+6s’

49
o 2121V + 95 > 4+ 65

We can check T (h(s),

4
& §+21\/§+35’ > 0.
The curves
a:R—=R?% a(s) = (Vflg,)(h(s), s)
and
= (Vfla,))(h(s), 5)

B:R—R? B(s)

are well-defined, as well as the function

¢:[0,1] x R — R?,
¢t s) = (1 —1t)-als) +t-5(s),
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-1k —_—
2L
=35, . . | | . .
3 2 & -3 -2 -1 0 1 2 3
(a) blue: Qp, orange: Qq, (b) blue: Qg, orange: 4,

green: « (left) and S (right) green: ¢([0,1] x R)

Figure 2: The boundary of the green area is given by the curves a and
and the connecting straight lines represent the sets {¢(t,s) | t € [0, 1]} for
several fixed values of s.

visualized in Figure 2. Since flq, and fl|o, are restrictions of strictly con-
ver and continuously differentiable functions respectively, for any s € R the
equality (Flo,)"(h(s).) = (Flo,)*(h(s),s) implies {(h(s),s)} = Of(a(s)) N
Of(5(s)). For any (t,s) € [0,1] x R Proposition 3.22 gives

(conv(f))(o(t,5)) = (1 = #) - flals)) +1- f(B(s))

5),5)
) =o(t',s), then

and hence O(conv(f))(o(t, s)) = {(h(
If (t,s), (t',s') € [0,1] x R with ¢(t, s

{(h(s),5)} = O(conv(f))(4(t, 5)) = Oconv(f))(4(t', s)) = {(R(s"), s)}

and therefore s = s’ as well as t =t by a(s) # [(s) and ¢ is injective.

Assume x € R*\¢([0, 1] xR) C QoUSQy. By Proposition 3.1/ the function hy :
R? = R, ho(u) = (Vf(z),u) — f5(V[f(x)) minorizes fo with ho(z) = fo(x)
and the function hy : R? — R, hy(u) = (Vf(z),u) — f{(Vf(x)) minorizes
f1 with hy(z) = fi(x). If x € Qq, then Vf(z) € {v € R* | vy < h(v2)} and
by (5.1) we have f§(z) > fi(z). Now f(z) = fo(x) and hy < hy implies
Vi(z) € df(x) # 0 and (conv(f))(z) = f(x). Analogously, if x € Qo we
conclude Vf(x) € {v € R | v; > h(v)}, fi(z) < fi(z), ho > hy and
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(conv(f))(z) = f(z) by Vf(z) € df(x) # 0. This finally proves

(I—=t)-a(s)+t-5(s) , ifz=0(ts) € o(0,1] x R)
f(x) , if z ¢ ¢([0,1] x R)

conv(f)(x) = {

5.2 Remark The function f in the previous example is not closed, but for
e > 0 the restriction of f to the set {z € R? | |z; — g(z2)| > €} is closed
and with ¢ sufficiently small the construction of the convex envelope remains
unchanged. *

5.3 Example Consider the sets Qy = R*\ B1g(2,0), = B15(2,0) and
define for Q := Qg U Qq the function

f: Q=R

Flan,22) = {%(w% vad) L ireq
’ 1
4

(wy =D+ 22 | ifreQ’

which is closed, smooth on int(§) and strictly convex on each convex subset
of its domain. Calculate

_ (171,$2)T ERS int(QO)
Vf(r)= {((361 —1)%,22)7 | ifx €int(Qy)
Id, , if x € Int(Qp)

Hy(z) = (3(3:1 —1)2 0
0 1

) s Zfl' € Hlt(Ql>

in order to see, that f is not locally strongly convex in e € Qy, since Hf(e(l))
is singular. Since flq, and flq, are restrictions of strictly convex functions
respectively, the gradient mappings Vf|im(go) and V f i) are injective, the
Legendre transforms are well-defined and given by

1
(Flins(an)" = VA(Int(Q0)) = R, (fliwen)"(v) = 5(0F +v3),

X . . 3 1
(f‘int((h)) : Vf(lnt(91)) X R, (f|int(91)) (v) = v + 1”?3 + ng-

The equation (fla,)*(v) = (fla,)*(v) can be solved explicitly in this situation
and the solutions are described by

va = vy - (—2v; + 31)%/3 +4) (5.2)
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2 2

1F 1

0 0

1 -F

2 2
3L, . . . . . O -3k, . i . . . .
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
(a) blue: Qq, orange: O (b) blue: Vf(Qp), orange: Vf(£2;), black

line: {v € R? | (flao)*(v) = (fla,)*(v)}

Figure 3: Visualization of the domain of f (left) and the gradient set of f|q,
and fl|g, (right) with the solution curve of (f|o,)*(v) = (f|a,)*(v).

with vy - (—2v; + 31)1/3 +4) > 0. Solving a cubic equation, one sees that

—2v1+3v1/3+4>0<:>v1<2+ (—2\/_)1/3 ((4+\/—))1/3

with ¢ ~ 4.47 > 0 and therefore necessarily 0 < vy < c¢. The analytical
proof, that any (vy,ve) satisfying vy € [0,c| and (5.2) lies in the intersection
VI(Q) NVf(§) (and is therefore a solution of (fla,)*(v) = (fla,)*(v)) is
not very enlightening and therefore omitted here, but it should be emphasized
that Qo and Qy are chosen particularly to ensure this, see Figure 3 (b). We
now obtain a continuous parametrization of the solutions of (f|a,)*(v) =

(fla)*(v) via

v —e.c = R, w(s) = (|s], sign(s) - \/Is] - (~2ls| + 3[s]V3 + 4)),

which is in fact a loop since v(c) = (¢,0) = v(—c) (Figure 3 (b)). The image
v([—e, c]) is a differentiable manifold, since it can be represented locally as
the graph of a differentiable function. This is a consequence of Theorem 4.7
and can be seen in this case, by the fact that v|oe) and v|(_o) are graphs of
differentiable functions and }91}15 vh(s) =00 = £{I}) vh(s) as well as £% vh(s) =

—00 = li{n vh(8). If we had solved (fla,)*(v) = (fla,)*(v) for vy instead for vy

(which is much harder), then we would have obtained another parametrization
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E o i 2 3 y s o 0 i >
(a) blue: Qq, orange: €y, (b) blue: Qq, orange: 4,

green: f|int(QO))*1 owv (outer loop) green: ¢([0,1] x [—¢,c]/{c ~ —c})
and fling(0,)) " o v (inner loop)

Figure 4: The boundary of the green area in the right picture is given by
the loops (V flint(ay)) " 0 v and (V flina,)) o v and the connecting straight
lines represent the sets {¢(t,s) | t € [0,1]} for several fixed values of s.

of the same loop. The compositions (V flisay) " 0 v and (V flimt@y)) ' ov
are continuous loops, whose images are manifolds, but since f is not strongly
convex in eV, the Lipschitz-continuity is lost as one can see in Figure 4.
Similar arguments like in Theorem 4.16 show, that the mapping

¢ :[0,1] x [—¢,c]/{c~ —c} = R?,
$(t,5) = (1 =)+ (VSlins(0) " (0(8)) + ¢+ (Vflinecn) ™ (v(5))

is injective and hence an embedding. For any x = ¢(t,s) € ¢([0,1] x
[—c, c]/{c ~ —c}), the convex envelope of f is given by

(conv(f))(x) = (1 =) - F((V flins(0) ™ (v(3))) + £+ F((V Flinwcn) ™ (0(5)))

since for any s € [—c,c|/{c ~ —c} by strict convexity of the functions
2(@? + 23) and Lz — 1)* + 23 we have v(s) € Of|ay ((V flint@o) ™ (v(s)))
and v(s) € df|a, (V flmsn) ' (v(5))), hence by (fla)*(v) = (fla,)*(v) also
v(s) € Of((V flintcoo)) ™ (v(5))) NOF((V flinsc0)) " (v(5)))-

5.4 Remark The reasons for the lack of smoothness of the curves in the
previous two examples are different. In Example 5.1, the discontinuity of
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the second derivative causes a jump in one of the eigenvalues of the Hes-
sian although the modulus of convexity, which is determined by the smallest
eigenvalue, remains constant on €2;. Since f is locally convex with modulus 1,
Corollary 4.17 guarantees Lipschitz continuity of the parametrization ¢ and
the example shows, that we cannot expect more regularity. In Example 5.3,
f is strictly but not strongly convex near e!), since one of the eigenvalues
of the Hessian is zero. The parametrization ¢ is continuous according to
Theorem 4.16, but not Lipschitz. *

In [2] we investigated relaxation models in soil mechanics, which involved
the convexification of a condensed energy of the form

(3/2 - T(y1>>3—

FR SR F) = 5l - En

(5.3)

with b > 0, r : R — R compactly supported and concave on its support and
(-)+ denoting the positive part.

In the special case Vb - (Ymaz — Ymin)/2 < 7(Ymin + Ymaz)/2 We were able to
give an explicit expression for the convex envelope [2, Theorem 2]. Since the
detailed calculations can be found in this paper, we just give a short sketch
of the construction omitting extensive calculations or proofs.

5.5 Example Fit Ymin, Ymaz € R, With Ymin < Ymaz,

R = {T € C(R) | Supp(T) = [yminaymaz]arhymm]’ymaz] concave}

and consider for b > 0 and r € R the function f as in (5.3).

The function f is continuous, partially differentiable with respect to the sec-
ond argument and continuously differentiable in (R \ {Ymin, Ymaz}) X R with
locally Lipschitz continuous gradient. In [2, Theorem 2/, the convex envelope
of f is constructed assuming that

\/B . Ymaz — Ymin S 7a(ymzn + ymax> ' (54)
2 2

The strategy is, to find pairs of points v,y € R? with df(y) N df(g) # 0,

then Proposition 3.22 gives the convex envelope of f on conv{y, g} by affine

interpolation of f(y) and f(g). Since g : R* - R, g(y) = %y% + ﬁy% is

a strictly convex function minorizing f and coinciding on R? \ (Ymin, Ymaz)

with f, it is sufficient to consider y,§ € [Ymin,Ymaz] X R. Assuming y; €

(yminyymax) and gl S {yminvymax}f we 7"60097”26 that DZf(y) = DQf(g) and
f(y) = T,f(y) are necessary conditions for Of(y) N Of(g) # 0. If yo <
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r(y1), the second term in the definition of f(y) vanishes and these necessary
conditions simplify to

b
b+1

Yo = Yo
B 1
b4 1

Ya .

(71— )* + (T2 — y2)?

The solution pairs can be parametrized by the following four pairs of curves
+ _ Ymin + s + o Ymin
amin(s) - <:|:\/E S) ) mm(s) - (j:b‘f‘Tbl . S) )

+ _ [ Ymaz — S + o Ymax
amax(s) - (ﬂ:\/[_? S) ) mam(s> - <j:b+7bl . S) ;

With 5 € (Ymin, Ymae) taking any value, such that pry(at, (s)) < r(pry(a,, (s))

min
or pr Oéi S S r{pr O{i S . The curves Oé:t- and O./i intersect for
2\ max 1\Mmaz min mazx

S = (Ymin + Ymaz)/2, therefore only 0 < s < (Ymin + Ymaz)/2 are considered
as possible vertices of one-dimensional phase simplices and the triples

ymin+yma$ .
maz —Ymin ? bl | Ymaz—Ymin ? o+l | Ymazr—Ymin
:I:\/E'y 2y :i:\/Ey 2y j:\/Ey 29
are reasonable candidates for the vertices of two-dimensional phase simplices.
Finally, we want to find y™V,y® € R? with ygl), yf) € {Ymin, Ymaz } Satisfying
Of (yM) M of(y®) # 0. The necessary condition Dof (yV) = Dyf(y®)

enforces yél) = yf) and assuming yB # y? gives another two pairs of

curves
+ _ Ymin + _ Ymax
oo = (U)o = ().

b+1 Ymaz —Ymin
2

NG will lead to further one-dimensional phase sim-

where only s >
plices.

By affine interpolation along each potential phase simplex constructed above,
the resulting function can be proven to be convex and minorizing f, hence
coinciding with the convezr envelope of f [2, Theorem 2]. The construction
scheme is visualized in Figure &5 (a). The construction crucially relies on
the fact, that the curves o, and o, do not leave the part of the domain
of f (until they intersect), in which the second term of f wvanishes. This
is ensured by (5.4) and concavity of T|jy,..yme]- Lf we drop this assump-

tion, the curves can cross the line yo = r(y1), at which the second derivative
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(a) blue dashed line: Graph of r and —r, (b) blue dashed line: Graph of r and —r,
green: Area on which the convex envelope green: Area on which the convex envelope
of f differs from f of f differs from f

Figure 5: Construction schemes for r(y;) = c¢- (1 —y?) - (y; +4) with ¢ = 0.36
(left) and ¢ = 0.5 (right). The straight lines and triangles illustrate the one-
and two-dimensional phase simplices.

of f is discontinuous and the local modulus of converity suddenly changes.
For y € (Ymin, Ymaz) X R and § € {Ymin, Ymaz } X R the necessary conditions
Dy f(y) = Dof () and f(g) = T,f(g) still can be solved and the correspond-
ing curves o, and o, show a similar non-smooth behaviour as in Exam-
ple 5.1. For illustration purposes, we give without a proof in Figure 5 (b) the
construction scheme for a function r € R not satisfying (5.1).
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6 Appendix

6.1 Topology

6.1 Definition For topological spaces (X,7x) and (Y,7y), a mapping f :
X — Y is called an embedding, if it is a homeomorphism onto its image,
ie. if f: X — f(X), © — f(x) is a homeomorphism with f(X) carry-
ing the subspace topology Tp(xy := {ON f(X) | O € 7v}. FEquivalently, f
is continuous, injective and the inverse mapping f=' : f(X) — X is also
CONntinuUoOuUs.

A continuous injection is not necessarily an embedding, since the inverse
function in general does not need to be continuous. Nevertheless, any con-
tinuous injection from a compact space into a Hausdorff-space is an embed-
ding [6, Proposition 1.4.3].

6.2 Proposition Assume (X, 7x) is a compact topological space, (Y, Ty) is
a Hausdorff-space and f : X — Y 1is a continuous injections, then f is an
embedding.

Another situation, in which a continuous injection is automatically an
embedding is the Theorem of invariance of domain. It states that a continu-
ous injection of an open subset of R™ into R™ is an embedding, which is even
an open mapping (maps open sets to open sets) [6, Theorem 10.3.7].

6.3 Proposition IfU C R" is an open subset and f : U — R™ is an injective
continuous map, then V := f(U) is open and [ is a homeomorphism between

U and V.

6.4 Corollary If X C R? is an affine subspace of R? with dim(X) = n,
U C X s relatively open and f : U — R™ is an injective continuous map,
then V := f(U) is open and f is a homeomorphism between U and V.

6.2 Linear Algebra

Recall the notation of Definition 3.9.

6.5 Proposition For 0 < u < L < oo, the set PDﬁ(d) is convez, if
L < oo it is compact and if additionally p > 0 it is a subset of PD(d)

1

with (PDy;(d))~* = PD}_, (d).
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Proof. The set PD/(d) is convex, since for any A, B € PD’/(d) and ¢ € [0, 1]:

plIRl? = tullRl* + (1 = ulh]|* < t- KT Ah+ (1 —t) - k" Bh
=hTt-A+(1—1t)-B)h=t-h"Ah+ (1 —t)-h"Bh
< tL||h]]* + (1 = t)L[|R|[* = L||A]]*.
Any matrix A € ]RdXd has d real eigenvalues A1, ..., A\y € R and we can denote

with A (A), )\mm(A) € R the smallest and largest eigenvalue of A. We now
prove

PD%(d) = {A € R | 11 < Apin(A) < Aaw(A) < L}

sym

For A € R%x? the spectral theorem states that there exists an orthogonal
matrix ) € R%¢ and a diagonal matrix whose diagonal entries are A, ..., \g
with A = QT DQ. The equality

{R"An | ||h]] =1} = {hT "DQI | 17l = 1} = {n"Dh | ||h]| = 1}
- {Z /\ h2 Zh2 = 1} mm( ) max(A)] .

shows, that A € PDﬁ(d) if and only if p < Apin(A) < Apaz(A) < L. Now
assume L < oo. By AT = A the spectral norm of A is given by ||A|] =

| Amaz(A)], hence PD /(d) is bounded. Since RE? is a closed linear subspace
of R™? and for any h € R? the mapping ¢, : R4 — R, A — hTAh is
continuous,

PDE(d) = Ret 0 () @i (lln, LlIRI) )

heRd

is closed as intersection of closed sets and consequently PDﬁ(d) is compact.
If additionally g > 0, then all eigenvalues of any element in PDfL (d) are
positive, hence PDﬁ(d) C PD(d) € GL(d). This leads to

(PDL(d) " ={A e R | 11 < Apin (A1) < Anaa(A71) < L}
= {A € R;lgjrg ‘ S )‘max(A)_l < Amin (A) ! < L}
={A¢c R?gjﬂi | L7 < Amaz(A) < Amin(A) < /Lil} = PDZ:l(CD
as asserted. O

6.6 Definition For ¢ € {1,...,d + 1}, q points 2V, ..., (9 € R? are called
affinely independent, if the points 3 — W 2@ — 2z gre linearly inde-
pendent.
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6.7 Proposition For ¢ € {1,....d + 1} and V..., 2@ € R?, the following
statements are equivalent:

(i) 2N, ..., 29 are affinely independent,

(ii) dim(span({z™,...,2@})) = ¢ -1,

q q .
(iii) if M1, ..., A\, € R with ;/\ =0 and ;)\ix(’) =0, then \y = ... =\, =
0. - -

6.8 Proposition If h € Aff(m,n), then for any ¢ € N, 2V, .. 2@ ¢ R™
q
and Ay, ..., Ay with Y \; = 1 we have

i=1

q

h(i Aoz =Y "N h(2).

i=1

FEspecially, if U C R™ is convez, f:U — R is (strictly/strongly) conver and
h € AfT(d), then h(U) is convex and foh™': h(U) — R is convex.

76



References

1]

[10]

[11]

[12]

BEHR, F., AND DOLZMANN, G. A Note on Clarke’s Generalized Ja-

cobian for the Inverse of Bi-Lipschitz Maps. Journal of Optimization
Theory and Applications 200, 2 (2023), 852-857.

BEHR, F., DOLZMANN, G., HACKL, K., AND JEZDAN, G. Analytical
and numerical relaxation results for models in soil mechanics. Contin-
uum Mechanics and Thermodynamics 35, 5 (2023), 2019-2041.

CLARKE, F. Optimization and Nonsmooth Analysis. Canadian Mathe-
matical Society series of monographs and advanced texts. Wiley, 1983.

CLARKE, F. H. On the inverse function theorem. Pacific Journal of
Mathematics 64, 1 (1976), 97 — 102.

CoBzAS, S., MICULESCU, R., AND NICOLAE, A. Lipschitz Functions.
Springer International Publishing, 2019.

Dieck, T. Algebraic Topology. EMS textbooks in mathematics. Euro-
pean Mathematical Society, 2008.

FaBiaN, M., aAND PREIss, D. On the Clarke’s generalized jacobian.
In Proceedings of the 14th Winter School on Abstract Analysis (1987),
Circolo Matematico di Palermo, pp. [305]-307.

FABIAN, HIRIART-URRUTY, P. On the Generalized Jacobian of the

Inverse of a Lipschitzian Mapping. Set-Valued and Variational Analysis
30, 1 (2022), 1443 — 1451.

Fusek, P., KLATTE, D., AND KUuMMER, B. Examples and Coun-
terexamples in Lipschitz Analysis. Control and Cybernetics 31 (2002),
471-492.

GRIEWANK, A., AND RABIER, P. J. On the smoothness of convex
envelopes. Trans. Amer. Math. Soc. 322, 2 (1990), 691-709.

HIRIART-URRUTY, J., AND LEMARECHAL, C. Conver Analysis and
Minimization Algorithms I: Fundamentals. Grundlehren der mathema-
tischen Wissenschaften. Springer Berlin Heidelberg, 1996.

HIRIART-URRUTY, J., AND LEMARECHAL, C. Conver Analysis and
Minimization Algorithms II: Advanced Theory and Bundle Methods.

Grundlehren der mathematischen Wissenschaften. Springer Berlin Hei-
delberg, 1996.

7



[13]

[18]

[19]

[20]

78

HiriArT-URRUTY, J.-B., STrRODIOT, J.-J., AND NGUYEN, V. H.
Generalized Hessian matrix and second-order optimality conditions for
problems with C1! data. Applied Mathematics and Optimization 11, 1
(Feb 1984), 43-56.

IMBERT, C. Support functions of Clarke’s generalized jacobian and of
its plenary hull. Nonlinear Analysis: Theory, Methods and Applications
29, 8 (2002), 1111-1125.

KuMMER, B. Lipschitzian inverse functions, directional derivatives, and
applications in CM' optimization. J. Optim. Theory Appl. 70 (1991),
561-581.

Pourciau, B. H. Analysis and optimization of Lipschitz continuous
mappings. Journal of Optimization Theory and Applications 22 (1977),
311-351.

PALES, Z., AND ZEIDAN, V. Infinite dimensional generalized Jacobian:
Properties and calculus rules. Journal of Mathematical Analysis and
Applications 344, 1 (2008), 55-75.

RABIER, P. J., AND GRIEWANK, A. Generic aspects of convexification

with applications to thermodynamic equilibrium. Archive for Rational
Mechanics and Analysis 118, 4 (Dec. 1992), 349-397.

ROCKAFELLAR, R. Convex Analysis. Princeton Landmarks in Mathe-
matics and Physics. Princeton University Press, 1997.

ROCKAFELLAR, R. T. Conjugates and Legendre Transforms of Convex
functions. Canadian Journal of Mathematics 19 (1967), 200-205.



