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1 Introduction

Calculating the convex envelope of multivariate functions plays an impor-
tant role in optimization and hence in many fields of applied mathematics,
physics and mechanics. It is well known that the convex envelope of some
lower semi-continuous, superlinear growing function f : Rd → R in some
point x ∈ R can be obtained by affine interpolation of function values f
in not necessarily unique points x(1), ..., x(q) ∈ Rd with q ≤ d + 1. If these
points are unique and affine independent, the simplex conv{x(1), ..., x(q)} is
called the phase simplex of x. Seeking to calculate the convex envelope of
f in a neighbourhood of x, a natural approach is to vary the vertices of
the phase simplex conv{x(1), ..., x(q)} of x within respective neighbourhoods
U (1), ..., U (q) of x(1), ..., x(q), looking for further phase simplices. We show
that this procedure succeeds whenever the phase simplex of x is maximal
in the sense, that it is not the face of a larger phase simplex of some other
point x′, and f is differentiable and strictly convex in each neighbourhood
U (1), ..., U (q). We derive a continuous parametrization of a neighbourhood of
the simplex conv{x(1), ..., x(q)}, such that we can give an expression of the
convex envelope in this neighbourhood in terms of the parametrization. This
parametrization especially characterizes all involved phase simplices of any
dimension. Additionally, we show that the regularity of this parametrization
improves to Lipschitz-continuity, if the restriction of f to each neighbourhood
U (1), ..., U (q) has Lipschitz-continuous gradient and is strongly convex.

This work is organized as follows: In Chapter 2, some frequently used
facts about Lipschitz continuity and generalized derivatives in the sense of
Clarke are collected. Chapter 3 concerns convexity and the connection of the
subdifferential and generalized derivatives, especially in view of characteriz-
ing strong convexity. We prove a duality result for the Legendre transform
of strongly convex functions with Lipschitz-continuous gradient similar to
the Fenchel-duality for the convex conjugate. The last part of the chapter
presents some useful properties and tools for the calculation of convex en-
velopes, embedded in the framework of Griewank and Rabier [18]. Since
their work already contains a similar approach of characterizing phase sim-
plices near a known maximal phase simplex, we dedicate the first part of
Chapter 4 to motivate this work by pointing out the differences to the as-
sumptions of [18]. Then we first consider a specialized setting in which one
of the points x(1), ..., x(q) is the origin and the other points are the first q− 1
unit vectors, simplifying the algebraic calculations. We characterize all phase
simplices containing a vertex near the origin and give a suitable parametriza-
tion of a set, in which we can give an expression for the convex envelope in
terms of the parametrization. The general case is covered by applying for
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i ∈ {1, ..., q} an affine transformation, which maps x(i) to the origin and
x(1), ..., x(i−1), x(i+1), ..., x(q) to the first q − 1 unit vectors. Applying the re-
sults from the specialized setting to the transformed function and reverting
the affine transformation afterwards, we are able to obtain a characterization
of all phase simplices containing a vertex near x(i). To make the parametriza-
tions compatible with each other, a recursive re-parametrization is required
in order to combine them to one paramterization of a whole neighbourhood
of conv{x(1), ..., x(q)} capturing all phase simplices of any dimension with ver-
tices near x(1), ..., x(q) (or a subset of these points). Finally, the convex enve-
lope of f can be given in the parametrized set in terms of the parametrization
and is proven to admit the expected regularity. In the last chapter, three
examples of functions are presented, for which the convex envelope can be
calculated explicitly. The first two examples are designed to illustrate the
regularity of the derived parametrization. The last example arose from our
joint work [2] concerning relaxation models in soil mechanics. Although the
example does not completely match the assumptions of the main theorem, it
illustrates the interaction between one- and two-dimensional phase simplices
and gave the inspiration for the investigation of convexification of functions
with locally Lipschitz continuous derivative.

Acknowledgements I would like to thank my advisor Prof. Dr. Georg
Dolzmann for his constant support as well as Prof. Dr. Klaus Hackl and
Ghina Jezdan from Ruhr University Bochum for the productive cooperation
within our project. I also gratefully acknowledge the support of the Priority
Program 2256

”
Variational Methods for Predicting Complex Phenomena in

Engineering Structures and Materials“ of the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation).

1.1 Notation

For any n ∈ N, the Euclidean vector space Rn will be always equipped with
the Euclidean norm || · ||2 and for any m ∈ N, the vector space of m × n-
matrices Rm×n will be always equipped with the induced matrix norm || · ||2.
In both cases, we simply write ||·|| instead of ||·||2. Furthermore the following
conventions are used:

R+ := {x ∈ R | x > 0}
R≥t := {x ∈ R | x ≥ t}, (t ∈ R)

Rd×d
sym := {A ∈ Rd×d | AT = A} ,

GL(d) := {A ∈ Rd×d | det(A) ̸= 0} ,
PD(d) := {A ∈ Rd×d

sym | ∀h ∈ Rd \ {0} : hTAh > 0} .
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The set of affine functions and affine transformations is denoted as follows:

Aff(m,n) := {h : Rm → Rn | ∃
A∈Rn×m

∃
b∈Rn

∀
x∈Rm

h(x) = b+ Ax} ,

AffT(d) := {h : Rd → Rd | ∃
A∈GL(d)

∃
b∈Rd

∀
x∈Rd

h(x) = b+ Ax} .

For any A ∈ GL(d) we write A−T := (AT )−1 = (A−1)T . The d-dimensional
identity matrix is written as Idd and for x ∈ Rd, we define diag(x) ∈ Rd×d

as the unique diagonal matrix satisfying for any i, j ∈ {1, ..., d}, diag(x)i,j =
xi · χ{j}(i).
For any subset M ⊂ Rd, the affine hull and the convex hull are defined as

aff(M) := {
m∑
i=1

tixi | m ∈ N, ∀
i∈{1,...,m}

(ti, xi) ∈ R×M,

m∑
i=1

ti = 1} ⊂ Rd ,

conv(M) := {
m∑
i=1

tixi | m ∈ N, ∀
i∈{1,...,m}

(ti, xi) ∈ [0, 1]×M,
m∑
i=1

ti = 1} ⊂ Rd .

A set C ⊂ Rn is called affine if and only if C = aff(C) and C is called convex
if and only if C = conv(C).
For some set M ⊂ Rd, relint(M) denotes the interior of M with respect to
the subspace topology of aff(M).
We denote with 0d ∈ Rd and 0m×n ∈ Rm×n the respective neutral elements
of addition and omit the index if the dimension is clear from the context.
For d ∈ N and x0 ∈ Rd we denote with

Br(x0) := {x ∈ Rd | ||x− x0||2 < r}

the open ball with radius r centred at x0 and with

Cr(x0) := {x ∈ Rd | ||x− x0||∞ ≤ r}

the closed hypercube with edge length 2r centred at x0. If x0 = 0d then we
abbreviate Bd

r := Br(0d) and C
d
r := Cr(0d).

For a set X and a subset A ⊂ X, we denote with idX : X → X, x 7→ x the
identity and with

χA : X → R, χA(x) =

{
1 , x ∈ A

0 , x ∈ X \ A

the characteristic function of A.
For two sets X, Y and functions f : X → R and g : Y → R, we write g ≤ f
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if for any z ∈ X ∩ Y the inequality g(z) ≤ f(z) is satisfied. If X ⊂ Y and
g ≤ f , we say that g minorizes f on X.
For a finite set X, |X| ∈ N0 denotes the number of elements in X.
Any vector x ∈ Rd can be interpreted as an element of Rd×1 which can be
transposed to xT ∈ R1×d.
For any i ∈ {1, ..., d}, we denote with pri : Rd → R the projection onto the
i-th component and with pr⊥i : Rd → Rd−1 the mapping, which deletes the
i-th component.
For any I ⊂ {1, ..., d} we define

prI :Rd → Rd, prI(x) = (xi · χI(i))i∈{1,...,d} ,

pr⊥I :Rd → Rd, prI(x) = (xi · χ{1,...,d}\I(i))i∈{1,...,d} ,

where prI replaces all entries of x ∈ Rd by zero except those indexed with
an element of I, while pr⊥I produces zero exactly at the entries indexed with
an element of I, i.e. x = prI(x) + pr⊥I (x) for any I ⊂ {1, ..., d}. Notice for
i ∈ {1, ..., d} the difference between pr⊥i and pr⊥{i}, since the former reduces
the dimension by deleting the i-th component while the latter retains the
dimension by setting the i-th component to zero.
For any k ∈ N and δ ≥ 0, we define

∆δ
k = {t ∈ [−δ,∞)k |

k∑
i=1

ti = 1} ,

∆̃δ
k−1 = {t ∈ [−δ,∞)k−1 |

k−1∑
i=1

ti ≤ 1} .

and abbreviate ∆k := ∆0
k and ∆̃k−1 := ∆̃0

k−1. Notice that for any i ∈
{1, ..., k} the projection pr⊥i maps ∆0

k bijective and bi-Lipschitz onto ∆̃0
k−1.

For any α ∈ R ∪ {∞} we set α + ∞ := ∞ and for any β ∈ R+ we set
β · ∞ := ∞. Other arithmetic calculations involving ∞ will not appear.
If U ⊂ Rd and f : U → Rn is differentiable at x ∈ int(U), then Df(x) ∈ Rn×d

denotes the Jacobian matrix of f in x. If U ⊂ Rd is open and f : U → Rn

is a differentiable function (i.e. differentiable at every x ∈ U), then we set
Df : U → Rn×d, x 7→ Df(x).
If n = 1 and f is differentiable at x ∈ int(U), then the gradient of f at x is
defined as ∇f(x) := Df(x)T ∈ Rd identifying Rd×1 ∼= Rd and the first order
Taylor polynomial is denoted by Txf : Rd → R, x′ 7→ f(x) + ⟨∇f(x), x′ − x⟩
describing the tangent plane of f at x. If U ⊂ Rd is open and f : U → R is
a differentiable function, then we set ∇f : U → Rd, x 7→ ∇f(x).
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2 Lipschitz Calculus

2.1 Basics

2.1 Definition Fix two metric spaces (X, dX) and (Y, dY ) and a function
f : X → Y .
Then f is called Lipschitz, if there exists some L > 0, such that for any
x, x′ ∈ X,

dY (f(x), f(x
′)) ≤ L · dX(x, x′) . (2.1)

Any such L > 0 will be called a Lipschitz constant of f .
Furthermore, f is called bi-Lipschitz, if there exists some M > 0, such that
for any x, x′ ∈ X,

1

M
· dX(x, x′) ≤ dY (f(x), f(x

′)) ≤M · dX(x, x′) . (2.2)

For x0 ∈ X, f is called locally Lipschitz (locally bi-Lipschitz) in x0, if there
exists some open neighbourhood U ⊂ X of x0, such that the restriction of f to
U is Lipschitz (bi-Lipschitz). We call f locally Lipschitz (locally bi-Lipschitz),
if f is locally Lipschitz (locally bi-Lipschitz) in any point.

An immediate consequence of the definition is, that for metric spaces
(X, dX) and (Y, dY ) a function f : X → Y is bi-Lipschitz, if and only if f
is Lipschitz, injective and f−1 : f(X) → X is Lipschitz. Since any Lipschitz
function is especially continuous, any bi-Lipschitz function is an embedding
(see Definition 6.1).

2.2 Proposition Assume (X, dX), (Y, dY ), (Z, dZ) are metric spaces and the
functions f, f1, f2 : X → Y and g : Y → Z are Lipschitz.
Then g ◦ f is Lipschitz and if g and f are bi-Lipschitz, then g ◦ f is bi-
Lipschitz.
If Y is a normed space, for any α ∈ R the functions f1 + f2 and α · f are
Lipschitz. If Y = R and f1, f2 are bounded, then f1 ·f2 is Lipschitz. If Y = R
and there exists some m > 0, such that for any x ∈ X we have |f(x)| ≥ m,
then 1/f is Lipschitz.

Proof. [5, Propositions 2.3.1, 2.3.3, 2.3.4, 2.3.7]

It is straightforward, that the previous Proposition remains valid, if we
replace everywhere

”
Lipschitz“ by

”
locally Lipschitz“ and

”
bi-Lipschitz“ by

”
locally bi-Lipschitz“.
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2.3 Proposition Assume (X, dX), (Y, dY ) are metric spaces. If (X, dX) is
compact, then each locally Lipschitz function f : X → Y is Lipschitz.

Proof. [5, Theorem 2.1.6]

2.4 Corollary Assume (X, dX), (Y, dY ) are metric spaces. If (X, dX) is
compact, then each locally bi-Lipschitz injection f : X → Y is bi-Lipschitz.

Proof. By Proposition 6.2, f is an embedding, i.e. f−1 : f(X) → X is
continuous. According to Proposition 2.3 the function f is Lipschitz and for
any y = f(x) ∈ f(X), there is a neighbourhood Ux ⊂ X of x, such that
the restriction of f to Ux is bi-Lipschitz. Now Vy := f(Ux) = (f−1)−1(Ux) is
by continuity of f−1 a neighbourhood of y, such that the restriction of f−1

to Vy is Lipschitz. So f−1 is locally Lipschitz and by compactness of f(X),
Proposition 2.3 implies that f−1 is Lipschitz. Altogether, f is bi-Lipschitz.

2.5 Lemma If C ⊂ Rm is convex, f ∈ C → Rn is continuous and {Ci | i ∈
I} is a finite cover of C, i.e.

⋃
i∈I
Ci = C, such that for any i ∈ I the restriction

f |Ci
is Lipschitz, then f is Lipschitz.

Proof. Denote for any i ∈ I the Lipschitz constant of f |Ci
with Li > 0 and set

L := max{Li | i ∈ I}. Fix x, y ∈ C. There is some i1 ∈ I with x0 := x ∈ Ci1 .
Set t0 := 0 and t1 := sup{t ∈ [0, 1] | (1 − t)x + ty ∈ Ci1} ≥ t0 and x1 :=
(1− t1)x+ t1y. If n ∈ {1, ..., |I| − 1} and for any m ∈ {1, ..., n} the elements
im ∈ I, tm ∈ [0, 1] and xm ∈ C are constructed and tn < 1, then there is some
in+1 ∈ I \ {i1, ..., in}, such that tn = inf{t ∈ [tn, 1] | (1 − t)x + ty ∈ Cin+1}.
Set

tn+1 := sup{t ∈ [tn, 1] | (1− t)x+ ty ∈ Cin+1} ≥ tn ,

xn+1 := (1− tn+1)x+ tn+1y .

Since I is finite and in+1 ∈ I \ {i1, ..., in}, this process terminates at some
iN ∈ {1, ..., |I|} with tN = 1 and xN = y, since y lies in some of the sets
Ci, i ∈ I (not necessarily in CiN ). For any n ∈ {1, ..., N} there exist sequences
(t−l )l∈N, (t

+
l )l∈N ⊂ [tn−1, tn] with x

±
l := (1−t±l )x+t

±
l y ∈ Cin and t−l

l→∞−−−→ tn−1

and t+l
l→∞−−−→ tn. Then ||f(x+l )−f(x

−
l )|| ≤ Lin||x+l −x

−
l || and taking the limit

l → ∞ on both sides gives us

||f(xn)− f(xn−1)|| ≤ Lin||xn − xn−1||

9



by continuity of f . Altogether we get

||f(y)− f(x)|| ≤
N∑

n=1

||f(xn)− f(xn−1)|| ≤
N∑

n=1

Lin||xn − xn−1||

≤ L

N∑
n=1

||(tn − tn−1)(y − x)|| = L

N∑
n=1

(tn − tn−1)||y − x||

= L(tN − t0)||y − x|| = L · ||y − x||

and hence the Lipschitz continuity of f with constant L.

2.6 Corollary If C ⊂ Rm is convex, f : C → Rn is an embedding and
{Ci | i ∈ I} is a finite partition of C, such that for any i ∈ I the restriction
f |Ci

is bi-Lipschitz, then for any compact set K ⊂ C with f(K) ⊂ int(f(C))
the restriction fK is bi-Lipschitz.

Proof. The function f is Lipschitz by Lemma 2.5 and f(K) is compact, hence
according to Proposition 2.3 it suffices to show that the restriction of f−1 to
f(K) is locally Lipschitz. Fix y = f(x) ∈ f(K) ⊂ int(f(C)) and some r > 0
with Br(y) ⊂ f(C). Since f−1|Br(y) is continuous and {f(Ci)∩Br(y) | i ∈ I}
is a partition of the convex set Br(y), such that for any i ∈ I the restriction
of f−1 to f(Ci) ∩ Br(y) is Lipschitz, by Lemma 2.5 the restriction of f−1 to
Br(y) is Lipschitz. By the fact that y ∈ f(K) was arbitrary, the restriction
of f−1 to f(K) is locally Lipschitz.

2.2 Generalized derivatives

2.7 Definition For Ω ⊂ Rn open and f : Ω → Rm Lipschitz denote with
Nf ⊂ Ω the set of points, in which f is not differentiable.

For Ω ⊂ Rn open and f : Ω → Rm locally Lipschitz, Nf ⊂ Ω has measure
zero by Rademacher’s theorem. For any sequence (xl)l∈N ⊂ Ω\Nf converging
to some x0 ∈ Ω, the sequence (Df(xl))l∈N ⊂ Rm×n is for sufficiently large
l bounded by the local Lipschitz constant of f in a neighbourhood of x0.
Therefore we can extract a subsequence, which converges to someM ∈ Rm×n.
This observation allows the definition of the generalized derivative in the
sense of Clarke (denoted by ∂c to distinguish it from the subdifferential), see
for example [3, Chapter 2].
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2.8 Definition Assume Ω ⊂ Rn is open and f : Ω → Rm is Lipschitz near
x0 ∈ Ω. We define

Jf (x0) := { lim
l→∞

Df(xl) ∈ Rm×n | (xl)l∈N ⊂ Ω \Nf ,

xl → x0, lim
l→∞

Df(xl) exists}

and denote the generalized derivative of f at x0 by ∂cf(x0) := conv(Jf (x0)).

The generalized derivative is indeed a generalization of the concept of
continuously differentiable functions. If Ω ⊂ Rn is open and f : Ω → Rm is
continuously differentiable, then Nf = ∅ and for any sequence (xl)l∈N ⊂ Ω
converging to some x0 ∈ Ω the sequence Df(xl) converges to Df(x0) by
continuity of the derivative. The generalized derivative in any point x0 ∈ Ω
therefore contains only one element, namely the classical derivative of f in
x0, i.e. Jf (x0) = {Df(x0)} = conv({Df(x0)}) = conv(Jf (x0)) = ∂cf(x0).

In [3], Clarke first defines for a (possibly infinite dimensional) Banach
space X and a function f : X → R, which is Lipschitz near some point
x0 ∈ X, the generalized gradient as

∂cf(x0) := {v ∈ X∗ | ∀
h∈X

lim sup
x→x0, t↘0

f(x+ th)− f(x)

t
≥ v(h)} ,

where X∗ denotes the topological dual of X.
He showed in [3, Theorem 2.5.1], that for Ω ⊂ Rn open and f : Ω → R
Lipschitz near x0 ∈ Ω, for any set S ⊂ Ω with measure zero the gerenalized
gradient can be characterized by

∂cf(x0) = conv({ lim
l→∞

∇f(xl)T ∈ R1×n | (xl)l∈N ⊂ Ω \ (Nf ∪ S),

xl → x0, lim
l→∞

∇f(xl) exists}) ,

where the transposition of the gradient (although not appearing in [3]) pro-
vides consistency with Definition 2.8. This raises the question, whether also
for a locally Lipschitz function f : Ω → Rm with m > 1 the generalized
derivative in some point x0 ∈ Ω remains unchanged, if we avoid with the ap-
proximating sequences (xl)l∈N ⊂ Ω \Nf an additional set S ⊂ Ω of measure
zero. Clarke already proved in [3, Proposition 2.4.6], that for any h ∈ Rn the
image set ∂cf(x0)h ⊂ Rm remains unchanged, later on Fabián showed in [7]
that even the generalized derivative ∂cf(x0) itself is not altered by this mod-
ification. This especially implies, that the generalized derivative introduced
by Pourciau in [16] coincides with Clarke’s generalized derivative, as Fabián
pointed out in [7, Remark 1].

We quote some basic properties of the generalized derivative, which are
stated in [3, Proposition 2.6.2]:

11



2.9 Proposition Let Ω ⊂ Rn be open and f : Ω → Rm be Lipschitz near
x0 ∈ Ω. Then the generalized derivative has the following properties:

(i) ∂cf(x0) ⊂ Rm×n is non-empty, convex and compact,

(ii) if α ∈ R, then ∂c(α · f)(x0) = α · ∂cf(x0),

(iii) if g : Ω → Rm is Lipschitz near x0, then ∂c(f + g)(x0) ⊂ ∂cf(x0) +
∂cg(x0).

The following Proposition was already mentioned without a proof in [17,
Eq. (4.20)], the special case m1 = . . . = mk = 1 can be found in [3, Proposi-
tion 2.6.2 (e)].

2.10 Proposition Fix k ∈ N, m1, . . . ,mk ∈ N, Ω ⊂ Rn open and x0 ∈ Ω.
If for any i ∈ {1, . . . , k} the function fi : Ω → Rmi is Lipschitz near x0, then

f : Ω → Rm1+...+mk , f(x) =

f1(x)...
fk(x)


is Lipschitz near x0 with

∂cf(x0) ⊂ {

M1
...
Mk

 | Mi ∈ ∂cfi(x0)} .

Proof. For any i ∈ {1, . . . , k} let Ui ⊂ Ω be an open neighbourhood of x0,
such that fi is Lipschitz on Ui with some constant Li > 0. Then for any

x, y ∈
k⋂

i=1

Uk and L := (L1, ..., Lk)
T ∈ Rk we can estimate

||f(x)− f(y)||22 =
k∑

i=1

||fi(x)− fi(y)||22 ≤
k∑

i=1

L2
i ||x− y||22 ≤ ||L||2∞||x− y||22 .

f is differentiable in some point x ∈ Ω if and only if any fi is differen-

tiable in x, i.e. Nf =
k⋃

i=1

Nfi . For any sequence (xl)l∈N ⊂ Ω \ Nf , the se-

quence (Df(xl))l∈N converges if and only if for any i ∈ {1, ..., k} the sequence
(Dfi(xl))l∈N converges. This implies for any x0 ∈ Ω the inclusion

conv(Jf (x0)) ⊂ conv{

M1
...
Mk

 | Mi ∈ Jfi(x0)} ⊂ {

M1
...
Mk

 | Mi ∈ ∂cfi(x0)} .

as asserted.
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Before we formulate Clarke’s inverse function theorem, we first state the
following result concerning the generalized Jacobian of Lipschitz inverse func-
tions, proven by the author in [1, Theorem 2.1].

2.11 Lemma Assume that U, V ⊂ Rd are open and that f : U → Rd and
g : V → Rd are Lipschitz continuous with g ◦ f = IdU and f ◦ g = IdV . Then
f(Nf ) = Ng, g(Ng) = Nf and for any x0 ∈ U the set Jf (x0) is invertible
with

Jf (x0)
−1 = Jg(f(x0)) .

In particular

∂cg(f(x0)) = conv(Jg(f(x0))) = conv(Jf (x0)
−1) .

Now we can state the inverse function theorem proven by Clarke in [4] and
supplement the conclusion by a statement about the generalized derivative
of the inverse function.

2.12 Theorem If Ω ⊂ Rd is open, f : Ω → Rd Lipschitz and for x0 ∈ Ω
the generalized Jacobian ∂cf(x0) is of maximal rank, i.e. ∂cf(x0) ⊂ GL(d),
then there exist neighbourhoods U and V of x0 and f(x0) respectively, and a
Lipschitz function g : V → Rd, such that

(a) ∀
u∈U

g(f(u)) = u,

(b) ∀
v∈V

f(g(v)) = v.

Furthermore, we have ∂cg(f(x0)) = conv((Jf (x0))
−1) ⊂ conv((∂cf(x0)

−1).

Proof. See [3, Theorem 7.1.1] for the existence of the inverse function g.
Then

∂cg(f(x0)) = conv(Jg(f(x0))) = conv((Jf (x0))
−1) ⊂ conv((∂cf(x0)

−1)

follows by Lemma 2.11 and the fact, that ∂cf(x0) has maximal rank.

In [8, Theorem 2], under the assumptions of Clarke’s inverse function
theorem ∂cf(x0) ⊂ GL(d), the inclusion Jf (x0)

−1 ⊂ Jg(f(x0)) (eq. (10))
and the formula ∂cg(f(x0)) = conv(Jf (x0)

−1) (eq. (11)) was proven. Notice
that the authors of [8] denote the generalized derivative ∂cf(x0) with J f(x0)
and the set Jf (x0) with J f−→(x0). Lemma 2.11 shows the stronger assertion

Jf (x0)
−1 = Jg(f(x0)), which gives ∂cg(f(x0)) = conv(Jf (x0)

−1) immedi-
ately by taking the convex hull, even under the weaker assumption that
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g is a Lipschitz continuous inverse of f in respective open neighbourhoods
U ⊂ Rd of x0 and V ⊂ Rd of f(x0). [1, Example 2.1] provides an example
of a Lipschitz continuous inverse function where Lemma 2.11 allows us to
calculate the generalized derivative of the inverse function, while [8, Theo-
rem 2] is not applicable due to singular matrices in the generalized derivative.
This example is a special case of the one constructed in [15, Example 2.2]
and [9, Example 3.9] and provides a piecewise linear bi-Lipschitz function
with the generalized derivative containing the zero matrix.

Given open sets U ⊂ Rk, V ⊂ Rm and Lipschitz continuous functions
f : U → Rm and g : V → Rn with f(U) ⊂ V , then we seek for a chain rule
at least giving us for x ∈ U an upper estimate for ∂c(g ◦ f)(x) in terms of
∂cf(x) and ∂cg(f(x)). A natural starting point characterizing the elements
of Jg◦f (x) is applying the classical chain rule at every point x ∈ U , where f is
differentiable in x and g is differentiable in f(x). Unfortunately, it is possible
that no such point exists, as a simple example like f : R → R, f(x) = 0 and
g : R → R, g(x) = |x| shows. Then f ◦ g = 0 is differentiable everywhere,
but by f−1(Ng) = R we cannot apply the classical chain at any single point.
Nevertheless the following chain rule is available for the composition of two
Lipschitz functions:

2.13 Proposition ( [14, Theorem 4]) If f : Rn → Rm is Lipschitz near
x ∈ Rn and g : Rm → Rk is Lipschitz near f(x), then

∂c(g ◦ f)(x) ⊂ conv(∂cg(f(x))∂cf(x)) .

If g is continuously differentiable near f(x), then equality holds (see [17,
Theorem 4.3]) and if f or g is continuously differentiable, the respective
generalized derivative reduces to a singleton and

”
conv“ can be omitted.

A weaker version of this chain rule was already proven in [3, Corollary to
Proposition 2.6.5], with both sides of the inclusion applied to some arbitrary
but fixed vector h ∈ Rn.

3 Convexity

3.1 Convex functions

We start with the different notions of convex functions.

3.1 Definition Fix a convex set Ω ⊂ Rd and a function f : Ω → R. Then
f is called convex with modulus µ ≥ 0, if for all x, y ∈ Ω and t ∈ (0, 1):

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− µ

2
t(1− t)||x− y||2 .
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f is called strictly convex if the above inequality is strict for µ = 0 and x ̸= y.
For some point x0 ∈ int(Ω), f is called locally convex with modulus µ ≥ 0 in
x0, if there is a convex neighbourhood U ⊂ Ω of x0, such that f |U is convex
with modulus µ. We call f locally convex with modulus µ ≥ 0, if Ω is open
and f is locally convex with modulus µ ≥ 0 in any x0 ∈ Ω.
If f is (locally) convex with modulus 0, then f is called (locally) convex, and
if f is (locally) convex with some modulus µ > 0, then f is called (locally)
strongly convex.

It follows immediately from the definition, that any (locally) strongly
convex function is (locally) strictly convex and that any (locally) strictly
convex function is (locally) convex.

Convex functions have some special regularity properties.

3.2 Proposition If Ω ⊂ Rd is open, convex and f : Ω → R is convex, then
f is locally Lipschitz and if additionally f is differentiable at any point x ∈ Ω,
then f is continuously differentiable.

Proof. The first part is [19, Corollary 10.4] and the second part is [19, Corol-
lary 25.5.1].

3.3 Definition For a set Ω ⊂ Rd and a function f : Ω → R, the subdiffer-
ential of f in some point x0 ∈ Ω is defined as

∂f(x0) := {v ∈ Rd | ∀
x∈Ω

f(x) ≥ f(x0) + ⟨v, x− x0⟩} .

It is a straightforward consequence of the definition, that the subdiffer-
ential is a convex set. There is a close relationship between the generalized
derivative and the subdifferential, for convex functions (which are necessarily
locally Lipschitz) the generalized derivative coincides with the subdifferen-
tial [3, Proposition 2.2.7]:

3.4 Proposition If U ⊂ Rd is open, convex and f : U → R is convex, then
for any x ∈ U , ∂cf(x) = ∂f(x).

The subdifferential of a convex function can be empty in some point if the
function becomes arbitrarily steep, as the example f : [0,∞) → R, f(x) =
−
√
x with ∂f(0) = ∅ illustrates. However, this is not possible for points

lying in the relative interior of Ω.

3.5 Proposition If Ω ⊂ Rd is convex and f : Ω → R is convex, then for
any x ∈ relint(Ω) we have ∂f(x) ̸= ∅.
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Proof. [11, IV, Proposition 2.5.1]

If the subdifferential of a convex function reduces to a singleton at some
point of the interior of the domain, the function is differentiable at this point.

3.6 Proposition If Ω ⊂ Rd is convex and f : Ω → R is convex, then for
any x ∈ int(Ω) the subdifferential ∂f(x) is a singleton if and only if f is
differentiable in x.

Proof. [19, Theorem 25.1]

The next Proposition gives useful equivalent characterizations of convex-
ity with modulus µ ≥ 0 or strict convexity in terms of the subdifferential [11,
VI, Theorem 6.1.2 & Proposition 6.1.3].

3.7 Proposition Let Ω ⊂ Rd be convex and f : Ω → R. Then the following
statements are equivalent

(i) f is convex with modulus µ ≥ 0,

(ii) ∀
x,y∈Ω

∀
v∈∂f(x)

f(y) ≥ f(x) + ⟨v, y − x⟩+ µ
2
||x− y||2,

(iii) ∀
x,y∈Ω

∀
vx∈∂f(x),vy∈∂f(y)

⟨vy − vx, y − x⟩ ≥ µ||y − x||2.

Furthermore, strict convexity of f is equivalent to (ii) and to (iii) with the
respective inequalities assumed to be strict for µ = 0 and x ̸= y.

In view of Proposition 3.4 it is not surprising that for locally Lipschitz
functions the subdifferential can be replaced by the generalized derivative.

3.8 Corollary Let Ω ⊂ Rd be open, convex and f : Ω → R be locally Lips-
chitz. Then, all equivalences of Proposition 3.7 remain true with the subdif-
ferential ∂ replaced by the generalized derivative ∂c.

Proof. It suffices to show that each condition (i), (ii) and (iii) implies the
convexity of f , since then by Proposition 3.4 the generalized derivative and
the subdifferential coincide and the equivalences follow by Proposition 3.7.
If f is convex with modulus µ ≥ 0 or strictly convex, then f is especially
convex.
(ii) implies (iii), since for x, y ∈ Ω and vx ∈ ∂cf(x), vy ∈ ∂cf(y), (ii) gives us
the two inequalities

f(y) ≥ f(x) + ⟨vx, y − x⟩+ µ

2
||x− y||2 ,

f(x) ≥ f(y) + ⟨vy, x− y⟩+ µ

2
||x− y||2
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and (iii) follows by addition of both inequalities. If µ = 0 and the inequality
in (ii) is strict whenever x ̸= y, then the inequality in (ii) with µ = 0 is also
strict whenever x ̸= y.
If (iii) is satisfied with µ = 0, then f is convex by [3, Proposition 2.2.9]. This
is especially the case if (iii) is satisfied with µ > 0 or with µ = 0 and the
inequality being strict whenever x ̸= y.

For continuously differentiable functions, the generalized derivatives in
Corollary 3.8 reduce to singletons containing only the respective gradient
and we obtain as a special case the equivalences for convexity with modulus
µ ≥ 0 shown in [11, IV, Theorem 4.1.1, Theorem 4.1.4].

For Ω ⊂ Rd open, convex and f ∈ C2(Ω), it is well known that f is convex
if and only if for any x ∈ Ω the Hessian ∇2f(x) ∈ Rd×d is positively semi-
definite. An analogue statement for f ∈ C1,1

loc (Ω) is mentioned without proof
in [13, Example 2.2], here we give a proof for an equivalent characterization
of convexity with modulus µ ≥ 0 in terms of generalized second derivatives.

3.9 Definition For 0 ≤ µ, L ≤ ∞ define

PDL
µ(d) := {A ∈ Rd×d

sym | ∀
h∈Rd

µ||h||2 ≤ hTAh ≤ L||h||2} .

Notice that for L < µ the set PDL
µ(d) is empty, and that for µ = 0 and

L = ∞ we obtain the set of symmetric positively semi-definite matrices.

3.10 Proposition Let Ω ⊂ Rd be open, convex and f ∈ C1,1
loc (Ω).

Then f is convex with modulus µ ≥ 0, if and only if

∀
x0∈Ω

∂c∇f(x0) ⊂ PD∞
µ (d) .

Proof. Assume f is convex with modulus µ ≥ 0. Fix x0 ∈ Ω, an open
neighbourhood U ⊂ Ω of x0 on which f is Lipschitz with constant L > 0 and
x ∈ U \ N∇f . Then f is twice differentiable in x with ∇2f(x) ∈ Rd×d

sym. For
any h ∈ Rd and sufficiently small t > 0 we have x+ th ∈ U and

hT∇2f(x)h = ⟨∇2f(x)h, h⟩ = lim
t→0

1

t2
(⟨∇f(x+ th)−∇f(x), th⟩) .

By Proposition 3.7 (iii), the Cauchy-Schwarz inequality and the Lipschitz
continuity of ∇f we get

µ||h||2 = 1

t2
(µ||th||2) ≤ 1

t2
(⟨∇f(x+ th)−∇f(x), th⟩)

≤ 1

t2
||∇f(x+ th)−∇f(x)|| · ||th|| ≤ 1

t2
(L||th||2) = L||h||2 .
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This implies ∇2f(x) ∈ PDL
µ(d) and

∂c∇f(x0) = conv(J∇f (x0)) ⊂ conv(clos({∇2f(x) | x ∈ U \N∇f}))
⊂ conv(clos(PDL

µ(d))) = PDL
µ(d)

where the first inclusion follows by definition of J∇f (x0), the second inclusion
by monotonicity of closure and convex hull and the last equality by Propo-
sition 6.5.
Now assume that for all x0 ∈ Ω the inclusion ∂c∇f(x0) ⊂ PD∞

µ (d) is satis-
fied. Fix x, y ∈ Ω and consider γ : [0, 1] → Ω, γ(t) = (1 − t) · x + t · y and
g : [0, 1] → R, g(t) = f(γ(t)). The function g is continuously differentiable
with

g′ : [0, 1] → R, g′(t) = ⟨∇f(γ(t)), γ′(t)⟩ = ⟨∇f(γ(t)), y − x⟩

and since g′ is locally Lipschitz as the composition of Lipschitz functions
and [0, 1] is compact, g′ is Lipschitz with some parameter L > 0. For any
t ∈ (0, 1),

∂cg
′(t) ⊂ conv((y − x)T · ∂c(∇f)(γ(t)) · γ′(t)) ⊂ (y − x)T · PDL

µ(d) · (y − x)

⊂ {z ∈ R | z ≥ µ||y − x||2}

by Proposition 2.13, especially g′′(t) ≥ µ||y − x||2 whenever t ∈ (0, 1) \
Ng′ . Since g′ is especially absolutely continuous and differentiable almost
everywhere, by the fundamental theorem of Lebesgue integral calculus

f(y) = g(1) = g(0) +

1∫
0

g′(t) dt = g(0) +

1∫
0

(
g′(0) +

t∫
0

g′′(s) ds
)
dt

≥ f(γ(0)) + ⟨∇f(γ(0)), γ′(0)⟩+
1∫

0

t∫
0

µ||y − x||2 ds dt

= f(x) + ⟨∇f(x), y − x⟩+ µ

2
||y − x||2

and the argument is completed by Proposition 3.7 (ii).

A main feature of a strictly convex function f ∈ C1(U) defined on an
open convex set U ⊂ Rd is, that the gradient mapping is an embedding.

3.11 Lemma Assume U ⊂ Rd is an open, convex set and f : U → R is
differentiable and strictly convex.
Then V := ∇f(U) is open, and ∇f : U → Rd is an embedding.
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Proof. By Proposition 3.2, f is continuously differentiable. For x, y ∈ U
with x ̸= y, we have ∂cf(x) = {∇f(x)} and ∂cf(y) = {∇f(y)}, therefore
by strict convexity of f , Corollary 3.8 implies ⟨∇f(y) − ∇f(x), y − x⟩ > 0
and especially ∇f(x) ̸= ∇f(y). Now the assertion follows by injectivity and
continuity of ∇f with Proposition 6.3.

If f ∈ C1,1(U) and f is convex with modulus µ > 0, then ∇f is even
bi-Lipschitz. Lemma 2.11 allows us furthermore to estimate the generalized
derivative of the inverse of the gradient mapping.

3.12 Lemma Assume U ⊂ Rd is an open, convex set and f : U → R is
convex with parameter µ > 0 and differentiable with Lipschitz continuous
gradient with constant L > 0.
Then V := ∇f(U) is open, ∇f : U → Rd is injective and the inverse function
(∇f)−1 : V → Rd is Lipschitz with constant µ−1. Especially, ∇f and (∇f)−1

are bi-Lipschitz and the generalized derivative of (∇f)−1 in any point v ∈ V
can be estimated by

∂c(∇f)−1(v) ⊂ PDµ−1

L−1(d) .

Proof. For any u ∈ U the generalized derivative of f in u can be estimated
with Proposition 3.10 by ∂(∇f)(u) ⊂ PDL

µ(d) ⊂ GL(d). Theorem 2.12 gives
us the local invertibility of ∇f in any u ∈ U , especially V = ∇f(U) is open.
By Proposition 3.7 (iii) and the Cauchy-Schwarz inequality we get

||∇f(y)−∇f(x)|| · ||y − x|| ≥ ⟨∇f(y)−∇f(x), y − x⟩ ≥ µ||y − x||2 (3.1)

to see that ∇f is one-to-one. The inverse function (∇f)−1 : V → Rd is Lips-
chitz with constant µ−1 by (3.1). The inclusion of the generalized derivative
of the (∇f)−1 in some v ∈ V is due to Lemma 2.11 and Proposition 6.5 with

∂c(∇f)−1(v) ⊂ conv(
(
∂(∇f)((∇f)−1(v))

)−1
) ⊂ conv((PDL

µ(d))
−1)

= conv(PDµ−1

L−1(d)) = PDµ−1

L−1(d) ,

which completes the proof.

3.2 The Legendre transform

A useful concept in convex analysis is the Legendre transform, see for example
[19, Section 26].
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3.13 Definition Let U ⊂ Rd be open and f : U → R be differentiable with

∀
u,u′∈U

(
∇f(u) = ∇f(u′) ⇒ ⟨u,∇f(u)⟩ − f(u) = ⟨u′,∇f(u′)⟩ − f(u′)

)
.

(3.2)

Then, for V := ∇f(U) the function

f ∗ : V → R, f ∗(v) = ⟨u, v⟩ − f(u), if u ∈ (∇f)−1({v}) (3.3)

is well-defined and f ∗ is called the Legendre transform of f .

Any differentiable and convex function defined on a convex set satisfies
(3.2), as well as any differentiable function whose gradient mapping is in-
jective. If the gradient mapping of f : U → R is injective, (3.3) simplifies
to

f ∗(v) = ⟨(∇f)−1(v), v⟩ − f((∇f)−1(v)) .

For convex functions, the Legendre transform is closely related to the convex
conjugate, see for example [20, Theorem 26.4]. The following Proposition is
the counterpart of Fenchel’s inequality in terms of the Legendre transform.

3.14 Proposition If U ⊂ Rd is open, convex and f ∈ C1(U) is convex, then
for any v0 ∈ V := ∇f(U) the affine function

h : Rd → R, h(u) = ⟨v0, u⟩ − f ∗(v0)

minorizes f and for any u0 ∈ (∇f)−1({v0}) we have f(u0) = h(u0).

Proof. For some arbitrary u0 ∈ (∇f)−1({v0}), by Proposition 3.7 (ii), we
have for any u ∈ U ,

f(u) ≥ f(u0) + ⟨∇f(u0), u− u0⟩ = ⟨v0, u⟩ − f ∗(v0) = h(u) ,

with equality for u = u0.

The following Proposition describes, how the Legendre transform behaves
under an affine transformation of the argument. In [19, Theorem 12.3] it was
formulated for the convex conjugate, the analogue statement for the Legendre
transform is an immediate consequence of the relation [20, Theorem 26.4]
between the Legendre transform and the convex conjugate.
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3.15 Proposition Let Ũ ⊂ Rd be open and convex, f̃ : Ũ → R be a strictly
convex function, A ∈ GL(d), a, a∗ ∈ Rd and α ∈ R. Then with α∗ :=
−α − ⟨a, a∗⟩, Ṽ := ∇f(Ũ), U := a + A−1 · Ũ and V := a∗ + AT · Ṽ the
Legendre transform of the function

f : U → R, f(x) = f̃(A(x− a)) + ⟨x, a∗⟩+ α

is given by

f ∗ : V → R, f ∗(x∗) = f̃ ∗((AT )−1(x∗ − a∗)) + ⟨x∗, a⟩+ α∗ .

3.16 Proposition Assume U ⊂ Rd is an open, convex set and f : U → R
is continuously differentiable and strictly convex.
Then the Legendre transform f ∗ is continuously differentiable with ∇f ∗ =
(∇f)−1 and strictly convex on each convex subset C of ∇f(U).

Proof. Fix x∗ ∈ ∇f(U) =: V and x := (∇f)−1(x∗). Then x ∈ ∂f ∗(x∗), since
for any y∗ ∈ V with y := (∇f)−1(y∗) we can estimate

f ∗(y∗)− f ∗(x∗)− ⟨x, y∗ − x∗⟩ = ⟨y, y∗⟩ − f(y)− ⟨x, x∗⟩+ f(x)− ⟨x, y∗ − x∗⟩
= f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ 0 ,

with the inequality being strict for x∗ ̸= y∗ (since then x ̸= y).
Now fix v ∈ ∂f ∗(x∗). Since U is open, we can choose t > 0 small enough,
such that z := (1 − t)x + tv ∈ U and by convexity of ∂f ∗(x∗), z ∈ ∂f ∗(x∗).
Defining z∗ := ∇f(z), calculate for any w ∈ U

f(w) ≥ f(x) + ⟨x∗, w − x⟩ = f(x)− ⟨x∗, x⟩+ ⟨x∗, z⟩+ ⟨x∗, w − z⟩
= −f ∗(x∗)− ⟨z, z∗ − x∗⟩+ ⟨z∗, z⟩+ ⟨x∗, w − z⟩
≥ −f ∗(z∗) + ⟨z∗, z⟩+ ⟨x∗, w − z⟩
= f(z) + ⟨x∗, w − z⟩ ,

giving x∗ ∈ ∂f(z). By differentiability of f , ∂f(z) = {∇f(z)} and strict
convexity implies z = x, especially v = x and since v ∈ ∂f ∗(x∗) was arbitrary,
∂f ∗(x∗) = {x}. For any convex subset C ⊂ V , Proposition 3.7 (ii) implies
the strict convexity of f ∗ on C and choosing C as a convex neighbourhood
of x∗, Proposition 3.6 gives us the differentiability of f ∗ in x∗. According to
Proposition 3.2, ∇f ∗ is continuous in any convex open subset of the open set
V , therefore ∇f ∗ is continuous.

3.17 Theorem Assume U ⊂ Rd is an open, convex set and f : U → R
is convex with modulus µ > 0 and differentiable with Lipschitz continuous
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gradient with constant L > 0.
Then the Legendre transform f ∗ is strongly convex with modulus L−1 on each
convex subset C of V and has Lipschitz continuous gradient (∇f)−1 with
constant µ−1.

Proof. According to Proposition 3.16, the Legendre transform f ∗ is con-
tinuously differentiable with ∇f ∗ = (∇f)−1. By Lemma 3.12, (∇f)−1 is
Lipschitz with constant µ−1 and for any v ∈ V the generalized derivative

can be estimated by ∂(∇f)−1(v) ⊂ PDµ−1

L−1(d). The assertion follows by-
Proposition 3.10 applied to f ∗|C .

One may wonder, whether there is a subclass of convex functions, on
which the Legendre transform acts as an involution. Unfortunately the set
of gradients, which is the domain of the Legrendre transform is not necessarily
convex, as Rockafellar pointed out in his counterexample [20, Section 4]:

fce : R× R+ → R, fce(x1, x2) =
1

4

(
x21
x2

+ x21 + x22

)
.

This problem can be solved, assuming that U ⊂ Rd is open and f : U →
R is strictly convex and differentiable with lim

n→∞
||∇f(xn)|| = ∞ whenever

xn
n→∞−−−→ x ∈ ∂U . Such a function is called a function of Legendre type and

the Legendre transform of such a function is again a function of Legendre
type, whose Legendre transform is (U, f) [19, Theorem 26.5].
Notice that for U ̸= Rd, no f ∈ C1,1(U) is of Legendre type, since any such
function is required to be arbitrarily steep near the boundary of U .

3.3 Convex envelopes

In this section, Ω ⊂ Rd is always a non-empty set and f : Ω → R is an
arbitrary function.

3.18 Proposition If f is minorized by some affine function, the function

conv(f) : conv(Ω) → R,
conv(f)(x) = sup{h(x) | h : conv(Ω) → R ∪ {∞} convex, h ≤ f} (3.4)

is well-defined and convex.

Proof. The fact, that f is minorized by some affine function h ∈ Aff(d, 1)
ensures that the set in the supremum is non-empty. If x ∈ conv(Ω) and

22



x =
q∑

i=1

λix
(i) is a convex combination with x(1), ..., x(q) ∈ Ω, then for any

convex function h : conv(Ω) → R minorizing f we have

h(x) ≤
q∑

i=1

λih(x
(i)) ≤

q∑
i=1

λif(x
(i))

and hence conv(f) is well-defined, since the supremum is bounded from
above. For any x, y ∈ Ω and λ ∈ [0, 1] there is a sequence (hn)n∈N of convex
functions minorizing f with

conv(f)((1− λ)x+ λy) = lim sup
n→∞

(
hn((1− λ)x+ λy)

)
≤ lim sup

n→∞

(
(1− λ)hn(x) + λhn(y)

)
≤ (1− λ) conv(f)(x) + λ conv(f)(y) ,

which implies the convexity of conv(f).

3.19 Definition If f is minorized by some affine function, conv(f) from
Proposition 3.18 is called the convex envelope of f .

In [11, IV, Proposition 2.5.1], for any x ∈ conv(Ω) the following expression
for the convex envelope was given:

conv(f)(x) = inf{
q∑

i=1

λif(x
(i)) | q ∈ N, λ ∈ ∆q, x

(1), ..., x(q) ∈ Ω,

q∑
i=1

λix
(i) = x} .

(3.5)

In (3.4), the convex envelope is obtained by approximation from below with
minorizing convex functions and in (3.5), the convex envelope is obtained by
approximation from above by convex combinations. If x ∈ Ω with ∂f(x) ̸= ∅,
then for v ∈ ∂f(x) the affine function h : Rd → R, h(x′) = f(x′)+ ⟨v, x′−x⟩
minorizes f with f(x) = h(x) ≤ (conv(f))(x) by (3.4) and (conv(f))(x) ≤
f(x) by (3.5) for q = 1. Therefore, (conv(f))(x) = f(x).

3.20 Definition If f is minorized by some affine function and x ∈ conv(Ω),
a convex combination

x =

q∑
i=1

λix
(i)
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with λ ∈ relint(∆q) and pairwise distinct points x(1), ..., x(q) ∈ Ω is called a
stable phase splitting of x, if

(conv(f))(x) =

q∑
i=1

λif(x
(i)) ,

i.e. the infimum in (3.5) is a minimum achieved at (λ1, x
(1)), ..., (λq, x

(q)).
Furthermore, the points x(1), ..., x(q) are called phases of the stable phase split-
ting and the stable phase splitting is called a unique stable phase splitting of

x, if any other stable phase splitting x =
q′∑
i=1

λ′ix
′(i) with x′(1), ..., x′(q

′) ∈ Ω and

λ′ ∈ relint(∆q′) satisfies q
′ = q, x′(i) = x(i) and λ′i = λi for any i ∈ {1, ..., q}.

Given a stable phase splitting of x ∈ conv(Ω), the subdifferential of the
convex envelope in x can be computed as the intersection of the subdifferen-
tials of the interpolating points [12, Theorem 1.5.6].

3.21 Theorem If f is minorized by some affine function and x =
q∑

i=1

λi ·x(i)

is a stable phase splitting, i.e. λ ∈ relint(∆q) and x(1), ..., x(q) ∈ Ω pairwise
distinct with

(conv(f))(x) =

q∑
i=1

λif(x
(i)) ,

then

∂(conv(f))(x) =

q⋂
i=1

∂f(x(i)) .

Theorem 3.21 has a natural conversion. Given some points x(1), ..., x(q) ∈
Ω with a common subgradient, we can give on conv{x(1), ..., x(q)} an expres-
sion for the convex envelope of f by convex interpolation of the values of f
in x(1), ..., x(q).

3.22 Proposition Assume x(1), ..., x(q) ∈ Ω with
q⋂

i=1

∂f(x(i)) ̸= ∅.

Then f is minorized by some affine function and for each λ ∈ ∆q, the convex

envelope of f in x :=
q∑

i=1

λix
(i) ∈ conv({x(1), ..., x(q)}) is given by

(conv(f))(x) =

q∑
i=1

λif(x
(i)) .
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Proof. For v ∈
q⋂

i=1

∂f(x(i)), the function

h : Rd → R, h(x) = f(x(1)) + ⟨v, x− x(1)⟩

is by v ∈ ∂f(x(1)) an affine function minorizing f . For any i ∈ {1, ..., q}, by
v ∈ ∂f(x(i)) we have

h(x(i)) = f(x(1)) + ⟨v, x(i) − x(1)⟩ ≥ f(x(i)) + ⟨v, x(1) − x(i)⟩+ ⟨v, x(i) − x(1)⟩
= f(x(i)) ≥ h(x(i)) .

Now Proposition 6.8, equations (3.4) and (3.5) imply

q∑
i=1

λif(x
(i)) =

q∑
i=1

λih(x
(i)) = h

( q∑
i=1

λix
(i)
)
= h(x) ≤ (conv(f))(x)

= (conv(f))(

q∑
i=1

λix
(i)) ≤

q∑
i=1

λif(x
(i))

and hence the claimed equality.

We can derive a corollary, which relates the representations (3.4) and
(3.5) with each other:

3.23 Corollary If f : Ω → R is a function minorized by h ∈ Aff(d, 1), then
for any x(1), ..., x(q) ∈ {x ∈ Ω | f(x) = h(x)} and λ1, ..., λq ∈ [0, 1] with
q∑

i=1

λi = 1, the convex envelope of f in x :=
q∑

i=1

λix
(i) is given by

conv(f)(x) =

q∑
i=1

λif(x
(i)) = h(x) .

3.24 Proposition If x(1), ..., x(q) ∈ Ω are pairwise distinct and λ ∈ relint(∆q),

such that x =
q∑

i=1

λix
(i) ∈ conv(Ω) is a unique stable phase splitting, then the

points x(1), ..., x(q) are affinely independent and for any v ∈
q⋂

i=1

∂f(x(i)) and

x′ ∈ aff{x(1), ..., x(q)} \ {x(1), ..., x(q)} we have

f(x′) > (conv(f))(x) + ⟨v, x′ − x⟩ .
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Proof. Assume x =
q∑

i=1

λix
(i) is a unique stable phase splitting, especially

(conv(f))(x) =

q∑
i=1

λif(x
(i)) .

Fix λ′1, ..., λ
′
q ∈ R with

q∑
i=1

λ′i = 0 and
q∑

i=1

λ′ix
(i) = 0. Fix t′ > 0 small enough,

such that for any i ∈ {1, ..., q} we have t′ · |λ′i| < λi. Then

x =

q∑
i=1

λix
(i) =

q∑
i=1

(λi + t′ · λ′i)x(i)

is by
q∑

i=1

(λi + t′ · λ′i) = 1 and Proposition 3.22 a stable phase splitting and

uniqueness implies λ′1 = ... = λ′q = 0, i.e. x(1), ..., x(q) are affine independent
according to Proposition 6.7.
By Theorem 3.21 and convexity of conv(f),

∅ ≠ ∂(conv(f))(x) =

q⋂
i=1

∂f(x(i)) .

Assume v ∈
q⋂

i=1

∂f(x(i)) and x′ ∈ aff{x(1), ..., x(q)} with

f(x′) ≤ (conv(f))(x) + ⟨v, x′ − x⟩ .

Since v ∈ ∂(conv(f))(x), for any x′′ ∈ Ω we have

f(x′′) ≥ (conv(f))(x) + ⟨v, x′′ − x⟩ ≥ f(x′) + ⟨v, x′′ − x′⟩

and hence v ∈ ∂f(x′) and v ∈ ∂f(x′) ∩
( q⋂

i=1

∂f(x(i))
)
.

Now fix λ′1, ..., λ
′
q ∈ R with

q∑
i=1

λ′i = 1 and
q∑

i=1

λ′ix
(i) = x′. Choose t′ > 0 small

enough, such that for any i ∈ {1, ..., q} we have t′ · |λ′i| < λi. Then

x =

q∑
i=1

λix
(i) =

q∑
i=1

(λi − t′ · λ′i)x(i) + t′ · x′

is by
q∑

i=1

(λi − t′ · λ′i) + t′ = 1 and Proposition 3.22 a stable phase splitting,

which implies by uniqueness x′ ∈ {x(1), ..., x(q)}.
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If a stable phase splitting x =
q∑

i=1

λix
(i) ∈ conv{x(1), ..., x(q)} is unique,

conv{x(1), ..., x(q)} is a (q− 1)-dimensional simplex, which is called the phase
simplex of x without ambiguity. Any face of this phase simplex is the
(q− 2)-dimensional phase simplex of each point in its relative interior. Con-
versely, it is also possible that conv{x(1), ..., x(q)} is the face of a larger, q-
dimensional phase simplex. If there is some x(q+1) ∈ Ω\aff{x(1), ..., x(q)} with
q+1⋂
i=1

∂f(x(i)) ̸= ∅, then for any λ′1, ..., λ
′
q+1 > 0, x′ :=

q+1∑
i=1

λ′ix
(i) is a stable phase

splitting of x′ according to Proposition 3.22. If this stable phase splitting is
unique, then the (q−1)-dimensional phase simplex conv{x(1), ..., x(q)} is a face
of the q-dimensional phase simplex conv{x(1), ..., x(q+1)} of x′. This leads us to
the notion of a maximal phase simplex as one, for which no such x(q+1) exists.
By Theorem 3.21, the affinely independent vertices x(1), ..., x(q) share at least
one common subgradient and each common subgradient uniquely defines a
hyperplane minorizing f and touching the graph of f at x(1), ..., x(q). Con-
sequently, if any such hyperplane strictly minorizes f except at x(1), ..., x(q),

no x(q+1) ∈ Ω \ {x(1), ..., x(q)} with
q+1⋂
i=1

∂f(x(i)) ̸= ∅ exists.

3.25 Definition For x(1), ..., x(q) ∈ Ω, the simplex conv{x(1), ..., x(q)} is called
a maximal phase simplex of f , if the points x(1), ..., x(q) are affinely inde-

pendent,
q⋂

i=1

∂f(x(i)) ̸= ∅ and for any v ∈
q⋂

i=1

∂f(x(i)), i ∈ {1, ..., q} and

x′ ∈ Ω \ {x(1), ..., x(q)} we have

f(x′) > f(x(i)) + ⟨v, x′ − x(i)⟩ .

3.26 Corollary For affinely independent points x(1), ..., x(q) ∈ Ω satisfying
q⋂

i=1

∂f(x(i)) ̸= ∅, conv{x(1), ..., x(q)} is a maximal phase simplex of f if and

only if for any x′ ∈ Ω \ {x(1), ..., x(q)} we have ∂f(x′) ∩
( q⋂

i=1

∂f(x(i))
)
= ∅.

Proof. We show both directions of the equivalence by contraposition.

If the simplex conv{x(1), ..., x(q)} is not maximal, then there is v ∈
q⋂

i=1

∂f(x(i)),

i ∈ {1, ..., q} and x′ ∈ Ω \ {x(1), ..., x(q)} with

f(x′) ≤ f(x(i)) + ⟨v, x′ − x(i)⟩ .

By v ∈ ∂f(x(i)) we have f(x′) = f(x(i)) + ⟨v, x′ − x(i)⟩ and hence for any
x ∈ Ω,

f(x) ≥ f(x(i)) + ⟨v, x− x(i)⟩ = f(x′) + ⟨v, x− x′⟩ ,

27



therefore v ∈ ∂f(x′).
Conversely, if there is some x′ ∈ Ω \ {x(1), ..., x(q)} such that there exists

v ∈ ∂f(x′)∩
( q⋂

i=1

∂f(x(i))
)
, then conv{x(1), ..., x(q)} is not maximal, since for

some arbitrary i ∈ {1, ..., q} we have

f(x(i)) ≥ f(x′) + ⟨v, x(i) − x′⟩ .

Therefore the equivalence is shown.

At this point, it is worth mentioning that our notion of a maximal phase
simplex differs from the one given by Griewank and Rabier in the introduc-
tion (or again before Theorem 5.2) of [18], as one which is not the face of
a larger phase simplex. The reason is, that Griewank and Rabier only con-
sider functions, for which any stable phase splitting is unique. A maximal
phase simplex (according to our definition) cannot be the face of a larger
phase simplex, since our definition ensures that there is no x(q+1) ∈ Ω sat-

isfying
q+1⋂
i=1

∂f(x(i)) ̸= ∅. Conversely, given a phase simplex which is not

the face of a larger phase simplex, without uniqueness of stable phase split-
tings we cannot conclude that this phase simplex is maximal (according to
our definition). Consider for example an arbitrary function f : R2 → R
with f(1, 1) = f(1,−1) = f(−1, 1) = f(−1,−1) = 0 and f > 0 oth-
erwise. Then conv{(1, 1), (1,−1)} is the phase simplex of (1, 0), which is
not the face of a larger phase simplex, since the potential larger phase
simplices conv{(1, 1), (1,−1), (−1, 1)} and conv{(1, 1), (1,−1), (−1,−1)} dis-
qualify due to non-uniqueness of the corresponding stable phase splittings.
Therefore we stick with our notion of maximal phase simplices, emphasiz-
ing that our definition is equivalent to the one of Griewank and Rabier for
functions only admitting unique stable phase splittings.

3.27 Proposition Fix x(1), ..., x(q) ∈ Ω, such that conv{x(1), ..., x(q)} is a

maximal phase simplex of f . Then, for any λ ∈ ∆q and x :=
q∑

i=1

λix
(i) we

have

(conv(f))(x) =

q∑
i=1

λif(x
(i))

and for I := {i ∈ {1, ..., q} | λi > 0}, x =
∑
i∈I
λix

(i) is a unique stable phase

splitting.
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Proof. Since
q⋂

i=1

∂f(x(i)) ̸= ∅ by definition of maximality of the phase simplex

conv{x(1), ..., x(q)}, Proposition 3.22 implies the expression for the convex
envelope and especially, that x =

∑
i∈I
λix

(i) is a stable phase splitting. Assume

J is a finite set and x =
∑
j∈J

λ′jx
′(j) is another stable phase splitting. Fix

v ∈
q⋂

i=1

∂f(x(i)) ⊂
⋂
i∈I
∂f(x(i)) = ∂f(x) and some i ∈ I. If there was some

j ∈ J with x′(j) /∈ {x(i) | i ∈ I}, then∑
j∈J

λ′jf(x
′(j)) >

∑
j∈J

λ′j
(
f(x(i)) + ⟨v, x′(j) − x(i)⟩

)
= f(x(i)) + ⟨v, x− x(i)⟩ ≥ (conv(f))(x(i)) + ⟨v, x− x(i)⟩
≥ (conv(f))(x) + ⟨v, x(i) − x⟩+ ⟨v, x− x(i)⟩ = (conv(f))(x) ,

a contradiction. Therefore, we can assume without loss of generality J ⊂ I
and for any j ∈ J , x′(j) = x(j). This implies

0 =
∑
i∈I

λix
(i) −

∑
j∈J

λ′jx
(j) =

∑
i∈I\J

λix
(i) +

∑
j∈J

(λi − λ′j)x
(j)

and with
∑

i∈I\J
λi +

∑
j∈J

(λi − λ′j) = 0 and Proposition 6.7, we obtain λ′j = λi

whenever j ∈ J and λi = 0 whenever i ∈ I \ J , which is by the assumption
on I only possible if J = I.

3.28 Corollary Under the assumptions and hypotheses of Theorem 3.21,
for any v ∈ ∂(conv(f))(x) and j ∈ {1, ..., q} with λj > 0 we have

(conv(f))(x)− ⟨v, x⟩ = f(x(j))− ⟨v, x(j)⟩ .

If additionally x(j) ∈ int(Ω) and f is differentiable at x(j), then x ∈ int(Ω)
and conv(f) is differentiable in x with v = ∇(conv(f))(x) = ∇f(x(j)) and
Tx(conv(f)) = Tx(j)f .

Proof. Fix v ∈ ∂(conv(f))(x), which is non-empty by convexity of conv(f),
and fix j ∈ {1, ..., q} with λj > 0. By v ∈ ∂(conv(f))(x) ⊂ ∂f(x(j)), we have

f(x(j)) ≥ (conv(f))(x(j)) ≥ (conv(f))(x) + ⟨v, x(j) − x⟩ .

Since v ∈ ∂(conv(f))(x) ⊂ ∂f(x(j)), the affine (especially convex) function
h : Rd → R, h(x′) = f(x(j)) + ⟨v, x′ − x(j)⟩ minorizes f and the definition of
the convex envelope implies

(conv(f))(x) ≥ h(x) = f(x(j)) + ⟨v, x− x(j)⟩ .
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The claimed equality follows by

(conv(f))(x)− ⟨v, x⟩ ≥ f(x(j)) + ⟨v, x− x(j)⟩ − ⟨v, x⟩ = f(x(j))− ⟨v, x(j)⟩
≥ (conv(f))(x) + ⟨v, x(j) − x⟩ − ⟨v, x(j)⟩
= (conv(f))(x)− ⟨v, x⟩ .

Now assume that x(j) ∈ int(Ω) and f is differentiable at x(j). The mapping
T : Rd → Rd, T (x) =

∑
i∈J\{j}

λix
(i)+λjx is by λj > 0 an affine transformation

and for r > 0 small enough, such that Br(x
(j)) ⊂ Ω, the image of Br(x

(j)) is
an open subset of conv(Ω). Since conv(f) is convex, by Proposition 3.5 and
Theorem 3.21 we have ∅ ≠ ∂(conv(f))(x) ⊂ ∂f(x(j)) and Proposition 3.6
implies the differentiability of conv(f) in x with ∇(conv(f))(x) = ∇f(x(j)).
Finally, for any x′ ∈ Rd we obtain

(conv(f))(x) + ⟨∇(conv(f))(x), x′ − x⟩ = (conv(f))(x) + ⟨v, x′ − x⟩
= f(x(j)) + ⟨v, x′ − x(j)⟩ = f(x(j)) + ⟨∇f(x(j)), x′ − x⟩

and therefore Tx(conv(f)) = Tx(j)f .

3.29 Definition The function f is said to have a common tangent plane
in a set {x(1), ..., x(q)} ⊂ int(Ω), if for any i ∈ {1, ..., q} the function f is
differentiable at x(i) and

∇f(x(1)) = ... = ∇f(x(q)) ,
f(x(1))− ⟨∇f(x(1)), x(1)⟩ = ... = f(x(q))− ⟨∇f(x(q)), x(q)⟩ .

(3.6)

Corollary 3.28 especially implies, that for x(1), ..., x(q) ∈ int(Ω) with f

differentiable at each point x(1), ..., x(q) and λ1, ..., λq > 0 with x =
q∑

i=1

λix
(i)

and (conv(f))(x) =
q∑

i=1

λif(x
(i)), necessarily f has a common tangent plane

in the set {x(1), ..., x(q)}, see [18, Remark 2.1].
The condition, that f has a common tangent plane in {x(1), ..., x(q)} ⊂

int(Ω) is not sufficient for
q⋂

i=1

∂f(x(i)) ̸= ∅, since a gradient is in general not a

subgradient. However, since gradients are local objects while the calculation
of subgradients involve the evaluation of the function on the whole domain,
for a differentiable function it can be more convenient to solve (3.6) first and

check afterwards, whether the solutions also satisfy
q⋂

i=1

∂f(x(i)) ̸= ∅ or not.
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In general, the infimum in (3.5) is not necessarily a minimum, as the
example f : R → R, f(x) = x2 + χ{0}(x) shows, where (conv(f))(0) = 0
cannot be represented as the convex combination of values of f due to the
lack of lower semicontinuity of f .

3.30 Definition A function f : Ω → R is called closed, if for any r ∈ R the
sublevel-set f−1((−∞, r]) is closed in Rd.

By [11, IV, Proposition 1.2.2] a function f : Ω → R is closed if and only
if the extended function fext : Rd → R ∪ {∞} coinciding with f on Ω and
taking the value ∞ outside Ω (which has the same sublevel-sets) is lower
semi-continuous, i.e. if for any x ∈ Rd we have lim infy→x fext(y) ≥ fext(x).
It is not enough for f to be lower semi-continuous in order to be closed, since
for Ω ⊂ Rd open with Ω ̸= Rd and f lower semi-continuous and bounded,
for sufficiently large r the sublevel set f−1((−∞, r]) equals Ω, which is not
closed.

Since conv(f) is closed, according to [12, IV, Proposition 1.2.8] it is suf-
ficient to take in (3.4) the supremum over all affine functions h : Rd → R
with h ≤ f . Nevertheless, closedness alone is not enough to ensure that the
infimum in (3.5) is a minimum, for example consider g : R → R, g(x) = e−x2

with conv(g) ≡ 0. In this case it is the absence of superlinear growth pre-
venting the minimum to exist.

3.31 Definition We say that a function f : Ω → R satisfies the superlinear
growth condition, if for any sequence (xn)n∈N ⊂ Ω with ||xn||

n→∞−−−→ ∞ we
have

lim
n→∞

f(xn)

||xn||
= ∞ . (3.7)

For an extended-valued function f : Rd → R ∪ {∞} we write dom(f) :=
{x ∈ Rd | f(x) <∞} and note, that if f is minorized by an affine function, the
convex envelope of f can be defined by the same expression as in (3.4). The
convex envelope of such a function is exactly the extension of conv(f |dom(f))
with the value ∞ outside of dom(conv(f)) = conv(dom(f)).

Griewank and Rabier showed in [18, Theorem 2.1, Theorem 2.3], that
the convex envelope of a proper (dom(f) ̸= ∅), lower semi-continuous func-
tion f : Rd → R ∪ {∞} satisfying the superlinear growth condition is again
a proper, lower semi-continuous and convex function with dom(conv(f)) =
conv(dom(f)). Moreover, any x ∈ dom(conv(f)) admits a stable phase split-

ting
q∑

i=1

λix
(i) = x with q ∈ {1, ..., d+ 1}, λ1, ..., λq > 0 and pairwise distinct
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x(1), ..., x(q) ∈ dom(f). We can assign to each x ∈ conv(dom(f)) the min-
imal number q(x) ∈ {1, ..., d + 1}, for which a stable phase splitting of x
with q(x) phases exists, and call this function the phase-number function
of f . This phase-number function is according to [18, Theorem 2.2] lower
semi-continuous on the relative interior of conv(Ω) and a point in which the
phase-number function is not locally constant is called a point of phase bi-
furcation. If some point of a phase simplex is a point of phase bifurcation,
then by [18, Theorem 5.2] every point of the phase simplex is a point of phase
bifurcation and we will call the simplex a phase simplex of phase bifurcation.

Our construction of the convex envelope of a function f : Ω → R in
the subsequent section relies crucially on finding points in which the tangent
plane of f lies below the graph of f . If the tangent plane of f in some point
lies strictly below the graph of f outside of a neighbourhood of this point,
closedness and superlinear growth ensure that this property is stable under
small variations of the point.

3.32 Proposition Assume f : Ω → R is a closed function, which satisfies
the superlinear growth condition (3.7) and denote for any y ∈ int(Ω), at which
f is differentiable, with Tyf : Rd → R, Tyf(y′) = f(y) + ⟨∇f(y′), y′ − y⟩ the
first-order Taylor polynomial. If f is continuously differentiable near some
ȳ ∈ int(Ω) and U ⊂ Ω is an open neighbourhood of ȳ with Tȳf < f |Ω\U , then

there exists a neighbourhood Û ⊂ U of ȳ, such that for any ŷ ∈ Û we have
Tŷf < f |Ω\U on Ω \ U .

Proof. In this proof, it is more convenient to work with lower semi-continuity
instead of closedness, so denote with fext : Rd → R ∪ {∞} the extension of
f coinciding with f on Ω and taking the value ∞ outside Ω, which is lower
semi-continuous.
Fix a sequence (Un)n∈N of open neighbourhoods of ȳ with U1 ⊂ U , Un+1 ⊂ Un

for any n ∈ N and
⋂
n∈N

Un = {ȳ}. Assume for any n ∈ N there exists an

ŷn ∈ Un and some yn ∈ Rd\U such that fext(yn) ≤ Tŷnfext(yn). Then ŷn
n→∞−−−→

ȳ and the sequence (yn)n∈N is either bounded or unbounded. If (yn)n∈N
was unbounded, then we could extract a subsequence (without relabelling)
satisfying ||yn||

n→∞−−−→ ∞. But this would imply

fext(yn) ≤ Tŷnfext(yn) = Tŷnf(yn) = f(ŷn) + ⟨∇f(ŷn), yn − ŷn⟩
≤ |f(ŷn)− ⟨∇f(ŷn), ŷn⟩|+ ||∇f(ŷn)|| · ||yn|| ,

contradicting the superlinear growth condition of f by ŷn → ȳ, f(ŷn) → f(ȳ)
and∇f(ŷn) → ∇f(ȳ) for n→ ∞ together with the fact that fext(yn) = f(yn)
by finiteness of the right hand side. So assume (yn)n∈N is bounded. Then
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there exists a subsequence, which converges to some y∗ ∈ Rd \ U . By lower
semi-continuity of f and ∇fext(ŷn) → ∇fext(ȳ) for n→ ∞, this would imply

fext(y
∗) ≤ lim inf

n→∞
fext(yn) ≤ lim inf

n→∞
Tŷnfext(yn) = Tȳ(y

∗) ,

a contradiction. Consequently there exists some n0 ∈ N, such that for any
ŷ ∈ Un0 =: Û and any y ∈ Ω \ U we have

f(y) = fext(y) > Tŷfext(y) = Tŷf(y) .
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4 Construction of the convex envelope

4.1 Motivation

The purpose of this subsection is to illustrate the ideas of our construction
of the convex envelope near a known maximal phase simplex and to explain,
how those ideas are related to the work of Griewank and Rabier in [18].

The approach of Griewank and Rabier

Griewank and Rabier investigated in [18] the convexification of smooth func-
tions and classified the points at which phase bifurcation occurs.

They restricted their analysis of convex envelopes to the case, where
Ω ⊂ Rd is non-empty and open, f ∈ C∞(Ω) is closed, satisfies the su-
perlinear growth condition (3.7) and additionally f is generic, in the sense
that any stable phase splitting is unique. For a detailed characterization
of those generic functions, see [18, Section 4]. Assume ȳ ∈ conv(Ω) and
ȳ(1), ..., ȳ(k+1) ∈ Ω, such that conv({ȳ(1), ..., ȳ(k+1)}) is the phase simplex of
ȳ. Necessarily, the set {ȳ(1), ..., ȳ(k+1)} satisfies (3.6) and equivalently, for
p : Ω → R, p(y) = f(y) − ⟨∇f(y), y⟩ the (k + 1)-tuple (ȳ(1), ..., ȳ(k+1)) is a
zero of

F : Ωk+1 → (Rd+1)k,

F (y(1), ..., y(k+1)) = (∇f(y(i))−∇f(y(1)), p(y(i))− p(y(1)))i=2,...,k+1 .

If conv({ȳ(1), ..., ȳ(k+1)}) is the face of a larger phase simplex then it is neces-
sarily a phase simplex of phase bifurcation, since any neighbourhood of some
point in conv({ȳ(1), ..., ȳ(k+1)}) contains points of the relative interior of the
larger phase simplex having a greater phase number.
If conv({ȳ(1), ..., ȳ(k+1)}) is a maximal phase simplex of phase bifurcation,
then for arbitrarily small neighbourhoods U (1), ..., U (k+1) ⊂ Ω of ȳ(1), ..., ȳ(k+1)

there are (ỹ(1), ..., ỹ(k+1)) ∈
k+1∏
i=1

U (i), j ∈ {1, ..., k + 1} and z̃(j) ∈ U (j) \ {ỹ(j)}

with F (ỹ(1), ..., ỹ(k+1)) = 0, ∇f(z̃(j)) = ∇f(ỹ(j)) and p(z̃(j)) = p(ỹ(j)) (see [18,
page 374]). Roughly speaking, there is a sequence of higher dimensional phase
simplices, whose vertices accumulate at the vertices of conv({ȳ(1), ..., ȳ(k+1)})
having at least one extra vertex in one of the neighbourhoods U (i). This
situation can be prevented assuming that f is strictly locally convex near
each ȳ(1), ..., ȳ(k+1), since by injectivity of any ∇f |U(i) , i = 1, ..., k+1, no z̃(j)

arbitrarily close to ỹ(j) with ∇f(z̃(j)) = ∇f(ỹ(j)) exists.
In [18, Definition 5.1], they call the given phase simplex conv{ȳ(1), ..., ȳ(k+1)}
non-degenerate, if either k = 0 or the Jacobian of F at (ȳ(1), ..., ȳ(k+1)) has full
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rank of (d+1)·k, which guarantees the solvability of F (y(1), ..., y(k+1)) = 0 in a
neighbourhood of (ȳ(1), ..., ȳ(k+1)) by the implicit function theorem. Those so-
lutions occupy a manifold V of dimension (d−k) near (ȳ(1), ..., ȳ(k+1)) ∈ Ωk+1,
see the discussion before [18, Theorem 5.3]. If conv({ȳ(1), ..., ȳ(k+1)}) is a non-
degenerate maximal phase simplex, which is not a phase simplex of phase
bifurcation, then according to [18, Theorem 5.3] any zero of F close enough
to (ȳ(1), ..., ȳ(k+1)) defines the vertices of a phase simplex, which is not a sim-
plex of phase bifurcation. Furthermore, in the proof of [18, Theorem 5.3]
they constructed for a small neighbourhood N ⊂ Ω of ȳ a parametrization of
the phase simplices of the elements of N . More precisely, they constructed
for any i ∈ {1, ..., k + 1} neighbourhoods N (i) ⊂ Ω of ȳ(i) and continuous
functions v(i) : N → N (i) and li : N → R, such that for any y ∈ N ,

(v(1)(y), ..., v(k+1)(y), l1(y), ..., lk+1(y)) ∈ V × relint(∆k+1)

and conv{v(1)(y), ..., v(k+1)(y)} is the phase simplex of y, i.e. y =
k+1∑
i=1

li(y) ·

v(i)(y) and

(conv(f))(y) =
k+1∑
i=1

li(y) · f(v(i)(y)) .

The
”
vertex functions“ v(1), ..., v(k+1) determine the phase simplex, while the

coordinate functions l1, ..., lk+1 determine the barycentric coordinates of the
corresponding stable phase splitting. Altogether, the mapping

N ∋ y 7→ (v(1)(y), ..., v(k+1)(y), l1(y), ..., lk+1(y)) ∈ V × relint(∆k+1)

is continuous, injective and open and the inverse mapping can be viewed as
a parametrization of the neighbourhood N , for which an expression of the
convex envelope in terms of the parametrization is available.

Our approach

We also consider some non-empty set Ω ⊂ Rd (not necessarily open) and
some closed function f : Ω → R, which satisfies the superlinear growth
condition (3.7). Fix ȳ ∈ conv(Ω) and a unique stable phase splitting of ȳ, i.e.
k ∈ {0, ..., d}, pairwise distinct points ȳ(1), ..., ȳ(k+1) ∈ Ω and t ∈ relint(∆k+1)

with
k+1∑
i=1

tiȳ
(i) = ȳ and

(conv(f))(ȳ) =
k+1∑
i=1

tif(ȳ
(i)) .
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Furthermore, assume that conv{ȳ(1), ..., ȳ(k+1)} is a maximal phase simplex
of ȳ. Taking k+1 instead of k as the number of phases simplifies the indexing
later on.

Just as the construction of Griewank and Rabier, our construction also
crucially relies on finding further solutions of (3.6) near our known solution
{ȳ(1), ..., ȳ(k+1)}. The definition of non-degeneracy of a phase simplex requires
the existence of second derivatives, which we do not want to assume. Instead,
we assume that ȳ(1), ..., ȳ(k+1) ∈ int(Ω) and that f is (once) differentiable
and locally strictly convex near each point ȳ(1), ..., ȳ(k+1), i.e. for any i ∈
{1, ..., k + 1} there exists an open convex neighbourhood U (i) ⊂ Ω of ȳ(i),
such that the restriction f |U(i) is strictly convex and differentiable. Notice
that differentiability and strict convexity of the respective restrictions already
imply f |U(i) ∈ C1(U (i)) by Proposition 3.2. Then we are able to derive for
some sufficiently small δ > 0 a continuous parametrization Φ : ∆δ

k+1×Cd−k
δ →

Rd of a whole neighbourhood of conv{ȳ(1), ..., ȳ(k+1)}, on which we can give
an expression for the convex envelope via a stable phase splitting in terms
of the parametrization. The idea is, that the d-dimensional set ∆δ

k+1 ×Cd−k
δ

can be partitioned into sets {SI | ∅ ≠ I ⊂ {1, ..., k + 1}}, such that for each
∅ ≠ I ⊂ {1, ..., k + 1} the restriction of Φ to SI provides a parametrization
of exactly those phase simplices, whose corners lie in the neighbourhoods
U (i), i ∈ I.

In the first step, we focus on solving (3.6) and parametrizing the solutions.
This will be done in a specialized setting, in which a known solution of (3.6) is
given by the origin 0d and the first k unit vectors e(1), ..., e(k). This simplifies
the calculations while solving (3.6) and deriving a parametrization of those
phase simplices including a vertex near the origin. Afterwards, we are going
back to the general setting described above and use affine transformation in
the argument of f to create the situation of the specialized setting. Making
the above mentioned parametrization Φ continuous at the interfaces of the
partitioning sets SI requires several re-parametrizations.

Finally, we not only obtain a parametrization of all phase simplices in
a neighbourhood of conv{ȳ(1), ..., ȳ(k+1)}, we additionally observe that the
parametrization Φ is bi-Lipschitz, if any restriction f |U(i) , i ∈ {1, ..., k + 1}
is strongly convex and has Lipschitz continuous gradient.

4.2 Finding points with a common tangent plane

This section is dedicated to solve the system (3.6) in a neighbourhood of
a known solution and to parametrize the set consisting of the simplices of
those solutions. More precisely, assume throughout this section that Ω̃ ⊂ Rd

is a non-empty set and f̃ : Ω̃ → R. For the sake of notational convenience
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we write e(0) := 0d and assume that k ∈ {1, ..., d}, e(0), ..., e(k) ∈ int(Ω̃) and

for any i ∈ {0, ..., k}, Ũi ⊂ Ω̃ is an open convex neighbourhood of e(i), such
that the restriction f̃ |Ũi

is differentiable and strictly convex. Finally, assume

that f̃(e(0)) = ... = f̃(e(k)) and ∇f̃(e(0)) = ... = ∇f̃(e(k)) = 0, especially,
{e(0), ..., e(k)} is a solution of (3.6). Strict convexity of the restrictions allows
us to reformulate the problem of solving (3.6) in terms of the gradients, since
for any i ∈ {0, ..., k} by Lemma 3.11 the gradient mapping ∇f̃ |Ũ(i) is an
embedding.

4.1 Proposition For any I ⊂ {1, ..., k} and (y(i))i∈I∪{0} ∈
∏

i∈I∪{0}
Ũi the

set {y(i) | i ∈ I ∪ {0}} satisfies (3.6), if and only if there is some v ∈⋂
i∈I∪{0}

∇f̃(Ũi), such that for any i ∈ I ∪{0} we have y(i) = (∇f̃ |Ũi
)−1(v) and

∀
i∈I

(f̃ |Ũi
)∗(v) = (f̃ |Ũ0

)∗(v) , (4.1)

where for any i ∈ I∪{0} the function (f̃ |Ũi
)∗ denotes the Legendre transform

of f̃ |Ũi
as defined in Definition 3.13.

Proof. The first equation of (3.6) implies, that for any i ∈ I, v := ∇f̃(y(0)) =
∇f̃(y(i)), especially v ∈

⋂
i∈I∪{0}

∇f̃(Ũi) and for any i ∈ I ∪ {0}, y(i) =

(∇f̃ |Ũi
)−1(v). Therefore replacing any y(i) by (∇f̃ |Ũi

)−1(v) in the second
equality of (3.6) gives the equality of the (negative) Legrendre transforms and

therefore implies (4.1). Conversely, if v ∈
⋂

i∈I∪{0}
∇f̃(Ũi) satisfies (4.1), then

by definition of the Legendre transform the points {(∇f̃ |Ũi
)−1(v) | i ∈ I∪{0}}

satisfy both equalities of (3.6).

4.2 Remark In the previous Proposition, for I = ∅ any y(0) ∈ Ũ0 satisfies
trivially (4.1) with v := ∇f(y(0)), as well as y(0) satisfies trivially (3.6) with
q = 1 and x(1) = y(0). ∗

Define Ṽ :=
k⋂

i=0

∇f̃(Ũi) and

H̃ : Ṽ → Rk, H̃(v) =

(f̃ |Ũ1
)∗(v)− (f̃ |Ũ0

)∗(v)
...

(f̃ |Ũk
)∗(v)− (f̃ |Ũ0

)∗(v)

 .
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For fixed I ⊂ {1, ..., k} and v ∈ Ṽ , (4.1) is satisfied if and only if for any

i ∈ I we have H̃i(v) = 0. Especially H̃(0) = 0, since {e(0), ..., e(k)} satisfies
(3.6) with ∇f̃(e(0)) = ... = ∇f̃(e(k)) = 0. The next Theorem allows us, to
encode all solutions of (4.1) near the origin for arbitrary I ⊂ {1, ..., k} in one
diffeomorphism, if the restrictions f̃ |Ũi

, i ∈ {0, ..., k}, are strictly convex.

4.3 Theorem Assume that for any i ∈ {0, ..., k} the restriction f̃ |Ũi
is

strictly convex.
Then Ṽ is an open neighbourhood of the origin and there exists some open
neighbourhood W̃ ⊂ Rd of the origin and a diffeomorphism ξ̃ : W̃ → Ṽ onto
its image with ξ̃(0) = 0 and Dξ̃(0) = Idd, such that

∀
w∈W̃

∀
i∈{1,...,k}

: H̃(ξ̃(w))i = 0 ⇔ wi = 0 .

For any i ∈ {0, ..., k} the mapping g̃(i) := (∇f̃ |Ũi
)−1 ◦ ξ̃ : W̃ → Ũi is an

embedding and for any I ⊂ {1, ..., k} and (y(i))i∈I∪{0} ∈
∏

i∈I∪{0}
g̃(i)(W̃ ) the

set {y(i) | i ∈ I ∪ {0}} satisfies (3.6), if and only if

(y(i))i∈I∪{0} ∈ {(g̃(i)(w))i∈I∪{0} | w ∈ W̃ , ∀
i∈I
wi = 0} .

Proof. For any i ∈ {1, ..., k}, by Proposition 3.16 the i-th component of H̃ is
continuously differentiable at the origin with the derivative given by

D(pri ◦H̃)(0) = (∇(f̃ |Ũi
)∗(0)−∇(f̃ |Ũ0

)∗(0))T

= ((∇f̃ |Ũi
)−1(0)− (∇f̃ |Ũ0

)−1(0))T = (e(i))T .

If d = 1, set h̃1 : {0} → R, 0 7→ 0.
If d > 1, then by the implicit function theorem there exist open neighbour-
hoods Ki ⊂ Rd−1 of the origin and Ji ⊂ R of the origin with Ṽ ′

i := {v ∈
Rd | pr⊥i (v) ∈ Ki, vi ∈ Ji} ⊂ Ṽ and a continuously differentiable function

h̃i : Ki → Ji, such that for any v ∈ Ṽ ′
i we have H̃(v)i = 0 if and only if

vi = h̃i(pr
⊥
i (v)). Furthermore, by the formula for the derivative of implicit

functions, Dh̃i(0) = 1−1 · 0Td−1 = 0Td−1.
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For the open neighbourhood Ṽ ′ :=
k⋂

i=1

Ṽ ′
i of the origin, the function

η̃ : Ṽ ′ → Rd, η̃(v) =



v1 − h̃1(pr
⊥
1 (v))

...

vk − h̃k(pr
⊥
k (v))

vk+1
...
vd


is continuously differentiable with η̃(0) = 0 by h̃i(0) = 0 for any i ∈ {1, ..., k}
and Dη̃(0) = Idd. Hence there exist by the inverse function theorem an

open neighbourhood W̃ ⊂ Rd of the origin and a continuously differentiable
function ξ̃ : W̃ → Rd with ξ̃(W̃ ) ⊂ Ṽ ′, ξ̃(0) = 0 and Dξ̃(0) = (Dη̃(0))−1 =

Idd, such that for any w ∈ W̃ we have η̃(ξ̃(w)) = w and for any v ∈ ξ̃(W̃ )
we have ξ̃(η̃(v)) = v. Especially ξ̃ is a diffeomorphism onto its image.

For any w ∈ W̃ and i ∈ {1, ..., k} we have H̃(ξ̃(w))i = 0 if and only if
ξ̃(w)i = h̃i(pr

⊥
i (ξ̃(w))) which is equivalent to

wi = η̃(ξ̃(w))i = ξ̃(w)i − h̃i(pr
⊥
i (ξ̃(w))) = 0 .

For any i ∈ {0, ..., k} the mapping g̃(i) = (∇f̃ |Ũi
)−1 ◦ ξ̃ is well-defined by

ξ̃(W̃ ) ⊂ Ṽ ⊂ ∇f̃(Ũi) and the composition of the diffeomorphism ξ̃ and the
embedding (∇f̃ |Ũi

)−1 according to Lemma 3.11, hence g̃(i) is an embedding.

Now fix I ⊂ {1, ..., k} and (y(i))i∈I∪{0} ∈
∏

i∈I∪{0}
g̃(i)(W̃ ). Then

v := ∇f̃(y(0)) ∈ ∇f̃(g̃(0)(W̃ )) = ∇f̃
(
(∇f̃ |Ũ0

)−1(ξ̃(W̃ ))
)
= ξ̃(W̃ ) ,

and there exists some w ∈ W̃ with v = ξ̃(w). By Proposition 4.1, the set
{y(i) | i ∈ I ∪ {0}} satisfies (3.6), if and only if v satisfies (4.1) and for any
i ∈ I ∪ {0} we have y(i) ∈ (∇f̃ |Ũi

)−1({v}), which is for f̃ |Ũi
strictly convex

equivalent to y(i) = (∇f̃ |Ũi
)−1(v). Now v satisfies (4.1) if and only if for

any i ∈ I we have H̃(ξ̃(w))i = H̃(v)i = 0, which is by the first part of this
Theorem the case if and only if wi = 0. Therefore the set {y(i) | i ∈ I ∪ {0}}
satisfies (3.6), if and only if for any i ∈ I ∪ {0} we have

y(i) = (∇f̃ |Ũi
)−1(v) = (∇f̃ |Ũi

)−1(ξ̃(w)) = g̃(i)(w)

and ∀
i∈I
wi = 0.
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4.4 Corollary If δ > 0 is small enough, such that Cd
δ ⊂ W̃ , then for any

w ∈ Cd
δ and i ∈ {1, ..., k} we have

sign(H̃(ξ̃(w)))i = sign(wi) .

Proof. For any i ∈ {1, ..., k} the sets {w ∈ Cd
δ | wi < 0} and {w ∈ Cd

δ | wi >

0} are connected as well as the images (pri ◦H̃ ◦ ξ̃)({w ∈ Cd
δ | wi < 0}) and

(pri ◦H̃ ◦ ξ̃)({w ∈ Cd
δ | wi > 0}) by continuity of pri ◦H̃ ◦ ξ̃. Since for any

w ∈ Cd
δ we have (H̃ ◦ ξ̃)(w)i = 0 if and only if wi = 0, both images are

connected subsets of R \ {0}. With (H̃ ◦ ξ̃)i(0) = 0 and calculating

Di(pri ◦H̃ ◦ ξ̃)(0) = D(pri ◦H̃)(ξ̃(0)) ·Dξ̃(0)e(i) = (e(i))T Idd e
(i) = 1 ,

we can conclude (pri ◦H̃ ◦ ξ̃)({w ∈ Cd
δ | wi < 0}) ⊂ R− as well as (pri ◦H̃ ◦

ξ̃)({w ∈ Cd
δ | wi > 0}) ⊂ R+.

4.5 Corollary If in the situation of Theorem 4.3 for i ∈ {0, ..., k} the re-
striction f̃ |Ũi

is strongly convex and ∇f̃ |Ũi
is Lipschitz, then g̃(i) is locally

bi-Lipschitz satisfying

∂cg̃
(i)(0) ⊂ PD(d) .

Proof. Since ξ̃ is a diffeomorphism, ξ̃ is locally bi-Lipschitz. If µ > 0 is the
modulus of convexity of f̃ |Ũi

and L > 0 is a Lipschitz constant of ∇f̃ |Ũi
,

then by Lemma 3.12 the function (∇f̃ |Ũi
)−1 is bi-Lipschitz, g̃(i) is locally bi-

Lipschitz as the composition of locally bi-Lipschitz functions and by Propo-
sition 2.13,

∂cg̃
(i)(0) ⊂ ∂c(∇f̃ |Ũi

)−1(ξ̃(0)) ·Dξ̃(0) ⊂ PDµ−1

L−1(d) · Idd ⊂ PD(d) ,

where the last inclusion is due to Proposition 6.5.

4.6 Definition For any I ⊂ {1, ..., k} and δ > 0 define the set

S̃δ
I := {w ∈ Rd | prI(w) ∈ ∆̃d, pr⊥I (w) ∈ Cd

δ } .

4.7 Theorem For any δ > 0 with Cd
δ ⊂ W̃ and any I ⊂ {1, ..., k} the

restriction of the function

ϕ̃I : (pr
⊥
I )

−1(W̃ ) → Rd,

ϕ̃I(w) =
∑
i∈I

wi · g̃(i)(pr⊥I (w)) + (1−
∑
i∈I

wi) · g̃(0)(pr⊥I (w))

to the set S̃δ
I is an embedding.
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Proof. Fix δ > 0 with Cd
δ ⊂ W̃ , I ⊂ {1, ..., k}. Since S̃δ

I is compact and
ϕ̃I is continuous as the composition and sum of continuous functions, by
Proposition 6.2, it suffices to show that ϕ̃I is injective.
For any w ∈ S̃δ

I the set {g̃(i)(pr⊥I (w)) | i ∈ I ∪ {0}} satisfies (3.6), i.e. for all
i ∈ I ∪ {0} we have v := ∇f̃(g̃(0)(pr⊥I (w))) = ∇f̃(g̃(i)(pr⊥I (w))) and

f̃(g̃(0)(pr⊥I (w)))− ⟨v, g̃(0)(pr⊥I (w))⟩ = f̃(g̃(i)(pr⊥I (w)))− ⟨v, g̃(i)(pr⊥I (w))⟩ .

Therefore, the affine function

h : Rd → R, h(y) = f̃(g̃(0)(pr⊥I (w))) + ⟨v, y − g̃(0)(pr⊥I (w))⟩

satisfies for any i ∈ I ∪ {0} the equality h(g̃(i)(pr⊥I (w))) = f̃(g̃(i)(pr⊥I (w)))

and for all y ∈ Ũi by convexity of f̃ |Ũi
the inequality

f̃(y) ≥ f̃(g̃(i)(pr⊥I (w))) + ⟨∇f̃(g̃(i)(pr⊥I (w))), y − g̃(i)(pr⊥I (w))⟩
= f̃(g̃(0)(pr⊥I (w))) + ⟨∇f̃(g̃(0)(pr⊥I (w))), y − g̃(0)(pr⊥I (w))⟩ = h(y) .

Defining Ũ :=
⋃

i∈I∪{0}
Ũi and w0 := 1−

∑
i∈I
wi, the affine function h minorizes

f̃ |Ũ and Proposition 3.23 implies

conv(f̃ |Ũ)(ϕ̃I(w)) =
∑

i∈I∪{0}

wi · f̃
(
g̃(i)(pr⊥I (w))

)
. (4.2)

Since there is at least one i ∈ I∪{0} with wi > 0, by Corollary 3.28 conv(f̃ |Ũ)
is differentiable in ϕ̃I(w) with

∇ conv(f̃ |Ũ)(ϕ̃I(w)) = ∇f̃(g̃(i)(pr⊥I (w))) = ξ̃(pr⊥I (w)) .

Now assume w′ ∈ S̃δ
I with ϕ̃I(w) = ϕ̃I(w

′). With w′
0 := 1 −

∑
i∈I
w′

i, by the

same argument as above we obtain

conv(f̃ |Ũ)(ϕ̃I(w
′)) =

∑
i∈I∪{0}

w′
i · f̃

(
g̃(i)(pr⊥I (w

′))
)

and

∇ conv(f̃ |Ũ)(ϕ̃I(w
′)) = ξ̃(pr⊥I (w

′)) .

Since ξ̃ is injective it follows pr⊥I (w) = pr⊥I (w
′), i.e. for all i ∈ {1, ..., d} \ I,

wi = w′
i.
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Since the points (g̃(i)(pr⊥I (w)))i∈I are affinely independent by assumption on

the sets Ũi, i ∈ I ∪ {0},

0 = ϕ̃I(w)− ϕ̃I(w
′)

=
∑
i∈I

wi · g̃(i)(pr⊥I (w)) + (1−
∑
i∈I

wi) · g̃(0)(pr⊥I (w))

−
∑
i∈I

w′
i · g̃(i)(pr⊥I (w′))− (1−

∑
i∈I

w′
i) · g̃(0)(pr⊥I (w′))

=
∑
i∈I

(wi − w′
i) · g̃(i)(pr⊥I (w))−

∑
i∈I

(wi − w′
i) · g̃(0)(pr⊥I (w))

=
∑
i∈I

(wi − w′
i) · (g̃(i)(pr⊥I (w))− g̃(0)(pr⊥I (w)))

implies wi = w′
i for all i ∈ I. Altogether, w = w′ and since w and w′ were

arbitrary elements of S̃δ
I , the restriction of ϕ̃I to S̃δ

I is injective.

4.8 Theorem If for all i ∈ {0, ..., k} the restriction f̃ |Ũi
is convex with

parameter µ > 0 and ∇f̃ |Ũi
is Lipschitz with parameter L > 0, then there is

some δ > 0, such that Cd
δ ⊂ W̃ and for any I ⊂ {1, ..., k} the restriction of

ϕ̃I from the previous theorem to the set S̃δ
I is bi-Lipschitz.

Proof. In this proof, denote for any subset J ⊂ {1, ..., d} the complement of
J in {1, ..., d} with J c := {1, ..., d} \ J and set IdJ := diag(

∑
j∈J

ej) ∈ Rd×d,

which is the diagonal matrix associated to the projection prJ . Especially for
any J ′ ⊂ {1, ..., d} we have IdJ · IdJ ′ = IdJ∩J ′ .
Fix I ⊂ {1, ..., k} and w0 ∈ {w ∈ Rd | prI(w) ∈ ∆̃d, pr⊥I (w) = 0} ⊂
(pr⊥I )

−1(W̃ ). We want to use Theorem 2.12 to show that ϕ̃I is locally bi-
Lipschitz in w0. In order to estimate ∂cϕ̃I(w0) ⊂ GL(d), we write ϕ̃I as the
composition of two other functions and use Proposition 2.13.
Define

G̃I : (pr
⊥
I )

−1(W̃ ) → (Rd)k+2, G̃I(w) =


prI(w)

g̃(0)(pr⊥I (w))
...

g̃(k)(pr⊥I (w))


and

ψ̃ : (Rd)k+2 → Rd, ψ̃


t
y(0)

...
y(k)

 =
k∑

i=1

ti · y(i) + (1−
k∑

i=1

ti) · y(0) .
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Now ϕ̃I = ψ̃ ◦ G̃I , since for any w ∈ (pr⊥I )
−1(W̃ ) and any i ∈ {1, ..., k} \ I we

get (G̃I(w))i = prI(w)i = 0. The projections prI and pr⊥I are continuously
differentiable with D prI ≡ IdI and D pr⊥I ≡ IdIc . For any i ∈ {0, ..., k} the
function g̃(i) is by Corollary 4.5 locally (bi-)Lipschitz with ∂cg̃

(i)(pr⊥I (w0)) =
∂cg̃

(i)(0) ⊂ PD(d), hence the composition g̃(i) ◦ pr⊥I is locally Lipschitz. Ac-
cording to Proposition 2.10, G̃I is locally Lipschitz with

∂cG̃I(w0) ⊂ {


D prI(w0)

M0
...
Mk

 | ∀
i∈{0,...,k}

Mi ∈ ∂c(g̃
(i) ◦ pr⊥I )(w0)}

⊂ {


D prI(w0)

M0
...
Mk

 | ∀
i∈{0,...,k}

Mi ∈ ∂cg̃
(i)(pr⊥I (w0)) ·D pr⊥I (w0)}

⊂ {


IdI

M0 · IdIc

...
Mk · IdIc

 | ∀
i∈{0,...,k}

Mi ∈ PD(d)} .

ψ̃ is continuously differentiable and with t0 := 1 −
k∑

i=1

ti we obtain for any

t, y(0), ..., y(k) ∈ Rd:

Dψ̃


t
y(0)

...
y(k)

 =
(
y(1) − y(0) | · · · | y(k) − y(0) | 0d×(d−k) | t0 · Idd | · · · | tk · Idd

)

and if y(i) = e(i) = g̃(i)(0) = g̃(i)(pr⊥I (w0)) for all i ∈ {0, ..., k}, this expression
simplifies to

Dψ̃(G̃I(w0)) =
(
Id{1,...,k} | t0 · Idd | · · · | tk · Idd

)
.

The function ϕ̃I is locally Lipschitz as composition of locally Lipschitz func-
tions and defining t := prI(w0) ∈ ∆̃d, we can use again Proposition 2.13 to
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calculate the generalized derivative of ϕ̃I in w0 by

∂cϕ̃I(w0) = Dψ̃(G̃I(w0)) · ∂cG̃I(w)

⊂ {Id{1,...,k} · IdI +
( k∑

i=0

ti ·Mi

)
· IdIc | ∀

i∈{0,...,k}
Mi ∈ PD(d)}

⊂ {IdI +M · IdIc | M ∈ PD(d)} .

Now we show, that for anyM ∈ PD(d) the matrix IdI +M · IdIc is invertible,
which especially implies ∂cϕ̃I(w) ⊂ GL(d).
Fix x ∈ Rd with 0 = (IdI +M · IdIc)x = prI(x) +M · prIc(x). Multiplying
with (prIc(x))

T from the left, leads to 0 = (prIc(x))
T ·M · prIc(x), which is

by positive definiteness of M only possible if prIc(x) = 0. Then 0 = prI(x)+
M · prIc(x) = prI(x) implies x = 0 and injectivity as well as invertibility
of IdI +M · IdIc . By Theorem 2.12, ϕ̃I is locally Lipschitz in w0 and since
w0 ∈ {w ∈ Rd | prI(w) ∈ ∆̃d, pr

⊥
I (w) = 0} was arbitrary, there exists some

open neighbourhood OI ⊂ (pr⊥I )
−1(W̃ ) of {w ∈ Rd | prI(w) ∈ ∆̃d, pr

⊥
I (w) =

0}, such that ϕ̃I |OI
is locally bi-Lipschitz. Now choose for any I ⊂ {1, ..., k}

some δI > 0 small enough, such that Cd
δI

⊂ W̃ and S̃δI
I ⊂ OI . If no such δI

exists, then for any n ∈ N there would be some

x(n) ∈ {w ∈ Rd | prI(w) ∈ ∆̃d, pr
⊥
I (w) ∈ Cd

1/n} =: Kn

with x(n) /∈ OI for all m ∈ N. The sets Kn are compact with Kn+1 ⊂ Kn.
By compactness of K1 there exists some subsequence (x(nm))m∈N converging
to some x∗ ∈ K1 and by closedness of the sets Kn, necessarily

x∗ ∈
⋂
n∈N

Kn = {w ∈ Rd | prI(w) ∈ ∆̃d, pr
⊥
I (w) = 0} ⊂ OI ,

a contradiction.
Set δ := min{δI | I ⊂ {1, ..., k}}. Then, for any I ⊂ {1, ..., k} the restriction

of ϕ̃I to the compact set S̃δ
I ⊂ OI ⊂ (pr⊥I )

−1(W̃ ) is locally bi-Lipschitz by
S̃δ
I ⊂ OI and injective by Theorem 4.7, hence bi-Lipschitz by Corollary 2.4.

4.3 General case

Now we recapitulate the assumptions described in the motivation of this
chapter, which from now on will be kept throughout the rest of this chapter.

Assumptions

(i) Ω ⊂ Rd is a non-empty set and f : Ω → R is closed and satisfies the
superlinear growth condition (3.7),
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(ii) ȳ ∈ conv(Ω) is some point with a unique stable phase splitting, given

by ȳ(1), ..., ȳ(k+1) ∈ int(Ω) and t ∈ relint(∆k+1) with ȳ =
k+1∑
i=1

ti · ȳ(i) and

(conv(f))(ȳ) =
k+1∑
i=1

ti · f(ȳ(i)) , (4.3)

(iii) the phase simplex conv{ȳ(1), ..., ȳ(k+1)} of ȳ is maximal,

(iv) for any i ∈ {1, ..., k+1} there exists an open neighbourhood U (i) ⊂ Ω of
ȳ(i), such that the restriction f |U(i) is strictly convex and differentiable.

Corollary 3.28 implies (3.6) with (x(1), ..., x(q)) = (ȳ(1), ..., ȳ(k+1)), that
ȳ ∈ int(conv(Ω)), the differentiability of conv(f) at ȳ and that for any
i ∈ {1, ..., k + 1} we have Tȳ(conv(f)) = Tȳ(i)f . The points ȳ(1), ..., ȳ(k+1) are
affinely independent according to Proposition 3.24 and by Proposition 3.27,
for any y′ ∈ Ω\{ȳ(1), ..., ȳ(k+1)} we have f(y′) > Tȳ(conv(f))(y

′). The geomet-
rical meaning is, that the common tangent plane of the points ȳ(1), ..., ȳ(k+1)

lies strictly below the graph of f except at ȳ(1), ..., ȳ(k+1), since otherwise the
stable phase splitting would not be unique or the phase simplex would not
be maximal.

4.9 Proposition There exists for any i ∈ {1, ..., k + 1} a neighbourhood

Û (i) ⊂ U (i) of ȳ(i), such that for any ŷ(i) ∈ Û (i) and y ∈ Ω \
k+1⋃
i=1

U (i) we have

f(y) > f(ŷ(i)) + ⟨∇f(ŷ(i)), y − ŷ(i)⟩

and for any (y(1), ..., y(k+1)) ∈
k+1∏
i=1

Û (i) the points y(1), ..., y(k+1) are affinely

independent.

Proof. The mapping

r : (Rd)k+1 → {1, ..., k + 1}, (y(1), ..., y(k+1)) 7→ rank(y(1), ..., y(k+1))

is lower semi-continuous, hence the sublevel-set r−1((−∞, k]) is closed and
r−1({k + 1}) = r−1((k,∞)) is an open neighbourhood of (ȳ(1), ..., ȳ(k+1)).

Defining U :=
k+1⋃
i=1

U (i), by Proposition 3.32 there exists for each i ∈ {1, ..., k+

1} some neighbourhood Û (i) ⊂ U (i) of ȳ(i), such that for any ŷ(i) ∈ Û (i) and
y ∈ Ω \ U we have

f(y) > f(ŷ(i)) + ⟨∇f(ŷ(i)), y − ŷ(i)⟩ .
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Since r−1({k + 1}) is an open neighbourhood of (ȳ(1), ..., ȳ(k+1)), the neigh-

bourhoods Û (i) can be chosen small enough, such that
k+1∏
i=1

Û (i) ⊂ r−1({k+1}),

which implies for I ⊂ {1, ..., k + 1} the affine independence of any points

y(1), ..., y(k+1) with (y(1), ..., y(k+1)) ∈
k+1∏
i=1

Û (i).

Defining V :=
k+1⋂
i=1

∇f(U (i)) any information, which is needed for the con-

struction of the convex envelope in a neighbourhood of conv({ȳ(1), ..., ȳ(k+1)}),
is encoded in the function

H : V → R(k+1)×(k+1),

H(v)i,j = (f |U(i))∗(v)− (f |U(j))∗(v), i, j = 1, ..., k + 1 .

For each v ∈ V , H(v) is a skew-symmetric matrix and the same calculation
as in Proposition 4.1 shows that v̄ := ∇f(ȳ(1)) = ... = ∇f(ȳ(k+1)) is a zero
of H, i.e. H(v̄) = 0(k+1)×(k+1).

The challenge of constructing the desired continuous (or bi-Lipschitz)
parametrization of a neighbourhood of conv{ȳ(1), ..., ȳ(k+1)} is twofold. First,
the construction in the previous section assumes that the corners of the
given phase simplex coincide with the origin and the first k unit vectors.
For any l ∈ {1, ..., k + 1} we can create this situation by applying an affine
transformation in the argument of f , which maps e(0) to ȳ(l) and {e(i) | i ∈
{1, ..., k}} to {ȳ(i) | i ∈ {1, ..., k + 1} \ {l}}. After applying Theorem 4.7 (or
Theorem 4.8) for the transformed function, we can transform back and get for
any I ⊂ {1, ..., k+1} containing l a parametrization of those potential phase
simplices, whose corners lie in the neighbourhoods U (i), i ∈ I. The second
step is, to make those parametrizations compatible with each other, in order
to

”
glue“ them together to one continuous (or bi-Lipschitz) parametrization

of a neighbourhood of conv({ȳ(1), ..., ȳ(k+1)}). The result is a parametrization
of a whole neighbourhood of conv({ȳ(1), ..., ȳ(k+1)}), in which we are able to
give an expression of the convex envelope of f in terms of the parametrization.

Fix l ∈ {1, ..., k+1}. Then there is some (not necessarily unique) invert-
ible matrix Al ∈ GL(d) with

Al · e(i) =

{
ȳ(i) − ȳ(l) , if i ∈ {1, ..., l − 1}
ȳ(i+1) − ȳ(l) , if i ∈ {l, ..., k}

.

The function

hl : Rd → Rd, hl(y) = ȳ(l) + Al · y
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is an affine transformation satisfying for any i ∈ {0, ..., k}

hl(e
(i)) =


ȳ(l) , if i = 0

ȳ(i) , if i ∈ {1, ..., l − 1}
ȳ(i+1) , if i ∈ {l, ..., k}

.

We can define Ωl := (hl)
−1(Ω) and with v̄ = ∇f(ȳ(1)) = ... = ∇f(ȳ(k+1)) as

above,

fl : Ωl → R, fl(y) = f(hl(y))− ⟨hl(y), v̄⟩ .

The function fl satisfies for any i ∈ {1, ..., k},

fl(e
(i)) = f(hl(e

(i)))− ⟨hl(e(i)), v̄⟩

=

{
f(ȳ(i))− ⟨ȳ(i), v̄⟩ , if i ∈ {1, ..., l − 1}
f(ȳ(i+1))− ⟨ȳ(i+1), v̄⟩ , if i ∈ {l, ..., k}

= f(ȳ(l))− ⟨ȳ(l), v̄⟩ = f(hl(e
(0)))− ⟨hl(e(0)), v̄⟩ = fl(e

(0)) ,

since {ȳ(1), ..., ȳ(k+1)} satisfies (3.6) for f .
By Proposition 6.8, for any i ∈ {0, ..., k} the set

U
(i)
l :=


h−1
l (U (l)) , if i = 0

h−1
l (U (i)) , if i ∈ {1, ..., l − 1}
h−1
l (U (i+1)) , if i ∈ {l, ..., k}

is a convex neighbourhood of e(i) and fl|U(i)
l

is strictly convex, which implies

by Proposition 3.11 that ∇fl|U(i)
l

is invertible. If f |U(i) is strongly convex,

then fl|U(i)
l

is by Proposition 6.8 also strongly convex.

For any y ∈ Ωl we can calculate

∇fl(y) = Dfl(y)
T =

(
(Df(hl(y))− v̄T )Dhl(y)

)T
= (Al)

T (∇f(hl(y))− v̄) ,
(4.4)

especially for any i ∈ {0, ..., k}, since ∇f(ȳ(1)) = ... = ∇f(ȳ(k+1)) = v̄ and
hl(e

(i)) ∈ {ȳ(1), ..., ȳ(k+1)},

∇fl(e(i)) = (Al)
T · (∇f(hl(e(i)))− v̄) = 0 .

With the affine transformation

Tl : Rd → Rd, Tl(v) = v̄ + (Al)
−Tv
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we have for any y ∈
k+1⋃
i=1

U
(i)
l , (Tl ◦ ∇fl)(y) = (∇f ◦ hl)(y).

Defining

Vl :=
k+1⋂
i=1

∇fl(U (i)
l ) =

k+1⋂
i=1

(Tl)
−1(∇f(hl(U (i)

l ))) = (Tl)
−1
( k+1⋂

i=1

(∇f(U (i)))
)

= (Tl)
−1(V )

and since for any i ∈ {0, ..., k} the restrictions ∇f |U(i) and ∇fl|h−1
l (U(i)) are

invertible, for any v ∈ Vl:

(∇f |U(i))−1(Tl(v)) = hl((∇fl|h−1
l (U(i)))

−1(v)) . (4.5)

The next proposition describes, how the function

Hl : Vl → Rk, Hl(v) =

(fl|U(1)
l
)∗(v)− (fl|U(0)

l
)∗(v)

...
(fl|U(k)

l
)∗(v)− (fl|U(0)

l
)∗(v)


is related to the l-th column of H.

4.10 Proposition For any v ∈ Vl we have Hl(v) = pr⊥l (H(Tl(v)) · e(l)).
Proof. For any y ∈ Ωl the function fl can be written as

fl(y) = f(hl(y))− ⟨hl(y), v̄⟩ = f(Aly + ȳ(l))− ⟨Aly + ȳ(l), v̄⟩
= f

(
Al(y + (Al)

−1ȳ(l))
)
+ ⟨y,−AT

l v̄⟩ − ⟨ȳ(l), v̄⟩

and applying Proposition 3.15 with A = Al, a = −(Al)
−1ȳ(l), a∗ = −AT

l v̄,
α = −⟨ȳ(l), v̄⟩ and α∗ = −α− ⟨a, a∗⟩ = 0 leads for any i ∈ {0, ..., k} and any
v ∈ Vl to

(fl|U(i)
l
)∗(v) = (f |

hl(U
(i)
l )

)∗((Al)
−T
(
v − (−AT

l v̄))
)
+ ⟨v,−(Al)

−1ȳ(l)⟩

= (f |
hl(U

(i)
l )

)∗(Tl(v))− ⟨v, (Al)
−1ȳ(l)⟩ .

This implies for any i ∈ {1, ..., k} the equation

(Hl(v))i = (fl|U(i)
l
)∗(v)− (fl|U(0)

l
)∗(v)

= (f |
hl(U

(i)
l )

)∗(Tl(v))− (f |
hl(U

(0)
l )

)∗(Tl(v))

=

{
(f |U(i))∗(Tl(v))− (f |U(l))∗(Tl(v)) , if i ∈ {1, ..., l − 1}
(f |U(i+1))∗(Tl(v))− (f |U(l))∗(Tl(v)) , if i ∈ {l, ..., k}

=

{
H(Tl(v))i,l , if i ∈ {1, ..., l − 1}
H(Tl(v))i+1,l , if i ∈ {l, ..., k}

= pr⊥l (H(Tl(v)) · e(l)) ,
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which completes the proof.

Since fl satisfies the assumptions of the previous section, we can apply
Theorem 4.3 and Theorem 4.7 or Theorem 4.8 to fl and then use the affine
transformation Tl to obtain analogue results for f .

4.11 Theorem There exists δ(0) > 0 and for any l ∈ {1, ..., k + 1} a bi-

Lipschitz function ξ
(0)
l : pr⊥{l}(C

d+1
δ(0)

) → V with ξ
(0)
l (0) = v̄, such that for any

w ∈ pr⊥{l}(C
d+1
δ(0)

) we have

∀
j∈{1,...,k+1}

sign(H(ξ
(0)
l (w))j,l) = sign(wj) (4.6)

and for any I ⊂ {1, ..., k + 1} containing l the mapping

ϕ
(0)
l,I : {w ∈ Rd+1 | pr⊥I (w) ∈ Cd+1

δ(0)
, prI(w) ∈ ∆d+1} → Rd,

ϕ
(0)
l,I (w) =

∑
i∈I

wi · (∇f |U(i))−1(ξ
(0)
l (pr⊥I (w)))

is an embedding. If for any i ∈ {1, ..., k + 1} the restriction f |U(i) is strongly
convex and ∇f |U(i) is Lipschitz, then δ(0) can be chosen small enough such

that for any I ⊂ {1, ..., k + 1} containing l the mapping ϕ
(0)
l,I is bi-Lipschitz.

Proof. Fix l ∈ {1, ..., k+1}. Then fl ∈ C1(Ωl) satisfies fl(e
(0)) = ... = fl(e

(k)),
0 = ∇fl(e(0)) = ... = ∇fl(e(k)) and for any i ∈ {0, ..., k} the restriction fl|U(i)

l

is strictly convex. By Theorem 4.3, there exists some open neighbourhood
Wl ⊂ Rd of the origin and a diffeomorphism ξl : Wl → Vl onto its image with
ξl(0) = 0 and Dξl(0) = Idd, such that

∀
w∈Wl

∀
j∈{1,...,k}

Hl(ξl(w))j = 0 ⇔ wj = 0 .

For δl > 0 small enough, such that Cd
δl
⊂ Wl, we have by Corollary 4.4

∀
w∈Cd

δl

∀
j∈{1,...,k}

sign(Hl(ξl(w))j) = sign(wj) (4.7)

and for any Il ⊂ {1, ..., k} with S̃δl
Il
from Definition 4.6 the function

ϕ̃l,Il : S̃
δl
Il
→ Rd,

ϕ̃l,Il(w) =
∑
i∈Il

wi · (∇fl|U(i)
l
)−1(ξl(pr

⊥
Il
(w)))

+ (1−
∑
i∈Il

wi) · (∇fl|U(0)
l
)−1(ξl(pr

⊥
Il
(w)))
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is according to Theorem 4.7 an embedding. If for any i ∈ {1, ..., k + 1}
the restriction f |U(i) is strongly convex and ∇f |U(i) Lipschitz, then for any
i ∈ {0, ..., k} the restriction fl|U(i)

l
is strongly convex and ∇fl|U(i)

l
is Lipschitz

and by Theorem 4.8 δl can be chosen small enough such that ϕ̃l,Il is bi-
Lipschitz.
With δl and ξl being constructed for any l ∈ {1, ..., k + 1} we can define
δ(0) := min{δl | l ∈ {1, ..., k + 1}} > 0 and for any l ∈ {1, ..., k + 1} the
function

ξ
(0)
l : pr⊥{l}(C

d+1
δ(0)

) → V, ξ
(0)
l (w) = Tl(ξl(pr

⊥
l (w))) ,

which is well-defined by

Tl(ξl(pr
⊥
l (pr

⊥
{l}(C

d+1
δ(0)

)))) = Tl(ξl(C
d
δ(0))) ⊂ Tl(ξl(Wl)) ⊂ Tl(Vl) = V .

The function ξ
(0)
l is bi-Lipschitz, since the restriction of pr⊥l to pr⊥{l}(C

d+1
δ(0)

)

is bi-Lipschitz (it eliminates the l-th component, which is zero), the restric-
tion of the diffeomorphism ξl to the compact set pr⊥l (pr

⊥
{l}(C

d+1
δ(0)

)) = Cd
δ(0)

is
bi-Lipschitz and the affine transformation Tl is bi-Lipschitz whenever Il ⊂
{1, ..., k}.
Now fix j ∈ {1, ..., k + 1} and w ∈ pr⊥{l}(C

d+1
δ(0)

). If j = l, then

sign(H(ξ
(0)
l (w))j,l) = sign(H(ξ

(0)
l (w))l,l) = 0 = sign(wl) = sign(wj) ,

if j < l, then with Proposition 4.10 and (4.7),

sign(H(ξ
(0)
l (w))j,l) = sign((H(ξ

(0)
l (w)) · e(l))j)

= sign(pr⊥l (H(Tl(ξl(pr
⊥
l (w)))) · e(l))j)

= sign(Hl(ξl(pr
⊥
l (w)))j) = sign(pr⊥l (w)j) = sign(wj)

and if j > l, then with Proposition 4.10 and (4.7),

sign(H(ξ
(0)
l (w))j,l) = sign((H(ξ

(0)
l (w)) · e(l))j)

= sign(pr⊥l (H(Tl(ξl(pr
⊥
l (w)))) · e(l))j−1)

= sign(Hl(ξl(pr
⊥
l (w)))j−1) = sign(pr⊥l (w)j−1) = sign(wj) .

Fix I ⊂ {1, ..., k+1} containing l and w ∈ Rd+1 with pr⊥I (w) ∈ Cd+1
δ(0)

and
prI(w) ∈ ∆d. Setting

Il := {i− χ{l+1,...,k+1}(i) | i ∈ I \ {l}} ⊂ {1, ..., k}
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we want to show

ϕ
(0)
l,I (w) = (hl ◦ ϕ̃l,Il ◦ pr⊥l )(w) .

Now pr⊥l ◦ pr⊥I = pr⊥Il ◦ pr
⊥
l as mappings from Rd+1 to Rd and for any i ∈

{1, ..., k + 1} we can use (4.5) to infer

(∇f |U(i))−1(ξ
(0)
l (pr⊥I (w))) = (∇f |U(i))−1

(
Tl(ξl(pr

⊥
l (pr

⊥
I (w))))

)
= hl

(
(∇fl|h−1

l (U(i)))
−1
(
ξl(pr

⊥
Il
(pr⊥l (w)))

))
.

With Proposition 6.8 we have

ϕ
(0)
l,I (w) =

∑
i∈I

wi · (∇f |U(i))−1(ξ
(0)
l (pr⊥I (w)))

=
∑
i∈I

wi · hl
(
(∇fl|h−1

l (U(i)))
−1
(
ξl(pr

⊥
Il
(pr⊥l (w)))

))
= hl

(∑
i∈I

wi · (∇fl|h−1
l (U(i)))

−1
(
ξl(pr

⊥
Il
(pr⊥l (w)))

))
.

Writing ∗ := ξl(pr
⊥
Il
(pr⊥l (w))) to shorten the notation, we obtain∑

i∈I

wi · (∇fl|h−1
l (U(i)))

−1
(
ξl(pr

⊥
Il
(pr⊥l (w)))

)
=

∑
i∈I,i<l

wi · (∇fl|U(i)
l
)−1(∗) + wl · (∇fl|U(0)

l
)−1(∗) +

∑
i∈I,i>l

wi · (∇fl|U(i−1)
l

)−1(∗)

=
∑

i∈I,i<l

(pr⊥l (w))i · (∇fl|U(i)
l
)−1(∗) +

∑
i∈I,i>l

(pr⊥l (w))i−1 · (∇fl|U(i−1)
l

)−1(∗)

+
(
1−

∑
i∈I\{l}

wi

)
· (∇fl|U(0)

l
)−1(∗)

=
∑
i∈Il

(pr⊥l (w))i · (∇fl|U(i)
l
)−1(∗) +

(
1−

∑
i∈Il

(pr⊥l (w))i
)
· (∇fl|U(0)

l
)−1(∗)

= ϕ̃l,Il(pr
⊥
l (w))

giving

ϕ
(0)
l,I (w) = (hl ◦ ϕ̃l,Il ◦ pr⊥l )(w) .

The function pr⊥l maps the set {w ∈ Rd+1 | pr⊥I (w) ∈ Cd
δ(0)
, prI(w) ∈ ∆d} bi-

Lipschitz onto S̃δ(0)

Il
, ϕ̃l,Il is an embedding and hl is an affine transformation,

51



hence also bi-Lipschitz. Consequently ϕ
(0)
l,I is an embedding and if for any i ∈

{1, ..., k+1} the restriction f |U(i) is strongly convex and ∇f |U(i) is Lipschitz,
then δ(0) can be chosen small enough such that any ϕ̃l,Il is bi-Lipschitz and

then ϕ
(0)
l,I is bi-Lipschitz as a composition of bi-Lipschitz mappings.

The mappings ξ
(0)
l are not compatible with each other, in the sense that

for I ⊂ {1, ..., k + 1} and j, l ∈ I we cannot conclude that for any w ∈ Cd+1
δ(0)

we have ξj(pr
⊥
I (w)) = ξl(pr

⊥
I (w)). In order to achieve this property, we have

to modify the functions ξl without violating (4.6).

4.12 Theorem There exists δ∗ > 0 and for any l ∈ {1, ..., k + 1} a bi-
Lipschitz mapping ξ∗l : pr⊥{l}(C

d+1
δ∗ ) → V with ξ∗l (0) = v̄, such that the follow-

ing properties are satisfied:

(i) ∀
l,j∈{1,...,k+1}

∀
w∈pr⊥{l}(C

d+1
δ∗ )

: sign(H(ξ∗l (w))j,l) = sign(wj),

(ii) ∀
l,j∈{1,...,k+1}

∀
w∈pr⊥{l,j}(C

d+1
δ∗ )

: ξ∗l (w) = ξ∗j (w),

(iii) for any l ∈ {1, ..., k+1} and I ⊂ {1, ..., k+1} containing l the mapping

ϕ∗
l,I : {w ∈ Rd+1 | pr⊥I (w) ∈ Cd+1

δ∗ , prI(w) ∈ ∆d+1} → Rd,

ϕ∗
l,I(w) =

∑
i∈I

wi · (∇f |U(i))−1(ξ∗l (pr
⊥
I (w)))

is an embedding/bi-Lipschitz.

The first condition says, that the sign of the j-th component of w determines,
whether the tangent plane of f in (∇f |Uj

)−1(ξ∗l (w)) lies below (positive sign),
lies above (negative sign) or coincides (sign equals zero) with the tangent
plane of f in (∇f |Ul

)−1(ξ∗l (w)). The fact that ξ∗l is defined on pr⊥{l}(C
d+1
δ∗ )

ensures compatibility with the case j = l.
The second condition ensures, that the value of the function ϕ∗

l,I from (iii)
does not depend on the choice of l ∈ I.
The last condition provides a bi-Lipschitz parametrization of a neighbour-
hood of relint(conv{ȳ(i) | i ∈ I}), which will be used later on to construct
the convex envelope in this neighbourhood.

The construction of δ∗ and the functions ξ∗l will be done successively,
constructing for any i ∈ {0, ..., k+1} some δ(i) > 0 and bi-Lipschitz mappings

ξ
(i)
l : pr⊥{l}(C

d+1
δ(i)

) → Rd, such that conditions (i)-(iii) are satisfied (with δ∗

and ξ∗l replaced by δ(i) and ξ
(i)
l ) with the restriction, that (ii) is only required
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to be satisfied whenever l, j ≤ i. The functions ξ
(i+1)
l are then constructed

from ξ
(i)
l by a bi-Lipschitz transformation of the argument, which ensures

the validity of (ii) whenever j ≤ i+1 without violating (i) and (iii). Finally,

δ∗ := δ(k+1) and ξ∗l := ξ
(k+1)
l for any l ∈ {1, ..., k + 1} will satisfy (i)-(iii).

Proof. We show that for any i ∈ {0, ..., k + 1} there exists δ(i) > 0 and for

any l ∈ {1, ..., k + 1} some bi-Lipschitz function ξ
(i)
l : pr⊥{l}(C

d+1
δ(i)

) → V with

ξ
(i)
l (0) = v̄, such that the following conditions are satisfied:

C1(i): ∀
l,j∈{1,...,k+1}

∀
w∈pr⊥{l}(C

d+1

δ(i)
)

: sign(H(ξ
(i)
l (w))j,l) = sign(wj),

C2(i): ∀
l,j∈{1,...,k+1}

∀
w∈pr⊥{l,j}(C

d+1

δ(i)
)

: (l, j ≤ i⇒ ξ
(i)
l (w) = ξ

(i)
j (w)),

C3(i): for any l ∈ {1, ..., k+1} and I ⊂ {1, ..., k+1} containing l the mapping

ϕ
(i)
l,I : {w ∈ Rd+1 | pr⊥I (w) ∈ Cd+1

δ(i)
, prI(w) ∈ ∆d} → Rd,

ϕ
(i)
l,I(w) =

∑
j∈I

wj · (∇f |U(j))−1(ξ
(i)
l (pr⊥I (w)))

is an embedding/bi-Lipschitz.

For i = 0, by Theorem 4.11 there exists δ(0) and for any l ∈ {1, ..., k + 1}
a bi-Lipschitz function ξ

(0)
l : pr⊥{l}(C

d+1
δ(0)

) → V with ξ
(0)
l (0) = v̄, such that

C1(0) and C3(0) are satisfied, C2(0) is also trivially satisfied, since no l, j ∈
{1, ..., k + 1} with l, j ≤ i = 0 exist.

Now assume that for some i ∈ {0, ..., k}, δ(i) > 0 and ξ
(i)
l : pr⊥{l}(C

d+1
δ(i)

) → V ,

l ∈ {1, ..., k + 1}, satisfying C1(i)-C3(i) are already constructed.
Since for any l ∈ {1, ..., k + 1} the set pr⊥{l}(int(C

d+1
δ(i)

)) is a relatively open

neighbourhood of 0, by Corollary 6.4 the set ξ
(i)
l (pr⊥{l}(C

d+1
δ(i)

)) is a neigh-

bourhood of ξ
(i)
l (0) = v̄. Hence by continuity of ξ

(i)
i+1, there exists 0 <

δ(i+1) ≤ δ(i) small enough, such that for any l ∈ {1, ..., k + 1} we have

ξ
(i)
i+1(pr

⊥
{i+1}(C

d+1
δ(i+1))) ⊂ ξ

(i)
l (pr⊥{l}(C

d+1
δ(i)

)). This ensures, that for any l ∈
{1, ..., k + 1} the mapping

θ
(i)
l : pr⊥{l}(C

d+1
δ(i+1)) → Rd+1, θ

(i)
l (w) = (ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w))) + pr{i+1}(w)

is well-defined.
By C1(i), we have for any l, j ∈ {1, ..., k + 1} and w ∈ pr⊥{l}(C

d+1
δ(i+1)) using
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H(ξ
(i)
i+1(pr

⊥
{i+1}(w))l,i+1) = sign((pr⊥{i+1}(w))l) = 0:

sign
(
(ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w)))j

)
= sign

(
H(ξ

(i)
l ((ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w)))))j,l

)
= sign

(
H(ξ

(i)
i+1(pr

⊥
{i+1}(w))j,l)

)
= sign

(
H(ξ

(i)
i+1(pr

⊥
{i+1}(w))j,l)

+H(ξ
(i)
i+1(pr

⊥
{i+1}(w))l,i+1)

)
= sign

(
H(ξ

(i)
i+1(pr

⊥
{i+1}(w))j,i+1)

)
= sign(pr⊥{i+1}(w)j)

=

{
sign(wj) , if j ̸= i+ 1

0 , if j = i+ 1
.

Especially, (ξ
(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w)))i+1 = 0 and therefore

θ
(i)
l (w)j =

{
(ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w)))j , if j ̸= i+ 1

wi+1 , if j = i+ 1

as well as

sign(θ
(i)
l (w)j) =

{
sign

(
(ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w)))j

)
, if j ̸= i+ 1

sign(wi+1) , if j = i+ 1

=

{
sign(wj) , if j ̸= i+ 1

sign(wi+1) , if j = i+ 1

= sign(wj) (4.8)

and in particular θ
(i)
l (0) = 0. The restriction of (ξ

(i)
l )−1◦ξ(i)i+1 to pr

⊥
{l,i+1}(C

d+1
δ(i+1))

is bi-Lipschitz as the composition of bi-Lipschitz functions, hence there exist
0 < c ≤ C, such that for all w,w′ ∈ pr⊥{l,i+1}(C

d+1
δ(i+1)) we have:

c · ||w − w′||1 ≤ ||(ξ(i)l )−1(ξ
(i)
i+1(w))− (ξ

(i)
l )−1(ξ

(i)
i+1(w

′))||1 ≤ C · ||w − w′||1 .
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This implies for all w,w′ ∈ pr⊥{l}(C
d+1
δ(i+1)) the estimate

min{c, 1} · ||w − w′||1
≤ c · || pr⊥{i+1}(w)− pr⊥{i+1}(w

′)||1 + |wi+1 − w′
i+1|

≤ ||(ξ(i)l )−1(ξ
(i)
i+1(pr

⊥
{i+1}(w)))− (ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w

′)))||1 + |wi+1 − w′
i+1|

= ||θ(i)l (w)− θ
(i)
l (w′)||1

= ||(ξ(i)l )−1(ξ
(i)
i+1(pr

⊥
{i+1}(w)))− (ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w

′)))||1 + |wi+1 − w′
i+1|

≤ C · || pr⊥{i+1}(w)− pr⊥{i+1}(w
′)||1 + |wi+1 − w′

i+1|
≤ max{C, 1} · ||w − w′||1 , (4.9)

hence θ
(i)
l is bi-Lipschitz. By (ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w))) ∈ pr⊥{l}(C

d+1
δ(i)

) with

(ξ
(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w)))i+1 = 0 and |wi+1| ≤ δ(i+1) ≤ δ(i) we can conclude

θ
(i)
l (w) ∈ pr⊥{l}(C

d+1
δ(i)

). The mapping

ξ
(i+1)
l : pr⊥{l}(C

d+1
δ(i+1)) → V, ξ

(i+1)
l (w) = ξ

(i)
l (θ

(i)
l (w))

is well-defined and bi-Lipschitz as composition of bi-Lipschitz mappings with
ξ
(i+1)
l (0) = ξ

(i)
l (θ

(i)
l (0)) = ξ

(i)
l (0) = v̄.

Now we show that the mappings ξ
(i+1)
l , l ∈ {1, ..., k + 1}, satisfy C1(i+1)-

C3(i+1).
C1(i+1):
For any l, j ∈ {1, ..., k + 1} and w ∈ pr⊥{l}(C

d+1
δ(i+1)) we have

sign(H(ξ
(i+1)
l (w))j,l) = sign(H(ξ

(i)
l (θ

(i)
l (w))j,l) = sign(θ

(i)
l (w)j) = sign(wj) .

C2(i+1):
Assume l, j ∈ {1, ..., i+ 1} and w ∈ pr⊥{l,j}(C

d+1
δ(i+1)).

If j = i+ 1, then pr{i+1}(w) = pr{j}(w) = 0, pr⊥{i+1}(w) = pr⊥{j}(w) = w and

ξ
(i+1)
j (w) = ξ

(i+1)
i+1 (w) = ξ

(i+1)
i+1 (pr⊥{i+1}(w)) = ξ

(i)
l

(
(ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w)))

)
= ξ

(i)
l

(
(ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w))) + pr{i+1}(w)

)
= ξ

(i)
l (θ

(i)
l (w))

= ξ
(i+1)
l (w)

and if l = i+ 1, analogously ξ
(i+1)
l (w) = ξ

(i+1)
j (w).

If j, l ≤ i, then by sign(θ
(i)
l (w)j) = wj = 0 = wl = sign(θ

(i)
l (w)l) we have

θ
(i)
l (w) ∈ pr⊥{l,j}(C

d+1
δ(i)

) and according to C2(i):

ξ
(i+1)
l (w) = ξ

(i)
l (θ

(i)
l (w)) = ξ

(i)
j (θ

(i)
l (w)) .
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Furthermore, by

sign
(
(ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w)))l

)
= sign(wl) = 0 ,

sign
(
(ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w)))j

)
= sign(wj) = 0 ,

we can conclude (ξ
(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w))) ∈ pr⊥{l,j}(C

d+1
δ(i)

) and again by C2(i),

θ
(i)
l (w) = (ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w))) + pr{i+1}(w)

= (ξ
(i)
j )−1

(
ξ
(i)
j ((ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w))))

)
+ pr{i+1}(w)

= (ξ
(i)
j )−1

(
ξ
(i)
l ((ξ

(i)
l )−1(ξ

(i)
i+1(pr

⊥
{i+1}(w))))

)
+ pr{i+1}(w)

= (ξ
(i)
j )−1

(
ξ
(i)
i+1(pr

⊥
{i+1}(w))

)
+ pr{i+1}(w) = θ

(i)
j (w),

which gives us ξ
(i+1)
l (w) = ξ

(i)
j (θ

(i)
l (w)) = ξ

(i)
j (θ

(i)
j (w)) = ξ

(i+1)
j (w) as asserted.

C3(i+1):
Fix l ∈ {1, ..., k + 1} and I ⊂ {1, ..., k + 1} containing l. Then the mapping

Θ
(i)
l,I : {w ∈ Rd+1 | pr⊥I (w) ∈ Cd+1

δ(i+1) , prI(w) ∈ ∆d+1} → Rd+1,

Θ
(i)
l,I(w) = prI(w) + θ

(i)
l (pr⊥I (w))

is well-defined, since for any w ∈ Rd+1, pr⊥I (w) ∈ Cd+1
δ(i+1) and l ∈ I imply

pr⊥I (w) ∈ pr⊥I (C
d+1
δ(i+1)) ⊂ pr⊥{l}(C

d+1
δ(i+1)).

For any w ∈ Rd+1 with pr⊥I (w) ∈ Cd+1
δ(i+1) and prI(w) ∈ ∆d+1, equation (4.8)

implies pr⊥I
(
θ
(i)
l (pr⊥I (w))

)
= θ

(i)
l (pr⊥I (w)) and with

pr⊥I (Θ
(i)
l,I(w)) = pr⊥I

(
prI(w) + θ

(i)
l (pr⊥I (w))

)
= θ

(i)
l (pr⊥I (w)) ∈ Cd+1

δ(i)

prI(Θ
(i)
l,I(w)) = prI

(
prI(w) + θ

(i)
l (pr⊥I (w))

)
= prI(w) ∈ ∆d+1

the image of Θ
(i)
l,I is a subset of {w ∈ Rd+1 | pr⊥I (w) ∈ Cd+1

δ(i)
, prI(w) ∈ ∆d+1}.

Therefore we obtain ϕ
(i+1)
l,I = ϕ

(i)
l,I ◦Θ

(i)
l,I , since

ξ
(i)
l (pr⊥I (Θ

(i)
l,I(w))) = ξ

(i)
l (θ

(i)
l (pr⊥I (w))) = ξ

(i+1)
l (pr⊥I (w))

and for any j ∈ I we have Θ
(i)
l,I(w)j = prI(w)j = wj.

The function Θ
(i)
l,I is bi-Lipschitz, since for any w,w′ in the domain of Θl,I we
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can use (4.9) to calculate:

min{c, 1} · ||w − w′||1
≤ || prI(w)− prI(w

′)||1 +min{c, 1} · || pr⊥I (w)− pr⊥I (w
′)||1

≤ || prI(w)− prI(w
′)||1 + ||θ(i)l (pr⊥I (w))− θ

(i)
l (pr⊥I (w

′))||1
= || prI(Θ

(i)
l,I(w)−Θ

(i)
l,I(w

′))||1 + || pr⊥I (Θ
(i)
l,I(w)−Θ

(i)
l,I(w

′))||1
= ||Θ(i)

l,I(w)−Θ
(i)
l,I(w

′)||1
= || prI(Θ

(i)
l,I(w)−Θ

(i)
l,I(w

′))||1 + || pr⊥I (Θ
(i)
l,I(w)−Θ

(i)
l,I(w

′))||1
= || prI(w)− prI(w

′)||1 + ||θ(i)l (pr⊥I (w))− θ
(i)
l (pr⊥I (w

′))||1
≤ || prI(w)− prI(w

′)||1 +max{C, 1} · || pr⊥I (w)− pr⊥I (w
′)||1

≤ max{C, 1} · ||w − w′||1

Since Θ
(i)
l,I is bi-Lipschitz and ϕ

(i)
l,I is an embedding/bi-Lipschitz, ϕ

(i+1)
l,I is an

embedding/bi-Lipschitz.

Finally, for δ∗ := δ(k+1) and ξ∗l := ξ
(k+1)
l for any l ∈ {1, ..., k+1} the conditions

C1(k+1)- C3(k+1) are eqivalent to (i)-(iii).

Recall for any i ∈ {1, ..., k+1} the set Û (i) from Proposition 4.9 with the

property, that for any ŷ(i) ∈ Û (i) and y ∈ Ω \
k+1⋃
i=1

U (i) we have

f(y) > f(ŷ(i)) + ⟨∇f(ŷ(i)), y − ŷ(i)⟩

and for any (y(i))i∈I ∈
∏
i∈I
Û (i) the points y(1), ..., y(k+1) are affinely indepen-

dent. For any i ∈ {1, ..., k + 1} the mapping (∇f |U(i))−1 ◦ ξ∗i is continuous.

4.13 Definition Fix 0 < δ ≤ δ∗ small enough, such that for any i ∈
{1, ..., k+1} we have (∇f |U(i))−1(ξ∗i (pr

⊥
{i}(C

d+1
δ∗ ))) ⊂ Û (i) and define the func-

tion

g(i) : pr⊥{i}(C
d+1
δ∗ ) → Û (i), g(i)(s) := (∇f |U(i))−1(ξ∗i (s)) .

Furthermore, for any non-empty I ⊂ {1, ..., k + 1} define the set

Sδ
I := {w ∈ ∆δ

k+1 × Cd−k
δ | ∀

i∈{1,...,k+1}
wi ≥ 0 ⇔ i ∈ I} ⊂ Rd+1 .

Due to the ⇔-relation in the definition of Sδ
I , the sets S

δ
I form a partition

of ∆δ
k+1 × Cd−k

δ ⊂ Rd+1.
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4.14 Proposition For any w ∈ Sδ
I , the simplex conv{g(i)(pr⊥I (w)) | i ∈ I}

is a maximal phase simplex of f .

Proof. For any i ∈ I, ∇f(g(i)(pr⊥I (w))) = ξ∗i (pr
⊥
I (w)) ∈ V takes by Theo-

rem 4.12 (ii) the same value, denoted by v. For any i ∈ I and j ∈ {1, ..., k+1},
we have by definition of Sδ

I and Theorem 4.12 (i),

sign(H(v)j,i) = sign(H(ξ∗i (pr
⊥
I (w)))j,i) = sign(pr⊥I (w)j) =

{
0 , if j ∈ I

−1 , if j /∈ I
.

According to Proposition 3.7, for any y(j) ∈ U (j) we can estimate using
formula (3.3)

f(y(j)) ≥ f(g(j)(pr⊥I (w))) + ⟨∇f(g(j)(pr⊥I (w))), y(j) − g(j)(pr⊥I (w))⟩
= f((∇f |U(j))−1(v))− ⟨v, (∇f |U(j))−1(v)⟩+ ⟨v, y(j)⟩
= −(f |U(j))∗(v) + ⟨v, y(j)⟩ = −(f |U(i))∗(v)−H(v)j,i + ⟨v, y(j)⟩
= f((∇f |U(i))−1(v))− ⟨v, (∇f |U(i))−1(v)⟩+ ⟨v, y(j)⟩ −H(v)j,i

= f(g(i)(pr⊥I (w))) + ⟨v, y(j) − g(i)(pr⊥I (w))⟩ −H(v)j,i

≥ f(g(i)(pr⊥I (w))) + ⟨v, y(j) − g(i)(pr⊥I (w))⟩ ,

with the first inequality being strict whenever y(j) ̸= g(j)(pr⊥I (w)) and the
second inequality being strict whenever j /∈ I.

By Proposition 4.9 and g(i)(pr⊥I (w)) ∈ Û (i), for any y ∈ Rd \
k+1⋃
i=1

U (i) we have

f(y) > f(g(i)(pr⊥I (w))) + ⟨∇f(g(i)(pr⊥I (w))), y − g(i)(pr⊥I (w))⟩
= f(g(i)(pr⊥I (w))) + ⟨v, y − g(i)(pr⊥I (w))⟩ .

Altogether, we conclude for any y′ ∈ Ω,

f(y′) ≥ f(g(i)(pr⊥I (w))) + ⟨v, y − g(i)(pr⊥I (w))⟩ ,

with equality if and only if y′ ∈ {g(i)(pr⊥I (w)) | i ∈ I}. Especially, v ∈⋂
i∈I
∂f(g(i)(pr⊥I (w))) and by differentiability of f in any g(i)(pr⊥I (w)), i ∈ I, we

have {v} =
⋂
i∈I
∂f(g(i)(pr⊥I (w))) and conv{g(i)(pr⊥I (w)) | i ∈ I} is a maximal

phase simplex.

In Sδ
I the previous Proposition provides a parametrization of maximal

phase simplices whose vertices lie in U (i), i ∈ I, using only the d + 1 −
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|I| components whose index is not an element of I. The components with
index in I (which are non-negative) are now supposed to parametrize the
position within the respective maximal phase simplex in terms of barycentric
coordinates, but first we have to do a normalization since in general they do
not sum up to 1.

4.15 Lemma For any δ > 0 and ∅ ≠ I ⊂ {1, ..., k + 1} the mapping

κI : S
δ
I → {w ∈ Rd+1 | prI(w) ∈ ∆d+1, pr⊥I (w) ∈ Cd+1

δ },

(κI(w))i =


(∑

j∈I
wj

)−1

· wi , i ∈ I

wi , i ∈ {1, ..., d+ 1} \ I

is well-defined and a bi-Lipschitz bijection.

Proof. First recognise that by definition of Sδ
I we have

k+1∑
i=1

wi = 1 with wi < 0

whenever i ∈ {1, ..., k+1}\I, which implies
∑
j∈I

wj ≥ 1 and prevents a division

by zero. Furthermore, κI is well defined, since for any i ∈ {1, ..., k + 1} \ I,
κI(w)i = wi ∈ [−δ, 0) and

d+1∑
i=1

prI(κI(w))i =
∑
i∈I

κI(w)i =
∑
i∈I

(∑
j∈I

wj

)−1

· wi = 1 .

The Lipschitz continuity follows by

1 =
k+1∑
j=1

wj ≤
∑
j∈I

wj = 1−
∑

j∈{1,...,k+1}\I

wj ≤ 1 +
∑

j∈{1,...,k+1}\I

|wj|

≤ 1 + (k + 1) · δ

and Proposition 2.2.
We prove that κI is bijective by giving the inverse function

κ−1
I : {w ∈ Rd+1 | prI(w) ∈ ∆d+1, pr

⊥
I (w) ∈ Cd

δ } → Sδ
I ,

(κ−1
I (w))i =


(
1−

∑
j∈{1,...,k+1}\I

wj

)
· wi , i ∈ I

wi , i ∈ {1, ..., d+ 1} \ I
,
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which is well-defined, since for any i ∈ {1, ..., k+1}\I, κI(w)i = wi ∈ [−δ, 0)
and

d+1∑
i=1

κ−1
I (w)i =

∑
i∈I

(
1−

∑
j∈{1,...,k+1}\I

wj

)
· wi +

∑
i∈{1,...,k+1}\I

wi

=
k+1∑
i=1

prI(w)i ·
(
1−

∑
j∈{1,...,k+1}\I

wj

)
+

∑
i∈{1,...,k+1}\I

wi = 1 .

By
∑
j∈I

wj = 1−
∑

j∈{1,...,k+1}\I
wj, the function κ−1

I is indeed inverse to κI and

Lipschitz, since each component is Lipschitz as the product of two bounded
Lipschitz functions according to Proposition 2.2.

We are now able to prove the main Theorem, a parametrization of a
neighbourhood of the maximal phase simplex conv{ȳ(1), ..., ȳ(k+1)}, such that
an expression for the convex envelope of f can be given in this neighbourhood
in terms of the parametrization. The proof follows similar lines as the one of
Theorem 4.7.

4.16 Theorem Recall Definition 4.13 and consider the mapping Φ : ∆δ
k+1×

Cd−k
δ → Rd, which is given for ∅ ≠ I ⊂ {1, ..., k + 1} on Sδ

I by

Φ(w) =
∑
i∈I

(∑
j∈I

wj

)−1

wi · g(i)(pr⊥I (w)) .

The restriction of Φ to the set ∆δ
k+1 × Cd−k

δ is an embedding and for any
∅ ̸= I ⊂ {1, ..., k + 1} and w ∈ Sδ

I the convex envelope of f in Φ(w) is given
by the convex combination

conv(f)(Φ(w)) =
∑
i∈I

(∑
j∈I

wj

)−1

wi · f
(
g(i)(pr⊥I (w))

)
(4.10)

of function values of f .

Proof. For any non-empty I ⊂ {1, ..., k + 1} and w ∈ Sδ
I , (4.10) follows im-

mediately by Proposition 4.14 and Proposition 3.27, since for any i ∈ I we

have wi ≥ 0 and
∑
i∈I

(∑
j∈I

wj

)−1

wi = 1.

By Proposition 6.2 and compactness of ∆δ
k+1 ×Cd−k

δ , it suffices to show that
Φ is a continuous injection.
We first prove the injectivity of Φ. Fix non-empty sets I, I ′ ⊂ {1, ..., k +
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1} and w ∈ SI and w′ ∈ SI′ with Φ(w) = Φ(w′) := y. Define J :=
{j ∈ {1, ..., k + 1} | wj > 0} ⊂ I and J ′ := {j ∈ {1, ..., k + 1} | w′

j >
0} ⊂ I ′. Then pr⊥I (w) = pr⊥J (w) and pr⊥I′(w) = pr⊥J ′(w′). By Propo-
sition 4.14, conv{g(i)(pr⊥I (w)) | i ∈ I} and conv{g(i)(pr⊥I′(w′)) | i ∈ I ′}
are maximal phase simplices of f and Proposition 3.27 implies, that both

y =
∑
i∈J

( ∑
j∈J

wj

)−1

wi · g(i)(pr⊥I (w)) and y =
∑
i∈J ′

( ∑
j∈J ′

wj

)−1

w′
i · g(i)(pr⊥I′(w′))

are unique stable phase splittings. Since the sets U (i) are pairwise disjoint,
uniqueness implies J = J ′ and for any i ∈ J , g(i)(pr⊥I (w)) = g(i)(pr⊥I′(w

′)) and( ∑
j∈J

wj

)−1

wi =
( ∑

j∈J
w′

j

)−1

w′
i. For any i ∈ J , g(i) is bi-Lipschitz as the com-

position of bi-Lipschitz functions and hence pr⊥J (w) = pr⊥I (w) = pr⊥I′(w
′) =

pr⊥J ′(w′) = pr⊥J (w
′). With the bi-Lipschitz bijection κJ from Lemma 4.15, we

have κJ(w) = κJ(w
′) and hence w = w′.

Next we show that Φ is continuous. Fix I, J ⊂ {1, ..., k}, w ∈ Sδ
I and a se-

quence (w(n))n∈N ⊂ Sδ
J converging to w. For any i ∈ J , the component wi is

non-negative as the limit of the sequence (w(n))n∈N of non-negative numbers,
hence J ⊂ I. Furthermore, for any i ∈ I \J the component wi is zero, since it

is non-negative and the limit of the sequence (w
(n)
i )n∈N of negative numbers.

Therefore pr⊥I (w) = pr⊥J (w) and

Φ(w) =
∑
i∈I

(∑
j∈I

wj

)−1

wi · g(i)(pr⊥I (w)) =
∑
i∈J

(∑
j∈J

wj

)−1

wi · g(i)(pr⊥J (w))

=
∑
i∈J

κJ(w)i · g(i)(pr⊥J ( lim
n→∞

w(n))) = lim
n→∞

∑
i∈J

κJ(w
(n))i · g(i)(pr⊥J (w(n)))

= lim
n→∞

(∑
i∈J

(∑
j∈J

w
(n)
j

)−1

w
(n)
i · g(i)(pr⊥J (w(n)))

)
= lim

n→∞
Φ(w(n)) ,

where the continuity of the functions κJ and g(i) for i ∈ J was used. No-
tice that here was no loss in generality assuming that the whole sequence
(w(n))n∈N lies in the same set Sδ

J of the finite partition of ∆δ
k+1 × Cd−k

δ . If
not, the sequence can be partitioned into subsequences with each subsequence
lying entirely in one of the sets Sδ

J . Since the values of Φ in any such subse-
quence with infinitely many elements converge to Φ(w), the whole sequence
Φ(w(n)) converges to Φ(w).

4.17 Corollary If for any i ∈ {1, ..., k + 1} the restriction f |U(i) is strongly
convex and has Lipschitz continuous gradient, then for any 0 < δ′ < δ the
restriction of Φ from Theorem 4.16 to the set ∆δ′

k+1 × Cd−k
δ′ is bi-Lipschitz.
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Proof. Fix 0 < δ′ < δ. The restriction of Φ to the convex set ∆δ
k+1 × Cd−k

δ

is an embedding and {Sδ
I | ∅ ≠ I ⊂ {1, ..., k + 1}} is a finite partition of

∆δ
k+1×Cd−k

δ , such that the restriction of Φ to Sδ
I is given by the bi-Lipschitz

function ϕ∗
I ◦κI . Since Φ(relint(∆δ

k+1×Cd−k
δ )) ⊂ Rd is open by Corollary 6.4

and ∆δ′

k+1×Cd−k
δ′ is compact with Φ(∆δ′

k+1×Cd−k
δ′ ) ⊂ Φ(relint(∆δ

k+1×Cd−k
δ )),

the restriction of Φ to ∆δ′

k+1 × Cd−k
δ′ is bi-Lipschitz by Corollary 2.6.

The convex envelope of a closed and continuously differentiable function
satisfying the superlinear growth condition (3.7) is known to be continuously
differentiable [10, Theorem 3.2]. Local Lipschitz-continuity of the gradient
(even local Hölder-continuity with 0 < α ≤ 1) is also inherited by the convex
envelope [10, Theorem 4.2]. We close this section by showing, that the convex
envelope conv(f) constrcuted in Theorem 4.16 admits on int(Φ(∆δ

k+1×Cd−k
δ ))

the expected regularity. It is worth noting, that global regularity of f is not
required.

4.18 Corollary Under the hypothesis of Theorem 4.16, the function conv(f)
is continuously differentiable on int(Φ(∆δ

k+1×Cd−k
δ )). If additionally for any

i ∈ {1, ..., k + 1} the restriction f |U(i) is strongly convex and has Lipschitz
continuous gradient, then for any 0 < δ′ < δ the gradient of conv(f) is locally
Lipschitz on int(Φ(∆δ′

k+1 × Cd−k
δ′ )).

Proof. For the sake of convenience, we set throughout this proof fc :=
conv(f).
For the first part, fix y0 ∈ int(Φ(∆δ

k+1 ×Cd−k
δ )). By Φ−1(y0) ∈ ∆δ

k+1 ×Cd−k
δ ,

there is some i0 ∈ {1, ..., k + 1} with pri0(Φ
−1(y0)) > 0. Since pri0 and

Φ−1 are continuous mappings, we can choose r > 0, such that Br(y0) ⊂
int(Φ(∆δ

k+1 × Cd−k
δ )) and pri0(Φ

−1(Br(y0))) ⊂ R+. For any y ∈ Br(y0) let
I ⊂ {1, ..., k + 1} be the unique non-empty subset with w := Φ−1(y) ∈ Sδ

I .
Theorem 4.7 gives

fc(y) =
∑
i∈I

(∑
j∈I

wj

)−1

wi · f
(
g(i)(pr⊥I (w))

)
and defining I ′ := {i ∈ I | wi > 0} Theorem 3.21 implies with wi0 > 0,

∂fc(y) =
⋂
i∈I′

∂f
(
g(i)(pr⊥I (w))

)
⊂ ∂f

(
g(i0)(pr⊥I (w))

)
= {∇f

(
g(i0)(pr⊥I (w))

)
} .

Proposition 3.5 and convexity of fc imply ∂fc(y) ̸= ∅, hence ∂fc(y) =
{∇f

(
g(i0)(pr⊥I (w))

)
} and by Proposition 3.6 fc is differentiable at y. Since

y ∈ Br(y0) was arbitrary, fc|Br(y0) is convex and differentiable, therefore con-
tinuously differentiable according to Proposition 3.2.
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Concerning the second part, assume y0 ∈ int(Φ(∆δ′

k+1 × Cd−k
δ′ )) and r is

small enough, such that Br(y0) ⊂ int(Φ(∆δ′

k+1 × Cd−k
δ′ )). For any ∅ ̸= I ⊂

{1, ..., k + 1}, on Br(y0) ∩ Φ(Sδ
I ) the gradient mapping of fc is given by

∇fc = ∇f ◦ g(i0) ◦ pr⊥I ◦Φ−1, which is Lipschitz as the composition of Lips-
chitz functions. Since {Br(y0)∩Φ(Sδ

I ) | ∅ ≠ I ⊂ {1, ..., k+1}} is a partition
of Br(y0), continuity of ∇fc on Br(y) implies that ∇fc is Lipschitz on Br(y)
by Lemma 2.5.

5 Examples

5.1 Example Consider the functions f0 : R2 → R, f0(x) = 1
2
· (x21+x22) and

f1 : R2 → R,

f1(x) =


1
2
·

(
x1 − 1

x2

)
·

(
1 0

0 1

)
·

(
x1 − 1

x2

)
, if x2 ≤ x1 − 1

1
2
·

(
x1 − 1

x2

)
·

(
2 −1

−1 2

)
·

(
x1 − 1

x2

)
, if x2 > x1 − 1

.

The function f0 is smooth with ∇f0 = idR and Hf0 ≡ Id2, especially has Lip-
schitz continuous gradient and is convex with modulus 1 according to Propo-
sition 3.10. By (∇f0)−1 = idR2, the Legendre transform of f0 is given by
f ∗
0 = f0.
The function f1 is continuously differentiable with

∇f1 : R2 → R, ∇f1(x) =



(
x1 − 1

x2

)
, if x2 ≤ x1 − 1(

2(x1 − 1)− x2

−(x1 − 1) + 2x2

)
, if x2 > x1 − 1

and has Lipschitz continuous gradient by Lemma 2.5. Especially ∇f1 is lo-
cally Lipschitz and we can calculate the generalized Hessian by

∂c∇f1(x) =



{Id2} , if x2 < x1 − 1

{

(
1 + t −t
−t 1 + t

)
| t ∈ [0, 1]} , if x2 = x1 − 1

{

(
2 −1

−1 2

)
} , if x2 > x1 − 1

.
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For any x ∈ R2 we have ∂c∇f1(x) ⊂ PD3
1(2) (see Definition 3.9) and by

Proposition 3.10, f1 is convex with modulus 1. By

(∇f1)−1 : R2 → R2,

(∇f1)−1(v) =



(
v1 + 1

v2

)
, if v2 ≤ v1

1
3
·

(
3 + 2v1 + v2

v1 + 2v2

)
, if v2 > v1

,

a straightforward calculation shows that the Legendre transform of f1 is given
by

f ∗
1 : R2 → R2,

f ∗
1 (v) =

{
1
2
v21 + v1 +

1
2
v22 , if v2 ≤ v1

1
3
· (v21 + 3v1 + v1v2 + v22) , if v2 > v1

.

Now define g : R → R, t 7→ 1/2 + χR+(t) · (t−
√
t) and the sets Ω0 := {x ∈

R2 | x1 < g(x2)}, Ω1 := {x ∈ R2 | x1 > g(x2)} and Ω := Ω0 ∪ Ω1. See
Figure 1 (a) for a visualization of the shape of Ω0 and Ω1. The function

f : Ω → R, f(x) =

{
f0(x) , if x ∈ Ω0

f1(x) , if x ∈ Ω1

is continuously differentiable with locally Lipschitz continuous gradient and is
locally convex with modulus 1. Furthermore, (f |Ω0)

∗ = (f ∗
0 )|Ω0 and (f |Ω1)

∗ =
(f ∗

1 )|Ω1. Solving for v ∈ R the equation f ∗
0 (v) = f ∗

1 (v) leads for v2 ≤ v1 to
v1 = 0 and for v2 > v1 to v1 = 3 + v2 −

√
9 + 6v2, hence with

h : R → R, χR+(s) · (3 + s−
√
9 + 6s)

we have

f ∗
0 (v) = f ∗

1 (v) ⇔ v1 = h(v2) .

With Proposition 3.16 we can calculate

⟨∇f ∗
1 (0)−∇f ∗

0 (0), e1⟩ = ⟨(∇f1)−1(0)− (∇f0)−1(0), e1⟩ = ⟨e1, e1⟩ = 1

and conclude

f ∗
1 (v)− f ∗

0 (v)


> 0 , if v1 > h(v2)

= 0 , if v1 = h(v2)

< 0 , if v1 < h(v2)

. (5.1)
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(a) blue: Ω0, orange: Ω1 (b) blue: ∇f(Ω0), orange: ∇f(Ω1), black
line: {v ∈ R2 | (f |Ω0

)∗(v) = (f |Ω1
)∗(v)}

Figure 1: Visualization of the domain of f (left) and the gradient set of
f |Ω0 and f |Ω1 (right) with the solution curve of (f |Ω0)

∗(v) = (f |Ω1)
∗(v). The

dashed orange line indicates the discontinuous second derivative.

In order to show (f |Ω0)
∗(v) = (f |Ω1)

∗(v) ⇔ v1 = h(v2), we need to prove for
any s ∈ R, (h(s), s) ∈ ∇f(Ω0) ∩∇f(Ω1) (see Figure 1 (b)).
For s ≤ 0 we have h(s) = 0 < 1/2 = g(s), hence (h(s), s) ∈ Ω0 = ∇f(Ω0), as
well as (h(s), s) = ∇f(1, s) and hence (h(s), s) ∈ ∇f(Ω1). Now we assume
s > 0 and infer (h(s), s) ∈ ∇f(Ω0) by

h(s) < g(s)

⇔ 3 + s−
√
9 + 6s <

1

2
+ s−

√
s

⇔ 5

2
+
√
s <

√
9 + 6s

⇔ 25

4
+ 5

√
s+ s < 9 + 6s

⇔ 0 <
11

4
− 5

√
s+ 5s

⇔ 0 <
3

2
+ 5 ·

(
1

2
−
√
s

)2

.

In order to show (h(s), s) ∈ ∇f(Ω1), we define the affine transformation

T : R2 → R2, T (v) =
1

3
·
(
3 + 2v1 + v2
v1 + 2v2

)
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and show T (h(s), s) ∈ Ω1 with T (h(s), s)2 > T (h(s), s)1 − 1, then the asser-
tion follows by ∇f(T (h(s), s)) = (h(s), s). Now calculate

T (h(s), s) =
1

3
·
(
3 + 2h(s) + s
h(s) + 2s

)
=

1

3
·
(
9 + 3s− 2

√
9 + 6s

3 + 3s−
√
9 + 6s

)
and by s > 0 and h(s) = 3 + s−

√
9 + 6s < s we have

T (h(s), s)1 − 1 =
1

3
(2h(s) + s) <

1

3
(h(s) + 2s) = T (h(s), s)2 .

Substituting s′ := 1
3
· (3 + 3s−

√
9 + 6s) > 1

3
· (3 + 3s−

√
(3 + s)2) = 2

3
s > 0

leads to s = 1
3
· (−2 + 3s′ +

√
4 + 6s′) and therefore to

√
9 + 6s =

√
9− 4 + 6s′ + 2

√
4 + 6s′ =

√
1 + 2

√
4 + 6s′ + 4 + 6s′

= 1 +
√
4 + 6s′

and

T (h(s), s) =

(
2 + s′ − 1

3

√
9 + 6s

s′

)
=

(
5
3
+ s′ − 1

3

√
4 + 6s′

s′

)
.

We can check T (h(s), s) ∈ Ω1 by

T (h(s), s)1 > g(T (h(s), s)2)

⇔ 5

3
+ s′ − 1

3

√
4 + 6s′ >

1

2
+ s′ −

√
s′

⇔ 7

2
+ 3

√
s′ >

√
4 + 6s′

⇔ 49

4
+ 21

√
s′ + 9s′ > 4 + 6s′

⇔ 33

4
+ 21

√
s′ + 3s′ > 0 .

The curves

α : R → R2, α(s) = (∇f |−1
Ω0
)(h(s), s)

and

β : R → R2, β(s) = (∇f |−1
Ω1
)(h(s), s)

are well-defined, as well as the function

ϕ : [0, 1]× R → R2,

ϕ(t, s) = (1− t) · α(s) + t · β(s) ,
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(a) blue: Ω0, orange: Ω1,
green: α (left) and β (right)

(b) blue: Ω0, orange: Ω1,
green: ϕ([0, 1]× R)

Figure 2: The boundary of the green area is given by the curves α and β
and the connecting straight lines represent the sets {ϕ(t, s) | t ∈ [0, 1]} for
several fixed values of s.

visualized in Figure 2. Since f |Ω0 and f |Ω1 are restrictions of strictly con-
vex and continuously differentiable functions respectively, for any s ∈ R the
equality (f |Ω0)

∗(h(s), s) = (f |Ω1)
∗(h(s), s) implies {(h(s), s)} = ∂f(α(s)) ∩

∂f(β(s)). For any (t, s) ∈ [0, 1]× R Proposition 3.22 gives

(conv(f))(ϕ(t, s)) = (1− t) · f(α(s)) + t · f(β(s))

and hence ∂(conv(f))(ϕ(t, s)) = {(h(s), s)}.
If (t, s), (t′, s′) ∈ [0, 1]× R with ϕ(t, s) = ϕ(t′, s′), then

{(h(s), s)} = ∂(conv(f))(ϕ(t, s)) = ∂(conv(f))(ϕ(t′, s′)) = {(h(s′), s′)}

and therefore s = s′ as well as t = t′ by α(s) ̸= β(s) and ϕ is injective.
Assume x ∈ R2\ϕ([0, 1]×R) ⊂ Ω0∪Ω1. By Proposition 3.14 the function h0 :
R2 → R, h0(u) = ⟨∇f(x), u⟩ − f ∗

0 (∇f(x)) minorizes f0 with h0(x) = f0(x)
and the function h1 : R2 → R, h1(u) = ⟨∇f(x), u⟩ − f ∗

1 (∇f(x)) minorizes
f1 with h1(x) = f1(x). If x ∈ Ω0, then ∇f(x) ∈ {v ∈ R2 | v1 < h(v2)} and
by (5.1) we have f ∗

0 (x) > f ∗
1 (x). Now f(x) = f0(x) and h0 < h1 implies

∇f(x) ∈ ∂f(x) ̸= ∅ and (conv(f))(x) = f(x). Analogously, if x ∈ Ω0 we
conclude ∇f(x) ∈ {v ∈ R2 | v1 > h(v2)}, f ∗

0 (x) < f ∗
1 (x), h0 > h1 and
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(conv(f))(x) = f(x) by ∇f(x) ∈ ∂f(x) ̸= ∅. This finally proves

conv(f)(x) =

{
(1− t) · α(s) + t · β(s) , if x = ϕ(t, s) ∈ ϕ([0, 1]× R)
f(x) , if x /∈ ϕ([0, 1]× R)

.

5.2 Remark The function f in the previous example is not closed, but for
ε > 0 the restriction of f to the set {x ∈ R2 | |x1 − g(x2)| ≥ ε} is closed
and with ε sufficiently small the construction of the convex envelope remains
unchanged. ∗

5.3 Example Consider the sets Ω0 = R2 \ B1.8(2, 0), Ω1 = B1.5(2, 0) and
define for Ω := Ω0 ∪ Ω1 the function

f : Ω → R,

f(x1, x2) =

{
1
2
(x21 + x22) , if x ∈ Ω0

1
4
(x1 − 1)4 + x22 , if x ∈ Ω1

,

which is closed, smooth on int(Ω) and strictly convex on each convex subset
of its domain. Calculate

∇f(x) =

{
(x1, x2)

T , if x ∈ int(Ω0)

((x1 − 1)3, 2x2)
T , if x ∈ int(Ω1)

,

Hf (x) =


Id2 , if x ∈ int(Ω0)(
3(x1 − 1)2 0

0 1

)
, if x ∈ int(Ω1)

in order to see, that f is not locally strongly convex in e(1) ∈ Ω1, since Hf (e
(1))

is singular. Since f |Ω0 and f |Ω1 are restrictions of strictly convex functions
respectively, the gradient mappings ∇f |int(Ω0) and ∇f |int(Ω1) are injective, the
Legendre transforms are well-defined and given by

(f |int(Ω0))
∗ : ∇f(int(Ω0)) → R, (f |int(Ω0))

∗(v) =
1

2
(v21 + v22) ,

(f |int(Ω1))
∗ : ∇f(int(Ω1))× R, (f |int(Ω1))

∗(v) = v1 +
3

4
v
4/3
1 +

1

4
v22 .

The equation (f |Ω0)
∗(v) = (f |Ω1)

∗(v) can be solved explicitly in this situation
and the solutions are described by

v22 = v1 · (−2v1 + 3v
1/3
1 + 4) (5.2)
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(a) blue: Ω0, orange: Ω1 (b) blue: ∇f(Ω0), orange: ∇f(Ω1), black
line: {v ∈ R2 | (f |Ω0

)∗(v) = (f |Ω1
)∗(v)}

Figure 3: Visualization of the domain of f (left) and the gradient set of f |Ω0

and f |Ω1 (right) with the solution curve of (f |Ω0)
∗(v) = (f |Ω1)

∗(v).

with v1 · (−2v1 + 3v
1/3
1 + 4) ≥ 0. Solving a cubic equation, one sees that

−2v1 + 3v
1/3
1 + 4 ≥ 0 ⇔ v1 ≤ 2 +

3

4

(
8− 2

√
14
)1/3

+
3

4

(
2(4 +

√
14)
)1/3

=: c

with c ≈ 4.47 > 0 and therefore necessarily 0 ≤ v1 ≤ c. The analytical
proof, that any (v1, v2) satisfying v1 ∈ [0, c] and (5.2) lies in the intersection
∇f(Ω0) ∩ ∇f(Ω1) (and is therefore a solution of (f |Ω0)

∗(v) = (f |Ω1)
∗(v)) is

not very enlightening and therefore omitted here, but it should be emphasized
that Ω0 and Ω1 are chosen particularly to ensure this, see Figure 3 (b). We
now obtain a continuous parametrization of the solutions of (f |Ω0)

∗(v) =
(f |Ω1)

∗(v) via

v : [−c, c] → R2, v(s) = (|s|, sign(s) ·
√
|s| · (−2|s|+ 3|s|1/3 + 4)) ,

which is in fact a loop since v(c) = (c, 0) = v(−c) (Figure 3 (b)). The image
v([−c, c]) is a differentiable manifold, since it can be represented locally as
the graph of a differentiable function. This is a consequence of Theorem 4.7
and can be seen in this case, by the fact that v|(0,c) and v|(−c,0) are graphs of
differentiable functions and lim

s↗0
v′2(s) = ∞ = lim

s↘0
v′2(s) as well as lim

s↗c
v′2(s) =

−∞ = lim
s↘c

v′2(s). If we had solved (f |Ω0)
∗(v) = (f |Ω1)

∗(v) for v1 instead for v2

(which is much harder), then we would have obtained another parametrization
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(a) blue: Ω0, orange: Ω1,
green: f |int(Ω0))

−1 ◦ v (outer loop)
and f |int(Ω1))

−1 ◦ v (inner loop)

(b) blue: Ω0, orange: Ω1,
green: ϕ([0, 1]× [−c, c]/{c ∼ −c})

Figure 4: The boundary of the green area in the right picture is given by
the loops (∇f |int(Ω0))

−1 ◦ v and (∇f |int(Ω1))
−1 ◦ v and the connecting straight

lines represent the sets {ϕ(t, s) | t ∈ [0, 1]} for several fixed values of s.

of the same loop. The compositions (∇f |int(Ω0))
−1 ◦ v and (∇f |int(Ω1))

−1 ◦ v
are continuous loops, whose images are manifolds, but since f is not strongly
convex in e(1), the Lipschitz-continuity is lost as one can see in Figure 4.
Similar arguments like in Theorem 4.16 show, that the mapping

ϕ : [0, 1]× [−c, c]/{c ∼ −c} → R2,

ϕ(t, s) = (1− t) · (∇f |int(Ω0))
−1(v(s)) + t · (∇f |int(Ω1))

−1(v(s))

is injective and hence an embedding. For any x = ϕ(t, s) ∈ ϕ([0, 1] ×
[−c, c]/{c ∼ −c}), the convex envelope of f is given by

(conv(f))(x) = (1− t) · f((∇f |int(Ω0))
−1(v(s))) + t · f((∇f |int(Ω1))

−1(v(s))) ,

since for any s ∈ [−c, c]/{c ∼ −c} by strict convexity of the functions
1
2
(x21 + x22) and 1

4
(x1 − 1)4 + x22 we have v(s) ∈ ∂f |Ω0

(
(∇f |int(Ω0))

−1(v(s))
)

and v(s) ∈ ∂f |Ω1

(
(∇f |int(Ω1))

−1(v(s))
)
, hence by (f |Ω0)

∗(v) = (f |Ω1)
∗(v) also

v(s) ∈ ∂f
(
(∇f |int(Ω0))

−1(v(s))
)
∩ ∂f

(
(∇f |int(Ω0))

−1(v(s))
)
.

5.4 Remark The reasons for the lack of smoothness of the curves in the
previous two examples are different. In Example 5.1, the discontinuity of
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the second derivative causes a jump in one of the eigenvalues of the Hes-
sian although the modulus of convexity, which is determined by the smallest
eigenvalue, remains constant on Ω1. Since f is locally convex with modulus 1,
Corollary 4.17 guarantees Lipschitz continuity of the parametrization ϕ and
the example shows, that we cannot expect more regularity. In Example 5.3,
f is strictly but not strongly convex near e(1), since one of the eigenvalues
of the Hessian is zero. The parametrization ϕ is continuous according to
Theorem 4.16, but not Lipschitz. ∗

In [2] we investigated relaxation models in soil mechanics, which involved
the convexification of a condensed energy of the form

f : R2 → R, f(y) =
1

2
||y||22 −

(y2 − r(y1))
2
+

2(b+ 1)
(5.3)

with b > 0, r : R → R compactly supported and concave on its support and
(·)+ denoting the positive part.
In the special case

√
b · (ymax − ymin)/2 ≤ r(ymin + ymax)/2 we were able to

give an explicit expression for the convex envelope [2, Theorem 2]. Since the
detailed calculations can be found in this paper, we just give a short sketch
of the construction omitting extensive calculations or proofs.

5.5 Example Fix ymin, ymax ∈ R, with ymin < ymax,

R := {r ∈ C(R) | supp(r) = [ymin, ymax], r|[ymin],ymax] concave}

and consider for b > 0 and r ∈ R the function f as in (5.3).
The function f is continuous, partially differentiable with respect to the sec-
ond argument and continuously differentiable in (R \ {ymin, ymax})× R with
locally Lipschitz continuous gradient. In [2, Theorem 2], the convex envelope
of f is constructed assuming that

√
b · ymax − ymin

2
≤ r
(ymin + ymax

2

)
. (5.4)

The strategy is, to find pairs of points y, ỹ ∈ R2 with ∂f(y) ∩ ∂f(ỹ) ̸= ∅,
then Proposition 3.22 gives the convex envelope of f on conv{y, ỹ} by affine
interpolation of f(y) and f(ỹ). Since g : R2 → R, g(y) = 1

2
y21 +

b
2(b+1)

y22 is

a strictly convex function minorizing f and coinciding on R2 \ (ymin, ymax)
with f , it is sufficient to consider y, ỹ ∈ [ymin, ymax] × R. Assuming y1 ∈
(ymin, ymax) and ỹ1 ∈ {ymin, ymax}, we recognize that D2f(y) = D2f(ỹ) and
f(ỹ) = Tyf(ỹ) are necessary conditions for ∂f(y) ∩ ∂f(ỹ) ̸= ∅. If y2 ≤
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r(y1), the second term in the definition of f(y) vanishes and these necessary
conditions simplify to

b

b+ 1
ỹ2 = y2

(ỹ1 − y1)
2 + (ỹ2 − y2)

2 =
1

b+ 1
ỹ2 .

The solution pairs can be parametrized by the following four pairs of curves

α±
min(s) =

(
ymin + s

±
√
b · s

)
, β±

min(s) =

(
ymin

± b+1√
b
· s

)
,

α±
max(s) =

(
ymax − s

±
√
b · s

)
, β±

max(s) =

(
ymax

± b+1√
b
· s

)
,

with s ∈ (ymin, ymax) taking any value, such that pr2(α
±
min(s)) ≤ r(pr1(α

±
min(s))

(or pr2(α
±
max(s)) ≤ r(pr1(α

±
max(s))). The curves α±

min and α±
max intersect for

s = (ymin + ymax)/2, therefore only 0 < s < (ymin + ymax)/2 are considered
as possible vertices of one-dimensional phase simplices and the triples( ymin+ymax

2

±
√
b · ymax−ymin

2

)
,

(
ymin

± b+1√
b
· ymax−ymin

2

)
,

(
ymax

± b+1√
b
· ymax−ymin

2

)
are reasonable candidates for the vertices of two-dimensional phase simplices.
Finally, we want to find y(1), y(2) ∈ R2 with y

(1)
1 , y

(2)
1 ∈ {ymin, ymax} satisfying

∂f(y(1)) ∩ ∂f(y(2)) ̸= ∅. The necessary condition D2f(y
(1)) = D2f(y

(2))

enforces y
(1)
2 = y

(2)
2 and assuming y(1) ̸= y(2) gives another two pairs of

curves

α±
∞(s) =

(
ymin

±s

)
, β±

∞(s) =

(
ymax

±s

)
,

where only s > b+1√
b

ymax−ymin

2
will lead to further one-dimensional phase sim-

plices.
By affine interpolation along each potential phase simplex constructed above,
the resulting function can be proven to be convex and minorizing f , hence
coinciding with the convex envelope of f [2, Theorem 2]. The construction
scheme is visualized in Figure 5 (a). The construction crucially relies on
the fact, that the curves α±

min and α±
max do not leave the part of the domain

of f (until they intersect), in which the second term of f vanishes. This
is ensured by (5.4) and concavity of r|[ymin,ymax]. If we drop this assump-
tion, the curves can cross the line y2 = r(y1), at which the second derivative
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(a) blue dashed line: Graph of r and −r,
green: Area on which the convex envelope
of f differs from f

(b) blue dashed line: Graph of r and −r,
green: Area on which the convex envelope
of f differs from f

Figure 5: Construction schemes for r(y1) = c · (1−y21) · (y1+4) with c = 0.36
(left) and c = 0.5 (right). The straight lines and triangles illustrate the one-
and two-dimensional phase simplices.

of f is discontinuous and the local modulus of convexity suddenly changes.
For y ∈ (ymin, ymax) × R and ỹ ∈ {ymin, ymax} × R the necessary conditions
D2f(y) = D2f(ỹ) and f(ỹ) = Tyf(ỹ) still can be solved and the correspond-
ing curves α±

min and α±
max show a similar non-smooth behaviour as in Exam-

ple 5.1. For illustration purposes, we give without a proof in Figure 5 (b) the
construction scheme for a function r ∈ R not satisfying (5.1).
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6 Appendix

6.1 Topology

6.1 Definition For topological spaces (X, τX) and (Y, τY ), a mapping f :
X → Y is called an embedding, if it is a homeomorphism onto its image,
i.e. if f : X → f(X), x 7→ f(x) is a homeomorphism with f(X) carry-
ing the subspace topology τf(X) := {O ∩ f(X) | O ∈ τY }. Equivalently, f
is continuous, injective and the inverse mapping f−1 : f(X) → X is also
continuous.

A continuous injection is not necessarily an embedding, since the inverse
function in general does not need to be continuous. Nevertheless, any con-
tinuous injection from a compact space into a Hausdorff-space is an embed-
ding [6, Proposition 1.4.3].

6.2 Proposition Assume (X, τX) is a compact topological space, (Y, τY ) is
a Hausdorff-space and f : X → Y is a continuous injections, then f is an
embedding.

Another situation, in which a continuous injection is automatically an
embedding is the Theorem of invariance of domain. It states that a continu-
ous injection of an open subset of Rn into Rn is an embedding, which is even
an open mapping (maps open sets to open sets) [6, Theorem 10.3.7].

6.3 Proposition If U ⊂ Rn is an open subset and f : U → Rn is an injective
continuous map, then V := f(U) is open and f is a homeomorphism between
U and V .

6.4 Corollary If X ⊂ Rd is an affine subspace of Rd with dim(X) = n,
U ⊂ X is relatively open and f : U → Rn is an injective continuous map,
then V := f(U) is open and f is a homeomorphism between U and V .

6.2 Linear Algebra

Recall the notation of Definition 3.9.

6.5 Proposition For 0 ≤ µ ≤ L ≤ ∞, the set PDL
µ(d) is convex, if

L < ∞ it is compact and if additionally µ > 0 it is a subset of PD(d)

with (PDL
µ(d))

−1 = PDµ−1

L−1(d).
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Proof. The set PDL
µ(d) is convex, since for any A,B ∈ PDL

µ(d) and t ∈ [0, 1]:

µ||h||2 = tµ||h||2 + (1− t)µ||h||2 ≤ t · hTAh+ (1− t) · hTBh
= hT (t · A+ (1− t) ·B)h = t · hTAh+ (1− t) · hTBh
≤ tL||h||2 + (1− t)L||h||2 = L||h||2 .

Any matrix A ∈ Rd×d
sym has d real eigenvalues λ1, ..., λd ∈ R and we can denote

with λmin(A), λmax(A) ∈ R the smallest and largest eigenvalue of A. We now
prove

PDL
µ(d) = {A ∈ Rd×d

sym | µ ≤ λmin(A) ≤ λmax(A) ≤ L} .

For A ∈ Rd×d
sym the spectral theorem states that there exists an orthogonal

matrix Q ∈ Rd×d and a diagonal matrix whose diagonal entries are λ1, ..., λd
with A = QTDQ. The equality

{hTAh | ||h|| = 1} = {hTQTDQh | ||h|| = 1} = {hTDh | ||h|| = 1}

= {
d∑

i=1

λih
2
i |

d∑
i=1

h2i = 1} = [λmin(A), λmax(A)] .

shows, that A ∈ PDL
µ(d) if and only if µ ≤ λmin(A) ≤ λmax(A) ≤ L. Now

assume L < ∞. By AT = A the spectral norm of A is given by ||A|| =
|λmax(A)|, hence PDL

µ(d) is bounded. Since Rd×d
sym is a closed linear subspace

of Rd×d and for any h ∈ Rd the mapping φh : Rd×d → R, A 7→ hTAh is
continuous,

PDL
µ(d) = Rd×d

sym ∩
( ⋂

h∈Rd

φ−1
h

(
[µ||h||2, L||h||2]

))
is closed as intersection of closed sets and consequently PDL

µ(d) is compact.

If additionally µ > 0, then all eigenvalues of any element in PDL
µ(d) are

positive, hence PDL
µ(d) ⊂ PD(d) ⊂ GL(d). This leads to

(PDL
µ(d))

−1 = {A ∈ Rd×d
sym | µ ≤ λmin(A

−1) ≤ λmax(A
−1) ≤ L}

= {A ∈ Rd×d
sym | µ ≤ λmax(A)

−1 ≤ λmin(A)
−1 ≤ L}

= {A ∈ Rd×d
sym | L−1 ≤ λmax(A) ≤ λmin(A) ≤ µ−1} = PDµ−1

L−1(d)

as asserted.

6.6 Definition For q ∈ {1, ..., d + 1}, q points x(1), ..., x(q) ∈ Rd are called
affinely independent, if the points x(2) − x(1), ..., x(q) − x(1) are linearly inde-
pendent.
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6.7 Proposition For q ∈ {1, ..., d + 1} and x(1), ..., x(q) ∈ Rd, the following
statements are equivalent:

(i) x(1), ..., x(q) are affinely independent,

(ii) dim(span({x(1), ..., x(q)})) = q − 1,

(iii) if λ1, ..., λq ∈ R with
q∑

i=1

λi = 0 and
q∑

i=1

λix
(i) = 0, then λ1 = ... = λq =

0.

6.8 Proposition If h ∈ Aff(m,n), then for any q ∈ N, x(1), ..., x(q) ∈ Rm

and λ1, ..., λq with
q∑

i=1

λi = 1 we have

h(

q∑
i=1

λi · x(i)) =
q∑

i=1

λi · h(x(i)) .

Especially, if U ⊂ Rm is convex, f : U → R is (strictly/strongly) convex and
h ∈ AffT(d), then h(U) is convex and f ◦ h−1 : h(U) → R is convex.
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