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ABSTRACT

Ants have been proposed as good models to study ageing and the effects of extrinsic mortality because of their long
lifespans and plasticity of ageing within species. We discuss how age-dependent extrinsic mortality might influence queen
lifespan, and how the effect of age-independent extrinsic mortality needs further study, accounting for different density-
dependence scenarios. Based on a critical review of the available demographic data, we discuss the selective forces under-
lying ant ageing. We discuss differences and similarities between the life-history strategy of ants and the reproductive
strategies iteroparity and semelparity. We consider how late-life fitness gains for the “superorganism” select for a delay
of actuarial, and reproductive senescence, and we suggest future research directions.
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I. INTRODUCTION

As part of a debate in the late 1990s over the validity of evo-
lutionary theories explaining lifespan variation (Le Bourg,
2001), a seminal paper compared the lifespans of ants with
those of solitary insect species (Keller & Genoud, 1997).
Their results have become common knowledge: ant queens
live longer than solitary insects, and monogynous queens live

longer than polygynous queens. These differences were dis-
cussed with respect to variation in extrinsic mortality: with
lowmortality of the sheltered queens argued to select for long
lifespans, whereas high mortality selects for earlier senes-
cence and shorter lifespans of polygynous queens. The paper
inspired a new field – social insect ageing research – which
has received increasing interest ever since. So where do we
stand now, 30 years later, and can ants help us understand
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the following three fundamental problems tackled by ageing
research: why and how do organisms age; why and how do
species vary in the pace of ageing (lifespan); and why does
ageing vary within taxa (also known as the heterogeneity of
ageing)?

II. WHY AND HOW DO SPECIES AGE?

“Senescence”, in physiological terms, is based on structural
decay or functional decline (Lemoine, 2020) resulting in a
decrease in age-specific components of fitness with increa-
sing chronological age (Abrams, 1993). In demographic
terms, “senescence” entails an increase in mortality rate
(i.e. “demographic ageing”, or “actuarial senescence”), and
a decrease in fertility rate (i.e. “reproductive senescence”)
with age. Thus, we differentiate it from “ageing”, treated
herein as all ageing-specific changes in mortality and fertility
with chronological age. To characterize age-specific changes,
two dimensions are recognized: the pace of ageing, related to
the timescale on which mortality progresses (commonly mea-
sured as maximum lifespan, or life expectancy), and the
shape of ageing, describing how abruptly changes in mortal-
ity and fertility rates occur (Baudisch, 2011). Senescence was
first explained as resulting from a decrease in the force of nat-
ural selection with time (Medawar, 1952). Individuals pro-
ducing the same amount of progeny from maturity until
death increase their total progeny linearly with time. How-
ever, due to the removal of individuals in a population by
extrinsic mortality (e.g. predation, disease, starvation), the
contribution of offspring to the next generation decreases
per age group, and therefore so does the force of natural
selection; a phenomenon known as the selection shadow
(Haldane, 1941; Hamilton, 1966). This can lead to late-
expressed deleterious genes and mutations being less subject
to negative selection (i.e. the “mutation accumulation the-
ory”; Medawar, 1952). Additionally, the “antagonistic pleiot-
ropy theory” states that late-expressed deleterious genes
could fixate in a population if they are beneficial early in life
(Williams, 1957; Gaillard & Lemaître, 2017). Antagonistic
pleiotropy might occur via energy and/or functional trade-
offs. In the former case there may be limitation of resources
for allocation between reproduction and somatic mainte-
nance [i.e. “disposable soma theory” (Kirkwood, 1977;
Kirkwood & Austad, 2000)], while in the latter case subopti-
mal gene regulation is present aftermaturation [i.e. the “devel-
opmental theory of ageing” (Cutler, 1979; De Magalhães &
Church, 2005; Blagosklonny, 2006)].

(1) The role of extrinsic mortality

A verbal prediction stated that the rate of senescence should
decrease and average lifespan should increase as the rate of
age- and condition-independent extrinsic mortality decreases
(Williams, 1957). However, age-independent extrinsic mor-
tality is insufficient to explain senescence patterns without

taking into account density dependence (Hamilton, 1966;
Wensink, Caswell & Baudisch, 2017; Moorad, Promislow &
Silvertown, 2019; Day & Abrams, 2020). In populations
where growth is density dependent, the effect of extrinsic
mortality on the age-specific selection gradient may be either
positive or negative (Abrams, 1993; Caswell, 2007; Moorad
et al., 2019; de Vries, Galipaud & Kokko, 2023).
Age-independent extrinsic mortality can affect senescence
patterns if density dependence acts on fertility by favouring
fast life histories (short lifespans) (Day & Abrams, 2020). For
example, fast life histories are favoured if density dependence
negatively affects the production of juveniles or their chances
of recruiting into the population compared to older individ-
uals (de Vries et al., 2023). On the other hand, if density
dependence affects the survival of older individuals in a pop-
ulation, then slow life histories are favoured, contrary to
Williams’ hypothesis (Gaillard & Lemaître, 2017). Density
dependence can affect survival or reproduction (either fertil-
ity or juvenile production) or both in an age-dependent or
age-independent fashion. As a result, linking assumptions to
outcomes is not straightforward, and population size might
change over time in complex ways. The possibility that den-
sity dependence will change mortality and that, conversely,
mortality can change density dependence, adds another layer
of complexity that is not accounted for in Williams’ hypothe-
sis (Day & Abrams, 2020).
Monogyny is the ancestral, and most common condition

found in ants, where a single reproductive queen starts a col-
ony on her own (Hölldobler & Wilson, 1990; Ross &
Carpenter, 1991). Young queens experience high mortality
(Hölldobler & Wilson, 1990; Keeler, 2022; Gordon, 2024),
but as the colony grows and becomes established this dimin-
ishes immensely. Slow life histories are predicted to evolve
under this density-dependence scenario with differential
survival of younger and older queens. Furthermore, high
competition in densely populated habitats can lead to
density-dependence effects on fertility, as younger queens in
small colonies are easily outcompeted (Gordon, 2024). Col-
ony founding via budding or fission is a derived character in
ants and typical of polygynous species (Keller, 1991). Here,
the mortality rates of young and older queens are less likely
to differ dramatically and to favour slow life histories.
Modelling the effect of age-independent extrinsic mortal-

ity in a superorganismal context showed that lifespan differ-
ences between castes can still evolve in the absence of
extrinsic mortality. A model that implemented mutation
accumulation in an age-structured simulated population,
and antagonistic pleotropic effects within and between castes,
predicted that lifespan divergence evolves in the absence of
extrinsic mortality (Kreider, Pen & Kramer, 2021). The
model also predicted that between-caste antagonistic effects
have a stronger impact on worker lifespan than on queen life-
span (Kreider et al., 2021). This suggests that deleterious
effects can be borne by workers rather than queens, enhanc-
ing the overall fitness of the colony (Kreider et al., 2021). A
secondmodel, also based onmutation accumulation, showed
that the delayed production of sexuals and resource
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monopolization by reproductives of social insects are more
important for the evolution of diverging lifespans than extrin-
sic mortality, with queens living longer (Kramer et al., 2022).
A small but positive effect of extrinsic mortality on lifespan
divergence was generally found, except in cases where repro-
duction was restricted to a single queen and workers were
sterile (Kramer et al., 2022). This is opposite to the antagonis-
tic pleiotropy model, where the authors found that lifespan
differences were larger if workers were sterile (Kreider
et al., 2021).

(2) The role of reproductive strategy

In addition to the effect of extrinsic mortality, the shape and
pace of ageing are determined by the reproductive strategy of
a species. Cole (1954) introduced the terms “iteroparity” and
“semelparity” to distinguish between species that reproduce
repeatedly or only once, respectively. Currently there is a
debate about whether parity strategies lie along a continuum
between these two concepts (Hughes, 2017). Semelparity
encompasses many species with very different life histories
and litter sizes, for example salmon that migrate upstream
to breed and then die (Gems et al., 2021), or the periodical

cicada Magicicada that emerge as adults for only a short
period of time after 13 or 17 years as nymphs (Sota, 2022).

Similarly, iteroparity describes a broad range of shapes of
ageing (Jones et al., 2014). For example, in Fig. 1 we compare
the shape and pace of ageing of three widely used model
insects (the fruit fly Drosophila melanogaster, a parasitoid wasp
Nasonia vitripennis and the red flour beetle Tribolium castaneum),
and our own model, the ant Cardiocondyla obscurior.
D. melanogaster has relatively constant fertility over ca. 50%
of their ca. 7.5-weeks-long life, at which point mortality
increases above average (Khazaeli & Curtsinger, 2010;
Fig. 1A). N. vitripennis exhibits a fast life-history strategy: it is
a short-lived (2–4 weeks) parasitoid wasp that depends on
Protocalliphora flies, parasites of birds (Chabora, 1970;
Fig. 1B). Suitable host nests are patchily distributed in the
environment (Mair & Ruther, 2019). Mortality increases
sharply towards the end of their life but is unrelated to an
early peak in fertility at 25% of their lifespan. The fertility
of Tribolium castaneum declines to below average after 30%
of their life (�8 weeks) (Pai, Bennett & Yan, 2005), and at
the same point mortality increases above average (Fig. 1C).
In C. obscurior, ant queens exhibit an above-average standard-
ized fertility (measured as egg production) for �60% of their
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Fig. 1. Life-trajectories of four model insect species. Standardized age-specific fertility and mortality shown up to the point when
95% of the population has died. The dashed grey line at y = 1 indicates when relative mortality or fertility are equal to mean
mortality or fertility, respectively. (A) Drosophila melanogaster (Khazaeli & Curtsinger, 2010). (B) Nasonia vitripennis in the host Lucilia
sericata (Chabora, 1970). (C) Tribolium castaneum data obtained using WebPlotAnalyzer (Rohatgi, 2023) using the average for
females mated (to multiple and single males) once every 2-, 4-, 12- and 20-weeks (Pai & Yan, 2020). (D) Production of eggs or of
queen pupae and mortality in Cardiocondyla obscurior (Jaimes-Nino et al., 2022a).
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life from week 6 until week 28 (Fig. 1D). Mortality is below-
average until week 28, and queen pupae production reaches
a peak at� week 30 (Jaimes-Nino, Heinze & Oettler, 2022a;
Fig. 1D).

While conceptually, a selection shadow can occur in itero-
parous and semelparous organisms, as in both cases selection
strength will decline following the onset of reproduction,
these two strategies will differ in terms of the selection
strength. In iteroparous species, selection strength declines
more or less gradually after the first bout of reproduction
(Fig. 2A), whereas in semelparous organisms it remains con-
stant until a steep decline during a short period of rapid
senescence with a sharp increase in mortality rate, that is
post-reproductive death (Fig. 2B; Finch, 1994). Ants are con-
sidered superorganisms, with selection acting at the colony
level (Wheeler, 1986; Boomsma & Gawne, 2018). Most
ant queens found a colony independently, followed by an
ergonomic growth phase characterized by investment into
worker production (Oster & Wilson, 1978) (Fig. 2C). In
some taxa, the ergonomic growth phase can last between
3 and 8 years before the colony produces its first sexual
offspring (Tsuji & Tsuji, 1996). Colony-level reproduction

(the onset of production of reproductives) begins either
when the queen produces sexual offspring or when workers
produce male offspring from unfertilized eggs in species
with worker reproduction. In the case of species with sterile
workers, as C. obscurior, the production of workers cannot
translate into direct fitness returns, and colony-level repro-
duction equates to queen (or queens if there is more than
one) individual-level reproduction.
While colony-level production can start in the early phase

of colony growth, queens experience greater fitness returns
with the production of sexuals later in the life of the colony,
with consequences for the selection shadow (Fig. 2C). The
shape of ageing of C. obscurior queens, one of the best-studied
ant species regarding lifespan variation (Jaimes-Nino
et al., 2022a,b), combines characteristics of both a semelpa-
rous and an iteroparous strategy (Fig. 2). The production of
sexual offspring starts early in life, approximately 4 weeks
after mating, and gradually increases with age (thus these
queens are iteroparous). However, mortality increases only
late in life close to the peak of sexual production at week
30 (Jaimes-Nino et al., 2022a), and both observations and
gene expression data indicate that queens exhibit a long
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Fig. 2. Comparison of the strength of selection (black dashed lines) against age-specific mortality for different life history strategies:
(A) iteroparity; (B) semelparity; and (C) continuusparity. Standardized age-specific ant queen fertility and mortality are denoted by
blue and red lines respectively. Continuusparity predicts that the selection strength is maximized in ant queens during the
founding and ergonomic stage (worker production denoted by a yellow line), and fitness payoffs come only later in life (the
reproductive phase with a maximum of queen pupae production, purple line) after the maximum investment into workers has
been reached. Continuusparity is characterized by a delayed selection shadow, more comparable to the semelparous strategy.
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healthspan (the period of life without clear signs of senes-
cence) (Wyschetzki et al., 2015; Harrison et al., 2021;
Jaimes-Nino et al., 2022a; Jaimes-Nino & Oettler, 2025), in
a pattern more like that of semelparity (Fig. 2).

This has led us to propose the term “continuusparity”
(from Latin continuusmeaning “incessant/successive” and par-
ere meaning “giving birth”). Continuusparity describes the
repeated reproduction of an organism while maintaining
the strength of selection against senescence due to late-life fit-
ness gains. Continuusparity differs from iteroparity, where
the strength of selection against senescence declines with
age, after the first reproductive event. Such a reproductive
strategy is applicable to eusocial species with reproductive
division of labour and describes the pattern where fitness
returns increase with age even after the peak of egg produc-
tion and after the onset of production of sexuals. Selection
strength is maintained, resulting in a delayed selection
shadow and the onset of actuarial senescence (Jaimes-Nino
et al., 2022a). Continuusparity is not to be confused with neg-
ligible senescence, as queens do exhibit clear signs of repro-
ductive and actuarial senescence but only for a very short
period (�2 weeks or 4% of maximum lifespan) (Harrison
et al., 2021; Jaimes-Nino et al., 2022a). Continuusparity might
occur in other eusocial organisms. For example, the naked
mole rat Heterocephalus glaber is known for delayed or reduced
age-associated physiological decline (Lewis & Buffenstein,
2016). Once a female becomes a breeder, she can reproduce
continuously (� every 3 months) until she dies (Urison &
Buffenstein, 1995). Remarkably, even at ages 25-fold their
age to reproductive maturity, age-specific mortality does
not increase (Ruby, Smith & Buffenstein, 2018). Breeding
females are fertile well into their third decade of life and seem
to exhibit an increase in reproductive output with age
(Buffenstein, 2008). The continuusparity framework predicts
that the strength of selection against senescence is maintained
in old, well-established breeders if they produce larger litter
sizes than those of younger breeders. Data on age-specific fer-
tility are needed to confirm this hypothesis.

In principle, senescence can be selected against, even after
the reproductive peak. One example is the “grandmother
hypothesis” (Hill & Hurtado, 1991), which explains the
extended post-reproductive lifespan of human females as
resulting from fitness payoffs from caring for relatives. This
hypothesis was supported by comparative studies in toothed
whales, where menopause evolved independently several
times, illustrating the evolution of lifespan extension after
the reproductive phase (Ellis et al., 2024). While there may
be some analogy to an extended lifespan due to late-life fit-
ness returns in ant queens, the fitness returns of delaying
the onset of actuarial senescence in ant queens result from
direct rather than indirect fitness because reproduction does
not cease. It would be informative to investigate whether, in
ants and other eusocial species, the evolutionary mechanisms
counteracting actuarial senescence are similar to those acting
against premature senescence in semelparous species, and in
iteroparous species with menopause after reproduction has
ceased.

It is unclear exactly how the social environment helps ant
queens to minimize the reproduction–longevity (= somatic
maintenance) trade-off. For most species, one of the most
fundamental trade-offs is between early fecundity and late
fecundity. However, in social insects an initial investment
into workers pays off during later phases of production of
reproductives, thus early and late fecundity are intricately
positively linked. Further, the need for investment into costly
larval traits associated with competitiveness over resources is
much reduced in a eusocial environment, where resources
are optimized at the colony level and competition between
larvae is predicted to be rare (Schultner, Oettler &
Helanterä, 2017). This is especially true in a species like
C. obscurior in which conflict between queens and workers
over reproduction seems to be completely absent (Schultner
et al., 2023) but might vary among social species where direct
fitness gains are relevant and workers can reproduce. Finally,
the indirect costs of reproduction (food provisioning, nest
construction, and defence) are borne by the workers
alone – a unique aspect of superorganismality.

(3) The shape of ageing in other superorganisms

In addition to C. obscurior, sufficient demographic data are
available for two species of North American Pogonomyrmex

seed-harvester ants from which we could calculate ageing
trajectories. One long-term study monitored 300 individual
colonies of a population of Pogonomyrmex barbatus from 1985
to 2013 (Ingram et al., 2013). Reproductive success of queens
was estimated from the number of daughters that successfully
founded new colonies in a 20 × 400 m area (Ingram
et al., 2013). Mother–daughter colony pairs were identified
using microsatellite markers to assess relatedness and to cal-
culate parentage exclusion probabilities for 265 colonies
(Ingram et al., 2013). The production of daughter colonies
did not decrease with time (Fig. 3A), suggesting that these
ant queens did not exhibit reproductive senescence. It is
important to corroborate if their relative realized reproduc-
tive success reflects their potential relative reproductive suc-
cess, given the mean dispersal distance for colony founding
of 150 m (Ingram et al., 2013), meaning that additional colo-
nies may have been initiated outside the study site. Age-
dependent mortality of a larger data set (N = 1057 colonies)
including the same P. barbatus population (Sundaram,
Steiner & Gordon, 2022) followed a similarly shaped stan-
dardized mortality curve, with low and constant mortality
for up to 75% of the queen’s lifespan (Fig. 3A, B), increasing
steeply only late in life. Another study marked andmonitored
112 colonies of a population of Pogonomyrmex occidentalis in
Nebraska (Keeler, 2022). In this case, the standardized mor-
tality seems to be lowest during the first 25% of the lifespan
but increases more steeply relatively earlier than in
P. barbatus (Fig. 3C).

Demonstrating potential similarities due to a transition to
superorganismality, queen ageing in the long-lived termite
Cryptotermes secundus under controlled laboratory conditions
again is non-gradual, with a delay in the onset of actuarial
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senescence until 70% of queen lifespan, at around 10 years
(Fig. 3D; Monroy Kuhn, Meusemann & Korb, 2021).

III. WHY AND HOW DO SPECIES VARY IN THE
PACE OF AGEING?

(1) The pace of ageing in ants

Ants provide an interesting opportunity to study lifespan var-
iation. A comparison of maximum lifespans of ant queens
from 51 species (representing 23 of about 300 extant ant gen-
era; Bolton, 1995) with 81 solitary insect species reported an
astonishing 100-fold difference in lifespan (mean ± SD,
10 ± 6.6 years versus 0.1 ± 0.2 years, respectively) (Keller &
Genoud, 1997). However, much of the information used to
derive these values is anecdotal or difficult to trace. For

example, the existence of a 28-year-old queen that has been
repeatedly cited in the scientific (Keller & Genoud, 1997;
Keller, 1998; Fjerdingstad & Keller, 2004; Jemielity
et al., 2005; Gräff et al., 2007; Parker, 2010; Kramer,
Schaible & Scheuerlein, 2016; Pamminger et al., 2016;
Lucas & Keller, 2018; Schläppi et al., 2020) and general liter-
ature (Law, 2021) is difficult to substantiate. The source, an
obituary of the amateur myrmecologist Hermann Appel,
reads: “A Lasius niger ant queen can live for almost
30 years. We owe this sensational statement precisely to
H. Appel. He left the following note about it: ‘The ant
queen (Lasius niger) was caught in August 1931 after the
nuptial flight; she lived with me in captivity until April
1950 (i.e. 28 3/4 years!)’” (Kutter & Stumper, 1969,
p. 279). But 1950–1931 does not equal 29, and it is impos-
sible to determine whether this was an error in the
reported dates, a miscalculation, or a typo.
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A search in Web of Science retrieved 802 studies (all data-
bases, accessed 05.07.2024) using the terms [(longevity OR
lifespan) AND (ant OR Formicidae)] (see online Supporting
Information, File S1). We filtered the results to include only
those that reported queen lifespans and added additional
studies known to us (studies cited in Kramer & Schaible,
2013), plus data from Pogonomyrmex barbatus (Sundaram
et al., 2022) (Table S1). From the 78 filtered studies,
52 (67%) relied on data from a single or an undocumented
number of individuals (Table S1, Fig. 4B). Taking only one
species per genus to avoid pseudo-replication (the ant species
with the longest reported lifespan), removing inaccessible
studies or data from personal communications, and including
only studies with a sample size >1, resulted in a short list of
nine species. From these data we calculated a median maxi-
mum queen lifespan of 7.9 years (range 0.9–20 years). Given
that data on longer-lived species are harder to obtain, this is
likely an underestimate. However, even with a bias towards
studying short-lived species, we still identify a range of three
orders of magnitude in queen lifespan, supporting the sugges-
tion that the massive diversity in ageing found in ants has
potential to illuminate our understanding of both ultimate
and proximate aspects of ageing.

While several species of Pogonomyrmex stand out with a
maximum lifespan of 30 years or more (Tables 1 and S1),
we still are far from being able to generalize that ant queens

on average live longer than solitary insects. This will only be
possible when extensive data, more representative of the
broad diversity of the 14,000 described Formicidae species
and of the million solitary insect species, become available.
We note that the mean lifespan reported byKeller &Genoud
(1997) for solitary insects did not include some potentially
long-lived representatives of Odonata, Megaloptera, Belos-
tomatidae, cicadas of the genus Magicicada, giant wetas from
the genus Deinacrida, Phasmatodea, hissing cockroaches such
as Gromphadorhina portentosa, and Buprestidae beetles. Addi-
tional data are needed, particularly based on cohorts with
sufficient replicates, to confirm that ants do have “extraordi-
nary lifespans” (Keller & Genoud, 1997).

Similarly imprecise is the comparison of queen lifespans
between 37 monogynous and six polygynous species
(mean ± SD 12.3 ± 5.5 versus 1.6 ± 1.8 years, respectively)
(Keller & Genoud, 1997). Given the low replicate numbers
involved, these values remain questionable. Future studies
should take into account life-history traits, such as phylogeny,
body size, colony size, habitat, colony founding strategy, eco-
zone, and the timing, seasonality, and value of investment into
workers and sexuals, which all may affect the evolution of age-
ing. Ants provide an exceptional range of subjects for experi-
mental investigation. Several genera show variations in social
structure suitable for conducting comparative analyses. Species
pairs with monogynous and polygynous populations that could
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be tracked and compared, occur in Formica, Iridomyrmex,

Leptothorax, Myrmica, Monomorium, Neivamyrmex, Plagiolepis,

Pogonomyrmex, Solenopsis, Tapinoma (Mackay et al., 1990; Overson,
Fewell & Gadau, 2016), and probably several others as well.
Such data could provide an answer to the question of whether,
and why, polygynous queens have shorter lifespans.

(2) The long lifespans of seed harvester ants

Queen P. occidentalis and P. barbatus seed harvester ants currently
set the longevity record, at 42 and 37 years, respectively
(Keeler, 1993, 2022; Sundaram et al., 2022). Both species occur
at high densities in arid environments (Hölldobler, 1976;
Sundaram et al., 2022; Keeler, 2022). Summer rains trigger
mass emergence of winged sexuals which meet in large mating
aggregations. Mated queens fly off, and shed their wings upon
landing, whereupon they search for a suitable nest site, dig into
the soil, and produce a first small batch of workers, either claus-
trally, that is from their fat body reserves, or with the aid of
energy from foraging (semi-claustral colony founding). It takes
colonies a few years to reach a size/age threshold at which they
produce sexuals, but once a colony reproduces it continues to
do so, although not every year if conditions are suboptimal
(Cole & Wiernasz, 2000). While independently founding
queens of other species might experience similar scenarios, in
the case of Pogonomyrmex spp., differences in age-dependent
extrinsic mortalities may be extreme. Colonies vary in their for-
aging behaviour with age, becoming more effective at securing
their foraging area against neighbouring colonies (Gordon,
2024). It is likely that a combination of high density-dependent
extrinsic mortality during mating flights and colony foundation,
coupled with the low mortality of long-established mature colo-
nies in a stable habitat (Gordon, 2024), explains the selection for
extended colony and queen lifespans.

IV. WHY DOES AGEING VARY WITHIN TAXA?

A third question of interest is why some individuals in a pop-
ulation live longer than others. Ants were proposed as prom-
ising models to study this question, because queens have been

assumed to have much longer lifespans than workers
(Hölldobler & Wilson, 1990; Giraldo & Traniello, 2014;
Korb & Heinze, 2021; Kramer et al., 2022). The most com-
prehensive study in support of this assumption collected ant
queen mean/maximum lifespan data from 36/47 species
and worker data from 27/33 species (Kramer & Schaible,
2013). However, a closer look at their data reveals that in
some cases the workers were not part of age-controlled
cohorts, and sometimes the data are ambiguous. For exam-
ple, the worker lifespan estimate for Atta colombica was
deduced from the disappearance of workers sprayed with
fluorescent ink in a field study (Porter & Bowers, 1982), con-
founding extrinsic and intrinsic mortality rates. Furthermore,
the age at which workers began leaving the nest to forage in
this study was unknown, but studies in other species have
demonstrated that ant workers can initiate foraging at any
age (Oettler & Johnson, 2009; Oettler, Nachtigal &
Schrader, 2015), thus such observations cannot be consid-
ered robust evidence of worker lifespans. Filtering the data
(to one species per genus, retaining the species with the larg-
est age, N > 1 for both queens and workers) results in a short
list of only three species, of which one, Cardiocondyla obscurior,
does not exhibit diverging lifespans. The remaining two, Dia-
camma rugosum, and Myrmecia vindex, show a fourfold greater
queen lifespan than that of workers (Table S1). In the case
of Diacamma rugosum, a queenless species, dominant individ-
uals mate and reproduce. The reproductives were compared
to non-reproductives which were marked with enamel paint;
the authors attributed the early death of workers due to han-
dling (Tsuji, Nakata & Heinze, 1996).
Other than age-independent extrinsic mortality (Oster &

Wilson, 1978), which has been shown to lack strong theoret-
ical support (see Section II.1; Kreider et al., 2021; Kramer
et al., 2022), it was hypothesized that variation in lifespan
could be due to differences in fertility among individuals
(Lin & Michener, 1972; Hartmann & Heinze, 2003; Heinze,
Frohschammer & Bernadou, 2013; Dixon, Kuster &
Rueppell, 2014; Fuessl, Heinze & Schrempf, 2015; Kramer
et al., 2015; Heinze & Giehr, 2021; Negroni et al., 2021).Har-
pegnathos saltator, for instance, is characterized by a prolonged
colony lifespan, past the death of the founding queen.
Workers are slightly smaller than the winged queen morph

Table 1. Selected reported mean and maximum ant queen lifespan (QLS). The complete list of all species for which we could locate
data can be found in Table S1.

Species Mean QLS (years) Max QLS (years) Number of individuals Reference

Cardiocondyla obscurior 0.5 0.9 99 Jaimes-Nino et al. (2022a)
Harpegnathos saltator

gamergates* 3.02 5.4 55 Peeters et al. (2000); Ghaninia et al. (2017)
workers† 0.6 1 61 Ghaninia et al. (2017)
queens 5.2 1 Peeters et al. (2000)

Pogonomyrmex barbatus 11 37 1057 Sundaram et al. (2022)
Pogonomyrmex occidentalis 15.65 42 112 Keeler (1993, 2022)

*Egg-laying worker (gamergate) lifespans.†Worker lifespans.
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and have a similar reproductive anatomy, with 4 + 4 ovari-
oles and a spermatheca, but they are only half as fertile
(Peeters, Liebig & Hölldobler, 2000). It has repeatedly been
shown that being the reproductive in a colony is positively
correlated with lifespan extension in ponerine ants with toti-
potent workers (Tsuji & Tsuji, 1996; Hartmann & Heinze,
2003), and H. saltator is no different. Workers can mate and
begin reproducing after the queen dies, once ritualized tour-
naments have established a dominance hierarchy. The dras-
tic changes in physiology and lifespan when a worker
transitions to become an egg-laying worker, called a “gamer-
gate”, have been well documented (Sheng et al., 2020; Yan
et al., 2022; Glastad et al., 2023). The colony lifespan of
H. saltator in the field is thought to be limited to one succes-
sion, and only queens and not workers/gamergates seem to
found new colonies (Peeters et al., 2000). Workers live less
than 1 year in the laboratory, but gamergates can live for
3–5 years [mean for workers is 219 days (N = 61) and
for gamergates is 1103 days (N = 55); Ghaninia et al.,
2017]. Gamergates apparently do not live for as long as
queens (Table 1, 5.2 years; Peeters et al., 2000), although this
queen age estimate was based on a single individual.
Whether lifespan changes in totipotent workers are caused
by fertility or dominance cannot be easily disentangled.

For C. obscurior, which seems to contradict the claim of
diverging queen and worker lifespans, workers and queens
have a similar standardized mortality (i.e. age-specific mor-
tality standardized by mean mortality), median and maxi-
mum lifespan (Table S1; Jaimes-Nino et al., 2022b),
although the two castes differ in fertility. Additionally, in this
species queen lifespan and fertility may not be causally linked
(Schrempf, Heinze & Cremer, 2005; Will et al., 2012;
Oettler & Schrempf, 2016). Increasing queen fertility via

egg removal (Schrempf et al., 2017), and manipulation of
investment into sexual production via changes to colony size
(Jaimes-Nino et al., 2022a) did not affect the lifespan of
queens of C. obscurior. These observations suggest that fertility
does not affect the rate of ageing in this species.

V. DISCUSSION AND FUTURE DIRECTIONS

The advantages offered by studying social insects as model
organisms for ageing research have been outlined elsewhere
(Heinze & Schrempf, 2008; Korb, 2024). Here we review
the available data and try to infer the causes and conse-
quences of superorganismal ageing. We conclude that ants
combine a benefit of eusociality, that is late-life fitness
returns, with properties of both itero- and semelparity, that
is repeated reproduction but a very short selection shadow
(Fig. 2). Several aspects remain to be explored.

(1) Reproductive death

The lack of signs of senescence in elderly C. obscurior queens
(Harrison et al., 2021; Jaimes-Nino & Oettler, 2025), the

sharp increase in mortality in late age, and gene expression
patterns indicative of massive pathologies that take place a
few days before queens die (Jaimes-Nino et al., 2022a) suggest
that death may be a consequence of reproductive effort.
Moreover, time course and co-expression network analyses
of gene expression patterns over time in the termite Crypto-

termes secundus showed that queens exhibit a non-gradual age-
ing pattern with sudden death at 11–13 years, characterized
by a strong molecular signal indicating the loss of proteostasis
(Monroy Kuhn, Meusemann & Korb, 2021).

The phenomenon of reproductive death is common to
semelparous species, which undergo a massive translocation
of resources at the time of reproduction (Young &
Augspurger, 1991). For example, in Caenorhabditis elegans her-
maphrodites, reproduction ceases after 3 days of adulthood
and is followed by reproductive death, during which yolk is
vented to be consumed by larval progeny (Kern &
Gems, 2022; Kern et al., 2023). The pathologies developed
are caused predominantly by hyperfunction of developmen-
tal programs rather than by molecular damage (Ezcurra
et al., 2018; Sornda et al., 2019). Due to this type of adaptive
death with clear fitness benefits (Lohr, Galimov &
Gems, 2019), among other traits, C. elegans hermaphro-
dites were proposed as semelparous (Gems et al., 2021).
On the other hand, quasi-programmed ageing, that is a
continuation of a developmental program that is not
turned off and is without fitness benefits, could be seen as
a mechanism for senescent pathologies in iteroparous
organisms (Blagosklonny, 2006; de Magalhães, 2012). A
distinction can be made between continuation of a futile
program and resource allocation that translates into fitness
gains. In the case of C. elegans, reproductive death occurs as
a combination of both quasi-programming and adaptive
death. It remains to be shown whether reproductive death
is present in ants, what causes it, and, if it is triggered by
terminal investment, how it can be adaptive despite ants
reproducing continuously.

(2) Colony-level senescence

Above, we have discussed the shape of ageing in female
reproductives of ants, without much focus on the shape
of ageing at the colony level. In species with single-queen
colonies that do not recruit new queens after the queen’s
death, colony-level senescence should mirror individual-
level senescence, as is the case in P. barbatus (Sundaram
et al., 2022) and P. occidentalis (Keeler, 2022). In species
where queens are continuously replaced, as in C. obscurior

or the argentine ant Linepithema humile, colonies are theo-
retically immortal, similar to a non-senescent Hydra col-
ony. The same applies to monogynous colonies with
colony inheritance, also known as serial polygyny, observed
in Nothomyrmecia macrops (Sanetra & Crozier, 2002), and Dia-

camma cyaneiventre (Andre, Peeters & Doums, 2001). However,
whether such colonies are indeed non-senescent remains to
be verified.
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(3) Call for more data

More lifetime mortality and fertility data are needed to cor-
roborate whether delayed actuarial senescence and a lack
of reproductive senescence are common in ants, even if such
data are difficult to obtain, especially for long-lived species.
For example, a 10-year study on Formica exsecta deduced a life-
span of 20 years (Pamilo, 1991) but no data were collected on
age-dependent mortality for the final period of life that will
be needed to estimate age-specific standardized mortality
and lifespan. For verification of extended lifespans, studies
on age-controlled cohorts, with appropriate replication,
and on species representative of other ant subfamilies are
needed. However, ants are not only diverse but also notori-
ously difficult to rear in captivity, making data acquisition
challenging. Lastly, research is needed to understand the
conditions under which queen and worker lifespans diverge
and why, as lifespan does not seem to be directly related to
fertility. Ideally, comparable survival and fertility data should
originate from the same study, as ageing trajectories from dif-
ferent assays or environmental conditions can affect not only
the temporal scaling but also the shape of ageing trajectories.

VI. CONCLUSIONS

(1) Data confirming that the lifespans of ant queens are
“extraordinary” are available for only a few species. Data
showing that monogynous queens live longer than polygy-
nous queens are scarce.
(2) The trajectory of ageing in ants is a consequence of both
reproductive strategy and age-dependent extrinsic mortality.
The effect of age-independent extrinsic mortality in ants
requires further study to account for density-dependence
scenarios.
(3) Continuusparity is a term introduced to describe the
repeated reproduction of an organism while maintaining
the strength of selection against senescence due to late-life fit-
ness gains. Continuusparity differs from iteroparity, where
the strength of selection against senescence declines after
the first reproductive event. The similar shape of ageing in
ants and a termite species suggests similarities across inde-
pendent evolutionary transitions to superorganismality.
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IX. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

File S1. Results from Web of Science search on all databases
retrieved on 05.07.2024 using the search string [(longevity
OR lifespan) AND (ant OR Formicidae)] (.ris file).
Table S1. Reported queen and worker lifespans
(Formicidae) from publications identified by our literature
search or from additional articles known to us.
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