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Abstract In process analytics or environmental monitoring, the real-
time recording of the composition of complex samples over a long
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free techniques such as surface plasmon resonance (SPR) spectroscopy.
They are, however, often limited due to poor reversibility of analyte
binding. In this work, we introduce how SPR imaging in combination
with a semi-selective functional surface and smart data analysis can
identify small and chemically similar molecules. Our sensor uses
individual functional spots made from different ratios of graphene oxide
and reduced graphene oxide, which generate a unique signal pattern
depending on the analyte due to different binding affinities. These
patterns allow four purine bases to be distinguished after classification
using a convolutional neural network (CNN) at concentrations as low
as 50 pmol L=!. The validation and test set classification accuracies
were constant across multiple measurements on multiple sensors using
a standard CNN, which promises to serve as a future method for
developing online sensors in complex mixtures.
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Introduction



2 Chapter 1. Introduction

In recent years, the reports of anthropogenic residue in the environment, ground water,
and food steadily increased*. Micro- and nanoplastics are practically ubiquitous in
the ocean [1, 2|, per- and polyfluoroalkyl substances (PFAS) bioaccumulate and are
commonly found in food [3-5], and pesticides and drug residues can be documented
in ground water [6, 7]. Most of these substances can be harmful to the environment
or to humans. It is imperative that they are monitored adequately so that their risks
can be properly assessed, major polluters can be identified, and the effectiveness of
regulatory measures can be evaluated on a scientific basis.

The monitoring of small molecules at many measuring sites is only possible with
appropriate sensor devices that are capable of reliable and cost-efficient pollutant
detection. The specific requirements for a biosensor vary greatly depending on
its application. While a device measuring pollutant content in sweat needs to be
wearable, thin, and non-invasive, the same requirements do not necessarily apply for
a device detecting milk adulteration. However, several key properties are essential
for successful sensor implementation: sensitivity and specificity towards the target
analyte, portability allowing on-site usage, minimal need for recalibration, minimal
or no pre-conditioning of media (label-free), reusability, and high detection speed.
A combination of all these properties is not trivial to achieve and feasibility also
depends on the recognition element that is responsible for capturing the analyte
of interest and the applied transducer that converts association of an analyte to a
measurable signal.

Transferring a biosensor from a controlled laboratory setting to the complexities of
the real world presents a unique set of challenges [8]. It is impractical to account
for every possible cross-sensitivity when dealing with biological fluids such as saliva,
blood, or sweat as well as complex media like wastewater and food. This can alter the
sensor response which may reduce sensitivity or cause a baseline shift due to fouling
of the sensor’s recognition element [9]. The recognition element may also deteriorate,
or change over time, leading to baseline drift and sensor response alterations [10,
11]. Especially in continuous monitoring, reversibility of the recognition element is
crucial. To address this, non-specific receptors are often employed so that the analyte
interacts with the sensing element but can be removed easily. This results in a sensor
that is not specific via chemical recognition alone but relies on multivariate data
and machine learning for analyte recovery [12]. Sensors susceptible to baseline drift
and sensitivity variations, including those caused by manufacturing inconsistencies
[13], require frequent recalibration. However, complex calibration routines are often
impractical and undesirable, especially for sensors deployed in real-world settings [14].
Therefore, integrating multiple sensors into a system can prove beneficial [15]. This
multimodal data approach, while offering enhanced robustness, requires sophisticated
interpretation techniques.

Many of these difficulties in biosensor development can be overcome with the as-
sistance of artificial intelligence (AI). Breiman [16] argued that traditional models,
which attempt to replicate real-world systems with equations, can lead to over-

*”Your brain is full of microplastics: are they harming you?”, nature; "PFAS pollution in European
waters”, European Environment Agency


https://www.nature.com/articles/d41586-025-00405-8
https://www.eea.europa.eu/en/analysis/publications/pfas-pollution-in-european-waters
https://www.eea.europa.eu/en/analysis/publications/pfas-pollution-in-european-waters

Introduction 3

simplification or even misinterpretations of data and their underlying generative
principles. Machine learning takes a different approach: it finds a model that best
fits observed data. While this may be more challenging to interpret, it can often
provide a more accurate representation of how data is generated. Therefore, machine
learning is crucial for advancing biosensor technologies and has been recognised as a
vital tool in the field [17-19]. However, it is important to remember that not every
problem requires an Al solution. The argument here is that machine learning can
be a powerful asset for tackling challenges, especially those that arise when moving
biosensor technologies beyond the laboratory setting.

With the introduction of commercial tools based on large language models (LLMs),
often incorporated directly into commonly used software, it becomes increasingly
likely that a transformation of the work environment and daily life is imminent.
Deep learning has matured from a technology mostly used for research to a diverse
method applied across various fields - from A(stronomy) to Z(ebrafish) [20, 21].
Specialised hardware enables on-site learning and inference, software and pre-trained
models are plentiful, freely available and cover everything from data curation to
visualisation. This stands in stark contrast to its use in biosensing, a field still
dominated by traditional data processing methods. Indeed, there is a gap between
used methodology in biosensing and state of the art in deep learning.

Although artificial intelligence and machine learning are widely used in biosensor
research [17-19], it can be argued that deep learning is underutilised.

Solutions have been reported for many fields related to biosensing: drift compensation
[22], dealing with cross-sensitivites [23], multimodal data approaches [24], and
managing high-dimensional data [25]. There are also exciting areas of research that
can be utilised in biosensing.

The transformation of data into semantic embeddings, i.e. lower-dimensional space,
can provide insights into sensing mechanisms. Since molecular structure can be
mapped to their properties as well as sensor data to molecular properties [26], it
would be very interesting to map sensor data and molecule structure thus allowing
inference of specific molecular properties from sensor data.

Physics-informed neural networks (PINNs) are universal function approximators
that incorporate a set of ordinary or partial differential equations describing physical
laws. This strong bias improves convergence for smaller datasets while retaining
flexibility beyond simple curve fitting. There is ongoing research to model binding or
adsorption kinetics with PINNs which enables prediction of association parameters
from observed transient data [27].

The success of LLMs stems from their ability to infer the task at hand from a given
prompt due to the vast amount of training data embedded within their weights.
This means the model was not explicitly trained for a specific task (e.g. translation)
but has the information available in its training data corpus. By providing a few
examples of the task at hand, it is then able to perform the task comparably to
a model specifically trained on the task. These so-called foundation models are
transferred to different domains, for example to image segmentation [28], which
allows the extraction of regions of interest from images in a few-shot or zero-shot
manner making it easily applicable.
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This work aims to leverage machine learning in several ways to enhance the analytical
performance of a surface plasmon resonance sensor. Surface plasmon resonance
imaging (SPRi) provides high-dimensional data with high sensitivity towards the
surface, suitable for analysis with machine learning. In particular, this work aims
to enable specific signal processing for a SPRi setup that uses divergent light to
alter the surface plasmon resonance conditions across the surface. It is explored how
this information can be used in an analytical context for sensor characterisation,
development and to enable new sensing methods. Additionally, it is investigated how
deep learning can be employed to help with the detection of small molecules using
the SPRi sensor and non-specific receptor elements. In summary, methods to utilise
a custom imaging-based surface plasmon resonance setup analytically are developed
and evaluated.
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Surface plasmon resonance imaging (SPRi) has been extensively used in biosensor
research for decades. It is crucial to characterise and optimise experimental conditions
to generate meaningful and reliable results. Here, the conditions for optimal sensitivity
of an SPR sensor to refractive index changes are reiterated and expanded towards a
sensor with spatial information. The components of an SPRi sensor are characterised
with regards to a biosensing application. This includes the SPR sensor surface,
analyte transport, and recognition elements for analytes.

2.1 Introduction

In the late sixties Otto [1] and Kretschmann and Raether [2] independently described
the excitation of surface plasmons by employing frustrated total reflection and to-
tal internal reflection, respectively. This allowed comprehensive explanation of a
phenomenon observed as early as 1902 by Wood [3] who noticed alternating dark
and light patterns when polarised light was reflected on a mirror with a grating. In
1983, Liedberg, Nylander, and Lundstrom first reported the use of surface plasmon
resonance (SPR) sensing for biological applications and theorised that it could be
valuable for measuring enzyme activity and hormone-receptor interactions [4]. Four
years later, Yeatman and Ash described using surface plasmon resonance in combi-
nation with a camera to capture reflectance images in a Kretschmann-Raether setup
[5]. The development of laterally resolved biosensing with very high sensitivity close
to the sensor surface coincided with the rise of the CCD (charge-coupled device)
sensors. Together with advances in computational power for digital signal processing
of the camera images, this led to rapid and widespread adoption of surface plasmon
resonance imaging (SPRi) in research.

In the following decades, SPRi was employed to image cells [6], monitor DNA hy-
bridisation kinetics [7], characterise the biotin-streptavidin interaction [8], and track
the spatial pattern of protein activity on a surface [9] utilising the lateral resolution
provided by the image sensor. This spatial transducer was also exploited to introduce
reference structures for correcting light intensity fluctuations [10] and for multiplexed
measurements detecting multiple biomarkers in parallel [11].

SPRi was coupled with angular interrogation to determine optical properties over a
large surface [12], wavelength variation for two-dimensional thin film quantification
[13], phase imaging which provides higher sensitivity [14], and polarisation variation
which can be used to determine layer parameters [15]. Thus, it has evolved into a
standard tool for biosensing in biochemical research as well as health and environ-
mental monitoring [16, 17].

Imaging-based SPR is a powerful technology allowing real-time, multiplexed, and
label-free detection of biomolecules with potential for miniaturisation. The sensor
surface can be used for the detection of multiple analytes but can also provide
additional information on adsorbates or sensor state through spatial or temporal
modulation of light wavelength or momentum.
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This chapter provides a brief overview of SPR extending its definition to imaging
and outlining its application in sensing. This sensor is then analysed in context of
its application in a biosensing setup focussing on sensitivity. Furthermore, methods
for enhancing its specificity are discussed.

2.2 Theory and Methods

Imaging instrumentation for surface plasmon resonance as a technique for biosensing
is highly diverse.

O’Brien et al. [18] used a two-dimensional imaging sensor to modulate the incidence
angle of light in one dimension while varying functionalisation in the other dimension.
This information was used to track shifts in the resonance minimum due to binding.
More commonly, angular scanning is achieved via a goniometer. Early studies
recognised that proper referencing of the intensity is important for angular scanning
devices [19]. More recently, instrumental setups using an acousto-optic deflector [20],
or cylindrical lens arrays [21] for angular modulation in imaging have been applied.

In 1998, an interesting alternative to wide-field imaging emerged: microscope
objective-based SPR (SPRM) which achieves angle-resolved SPRi with the help
of a high numerical aperture (NA) lens [22]. In this approach a localised electric
field in a microscopic region is generated by interfering surface plasmon polaritons.
Another method uses an adjustable illumination axis offset in the back focal plane of
the microscope objective relative to its axis to create different angles of incidence
[23]. Microscopy enables very high spatial resolution due to the high NA which
results in lateral resolution limits defined by the larger propagation length of surface
plasmons rather than the Rayleigh criterion. SPRM has since gained traction and
alternative setups have emerged utilising different methods to modulate the incident
angle through a spatial light modulator [24] or enhance the signal-to-noise ratio of
the microscope image by collecting the scattered light of biomolecules [25].

Wavelength modulation is a popular alternative to angular modulation for non-spatial
detectors due to the high information content and the availability of spectrometers.
In imaging wavelength information can be projected onto one sensor dimension
effectively creating a 1D-image where every pixel holds wavelength information [26].
Seol Yuk et al. created a 2D image of a wavelength-interrogated sample by scanning
the surface with a fiber-coupled spectrometer [27]. Since then various methods have
been explored for direct wavelength modulated 2D imaging: acousto-optic tunable
filters [28] or other monochromators [29], direct laser modulation [30], and using
hyperspectral imagers [31].

In phase-based imaging the pronounced phase change during resonance is used
to increase sensitivity. Phase measurement usually involves an interferometric
configuration where the illumination is split before the interrogated surface and
merged again before the detector. As a reference path both polarisations (p and
s) were employed [32] as well as common-path interferometry was achieved using a
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Wollaston prism [33]. The high resolution of these instruments comes with the cost
of higher instrumental complexity.

As a deviation from the Kretschmann configuration, localised plasmon surface
resonance (LSPR, [34]) has been employed in an imaging context often together with
a microscope [35]. LSPR typically relies on the collection of wavelength information,
which results in the application of spectrometers and different means of wavelength
modulation, e.g. with a tunable filter [36].

Although numerous SPR imaging setups are used for biosensing [37-39], most of the
intensity-based setups are variations of the setup schematically shown in Figure 2.1.
Herein the base components can be reduced to a light source, a coupler with the sensor
surface that is in contact with analyte solution, a flow cell, and a detector. The light
source illuminating a planar sensor surface under total internal reflectance, ideally, is
collimated, monochromatic, and polarised. The illuminated sensor surface has to
be optimised for the task at hand by functionalisation of the surface via physical
methods or chemical bonding of biomolecules. The analyte has to be transported to
the sensor surface efficiently and predictably. The detector images the sensor surface
with high spatial resolution and high dynamic range.

Analyte Solution ¢ Analyte Molecules

Plasmonic Metal Layer ' R ‘
Adhesion Layer eceptors

Glass Prism

Fig. 2.1. SPRi sensor for biosensing with a collimated, polarised, and monochromatic
light source, a prism coupler where the analyte is transported to the sensitive surface
with immobilised receptor molecules by means of a flow cell. The reflected intensity
is monitored with the help of a camera sensor.
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Each sensor component must be carefully selected and their impact on the measured
quantity has to be characterised. Within the scope of this work, the light source was
treated as an entire component where only the output intensity distribution and the
wavelength were considered. The coupler with the sensor surface is characterised in
section 2.2.4, the flow cell in section 2.2.3.1 and the impact of the camera and the
objective lens are discussed in section 2.2.2.

Experimentally, the system was tested with regards to its performance by analysing
noise and by variation of optical configuration of the detector. Additionally, dispensing
of 2D materials as receptors was optimised and examined with the help of plant oil.
Those experiments are detailed in section B.1.

2.2.1 Surface Plasmon Resonance

A note on notation: Reflectance (R) represents the fraction of incident light power
reflected from an interface. In this work the term reflectivity is used as a synonym.
The reflection coefficients (r), which relate the amplitude of the reflected electromag-
netic waves to the input amplitudes are complex quantities. The squared magnitude
of the reflection coefficients yields the reflectivities. Refractive indices are generally
denoted as n, in cases where the refractive index is a complex quantity, it becomes
n = n+ikx where k is called extinction coefficient. The refractive index is also related
to the relative permittivity e, via 72 ~ €, with the complex extinction coefficient &,
(for conducting, non-magnetic materials at optical frequencies) [40, p. 76].

Surface plasmon resonance is widely used in biosensing due to its high sensitivity
to analyte changes close to the sensor surface. This high sensitivity is a result of
an electromagnetic wave travelling parallel to a metal-dielectric interface probing
into the dielectric in form of an evanescent wave. Under certain conditions this
surface wave resonantly couples with an incident electromagnetic wave which means
that slight changes in the dielectric can be observed in the reflected electromagnetic
wave. SPR theory has been extensively studied and descriptions of generation and
propagation of surface plasmon polaritons can be found in several textbooks [41-44].
However, a short summary of the most meaningful equations impacting this work is
provided in this chapter.

It is well known, that in order to excite surface plasmons the energy and momentum
of the exciting photons must match that of the surface plasmon on the metal interface.
The momentum in particular cannot be matched with free-space photons, that is why
coupling the photons through prisms or gratings is indispensable. Within this work,
only Kretschmann-Raether type setups are used, where a glass prism is employed for
coupling and the medium of interest is directly in vicinity of the metal surface on
the prism [2].

For a derivation of the surface plasmon dispersion relation, see either section A.1
or the textbooks cited above for a more rigorous treatment. Since s-polarised light
cannot excite surface plasmons, only p-polarised light is considered. For the purpose
of this work, a three-layer system is assumed given by: a semi-infinite glass prism
(1), a metal layer of thickness d (2) and a semi-infinite dielectric (3). The frame
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of reference is chosen as indicated by Figure 2.2, the p-polarised wave is chosen to
travel in x-direction, there is no electric field in the y-direction.

[
[
|
|
T [
[
z : Dielectric (3)
[
[
[

Fig. 2.2. Three-layer system of a glass prism, a metal thin film with thickness d and
a dielectric. The wave vector of the incident wave and its components are sketched.
The indicated coordinate system is used throughout the following equations.

The reflectivity of this system is given by [45]

Ep|?

T

B}

Ty + 153 exp(2ik,2d) 2
1 + riyrhs exp(2ik,od)

R = |7‘11)23|2 = (2.1)

The reflectivity is the magnitude of the ratio of reflected electric field E; to incident
electric field Ey, which is dependent on the reflection coefficients for the transitions of
prism to metal (r12) and metal to dielectric (rg3). k.2 is the wave vector in z-direction
in the metal and d is the thickness of the metal film.

Using Snell’s law and the geometry of the wave vector, k,o can be rewritten as

) S
kzg = Tﬂ- ég — n% sin2 91, (22)

with the wavelength of light A, the (complex) relative permittivity of the metal &,
the (real) refractive index of the prism nq, and the incidence angle 6,. Similarly, the
reflection coefficients for the interfaces prism-metal and metal-dielectric are given by

the Fresnel equation:

» Ty cosB; —n;costy
Tik = = - . (2.3)
Ny cos B; + n; cos Oy,

With these equations, an angle of incident-dependent reflectivity can be calculated
for known refractive indices of the three phases and a defined thickness of the metal
film (Figure 2.3). When the conditions for the excitation of surface plasmons are met,
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i.e. energy and momentum of incident light matches that of the surface plasmons, a
dip of the reflected intensity of p-polarised light can be observed above the angle of
total internal reflection (TIR). This is a result of the incident light coupling with
surface plasmon modes (see Equation A.4).

1 —— _ RERE

0.8 a
_%‘ 0.6 | |— 50nm p-pol
= 50 nm s-pol
q;‘f 0.4 | ----- 20nm p-pol
e Y ---- 100 nm p-pol

<
o

Fig. 2.3. Reflectivity for different gold thicknesses at a wavelength of 660 nm and
25°C, a prism refractive index of 1.6418, metal refractive index of 0.28434:3.3825,
and water as dielectric (n* = 1.3310). Since the reflectivity is dropping above the
critical angle for total internal reflection (TIR), this mode of operation is called
attenuated total reflection (ATR). The resonance is highly dependent on the metal
thickness and s-polarised light is unaffected.

The efficiency of this coupling is strongly dependent on the refractive indices and
thicknesses of the layers, as well as the light wavelength and incident angle. This
dependency is utilised for sensing of the dielectric. Physically, the light wave reflects
at the prism-metal interface but partially penetrates the thin metal film as an
exponentially decaying wave. This decaying wave can excite surface plasmons on
the metal-dielectric interface, which are electron oscillations on the metal surface.
These oscillations, in turn, generate an electromagnetic field that radiates back into
the metal film, interfering destructively. Under ideal coupling, the reflected beam
vanishes.

There are several ways of exploiting the reflectance change through spatial or temporal
modulation of light wavelength or momentum. Typically, in a sensor setup the
medium of interest is the dielectric itself or, more commonly, surface adsorption or
binding of an analyte from the dielectric. Both result in a change in refractive index
of the dielectric which result in altered resonance conditions. The change can be
detected in several ways, e.g., by tracking the angle of the reflection minimum or
the reflected intensity directly. In this work, a simple approach was used: tracking
the intensity of the reflected light under fixed conditions (angle and wavelength). In
Figure 2.4 this approach is illustrated: the reflectivity is recorded at a fixed angle,
that is chosen so the slope is maximised. On changes in refractive index the reflection
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changes, for small Angy; a linear relationship between refractive index and reflectance
can be found. Similarly, reflectivity changes when biomolecules adsorb to the sensor
surface, which can be modelled as a thin layer on top of the gold surface with a
refractive index distinct from that of water. Depending on noise of the measurement
miniscule changes, which are in the 1 x 1077 RIU (refractive index units) range or
at sub-molecule scale can be detected which highlights the high sensitivity at the
surface [46, 47].

e
Metal 0.28426 3.38246 5-10~%
A0 X 10—3 | Dielectric  1.33095 -1 0.8
— A2x1073
—— A4x107? ] P b
I -3
A 6 x 10 - 104
A8x1073
A10x 1073 - 0.2
b) Linear fit (linear region):
0.0279 z+ 0.3499
| | | | R? = 1.0000 0
64 66 0 2 4 6 8 10
Ang; / 1 x 1073 RIU
1
— A0x107° N
— A2x107°
— A4x107° j
— A6x107°
A8x107°
A 10 x 107° . - 0.2
d) Linear fit (linear region):
0.0398 =+ 0.3499
| | | | R? = 1.0000 0
64 66 0 2 4 6 8 10

A Adsorbate thickness / nm

Fig. 2.4. Angle-dependent reflectivity for different changes in refractive index (a)
and thicknesses of an adsorbing molecule layer in nanometers (c). The dashed lines
in (a) and (c¢) mark the angle of maximum sensitivity at which the reflectivity for the
graphs on the right is extracted. Intensity-based readout of a change in refractive
index of the dielectric (b) and thickness of layer of adsorbing molecules with a
refractive index of 1.5 [48] (d) at 660 nm and 25°C. The dashed lines shows the
linear fit for a change of 1 x 1073 RIU and 1nm respectively.

When observing only the reflected light intensity, it is impossible to discriminate a
change of refractive index in the dielectric from adsorption of a target analyte to the
sensor surface. This distinction can be made when there are multiple responses from
several sites on the sensor surface featuring different modifications that, e.g. block
binding of an analyte or irreversibly bind to the ligand so that it remains bound
after replacing the dielectric. A spatial sensor allows parallel detection of such sites
which enables fast and accurate determination of the quantities of interest.

Reflectivity

Reflectivity



Theory and Methods 15

2.2.2 Surface Plasmon Resonance Imaging

In SPR imaging, a spatial detector such as a CCD camera captures the reflected light.
This allows tracking of the laterally resolved reflectivity of the surface. The responses
from the surface can be used to spatially average the intensity in order to reduce
noise, or to track the intensity of several functional surface reactions in parallel [37],
which can be exploited to compare the observed intensity of an analyte interaction
with a reference area to eliminate intensity fluctuations, temperature effects or bulk
refractive index changes [49-51]. To observe independent interactions on the sensor
surface, the probed sites must be farther apart than the propagation length of the
surface plasmons. Surface plasmons travel parallel to the interface meaning they
have a non-zero propagation length and therefore affect the captured image. As a
result, the surface plasmons limit the lateral resolution of the sensor. The observed
image is the convolution of the imaged object, the point spread function (PSF) of
the optical system, and the decay function of the surface plasmon [52-54]. If two
independent events on the surface are to be observed, the two sites should be farther
apart than the surface plasmon propagation length.

The propagation length of the surface plasmon is inversely proportional to the
imaginary part of the wave vector travelling along the surface,

1

Ly=
20m(k,)

(2.4)
with k, defined in Equation A.2.

For gold, this translates to a distance of a few micrometers, which can affect the
spatial resolution of a sensor. In Figure 2.5 several wavelength dependent quantities
for gold are depicted, similar to Figure 3 in [54]. While the propagation length
increases with the wavelength, the sensitivity does, too (Figure 2.5 a and e). For SPRi
the consequence is that there is a trade-off between lateral resolution and refractive
index sensitivity. It is interesting to note that the refractive index sensitivity of
a bulk change (Figure 2.5 e) increases with the wavelength, while sensitivity to
a thickness increase of an adsorption layer on top of the gold surface plateaus at
higher wavelengths (Figure 2.5 f). This analysis suggests an optimal wavelength
for surface-bound sensing. This is due to the fact that the electric field penetrates
deeper into the medium (Figure 2.5 b) which limits its sensitivity towards surface
effects. The sensitivity can be understood as a percentage change in intensity as
reflectivity is directly proportional to the observed intensity (disregarding the PSF).

For a point reflector on a homogeneous surface illuminated with a collimated light
source in lossless space, the intensity at the detector can be written as:

I(x,y) = (R(z) * PSF(z,y)) - lo(z,y) (2.5)

where R(z) is the reflectivity along the propagation of the surface plasmon, PSF(z,y)
is the point spread function of the optical system and Iy(z,y) is the input intensity.
Lateral resolution consequently depends on the imaging setup, including prism base
angle and refractive index, objective lens and aperture as well as their positioning
relative to the sensor. The setup is ideally designed to achieve a field of view (FOV)
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Fig. 2.5. Wavelength dependent lateral propagation length (a) and penetration
depth (b) of the electric field; optimum thickness of the gold film (c), i.e. thickness
with which the maximum sensitivity (highest slope of the SPR curve) is reached;
optimum angle of incidence for intensity-based readout (d); reflectivity sensitivity
towards bulk refractive index changes (e); reflectivity change on thickness change of
an adsorption layer with refractive index 1.5 on top of the gold surface (f). Graphs
are based on numerical simulation and inspired by [54]. Solid lines represent gold
refractive indices modelled after Lorentz-Drude, and dashed curves represent gold
refractive indices after [55]. Glass is modelled after Sellmeier equations (section A.2)
for Schott SF2 section C.2, and the dielectric is water which is modelled after
[56]. The adhesion layer for gold on glass, which is frequently chromium, generally
decreases the sensitivity and is omitted here. All calculations at a temperature of
25°C.
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to capture the entire sensor surface and a depth of field (DOF) that enables focused
imaging of the tilted surface with respect to the optical axis. To optimise lateral
resolution, one has to illuminate the surface so that the main ray is perpendicular to
the prism surface and place the detector perpendicular to the optical axis. According
to the Scheimpflug principle this results in a tilted image plane with regard to the
detector Figure 2.6.

Fig. 2.6. When light rays (A and B) perpendicular to the prism surface with prism
base angle © are reflected on the sensor surface, these reflections are not perfectly
specular resulting in a virtual object plane OP’. This plane (and also the object plane
for that matter) is not parallel to the lens plane (LP) which means that the image
plane (IP) is not parallel to the lens plane either. LP, OP’ and IP intersect in a
point S and OP’ and IP are tilted in the same angle o with regard to the LP. a for
a specular reflection is identical to the prism base angle. The detector D, however, is
placed parallel to the LP, which results in only a strip being in focus at once. Diffuse
reflected light of ray B is only depicted until the prism-air interface; this is to show
construction of the virtual image plane without overloading the image.

Alternatively, the detector can be positioned parallel to the image plane to maximise
FOV while retaining maximum lateral resolution. This, however, results in rather
steep angles of incidence on the prism [54]. It was therefore chosen to limit the
aperture of the objective lens to increase the DOF, which reduces the lateral resolution
but allows using a simple optical setup (as sketched in Figure 2.6). The desired
mode of operation of the SPRi system defines which optical components should be
used. When imaging a large tilted surface (i.e. 1cm? and larger) with regard to the
detector, DOF should be high but lateral resolution can be limited since on a large
surface more functional spots can be realised than on a smaller surface. The impact
of an aperture reduction was characterised, with results presented in section B.1.2.
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2.2.3 Recognition Elements

To maximise utility of a two-dimensional detector beyond redundancy, spatial mod-
ulation of reflectivity must be employed. This can be achieved using recognition
elements for analytes of interest. There are different types of interactions which are
generally classified by their binding energy. The metal surface is prone to non-specific
adsorption, which is typically unwanted in biosensing and hence commonly blocked us-
ing self-assembled monolayers (SAM) of thiolated hydrocarbon chains which strongly
bind to gold. This is one of the main reasons why gold is widely used as thin-film
metal in plasmonics, as its surface chemistry with thiols is well-characterised and
diverse [57].

2.2.3.1 Analyte Transport

The analyte of interest must be transported to the specific recognition elements
on the sensor surface. The exact interaction mechanism is not considered here as
transport and binding is the focus. Herein, the analysis is limited to pseudo-first
order kinetics. For a more rigorous approach, see, most notably, the works of Squires
et al. and Saftics et al. [58, 59] as well as several textbooks [42, 44, 60].

Let us first assume a system where a sensor surface is exposed to an analyte that
binds to specific binding sites on that surface. Let us also assume a well-mixed
system which means the concentration of the analyte at the surface (¢;) is the same
as in the medium which holds the analyte (¢p), i.e. ¢s = ¢p and assume an infinite
supply of analyte (co = const.). Binding sites are independent and distinct from one
another and per site only one analyte molecule may bind (Langmuir adsorption [61]):

As+ B :: AB. (2.6)

a

The adsorbate Ag may bind to the binding site B with a rate constant k, and
desorption is characterised by kq. The time-dependent adsorption process can be
written as,

db

i kacs(bm — b) — kqb (2.7)
where b is the time-dependent number of adsorbates per unit area, by, is the maximum
number of analytes per unit area and ¢ is the (surface) concentration of the analyte

molecule [Ag]. Assuming a well-mixed system, it can be written:

b(t) 1 )
_ 1 — e(—kacotka)t 2.8
bm L+ Kp/co (1-e ) (28)

with the dissociation constant Kp = kq/k,. For t — oo the exponential vanishes
and a fraction of bound molecules which is dependent on the ratio of K and ¢
remains. With known kinetic constants and analyte concentration, it is also possible
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Fig. 2.7. Flow cell geometry and parabolic flow profile developing with laminar
flow.

to calculate the time 7g until the steady state — the state of balanced ad- and
desorption so the number of bound molecules is constant — is reached:

_—In(1-9)

2.9
kaCO + I{Jd ( )

To =
where © is the fraction of equilibrium. Steady state concentration analysis can
be used to calculate the dissociation constant when recording the sensor response
at different concentrations. The concentration has to be set at values around the
dissociation constant (¢ = Kp relates to 50 % occupied binding sites) in order to
generate meaningful results when analysing steady-state concentration series.

A well-mixed system is rarely achieved in practice. More generally, the analyte is
transported to the recognition element, e.g. with the help of a pump that moves
liquid through a flow cell. A flow cell with a rectangular cross-section (ween X h)
is assumed, where fluid enters at z = 0 and leaves at x = l..; with volume flow Q.
The sensing area where recognition elements are placed with a surface density by, is
characterised by its length and width (Figure 2.7). Due to the dimensions (i.e. h in
the range of 1 x 107*m to 1 x 107 m) and the volume flow (less than 1 mL/min) in
aqueous solutions laminar flow develops in the cell. The sensing area shall be far
enough from the inlet so that the laminar profile has fully developed.
Consequently the flow rate is zero at the bottom and top of the flow cell (z = 0,
z = h) and reaches its maximum at z = h/2. Thus, analyte transport to the surface
by laminar flow is zero for these conditions. Due to the introduced concentration
non-uniformity, diffusion becomes the main driving force of analyte transport.

The analyte concentration then becomes a spatiotemporal quantity depending on
diffusion and convection (we assume diffusion in y-direction to be negligible)

oc(t,x,z)  _ [0Pc(t,x,z) 0%c(t,x,z2) de(t, x, 2)
M= p (P ) ™2 e

with the flow velocity profile of the fluid u,(z) and the diffusion coefficient D. This
equation can be solved numerically. The boundary condition at z = 0 of this partial
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Fig. 2.8. Assumptions of the two compartment model for the DBL: close to the
sensor surface a linear flow profile can be assumed; at a distance dp from the sensor
surface, the analyte concentration is equal to the bulk concentration and varies
linearly with distance to the surface.

differential equation (PDE) depends on the rate equation for first-order kinetics
(Equation 2.7) but modified by the time and space-dependent quantities for bound
molecules and available binding sites.

It is, however, possible to derive simpler analytical models for this system when
isolating flow and diffusion into a two-compartment model. In this model the
concentration far from the surface is considered constant while close to the surface
a diffusion boundary layer (DBL) is formed as a constant concentration gradient
between bulk and surface is formed. The height of the DBL depends on the ratio
between convection and diffusion (see Figure 2.8).

This results in an effectively two-step process for adsorption

Ap fmy A+ B AL AB (2.11)

a

where k,, is the kinetic constant for mass transport of the bulk analyte Ag to the
surface Ag. The rate equation for the surface concentration becomes

deg 1

PTG (km(cy — ¢s) — kacs(bm — ) + kqb) (2.12)

with the DBL thickness dp. If the surface concentration is in steady state, ¢s can be
found to

Cbk’m + kdb
s — 2.1
“ ka(bm - b) + km ( 3)
which together with Equation 2.7 gives
db k. k
= (b — b) d (2.14)

Sl - b.
At~ 1+ (b — b)ia Sl 1+ (b — b)ka/km

This equation can be analysed similarly to Equation 2.7 by substituting ks =
kaf/(1 + (b — b)ka/km) and k, = kq/(1 + (b — b)ka/km). At (b — b)ka/km < 1
transport is much faster than binding and the kinetics are reaction dominated, i.e.
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k¢ ~ kq and k, = kq.
When the velocity profile close to the sensor surface is linear (Figure 2.8), diffusion
in the direction of flow is neglected, and the surface concentration is zero, hence it is
a perfect sink, Equation 2.10 can be simplified and solved to give an expression for
km [62]

D

wu (1/3)
]fm -~ 0. max D

with the DBL thickness dp, the dimensions of the surface with receptors (as indicated
in Figuri2.7 ) and the maximum flow velocity uyay. This can be expressed as an
average ky, by integrating over x from 0 to [ and normalising with [ [63]

o D 2/3) (1/3)

According to Equation 2.15 the size of the DBL is dependent on the geometry of
the flow cell and the volume flow of the medium but has an important effect on the
kinetics of the system which is why the flow has to be chosen carefully for every
experiment. A small DBL leads to shorter diffusion times and thus faster response
but can also mean that molecules cannot bind before they get swept away. For a fixed
flow, higher k, result in a faster steady state but may lead to transport-limitation as
the molecules are bound as soon as they arrive at the surface (see Figure 2.9).

(2.15)
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Fig. 2.9. Fraction of bound molecules over time when a step-like concentration
change (dashed blue lines) is introduced in a well-mixed system (black dashed
lines) and a convection-diffusion system (black solid lines). Surface concentration is
depicted as a blue solid line. The system in a) is diffusion bound ((by, —b)ka/km > 1),
the main limitation for steady state to be reached is the surface concentration; the
case in b) is calculated with the same flow parameters but different kinetic constants
of the binding reaction so that (by, — b)ka/km < 1 which means that the system
is reaction-limited. Note that the system in b) takes longer to reach steady state;
on/Kp = 1 so steady state fractional coverage will be 0.5 (calc. from Equation 2.7,
Equation 2.12 and Equation 2.14 for: a 1mm by 1 mm sensor spot in a 0.5 mm
high flow cell with Q = 100 pL/min, D =1 x 10"* m?s™! and a receptor density of
1x108¥m=2a) k, =2x10°M ts7 b) by, =1 x 100 M~ ts71).
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With very low bulk concentrations the diffusive flux will be lower, which means that
it takes a long time for surface concentration equilibrium to be reached. Similarly,
this affects the time until surface reaction equilibrium is reached. A sensor with area
A has a number of Ng = b, A receptors, where the number of bound receptors in
equilibrium is dependent on Equation 2.8:

beq 1

— = 2.17
bm 1+KD/CO ( )

When Kp > ¢, this becomes beq & bico/Kp and thus beq < by,. The number of
bound receptor spots becomes N§ & be, A and for at least one molecule to be bound
the concentration has to be larger than:
Kp

Cmin = A (2.18)
For ) — 0, the two compartment model is no longer valid and diffusion becomes the
sole transport mechanism to the surface. There is no general closed-form solution for
diffusion-limited binding but numerical methods allow calculation of diffusion-bound
surface coverage. The DBL expands o v/ Dt which means that analyte transport
becomes increasingly slow and can significantly impact the observed kinetics.
In conclusion, analyte concentration, low and the dimensions of the flow cell are
important parameters for the observation of an interaction with specific kinetic
parameters. They not only affect the exact shape of the time-dependent amount of
bound molecules but the time to reach steady state. When equilibrium is assumed
even though the sensor has not reached steady state, incorrect kinetic parameters
may be adopted which leads to measurements at a non-ideal operating point or even
incorrect conclusions, entirely [60, 64, 65].

2.2.3.2 Interaction Types

From an SPR sensing perspective the ideal recognition element attaches irreversibly
to the metal surface, is impermeable to suppress unwanted binding of the medium
with the metal surface, and is thin enough to avoid perturbing the SPR response.
Additionally, the recognition element has to reversibly and quickly bind to the analyte.
Reversibility is a somewhat arbitrary term, since it depends on the time frame and
energy of a regeneration step, e.g. a washing step without analyte, or a change in
temperature.

Here, binding energy is expressed in quantities of kT (product of Boltzmann constant
and temperature) so that environmental thermal energy is accounted for.

Apart from chemical reactions leading to covalent bonds, specific bonds do not
have to be strong bonds (in terms of energy), but a specific bond is selective in
its partners. Specificity is achieved by compatible arrangement of interaction sites
(between receptor and analyte). A range of interactions can occur in a biosensor.
Coulomb interactions involve charged partners and are relatively long-range and high
energy (up to 200kT). The Van der Waals interaction, which is the sum of Keesom
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(dipole-dipole), Debye (dipole-induced dipole) and London dispersion (instantaneous
dipole) interactions, has much lower energy (=~ 1kT) and shorter range. In aqueous
media, hydrogen bonds (at around 5 — 10kT) and hydrophobic interactions are also
significant. The latter are very difficult to quantify since they are a result of the
environment rather than an attraction due to charge distribution [66, pp. 80 sqq.][44,
p. 174]. A hydrophobic surface can result in strongly bound hydrophobic molecules
in aqueous media, as the molecule can be expelled from the aqueous phase and
deform to bind irreversibly when in contact with the surface.

The energy of the bond determines its lifetime and can be approximately computed
with the Bell equation [67, p. 619]:

to = ToeWo/*T (2.19)

with the binding energy wy and the mean collision time 7y. Since the lifetime increases
exponentially with lower binding energy (by definition the binding energy for these
interactions is negative), an energy of 50 kT may lead to a bond stable for years while
10KkT has a lifetime in the microsecond range [67, p. 601]. Under the assumption
of additive effects, several weak interactions can therefore facilitate specific and
reversible binding. Smaller molecules occupy less sites contributing to association,
which generally results in lower binding affinity.

Receptor density and sensing area both decrease the minimum detectable concentra-
tion. Consequently, if the dissociation constant is high, higher receptor density can
compensate that to a degree (Equation 2.18). The association constant, however,
should be high to minimise the time to equilibrium (see Equation 2.9), as those
receptor sites need to be filled. It is a compromise between high energy interactions
that result in fast association but very long lifetime bonds and low energy binding
which results in quickly regenerating surface but lower association constants and
therefore a longer time to reach equilibrium.

2.2.3.3 Receptors and 2D Materials

Direct adsorption on the metal surface of the SPR sensor may lead to unwanted non-
specific binding which translates to noise. Self-assembly of organic sulfide monolayers
on gold allows reduction of such non-specific interactions by tailoring the sulfide
towards the analyte matrix [68]. However, self-assembled monolayers (SAMs) can de-
grade over time depending on their end group functionalisation and the environment
they are used in [69]. Polyethylene glycol (PEG) is another frequently used agent
to block proteins from non-specific binding to the surface [70]. Carboxymethylated
dextran hydrogel layers were popularised as early as 1990 and are still used in
commercial systems. They can extend considerably into the volume of the evanescent
field. The hydrogel itself is functionalised and the analyte diffuses into the hydrogel
and binds to positions in the dextran layer [71]. Polymeric hydrogels have the benefit
of high surface areas which means that more analyte can be immobilised in the
sensitive volume of the sensor. However, as the analyte has to move through the
dextran layer, the observed kinetics may be affected significantly by the movement
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through the polymer.

The method of blocking non-specific binding depends on the analyte of interest
and the expected interferences. For large analytes (cells, viruses, particles), large
polymeric layers may be inappropriate. In a protein-rich matrix, PEG functional-
isation may be the most efficient way of blocking their binding [72]. The blocked
surface can be functionalised to allow specific association of the analyte molecule
to the receptor surface. Antibodies, peptides, nucleotides, aptamers, and many
more biomolecules can be immobilised using, e.g. the biotin-streptavidin interaction,
EDC-NHS chemistry, and click chemistry [44, p. 240].

Within this work, primarily less specific interactions were employed. The principle
of cross-reactive receptors was exploited in chapter 4, where an array of semi-specific
interactions was used to create a "fingerprint” specific for the investigated analytes
where several semi-selective receptors bind weakly to the analytes. This has the
benefit of high reversibility of the surface due to less strong interactions but requires
several different receptors.

The high surface to volume ratio, stability, functionalisation potential, and diverse
interaction pathways of 2D materials have attracted increasing attention in the
SPR community, particularly due to their ultrathin structure. Graphene as a
prime example consists of sp? hybridised carbon with a long range conjugated
electron system. This 7 system allows for interactions (7-m, H-7, cation-7, anion-r)
which are combinations of the effects mentioned above (electrostatic, Van der Waals
and hydrogen bonds, [73]). Additionally, defects in graphene present more diverse
interactions (H-bonding and electrostatic) and enable more specific modifications
to the edges of the graphene flakes. Starting from graphene oxide (GO), which is
a high-defect, negatively charged precursor for graphene, reduction leads to more
pristine graphene with less defects and can be tuned with specific reduction agents
to create functionalised GO (fGO) [74, 75]. In order to take advantage of the
spatial detector used in SPRi, different functional groups have to be immobilised on
the sensor surface. This can be done, e.g. by microstamping, using microfluidics,
and with the help of microspotters [44, p. 244]. A selection of 2D materials was
investigated for fabricating a receptor array with the help of a dispenser and tested
against different plant oils in section B.1.3.

2.2.4 Modelling

Modelling the sensor response provides insight into the physical and chemical pro-
cesses involved in the sensing mechanism, the foundation of which has been explored
in section 2.2.1. Additionally, a model can significantly enhance confidence in
measurement results which is important for any sensing application. This section
discusses the parameters affecting a model for the reflectivity of the SPR sensor.
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Tab. 2.1. Real and imaginary parts of the refractive index of gold from several
sources, using simulation via Lorentz Drude (LD) modelling, and via an ellipsometric
measurement (with data selected for 660 nm and 730 nm as indicated).

n(660) k(660) n(730) k(730)  Ausample  Literature

0.149 3.746  0.127 4.4 thick film [78]
0.169 3.876  0.153 4.56 53nm on Si [55]
0.154 3.642 0.119 4.3 44nm on SiOq [79]

0.284 3.382 0.244 3.96  Lorentz Drude [80]
0.53 3.207  0.519 3.76 53 nm measured

2.2.4.1 Parameter contributions

SPR surface reflectivity depends on several parameters. These parameters can be
categorised according to their variability in the context of a measurement: some
parameters are fixed (refractive index of the prism), some parameters change across
different sensor batches (thickness of the gold layer), while others are variable with
time (temperature).

Given their importance, a brief introduction of the parameters involved in SPR signal
generation is provided:

Refractive index of the prism: Two different glass types SF2 and N-SF6 (Schott,
Germany) were used throughout this work. These glasses are characterised by the
supplier. Their refractive index can be calculated dependent on the wavelength

and temperature with the help of the temperature dependent Sellmeier equation
(section A.2).

Refractive index of adhesive layer: Herein, chromium is used as an adhesive layer
for gold. Sensors where the vapour deposition was performed by CreaVac (CreaVac,
Germany), instead have a nickle-chromium alloy adhesive. The refractive index of
this alloy is unknown, a range of refractive indices for chromium can be found in
literature [76, 77].

Thickness of adhesive layer: The thickness of the adhesive layer should be as
thin as possible due to the high imaginary part of the chromium-based material
which dampens surface plasmon resonance. The thickness thus adversely affects the
sensitivity of the sensor.

Refractive index of gold: The refractive index of thinly evaporated gold is not a
fixed quantity. It depends on gold purity and evaporation parameters as well as the
surface quality (see Table 2.1).

Thickness of gold: The thickness of the gold layer influences the resonator quality.
An optimum thickness for a specific wavelength and fixed refractive index can be
computed (see Figure 2.5) and is typically close to 50 nm.
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Tab. 2.2. Change in parameters to alter reflectivity by the same amount as a
1 x 107° bulk refractive index change.

ncr kCr tCr NAu kAu tAu Nglass A T
nm 1x107% 1x107® nm 1x1073 nm K

—0.279 0.041 0.05 —-0.646 —0.349 0.061 —-0.014 —0.045 —0.096

Refractive index of the bulk medium: This is the dielectric medium in contact with
the sensor surface. Within this work, mostly aqueous media are used which can be
described by an empirical equation for water relating temperature, wavelength and
refractive index [56].

Wavelength: The wavelength of light reflected from the SPR surface influences almost
every parameter in the stack, making its effect more challenging to quantify directly.
Here, only the effect on prism refractive index, metal refractive indices and dielectric
medium is considered.

Temperature: The temperature affects refractive indices and the thickness of all layers.
Since thickness changes are in the order of 1 x 107¢ % K~! for metals, they can be
neglected. Refractive index changes due to temperature are only calculated for the
prism and the dielectric material.

The reflectivity contributions of the parameters are compared as follows: pre-defined
parameters are used to calculate the reflectivity, the reflectivity change generated
by changing the bulk refractive index by 1 x 107° RIU is then determined. Finally,
the equivalent change needed for every parameter to generate the same reflectivity
change is computed. The result of this analysis is summarised in Table 2.2.

While any change in the refractive index and thickness of the metal layers alter
the measured reflectivity significantly, these parameters do not change during a
measurement within a limited time frame. However, the two parameters wavelength
and temperature affect the refractive indices of every component and thus have to
be stabilised. The temperature of the sensor is consequently controlled with the help
of a thermoelectric cooler. The wavelength stability is specific to the employed light
source. Typically, a wavelength filter is used to stabilise the output wavelength as
the reflectivity change is the weighted integral of reflectivities of the filtered output
spectrum. The LED specifications (section C.5) and wavelength filter transmission
spectrum (Thorlabs FBH730-10) reduce the effect due to peak wavelength shift so
that a variation of more than 1nm is needed to alter the reflectivity significantly
(at Adpeax ~ 0.1nm K1), To further minimise the impact of the LED wavelength
variation, the LED was temperature controlled with a thermoelectric cooler.

2.2.4.2 Sensitivity towards analyte molecules

To estimate the signal deflection caused by an analyte molecule in solution in contact
with an SPR sensor, the following approach can be used. In accordance with later
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chapters, let us assume a small analyte molecule with 150 gmol ' and a density of
1.6 g L=t The bulk refractive index change can be approximated with the refractive
index of its constituents (n;) and the Lorenz-Lorentz equation [81, 82]:

n2—1_z n? —1
n2+2 & 'n?+2

~ (2.20)

with the volume share

For organic molecules a refractive index of 1.6 was assumed ([48, 83]).

A bulk refractive index change of approximately 1 x 107% is calculated for a con-
centration of 50 pM of the small molecule which is not easily resolvable (for a 14-bit
camera, compare Figure 2.10 a). A reliably resolvable change would be an order of
magnitude higher, which can be achieved via a receptor element that increases the
concentration of the analyte at the surface with respect to the volume concentration.
When molecules are assumed spheric, with individual binding spots, and non-
attaching to each other, the height of the binding layer can be approximated to

M

Vinolee = —— 2.21a
oo = N ( )
3erno ec
hmolec = 1] 1 (221b>
4

with binding layer density p and molecular mass M. Within this adsorption layer, a
change in refractive index of close to 4 x 1072 RIU (Figure 2.10 b) has to be generated
to equal a bulk change of 1 x 107° RIU. This relates to a volume concentration of
2% (solving Equation 2.20 for ®,,.te) and, hence, a necessary receptor density of
4.7 x 10" em™2 (which is a high density of receptor spots [58]). The receptor density

1S:
o ‘/;(I)analyte

A,
with the surface volume V; of the sensor in which molecules may adsorb and the
sensor area Ag. This analysis illustrates, why SPR is more often used for larger
molecules which induce a greater change in reflectivity or in combination with a
hydrogel that fills a larger volume in which analyte molecules can agglomerate.

The approach to assume spherical molecules constituting an adsorbing layer reveals
that it is almost equivalent to "dilute” an analyte within an adsorption layer by

increasing the volume and adjusting the concentration within this layer (Figure 2.10
b).

b

Within this text, linearisation of the electric field was dismissed in favour of the
more exact numerical approach. The consequence is that the resulting characteristics
are harder to represent analytically. For a more analytical approach, the interested
reader is referred to [84]. Modelling of the sensor response is discussed in more detail
in chapter 3.
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Fig. 2.10. Resolvable change in refractive index with a 14-bit and 16-bit detector (a).
The shaded areas are bound by the sensitivity calculated with the parameters for gold
according to the Lorentz-Drude model (solid) and after [55] (dashed) and represent
the approximate range where the minimum resolvable change resides (for Schott SF2
glass and aqueous media). Note that neither the upper, nor the lower boundary
should be understood as definite limits. In (b) the refractive index change needed
to generate an equivalent reflectivity change as a bulk refractive index change of
1 x 107° RIU (solid line) is visualised when an adsorption layer with varying thickness
is added instead. The dashed line represents the refractive index change caused by
an adsorbate with fixed concentration when increasing the volume according to the
thickness.

2.3 Conclusion

Within this chapter the necessary conditions for SPRi based on a prism-based setup
and using widefield imaging were explored. Optimum conditions for sensitivity, lateral
and refractive index resolution were surveyed. The importance of flow conditions
and the impact of recognition elements towards analyte sensing was discussed. The
sensitivity of the resonance condition due to changes close to the sensor surface
was highlighted and it was shown that analytes have to be accumulated at the
surface in order to resolve changes due to low molecular weight molecule adsorption.
Additionally, the instrumental setup used throughout this work was characterised
in terms of its intensity and lateral resolution. Dispensing of 2D materials was
optimised with regards to layer thickness in the context of SPR imaging.
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Surface Plasmon Resonance is a sensitive, label-free detection method for biosensors
but suffers from cross-sensitivities due to signal contributions from the evanescent
field that penetrates several hundred nanometres into the probed medium. This
results in a signal that is not only altered upon adsorption of target analytes but also
due to components in the matrix changing with time and experimental conditions.
Herein, a method to utilise a two-dimensional sensor by projecting non-collimated
light onto the sensor surface resulting in the modulation of the incidence angle across
the surface is presented. This angular modulation can be used to extract additional
information of the layer composition of the sensor and allows to distinguish changes
in reflectivity due to adsorption from bulk refractive index induced changes.

3.1 Introduction

Two-dimensional surface plasmon resonance (SPR) sensors can be utilised to encode
additional information on either axis. Spatial frequencies modulated through varying
the incidence angle have been identified as one useful component [1]. This angular
information can be used to determine the parameters of the plasmonic surface [2], as
well as the refractive index and thickness of adsorbates [3].

While the modulation is mostly achieved by scanning the angle, some researchers
have projected the angle onto the imager. Liu et al. [4] have used angular information
to optimise illumination of their sensor with the conclusion that a wavelength-filtered
LED (light-emitting diode) light source provides the best signal-to-noise ratio. The
same group optimised their setup with regards to angular spread that is projected
onto the sensor surface [5]. They applied a series of polynomial fits to approximate
the SPR curve and track the resonance minimum for biosensing after calibration.
Alternatively, minimum tracking can also be done by calculating the polynomial fit
centroid [6].

Angular modulation by projecting a divergent light source onto the surface offers
the advantage of time-resolved angular measurements, since for every time step
a spectrum can be acquired. The recorded spectra can be used for further data
processing. In this text methods to use the angular modulation for direct physical
modelling are explored. This approach enables the prediction of SPR sensor pa-
rameters and additionally can be used to distinguish adsorption of analytes from
bulk refractive index changes. The term multi-parametric surface plasmon resonance
imaging (MP-SPRi) is used to reflect the utilisation of the entire imaged angular
spectrum and fitting of multiple parameters.

3.2 Theory and Methods

In Figure 3.1 the concept of MP-SPRIi is illustrated. With angular modulation
of the input light and structuring of the sensor surface, a multitude of different
response curves can be observed with a change in analyte which ultimately allows for
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a)

Fig. 3.1. SPR can be observed on a single spot with a single detector (a). Imaging
provides redundancy and elimination of correlated noise when a surface is observed
simultaneously (b). Through angular modulation of the input light, different sen-
sitivities for the sensor surface can be achieved (c¢). Using recognition elements, a
specific response towards an analyte can be observed (d). Every step can be seen as
an information increase.

discrimination of sensor states. The application of angular modulation (Figure 3.1 c)
is explored within this chapter.

3.2.1 Transfer-Matrix Method

For the theoretical calculations throughout this work, a python module to compute
the reflection was developed. It was specifically written for Kretzschmann-Raether
type SPR and includes the calculation of the incident angle on the plasmonic surface
due to refraction at the prism and reflection of light on the air-glass interface. It was
tested against the popular software WinSpall*. Since the module can be used within
Python, more flexible calculations are possible.

The transfer-matrix method is used to calculate reflectivities of multi-layer structures
by exploiting the continuity conditions of the boundaries between layers. Homoge-
neous, isotropic layers between semi-infinite phases are assumed where the initial
phase (n;) shall be transparent resulting in a real refractive index. Additionally, the
relative permeability of the materials shall be unity [7]. The presented equations are
also restricted to p-polarised light.

The transfer matrix (M) relating the electric and magnetic fields of the input to the
output of the SPR stack with IV layers where the first and last layer are semi-infinite

is [8]
H Hyn-
( yl) - M ( u 1’) . (3.1)
E:cl E:E(Nfl)
The transfer matrix is the product of the transfer matrices of the layer interfaces

N-1
My M
M = My, = 3.2
=35 30 2

*http://www.res-tec.de/downloads.html
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with ' ‘
COS — S
My, = ( Be =i/ mﬁk) (3.3)

—iqy sin Sy, cos [y,

and g can be calculated with the help of

€, — n?sin? 0,

Qe = (3.4)

€k
For s-polarised light, g; has to be multiplied by é2. f3;, is the phase factor of the wave
in the material (Equation 2.1) and is defined by (see also Equation 2.2)

2ndy o o
Bk = dk . kz,k = 7; k gk — TL% Sin2 91. (35)

The reflectivity can be calculated by relating the amplitudes of the reflected to the
input field (refer to Equation 3.1):

(My1 + Misgn)qr — (May + Masgy) ?

(My1 + Miagn)qn + (Mo + Masgy)

2
R, = |Tp| :’

(3.6)

This formalism allows for fast computation of arbitrary stacks of layers.

3.2.2 SPRi Modelling

For imaging this definition needs to be extended to two dimensions. The approximate
theoretical propagation length of surface plasmons on gold is approximately 10 pm
(see Figure 2.5), although for a real system higher refraction due to imperfections
of the gold layer is expected which, in praxis, reduces the propagation length. The
employed camera utilises a Sony IMX178 CCD chip (section C.3), which is a 1/1.8”
(7.2mm x 5.4mm) sensor and is paired with an objective lens (section C.4). The
SPR prism surface size is 18 mm x 18 mm and the required depth of focus due to the
viewing angle at around 62° is close to 20 mm. This results in a high required f/D
to maintain the depth of focus which reduces the lateral resolution. The diffraction-
limited resolution of the setup (camera and lens aperture and distance to object)
is approximately 15pm which is further reduced by the lens properties (and the
application of magnifiers or a higher back focal length to increase magnification).
The resulting primary magnification of the setup together with the pixel size implies
an object space resolution of 10 pm per pixel in the direction perpendicular to the
incident plane and roughly twice that in the direction parallel to the incident plane.
The optical PSF and the object space resolution are similar in scale to the propagation
length of the surface plasmon. In praxis, the PSF is expected to be higher than
anticipated while the propagation length is lower due to non-zero surface roughness.
As the observations can be averaged over at least two pixels in either dimension, the
observations are thus assumed to be independent.

The reflected intensity of an SPRi system can then generally be written as

Ir,t(xayat) = IO,t('r7y7t) : Rt(xa:%t) (37)
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with the spatiotemporal input intensity I, and the reflectivity of the surface R. The
input intensity is subject to noise (Iy = Iosource + Tsource) and is captured with a
camera. The camera can be assumed an approximately linear transducer, giving

Ic,t<x7 Y, t) = SC<IO,t(x7 Y, t) : Rt(xv Y, t)) + Ic,dark + O camera (38)

with the camera sensitivity S., the dark current of the camera (I.gak) and its noise
(Ccamera). Temporal averaging can be used to reduce the influence of noise and dark
current can be determined so it can be approximated to

Ic(xa y) ~ Io(l’,y) ’ R(LL’, y) (39)

by introducing the temporal averages I. = I.;, Iy = Ip; and R = R;.

3.2.2.1 Determining SPRi parameters

Modulating the input angle ®, an intensity sequence which relates to every angular
position can be generated

]c(x7y7 (I)) X [O(xayv (I)) ’ R(.I,y,@) (310)

This can be used together with the s-polarisation to eliminate the input intensity
under the assumption of negligible (or previously subtracted) dark current and noise

to
[cﬂp(xm% D) _ Rp(x,y, P)
IC,S(x7y7 (I)) RS<I7y7(I)) .

The parameters that describe the SPR surface are the refractive indices and thick-
nesses of the layers that constitute the sensor surface. These can now be determined
by optimising the set of parameters P that satisfy:

I P o P
m1n< Qp(xaya ) Rp(l’,y, ) )) )

(3.11)

Ic,s(xaya (I)> RS(ZE,y,(I),P)

(3.12)

Although it was shown that such an optimisation problem is ill-posed for determining
both thickness and refractive index of layers [9], a stable minimum can be found
when using multiple wavelengths or refractive indices for calculation.

Another means to find the parameter set P is available by using the lateral dimen-
sions of the sensor surface. Modulating the refractive index across the surface is
possible with a separated flow cell which has been explored for example in [10].
Alternatively, the incidence angle can be modulated across the surface by using a
slightly decollimated light source. This leads to a small variation of the incidence
angle in one direction (along the xz-plane as indicated in Figure 3.2) which means
that the angle distribution becomes a function of the surface position & = f(x,y).
Note that the coordinate system for the surface angle distribution has its origin on
the sensor surface (inner angle) while the coordinate system used for the description
in Figure 3.2 has its origin on the prism entry face (outer angle).
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&, © 6, |
- ) —
/
xz-plane yz-plane
a) b) C) d)

Fig. 3.2. A slightly divergent point light source which illuminates a prism far away
from the source (a) exhibits an approximately linear angular dependency across its
illumination radius R (b). In the xz-plane a range of angles on the SPR surface can
be observed that is approximately linear for small angles, here #; < © < 6, and ©
is identical to the prism angle (c). In the yz-plane, small deviations from vertical
illumination can be observed (d) which barely affect the SPR response.

The outer angle and the inner angle are related via

D ner = arcsin (nalr sin (Pouter — @)) +0O (3.13)

Nprism

with the prism base angle O, the refractive index of air (n,;, =~ 1), and the prism
refractive index npism. The mapping of the outer angular function (Pouter (o, Yo)) to
the inner angular function (®iyner(z;,v;)) further depends on the dimensions of the
prism and is defined by a homographic projection of the prism incidence surface to the
sensitive surface. The projection (scaling due to the steeper or more shallow angles
the surface is viewed under, translation and rotation due to imperfect alignment) for
every image in the stack onto the prism base angle image can be calculated and the
images may be adjusted accordingly.

Since the outer angular distribution can be assumed constant around its centre angle
®, even when adjusting the centre incidence angle, the projected angular distribution
onto the sensor surface was incorporated into the model (Equation 3.12) to

. <zc,p(x, Y, ) Ry(Pouter(2,y), P)) (3.14)

IC’S<.T,y,(I)) Rs(q)outer(x7y)7p)

which together with Equation 3.13 gives the angle distribution on the sensor surface.
For small angles, the angular distribution on the prism entry surface can be assumed
linear with respect to  and y. Additionally, the projection onto the prism surface can
be assumed linear. From Figure 3.2 d, it can also be seen that the y-dependency can
be neglected. To minimise potential errors, ®(x, y) was modelled as a two-dimensional
polynomial of second order. The polynomial parameters can be optimised together
with the surface parameters (metal refractive indices and thicknesses) or sequentially.
It is, however, advisable to provide a sensible initial guess when trying to optimise
both sets simultaneously.

In Figure 3.3 the mapping of position and angle is presented. The sensor surface was
cropped to the area that is neither perturbed by the sealing (bright vertical stripes)
or the limited FOV due to the aperture (semicircle borders top and bottom). In
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Fig. 3.3. Ratio between p and s-polarised images at 61° with indicated selection of
the middle area of the sensor surface and two cuts (a). Intensities along the direction
of angular spread (blue) and perpendicular to that (red) (b). Angular deviation from
the configured outer angle across the surface (c), the distribution suggests a slight
tilt of the prism relative to the optical axis, as zero deviation is not centred.

the z-direction (compare Figure 3.2), a section of the SPR curve can be observed
(see Figure 3.3 b). In the y-direction no position-dependent intensity change was
observed (red curve). The angular deviation to the set incidence angle was modelled
as a two-dimensional second order polynomial as visualised in Figure 3.3 c.

With an entire surface of varying incidence angles (Figure 3.3 ¢), a host of SPR
curves can be recorded at once by scanning the incidence angle. This allows for
accurate determination of the surface parameters with just a single refractive index
and wavelength. The magnification of the optical system results in an imaged sensor
that spans more than 1300x1000 pixels (Figure 3.3 a). It is sufficient to select a
subset of curves from the surface to achieve adequate accuracies for the parameter
determination. In this case 130 (13x10) curves spaced evenly across the surface were
selected (a less tight grid can be used without changing the result significantly but
the two-dimensional angle function will be less well defined).

For calibration of the sensor surface, several measurements were performed. SPR
images were collected using the setup described in section B.2. Outer angles were
varied between 55° and 70° for s- and p-polarised illumination. Images were aligned
to 61° via homographic projection with the homography matrix calculated with
the data collected under s-polarisation. Angle scan data was acquired in three-fold
replicates for water (Millipore, 18.21 Q2 cm, 3 ppb total organic compound), ethanol
(Merck Millipore EMPARTA > 99.5 %) and 2-propanol (Merck Millipore EMSURE
>99.8%).

Data was either extracted from the images as an average over a defined region of
interest extending over 10x20 pixels, or taken from points in a grid over the entire
surface where every point is just a single pixel.

Extracted data was fit to the model using the minimisation criterium defined in
Equation 3.12 for data averaged over a region of the image or Equation 3.14 when
taking data from the entire sensor surface with the help of the Levenberg-Marquardt
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Tab. 3.1. Fit initial values used for parameter optimisation with the Levenberg-
Marquardt algorithm. Values based on Lorentz Drude modelling.

Bounds Npger knicr tnicr Nau kau tau
init 391 434 2-107° 0.24 396 4.8-1078

min 1 03 1-10° 01 2 46-10°8
max 6 6 1-100* 075 5 55-107°

algorithm using least squares loss. The initial parameter values are presented in
Table 3.1. The optimised values from a set of initial values and boundaries were
then used to explore the parameter space by drawing from their posterior probability
distribution using a Markov-Chain Monte Carlo (MCMC) based algorithm [11].
MCMC optimisation was performed with uniform priors, maintaining the ranges
from the initial parameter set.

3.2.2.2 Disentangling refractive index change contributions

In an SPR sensor the refractive index of the dielectric and the thickness of an
adsorbed layer or amount of an adsorbate can change simultaneously. A system
that relies on intensity monitoring of a homogeneous surface cannot discriminate
the two changing parameters. This is where the angular distribution across a sensor
surface becomes relevant. With the help of angular information, the effects of bulk
refractive index changes and adsorption can be disentangled which allows more
precise determination of the composition of a medium [12].

With angular information including the angle of total internal reflection, this is a
rather simple task, since the TIR angle is unaffected by an adsorption layer with
nanometer size while a bulk refractive index change significantly alters it (Figure 2.4).
The TIR angle is about 10° from the resonance angle which means that an accurate
angle scanning device has to be available and image matching of the deformed images
that get scaled due to the viewing angle has to applied.

As an alternative, it can be shown that a smaller section from the angular response
is sufficient to discriminate the two effects. With a calibrated sensor surface, i.e.
a defined parameter set P, the input intensity distribution can now be calculated,
e.g. by employing any of the polarisations (s and p) and their respective known
reflectivities (under the assumption of negligible noise and dark current):

[C:P<:C7 y) X [0(3:7 y) : Rp (315&)
Los(z,y) o< Lo(2,y) - By (3.15b)

It is, however, again advisable to find a function Iy(z,y) for the input intensity. A
two-dimensional Gaussian as a reasonable guess was chosen to model the intensity
distribution.

With known parameter sets P and incident intensity [ it is possible to model a
camera image for every time step in a measurement sequence where the analyte
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varies with time. It is then straightforward to directly predict the refractive index
of the dielectric or the adsorption layer, respectively. For that, the set of refractive
indices that satisfy:

min (I p(z,y,t) — Rp(2, Y, Paxed, Pu(t)) - I1o(x,y)) (3.16)

are optimised, where the parameter set Pg,oq are the parameters related to the sensor
surface found previously and P,(t) are the varying refractive indices of the dielectric
or a bound layer of molecules.

As a proof of concept, a single SPR curve for three different conditions (with the
changes in refractive index of the adsorption layer and the dielectric An,q and Ang;,
respectively) was modelled:

1. Anad = 0, Andi =0
2. Anad = O, Andi = Andig >0

3. A’I’Lad = Anad73 > 0, Andi =0

Although, in this case, the refractive index of the adsorption layer was chosen as
a parameter, its thickness can be evaluated equivalently (see also section 2.2.4.1).
The change in refractive index of the adsorption layer (An,q3) was chosen somewhat
arbitrary to be 1 x 1073 RIU at a thickness of 2nm. The change in refractive index of
the dielectric (Ang;2) was chosen so it generates the same change of reflectivity at the
angle of maximum sensitivity towards condition 1 as condition 3 (here approximately
1.5553 x 1079 RIU which is coincidentally a change that can be comfortably resolved
with a 14-bit camera where unity reflectivity is equivalent to full scale). The generated
SPR curve was evaluated in two different angular ranges: from 45° to 65° and from
57° to 61° (compare Figure 3.3 ¢). The generated curves (see Figure 3.4) were
fit to the SPR curve function subject to the parameters An,q and Ang; (compare
Equation 3.16).

Additionally, the curve was fit using the smaller angle selection but with 13 repeats
to emulate the use of a spatial sensor with the angular distribution found during
previous optimisation. Gaussian noise was added to the data in the magnitude of
one digit of a 14-bit camera (Figure B1) and the fit result was recorded over 100
repeats.

3.2.3 Data-based Modelling

In contrast to explicitly modelling a specific dependency like shown above, it is also
possible to employ data-based models to evaluate sensor responses. It was shown
that neural networks with hidden layers and a sufficient amount of neurons can
approximate any function (to any desired accuracy) [13]. This implies that the
dependencies illustrated above may be inferred from data which has the advantage
of preventing inaccuracies in the physical model describing the sensor.
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Fig. 3.4. Change in reflectivity due to a change in bulk refractive index or a change
of the adsorption layer for the full simulated angular range (a) and a reduced range
that can be projected onto the sensor surface (b). A change in bulk refractive index
results in a strong change at the angle of total internal reflection. In the reduced
angular range the differences between the two changes are very subtle.

There are several assumptions made during the modelling approach detailed above
which are merely approximations of the underlying physical system:

« the sensor surface is homogeneous

o plasmons are laterally independent

o the layers on the sensor surface are isotropic

 incident light is perfectly monochromatic

 incident light is perfectly polarised

« incident intensity for both polarisations is identical

o optical aberrations are temporally stable
While these approximations have been heuristically shown to be adequate, their
behaviour may change in yet untested conditions.
It is also computationally intensive to calculate the Fresnel equations for an entire

image. This motivates the use of data-driven methods as an unbiased, efficient, and
powerful method for analysis.

3.2.3.1 Feature extraction

Current CCD cameras produce images with megapixel resolution where every pixel
holds information on the measurement. The high dimensionality of the data can
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cause problems, as calculations require more resources, the importance of specific
pixels becomes difficult to manage and distance metrics between points in high
dimensions are very small which makes it hard to computationally differentiate data
points [14, p. 152]. To reduce dimensionality, derived values can be extracted from
the image data. These so-called features can be obtained via different means and
can be categorised into expert-based and trainable feature extraction.

The former involves the segmentation of specific regions of interest which correspond
to functional areas like receptors or reference structures. These values can then be
directly used in a sub-sequent model or processed further, e.g. by calculating average
intensities of these areas. This approach has the benefit that the features used for
further processing are easily interpretable but it requires the scientist to know which
areas contribute to solving the analytical task.

Trainable feature extraction, on the other hand, utilises data-driven models that
transform the input data onto different axes and allow for reduction of unimportant
features (e.g. principal component analysis - PCA), methods that extract subsets of
the input (e.g. segmentation), or deep learning models (e.g. convolutional neural
networks - CNN). Image data is very specific in a sense that it consists of spatially
correlated data. This property is used within convolutional neural networks, which
are translation equivariant which means a feature moving laterally in an image
will produce the same output magnitude after convolution. Pooling also makes the
feature space invariant to small lateral shifts [14, pp. 334, 336]. This rather weak
bias proves to be enough for CNNs to have become the de-facto standard for image
classification. In an SPRi setup the role of a feature extractor would be to extract
parameters related to the refractive indices at certain functional areas which then
allow determination of an analyte or its abundance. Since the functional areas are
distributed across the sensor surface but similar functional groups are expected to be
close to each other, feature extraction can exploit spatial correlation of functionality.
Trainable and expert-based feature extraction can be combined, by manually selecting
valid patches from an image and then utilising a latent representation algorithm to
further reduce features [15]. Alternatively, automatic segmentation with a pre-trained
algorithm may be used [16] to extract data from the detected regions which can
then be processed further using, e.g. average intensities, statistical information, or
histograms of the segmented spots.

3.2.3.2 Models

After feature extraction a suitable machine learning model has to be selected for the
analytical task, i.e. finding analytes or their abundances, discriminating analytes, or
finding anomalies in observed patterns. In deep learning this is most commonly a
multi-layer perceptron (MLP) parametrised by weights (W) and biases (b) as well
as their activation functions (o) for each layer:

filx; W,b) = o (xW' +b). (3.17)

The input of each layer is the output of its subsequent layer. The activation function
is a non-linear function (most commonly a sigmoid function, rectified linear unit, or
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variants of the two [17, p. 392]).

The feature extraction methods and a suitable MLP head can be combined to different
architectures briefly sketched in Figure 3.5. The models presented in this diagram
have all been employed experimentally using the data presented in chapter 4 where a
CNN with an MLP head was used for classification and analyte quantification. As an
alternative to a CNN, a vision transformer was employed for analyte quantification.
Transformers have received increasing attention since their breakthrough in natural
language processing [18, 19]. Patch-wise self-attention can be understood as a
generalisation of CNNs which can improve the extraction of inter-related features
that are spatially further apart but generally also requires more training data [20].
In Figure 3.5 (a) steady-state analysis is sketched, which was used in chapter 4
and for the evaluation of the vision transformer as well as models based on manual
feature extraction. It involves the analysis of several points in time per feature:
before binding (A), after binding (B) and after washing (C). The CNN was used as
a feature extractor on the stacked images of the respective steady-state time steps.
The features were then analysed with a MLP (b). Similarly, the vision transformer
is used to find features for an MLP head (c). For the transformer, the images are
segmented into patches which are transformed via learnable patch embeddings. This
process is described in more detail in [21].

The analysis utilises only steady-state images, which prompted the urge for a method
capable of handling time series since SPR. is an optical technique yielding transitional
data. For this purpose, the images from the binding curve of the experiment were
sampled in discrete time steps (d) and analysed with two different approaches (e)
(refer to Figure 3.5). In the first, the images were stacked in their third dimension
and subsequently fed into a standard CNN with a MLP head. In the second approach
a long short-term memory (LSTM) layer was put in sequence with a CNN where
images from a sequence were presented in order so a representation of the time series
could be learned [22, 23]. LSTMs are generally used for time-series data due to their
ability to retain information from different time steps.

3.2.3.3 Data requirements

In order to utilise these models suitable data need to be recorded. As a rule of thumb,
this data should enable an expert in the field to tackle the task at hand. As such, the
measured data should correlate to the quantity in question which is reasonable to
expect when the analyte causes a physical response at the sensor. As a consequence
of this restriction extrapolation is to be avoided, so the training data should include
the concentration ranges of the analytes that are expected in the sensor application
environment. Similarly, substances that were not previously part of the training data
may significantly impact the sensor’s predictive capabilities. This principle severely
limits the uses of such a sensor system but is very hard to circumvent. Alternatively,
anomaly detection may be a more suitable approach, where an algorithm detects
significant deviations from training data that represents a "normal” state. This is
commonly achieved by autoencoder networks [24, 25].

Most importantly, the experimental design should reflect the research question and
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it has to be emphasised that an independent test set not used during training is
required to make any significant claims. This requirement is sometimes lost upon or
heavily obfuscated in literature which can partly invalidates the findings.

This raises questions about data quantity. While more complex algorithms generally
require more data to converge and higher numbers of features further increase the
samples needed, pre-trained models with strong bias and augmentation can help to
limit experimental load. Biases can be introduced in different ways, e.g. by using
CNNs for image data or by integrating physical information into the loss function:

N

5= [t 3+ (Xo(eo 1) ~ Lol 20))7 (3.18)

==

With batches one to N, the output label y,, i.e. an analyte concentration and
predicted analyte concentration ¢, for every batch as regular mean squared loss.
Additionally, there is an added term, where the input intensity I is modelled after
Equation 3.10 and compared to the input image X at selected positions (g, yo) via
mean squared loss. These different loss types need to be properly normalised to work
effectively but can help to decrease the number of samples needed to learn since
physical information is introduced [26].

Image augmentation improves model performance when common cross-influences
can be modelled effectively, e.g. intensity fluctuations due to changes in illumination
conditions or shifting of the image when re-using sensors. However, it is preferable
to include these variations in the experimental data where feasible.

Data quality and quantity can be explored using unsupervised methods like t-
SNE (t-distributed stochastic neighbour embedding), UMAP (uniform manifold
approximation and projection), and MDE (minimum-distortion embedding) [27-29].
These methods can be used to explore the feature space of the data in two or three
dimensions. If no structure is visible in these embeddings, the data may be insufficient
to solve the task at hand.

3.2.3.4 Data-based methods for Disentanglement

Data similarly to section 3.2.2.2 was used to evaluate the capabilities of a neural
network to distinguish different signal contributions with simulated SPR images.
Images were scaled to zero mean and a standard deviation of one and subsequently
fed into a deep neural network consisting of fully-connected linear layers and Gaussian
Error Linear Units (GELUs [30]) as non-linearities with three hidden layers to predict
the refractive index of the adsorbate and the bulk. This architecture was chosen since
there is no local structure where the application of a convolutional neural network
would be beneficial although a CNN can be employed analogously. A grid of images
generated with parameters found in section 3.2.2.1 was used for training, where
the refractive index of the bulk and the adsorbate were used as labels. The grid
contained different amounts of images ranging from 100 to 2500 where the refractive
indeces were varied between zero and 2 x 1072, or zero and 2 x 107° for adsorbate
and dielectric, respectively. Networks were trained with the addition of physical loss
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Equation 3.18 and with regular root mean squared loss.

Test data was generated in accordance to section 3.2.2.2 for the in-distribution
(id) data and with data outside the training set refractive index range for the
out-of-distribution (ood) data.

Additionally, different architectures were tested against a dataset containing purines
detected with the help of a semi-selective array as detailed in chapter 4. In addition
to the CNN reported therein, three additional models were trained in reference to
Figure 3.5: a vision transformer used for adenine quantification, and two models
that incorporate more of the temporal information (see Figure 3.5 d and e).

3.3 Results and Discussion

First, the surface calibration is performed using the proposed algorithm after which
the found surface parameters can be used for further modelling. Finally, results from
the data-based methods are presented.

3.3.1 Exploring Parameter Space

Using the angular measurement in water with a single region of interest (ROI) to
extract the SPR curve to fit the parameters of the SPR surface, the optimisation has
no unique minimum. Thus, the resulting parameter distribution is characterised by
skewed distributions and strong correlations between parameters (Figure 3.6). This
result is expected and can be mitigated by using multiple refractive indices with
otherwise constant parameters.

This can be shown by visualising the posterior distribution of the parameter space of
such an optimisation for using three different refractive index solutions for calibration
(Figure 3.7). While for a single measurement the parameter distributions show strong
deviations of the median values from the maximum likelihood estimates (MLE)
and especially for the chrome layer its parameter distributions are non-gaussian,
this is not the case for multiple refractive indices. This indicates that multiple
measurements using different refractive indices allows for more confident and precise
prediction of surface parameters, as expected (see Figure 3.7) [9].

With the obtained optimum, the observed SPR curves can be compared to the
measured curves and their residuals can be found (see Figure 3.8). Deviations from
model to the measurements can have several reasons: improper alignment of the
images, inhomogeneous region of interests, or inaccuracies of the model. Since errors
are distributed close to zero with low variance and only a few outliers, a well-aligned
model can be assumed. The, relative to water, higher refractive index of ethanol and
2-propanol shifts the curves to the right which results in the inclusion of the TIR
angles in the measurement range which can be observed in the measurements.
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below total internal reflection, which can be attributed to the image alignment which
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Similarly, the posterior distributions of parameters using points over the entire
prism surface with the angular distribution visualised in Figure 3.3 ¢ increases the
overall prediction quality (Figure 3.9). The MLE is well-aligned with the parameter
distributions and their medians, the distributions are Gaussian and narrow and
match well to the specification of the thicknesses of the metal layers. These results
show that it is possible to find the SPR stack parameters from a single angular scan
using just one wavelength and one refractive index solution. This greatly simplifies
the instrumental setup and reduces measurement time. Additionally, the parameters
were determined with data from the entire surface which reduces the effect of local
variations in evaporation deposited metal on the determined parameters.

It was attempted to verify the calculated refractive indices by means of spectral
ellipsometry. However, the high dimensionality of the problem means that any set
of parameters can be fit to the observed curves. The available device (Horiba Auto
SE, Horiba, Japan) did not allow changing the angle of incidence so that up to 33
parameters (with two metal layers and Lorentz-Drude formalism with up to five
resonances) had to be fit to only one spectral measurement. This problem has no
unique solution.

3.3.2 Predicting Refractive Index

The results in the following section are all produced in silico as a proof of concept
and its application has been pursued experimentally in chapter 5.

With no added noise the parameters used for curve generation can be recovered
almost perfectly for both angular ranges and all three conditions defined above.
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with the dashed lines. With a shift of the minimum, the whole surface shifts without
perturbation. The minimum along the ridge is visualised in the right-hand plot
for both the full angular range and a four degree section (where x? is the squared
residual sum). Data was generated by evaluating the fit function in a grid.

While the error surface in parameter space for the full angular range has a more
pronounced minimum than with the reduced angular range, there is still a unique
global minimum (Figure 3.10). This implies that measurement of the TIR position is
not strictly required to simultaneously determine bulk refractive index and adsorption
layer changes. The error surface was generated by calculating the error for every
parameter combination in a grid defined by the graph axes. The fit error changes
quickly when only one parameter is changed but by changing both along the ridge
the minimum becomes less pronounced. A more distinct minimum is less vulnerable
to noisy measurements and thus more stable in a real environment. The full section
fit exhibits a more pronounced minimum which indicates its higher tolerance to noisy
data.

With added Gaussian noise in the magnitude of a digit of a 14-bit camera, the
prediction quality will be reduced. The three example conditions were analysed with
regards to the prediction error of the fitted parameters towards the real parameter
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Fig. 3.11. Fit error of the refractive index parameters with added Gaussian noise
for the three conditions C1 to C3, and the three range of used values. The reduced
angular range results in a poorly defined fit parameter, while using data from the
entire surface leads to an almost retained prediction quality compared to the full
angular range.

values for 100 repeats with added Gaussian noise. It can be observed that the error
using the reduced angular range becomes rather large and can be in the magnitude
of the parameter change thus rendering a single measurement with reduced range
impractical. Utilising the full angular range, the variance is reduced significantly.
When data from the entire image surface is used, a similar result can be observed
(Figure 3.11). This observation indicates that image-based measurements with a
small angle projected onto the surface can be utilised similarly to an angular scan
including the TIR angle with regards to refractive index disentanglement.

As noise increases the fit error variation increases, too. This imposes a limit on the
disentangled determination of bulk refractive index change and change of adsorbate.
High resolution and signal-to-noise ratio is a necessity to accurately determine the
refractive indices of the different layers. However, it can be clearly seen that correct
discrimination of bulk refractive index changes and of an adsorbate is possible without
the use of the TIR angle.

3.3.3 Data-based Modelling

When using in-distribution (id) data in the test set, the prediction error is very low for
both physical and non-physical loss (Figure 3.12). The data-based method compares
well to the model-based method and can even outperfom the latter. However, the
training data has to be suitable for the task which in the case of out-of-distribution
(ood) data leads to misquantification of the refractive index. Physical loss can
mitigate this to a degree for very low training set sizes.

The vision transformer was suitable for analyte quantification while slightly worse in
performance (3.9 1M mean absolute error in the test set compared to 1.8 um for a
CNN as presented in chapter 4).
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In the first alternative model the images were stacked in their third dimension and
subsequently fed into a standard CNN with a MLP head. In the second approach
a long short-term memory (LSTM) layer was put in sequence with a CNN where
images from a sequence were presented in order so a representation of the time series
could be learned [22, 23]|. Although both models were learning from the training
set (i.e. the train loss decreased), generalisation was not possible (the validation
loss did not improve). This is probably due to the low amount of data available
for this approach: every analyte was only presented to a sensor six times and two
sensors were available for training so the training set was essentially reduced to
twelve examples. This could be improved by augmentation since every example can
be sampled in different time steps but the amount of data was evidently insufficient.
Additionally, mass transport may not be perfectly reproducible between sensors
when the flow cell is removed and re-introduced resulting in potentially different
thicknesses of flow channels.

3.4 Conclusion

Within this chapter, an SPRi-based sensor utilising spatial angle modulation was
evaluated. To the best of the author’s knowledge, this is the first time SPR surface
parameters were determined with such a sensor by merely applying angular modula-
tion. The presented method reduces measurement time and instrumental complexity.
SPRi allows for two methods that enable the determination of the signal change
origin when subject to changes in bulk refractive index and adsorption changes: use
of recognition elements and angular modulation across the sensor surface. Within
this chapter the method of angular modulation was explored and a proof of concept
was provided. The disentangled determination of bulk refractive index change and
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changes at the surface by the analyte is, however, dependent on the data quality i.e.,
the signal-to-noise ratio.

As an alternative, data-based modelling can be employed which may use angle-
modulated SPRi implicitly by weighting the different areas in the image accordingly.
This is generally less data-efficient since training data has to be provided and the
amount significantly impacts the performance. On the other hand, the data-based
approach is more flexible in its modelling capabilities because less assumptions have
to be made of the data beforehand. As a third approach hybrid modelling can
be applied, where the physical information can be used as a bias for the neural
network by means of a modified loss function. This increases data efficiency while
the flexibility is maintained.
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In process analytics or environmental monitoring, the real-time recording of the
composition of complex samples over a long period of time presents a great challenge.
Promising solutions are label-free techniques such as surface plasmon resonance
spectroscopy. They are, however, often limited due to poor reversibility of analyte
binding. In this work we introduce how SPR imaging in combination with a semi-
selective functional surface and smart data analysis can identify small and chemically
similar molecules. Our sensor uses individual functional spots made from different
ratios of graphene oxide and reduced graphene oxide, which generate a unique signal
pattern depending on the analyte due to different binding affinities. These patterns
allow four purine bases to be distinguished after classification using a convolutional
neural network (CNN) at concentrations as low as 50 uM. The validation and test
set classification accuracies were constant across multiple measurements on multiple
sensors using a standard CNN, which promises to serve as a future method for
developing online sensors in complex mixtures.

4.1 Introduction

Sensors used to monitor the environment or industrial processes must withstand the
challenges of complex mixtures. Apart from a changing analyte matrix, it is often also
desirable to recognize a specific analyte molecule or to detect the presence of unknown
substances that either disrupt the process or can pose a hazard in the environment.
These circumstances have greatly fueled research interest in electronic noses and
electronic tongues [1-3]. A label-free detection mechanism as offered by surface
plasmon resonance imaging (SPRi) is advantageous for long-term online monitoring.
In addition, SPRi offers the potential of multi-analyte detection [4]. Intensity-based
SPRi allows the spatially resolved detection of changes in the refractive index over
time in the immediate vicinity of the sensor surface with a penetration depth of a
few hundred nm. This allows changes in the composition of the analyte matrix to
be detected as a change in refractive index. If the surface is functionalized in such
a way that certain analyte molecules bind to it, an analyte can also be determined
in a targeted and very sensitive manner. The larger the analyte, e.g. in the case of
proteins or micro-organisms, the easier it is to detect. In the case of small molecules,
this is significantly more difficult due to the lower change in refractive index [5]. This
principle proves disadvantageous for long-term online detection of a complex mixture.
The pure refractive index change is not specific enough, and targeted binding of
analytes to receptors must be established quickly and reversibly in an equilibrium to
the concentration of the analyte in the matrix. For the development of very sensitive
sensors, one uses receptors with a high binding affinity. However, this means that
desorption of the analyte from the surface occurs only very slowly, if at all. The
system loses its reversibility. If, on the other hand, the sensor surface is structured
with receptors with low selectivity, sensitivity is lost at first approximation, but
changes in the analyte matrix can be reversibly tracked over time. If several such
receptors are used, unique sensor response patterns can be generated, which are
suitable for detecting several analytes in parallel [6]. For example, different beverages
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could be classified with a receptor array composed of different mixtures of lactose
and sulphated lactose [7].

A promising class of receptors for SPR sensors are 2D carbon materials, especially
its two representatives, graphene oxide (GO) and reduced graphene oxide (rGO).
These materials are known in SPR sensing for signal amplification or for target
binding. [8-10] Additionally, they adhere very well to gold surfaces, and the SPR
characteristics of both materials are almost identical. This is particularly useful for
intensity-based SPR measurements, as it allows tracking the reflectivity of light at
the surface over time at a single angle of incidence. It should also be mentioned
that both, GO and rGO, can be chemically functionalized in a wide variety of ways
[11, 12]. With GO as the hydrophilic and rGO as the more hydrophobic receptor,
their m-system enables the formation of weak interactions between analyte molecules
and the receptor surface, i.e. mw-stacking in addition to electrostatic, van der Waals,
and H-bonding. The contribution of each interaction varies with changing receptor
composition. If considering that a single angle of incidence for the surface plasmon
excitation is suitable for all mixtures of GO and rGO without losing sensitivity for
individual receptor spots, this, in combination with the use of a highly sensitive
SPRi setup with a resolution of the refractive index down to a range of 10" RIU
(refractive index units), compensates the disadvantage of lower sensitivity due to the
weaker interactions [13].

One of the biggest challenges in online monitoring of complex mixtures is the
determination of changes in the concentration of individual metabolites. These are
often similar in their structure and in many of their physico-chemical properties and
therefore difficult to discriminate, especially in label-free techniques. The molecules
caffeine, uric acid, oxipurinol, and adenine belong to the group of purines and
are related through the human metabolism. Oxipurinol is the main metabolite of
allopurinol which is administered when uric acid levels in blood are excessive. When
found in groundwater, oxipurinol can be linked to an anthropomorphic influence on
the groundwater due to treated wastewater [14]. One possibility is to design a sensor
array with semi-selective receptors which make use of weak molecular interactions
to generate signal patterns that can be addressed to those analytes. Here, GO and
rGO, are ideal model receptors. Depending on the synthesis, their properties can
be tuned, allowing one to obtain materials that are more capable of m-stacking or
others that favour van der Waals interaction or H-bonding.

SPR receptor arrays have been evaluated using dimensionality reduction methods
and k-NN classifiers [15], as well as linear discriminant analysis [16], or with the help
of support vector machines [17] and similar methods. Since in SPRi entire images
are available, it is reasonable to employ state-of-the-art classification algorithms like
convolutional neural networks (CNNs) for image data. Especially for semi-selective
receptors where homogeneity of every spot is limited and exact composition and
position may vary, automatic feature extraction is more appropriate than manually
tracking receptor positions and their relationships. This is even more important
when handling multiple similar sensors, which might differ in their properties. In
many fields of analytical chemistry, deep learning has emerged as a tool to enhance
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or enable sensing tasks, e.g. for analyte classification, concentration determination
[18], segmentation of fluorophores [19], spectral analysis [20], and many more [21,
22]. In SPR, deep learning methods have been mostly applied to microscopy in order
to enable or enhance scattering particle detection [23] or to reduce computational
load for phase retrieval [24].

Herein, a functional surface comprising different mixtures of GO and rGO has been
designed and applied in an intensity-based SPR imaging setup to discriminate adenine,
caffeine, oxipurinol, and uric acid. Two different model classes were evaluated on
this array data: a tree-based classifier with hand-selected features and a CNN-based
model. It is shown that with the help of this array and a CNN model, the classification
of four different purines is possible and the model’s accuracy is retained over multiple
measurements on different sensors and generalizes to new unseen sensors.

4.2 Methods

4.2.1 GO/rGO Synthesis

GO/rGO Synthesis. Graphene oxide was synthesized following an adapted low-
temperature Hummers method [25]. In a typical procedure flake graphite (2g,
99.5 %, Thielmann Graphite) and sodium nitrate (1.5 g, p.a., Merck) were dispersed
in sulfuric acid (150 mL, >95 %, w/w, Fisher Chemicals) and cooled to —10°C in
an ice and salt bath. Potassium permanganate (9g, p.a., Merck) was added over
a duration of 8 h under vigorous stirring. The mixture was stirred overnight and
subsequently sonicated for 1h at 4°C. After six additional days of stirring at 4 °C,
the mixture was again cooled to —10°C and 200 mL of water was added over 8 h.
Temporarily the temperature was raised to 9 °C to prevent solidification from sulfuric
acid monohydrate. 30 mL of 35% (w/w) hydrogen peroxide solution was then added
slowly to reduce the insoluble by-product MnO, to the water-soluble Mn?*. The
product was washed three times with 3% (v/v) sulfuric acid and once with 1M
hydrochloric acid before redispersing in water. Finally, the resulting GO dispersion
was dialyzed against water (MWCO: 12-14 kDa) and stored (at 1.5gL™") at 4°C.

For the synthesis of rGO, freeze-dried GO was dispersed in liquid ammonia (0.2gL™!)
and cooled in a dry ice ethanol bath. Potassium was added in excess and the mixture
was stirred for 1h. Then the dry ice ethanol bath was removed, and the ammonia
evaporated. The dry rGO was dispersed and washed with water and the solvent was
changed to N-methyl-2-pyrrolidone (NMP) at a concentration of 0.2 gL~ [26]. GO
and rGO were mixed in total-weight ratios of 1:0, 4:1, 3:2, 1:1, 2:3, 1:4, and 0:1 in a
constant solvent mixture of NMP and water (20:1, v/v) at 0.07gL~! [27].

Sensors. Glass prisms (SF2 18x18mm 62°, Schott AG, Germany) were purchased
from Gréife Spezialoptik (Germany). A 50nm thin gold layer on top of a 4nm
chromium adhesion layer was used to generate surface plasmons on the glass prism.
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Fig. 4.2. Data extraction from images - Mean intensities from 58 regions of
interest were extracted from the steady state images and subsequently used in the
tree model. The entire images were used in a convolutional neural network. The
CNN-based detection scheme incorporates three images for every analyte state into
a three-channel image. During training, the resized images were augmented by
translation, rotation, erasing, homographic projection and brightness variation to
prevent overfitting.
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Both layers were deposited via physical vapor deposition at CREAVAC (Creative
Vakuumbeschichtung GmbH, Germany). The mixtures consisting of 2D carbon
nanomaterials were sonicated for 10 min before dispensing them with a Musashi
ShotMini 200 Sx dispenser (Musashi, Japan) on top of the gold layer. Each GO/rGO
mixture was dispensed in a row of ten spots with 500 pm in diameter and 1.5 mm in
distance. Seven rows with different mixtures were dispensed in a vertical distance of
2mm, resulting in a 10 by 7 matrix of nanomaterial spots (Figure 4.1). The volume
per spot is approximately 1 pl. After dispensing, the solvent was allowed to slowly
evaporate at 50°C. For a better adhesion of the dispensed material to the gold, the
prisms were heated to 80°C for 30 min.[28] Finally, to prevent non-specific binding
to non-covered areas on the gold surface, these were blocked with a self-assembled
monolayer of 1-hexadecanethiol.

Data Acquisition Parameters. Surface plasmon resonance images were captured
with a 14bit camera (FLIR, Germany) controlled by an in-house software. After a
full SPR angle scan, an appropriate angle of 62° was set for every prism. Ten 14-bit
images are averaged and saved every 2s and cropped on a camera to 2,400x 1,300
pixels to fit the prism surface.

Experiments. One measurement comprises consecutively pumping the respective
analyte for 20 min at a flow rate of 0.4 mL/min, after which the flow is stopped for
20 min. In between two analytes, the sensor is flushed by the analyte-free medium
for 20 min at a flow rate of 0.4 mL/min. This way, the purine adenine was quantified
from 0 to 50 pM within a mixture of other purines (caffeine, uric acid, and oxipurinol)
in Millipore water, each at a concentration of 50 pM.

Purine classification experiments were carried out at a concentration of 50 pMm in
Millipore water. Their refractive indices were determined with a refractometer (Kriiss
DR-6300T, Kriiss, Germany) and found to be indistinguishable from pure water
within its accuracy. During each repetition, a full cycle of these measurements is
performed twice on every prism (Figure 4.2).

A robustness experiment for the classification of the purine bases under heavily
changed conditions was conducted in synthetic urine according to DIN EN ISO
20696 (Synthetic Urine e.K., Germany), with a 730 nm light source on a prism with
only six different GO /rGO mixtures. The changed light source entails an adjusted
measurement angle of 59.5°. Prism surfaces were additionally structured with mirror
areas which can be used to correct for incident light changes.

Pre-Processing. Data were split into training, validation and test datasets de-
pending on the experiment. Test data were never used during model optimization
or evaluation. Steady-state data were extracted and labeled according to the corre-
sponding analyte state by extracting the last two minutes of the 20-minute windows
for washing steps, analyte flow and stopped flow, respectively.

For adenine quantification, images were presented to a CNN (for network hyper-
parameters see Table B1). A three-channel image similar to an RGB image was
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constructed from an analyte steady-state image referenced with the corresponding
washing step and analyte flow state as colour channels. Data points at 0, 2, 10, and
50 M analyte concentration were used for training, and the model was tested at
concentrations of 5 and 20 pM.

For purine classification in Millipore water, data from two prisms were split into
different cross-validation folds. Finally, the test accuracy was calculated on the
data acquired with a third prism as shown in Figure B6. As baseline, an extra-tree
classifier (as implemented in scikit-learn, herein referred as the tree model) was used.
For this, tabular data was extracted from the images by manually selecting 58 regions
of interest on GO/rGO spots from the image data for each prism. Additionally,
58 regions of interest on the gold surface were selected for a second tree model,
which was trained to compare the classification accuracy with data extracted from
the functional spots to gold-thiol surfaces (see Figure B6.c). Alternatively, images
were presented to a CNN. The samples were resized to limit memory footprint and
normalized to conform with the residual net inputs. Two different residual nets,
which are a subset of CNNs, were evaluated (ResNet-18 [29], ResNeXt-50 with 32x4d
[30]), pretrained weights were used, and a dropout layer was added to the fully
connected layer. The input was adjusted to the colour channel number, and the
output was reduced to four classes. The data points were acquired according to
Figure 4.2.

Urine classification data were used in a transfer learning setup by re-training the
neural network obtained from previous classification for five epochs.

4.3 Results and Discussion

Surface Characterization. For detection and classification of small molecules
with a similar chemical structure, high-affinity receptors for each analyte are needed
to generate specific responses. Because of this, the recovery of a sensor is limited
since strong binding interactions need to be broken up, e.g. by heating or chemical
reactions. An array of semi-selective receptors facilitates such a task when the
receptors exhibit different binding affinities for changing analytes. Through the
mixing of GO and rGO, a functional surface with gradations of hydrogen-bonding
and van der Waals/m-stacking forces are expected to be obtained. The content
of rGO in the mixture affects the overall amount of sp?-hybridized carbon of the
spot, which in turn influences the non-polar to polar binding ratio. The Raman
spectra (Figure 4.3) reflect the differences in hybridization from mostly sp? for GO
to increasingly sp? for rGO.

The more efficiently GO is reduced, the greater are the differences in binding
properties. By the chosen reduction method, a sufficient difference is achieved,
which may not be the case for typical reduction methods, as with hydrazine-hydrate
at 90°C (Figure B7). As an increasing amount of sp? carbon also influences the
absorption spectrum of the material, UV-vis spectroscopy was used to show the
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Fig. 4.3. Raman-spectra of rGO and GO. Absorbance spectra in the range of 350 —
800nm for each GO/rGO-mixture in NMP /water (20:1). NMP has a UV cut-off at
<285 nm.

increasing sp?/sp? ratio for the GO/rGO mixtures. A trend can be observed that
shows the correlation of sp?-carbon to absorbance at long wavelengths.

The different interaction pathways originating from the hybridization of the materials
result in different binding affinities toward the purine analytes, allowing discrimination
with the help of such an array. This becomes evident when comparing the binding
affinities of the analytes to rGO and GO, respectively. These parameters were
determined using the SPRi setup. Despite the inhomogeneous and large spots (see
Figure B8), applying simple Langmuir kinetics to the obtained values shows clear
differences in the materials’ binding interactions in a range from 2 to 50 pM (see
Figure 4.4).

For the use of the functional spots in intensity-based SPRi, they must be sensitive
at the same angle of incidence. Although rGO and GO exhibit different indices of
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Fig. 4.5. SPR curves for the indicated deposited spots; only a minimal shift of the
minimum angle can be observed.

refraction [31], the differences are expected to be small, especially for very thin films
and when using mixtures of the materials. SPR curves for each mixture of GO/rGO
at the same incident angle are shown in Figure 4.5.
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Fig. 4.6. Concentrations of adenine in a fixed solution of caffeine, uric acid, and
oxipurinol as predicted by a CNN model (see Table B1). Error bars indicate triple
standard deviations of the predictions over the whole dataset. Mean absolute errors
for the validation data and a held-out test set are given.

In SPRi, a small range of angles is covered when employing a divergent light source,
thus the information content in the SPR image is further enhanced. The angular
spread across the sensing area in this setup is shown in Figure B9, by means of the
maximum sensitivity. With that, it becomes evident that SPRi is in fact intrinsically
multi-parametric. In addition, the different dispensed spots are heterogeneous, which
leads to a multitude of different characteristics in one image. The dotted vertical
line in Figure B9 shows that the SPR curve is essentially sampled in a 1° range in
its slope extending over the minimum with even more variation introduced by the
different characteristics obtained from the GO-/rGO-coated spots.

To take advantage of the multitude of characteristics on the sensor surface, the choice
of algorithm for data processing should reflect that complexity. Therefore, machine
learning was used to process the images. It is challenging to define meaningful features
on an image with such heterogeneous characteristics, especially in the context of
structurally similar analytes. Automatic feature extraction, e.g. with the help of a
CNN, is therefore greatly beneficial.

Quantification. As a proof of principle, it was shown, that on the designed
functional surface of GO mixed with rGO quantification of the purine adenine was
possible with a limit of detection of 1.2 pM, calculated with a triple standard deviation
of predicted concentrations and a mean absolute error of 1.8 uM of the test set data,
even when subject to interference by a mixture of the structurally similar purine
molecules such as caffeine, uric acid, and oxipurinol at 50 um each (Figure 4.6).

Classification. Taking a step back, data should be carefully chosen to be able to
meaningfully assess the sensor’s performance. As one of the benefits of the proposed
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semi-selective array is recovery of the sensor surface, repeated measurements must
be evaluated.

Additionally, re-calibration for every sensor should be minimal to allow for online
monitoring. To limit overfitting, it is vital for complex models to be fed with
representative data. This is illustrated in Figure 4.7, where tabular data - similar
to that, which was fed to the tree model - from one measurement series of a prism
clusters nicely when principal component analysis (PCA) is applied. As soon as
measurements, repeated on the same prism, are added to the model, the largest
variance in the data is not related to the analyte state anymore, but due to other
changes in the images, i.e. different positioning of the GO /rGO spots or the prism
itself, which impedes effective clustering. These changes need to be presented to the
model to be compensated.

In addition to representative data, the choice of model is of great importance.
Automatic feature extraction is beneficial in environments where the role of each
specific structure cannot be determined in advance. It also allows for a more relaxed
spatial environment when using a CNN due to their shift-invariant nature. This
greatly improves performance when exact positioning and composition of the spots
cannot be guaranteed. In contrast, manual selection of the positions of the dispensed
material requires previous inspection of new data. Further, an aggregated metric of
calculating the mean across GO /rGO spots may become less meaningful when the
thickness and the composition across a specific spot are not homogeneous.

Hyperparameters for the tree model and the CNN were optimized using Optuna [32].
Additionally, feature derivation for the tree model was adjusted, selecting between
calculation of mean and median over the regions and subtracting or dividing the
references. For the CNN-based evaluation, the colour channel number, dropout ratio,
as well as the brightness augmentation was varied, yielding final hyperparameters as
presented in Table B1.

The tree model seems to be capable of distinguishing the analytes to a degree in the
training and validation sets based solely on the gold surface, which may be attributed
to differences in bulk refractive index and a significant angle spread over the sensor
surface, which can be used to eliminate some effects on the sensor signal, like changes
in temperature, illumination, and on the surface.

Limitations of the tree model and the associated features become apparent when
looking at the test set classification performance (see Figure 4.8), where less than
50 % accuracy was achieved.

Generalization across different prisms and measurements is challenging, which may
be attributed to the feature selection procedure or limitations of the model itself.

When feeding the model with data from multiple prisms, the exact composition of a
GO/rGO spot may vary since the repeatability of the dispensing process is limited.
During training, there may further be variations, i.e. in the positioning of the prism
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Fig. 4.7. PCA of measurement data (tabular data extracted for the tree-based
model) for a single measurement (a) and several repeated measurements on the same
prism (b). Different measurement conditions cause clustering, while analyte states
are distributed across the PC space making it harder to extract information about
analyte states.

between every measurement set as it must be re-inserted into the setup, thus also
influencing the functional spot position and the incident angle of light on the surface.

The neural network yields far better generalization to an unseen sensor, reaching
around 78 % classification accuracy and much better performance in the validation
sets of 85 % (see Figure 4.8). To verify that the information is encoded in the
GO/rGO spot intensities, another prism treated similar but with omitted functional
spots was used for validation purposes. This nanomaterial-free sensor surface led to
only 32 % accuracy which, for four analytes, is hardly better than random guessing.
To show that insufficient domain transfer is not responsible for this significant drop
in accuracy, the original test data was altered so that the dispensed spots are
deleted from the images. This also leads to very low (40 %) classification accuracies.
Additionally, the experimental order can be changed. Similar to the test set accuracy,
77 % accuracy was achieved when the order in which the analytes are presented to the
sensor was permuted (usually caffeine, uric acid, oxipurinol, adenine — C-U-O-A to
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Fig. 4.8. Confusion matrix for analyte classification with the tree model and the
CNN in Millipore water, and the CNN applied in synthetic urine (highest validation
accuracy fold); Mainly uric acid is misclassified by the CNN in Millipore water due
to its small influence on the signal when exposed to the sensor, but high recall for
oxipurinol classification with a low precision can be observed. Accuracy is maintained
for classification in synthetic urine, only caffeine is misclassified.

A-O-U-C and O-C-A-U). This shows that the trained model is robust to changes
in experiment order.

To verify how robust the described sensor is to general changes in measurement
conditions with respect to classification accuracies, the model was put to an endurance
test. Therefore, the same model (see Table B1) was used for classification of the purine
molecules caffeine, uric acid, oxipurinol, and adenine in synthetic urine. Training the
model for only five epochs with additional data resulted in classification accuracies
which are comparable to those obtained from the experiments in Millipore water.
Caffeine was, however, misclassified. This may be attributed to either a possible
interference from creatinine in the matrix or, on the other hand, generally stronger
matrix effects observed within the training data for caffeine. This is indicated by
the SHAP values of the model, which are shown in Figure B10. Exemplary response
curves for classification measurements in Millipore water as well as in synthetic urine
are provided in Figure B11.

The obtained classification accuracies for the tree model (with and without functional
spots) as well as for the CNN are summarized in Table B2.

4.4 Conclusion

An SPR functional surface with an array of GO/rGO mixtures was developed,
which can be used to quantify selected purine molecules in a mixture and achieves
high classification accuracies among four model analytes for different measurement
conditions. It was shown that graphene oxide and reduced graphene oxide as
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functional materials allow label-free detection of various small molecules. The
obtained signal responses mainly relate to molecules bound to these nanomaterials
and less to changes in the bulk refractive index. Semi-specific and weak binding
interactions varying for each surface/analyte pair were exploited to create an array
of mixtures of GO/rGO, which produces unique response patterns to a given analyte.
SPRi allows the analysis of entire images, showing the signal responses for these
mixtures simultaneously. The image data can be fed directly to a convolutional neural
network for automatic feature extraction without manual pre-processing. This proved
to be the superior approach, compared to more traditional machine learning methods,
where manual feature engineering is needed. The model is capable of generalizing
across different measurement conditions and even unseen sensors, showing that a
general relationship of sensor state and analyte state can be established. This allows
the classification of molecules on new sensors, without requiring re-calibration. The
sensors built within this work could be used multiple times without significant losses
in classification accuracy, thus indicating good reversibility. Further, classification
was achieved under heavily changed measurement conditions in synthetic urine as a
proof of principle for the sensor’s robustness and possible use in complex media.

The performance may be further enhanced by using models that are capable of
handling larger resolution images since the high spatial intensity information is in
parts lost due to the resized input in the presented work. Additionally, a neural
network tailored specifically for the task of classification based on intensity ratios
may be beneficial. The model is limited to the classification of the four purines
caffeine, uric acid, oxipurinol, and adenine but may be fine-tuned to include more
analytes or for more complex regression tasks.
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The development of sensors using surface plasmon resonance can be challenging
due to the high variety of surface modifications and analyte-receptor interactions
involved in detection. Careful and continuous evaluation is key to success which
requires as much information as possible. Multi-parametric surface plasmon resonance
imaging (MP-SPRi) can provide higher dimensional data leading to more nuanced
and reliable information. This can be used to assess sensor performance with less
measurement expense. In this chapter, several practical examples are presented that
utilise MP-SPRi to increase information content extracted from measured data.

5.1 Introduction

Sensors based on surface plasmon resonance need to be optimised for the analytical
task. This involves a choice of recognition element that associates with the analyte
of interest. Often-times, immobilisation of the receptor is a critical step and has to
be carefully evaluated during sensor development [1]. The immobilisation process, in
practice, is usually imperfect where the density of recognition element is non-constant
across the sensor surface [2]. Additionally, the interaction potential of the recognition
element with the analyte is not always known a priori, especially for semi-selective
surface modifications that can bind to several different analyte molecules.

Therefore, screening of surface modifications and their effectiveness is important for
the efficient development of chemo- and biosensors [3, 4]. Imaging techniques can
provide spatially resolved information on the surface, particularly SPR imaging due
to its high sensitivity at close proximity to the surface delivers valuable insight [5, 6].
Conventional SPRi, however, is limited in two ways: the angle of incidence is constant
across the surface which results in varying sensitivity for different modifications and
there is no absolute information on the surface state available.

In detail, different modifications result in different optimum angular settings for
maximum sensitivity. This effectively reduces the usable signal if multiple different
functional areas are imaged since not all regions can be recorded under optimal
conditions simultaneously. In order to compare the different regions in a referenced
manner, a calibrated change has to be introduced or experiments have to be conducted
consecutively under varying optimised conditions.

Equally, no absolute information on the surface is available, only relative changes
are recorded. Thus, surface state (i.e. receptor density, surface loading, ...) can
only be inferred from time-consuming calibration. During sensor development the
receptor density may be unknown, similarly the interaction strength between analyte
and recognition element can be a variable in the particular configuration. Both can
only be determined in reference to a calibrated signal change or with a series of
concentration measurements [7].

Multi-parametric surface plasmon resonance imaging can provide insights into the
measurement system and the sensor surface state. Notably, different surface modifi-
cations can be used under ideal conditions (i.e. maximum sensitivity) so that several
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different receptors can be used effectively simultaneously. Additionally, surface load-
ing can be estimated from fitting measurement data to a calibrated sensor surface
as described in section 3.2.2.2. In this chapter, multiple examples for enhancing
measurements using MP-SPRi in different settings are provided.

5.2 Fast Surface Mapping

The first insight into surface modifications can be gained by analysing the SPR
curve. It can be acquired for every pixel in the image resulting in fast recording of a
multitude of SPR curves and provides information about the surface composition
across the sensor.

5.2.1 Methods

All prisms in this chapter were purchased from Gréfe Spezialoptik GmbH (Hamburg,
Germany) with a 62° base angle and a 18 mm x 18 mm surface area. Measurements
in aqueous solution were conducted using SF2 glass (Schott AG, Mainz, Germany)
while oil-based measurements were carried out with N-SF6 glass. Metallisation was
done by Creavac (Dresden, Germany) with 49 nm gold deposited onto a thin adhesive
layer as specified in section C.1 via chemical vapour deposition.

Three variants of surface blocking for creating a graphene-based sensor array were
evaluated. Thus, three prisms were prepared:

 On the first reduced graphene oxide (rGO) and graphene oxide (GO) in different
mixtures (similar to chapter 4) were dispensed as an array directly on top of
the gold surface using a dispenser (Musashi ShotMini 200 Sx, Japan) and the
remainder of the surface was subsequently blocked using hexadecane-1-thiol.

e The second prism was prepared with a reversed protocol where the surface was
first treated using the thiol and the graphene array was dispensed on top.

o The third prism was modified with chemical vapour deposition (CVD) graphene
wet-transferred onto the prism [8] and the rGO/GO array was dispensed after.

SPR images throughout the chapter were acquired using a 660 nm or 730 nm LED
(GH CSSRM2.24 or LZ1-00R302, ams-OSRAM GmbH, Miinchen, Germany) light
source, collimated with the help of a 50mm focal length aspheric lens (66-025,
Edmund Optics, Barrington, USA), a 10 nm full-width half maximum wavelength
filter, and a polariser (86-089, 65-176, and 47-216, Edmund Optics, Barrington, USA)
mounted in a rotary mount (K10CR2, Thorlabs Inc., Newton, USA) for illumination
and a 100 mm objective lens mounted to a 14-bit camera (67-715, and BFS-U3-6354,
both Edmund Optics, Barrington, USA) for image acquisition. Optical components
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were mounted with a cage system and illumination and acquisition can be rotated
using a motorised linear stage (OWIS GmbH, Staufen im Breisgau, Germany) with
respect to the reflector (the prism) to vary the incidence angle. The collimating lens
was placed slightly off-focus to create a divergent beam with a few degrees spread in
incidence angle across the prism surface. For a rendering of the setup see Figure B5.

Angle scans with p and s-polarised light were acquired in water by adjusting the
outer angle of incidence using the linear stage in 0.1° intervals. The images were
aligned using homographic projection to match in their dimensions and positions
using the 62°-image as base image. Dividing the images taken with p-polarised light
by the respective images using s-polarised light a referenced SPR curve for every
pixel can be observed. The minimum map is obtained by finding the minimum in
the SPR curve for each pixel.

Due to the illumination with divergent light the SPR. curve is shifted in one image
dimension (vertically in the images shown in this chapter). This can be corrected
by linearly fitting the SPR curve minimum value to the prism position. Finally, a
corrected SPR curve minimum map is obtained.

5.2.2 Results and Discussion

The minimum map can be viewed as an additional representation of data provided
by the imaging setup, similar to a phase image in light microscopy. It immediately
reveals that the order of immobilisation is important for the size of the dispensed
rGO/GO areas as well as their thickness which is visible as a shift in minimum angle
(Figure 5.1). Although the spots are visible when the blocking thiol is administered
before the receptors, the material seems to be largely focussed onto a smaller area
which complicates data processing. In the case of CVD graphene, the receptor spots
become barely distinguishable due to the similarities between base (CVD graphene)
and dispensed material (rGO/GO). Additionally, transferring large CVD graphene
sheets proved difficult and signifant tearing is visible in the examined specimen.
For the application as a receptor array, the dispensed spots should occupy as much
space as possible on the sensor and they should be homogeneous, i.e. the angular
distribution has uniform as possible.

The minimum map thus allows for quick assessment of surface modifications that
need to be optimised for sensing. Additionally, the data can be used for further
processing, e.g. by segmentation on the basis of the mininimum map. An exemplary
segmentation is shown in Figure 5.2 created directly with Segment Anything [9]
on top of the minimum map (Figure 5.1 a). The result can be used to determine
the homogeneity of the surface modifications like shown in Figure 5.2 b, where the
previously segmented regions which represent different mixtures of rGO and GO are
plotted in terms of minimum angle distribution.
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Fig. 5.1. Minimum of different surface modifications, with dispensed rGO/GO
followed by hexadecane thiol (a), a reversed protocol (b) and the graphene oxides
dispensed on top of CVD graphene. In (a) the dispensed spots can be distinguished
from the background and occupy more space than in (b). Larger area receptors can
be used to decrease measurement noise by spatial averaging. Brighter areas towards
the upper left of the image are due to surface impurities.
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Fig. 5.2. Segmentation mask generated automatically based on Figure 5.1 (a),
one receptor position for every rGO/GO mixture was selected by visually choosing
an arbitrary point on the spot and subsequent segmentation. The minimum angle
distribution for the selected spots is show in (b). With rising rGO content the
distribution shifts to higher angles, which can be expected due to the more continuous
graphene surface.

From the SPR curve for every pixel, a maximum sensitivity can also be isolated.
This can function as a basis for selecting a suitable angle during further experiments.
When using MP-SPRi a range of angles is probed simultaneously so that this selection
is not exclusive. This means that even though the optimum angle for a specific
surface modification is chosen the residual area can still be evaluated under ideal
sensitivity conditions (see following section).
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5.3 Sensitivity Mapping

Lateral information can be used to provide insight into the spatial distribution of
signal change when introducing an analyte. To demonstrate the capabilities three
different applications are presented.

The analysis of water and possible pollutants is of substantial importance to un-
derstand the limits of wastewater treatment and provide scientific basis for their
improvement [10]. Anthropogenic pollutants can serve as model analytes for water
treatment shortcomings as they are not expected to develop naturally. Pharmaceu-
tical residues or derivates (e.g. oxipurinol), industrial sweetener (e.g. acesulfam),
and pesticides (e.g. glyphosate) can be exceptionally useful [11-13]. For some of
these analytes SPR sensors have been reported [14]. However, combined detection of
several pollutants would simplify tracking issues with wastewater treatment.

Electrical transformers can fail catastrophically if not maintained meticulously. This
is often the result of transformer oil degrading through oxidation. Transformer
oil lifetime can be extended by adding phenol-based inhibitors [15, 16]. Therefore,
tracking inhibitor content in transformer oil over the course of their lifetime is an
active area of research [17, 18]. It was reported that phenolic compounds can adsorb
to graphene [19] and graphene oxide [20] which is why their interaction potential
was probed with the help of SPR.

Finally, the antibiotic content in milk (exemplary using Kanmycin A) is examined,
the background of which is expanded on in section 5.4.

5.3.1 Methods

2D materials were immobilised as described in the previous section using a dispenser.
Here, the measurements in aqueous solution feature a selection of several materials
(graphene oxide, reduced graphene oxide, boron nitride, molybdenum disulfide) and
the measurements in oil were performed using a prism with graphene and reduced
graphene oxide dispensed alternating three times each.

The last example was recorded using a prism where a striped pattern was imprinted
using a PDMS stamp with 200 pm stripe thickness. The stamp was applied to the
prism while partly (approximately half) submerging the prism in triethyleneglycol
mono-11-mercaptoundecylether (PEG) for 24 hours and the other half equally in
hexadecane-1-thiol (THIOL) afterwards. The previously covered surface was then
functionalised with 16-sulfanylhexadecanoic acid by submerging it wholly. The
thiols were prepared in 200 pmol L™! ethanolic solution. The hexadecanoic acid was
functionalised further by addding a solution of 4 mmol L' 3-[(ethylimino)methyl-
idene]amino-N,N-dimethylpropan-1-amine (EDC) dissolved in a 10 mmol L.~! NaCl
solution for 30 minutes and a solution of anti-kanamycin aptamer (APTA) for 60
minutes thereafter rinsing thoroughly with NaCl solution. This results in a striped
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pattern with alternating aptamer and ethylene gylcol on one half of the prism and
aptamer/hexadecane on the other half.

Sensitvity maps were created by relating the change in intensity after analyte addition
to the change when adding a refractive index calibration solution (200 mmol L—!
NaCl solution).

The signal-to-noise ratio was calculated by relating the signal change after analyte
addition to the signal variation during flushing of the sensor with buffer solution.
Data fits were calculated by first taking average steady-state images for six different
Kanamycin A concentrations (0, 2, 5, 10, 20, 100) pM and segmenting the different
functional areas using a random forest classifier on edge and texture information of
difference images. Every pixel value for the different concentrations functionalised
with aptamer was then referenced with an appropriate close pixel that has been
blocked (by either hexadecane-1-thiol or triethyleneglycol mono-11-mercaptoundecyl-
ether). The referenced intensity values were then fitted to a Langmuir model (see
Equation 2.8) to evaluate the receptor performance after immobilisation. The
segmentation was used as a mask for the computation, omitting areas with bad
signal-to-noise ratio and artefacts of the measurement.

5.3.2 Results and Discussion

As a means to assess the interaction of different 2D materials with pollutants in water,
the average signal change after successive addition of 200 pM oxipurinol, acesulfam
K, glyphosate, and trinitrophenol was calculated from the measurement. This served
as a pre-assessment of which 2D material may be applicable to a detection system
for small molecules in water.

The resulting sensitivity map (Figure 5.3) can be used to identify which material
results in the largest signal change. It is vital that there is an angular modulation
across the sensor surface when several different materials are evaluated simultaneously
since their optimum angle is vastly different. Angular modulation allows recording
the ideal sensitivity for every material during one experimental run. Here, graphene
oxide (left-most structure, blue box) has the highest sensitivity towards the lower area
of the sensor while reduced graphene oxide and the gold surface are more sensitive
in the upper area of the sensor (yellow outline). Thus, recording the data at an
angle suitable for the gold surface would significantly under-estimate the sensitivity
of graphene modified areas.

Similarly, the sensitivity can be used to identify if a specific detection system is
working as intended. Graphene oxide and reduced graphene oxide were once more
employed in an attempt to quantify the phenol-based antioxidant in transformer
oil. The sensitivity was expressed as a signal-to-noise ratio (Figure 5.4). Again,
the angular information allows a more nuanced interpretation of data. In isolation
the signal-to-noise ratio of the (rGO) receptor regions seems superior, however, it
is actually not significantly higher than the sensor surface itself when compared
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Fig. 5.3. Average sensitivity map for a 2D material array after introduction of
four analytes to the sensor surface relative to the signal change generated with a
buffer solution. High sensitivity areas for graphene oxide (lower left) are significantly
different in optimum angle compared to the background (gold, top area). Different
materials exhibit different optimal sensitivity positions. Rectangular grey structures
are mirrors, i.e. thick gold (=~ 200nm) used to correct changes in intensity.

fairly, i.e. at their respective ideal angles which can differ by a few hundred pixels
in vertical direction (see Figure 5.4 b). The receptor surface has higher variance in
signal-to-noise ratio than the blank surface due to the inhomogeneous dispensing
process but the average of the distribution is not higher which means that no signifi-
cant effect of the receptor towards the analyte could be detected.
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Fig. 5.4. Signal to noise ratio for inhibitor introduced to a sensor array, where the
magnitude of the rGO areas is not significantly higher than the background (gold)
surface. The results of which can be misinterpreted without angular spread. The
signal-to-noise ratio varies vertically due to the changing angle of incidence. The
distributions of the marked areas in (a), which are approximately the same size and
span the same amount of pixels vertically, do not differ significantly (b).



Surface state tracking 89

The setup can be exploited to efficiently gather as much information as possible
during a single experiment by optimising surface modifications. Figure 5.5 shows a
preliminary study to assess the surface modifications for the detection of kanamycin
in milk. Two different blocking agents were utilised: ethylene glycol (left side) and
hexadecane (right side), which resulted in different contrast between the areas where
the surface was blocked and where the aptamer was immobilised (appearing brighter).
Higher contrast is desirable since it indicates better blocking of unspecific binding
on the blocked surface.
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a) Signal to Noise Ratio b) Kp / pmol~! L1

Fig. 5.5. Signal to noise ratio when pumping kanamycin over a structured surface
(a), brighter areas correspond to the areas where kanamycin-specific aptamer was
immobilised. Two different blocking agents were administered in between the striped
pattern where the left half (ethylene glycol) shows less interaction with the analyte
solution. Artefacts in the measurement are due to stabilised air bubbles forming.
The fit result using concentration data and Langmuir kinetics are shown in (b). The
area was restricted to the hexadecane side due to the differences in sensitivity on the
left side which makes referencing more challenging.

The surface was segmented into the different functional areas and a binding curve
was fitted to a concentration measurement using steady-state data. The result is
depicted in Figure 5.5 b, which represents a map of observed dissociation constants.
The calculation was restricted to the hexadecane area due to the vastly different
sensitivities on the ethylene glycol side as evident from the response in the projected
angular region (Figure 5.6 a). They are depicted in Figure 5.5 b and can be used
to estimate an average dissociation constant for the aptamer-kanamycin interaction
(Figure 5.6 b). The variance is very high which is a consequence of the inhomogeneity
of the surface and the pixel size that leads to integration of larger areas. The
determined value lies in between values previously reported [21, 22].
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Fig. 5.6. Analysing the striped sensor surface, large differences between the SPR
curve minimum of the ethylene glycol area (PEG) and the area where aptamer
(APTA) was immobilised can be observed. The curves represent the average intensity
in horizontal dimension for different areas, the shaded area represents the lateral
standard deviation of intensity. At the curve minimum, the segmentation of the
surface areas becomes infeasible due to the low signal changes which results in missing
values in the graph. The hexadecane area (THIOL) barely differs from the aptamer
area (a). A distribution of dissociation constants can be obtained when fitting the
experimental data to a Langmuir isotherm (b). The distribution was fitted to a
gaussian, resulting in a mean value for the dissociation constant of 2.2 pmol L=! with
relatively high standard deviation (o) which can be attributed to the inhomogeneous
surface.

5.4 Surface State Tracking

Antibiotics have been used to combat diseases in livestock on dairy farms for decades
[23]. The ubiquitous use of antibiotics as prophylaxis or for drug therapy can have
several adverse effects on dairy, cattle, and consumers. Misuse of antibiotics can
cause resistances, allergic reactions, disturbances of intestine microflora, and other
dangers towards the health of livestock and consumers of milk-based products with
antibiotic residues. Additionally, the dairy industry is dependant on the use of
bacteria for milk derivative products which is impeded by antibiotics [24].
Regulators have begun restricting the use of pharmaceuticals, e.g. with EU Regulation
37/2010 which lists several antibiotics and their maximum residual concentration in
food. Kanamycin A, as an example, in milk must not exceed 150 pgkg ™. For these
regulatory limits to be effective they have to be monitored so that compliance is at
all possible.

Consequently, research activity towards fast and accurate on-site detection of antibi-
otics in milk has been high [25, 26]. Many of these biosensors apply aptamers for
detection due to the possibility of tailor-made aptamers with high specificity and
affinity towards the analyte [27, 28]. Sharma et al. used a printed carbon electrode
modified with a carboxyphenyl where kanamycin-specific aptamer (5’-TGG GGG
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TTG AGG CTA AGC CGA-3’, [29]) was immobilised with the help of amide bonds
after EDC/NHS activation [30]. They obtained a limit of detection of kanamycin in
milk of 0.11 ngmL ™. More sensitive detection was achieved with the help of a fluores-
cence probe attached to the aptamer sequence that is quenched by Forster resonance
energy transfer (FRET) in the absence of kanamycin due to efficient coupling to gold
nanoparticles [21]. The aptamer, normally exhibiting random-coiled conformation,
forms a hairpin structures upon interaction with the analyte. Kanamycin in milk
was also detected with an SPR sensor utilising graphene for signal enhancement [22].

The potential of aptamer-based kanamycin sensors has been thoroughly demonstrated.
In this section, the application of MP-SPRi for kanamycin detection is explored
which enables determination of surface state and disentangling bulk refractive index
and adsorption of analytes [31]. To this end, an SPR imaging setup with a divergent
LED light source to modulate the angle of incidence across one dimension of the
image is employed. This allows for SPR curve tracking during the adsorption of
kanamycin to the aptamer-modified surface.

5.4.1 Methods

Chemicals were purchased from Merck (Merck KGaA, Darmstadt, Germany) unless
specified otherwise. Functionalisation was done in two steps:

The prisms were submerged overnight about halfway in a 200 pmol L=! ethanolic
solution of triethyleneglycol mono-11-mercaptoundecylether to create a protein-
resistant surface while the other half was subsequently submerged in a 200 pmol L1
solution of 16-sulfanylhexadecanoic acid.

For immobilisation the latter half was submerged in 1.8 mol L™! 3-[(ethylimino)-
methylidene]amino-N,N-dimethylpropan-1-amine (EDC) dissolved in a 140 mmol L™}
NaCl solution for 10 minutes and subsequently submerged in aptamer solution for 30
minutes after rinsing thoroughly with NaCl solution. The 24-base aptamer (5-AGA
TGG GGG TTG AGG CTA AGC CGA-3’) with an amino-C6 group at the 5’
terminal was purchased from Eurofins Genomics GmbH (Ebersberg, Germany) and
dissolved in 10 ml of the NaCl solution to a molar concentration of 12.2 pmol L1,
The two halves are referred to as OEG and aptamer-terminated (APTA) throughout
the remainder of this text.

Buffer solution was prepared with 25 mmol L™ 4-(2-Hydroxyethyl)piperazine-1-
ethanesulfonic acid (HEPES) buffer at pH 6.7 with an addition of NaCl to match the
pH and refractive index of milk. Regeneration solution was made from 50 mmol L1
sodium carbonate in buffer solution.

Ultra-heat treatment milk at 1.5% fat (Berchtesgadener Land eG, Berchtesgaden,
Germany) was purchased from the store and used directly after addition of 1ppmV
Tween 20 and Kanamycin A at different concentrations (0.5 M to 20 um). The pH of
the milk was determined to 6.73, the refractive index of milk and buffer was found to
1.35017 and 1.34966 using a refractometer (Kriiss, Hamburg, Germany), respectively.
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Fig. 5.7. Surface Model used for MP-SPRi calculations. In (a) the initial condition
is depicted where the adsorption layers are universally set to the bulk refractive index.
At the right hand side (b), the state after binding is sketched where non-specific
binding has led to adsorption on all surfaces and kanamycin is bound to the aptamer.

Initially, angle scans with p and s-polarised light were acquired. Then a concentra-
tion series was conducted by measuring at a fixed angle (62°) that was identified
during the angular scan. The different milk concentrations were pumped through
the measurement chamber with a flow of 100 pL/min in the following sequence:
buffer solution, raw milk, milk with kanamycin. This sequence was repeated for
every concentration step. Regeneration of the receptors was attempted after a full
concentration cycle with the sodium carbonate solution but no change in response
was observed.

During angular scans i.e., rotation of the illumination and image acquisition with
respect to the prism, the resulting image gets scaled due to changes in viewing angle.
The images were corrected to 62° incidence with the help of homographic projection.
The images from the individual time points were fitted to the surface model with
several steps (compare section 3.2.2.1). From the angular scan, the metal parameters
as well as the angular distribution modelled as a two-dimensional polynomial were
determined. Then the intensity distribution on the sensor surface is calculated by
fitting a two-dimensional gaussian to the s-polarised images of the angular scan.
The full model was then used to predict the bulk refractive index and a modelled
adsorption layer refractive index for the functional surfaces on the sensor for every
recorded image (Figure 5.7). The image was laterally sub-sampled with a stride of
ten pixels to limit computational load.

5.4.2 Results and Discussion

When analysing the angular scans of the sensors, it becomes immediately visible, that
the immobilisation results in two distinct areas: the OEG (left) and the aptamer-
terminated area (APTA, right). From the minimum maps, three (less) distinct areas
should be identifiable: the OEG-terminated area, the area where the aptamer solution
did not reach, thus resulting in a 16-sulfanylhexadecanoic acid or MHA-terminated
area, and the aptamer-bound region.

However, from looking at the minimum map, this observation is not easily made
(Figure 5.8). In fact, even when transforming the vertical cuts of the image to
embedding-space using Minimum-Distortion Embedding (MDE) [32], there seems
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Fig. 5.8. Corrected minimum map of the sensor surface where OEG was immobilised
on the left (border roughly at 500) and the aptamer was immobilised on the right
side. The areas where data has been extracted from the surface is highlighted. The
vertical cuts were transformed to embedding space via MDE and the highlighted
areas visualised in this plot.

to be a gradual transition from a very clearly distinct OEG-terminated area to
the APTA area. This aptamer-terminated area appears to be higher variance than
its OEG counterpart and no distinct border between aptamer-free MHA and the
aptamer area can be isolated (Figure 5.8).

The three areas can be characterised with the help of their angle-modulated curves.
The Fresnel formalism with multi-layer surfaces was applied, choosing layer structures
as indicated in Figure 5.7. The adhesion layer of chromium and the gold layer
thicknesses and refractive indices, as well as the bulk refractive index were fitted
globally. The three areas are then defined by additional intermediate layers. The OEG
area is defined by an undecanol layer, a tri(ethylene glycol) layer and an adsorption
layer with a thickness of 3 nm that is set to the bulk refractive index during calibration.
The MHA-terminated area is comprised of a hexadecanethiol and a similar adsorption
layer. The aptamer-terminated area equally has a hexadecanethiol chain followed by
an aptamer layer and an adsorption layer. The initial layer parameters for the three
areas are summarised in Table 5.1.

Due to the observed pattern of the minimum map where the OEG surface is visible
but the aptamer area can not be distinguished clearly from the MHA area, it has to
be assumed that aptamer coverage is rather low. With a coverage of one tenth of the
theoretical optimum density, the simulation leads to curves that are barely distinct,
especially considering the surface is not perfectly homogeneous. Peculiarly, when
low coverage for the aptamer area is assumed, the OEG area has to be imperfectly
ordered to explain the large difference between the OEG area and the MHA /aptamer
area. Consequently, the surface state cannot be sufficiently determined since the
MHA area is not distinguishable and the OEG density is unknown.

As an estimate of the maximum change that can be expected due to binding of
the analyte to the aptamer, it was assumed that the OEG surface is as dense as
possible while the lack of difference between MHA and APTA surface was ignored by
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Tab. 5.1. Initial model parameters for the three functional surfaces used during
fitting.

Surface area Layer Name Refractive Index Thickness / nm
OEC undecanol 1.44 [34] 1.21 [35]
tri (ethylene gly- 1.43 (estimate) 0.843 [35]
col)
MHA hexadecanol 1.43 [34] 1.76 [35]
hexadecanol 1.43 1.76
APTA aptamer 1.52 2.5 (estimate)
entire surface adsorption layer Nbulk 3

Expected max. change / counts

Angle / ° Angle / °

Fig. 5.9. (a) Fit of the models for OEG and APTA surface to the measured data
across the sensor as indicated in Figure 5.8. Note that the area is represented as
a mean reflectivity across the horizontal dimension and the fit data is likewise. In
(b) the expected change due to kanamycin adsorption is presented, the blue curve
represents this change when assuming that the camera’s full scale output is equal to
unity reflectivity.

omission of the MHA surface in the model. The surface density of the aptamer can
then be estimated to 1.16 x 10" m~2 and a maximum response can be predicted by
assuming perfect binding of the analyte to the receptor, and changing the refractive
index of the functionalisation layer as indicated in Figure 5.7 together with the
Lorenz-Lorentz equation (Equation 2.20) and the refractive index of kanamycin
(1.67, [33]). The result is a very low expected change of approximately 20 counts at
maximum sensitivity when assuming full scale output of the camera relates to unity
reflectivity (Figure 5.9 b).

Since the aptamer density has to be assumed to be rather low and is probably lower
than this upper estimate, the expected signal change is lower and may even be
insufficient for detection. The time traces for individual regions of interest and with
the help of fitting the SPR response to the surface suggest that the analyte cannot
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Fig. 5.10. Time traces of kanamycin addition experiment, where zero relates to the
injection time of the spiked milk samples with concentrations as indicated. In (a)
the average change at a specific subset of the image is depicted where the sensitivity
is the largest, whereas in (b) the model output change in refractive index is featured.
Although there is a change visible for concentrations greater than 5 M, it does not
follow the expected exponential shape and ultimately reverts to zero.

be detected with this sensor setup (Figure 5.10). The average intensities for the
regions of interest were referenced with suitable OEG area regions (i.e. regions of
similar sensitivity). The adsorption layer for each surface area was allowed to vary
individually while additionally the bulk refractive index was allowed to change. Here,
the adsorption layer refractive index change is shown for the APTA area. Data from
both methods match nicely, but no change that can be associated with a typical
binding curve can be identified with either method.

There are several reasons for these rather unimpressive results. The sensor surface
is not homogeneous before immobilisation of the receptor which is clearly visible
from optical inspection of the prisms. The surface quality affects the homogeneity
of immobilised receptors and the signal quality of the SPR curves imaged from the
sensor surface.

Additionally, the efficiency of immobilisation has to be very high to reach good
surface coverage which cannot be guaranteed due to the applied protocol. Possible
improvements to the immobilisation protocol involve: adjusting the pH of the EDC
solution to more acidic conditions, adjusting the pH of the aptamer solution to more
basic conditions, applying N-hydroxysuccinimide esters (NHS) together with EDC
as the O-acylisourea intermediate of EDC coupling is unstable, and using higher
concentration of aptamer. However, very high density of aptamer can also impede
capturing of the analyte since the conformation change of the aptamer requires space
[36]. This means that immobilisation needs to be carefully optimised.

Furthermore, the expected change due to capturing of kanamycin with ideal receptor
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density is still very low and requires high signal-to-noise ratios to reliably determine
the changes (Figure 5.9 b). Responses close to zero have been reported before due to
the small effect of low molecular weight analytes and the conformational changes
of the aptamer [37]. Conversely, small molecules may have a larger effect than
anticipated since the assumption of isotropic layers may be inaccurate [38]. This can
result in changes that exceed the predicted response due to binding of the analyte to
available sites and a corresponding change to the reflectivity [39]. MP-SPRi can help
to identify those cases since an angular response is available and any deviation from
the predicted model may be indicative of those cases. However, a larger molecule
would be more appropriate to assess the performance of the algorithm to disentangle
refractive index changes and binding. Indeed, the approach will only work for large
changes under low noise.

5.5 Conclusion

This chapter shows how additional information can be used to benefit analytically,
either by an increase in information or confidence. Optimal receptors, and detec-
tion systems have been identified and characterised. However, it is important to
understand the limitations of these methods. Due to the angular modulation in one
dimension of the sensor surface it is not advisable to modify the surface modification
in this dimension. This reduces the available sensor area by a large amount but at
the same time allows for repetition and therefore averaging of data. Additionally,
when trying to model the surface state as presented in section 5.4, the sensor has
to be calibrated as described previously in section 3.2.2.1. When several sensors
are fabricated similarly using chemical vapour deposition for metallisation, it may
be sufficient to perform this calibration process once for a batch of prisms, since
the gold thickness and refractive indices do not vary greatly in one batch. Further-
more, the layer system has to be known or plausibly estimated to be able to apply
the Fresnel equation formalism to estimate the surface state. Deviations from the
modelled layer system can lead to wrong estimations of change in refractive index.
Ideally, the measurement is compared to a reference structure so as to avoid any
misinterpretations.
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Chapter 6

Conclusion and Outlook

This work provides insight into the potential of camera-based surface plasmon
resonance sensors when utilising the spatial sensor by modulating the sensor response
through lateral modification of surface parameters or input illumination. These
modifications have to be coupled with adequate signal processing. Modelling the
sensor response using Fresnel formulae allows for accurate representation of the sensor
surface state, increasing confidence in measured values. Alternatively, data-based
modelling approaches can be utilised which eliminate the need for approximation of
a physical model to observed data but are limited by the data they are trained on.
It has been explored how, especially, deep learning models that are specialised in
image processing (CNNs) can be utilised for qualitative or quantitative assessment of
analytes with the help of a receptor array on an SPR surface. Notably, this approach
demonstrates strong generalization capabilities, performing effectively on unseen
sensors used for the same task. Preliminary experiments indicate that performance
enhancements are feasible when data from different points in time during binding or
debinding are used during processing.

However, there are several caveats to the presented methodology. The lateral
change in input angle results in a image that is more difficult to evaluate since simply
averaging over large areas is not useful when the sensitivity varies drastically. This also
means that the noise decrease through spatial averaging is locked behind effectively
using the lateral information available which makes the presented methodology vital
for angle-modulated SPRi. Data-driven models are, in principle, able to use that
information but have to be constrained during training to use this lateral shift
by appropriate data which requires a significant amount of measurements. Most
importantly, the data-driven methods require the training data to contain possible
expected variations associated with the analytical task as they are usually unable to
extrapolate. Consequently, trained detectors cannot be used for new analytes or in a
new matrix without retraining the model which requires additional labelled data.
Data labelling is another challenging restriction, since in order to label a certain
sensor state, the analyte concentration and matrix state has to be known as precisely
as possible which is often not available in transitional periods. So far, this has been
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circumvented by using only steady-state data, effectively reducing the amount of
captured data by a large margin.

In future, several improvements are conceivable. One very promising approach is
the application of a physical loss term during training of the neural network. This
can be done by calculating the expected response for a set of parameters with
the help of the Fresnel equations and adding the result to a combined loss term
(conveniently, differentiable transfer-matrix formalism is available for use in neural
networks*). This approach has the benefit of integrating physical information into
the neural network. Consequently, the network can be trained to predict parameters
such as the refractive index and thickness of functionalisation layers, enabling the
detection of captured analytes while retaining the flexibility of high-dimensional
neural networks. Unfortunately, this approach relies on precise knowledge of the
sensor state beforehand for training. As with any deep learning model, performance
hinges on high-quality training data. The incorporation of a physical loss function
can mitigate this reliance on extensive datasets, provided the physical model within
the loss function accurately reflects real-world sensor behaviour.

Another improvement is the more fine-grained segmentation of the image data. Due
to the large surface area of the sensor, large variation of surface state is to be
expected. This effectively reduces the redundant information and leads to diverse
sensor responses collected over the surface. Currently, most of this information
is discarded through spatial averaging of intensities, large receptive fields of the
convolutional neural network and pooling of surface area in physical modelling. It
would be more appropriate to consider the surface laterally continuously changing or
at least increase the amount of different areas considerably. Modern segmentation
models can be used in semi-supervised manner, where setting markers for different
functional areas is sufficient to effectively partition the surface which enables the
researcher using the instrument to set the different functional areas. Fully automatic
detection of these areas is also possible when utilising e.g., an angle scan and an
appropriate segmentation model capable of processing image sequences'.

Apart from these methods that can be applied to the presented sensor setup,
more information can be collected during acquisition by employing polarisation-
or wavelength-sensitive detectors. These cameras are equipped with several filters
similar to colour-sensitive detectors but with higher wavelength resolution or alter-
natively polarisation filters with different orientations placed in front of pixels and
combining those pixels to a multi-polarisation or -spectral image. This information
increase can be utilised similarly: via physical modelling through the Fresnel formal-
ism, or with the help of machine learning under known conditions and with a defined
purpose. Polarisation information can be used to continuously reference intensity
and temperature variations. Wavelength data is frequently used as an alternative to
angular modulation and additionally enables the use of LSPR-based sensors.

In conclusion, deep learning-assisted spatial SPR sensors hold immense potential for
diverse applications, including online quality control, anomaly detection, and bio-

*https://github.com/MLResearchAtOSRAM/tmm_fast
"https://github.com/facebookresearch/sam2


https://github.com/MLResearchAtOSRAM/tmm_fast
https://github.com/facebookresearch/sam2
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fouling quantification. However, realizing this potential hinges on carefully designed
experiments that yield high-quality data. Furthermore, incorporating orthogonal
data sources is crucial for more precise determination of the surface state during
calibration. Suitable surface-sensitive techniques include Raman spectroscopy, el-
lipsometry, and impedance spectroscopy. Coupling these methods can improve
knowledge on the observed state during training. This information together with the
presented methods can simplify sensor development and improve performance.






Chapter 7

Zusammenfassung in deutscher
Sprache

Diese Arbeit gibt einen Einblick in das Potenzial kamerabasierter Oberflachen-
plasmonenresonanzsensoren, wenn der raumliche Sensor durch die Modulation von
Sensorreaktionen durch laterale Modifikation der Oberflaichenparameter oder der
Eingangsbeleuchtung genutzt wird. Diese Modifikationen erzeugen eine komplexe
Sensorantwort und miissen daher mit einer geeigneten Signalverarbeitung gekop-
pelt werden. Die Modellierung der Sensorantwort mit Hilfe von Fresnel-Formeln
ermoglicht eine genaue Bestimmung des Sensoroberflichenzustands und erhoht so
die Konfidenz in gemessene Werte. Alternativ konnen datenbasierte Modellierungs-
ansitze angewandt werden, die eine Anndherung eines physikalischen Modells an
aufgenommene Daten ersetzen konnen, aber durch die Daten, auf denen sie trainiert
werden, begrenzt sind.

Es wurde untersucht, wie insbesondere tiefe neuronale Netze, die auf die Bildverarbei-
tung spezialisiert sind (CNNs), fiir die qualitative oder quantitative Bewertung von
Analyten mit Hilfe eines Rezeptor-Arrays auf einer SPR-Oberfléche eingesetzt werden
konnen. Insbesondere zeigt dieser Ansatz starke Generalisierungsfiahigkeiten, die
auch bei unbekannten (unkalibrierten) Sensoren, die fir dieselbe Aufgabe verwendet
werden, wirksam sind. Vorldufige Experimente deuten darauf hin, dass Genauig-
keitssteigerungen moglich sind, wenn bei der Verarbeitung Daten von verschiedenen
Zeitpunkten wahrend der Bindung verwendet werden.

Zusammenfassend lasst sich sagen, dass rdumliche SPR-Sensoren mit Hilfe von
tiefen neuronalen Netzen immenses Potenzial fiir verschiedene Anwendungen haben,
darunter Online-Qualitatskontrolle, Erkennung von Anomalien und Quantifizierung
von Biofouling. Die Realisierung dieses Potenzials hiangt jedoch von sorgfaltig
geplanten Experimenten ab, die qualitativ hochwertige Daten liefern. Dariiber
hinaus ist die Einbeziehung orthogonaler Datenquellen entscheidend fiir eine genauere
Bestimmung des Oberflichenzustands wahrend der Kalibrierung. Zu geeigneten
oberflachensensitiven Techniken gehoren Raman-Spektroskopie, Ellipsometrie und
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Impedanzspektroskopie. Die Kopplung dieser Methoden kann das Wissen tiber den
beobachteten Zustand wahrend des Trainings verbessern. Diese Informationen kénnen
zusammen mit den vorgestellten Methoden die Sensorentwicklung vereinfachen und
die Leistung des Sensors in der Anwedung verbessern.
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A Miscellaneous

A.1 Surface Plasmon Dispersion Relation

The reflectance for p-polarised light at an interface between medium 1 and medium
2 (Fresnel’s tangent law) is [1, p. 40]:

2

tan (01 — 82)
tan (81 + 92>

(A.1)

We can distinguish between two extreme cases: [2]

1. 614 0y = 7/2: the denominator approaches infinity, the reflected light vanishes
(Brewster angle)
2. 0y — 0y = w/2: the nominator approaches infinity, the reflected light approaches

infinity, implying resonance

The second case implies:

cos ] = —sin b,
With Snell’s law:
sin 6, N9
tan ) = —; = ——
— Sln 92 ny

And trigonometric relations (see Figure 2.2):

k:vl
kzl

tanf, =

F =r2+r2= ie

Rearrangement yields:

A
€2
ky = 2, [ (A.2)
cl\ e+ €
2
by = 24— (A.3)
cV e+ e

From Equation A.2 and Equation A.3 we can see that when €5 becomes smaller than
—é€1, k, is purely imaginary while k, is real (the relative permittivity of metals is in
general complex with a large negative real part). That means the electromagnetic
wave is travelling parallel to x and exponentially decays in z-direction.
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Fig. A1l. Dispersion relations for a three-phase setup, where metal-dielectric (solid
line) is the dispersion relation for surface plasmons excited on the interface between
metal and dielectric and the lines relate to the dispersion relation of light propagating
through glass at different angles towards the surface. Light passing through glass can
excite surface plasmons by selecting appropriate angles (e.g. 60° here) so that the
wave vector of the incident light and the surface plasmons match, i.e. they intersect.

Note that, in general, the permittivity of the metal is a complex quantity and there
is a significant imaginary part towards the surface plasmon frequency wy, given by:
Wp

Vite

wsp ==

where w),, is the bulk plasma frequency which can be calculated with the Drude model

3]:

n 62 w2
—1-— _=1-2 A4
W =1- s =1 (A4)

With electron density n., elementary charge e, and m* electron mass.

Substituting Equation A.4 into Equation A.2, we get the dispersion relation for
surface plasmons (see Figure Al).

A.2 Temperature and wavelength dependant Sellmeier equa-
tion

The wavelength dependant Sellmeier equation is:

B2 By\? B3 \?
no()\):\/l—i—)\z_cl+/\2_02+)\2_C3 (A.5)
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with the wavelength A and the Sellmeier coefficients B and C'. The temperature

coefficient of the refractive index is:

() 1
2710()\)

2
(DOAT + DIAT? + D3AT® + EOAAQT - f;lAT > (A.6)
 \TK

An(\,T) =

with AT the temperature difference to reference temperature 20 °C, the wavelength
coefficient Arx and the temperature coefficients D and F.
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B Supporting Information

B.1 SI: Characterising Surface Plasmon Resonance Imaging
for Biosensing

B.1.1 Experimental

All measurements were performed using a setup as described in section B.2 unless
stated otherwise.

Noise Measurements. Data for allan deviation was obtained by collecting image
data from an SPR setup with a 730nm LED (LZ1-00R302, Osram, Germany), a
suitable wavelength filter (centre wavelength 730 nm with a 10nm full width at half
maximum, Thorlabs, UK) and a motorised polariser illuminating a SF2 prism with
s-polarised light. The image was collected with a IMX178 sensor and a objective lens
with a distance ring increasing the back focal length and thus magnification of the
image. Noise was determined with the help of the overlapping allan deviation [4].

Objective Lens. The f# of the objective lens was adjusted as well as a 2x focal
length extender was introduced between camera and objective lens while imaging
the surface of a prism where small rectangular mirrors were deposited. These
mirrors were created by vapor deposition of an additional 200 nm of gold onto the
plasmonic surface so the plasmons are quenched. The surface was illuminated with
p-polarised light at a dielectric of air against the sensor surface (resulting in weak
contrast between mirrors and gold surface). Sharpness was measured with the help
of acutance defined by the brightness change over pixel change of the mirrors where
relative acutance measures the ratio of the gradients of the mirrors towards the edge
of the prism to the maximum gradients. The contrast is calculated by taking the
mean intensities of the mirror surface area and the regular surface and computing
the contrast like so:
Imcm: - Imzn

[max + Imm

Receptor Thickness. Receptors were deposited using a dispenser (Musashi Shot-
Mini 200 Sx, Musashi, Japan). This device operates by pushing the dispensing
medium through a needle with the help of air pressure. As such, there are several
parameters influencing the droplet formed during dispensing: dispensing pressure,
dispensing time, needle diameter, and medium viscosity. Additionally, the droplet
may be deposited onto the surface when the needle is in close proximity to the
substrate or get expelled from the needle when the distance is large. First, dispensing
characteristics were determined: the dispensed volume per shot was calculated by
repeatedly applying 20 kPa for 0.05s until a droplet is expelled from a needle with
0.06 mm inner diameter. The droplet volume was determined with a microscope
objective attached to a high-speed camera (VH-Z20R and VW-6000, Keyence, Japan).
The dispensed volume per shot can then be calculated by dividing the droplet volume
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by the amount of shots needed to form a droplet. The resulting volume was calculated
to 0.12mm?. The 2D materials Graphene oxide (GO), reduced graphene oxide (rGO),
boron nitride (BN), and MoS;MoOj3 were evaluated. These materials were provided
by Patrick Recum who synthesised the graphene based materials while the others
were purchased. Various solvents (1-Methyl-2-pyrrolidon, water and 2-propanol) and
the material concentrations resulted in quite diverse viscosity liquids. The graphene
solutions were gradually diluted to a concentration of approximately 0.02gL™!. The
dispensed material was then imaged with the SPR setup and the angle was varied in
1° steps while the intensity was recorded as an average over the dispensed areas.

Oil Classification. Plant oils were mixed to create different refractive index
solutions with a diverse set of components. Almond oil was used as a base and
cinnamon oil was added until the refractive index measured with a refractometer
(DR6000, Kriiss, Germany) fell into one of three values: 1.4735, 1.4740, and 1.4745.
Cedar oil was also used to create a mixture with almond oil to a refractive index
of 1.4740. The different oils were analysed with two different prisms, where on
one of them 2D materials were dispensed as is, while on the other diluted material
solutions were used. Each receptor was spotted 10 times on the sensor surface. The
different oils were pumped over the functionalised surfaces for 25 minutes each at
least three times commutating the order in which the oils were presented to the
sensor. Steady state data of the last two minutes before changing analyte was used
for further processing. Every data point consists of six regions of interest for every
receptor type, where the measured intensity was averaged over the pre-defined regions.
Since there were four different receptor types used (rGO, MoS;/MoO3, GO, BN), a
24-dimensional vector was acquired for every time step. The first two repeats of the
analyte solutions were used to train a random forest classifier, while the last one was
used to test the accuracy of the classifier.

B.1.2 Noise and Detector Configuration

The overlapping allan deviation was acquired for the detector without illumination by
using averages over a set of pixels (see Figure Bl a). The deviation roughly follows a
1/4/7 relationship which means that it is dominated by Gaussian noise and longer
integration generally decreases noise until thermal fluctuations change this dynamic.
With added illumination this picture changes (Figure B1 b), the light source in use
is also subject to flicker noise (o< 7), which decreases the benefit of longer integration
times. Spatial averaging decreases noise approximately as expected with the number
of pixels that are averaged N (o< v/N) with diminishing returns for very large regions.

Field of view, lateral resolution and depth of field cannot be maximised collectively
as a sensor geared towards lateral resolution will have a limited depth of field. The
optical system used throughout this work was configured so that field of view and
depth of field were optimised under constraints of space and readily available lenses.
Depth of field was characterised with the help of acutance and contrast of the image
edges relative to the middle, which was put in focus. Acutance was calculated via
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Fig. B1. Overlapping allan deviation calculated for the camera sensor without
illumination (a) and with illumination (b) for different rectangular sizes of image
subsets.
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Fig. B2. The optical setup was tailored towards large field of view so that the
entire sensor can be imaged (a). With a decrease of aperture (which relates to larger
f#) the edges of the image become more focussed as the DOF increases (b). This
affects image resolution while contrast is unaffected (c). Acutance and contrast were
calculated for an objective lens with 150 mm and the same objective lens with a 2x
focal length extender. 50 mm and 100 mm lenses performed worse (not shown).

the image gradient and contrast was determined with structure intensity minima
and maxima where the structure was generated with the help of mirrors on a regular
sensor surface. Acutance can be understood as a measure of image sharpness, which
should be as homogeneous as possible for the entire surface which can be quantified
with a relative metric like in Figure B2 b. Since the contrast is unaffected by the
different aperture sizes and the focal length extender, the optimum f# of 5.6 together
with a focal length extender was chosen for most measurements to achieve a large
field of view and a high depth of field.
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Fig. B3. 2D materials have been dispensed on top of a SPR sensor surface. The
solvent, concentration and the dispensing parameters have an effect on the size of
the dispensed spots and their thickness. The heterogeneous materials can be very
different from the gold surface in terms of SPR response (a). Iteratively, the 2D
material concentration was optimised to achieve very thin layers on top of gold which
results in a small shift of the SPR curve (b) so that sensitivity is maximised at a
similar angle.

B.1.3 Receptor selection

Different 2D materials were evaluated using a dispenser to spot the materials onto a
gold-coated glass prism. Solvent and receptor concentration as well as the dispenser
parameters (dispensing pressure and time, needle diameter) had to be optimised
for all the different materials. Graphene oxide, reduced graphene oxide, boron
nitride, and MoSs/MoOj3 were evaluated. Due to the different solvents (NMP,
H,0O/IPO) dispensing proved to be difficult to control and some materials produced
very inhomogeneous layers (especially MoS,/MoOs).

The materials were diluted to form very thin layers on top of gold and match the
SPR curve as close as possible to the gold surface Figure B3. The diluted rGO and
GO (to approximately 0.02 g L~1) were theoretically sufficient in quantity to produce
more than a single layer over the entire dispensed spot even when accounting for
loss due to the rather strong coffee ring. The different materials were used in a test
setup where two different oils (cinnamon and cedar) were mixed with almond oil to
the same refractive index (as determined with a refractometer). The intensity on
top of the receptors was recorded and a random forest classifier was used to classify
the oils. Through optimisation of the dispensing process and dilution of the receptor
solutions a 50 % improvement in classification accuracy (to approximately 90 %)
was achieved in an independent test set. Feature importance of the GO-derivatives,
their tuneability in oxidisation state, and good matching to the SPR curve of the
gold surface led to the employment of GO and rGO as most viable 2D receptors
(Figure B4).
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Fig. B4. Classification of food oil composition with an array of different 2D materials
(GO and rGO, boron nitride - BN, molybdenum disulfide - MoS,). (Permutation)
feature importance of the ten most important receptor spots indicated in (a) and test
classification confusion matrix in (b). The classes "Ci” and "Ce” refer to cinnamon
and cedar additive to almond oil, respectively. The numbers indicate the last digits
of the refractive index that was measured with a refractometer.

This does not necessarily mean that the 2D materials have any affinity to the plant
oil components but the sensitivity may have been increased due to the optimised
layer thickness of the 2D materials.

B.2 SI: Semi-Selective Array for the Classification of Purines
with Surface Plasmon Resonance Imaging and Deep
Learning Analysis

Data was gathered with an adjustable SPR setup built in-house as described in detail
elsewhere [5]. Briefly, a red LED (WL-SMDC 660 nm, Wiirth Elektronik, Germany)
with a collimator lens (50 mm focal length, Edmund Optics, UK), wavelength filter
(660 nm with 10 nm full width half maximum (FWHM), Edmund Optics) and polarizer
(Edmund Optics) were used for illumination. The LED current was supplied by a
2636B Source Meter (Keithley, Germany). A FLIR BFS-U3-63S4 camera (FLIR,
Germany) with a fixed focal length camera lens (Edmund Optics) and a 2x lens
extender (Computar EX2C, Computar, USA) were used. A 3D-printed aluminum
flow cell with a silicone sealing was fixed to the prism surface. A peltier was attached
to the flow cell to control the medium and flow cell temperature. A peristaltic pump
(Cole-Parmer GmbH, Germany) was used to pump the analyte-solutions over the
sensor surface. The LED current was set to 10 mA, temperature of the flow cell was
set to 21 °C, the objective’s aperture was 5.6/f, and the exposure time 10 ms.
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Fig. B5. Components and arrangement of the custom-built measurement setup for
SPR imaging.

Brightness variations and masking were deliberately introduced in augmentation to
reduce the effects of interferences often present in online monitoring i.e., fluctuations
of the light source or emerging air bubbles. Similarly, temperature variations can
be introduced during training to eliminate their impact on classification. As an
alternative, reference structures may be introduced onto the sensor surface to calibrate
for temperature drifts.

Hardware and software packages:
GPU device: NVIDIA GP102 (TITAN Xp) driver: nvidia v: 470.161.03
Cuda compilation tools, release 11.3

DL pipeline packages: Python 3.8.10, Pytorch 2.0.0, Pytorch-lightning 2.0.1, Kornia
0.6.11, Captum 0.6.0, Torchmetrics 0.11.4, Optuna 3.1.1
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Fig. B6. a) Measurement and repetitions — each analyte is presented to the sensor
after a washing step. The measurement cycle is repeated for all analytes, twice
for every prism. Each prism was measured three times; b) Measurements for the
third prism on the last repetition were not possible due to a fracture. Prism 3 was
used for test data. Measurements from prisms one and two were used as training
and validation data with cross-validation as shown; c¢) Regions of interest on sensor

image - yellow ellipses lie on receptor spots, green ellipses on the gold surface close

to receptor spots. ROIs are smaller than the receptors but uniform in size. Here
rGO content increases from left to right.
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Fig. B7. Time-dependent Raman spectra, taken during the reduction of GO. The

rising and then decreasing intensity ratio of D- to G-bands indicates a far-reaching
reduction to rGO.



118 Appendices

Tab. B1. Model hyperparameters, where no parameter value is given, scikit-learn
or pytorch defaults were used.

Hyperparameter Baseline CNN  (classifica- CNN (regres-
Model tion) sion)

Data setup Scale -

Mean setup Mean -

Brightness 0.49 0.3 0.3

Estimators 265 -

Criterion Entropy -

Min samples split  0.013 -
Min samples leaf 10 -

Max features log2 -
Ccp alpha 0.015 -
Bootstrap False -

Class weight - -
Max samples - -

Ndim - 3 3

Img size - 480 x 260 800 x 680
Batch size - 16 8
Learning rate . 8.8 x 1076 1x107°
Weight decay - 0.0063 0.0063
Model - ResNeXt 50 32 x 4d ~ ConuvNext
Pretrained - True True

# epochs - 20 20

Tab. B2. Classification accuracies for different datasets and models. The standard
deviation for the different accuracies was calculated on the validation folds. The tree
models reach about 50% test accuracy while showing large variance in the validation
sets, which indicates overfitting on the training set. The CNN model outperforms
the tree-based models. The blank and masked accuracies refer to a prism without
receptors and digitally masked receptors respectively. Both accuracies are expected
to be low. The permuted accuracy is the model accuracy when experiment order is
changed.

Model Accuracies / %
Training Valida- Test Blank  Masked Per-
tion muted
Tree model recep- 83 +1 68 + 15 4944 - - -
tor ROIs
Tree model gold 8142 67+19 48+ 7 - - -
ROIs

CNN (water) 89 +1 85+ 10 Tr+6 32+12 41+10 76+4
CNN (urine) 94 +2 69+ 3 67+3 - - -
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Fig. B8. Morphology of GO/rGO spots: microscopic images of individual spots
with Raman spectra collected as line scans across 400 pm as indicated.
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rGO ratio
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Fig. B9. (Left) Sensitivity map of the sensor surface, where the color represents
the position of the maximum slope of the SPR curve for every pixel; The angle of
incidence increases from top to bottom, causing a shift of the SPR curve towards
different incident angles and measured intensities. (Right) SPR curves of different
positions on the sensor surface, exemplary for one sensor. The curves are averaged
over the length of the prism and normalized by their intensity in s-polarization. The
dotted line shows the operating angle for the following measurements on this SPRi
system.
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Caffeine Adenine

Uric Acid Oxipurinol

Fig. B10. Mean SHAP values for the test data as a measure for feature importance.
The most important features are class-dependent, and the receptor spots are distinctly
visible. High SHAP values aside of the receptor spots for the classification of caffeine
indicate stronger matrix effects compared to other purines.
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Relative Grey Value

Appendices
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Fig. B11. Exemplary measurement curves used for purine classification in Millipore
water and in synthetic urine. Urine samples are spiked with purine dissolved in
Millipore, resulting in a slightly lower refractive index, visible as signal jumps before
and after purge-steps with analyte free urine.
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C.1 CreaVac

Qualitdtspriif-Zertifikat DIN 55 350-18-4.2.1

Kunde Ostbayrische Techni

Technologie NiCr-Au

Bezeichnung

ha Harherhila D

g 9

Creavac - Creative Vakuumbeschichtung GmbH
Sporbitzer Ring 9

D - 01259 Dresden

Produkt

Schichtsystem Stiick

Glasprismen montiert

NiCr 6 nm + Au 43 nm 10

Eingangskontrolle

erfolgte nach Ident-Priifung DIN ISO 2859-1 Priifniveau Il auf folgende Merkmale: Verschmutzungen, Oberfldchenfehler

Ausgangskontrolle Lieferschein-Nr. 2330117
Priifmethode Priifgerdt
Schichtdickenbestimmung mittels Rontgenfluoreszenz Fischerscope ®XAN 250
Bemerkungen: Die Messung der Schichtdicke erfolgte auf den Substraten als 3-fach Bestimmung. Angegeben sind die jeweiligen Mittelwerte der
Messungen.

o Sohichidicl ‘ NiCr ‘ Au

Messposition 1 19 49,9

Messposition 2 2,56 419

Unterschrift 0S

28.03.2023
Datum

Dieses Dokument wurde elektronisch erstellt und ist auch ohne Unterschrift giiltig.
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C.2 Schott Glass SF2

Data Sheet SCHOTT

SF2 ng = 1.64769 vq= 33.85 ne -nc = 0.019135
648339.386 ne = 1.65222 v. = 33.60 Ng - Ne = 0.019412
Refractive Indices Internal Transmittance g Relative Partial Dispersion
A [nm] % [nm] | 7 [10mm] 7 [25mm] Ps 0.2233
Noasa 2325.4 1.61003 2500 0.830 0.620 Pes 0.4813
Nig701 1970.1 1.61494 2325 0.870 0.710 Pac 0.2923
Nis206 1529.6 1.62055 1970 0.950 0.880 Ped 0.2367
N10s0.0 1060.0 1.62766 1530 0.994 0.985 Pyr 0.5886
n, 1014.0 1.62861 1060 0.998 0.996 Pin 0.9376
ng 852.1 1.63289 700 0.998 0.996
n 706.5 1.63902 660 0.998 0.994 [ 0.2201
ne 656.3 1.64210 620 0.998 0.995 P'es 0.5196
ne 643.8 1.64297 580 0.998 0.995 Plyc 0.2430
Neazs 632.8 1.64379 546 0.998 0.995 Pleg 0.2334
np 589.3 1.64752 500 0.997 0.993 Py 0.5209
ng 587.6 1.64769 460 0.995 0.988 P'in 0.9242
ne 546.1 1.65222 436 0.993 0.982
ne 486.1 1.66123 420 0.990 0.975 Deviation of Relative Partial Dispersion
ng 480.0 1.66238 405 0.985 0.962 AP from the normal line
ng 435.8 1.67249 400 0.981 0.954 AP, -0.0009
Ny 404.7 1.68233 390 0.967 0.920 AP -0.0005
n; 365.0 1.70027 380 0.950 0.870 AP, 0.0004
N3341 334.1 370 0.910 0.790 APy 0.0017
3126 312.6 365 0.880 0.720 AP,y 0.0112
Nage7 296.7 350 0.670 0.370
N2g0.4 280.4 334 0.110 Other Properties
Nouss 248.3 320 somroec [10°/K] 8.4
310 azonaooec [10°9/K] 9.2
Constants of Dispersion Formula 300 Ty [°C] 441
B, 1.40301821 290 T [C) 428
B, 0.231767504 280 Tio ®[°C] 600
Bs 0.939056586 270 ¢, WI(gK)] 0.498
c, 0.01057954660 260 A [W/(meK)] 0.735
c, 0.0493226978 250
Cs 112.4059550 p lg/em®] 3.86
E [10° N/mm?] 55
Constants of Formula for dn/dT Color Code n 0.227
Do 1.10E-06 hao ! hs 37/33 K [10°® mm?/N] 2.62
D, 1.75E-08 (*= Mo/hs) HKo.120 410
D, -1.29E-11 Remarks HG 2
Eo 1.08E-06 lead containing glass type
E, 1.03E-09
A [Um] 0.249
CR 1
Temperature Coefficients of the Refractive Index FR 0
An/AT [10°/K] ANapg/AT [10°°7/K] SR 2
[°c] 1060.0 e g 1060.0 e g AR 2.3
-40/-20 2.3 4.0 6.0 0.1 18 3.7 PR 2
+20/+40 2.7 46 6.9 13 32 5.4
+60/+80 3.1 5.2 76 2.0 41 6.4

As of 01-Feb-2014 , subject to change
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C.3 Camera Datasheet

SPECS BFS-U3-6354M-C BFS-U3-6354C-C
Resolution 3072 x 2048

Frame Rate* 59.6 FPS

Megapixels 6.3 MP

Chroma Mono Color
Sensor Sony IMX178, CMOS, 1/1.8"

Readout Method Rolling shutter with global reset

Pixel Size 2.4 pum

Lens Mount C-mount

ADC 10-bit / 14-bit

Minimum Frame Rate** 1FPS

Gain Range** 0to 47 dB

Exposure Range** 8usto30s

Acquisition Modes

Continuous, Single Frame, Multi Frame

Partial Image Modes

Pixel binning, decimation, ROl

Image Processing

Color correction matrix, gamma, lookup

Gamma, lookup table, and sharpness table, saturation, and sharpness

Sequencer Up to 8 sets using 5 features, including image size
Image Buffer 240 MB
User Sets 2 user configuration sets for custom camera settings

Flash Memory

6 MB non-volatile memory

Opto-isolated 1/0

1 input, 1 output

Non-isolated I/0

1 bi-directional, 1 input

Auxiliary Output

3.3V, 120 mA maximum

Interface

USB 3.1 Gen 1

Power Requirements

8-24V via GPIO or 5 V via USB3 interface

Power Consumption

3W maximum

Dimensions/Mass

29 mm x29mm x30mm /36 g

Machine Vision Standard

USB3 Vision v1.0

Compliance

CE, FCC, KCC, RoHS, REACH. The ECCN for this product is: EAR099.

Operating: 0°C to 50°C

Temperature Storage: -30°C to 60°C
Humidity Operating: 20% to 80% (no condensation)

Storage: 30% to 95% (no condensation)
Warranty 3 years

*Frame rates are measured with Device Link Throughput Limit of 380 MBps and Acquisition Frame Rate disabled.

**Values are the same in binning and no binning modes.

CANADA

12051 Riverside Way
Richmond, BC, Canada
VBW 1K7

T: +1 866.765.0827 (toll free)
T: +1 604.242.9937

F: +1604.242.9938

E: mv-sales@flir.com

USA
T: +1 866.765.0827 (toll free)
E: mv-na-sales@flir.com

www.flir.com/mv

$FLIR

EUROPE

T: +49 7141 488817-0
F: +49 7141 488817-99
E: mv-eusales@flir.com

CHINA

T: +86 10 8215 9938

F: +86 10 8215 9936

E: mv-chinasales@flir.com

ASIA
E: mv-asiasales@flir.com

The World's Sixth Sense®

wwwflir.com
NASDAQ: FLIR

©2019 FLIR® Integrated Imaging Solutions Inc. Al rights reserved
Names and marks appearing on the products herein are either
registered trademarks or trademarks of FLIR® Systems, Inc. and/or its
subsidiaries. Specifications are subject to change without notice

VN: BFS-U3-6354-v3

FIND THE BEST BLACKFLY §
FOR YOUR NEEDS
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C.4 Objective Lens

8) Edmund

optics | worldwide

Optical

Horizontal Field of View, 1/2" Sensor: 254mm - 14.5°
Horizontal Field of View, 2/3" Sensor: 35mm - 19.8°
Horizontal Field of View, 1/3" Sensor: 19mm-10.9°
Maximum Image Circle (mm): 11.00
Numerical Aperture NA, Object Side: 0.0706
Horizontal Field of View @ Max Sensor Format: 36.5mm - 19.8°
Horizontal Field of View, 1/1.8" Sensor: 29.9mm - 16.2°
Horizontal Field of View, 1/2.5" Sensor: 24.0mm-13.1°
Focal Length FL (mm): 25.00

Primary Magpnification PMAG: 0.243
Maximum Sensor Format: 2/3"

Working Distance (mm): 100 -
Aperture (f/#): f1.4-116
Coating Specification: 425 -1000nm BBAR
Entrance Pupil Position (mm): 17.14
Horizontal Field of View, 1/4" Sensor: 14.9mm - 8.2°
Object Space Principal Plane (mm): 18.74

Image Space Principal Plane (mm): -12.43

Field of View at Max Sensor Format:

Horizontal: 36.6mm - 19.8°
Vertical: 27.4mm - 14.9°
Diagonal: 45.9mm - 24.6°

Maximum Distortion (%): 0.22

Exit Pupil Position (mm): 1414

Lens Wavelength Range: VIS-NIR
Mechanical

Iris Option: Variable

Length (mm): 30.50

Filter Thread: M25.5 x 0.50 (Female)
Maximum Diameter (mm): 31

Weight (9): 48

Maximum Rear Protrusion (mm): 1.39

Number of Elements (Groups): 7 (6)

Mount: C-Mount

General

Type: Fixed Focal Length Lens

38 Edmund

optics | worldwide

#67-715
Subject to technical modifications (21-09-2023)

101 East Gloucester Pike, Barrington, NJ 08007-1380 USA
:1-800-363-1992 or 1-856-573-6250, Fax: 1-856-573-6295
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C.5 OSRAM LED

LZ1-00R302 OSRAM

DATASHEET

Relative Spectral Emission 4
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