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Abstract
The Cauchy problem for the massive Dirac equation is studied in the Reissner–
Nordström geometry in horizon-penetrating Eddington–Finkelstein-type coordinates.
We derive an integral representation for the Dirac propagator involving the solutions
of the ordinary differential equations which arise in the separation of variables. Our
integral representation describes the dynamics of Dirac particles outside and across
the event horizon, up to the Cauchy horizon.
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1 Introduction

The Dirac equation in curved spacetime describes the dynamics of quantum mechan-
ical waves in the presence of classical gravitational fields. The propagation of Dirac
waves in black hole geometries is of particular interest with respect to Hawking radi-
ation, the stability of black holes and the fermionic signature operator. So far, this
problem has been studied mainly in the exterior region of the black hole [6, 7].
Here we turn attention to the behavior of Dirac waves across and inside the event
horizon. We consider the Reissner–Nordström geometry, which describes a spheri-
cal symmetric and charged black hole. Our starting point is the Dirac equation in
Eddington–Finkelstein coordinates as derived in [16]. Our main result is to derive a
corresponding integral representation of the propagator

ψ(τ) = e−iτ H ψ0 =
∫

σ(H)

e−iωτ dEωψ0 ,

where dEω is the spectral measure of the Dirac Hamiltonian H , and ψ0 is smooth
initial data with compact support. We express the spectral measure explicitly in terms
of the fundamental solutions of the radial ordinary differential equation (ODE) arising
in Chandrasekhar’s separation of variables (see Theorem 5.5). We remark that similar
results have been derived previously in the Kerr geometry [12]. The novel feature
of the present paper is the charge of the black hole. Moreover, we work out the
integral representation in more detail and simplify the formulas considerably. Our
integral representation will be used in a follow-up paper to compute the spectrum of
the fermionic signature operator [9].

The paper is organized as follows. In Section 2 we give the necessary preliminar-
ies on the Dirac equation in globally hyperbolic spacetimes and on its separation in
the Reissner–Nordström geometry in Eddington–Finkelstein-type coordinates. In Sec-
tion 3 we introduce Dirichlet-type boundary conditions inside the Cauchy horizon and
show that the resulting Hamiltonian is essentially self-adjoint. Moreover, we express
the spectral measure via Stone’s formula in terms of the resolvent. In Section 4 the
resolvent is computed in terms of the fundamental solutions. To this end, we construct
Jost solutions and use the conservation law for the radial flux in order to compute the
Green’s matrix. In Section 5 we use the obtained formulas for the resolvent in order
to express the spectral measure explicitly in terms of the fundamental solutions. This
gives the simple and useful analytic expression for the Dirac propagator as stated in
Theorem 5.5.
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2 Preliminaries

2.1 The Dirac equation in a globally hyperbolic spacetime

We begin with preliminaries on the Dirac equation in globally hyperbolic spacetimes,
following the presentation in [10]. Thus, let (M, g) be a four-dimensional, smooth,
globally hyperbolic Lorentzian spin manifold. For the signature of the metric we use
the convention (+,−,−,−). As proven in [1],M admits a smooth foliation (Nτ )τ∈R
by Cauchy hypersurfaces. We denote the corresponding spinor bundle by SM. Its
fibers SxM are endowed with an inner product≺.|.�x of signature (2, 2). The smooth
sections of the spinor bundle are denoted by C∞(M, SM). Likewise, C∞

0 (M, SM)

are the smooth sections with compact support. We also refer to these sections as wave
functions and usually denote them by ψ or φ. On the wave functions, we introduce
the Lorentz invariant inner product

〈 · | · 〉 : C∞(M, SM) × C∞
0 (M, SM) −→ C,

〈ψ | φ 〉 :=
∫
M

≺ ψ | φ �x dμM.

We consider the Dirac equation for a given mass parameter m ≥ 0. We write the Dirac
equation as

(D − m)ψ = 0 , (2.1)

where the Dirac operator takes the form

D = iGk∂k + B : C∞(M, SM) −→ C∞(M, SM) ,

andGk : TxM −→ L(SxM) are theDiracmatrices. They fulfill the anti-commutation
relations

{G j , Gk} = 2 g jk 1Sx M .

One can understand this map as a representation of the Clifford multiplication in
components of the general Dirac matrices. We will use the Feynman dagger notation
reading /ν = G jν j . The connection part of the covariant derivative is summarized in the
termB. We remark that the Dirac equation can be written alternatively asD = iG j∇ j ,
where ∇ is the Levi-Civita spin connection on SM. For more details on the Dirac
equation in curved spacetimes, we refer to [10] or [17].

Given initial data on a Cauchy surface, the Dirac equation admits unique global
solutions. Choosing compactly supported initial data, due to finite propagation speed,
the resulting solution also has compact support on any other Cauchy surface. Such
solutions are referred to as being spatially compact. The smooth, spatially compact
solutions are denoted by C∞

sc (M, SM). On such solutions, one has the scalar product

( ψ | φ ) =
∫
N

≺ ψ | ν j G j φ�x dμN(x) , (2.2)
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where ν is the future directed-normal on N . (Due to current conservation, the scalar
product is in fact independent of the choice of N ; for details see [10, Section 2].)
Forming the completion gives the Hilbert space (H, ( · | · )).

In this paper, we restrict attention to stationary spacetimes, meaning that there is a
Killing field K which is asymptotically timelike (for the general definition see [18]).
We always choose the foliation (Nτ )τ∈R such that the Killing field is given by K = ∂τ .
In this case, it is useful to write spacetime as a product M = R × N . Moreover, we
can write the Dirac equation in the Hamiltonian form

i∂τψ = Hψ with H := −(Gτ )−1
(

i
3∑

α=1

Gα∂α + B − m

)
, (2.3)

where the Hamiltonian H is an operator acting on H with dense domain

D(H) = C∞
0 (N, SM) .

Lemma 2.1 In a stationary spacetime, the Hamiltonian H with domain D(H) is a
symmetric operator on H.

Proof Since the scalar product in (2.2) is independent of the choice of the Cauchy
surface, we know that for all ψ, φ ∈ D(H),

0 = ∂τ (ψ |φ) .

Since the Dirac matrices Gk , as well as the normal vector field ν and the volume form,
do not depend on τ , we only need to differentiate the wave functions. We thus obtain

0 = (∂τψ |φ) + (ψ |∂τφ) = −i
(
(Hψ |φ) − (ψ |Hφ)

)
.

This concludes the proof. ��

2.2 The Dirac equation in the Reissner–Nordström geometry

Wework in Eddington–Finkelstein coordinates (τ, r , ϑ, ϕ) in the range R× (0,∞)×
(0, π) × [0, 2π) as defined in [2, 16]. In these coordinates, the metric takes the form

g = 


r2
dτ ⊗ dτ −

[
2 − 


r2

]
dr ⊗ dr −

[
1 − 


r2

](
dτ ⊗ dr + dr ⊗ dτ

)

− r2 dϑ ⊗ dϑ − r2 sin(ϑ)2 dϕ ⊗ dϕ (2.4)

with 
 ≡ 
(r) = r2 − 2Mr + Q2 and τ = t + u − r . Here u is the Regge–Wheeler
coordinate (“tortoise coordinate”) which is defined in terms of r by

du

dr
= r2



. (2.5)
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The zeros of the function 
 denoted by

r± = M ±
√

M2 − Q2

describe the event horizon and Cauchy horizon, respectively. The region {r > r−}
outside the Cauchy horizon is a globally hyperbolic spacetime. The interior of the
Cauchyhorizon {r < r−}, however, is not globally hyperbolic because of the spacetime
singularity at r = 0. Our spacetime has the topology M ∼= R

2 × S2.
In [16] the Dirac equation was computed and separated in a specific gauge in which

the Dirac matrices are in the Weyl representation. Starting from this representation, it
is most convenient to transform the Dirac wave function and the Dirac operator as

� = D ψ (2.6)

�trafo D (D − m) D−1 � = (R + A)� = 0 (2.7)

with the transformation matrices

D :=
√

r

r+

⎡
⎢⎢⎣

|
|1/2 0 0 0
0 r+ 0 0
0 0 r+ 0
0 0 0 |
|1/2

⎤
⎥⎥⎦ , �trafo := r

⎡
⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ .

HereR and A are the radial and angular operators given by

R :=

⎡
⎢⎢⎣

irm 0 |
|1/2D0 0
0 −irm 0 |
|−1/2D1

|
|−1/2D1 0 −irm 0
0 |
|1/2D0 0 irm

⎤
⎥⎥⎦ (2.8)

A :=

⎡
⎢⎢⎣

0 0 0 L+
0 0 −L− 0
0 L+ 0 0

−L− 0 0 0

⎤
⎥⎥⎦ , (2.9)

where the linear operators D0/1, L± : C∞(M, SM) −→ C∞(M, SM) have the
from

D0 := − (
∂τ − ∂r

)
(2.10)

D1 := (2r2 − 

)
∂τ + 
∂r (2.11)

L± := ∂ϑ + cot(ϑ)

2
∓ i csc(ϑ)∂ϕ . (2.12)

In this formulation, the spin inner product takes the form

≺ψ |φ�x = −〈�,

(
0 1C2

1C2 0

)
�〉C4 . (2.13)
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Employing the separation ansatz

� = e−i(k+ 1
2 )ϕ 1

r+

⎡
⎢⎢⎣

X+(τ, r) Yl(ϑ)+
r+ X−(τ, r) Yl(ϑ)−
r+ X−(τ, r) Yl(ϑ)+

X+(τ, r) Yl(ϑ)−

⎤
⎥⎥⎦ with ω ∈ R and k, l ∈ Z , (2.14)

we obtain the eigenvalue problems

R� = ξ� and A� = −ξ�

with a separation constant ξ . In this way, the Dirac equation decouples into a radial
and angular ODE of the form

[
(2r2 − 
) ∂τ + 
∂r |
|1/2(imr − ξ)

−ε(
)|
|1/2(imr + ξ) −
(∂τ − ∂r )

](
X+(τ, r)

r+ X−(τ, r)

)
= 0 (2.15)

([
0 L−

−L+ 0

]
− ξ 1C4

)(
Yl(ϑ)+
Yl(ϑ)−

)
= 0 (2.16)

where

ε(x) =

⎧⎪⎨
⎪⎩
1 if x > 0

0 if x = 0

−1 if x < 0

(2.17)

is the sign function. In view of (2.12), the angular operator in (2.16) does not
involve τ -derivatives. (Note that this is no longer the case in the Kerr geometry.)
This angular operator is an essentially self-adjoint operator on L2(S2, C

2) with dense
domain C∞(S2, C

2), having a purely discrete spectrum (for details see [7, Section 3
and Appendix A]). More specifically, the angular operator is the spin-weighted spher-
ical operator for s = 1

2 as analyzed in [15]. We denote the corresponding orthonormal

eigenvector basis by 1
2
Ykl = e−i(k+ 1

2 )ϕ Ykl(ϑ) with l, k ∈ Z, i.e.,

〈
e−i(k+ 1

2 )ϕ Ykl(ϑ), e−i(k′+ 1
2 )ϕ Yk′l ′(ϑ)

〉
L2(S2) = δk,k′ δl,l ′ . (2.18)

Restricting attention to one angular momentum mode, it suffices to solve the
PDE (2.15) in τ and r for ξ = λkl , where λkl denotes the corresponding angular eigen-
value. Since the angular eigenfunctions are orthonormal, the general Cauchy problem
can be solved by decomposing the initial data into angular momentummodes, solving
the PDE (2.15) for each mode and taking the superposition.

Similar to (2.3), the PDE (2.15) can again be written in the Hamiltonian form:

Lemma 2.2 The radial equation (2.15) can be written in the Schrödinger-type form

i∂τ X(τ, r) = Hξ X(τ, r) (2.19)
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with the Hamiltonian Hξ given by

Hξ :=
[
− i

(2r2−
)
0

0 i



]

︸ ︷︷ ︸
=: C−1(r) ∈ M(2,C)

[

∂r |
|1/2(imr − ξ)

−ε(
)|
|1/2(imr + ξ) 
∂r

]
,

where X(τ, r) is the radial part of the wave function from (2.14).

Proof Follows by direct computation. ��
The domain of the radial Hamiltonian in (2.19) will be discussed after Lemma 3.3
below.

Since ∂τ is aKilling field, we canwrite X(τ, r) = e−iωτ X (ω)(r) and get a first-order
radial ODE given by

[ −(2r2 − 
)iω + 
∂r |
|1/2(imr − ξ)

−ε(
) |
|1/2(imr + ξ) 
(iω + ∂r )

](
X (ω)

+ (r)

r+ X (ω)
− (r)

)
= 0 . (2.20)

More details on the previous steps and the asymptotics of the solutions to the radial
ODE (2.20) are worked out in [16]. We here state the main results, which can be
obtained from [16, Theorem 1.1] by setting the angular momentum a equal to zero.

Lemma 2.3 In the case |ω| < m, one solution of the radial ODE (2.20) has exponential
decay and the other one exponential growth for u → ∞.

In the case |ω| > m, on the other hand, the solutions have following asymptotics:

(i) (Asymptotics at infinity) Let w1 ∈ C be the root of ω2 − m2 contained in the
convex hull of R+ and R+ · i and w2 = −w1 the other root, and let

� := 1

4
ln
(ω − m

ω + m

)
,

then there is f∞ := ( f (1)∞ , f (2)∞ )T ∈ R
2\{0} with

X (ω)(u) =
[
cosh(�) sinh(�)

sinh(�) cosh(�)

]⎛
⎝ f (1)∞ ei�+(u)

f (2)∞ e−i�−(u)

⎞
⎠+ E∞(u)

for the asymptotic phases

�±(u) := w1 u + M

(
± 2ω + m2

w1

)
ln(u) (2.21)

and for an error function E∞(u) with polynomial decay. More precisely, there
is c ∈ R+ with

||E∞|| � c

u
.
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(ii) (Asymptotics at the Cauchy horizon) For every non-trivial solution X,

X (ω)(u) =
(

h(1)
r− e2iωu

h(2)
r−

)
+ Er−(u)

with hr− := (h(1)
r− , h(2)

r− )T ∈ R
2\{0}, with Er− such that for r sufficiently close

to r− and suitable constants a, b ∈ R+,

||E−(u)|| ≤ ae−bu .

3 Functional analytic preparations

In this sectionwe bring the scalar product (2.2) into amore explicit form.Moreover, we
set up the Cauchy problem in a way where spectral methods in Hilbert space become
applicable. In order to obtain a unitary time evolution, we must consider a spacetime
region which includes the Cauchy horizon, and wemust introduce reflecting boundary
conditions on the timelike surface r = r0 < r−. (Our solution of the Cauchy problem
outside the Cauchy horizon will not depend on the choice of r0, as will be explained
after Lemma 3.4.) Moreover, we must make sure that the surfaces {τ = const} are
space-like. Noting that the metric coefficient grr in (2.4) has a zero at

rmin =
√

M2 + Q2 − M < r− ,

we are led to choosing r0 in the interval

rmin < r0 < r− . (3.1)

We thus consider the spacetime region M ⊂ M defined by

M := {τ, r > r0, ϑ, ϕ} with timelike boundary ∂ M := {τ, r = r0, ϑ, ϕ} .

This spacetime is foliated by the space-like hypersurfaces (Nτ )τ∈R given by

Nτ := {τ = const. , r ≥ r0, ϑ, ϕ} .

Each hypersurface has the boundary ∂ Nτ = ∂ M ∩ Nτ � S2. These Nτ ⊂ Nτ give
rise to a space-like foliation of M . The Killing field K = ∂τ is tangential to ∂ M and is
timelike on this hypersurface (because g(K , K ) = g00 = 
(r0)/r2 > 0). We denote
the corresponding spinor bundle by SM .

We first compute the scalar product in this spacetime region.

Lemma 3.1 The scalar product (2.2) can be written as

( ψ | φ ) =
∫ ∞

r0
dr
∫ π/2

−π/2
dϑ

∫ 2π

0
dϕ �† � � sin(ϑ) (3.2)
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(where the capital letters always denote the transformed Dirac wave function (2.6))
with

� = r+
|
|

⎡
⎢⎢⎣
2r2 − 
 0 0 0

0 |
| 0 0
0 0 |
| 0
0 0 0 2r2 − 


⎤
⎥⎥⎦ . (3.3)

Note that, in view of the lower bound in (3.1), the matrix� is strictly positive, showing
that (3.2) is indeed a scalar product.

Proof By direct computation, we see that the volume form is

√|detgNτ
| =

√
(2r2 − 
) r sin ϑ .

It remains to compute the combination G jν j . The normal ν is determined by the four
equations

g(ν, ν) = 1, g(ν, ∂r ) = 0, g(ν, ∂ϕ) = 0 and g(ν, ∂ϑ) = 0 .

By direct computation, we find

ν = −i

√

 − 2r2

r
∂τ − i


 + r2

r
√


 − 2r2
∂r .

This corresponds to the co-vector

ν = r√
2r2 − 


dτ .

Reading off the transformed Gamma-matrix Gτ from (2.8), we need to transform it
back with the relation

Gτ = D−1�−1
trafoGτ D .

Using the form of the spin inner product (2.13), we obtain

≺ψ |/ν φ�√|detgNτ
| = �† D−1γ 0 Gτ D−1r2︸ ︷︷ ︸

=:�
� sin(ϑ) = �†�� sin(ϑ) ,

concluding the proof. ��
In order to obtain a Cauchy problem with a well-defined, unitary time evolution,

we need to introduce suitable boundary conditions at r = r0. Following the procedure
in [11], we introduce the reflecting boundary conditions

(/n − i) ψ
∣∣
∂ M = 0 ,

123
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where /n is the inner normal on ∂ M . For the Cauchy problem, we set N = Nτ |τ=0.
We choose initial data in the class

C∞
init(N ) := {

ψ0 ∈ C∞
0 (N , SM) with (/n − i) (H p ψ0)

∣∣
∂ N = 0 for all p ∈ N

}
.

(3.4)

We denote the Hilbert space generated by these functions (with the scalar product
computed in Lemma 3.1) by HN . The following lemma was proved in [11].

Lemma 3.2 For initial data ψ0 in the class (3.4), the Cauchy problem with boundary
conditions

i∂τψ = H ψ , ψ |N = ψ0 , (/n − i) ψ
∣∣
∂ M = 0

has a unique, global solution ψ ∈ C∞
sc (M, SM). Evaluating this solution at subse-

quent times τ and τ ′ gives rise to a unique unitary time evolution operator leaving the
domain C∞

init(N ) invariant, i.e.,

U τ ′;τ : C∞
init(N ) ⊂ HN −→ C∞

init(N ) ⊂ HN .

Having a dense domainwhich is invariant under the time evolutionmakes it possible
to applyChernoff’smethod [3] to obtain the following result.More details can be found
in [11].

Lemma 3.3 The Dirac Hamiltonian H in the Reissner–Nordström geometry in Edding-
ton–Finkelstein coordinates with domain of definition

D(H) = C∞
init(N )

is essentially self-adjoint on the Hilbert space HN .

Having specified the domain of the Hamiltonian, one could go through the transforma-
tions in Section 2.2 to work out the corresponding domain of the radial Hamiltonian
in (2.19). Since the details will not be needed for our results, we omit these computa-
tions.

For ease in notation, we denote the self-adjoint extension of the Hamiltonian again
by H . By the spectral theorem for self-adjoint operators, we can express the solution
of the Cauchy problem for any ψ0 ∈ HN as

ψ(τ) = e−iτ H ψ0 =
∫

σ(H)

e−iωτ dEωψ0 ,

where ω ∈ σ(H) are the spectral values, and dEω is the corresponding spectral
measure of H . As explained after (2.18), from now on we restrict attention to one
angular momentummode and consider the corresponding two-component Dirac equa-
tion (2.19). For the later explicit analysis, it is helpful to rewrite the spectral measure
with the help of Stone’s formula.
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Lemma 3.4 The solution of the Cauchy problem can be written as

X(τ, r) = 1

2π i
lim

a→∞ lim
ε↘0

∫ a

−a
e−iωτ

[
(Hξ − ω − iε)−1 − (Hξ − ω + iε)−1

]
X0(r) dω , (3.5)

where (Hξ − ω ∓ iε)−1 are the resolvents of the Dirac Hamiltonian Hξ in the upper
and lower half-planes and X0(r) ∈ C∞

init(N ) is the initial data for a fixed angular
mode k, l.

Proof Using the properties of the spectral measure, we obtain

X(τ, r) = e−i Hξ τ lim
a→∞ E(−a,a) X0(r)

= 1

2
e−i Hξ τ lim

a→∞

[
E(−a,a) + E[−a,a]

]
X0(r)

Applying Stone’s formula (see [19, Theorem VII.13]) gives the result. ��
We point out that in this lemma we solved the Cauchy problem in the region M =

R
+×(r0,∞)×S2 which extends behind the Cauchy horizon at r = r−. By restricting

this solution to the region R
+ × (r−,∞) × S2, we obtain the solution of the Cauchy

problem outside the Cauchy horizon, for initial data on the hypersurface (r−,∞)×S2.
Here we make use of the fact that, due to causality, a Dirac wave cannot cross the
Cauchy horizon from inside to outside.

4 Computation of the resolvent

4.1 The Green’s matrix

Our next task is to calculate the resolvent (Hξ −ω∓ iε)−1 appearing in Lemma 3.4 in
the upper and lower half-planes. It is most convenient to work with the Hamiltonian
for the radial equation (2.15) after separation of variables, denoted by Hξ .

We introduce the abbreviation ω ∓ iε =: ωε. Moreover, it is useful for the compu-
tations to write the operator Hξ − ωε1C2 as

Hξ − ωε1C2 = C(r)−1R(∂r ; r) (4.1)

with the matrix

C(r)−1 =
[
− i

(2r2−
)
0

0 i



]

and the radial differential operator

R(∂r ; r) :=
[


∂r − iωε(2r2 − 
) |
|1/2(imr − ξ)

−ε(
)|
|1/2(imr + ξ) 
(iωε + ∂r )

]
.
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This makes it possible to write the radial equation as


(r) ∂r X(r) =
[

iωε(2r2 − 
) −|
|1/2(imr − ξ)

ε(
)|
|1/2(imr + ξ) −i
ωε

]
X(r) (4.2)

Our strategy is to invert this differential operator with the help of the so-called Green’s
matrix G(r; r ′)ωε , being a distributional solution to the equation

R(∂r ; r) G(r; r ′)ωε = δ(r − r ′)1C2 . (4.3)

TheGreen’smatrix can be expressed in terms of the fundamental solutions of the radial
equations. We postpone the detailed computations to the next section (Section 4.2).
Here we explain how the resolvent can be computed from the Green’s matrix.

Lemma 4.1 Let X0 ∈ C∞
init(N ) be initial data for a fixed angular mode k, l. Then the

resolvent acting on X0 can be expressed in terms of the Green’s matrix G(r; r ′)ωε

in (4.3) as

Rωε X0(r) = (Hξ − ωε1C2)−1X0(r) =
∫ ∞

r0
G(r; r ′)ωε C(r ′) X0(r

′) dr ′ ,

where C(r) is the matrix

C(r) =
[

i(2r2 − 
) 0
0 −i


]
.

Proof By direct computation using (4.3), one verifies that the operator Hξ − ωε1C2

in (4.1) has the inverse

((
Hξ − ωε1C2

)−1
X
)
(r) =

∫ ∞

r0
G(r; r ′)ωε C(r ′) X(r ′) dr ′ .

This gives the result. ��

4.2 The radial Jost solutions

We now define the fundamental solutions which we will later use to compute the
Green’s matrix. Our method is to construct Jost solutions J±. In preparation, we
rewrite the first-order radial system of ODEs stemming from thematrix Dirac equation
in (2.20) into two second-order scalar equations, sometimes referred to as the Jost
equation. We consider the three regions

(r0, r−) , (r−, r+) and (r+,∞) (4.4)
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separately. Choosing the Regge–Wheeler coordinate u ∈ R in one of these regions,
the radial solutions X (ω)(r(u)) satisfy the equations

[
∂2u + Eω,l(u)∂u + K +

ω,l(u)

]
X (ω)

+ (u) = 0 (4.5)

[
∂2u + Eω,l(u)∂u + K −

ω,l(u)

]
X (ω)

− (u) = 0 (4.6)

where Eω,l(u) and K ±
ω,l(u) are smooth functions. The explicit form of these functions

is rather involved and will not be given here. However, for the construction of the Jost
solutions, it suffices to analyze the asymptotic form of these functions as u → ±∞.
We recall the basic idea for X (ω)

+ and the asymptotics u → +∞. We rewrite (4.5) in
the form [

− ∂2u − �2+
]
J+ = −W +(u)J+

with a complex constant �+ and a potential W +. Having the complex coefficients,
the differential operator on the left side can be inverted with the help of an explicitly
given Green’s kernel S(u, v), i.e.,

[
∂2v − �2+

]
S(u, v) = δ(u − v)

This makes it possible to formulate a Lippmann–Schwinger equation of the form

J+ = ei�+u +
∫ ∞

u
S(u, v) W +(v) J+(v) dv (4.7)

Using that W decays as u → ∞, one can perform an expansion in powers of W ,

J+ =
∞∑
n

J(n)
+ . (4.8)

Similar to the usual Picard–Lindelöf iteration (defined on a bounded interval), one
can show that this series converges uniformly, giving rise to a unique solution with
prescribed asymptotics as u → ∞. Substituting the resulting solution X (ω)

+ into the

first-order system (4.2), one can solve for X (ω)
− . We thus obtain a solution of the radial

equation with prescribed asymptotics.
This method has been worked out for the Dirac and wave equations in the Kerr

geometry in Boyer–Lindquist coordinates in [8, 13] as well in Eddington–Finkelstein
coordinates in [12] (for basics and more details see also [4]). For simplicity, we state
the result only in the region (r+,∞) outside the event horizon and note that the
regions (r0, r−) and (r−, r+) are treated similarly.
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Lemma 4.2 For every angular momentum mode k and l and ωε ∈ {ωε �= 0 | ωε ∈ C},
there are unique radial Jost solution to the complexified Schrödinger-type equa-
tions (4.5) in the region (r+,∞) with the asymptotic boundary conditions

lim
u→+∞ e−i�+(ωε) u−ic(ωε) ln u J+(u) = 1 , lim

u→−∞ e−i�−(ωε) u J−(u) = 1

(4.9)

lim
u→+∞ ∂u

(
e−i�+(ωε) u−ic(ωε) ln uJ+(u)

)
= 0 , lim

u→−∞ ∂u

(
e−i�−(ωε) uJ−(u)

)
= 0

(4.10)

for suitable complex numbers c and �±. Furthermore, these solutions are analytic
and smooth in u and ωε.

Proof In the case Imωε > 0, the Jost solutions have been constructed in [8, 13].
By complex conjugation of the Schrödinger-type equation, we obtain corresponding
solutions for Imωε < 0. ��

We note that the asymptotics (4.9) and (4.10) for J± can also be written as

J+(u) � ei�+(ωε)u+ic(ωε) ln u + E+(u) and J−(u) � ei�−(ωε)u + E−(u)

with a decaying error term E±(u). This shows that �(ωε)± and c(ωε) encode the
asymptotic phase and amplitude of the wave.

We now collect the Jost solutions in the respective regions (4.4) and introduce a
convenient notation. We can use the same notation for the Jost solutions constructed
near the event horizon from inside and outside (and similarly near theCauchy horizon),
because these solutions have the same asymptotics in the Regge–Wheeler coordinates
of the respective spacetime region. Note that the Regge–Wheeler coordinate u tends
to −∞ at the event horizon and to +∞ at the Cauchy horizon.

In order to find Jost solutions, we must ensure that the integral in (4.7) and the
series (4.8) converge. Depending on the signs of Im (ωε) and Re (ωε), we thus obtain
different solutions as compiled in the next lemma.

Lemma 4.3 We introduce Jost solutions with the following asymptotics:

(i) Near spatial infinity in the case |ω| > m and sufficiently small ε > 0:

Ĵ∞(u) = f∞,1 Uωε

(
1
0

)
eiφ+(u)

[
1 + O

(
1

u

)]
(4.11)

if Im(ωε) < 0 with Re(ωε) < 0 or Im(ωε) > 0 with Re(ωε) > 0

qJ∞(u) = f∞,2 Uωε

(
0
1

)
e−iφ−(u)

[
1 + O

(
1

u

)]
(4.12)

if Im(ωε) > 0 with Re(ωε) < 0 or Im(ωε) < 0 with Re(ωε) > 0
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with

φ±(μ) =
√

ω2
ε − m2 u + M

(
± 2ωε + m2√

ω2
ε − m2

)
ln(u)

and

Uωε =
[
cosh(�) sinh(�)

sinh(�) cosh(�)

]
with � := 1

4
ln
(ωε − m

ωε + m

)
.

(ii) Near spatial infinity in the case |ω| < m and for sufficiently small ε > 0:

Ĵ∞(u) = Vωε

(
f∞
0

)
e−√

m2−ω2
ε u
[
1 + O

(
1

u

)]

with

Vωε =

⎡
⎢⎢⎣

im

2
√

m2 − ω2

1

2

(
1 + iω√

m2 − ω2

)

− im

2
√

m2 − ω2

1

2

(
1 − iω√

m2 − ω2

)

⎤
⎥⎥⎦ .

(iii) Near the event horizon r+:

qJ+(u) =
(

0
h+,1

)[
1+O

(
ebu
)]

and Ĵ+(u) =
(

h+,2
0

)
e2iωεu

[
1+O

(
ebu
)]

where, depending on Im(ω), the above functions are well-defined and in L2
loc

near the event horizon:

qJ+(u), Ĵ+(u) for Im(ωε) < 0

qJ+(u) for Im(ωε) > 0

(iv) Near the Cauchy horizon r−:

qJ−(u)=
(

0
h−,1

)[
1 + O

(
e−bu

)]
and Ĵ−(u)=

(
h−,2
0

)
e2iωεu

[
1 + O

(
e−bu

)]

where, depending on Im(ω), the above functions are well-defined and in L2
loc

near the Cauchy horizon:

qJ−(u), Ĵ−(u) for Im(ωε) > 0

qJ−(u) for Im(ωε) < 0
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Here f∞,1/2 �= 0 and h±,1/2 �= 0 are constants and b ∈ R+.
All these Jost solutions converge locally uniformly as ε ↘ 0, respectively ε ↗ 0,

to smooth solutions of the ODE with ε = 0.

We remark that, in the limit ε ↘ 0, the asymptotics of the solutions near infinity
and near the horizons was worked out in [16, Theorem 1.1]. We also point out that,
in the case |ωε| < m, there is only one Jost solution, denoted by Ĵ∞, which decays
exponentially at infinity. In this case, we choose an arbitrary fundamental solution
which is linearly independent of Ĵ∞ and denote it by qJ∞. This fundamental solution
increases exponentially near infinity. It is not canonical. But our main theorem will
not depend on this choice.

Proof of Lemma 4.3 We begin with the Jost solutions near spatial infinity. According
to Lemma 2.3, the solutions have the plane wave asymptotics with asymptotic phases
given by (2.21). It suffices to consider the linear term in (2.21), because for large u it
dominates the logarithm. In the case |ωε| > |m|, by a Taylor expansion of the square
root we obtain

√
ω2

ε − m2 =
√

ω2 − m2 + i Im (ωε)Re (ωε)
1√

ω2 − m2
+ O(ε2) .

Since the imaginary term determines the decay behavior, it suffices to consider the
second term. This shows that the combinations of real and imaginary parts in (4.11)
and (4.12) ensure that the exponentials e±iφ±(u) decay at infinity. This property is
precisely what is needed in order for the Jost solutions to be well-defined. In the
remaining case |ωε| ≤ |m|, using that

√
ω2

ε − m2 = i
√

m2 − ω2
ε and doing the same

expansion in ε, we see the first term in u dominates the convergent behavior. It is also
independent of Im(ωε). Therefore, we only have one exponential decaying solution
for this case at infinity.
Now, we look at the Jost functions near the event and Cauchy horizons. We only
consider the Cauchy horizon, because the event horizon can be treated similarly.
Near the Cauchy horizon, the fundamental solutions have the plane wave asymptotics
as worked out in Theorem 2.3. Using that the potential W in the Lippmann–Schwinger
equation (4.7) decays exponentially, it turns out that there are two convergent Jost
solutions Ĵ− and qJ−(u) defined forωε close to the real axis, which form a fundamental
system (for details see [8, Section 3]). ��

Finally, for the boundary condition at r = r0 as initial data for the radial ODE, we
obtain a solution J∂ M with the following boundary values.

(iv) At the boundary ∂ M :

J∂ M (u) = J(1)
∂ M (u)

⎛
⎝

1√|
|
r+

⎞
⎠
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4.3 Construction of the Green’s matrix

Our next goal is to express the Green’s matrix (4.3) in terms of Jost solutions. To this
end, we make the general “gluing ansätze” depending on r ′ and Im(ωε)

G(r , r ′) = �(r − r ′) × [
�1(r) ⊗ P1(r

′) + �2(r) ⊗ P2(r
′)
]

for r ′ ∈ (r−, r+) and Im(ωε) < 0

G(r , r ′) = �(r ′ − r) × [
�1(r) ⊗ P1(r

′) + �2(r) ⊗ P2(r
′)
]

for r ′ ∈ (r−, r+) and Im(ωε) > 0

G(r , r ′) = �(r − r ′)�1(r) ⊗ P1(r
′) + �(r ′ − r)�2(r) ⊗ P2(r

′)
for r ′ /∈ (r−, r+) ,

where �1 and �2 are the Jost solutions defined in the respective regions

{
�1(r) for r0 ≤ r ≤ r ′

�2(r) for r ′ ≤ r < ∞ .

Here and in what follows, it is more convenient to work again with the radial vari-
able r ∈ [r0,∞). The corresponding Regge–Wheeler coordinate is obtained in the
respective regions (i.e., inside the Cauchy horizon, between the horizons, and in the
asymptotic end) by (2.5). We point out that when extending the solutions �1 or �2
across the event or Cauchy horizons, we need to make sure that their L2-norms are
finite, i.e.

�1 ∈ L2((r0, r ′), C
2) and �2 ∈ L2((r ′,∞), C

2) ,

where we work with the L2-scalar product in (3.2).
We now explain in detail how the functions �1 and �2 can be chosen. We consider

the cases separately when ωε is in the upper and lower half plane.

(i) Im(ωε) < 0 and Re(ωε) < 0 for |ωε| > m:
We begin with the case that r ′ is outside the event horizon. Due to the choice of
ωε, Ĵ∞(r) decays as r → ∞, and we can set

�∞
1 (r) = a Ĵ∞(r) .

For r < r ′ we have two possibilities. One is to take the solution Ĵ+. This solution
decays exponentially at the event horizon. Extending it by zero up to r = r0
gives a solution in L2. This leads us to the ansatz

�∞
2 (r) = b �(r ′ − r) �(r − r+) Ĵ+(r) . (4.13)

The other possibility is to take another fundamental solution and to extend it
across the event and Cauchy horizons up to the boundary at r = r0. Because of
the negative imaginary part of ωε, only the constant function qJ−(r) is square
integrable at the Cauchy horizon. However, for all values ofω, this solution does
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Fig. 1 Extending Jost functions across the horizons for r+ < r ′ < ∞. At r− no generic linear combinations
are possible. The green lines indicate the extensions left and right of r ′. Note that due to the symmetric
behavior of the Regge–Wheeler coordinate we use the same notation for the constructed Jost solutions from
inside and outside the horizons (see Lemma 4.2 and 4.3)

Fig. 2 Extending Jost functions across the horizons for r− < r ′ ≤ r+. At r+ generic linear combinations
are possible which is not the case at r− with only one Jost function. The green lines indicate the extensions
left and right of r ′. The zigzag lines imply possible Jost functions. Note that Ĵ+ stands for two possible
Jost solutions for Im(ωε) < 0 (see Lemma 4.3)

not satisfy the boundary conditions at r0. For this reason, we are forced to choose
the fundamental solution (4.13), leaving us with two free parameters a, b ∈
C. (Here the superscript ∞ clarifies that r ′ lies in the asymptotic end.) These
solutions are shown in Figure 1.
We next consider the case r− < r ′ ≤ r+. By the same argumentation as above,
there are no non-trivial solutions crossing the Cauchy horizon. Therefore, the
wave needs to vanish at r ′ and is continuously extended by zero to r0. This leads
us to the above ansatz where both fundamental solutions are considered only in
the region r > r ′.
For r > r+, on the other hand, we have two possible functions. Since |J+ is a
constant function it needs to be the same inside and outside the event horizon
restricting c = c′, but the decaying solution can have two different prefactors
in the linear combination for waves. This gives us enough freedom to match the
solutions. The different fundamental solutions are illustrated in Figure 2. We
begin with the most general linear combination and simplify it afterward. It has
the form

�r+(r) = �(r − r ′)
[

cL �(r+ − r)Ĵ+(r) + c �(r+ − r)|J+(r)

+ c′ �(r − r+) |J+(r) + cR �(r − r+)Ĵ+(r)

+ a �(r − r+) Ĵ∞(r)

]
. (4.14)
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Fig. 3 Extending Jost functions across the horizons for r0 ≤ r ′ ≤ r−. Again, t r+ generic linear combi-
nations are possible. This is not the case at r− with only one Jost function. The green lines indicate the
extensions left and right of r ′. This time, due to the discontinuity at r = r ′ non-generic linear combinations
are possible

Now we can express Ĵ∞(r) as a linear combination of |J+(r) and Ĵ+(r). This
results in

�r+(r) = �(r − r ′)
[

c �(r+ − r)|J+(r) + a �(r − r+)Ĵ∞(r)

+ cL �(r+ − r)Ĵ+(r)

]

with two free parameters a, cL ∈ C. (The parameter c, on the other hand, is
determined by the matching conditions on the event horizon.) Thus, we have the
solutions

�
r+
1 (r) = cL �(r+ − r)Ĵ+(r)

�
r+
2 (r) = c �(r+ − r)|J+(r) + a �(r − r+)Ĵ∞(r)

It remains to consider the case r0 ≤ r ′ ≤ r−. On the left side of r ′ the boundary
conditions at r0 admit, up to a multiple, a unique solution, i.e.

�
r−
1 (r) = e J∂ M (r) .

For r > r−, only the solution qJ−(r) can be extended in L2 across the Cauchy
horizon. This solution must be extended also across the event horizon and must
be matched to the decaying solution (see Figure 3 for a detailed sketch). Now the
matching across the Cauchy horizon determines the constants cL and c, whereas
the matching across the event horizon determines a and cR . We conclude that

�
r−
1 (r) = eJ∂ M (r)

�
r−
2 (r) = d �(r − r−) Ĵ−(r) + cL �(r − r−) �(r+ − r)Ĵ+(r)

+ cR �(r − r+)Ĵ+(r) + c �(r − r−)�(r+ − r) |J+(r)

+ a �(r − r+)Ĵ∞(r)
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with two free parameter d, e ∈ C (and cL , cR, c and a fixed by the matching
conditions).

(ii) Im(ωε) > 0 and Re(ωε) < 0 for |ωε| > m:
The procedure to find the fundamental solutions in this case is similar as in
the first case. One only needs to keep in mind that the roles of the event and
Cauchy horizons are interchanged, in the sense that at the Cauchy horizon, both
fundamental solutions are in L2, whereas at the event horizon, one fundamental
solution is singular.

The remaining cases are similar. For |ωε| < m we need to remember that we only have
the decaying solution J∞ at infinity. We summarize the results in following lemma.

Lemma 4.4 The extended Jost solutions �1 and �2 can be expressed as

(i) Im(ωε) < 0 and Re(ωε) < 0 and |ωε| > m:

• �∞
1 (r) = c1 �(r − r+)Ĵ+(r)

�∞
2 (r) = c2 Ĵ∞(r)

• �
r+
1 (r) = c1 �(r+ − r)Ĵ+(r)

�
r+
2 (r) = c2 �(r − r+)̂J∞(r) + a1 �(r+ − r)|J+(r)

• �
r−
1 (r) = c1 J∂ M (r)

�
r−
2 (r) = c2 �(r − r−)|J−(r) + a1 �(r − r−)�(r+ − r)Ĵ+

+ a2 �(r − r+)Ĵ+(r) + a3 �(r − r−)�(r+ − r)|J+(r)

+a4 �(r − r+)̂J∞(r)

Here c1 and c2 are free parameters, and a1, . . . , a4 are constants which depend
on c1, c2 and ωε.

(ii) Im(ωε) > 0 and Re(ωε) < 0 and |ωε| > m:

• �∞
1 (r) = c1 �(r − r+)|J+(r) + a1 �(r − r−)�(r+ − r)|J−(r)

+ a2 �(r − r−)�(r+ − r)Ĵ−(r) + a3 �(r− − r)Ĵ−(r)

+a4 �(r− − r)J∂ M (r)

�∞
2 (r) = c2 }J∞(r)

• �
r+
1 (r) = c1 �(r− − r)J∂ M + a1 �(r − r−)|J−(r)

�
r+
2 (r) = c2 �(r − r−)Ĵ−(r)

• �
r−
1 (r) = c1 �(r− − r)J∂ M (r)

�
r−
2 (r) = c2 �(r− − r)Ĵ−(r)
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Here c1 and c2 are again free parameters, and a1, . . . , a4 are constants which
depend on c1, c2 and ωε.

(iii) Im(ωε) < 0 and Re(ωε) > 0 and |ωε| > m:

• Similar to the first case, but with Ĵ∞ and }J∞ interchanged when |ωε| > m.

(iv) Im(ωε) > 0 and Re(ωε) > 0 and |ωε| > m:

• Similar to the second case, but with Ĵ∞ and }J∞ interchanged when |ωε| > m.

(v) |ωε| < m with all previous combinations of Re(ωε) and Im(ωε):

• All four cases (i), (ii), (iii) and (iv) are repeated, but with Ĵ∞ and }J∞ replaced
by J∞.

Remark 4.5 (matching conditions and weak solutions)Wenow explain how thematch-
ing conditions derived above can be understood from the perspective of weak solutions
of the Dirac equation.We only consider the event horizon, noting that the Cauchy hori-
zon can be treated similarly. In (4.14) we began with a general ansatz for the solution.
Our matching conditions stated that this solution must be continuous across the hori-
zon, meaning that

c = c′ , (4.15)

whereas the prefactors cL and cR of the solution Ĵ+ can be chosen arbitrarily and
independently inside and outside the event horizon. This is illustrated in Figure 2.
An alternative method for deriving these matching conditions is to work out the cor-
responding Dirac solution ψ in (2.1) by inserting the fundamental solutions into the
separation ansatz 2.14 and (2.6). Evaluating theDirac equationweakly across the event
horizon (similar as is done in Schwarzschild and Boyer–Lindquist coordinates in [5,
14]), one would again get (4.15). For brevity we omit the details of this computation.

These matching conditions correspond to the following physical picture. The fun-
damental solution |J+ describes a wave which crosses the event horizon. Therefore,
current conservation gives rise to a matching condition for this solution. The fun-
damental solution Ĵ+, however, describes a wave which propagates along the event
horizon, but does not cross it. Therefore, we do not get a matching condition. ♦

4.4 Computation of the Green’s matrix

In this subsection, we will use the global Jost solutions constructed above to compute
the Green’s matrix. For scalar Jost solutions, this construction is well-known and uses
the conservation of theWronskian. In our setting of two-component solutions,wemake
use instead of the conservation of the Dirac current ≺�,�μ�� in radial directions
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within the given region (r−, r+) and (r+,∞).More precisely,wedefine aGrammatrix,
referred to as the radial flux matrix. We want to highlight that the corresponding local
conservation law holds only after taking the limit ε ↘ 0. (Otherwise, the currents on
different time slices do not cancel each other.)

Lemma 4.6 In the limit ε ↘ 0, the radial flux matrix hi j = hi j (c1, c2, ωε) defined by

<�i (r), A � j (r)>C2 =: hi j with i, j ∈ {1, 2} (4.16)

and the matrix A given by

A =
[
1 0
0 −ε(
)

]

is independent of r in the respective regions (r0, r−), (r−, r+) and (r+,∞).

Proof We begin with the case r ∈ (r+,∞). By acting with the partial derivative of r ,
we end up with


(r) ∂r<�(r), A �(r)>C2 = 
(r)<�(r), (V †A + AV )︸ ︷︷ ︸
=0

�(r)>C2 = 0 ∀ r ,

where V is the matrix on the right side of (4.2). A straightforward calculation gives
the result. The steps in the other regions r ∈ (r0, r−) and r ∈ (r−, r+) are identical. ��

We remark that the conservation of the radial flux (4.16) was first observed in [14]
and used in order to rule out non-trivial time-periodic solutions of the Dirac equation
in the exterior Reissner–Nordström geometry. Here we can use this conservation law
in order to show that the extended Jost solutions�1 and�2 constructed in Section 4.2
are linearly independent:

Lemma 4.7 In the limit ε ↘ 0, the two solutions �1 and �2 in Lemma 4.4 are linearly
independent.

Proof The case |ω| < m is trivial, because �1 is exponentially decreasing at infinity,
whereas �2 exponentially increasing. As the remaining cases can be treated similarly,
we only consider case (i) in Lemma 4.4. Then the radial flux of �2 can be computed
asymptotically as r → ∞ using (4.11). The radial flux of�1, on the other hand, can be
computed at the event horizon using the asymptotics in Lemma 4.3 (iii). If �1 and �2
were linearly dependent, these radial fluxeswould have opposite signs, a contradiction.

��
Following up, we make the ansatz for G(r; r ′) when r ′ ∈ (r+, ∞).

G(r , r ′) := �(r − r ′)

(r ′)

2∑
j=1

c1 j �1(r) ⊗ (
A(r ′)� j (r

′)
)†

+ �(r ′ − r)


(r ′)

2∑
j=1

c2 j �2(r) ⊗ (
A(r ′)� j (r

′)
)† (4.17)
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and for r ′ ∈ (r−, r+)

G(r , r ′) := 1


(r ′)

{
�(r − r ′)

∑2
i, j=1 ci j�i (r) ⊗ (

A(r ′)� j (r ′)
)† for Imωε < 0

�(r ′ − r)
∑2

i, j=1 ci j�i (r) ⊗ (
A(r ′)� j (r ′)

)† for Imωε > 0
(4.18)

with ci j ∈ C. Note that the matrix A(r ′) is constant within the respective regions.
Thus, in all follow-up computations we drop the r ′ dependency. Additionally, we want
to highlight that the above tensor notation corresponds to the bra-ket notation

X ⊗ Y † = |X〉〈Y |.

Lemma 4.8 The Green’s matrix is well-defined and bounded in the three regions.
Additionally, the coefficients ci j for r ′ /∈ (r−, r+) are given by

ci j =
[

h11 h12

−h21 −h22

]
,

where hi j is the inverse matrix of hi j from Lemma 4.6. In the case r ′ ∈ (r−, r+), one
ends up with

ci j =
[

h11 h12

h21 h22

]
for Imωε < 0 and ci j =

[−h11 −h12

−h21 −h22

]
for Imωε > 0 .

Proof We point out that the Gram matrix hi j is invertible because the �1 and �2
in (4.16) are two fundamental solutions and A is a regular matrix. The proof is a
straightforward computation. We want to solve the distributional equation (4.3)

R(∂r ; r) G(r; r ′)ωε = δ(r − r ′)1C2

Inserting the ansatz for r ′ /∈ (r−, r+), we end up with

R(∂r ; r) G(r; r ′)ωε = δ(r − r ′)
[

c11�(r)1 ⊗ (
A�(r)1

)† + c12�(r)1 ⊗ (
A�(r)2

)†

− c21�(r)2 ⊗ (
A�(r)1

)† − c22�(r)2 ⊗ (
A�(r)2

)†]

Additionally, we have following completeness relation on our Hilbert space

∑
i, j

hi j �(r)i ⊗ (
A�(r) j

)† = 1C2

with

hi j = 1

det h

[
h22 −h12

−h21 h11

]
.
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Combining both parts gives the result. In the case r ′ ∈ (r−, r+), the steps are identical.
By Lemma 4.4 we have globally well-defined Jost solutions which are all bounded.

Togetherwith the computed coefficients, one sees that allGreen’smatrices are bounded
in the corresponding interval for r ′. ��

5 Integral representation of the Dirac propagator

5.1 Abstract representation

We can now state a first step toward our main result.

Proposition 5.1 Let H be the Hamiltonian of the Dirac equation in the Reissner–
Nordström geometry in Eddington–Finkelstein coordinates. Then the corresponding
Dirac propagator has the integral representation

X(τ, r)= 1

2π

∫
R

e−iωτ lim
ε↘0

[(
Hξ −1C2(ω−iε)

)−1−(Hξ +1C2(ω−iε)
)−1
]

X0(r) dω.

Here the resolvent can be expressed in forms of the Green’s matrices G(r; r ′)ωε from
the ansatz (4.17) and (4.18) plus the coefficients from Lemma 4.8. It has the expression

(Hk − ω ± iε)−1 X0(r) =
∫ ∞

r0
G(r; r ′)ωε C(r ′) X0(r

′) dr ′

with

C(r ′) =
[
2r ′2 − 
(r ′) 0

0 −
(r ′)

]
,

where X0 ∈ C∞
init(N ) is the initial data for a fixed angular momentum mode k, l.

Proof Combining the results fromPropositions 3.4, 4.1 and 4.8, the remaining task is to
interchange the limit ε ↘ 0with the integral and then to take the limit a → ∞ in (3.5).
Since all extended Jost functions are bounded (for details see Subsection 4.3), we can
apply Lebesgue’s dominated convergence theorem to take the limit ε ↘ 0 inside the
integral. The limit a → ∞ exists by Stone’s theorem. ��

5.2 Main theorem

By further calculations it is possible to bring the result from Proposition 5.1 in a
much more handy form. We begin by computing the Green’s matrices in the upper
and lower complex plane separately and taking the limit ε ↘ 0 for r ′ ∈ (r+,∞).
Afterward, we will take the difference and find a more compact expression for the
integral representation. In the end we can extend this to r ′ ∈ (r−,∞).
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Lemma 5.2 For r ′ ∈ (r+,∞) we can express the differences of the Green’s function
as

lim
ε↘0

G(r; r ′)>0 − lim
ε↗0

G(r; r ′)<0 =
2∑

i, j=1

gi j


(r ′)
χi (r) ⊗ χ j (r

′)†A

with coefficients gi j of the form

g11 = g22 = 1, g12 = a

b
, g21 = d

c
if |ω| > m (5.1)

gi j = f δi,1δ j,1 if |ω| < m , (5.2)

where a, b, c, d, f ∈ C and b, c �= 0. Moreover, A is again the matrix from
Lemma 4.6. Additionally, χ(r) = (χ1(r), χ2(r))T are the limits of the Jost solu-
tions from Lemma 4.3 defined on the real axis and G(r; r ′)>0 describes the Green’s
matrix on the upper, as well as G(r; r ′)<0 on the lower complex half plane.

Proof We begin with the case |ωε| > m. By looking at Lemma 4.4 with r ′ ∈ (r+,∞)

for Im(ωε) > 0, we get two extended Jost solutions �1(r) and �2(r). Since one can
express any Jost solutions as a linear combination of two others, we choose for �2(r)

a different ansatz to simplify the calculations

�1(r) = Ĵ∞(r) and �2(r) = a Ĵ∞(r) + b }J∞(r) , (5.3)

where the coefficients of the linear combinations are denoted by a, b ∈ C. It follows
from Lemma 4.7 that b is nonzero. First, we will calculate the coefficients ci j with
those functions. After that we substitute everything into the ansatz (4.17) and compute
the result. We want to highlight that the matrix from lemma 4.3 is pseudo-orthonormal
to our Wronskian product. Because we are in the complex planes, we need to treat
the product 〈Uωε |A Uωε 〉 more carefully. We can rewrite the hyperbolic functions in
exponential functions and expand them in a power series

Uωε ≈ U|ωε | + iϕ(ε)

(
sinh(|ωε|) cosh(|ωε|)
cosh(|ωε|) sinh(|ωε|)

)
.

Thus, we end up with

(Uωε )
† A Uωε ≈

[
1 0
0 −1

]
+ 2 i ϕ(ε)

[
0 1

−1 0

]
+ ϕ(ε)2

[−1 0
0 1

]
.

We are only interested in the term of zeroth order in ε because we will perform the
limit ε → 0 in the end. Having that in mind, we can compute the coefficients for the
Green’s function with our ansatz 5.3. (Note that in the considered region r ′ ∈ (r+,∞),
the function 
(r ′) is positive.)

ci j = − 1

|b|2
[|a|2 − |b|2 −a

a∗ −1

]
. (5.4)
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Nowwe begin by computing the first term from (4.17) (denoted by the superscript (1)),

G(r , r ′)(1)>0 = �(r − r ′)

(r ′)

2∑
j=1

c1 j�1(r) ⊗ (
A� j (r

′)
)†

= �(r − r ′)

(r ′)

[
a

b
Ĵ∞(r) ⊗ (

A }J∞(r ′)
)† + Ĵ∞(r) ⊗ (

A Ĵ∞(r ′)
)†]

.

Repeating the steps for the second term gives

G(r , r ′)(2)>0 = �(r ′ − r)


(r ′)

2∑
j=1

c2 j�2(r) ⊗ (
A� j (r

′)
)†

= �(r ′ − r)


(r ′)

[
}J∞(r) ⊗ (

A }J∞(r ′)
)† + a

b
Ĵ∞(r) ⊗ (

A }J∞(r ′)
)†]

.

Taking the sum of both terms leads to

G(r , r ′)>0 = 1


(r ′)
a

b
Ĵ∞(r) ⊗ (

A }J∞(r ′)
)†

+ �(r − r ′)

(r ′)

Ĵ∞(r) ⊗ (
A Ĵ∞(r ′)

)†

+ �(r ′ − r)


(r ′)
}J∞(r) ⊗ (

A }J∞(r ′)
)†

.

Since the resolvent is bounded, we can take the ε-limit inside the integral from Propo-
sition 5.1 and apply the limit on the Jost solutions from the upper and lower complex
plane. More importantly, the Jost solutions from the lower and upper plane coincide
on the real axis. We define following limits

lim
ε↘0

Ĵ∞(r) = lim
ε↗0

Ĵ∞(r) =: χ1(r) and lim
ε↘0

}J∞(r) = lim
ε↗0

}J∞(r) =: χ2(r),

Therefore, we end up with the result for the upper half plane

lim
ε↘0

G(r , r ′)>0 = 1


(r ′)
a

b
χ1(r) ⊗ χ2(r

′)†A

+ �(r − r ′)

(r ′)

χ1(r) ⊗ χ1(r
′)†A

+ �(r ′ − r)


(r ′)
χ2(r) ⊗ χ2(r

′)†A . (5.5)

In the lower half plane, we take the Jost solutions

�1(r) = }J∞(r) and �2(r) = c Ĵ∞(r) + d }J∞(r) if |ω| > m . (5.6)
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with c, d ∈ C. It follows from Lemma 4.7 that c is nonzero. Repeating similar steps
for the lower half plane, we end up with

lim
ε↗0

G(r , r ′)<0 = − 1


(r ′)
d

c
χ2(r) ⊗ χ1(r

′)†A

− �(r ′ − r)


(r ′)
χ1(r) ⊗ χ1(r

′)†A

− �(r − r ′)

(r ′)

χ2(r) ⊗ χ2(r
′)†A .

Taking the difference and setting the coefficients as the matrix entries gives the
result (5.1).

In the case |ωε| < m, however, we choose the same ansatz 5.3 for the positive, but
take a different one for the negative complex plane, i.e.

�1(r) = Ĵ∞(r) and �2(r) = a Ĵ∞(r) + b }J∞(r) if |ω| < m .

Furthermore, we have the matrix Vωε in front of our fundamental solution Ĵ∞(r). This
matrix behaves differently in theWronskian and results in a mixing of the components
of our fundamental solutions

(Vωε )
†A Vωε = im

2
√

m2 − ω2︸ ︷︷ ︸
=:g(ω, m)

[
0 −1
1 0

]
+ O(ε).

Again, we are only interested in the term with zeroth order in ε. This time, we end up
with a coefficients matrix of the form

ci j = g

|b|2
[

a∗b − ab∗ −b
−b∗ 0

]
,

for the upper complex plane. Continuing with similar computations, the Green’s func-
tion has the form

G(r , r ′)>0 = − g


(r ′)
a

b
Ĵ∞(r) ⊗ Ĵ∞(r ′)†A

− g �(r − r ′)

(r ′)

Ĵ∞(r) ⊗ }J∞(r ′)†A

− g �(r ′ − r)


(r ′)
}J∞(r) ⊗ Ĵ∞(r ′)†A .
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A similar computation gives the result for the lower complex plane. Taking the differ-
ence and the limit ε → 0 gives the second result (5.2),

lim
ε↘0

G(r , r ′)>0 − lim
ε↗0

G(r , r ′)<0 = 1


(r ′)
g

(
a

b
− c

d

)

︸ ︷︷ ︸
=: f

Ĵ∞(r) ⊗ Ĵ∞(r ′)†A .

This concludes the proof. ��

In a next step we want to compute the spectral measure from the difference of the
Green’s matrices only outside the black hole. This is possible because the Green’s
matrix is evaluated in the resolvent only pointwise, making it possible to split the
integral due to linearity.

Lemma 5.3 The spectral measure of the Dirac Hamiltonian in Eddington–Finkelstein
coordinates for r ′ ∈ (r+,∞) on initial data X0 ∈ C∞

init(N ) has the form

dEω(X0)(r) =
∑
i, j

ti j χi (r) ⊗
∫ ∞

r+
χ j (r

′)† �(r ′) X0(r
′) dr ′ dω ,

where ti j are the components of the matrix T given by

T =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
f 0
0 0

)
if |ω| < m

⎛
⎝ 1

a

b
d

c
1

⎞
⎠ if |ω| > m .

(5.7)

Moreover, � := �
∣∣
2×2 is the upper left 2 × 2-block of the matrix in (3.3).

Proof By linearity we can pull the difference of the resolvents and by dominated
convergence the ε-limit from Proposition 5.1 into the integral over r ′. Then we use
the result from Lemma 5.2 and obtain the result by direct computation. ��

We next extend the spectral projection to the region r ′ ∈ (r−,∞).

Lemma 5.4 The spectral measure of the Dirac Hamiltonian in Eddington–Finkelstein
coordinates on initial data X0 ∈ C∞

init(N ) from Lemma 5.3 extends to r ′ ∈ (r−,∞),
i.e.

dEω(X0)(r) =
∑
i, j

ti j χi (r) ⊗
∫ ∞

r−
χ j (r

′)† �(r ′) X0(r
′) dr ′ dω . (5.8)
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Moreover, the matrix T in (5.7) can be simplified to

T =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
f 0
0 0

)
with f ∈ R if |ω| < m⎛

⎜⎝
1

a

b
a∗

b∗ 1

⎞
⎟⎠ if |ω| > m .

(5.9)

Proof Since the spectral projector is a symmetric operator, we can interchange the
variables r ↔ r ′. Therefore, the relation in Lemma 5.3 also holds if r ∈ (r+,∞)

and r ′ ∈ (r−,∞).With this inmind, it remains to consider the case r , r ′ ∈ (r−, r+). To
this end, one repeats the computational steps in Lemma 5.2 for the ansatz (4.18), again
with the same fundamental solutions �1 and �2 in (5.3) and (5.6). A straightforward
computation shows that the spectral projector is again of the form as in (5.8).

It remains to show that d/c = a∗/b∗. To this end, we use that the Hamiltonian is
symmetric with respect to the conserved scalar product from Lemma 3.1. By direct
computation, one sees that the resolvent needs to be symmetric with respect to the
adjoint operator of the underlying Hilbert space. Thus, the equation

(
�Rωε

)† = �Rωε

needs to be satisfied, which determines the quotient d/c = a∗/b∗. (Here the dagger
denotes the adjoint with respect to the scalar product L2(dr).) In the case |ωε| < m,
we can use the same argumentation from above. This time, we only have an entry in
the diagonal of the matrix T . Therefore, f needs to be a real number. This gives the
result. ��

We are now in the position to state the main theorem of this paper.

Theorem 5.5 The Dirac propagator in Proposition 5.1 can be expressed in terms of
globally defined fundamental solutions χi (r , ω) for i ∈ {1, 2} and r ∈ (r−,∞) as

X(τ, r) = 1

2

∫
R\{±m}

e−iωτ
2∑

i=1

X̂i (ω) χi (r , ω) dω

with X̂i (ω) : C → C smooth functions defined by

X̂i (ω) = 1

(2π)2

2∑
j=1

ti j (χ j (ω) | X0) .

Here (·|·) denotes the conserved scalar product on the hypersurfaces defined in (2.2)
and given more explicitly in (3.2), restricted to the upper left 2 × 2 block. Moreover,
ti j are again the entries of the matrix (5.9) and X0(r) ∈ C∞

init(N ). Here a, b ∈ C are
the transmission coefficients of the radial ODE defined in (5.3).
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Proof We combine the results from Proposition 5.1, Lemma 5.3 and Lemma 5.4 and
evaluate the integral over r ′ only in the range (r−,∞). This is possible because of
the boundary conditions the wave is reflected on ∂ M and never comes back through
the Cauchy horizon. Thus, all interactions behind the Cauchy horizon do not con-
tribute. Using the expression of the scalar product on the Cauchy hypersurfaces from
Lemma 3.1 gives the final expression. ��

We finally remark that this integral representation is independent of the choice of
the prefactors of the fundamental solutions. Indeed, as demonstrated in the proof of
Lemma 5.2, the difference of the Green’s matrices depends solely on the quotient of
the coefficients of the fundamental solutions. In this way, the prefactors are dropped
out.
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