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1 | INTRODUCTION

Let Q C R, n € {2,3}, be a bounded domain with C3-boundary, T > 0 be fixed and Qr := Q x (0, T) as well as 0Qr :=
0Q x (0, T). We consider the following local Cahn-Hilliard model for tumor growth,

0rp = Ap+ (Po — A)h(p) in Qr, (1)
n=-0¢+¥(p) in Qr, )
0,0 = Ao + B(os — 6) — Coh(p) in Qr, 3)
On®@ = Opt = 0no =0 on 0Qr, 4)
®(0) = @o, 06(0) =09 in Q. (5)

Here, ¢ : Qr — Risan order parameter distinguishing the healthy and tumor tissue, y : Qr — R is the chemical poten-
tial and o : Qr — R the nutrient concentration. Moreover, ¥ : R — R is a double well potential with wells of equal
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depth and minima at +1 and P, A, B3,C > 0 are constants representing tumor proliferation rate, tumor apoptosis rate,
nutrient supply rate and nutrient consumption rate, respectively. Additionally, h : R — [0, 1] is an interpolation function
only present in the tumor phase and the function o5 : Q7 — R is a preexisting nutrient concentration. Finally, oy, is the
derivative in normal direction with respect to 0Q.

The system (1) to (5) is a special case of the models derived in Garcke, Lam, Sitka, Styles,! in particular neglecting
chemotaxis and active transport. Moreover, the system in Garcke, Lam, Rocca? reduces to our model when neglecting
the control term. Indeed, this yields uniqueness and existence of strong solutions to our model, cf. Theorem 2.2 below.
The interested reader may also consider References 1 and 2 for other Cahn-Hilliard-type models for tumor growth, for
example the Cahn-Hilliard-Darcy variant and optimal control problems. Let us just mention the results in References
3-8 for similar systems as (1) to (5).

Next, for £ > 0 small we consider the nonlocal Cahn-Hilliard model for tumor growth,

01pe = Appe + (Poe — A)h(@e) in Qr, (6)
He = Lege +¥' (@) in Qr, (7)
0i6. = Ac, + B(os — 0.) — Coh(e.) in Qr, (8)
OnMe = Ono: =0 on 0Qr, 9)
@:(0) = @oe, 0.(0) =00, in Q. (10)

Here, the interpretation of the functions ¢, u., o, and ¥, h, o5 as well as the constants P, A, B, C is analogous to the
local model (1) to (5) above. Moreover, for £ > 0 the nonlocal operator L, is defined by the following convolution
integral,

Lop() 1= / L= —wo)) dy forallx € Q, (11)
Q

for integrable y : Q — R and suitable convolution kernels J. : R"” — R such that £, approximates —A as € — 0,
cf. Theorem 2.1 below. In this setting, also the variational convergence

E(y) = %/SZ/QJe(x—y)Iw(X)—w(V)IZ dy dx — %/wazdx

as e — 0 for all y € H(Q) is well-known, cf. the results by Ponce.’ 1

The nonlocal system (6) to (10) was introduced in Scarpa, Signori,!* where the authors considered a more general
model with chemotaxis and active transport as well as relaxation parameters. Their paper yields an existence and unique-
ness result for weak solutions of (6) to (10), cf. Theorem 2.3 below. The motivation to replace —A in (2) by L, in order
to obtain (7) is to take into account long-range interactions, cf. also.!! Here, note that the nonlocal system (6) to (10) is
of second order compared to the fourth order system (1) to (5), hence there is no boundary condition for ¢, in (9). For
references in the direction of nonlocal Cahn-Hilliard-type models we refer to References 11 and 12 and Davoli et al.'3
Moreover, let us also note the results in Reference 14, where the author studied the optimal control problem for a viscous
non-local tumor growth model.

In this contribution, we apply the results in Abels, Hurm,'> in order to prove convergence of the weak solution of
(6) to (10) to the strong solution of (1) to (5) for ¢ — 0 together with rates of convergence with respect to €. In the liter-
ature there are several results for nonlocal-to-local convergence. For example, the convergence (without rates) of weak
solutions of the nonlocal Cahn-Hilliard equation, that is, (6) to (10) with P, A, B, C = 0, to the solution of the local
Cahn-Hilliard equation, that is, (1) to (5) with P, A, B, C = 0, has already been shown in various settings such as periodic
boundary conditions,'® 17 Neumann boundary conditions!'® ¥ and degenerate mobility.?’ Recently, Davoli et al. '3 proved
the nonlocal-to-local limit for a viscous Cahn-Hilliard model for tumor growth. The authors in Reference 15 also derived
precise rates of convergence.

The structure of this work is as follows. In Section 2, we recall some preliminaries and Section 3 contains the main
result.
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2 | PRELIMINARIES
2.1 | Notation

Let Q CR", n € N, be open, 1 < p < oo and k € N. We use the notation LP(Q) and W*P(Q) for the standard Lebesgue
and Sobolev spaces on Q. The corresponding norms are denoted by ||.||z») and ||.|lw«rq), respectively. We also write
HYQ) := Wk2(Q).

For any Banach space X over K = R or C, we use the notation X’ for its dual space. The corresponding dual pairing
isdenoted by (., .)x : X' XX - K.

Moreover, we recall that the inverse of the negative Laplacian —Ay with Neumann boundary condition is a
well-defined isomorphism

(-AN)' i {ce HYQ) : cq =0} = {c€ H(Q) : cq =0}, (12)
where ¢cq = Iél@’ 1)1 @) with |Q| denoting the n-dimensional Lebesgue measure of Q.
2.2 | Assumptions

‘We make the following general assumptions.

(A1) LetQ C R", n € {2,3}, be abounded domain with C3-boundary. Moreover, let T > 0 be fixed and Q7 := Q x (0, T)
aswell as 0Q7 :=9Q x (0, T).

(A.2) LetJ, : R" - [0, ) be a non-negative function given by J.(x) = % for all x € R" and J, € WLI(R"), where
(Pe)e>o is a family of mollifiers satisfying

p:R—>[0,0), peL'R), p)=p(-r) forallreR,

pe(r) = 6_"p<£> forall r € R, forall e > 0,

/ pe(Nr" ! dr = 2 foralle> 0,
0 C

n

lirn/ pe(NP1dr=0 forallé >0,
e\0 5

where C, := [, ler - o|> dH" (o).
(A.3) P, A, B,C are non-negative constants, os € L*(Qr) and 0 < 65 < 1 a.e. in Q7.
(A.4) The function h : R — [0, 1] is of class C?, bounded and Lipschitz continuous.
(A.5) The potential ¥ : R — [0, oo) is of class C? and satisfies

W' (s)| < koW(s) + ki, (13)
Y(s) > kals| — ks, (14)
—ky <W'(s) < k(1 + |s]?), (15)
for all s, t € R and some positive constants k;, i = 0, ... ,4.

(A.6) There are constants C;, C, > 0 such that foralls € R

¥(s) > Cils|* - C;

Remark 2.1. A typical example for a potential satisfying the Assumptions 2.2 and 2.2 is the classical
double-well potential ¥(s) := i(l —s?)?foralls € R.
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Remark 2.2. Observe that functions ¥ : R — [0, o) as in 2.2 also satisfy the inequality
[W'(s) = ¥'(O] < ks(1+ |s]* + [t]*)]s — ¢] (16)
for all s,t € R. This follows from the mean value theorem and (15).
2.3 | Inequalities

Lemma 2.1. Foreveryé > 0, there exist constants Cs > 0 and e5 > 0such that for every sequence (f; )¢>o C L2(Q)

there holds

We, = fe,ll72iq) < 8Ee,(fe)) + 8Ee,(Fe) + Csllfe, = fe, IFn ay a7
forall g1, e, € (0, €5).
Proof. For a proof, we refer to Reference 5 (Lemma 4(2)). [

Theorem 2.1. Let Q C R*, n € {2,3}, be a bounded domain with C3-boundary. Moreover, let L, be defined as
in (11) and J, satisfy 2.2 from Section 2.2. Then for all c € H*(Q2) with dnc = 0 on 0Q it holds for a constant K > 0

independent of &
ICec+ Az < KVellelm . (18)
Proof. A proof can be found in Reference 1 (Corollary 4.2). L]
2.4 | Existence and uniqueness results

Well-posedness of the local Cahn-Hilliard model (1) to (5) is available in a slightly more general setting due to,? where the
authors considered the problem with an additional control function. In particular, we have the following well-posedness
result for the system (1) to (5).

Theorem 2.2 (Well-posedness of the local model). Let the Assumptions 2.2, 2.2-2.2 hold and let n = 3. Let
the initial data (@g, 60) satisfy @o € H3(Q) with dppo = 0 on 0Q and oy € HY(Q) with 0 < 6y < 1 a.e. in Q.
Then there is a unique solution (¢, u, o) of (1)-(5) with the regularity
@ € L*(0, T, HX(Q)) n L*(0, T. H3(Q)) N H'(0, T, L*(Q)) n C°(Qy).
pu € L*(0, T, H*(Q)) N L¥(0, T, L*(Q)),
o € L®(0, T,H(Q)) N L*(0, T,H*(Q)) n H(0, T, L*(Q)), 0<oc <1ae.inQr,

such that @(0) = ¢o, 6(0) = oo and for a.e.t € (0, T) and all ¢ € HY(Q) it holds

0= [ 0we+ - Ve - (Po - (o) d. 19
Q
0= / ué - (@) - Vo - VE dx, (20)
Q
0= / 0,6 + Vo - VE+ Ch(p)é + B(o — o5)& dx. (21)
Q
Proof. We refer to Reference 15 (Theorem 2.1). n
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Existence of weak solutions of the nonlocal system (6) to (10) has already been shown in Reference 11, where the
authors considered a more general Cahn-Hilliard system including chemotaxis and active transport, as well as possible
relaxation terms for the Cahn-Hilliard equation. The following result is obtained:

Theorem 2.3 (Well-posedness of the non-local model). Let the Assumptions 2.2-2.2 hold and let n = 3. More-
over, we assume that @o., 0o, € L*(Q). Then for £y > 0 small and all € € (0, o] there exists a unique weak
solution (@,, ue, o¢) of (6)-(10) with the regularity

@, € HY(0, T,H'(Q)) n L*(0, T, H(Q)),
ME e LZ(O’ T3 HI(Q))s
6. € H'(0,T,H'(Q))NnL*0,T,H(Q)), 0<o.(t)<lae.inQ, foralltel0,T],

such that ¢.(0) = @y, 6.(0) = 60 and for all ¢ € HY(Q) and a.e. t € (0, T) it holds

0 = (09, $)m(@ + / Ve - VE dx — /(Pﬁe — ADh(ge)¢ dx, (22)
Q Q
e = Lo + T,((Pe)v (23)
0= <0[O'5,§>H1(Q) + / Vo, - VE+ Ch(p,)é + B(o, — os)& dx. (24)
Q

Proof. This follows from Reference 11, Theorem 2.14 and Theorem 2.15. Here, &7 > 0 is such that for some
co > 0it holds

P (s) + inf / Jox—=y)dy>cy, forallseR,e € (0,g].
xeQ Q
The existence of such an gy > 0 follows from (15) and
inf / J.(x—y)dy > L foralle e (0,1]
xeQ Q g2

for some ¢ > 0. Let us briefly remark the ideas for the latter estimate here. First, note that by applying the
transformation rule and a rescaling argument together with the properties of J, from 2.2, we obtain

/ Jx—ydy > = forall e € (0,11,
B;(x) €

where B;(x) C R" is the ball with radius § > 0 around x. Here ¢ > 0 is a positive constant that can be chosen
uniformly for all x € R" and § > §, > 0, where & is any fixed positive constant. This holds analogously if the
balls are replaced by sectors of such balls based on angles uniformly bounded away from zero. Hence the
task reduces to assign to each point x € Q such an object contained in Q. For points x € Q outside a tubular
neighborhood of 0Q this is directly clear. For points close to the boundary one can employ the uniform interior
ball condition for 0Q. [

3 | CONVERGENCE RESULT

Theorem 3.1. Let the Assumptions 2.2-2.2 hold, let n = 3 and gy > 0 be as in Theorem 2.3. Moreover, for the
initial data (@o, o) to the local system (1)-(5) we assume @y € H3(Q) with 0y@¢ = 0 on 0Q and oy € HY(Q)
with 0 < 69 < 1 a.e. in Q. Additionally, for € € (0, &¢] let the initial data for the nonlocal system (6)-(10) satisfy
(.00,5, 00, € LZ(Q), ge((po,e) S C, /Q T((Po,a) dx S C and

@0 — pollm@y + llooe — oollz@ + [(@oc)a — (@o)al < Cy/e (25)
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for some constant C > 0 independent of ¢ € (0, &¢].

Then there exists a constant K > 0 such that the weak solution (¢, o, 1) of the nonlocal model (6)-(10) for
€ € (0, e0] from Theorem 2.3 and the strong solution (@, o, u) of the local model (1)-(5) from Theorem 2.2 satisfy
for some constant K > 0 independent of ¢,

SSI;]“(PE(I?) - oWOllm@y + 1o — ellzoria) < KVe, (26)
tel0,

stlg]nog(t) — o(t)l2@ + IIVoe — Vollorza) < K\e. (27)
telo,

Remark 3.1. We assumed n = 3 in the theorem because this is also the case in References 2 and 11. However,
note that Theorem 2.2, Theorem 2.3 and Theorem 3.1 should also work in the case n = 2 because the required
embeddings are improved.

Proof. We denote by (¢, 4., o.) the weak solution to the nonlocal model (6) to (10) given by Theorem 2.3 and
with (¢, u, ) the unique solution to the local model (1) to (5) provided by Theorem 2.2. Then, the functions
@ =@ — @, i = u. — u,6 .= o, — o solve the system

0@ = Aji + (Po. — Ah(e,) — (Po — A)h(p) in Qr, (28)
fi=Lepe+Ap+¥Y(p)— V(o) in Qr, (29)
06 = AG — B& — Coch(@.) + Coh(e) in Qr. (30)

in a weak sense. More precisely, the weak formulation is obtained by testing with functions in H'(Q), cf. the
weak formulations (19) to (21) and (22) to (24).

Testing (28) with (—AxN)"1(® — @q) € H(Q), cf. the property (12) for the inverse Neumann Laplacian
above, we obtain

1d

16 - @l ,=—/ﬂ(¢—¢g)dx
2dr mer =7 g

¥ /Q [(Poe = Do) — (Po — Hh(@)] (~Ax)™ (@ — o) dx. (31)
For the second term on the right-hand side of (31), we have
/Q (Poe — k@) — (Po — Ah(@)] (~hw) " (@ — ) d
- /g Po(h(ge) — @) (—Ax)" (@ — o) dx
- /g Alh(g0) — @) —Bs)™ (@ — gy dx
+ /Q]’l((p)pﬁ(—AN)_l((ﬁ —po)dx=:L+DL+1.

Using the Lipschitz continuity and boundedness of h, cf. assumption 2.2, and |o.| <1 a.e. in Q7 due to
Theorem 2.3, we obtain the following estimates, where Ly, is the Lipschitz constant of h:

IL| < PLyll@ll2@l(—AN) (@ — @)@ (32)
1, . . -

< 35181150, + PKII® = Balliy gy (33)
1, . [
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1] < 2116122 ) + PRI = Pall g (35)

In the next step, we test (29) with ¢ — @q. This yields
/Qﬂ((b — §g) dx = /Q(Es(pg +A@) (@ — pg) dx + /Q (¥'(pe) =¥ (@) (@~ Pg) dx. (36)

For the first term on the right-hand side of (36), it holds
[ o+ 0000 - 00 dx = [ (Lot 0000 = 00 de+ [ L0090 (37)

Recalling that L.y, = 0, we can add the term — /Q L:po(p — @g) dx to the right-hand side in (37). Then, by
the symmetry of the interaction kernel J,, we observe that

[ £ - 000 - 90 dx = 260~ 0.
Q
For the second term in (36), we first observe that
/ (V(@e) =¥ (9) (@ — pg) dx = / (¥'(pe) —¥'(@) @ dx — / (V'(pe) — V(@) @g dx.
Q Q Q

For the first term on the right-hand side, we use the Fundamental Theorem of Calculus. Then, the assumption
Y > —k, yields

! ! ~ ~ 12
[ (¥@0 - @)p dr > Kilol,
For the second term, we use assumption (16) and get
[ (V00 -¥@)padx<ks [a+ ol +1oPalgal dx.
Q Q

Invoking the inequalities of Holder and Young, we infer

ks /(1 +10c? + 10115l 1Pal dx < ksl Pl + 10c? + )] Fal
Q

LX(Q)

< ksl @l g, + Kldal A + 1@ * + 10117

<Isl1912: g + K1l (1+ eIl + 10l )-

In the next step, we need to control the term ||¢,||1+q) uniformly in €. To this end, we test equation (22) by
He, (23) by —0:¢, and (24) by o, and sum the resulting equations. This yields

d
T <55(§0g) + / W(p,) dx + ||Ge||izm)> + ”V”EHiZ(Q) + ||V05||1%2(Q)
t Q

= /(Po-e — Ah(@e)pe dx — / Ch(p,)o, dx — / B(o, — os)o, dx.
Q Q Q

Since the function h is bounded, we can control the terms on the right-hand side using the assumptions 2.2
and Young’s inequality. In particular, we obtain

d 1
= (&w + / ¥(po) du+ ||as||iz®> + 2V keI gy + V0P ) < C+ Clioc
t o 2
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Note that we also used the Poincaré-Wirtinger inequality, in order to absorb ||V .||z into the left-hand
side. In fact, testing (23) by 1 and using the properties of ¥, one can show that . has bounded mean value.
Finally, Gronwalls Lemma and our assumptions on the initial data give uniform estimates independent of .
In particular, we have that

/‘I‘((pe) dx<C.
Q

Then, assumption 2.2 yields that the sequence (@, )e>0 C L®(0, T; L*(Q)) is bounded.
Next, we test equation (30) with . Then, we obtain

1d
Ld e VeI, = / (B(os — 0.) — Blos — 0))5 dx
2dr" "A@ @ = [ S S

- / (Coch(pe) — Coh(9))6 dx
Q

= —Bl5112,q, — / (Coch(@e) — Coh(e)é dx. (38)
Q
For the second term in (38), we observe

/g (Coch(@) - Coh(@)é dx = /Q Couh(@.) - h@)F dx+ /g Ch(@)|5]* dx

- 1,.

where we again used |o.| < 1 a.e. in Qr and the Lipschitz continuity and boundedness of 4. Combining the
previous estimates, we obtain

1d
2dt

1. . - [ S
< 1815 + Kl g, = /Q (Leg + AQ)@ — Po) dx + (ks + ks) 1@ — Pall7 g,

. - R - 1,. .
(16 = Gallyay + 1512, ) + 260 = #0) + V512 g, + 516 = FallZ

S 1,. . ~
+ K”(p - (pQ”ip(g)/ + Ell(p - (pQ”IZJZ(Q) + Kl(pglz (40)
Finally, we test (28) with the mean value ¢ and obtain

1l . g
Tazl(pglz = [ 0ppodx = [ [(Po. — ADh(gp.) — (Po — Ah(p)| padx.
Q Q

With analogous estimates as before, it follows that

oal’ < S 116 = Pallg + CUIBIE o, + |@al)

t1Pal = 12 4 (o) 12(Q) L2(Q) () .
Moreover, Holder’s and Young’s inequalities imply

_ 1.~ 2
/Q(Eeco +20)(@ = @o) dx < 1@ = Goll g + KllLew + Al -

Owing to the inequality,

”@”izab < ”(b - @Q”iZ(Q) + C|¢Q|27
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we can now collect the terms on the right-hand side in (40) and use inequality (17) with 6 = m to obtain
4 TKs

501~ - . . .

Eventually, we then arrive at

1d
2dt

L. - . O - 1,.. .
(19 = PallZn gy + 15120, + 120l ) + £ = Ga) + IV5I2 g, + 510 = BallZ:

Thus, Gronwall’s lemma implies

1 - - 2 1 . 2 1 ~ 2
= sup [|@(t) — po®)l| ,+ = sup |le@)| + = sup @)
2 te(0,T] eVim@ T o te[0,T] D@ " 2401 @

T T T
- - 1 Y~
+ A SS(Q - (pQ) dt + /(; ”Vo-lliz(g) dt + 5/0 ”(p - (pQ”iZ(Q) dt
1 1 1 T
~ - 2 ~ 2 -2 2 cT
< <§”(p0_(p§2,0”Hl(Q)/ + E”O-()”LZ(Q)+ El(pQ,Ol +/) ”Ee(p+A(p”L2(Q) dt>e .
Hence, recalling the assumptions on the initial data, cf. (25), and Theorem 2.1, we obtain
L 5up 1165 = Do 20y + = sUD 5D, + = sUp [Pal0)]
2¢ef0,1] 2¢ef0,1] 2¢el0,1]
T T 1 /T
S ~ 112 =2
+‘/0 ge((p - (pQ) dt+ /0 ”VGHLZ(Q) dt+ EA ”(P - (pQ”LZ(Q) dt S Cf-
Finally, observe that it holds

1@llz=.mm @y £ 1@ — Pallr=o.m:m @) + | @allL=©.1)

< sup llo() - P30y + 1Pa0l < CVe,
telo,

which shows the convergence in (26). Hence, the proof is complete. L]
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