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Abstract
We consider a local Cahn–Hilliard-type model for tumor growth as well as a non-
local model where, compared to the local system, the Laplacian in the equation
for the chemical potential is replaced by a nonlocal operator. The latter is defined
as a convolution integral with suitable kernels parametrized by a small param-
eter. For sufficiently smooth bounded domains in three dimensions, we prove
convergence of weak solutions of the nonlocal model toward strong solutions of
the local model together with convergence rates with respect to the small param-
eter. The proof is done via a Gronwall-type argument and a convergence result
with rates for the nonlocal integral operator toward the Laplacian due to Abels
and Hurm.
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1 INTRODUCTION

Let Ω ⊆ Rn, n ∈ {2, 3}, be a bounded domain with C3-boundary, T > 0 be fixed and ΩT ∶= Ω × (0,T) as well as 𝜕ΩT ∶=
𝜕Ω × (0,T). We consider the following local Cahn–Hilliard model for tumor growth,

𝜕t𝜑 = Δ𝜇 + (𝜎 −)h(𝜑) in ΩT , (1)

𝜇 = −Δ𝜑 + Ψ′(𝜑) in ΩT , (2)

𝜕t𝜎 = Δ𝜎 + (𝜎S − 𝜎) − 𝜎h(𝜑) in ΩT , (3)

𝜕n𝜑 = 𝜕n𝜇 = 𝜕n𝜎 = 0 on 𝜕ΩT , (4)

𝜑(0) = 𝜑0, 𝜎(0) = 𝜎0 in Ω. (5)

Here, 𝜑 ∶ ΩT → R is an order parameter distinguishing the healthy and tumor tissue, 𝜇 ∶ ΩT → R is the chemical poten-
tial and 𝜎 ∶ ΩT → R the nutrient concentration. Moreover, Ψ ∶ R → R is a double well potential with wells of equal
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depth and minima at ±1 and  ,,, ≥ 0 are constants representing tumor proliferation rate, tumor apoptosis rate,
nutrient supply rate and nutrient consumption rate, respectively. Additionally, h ∶ R → [0, 1] is an interpolation function
only present in the tumor phase and the function 𝜎S ∶ ΩT → R is a preexisting nutrient concentration. Finally, 𝜕n is the
derivative in normal direction with respect to 𝜕Ω.

The system (1) to (5) is a special case of the models derived in Garcke, Lam, Sitka, Styles,1 in particular neglecting
chemotaxis and active transport. Moreover, the system in Garcke, Lam, Rocca2 reduces to our model when neglecting
the control term. Indeed, this yields uniqueness and existence of strong solutions to our model, cf. Theorem 2.2 below.
The interested reader may also consider References 1 and 2 for other Cahn–Hilliard-type models for tumor growth, for
example the Cahn–Hilliard-Darcy variant and optimal control problems. Let us just mention the results in References
3–8 for similar systems as (1) to (5).

Next, for 𝜀 > 0 small we consider the nonlocal Cahn–Hilliard model for tumor growth,

𝜕t𝜑𝜀 = Δ𝜇𝜀 + (𝜎𝜀 −)h(𝜑𝜀) in ΩT , (6)

𝜇𝜀 = 𝜀𝜑𝜀 + Ψ′(𝜑𝜀) in ΩT , (7)

𝜕t𝜎𝜀 = Δ𝜎𝜀 + (𝜎S − 𝜎𝜀) − 𝜎𝜀h(𝜑𝜀) in ΩT , (8)

𝜕n𝜇𝜀 = 𝜕n𝜎𝜀 = 0 on 𝜕ΩT , (9)

𝜑𝜀(0) = 𝜑0,𝜀, 𝜎𝜀(0) = 𝜎0,𝜀 in Ω. (10)

Here, the interpretation of the functions 𝜑𝜀, 𝜇𝜀, 𝜎𝜀 and Ψ, h, 𝜎S as well as the constants  ,,, is analogous to the
local model (1) to (5) above. Moreover, for 𝜀 > 0 the nonlocal operator 𝜀 is defined by the following convolution
integral,

𝜀𝜓(x) ∶= ∫Ω
J𝜀(x − y)(𝜓(x) − 𝜓(y)) dy for all x ∈ Ω, (11)

for integrable 𝜓 ∶ Ω → R and suitable convolution kernels J𝜀 ∶ Rn → R such that 𝜀 approximates −Δ as 𝜀 → 0,
cf. Theorem 2.1 below. In this setting, also the variational convergence

𝜀(𝜓) ∶= 1
4 ∫Ω ∫Ω

J𝜀(x − y)|𝜓(x) − 𝜓(y)|2 dy dx →
1
2 ∫Ω

|∇𝜓|2 dx

as 𝜀→ 0 for all 𝜓 ∈ H1(Ω) is well-known, cf. the results by Ponce.9, 10

The nonlocal system (6) to (10) was introduced in Scarpa, Signori,11 where the authors considered a more general
model with chemotaxis and active transport as well as relaxation parameters. Their paper yields an existence and unique-
ness result for weak solutions of (6) to (10), cf. Theorem 2.3 below. The motivation to replace −Δ in (2) by 𝜀 in order
to obtain (7) is to take into account long-range interactions, cf. also.11 Here, note that the nonlocal system (6) to (10) is
of second order compared to the fourth order system (1) to (5), hence there is no boundary condition for 𝜑𝜀 in (9). For
references in the direction of nonlocal Cahn–Hilliard-type models we refer to References 11 and 12 and Davoli et al.13

Moreover, let us also note the results in Reference 14, where the author studied the optimal control problem for a viscous
non-local tumor growth model.

In this contribution, we apply the results in Abels, Hurm,15 in order to prove convergence of the weak solution of
(6) to (10) to the strong solution of (1) to (5) for 𝜀→ 0 together with rates of convergence with respect to 𝜀. In the liter-
ature there are several results for nonlocal-to-local convergence. For example, the convergence (without rates) of weak
solutions of the nonlocal Cahn–Hilliard equation, that is, (6) to (10) with  ,,, = 0, to the solution of the local
Cahn–Hilliard equation, that is, (1) to (5) with  ,,, = 0, has already been shown in various settings such as periodic
boundary conditions,16, 17 Neumann boundary conditions18, 19 and degenerate mobility.20 Recently, Davoli et al. 13 proved
the nonlocal-to-local limit for a viscous Cahn–Hilliard model for tumor growth. The authors in Reference 15 also derived
precise rates of convergence.

The structure of this work is as follows. In Section 2, we recall some preliminaries and Section 3 contains the main
result.

 15222608, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.70003 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [28/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HURM AND MOSER 3 of 10

2 PRELIMINARIES

2.1 Notation

Let Ω ⊆ Rn, n ∈ N, be open, 1 ≤ p ≤ ∞ and k ∈ N. We use the notation Lp(Ω) and W k,p(Ω) for the standard Lebesgue
and Sobolev spaces on Ω. The corresponding norms are denoted by ||.||Lp(Ω) and ||.||Wk,p(Ω), respectively. We also write
Hk(Ω) ∶= W k,2(Ω).

For any Banach space X over K = R or C, we use the notation X ′ for its dual space. The corresponding dual pairing
is denoted by ⟨., .⟩X ∶ X ′ × X → K.

Moreover, we recall that the inverse of the negative Laplacian −ΔN with Neumann boundary condition is a
well-defined isomorphism

(−ΔN)−1 ∶ {c ∈ H1(Ω)′ ∶ cΩ = 0} → {c ∈ H1(Ω) ∶ cΩ = 0}, (12)

where cΩ ∶= 1|Ω| ⟨c, 1⟩H1(Ω) with |Ω| denoting the n-dimensional Lebesgue measure of Ω.

2.2 Assumptions

We make the following general assumptions.

(A.1) Let Ω ⊆ Rn, n ∈ {2, 3}, be a bounded domain with C3-boundary. Moreover, let T > 0 be fixed and ΩT ∶= Ω × (0,T)
as well as 𝜕ΩT ∶= 𝜕Ω × (0,T).

(A.2) Let J𝜀 ∶ Rn → [0,∞) be a non-negative function given by J𝜀(x) =
𝜌𝜀(|x|)|x|2 for all x ∈ Rn and J𝜀 ∈ W1,1(Rn), where

(𝜌𝜀)𝜀>0 is a family of mollifiers satisfying

𝜌 ∶ R → [0,∞), 𝜌 ∈ L1(R), 𝜌(r) = 𝜌(−r) for all r ∈ R,

𝜌𝜀(r) = 𝜀−n𝜌
( r
𝜀

)
for all r ∈ R, for all 𝜀 > 0,

∫
∞

0
𝜌𝜀(r) rn−1 dr = 2

Cn
for all 𝜀 > 0,

lim
𝜀↘0∫

∞

𝛿

𝜌𝜀(r) rn−1 dr = 0 for all 𝛿 > 0,

where Cn ∶= ∫
Sn−1 |e1 ⋅ 𝜎|2 dn−1(𝜎).

(A.3)  ,,, are non-negative constants, 𝜎S ∈ L∞(ΩT) and 0 ≤ 𝜎S ≤ 1 a.e. in ΩT .
(A.4) The function h ∶ R → [0, 1] is of class C2, bounded and Lipschitz continuous.
(A.5) The potential Ψ ∶ R → [0,∞) is of class C3 and satisfies

|Ψ′(s)| ≤ k0Ψ(s) + k1, (13)
Ψ(s) ≥ k2|s| − k3, (14)

− k4 ≤ Ψ′′(s) ≤ k4(1 + |s|2), (15)

for all s, t ∈ R and some positive constants ki, i = 0, … , 4.
(A.6) There are constants C1,C2 > 0 such that for all s ∈ R

Ψ(s) ≥ C1|s|4 − C2

Remark 2.1. A typical example for a potential satisfying the Assumptions 2.2 and 2.2 is the classical
double-well potential Ψ(s) ∶= 1

4
(1 − s2)2 for all s ∈ R.
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4 of 10 HURM AND MOSER

Remark 2.2. Observe that functions Ψ ∶ R → [0,∞) as in 2.2 also satisfy the inequality

|Ψ′(s) − Ψ′(t)| ≤ k5(1 + |s|2 + |t|2)|s − t| (16)

for all s, t ∈ R. This follows from the mean value theorem and (15).

2.3 Inequalities

Lemma 2.1. For every 𝛿 > 0, there exist constants C𝛿 > 0 and 𝜀𝛿 > 0 such that for every sequence (f𝜀)𝜀>0 ⊂ L2(Ω)
there holds

||f𝜀1 − f𝜀2 ||2L2(Ω) ≤ 𝛿𝜀1 (f𝜀1 ) + 𝛿𝜀2 (f𝜀2 ) + C𝛿||f𝜀1 − f𝜀2 ||2H1(Ω)′ (17)

for all 𝜀1, 𝜀2 ∈ (0, 𝜀𝛿).

Proof. For a proof, we refer to Reference 5 (Lemma 4(2)). ▪

Theorem 2.1. Let Ω ⊂ Rn, n ∈ {2, 3}, be a bounded domain with C3-boundary. Moreover, let 𝜀 be defined as
in (11) and J𝜀 satisfy 2.2 from Section 2.2. Then for all c ∈ H3(Ω) with 𝜕nc = 0 on 𝜕Ω it holds for a constant K > 0
independent of 𝜀

‖𝜀c + Δc‖L2(Ω) ≤ K
√
𝜀||c||H3(Ω). (18)

Proof. A proof can be found in Reference 1 (Corollary 4.2). ▪

2.4 Existence and uniqueness results

Well-posedness of the local Cahn–Hilliard model (1) to (5) is available in a slightly more general setting due to,2 where the
authors considered the problem with an additional control function. In particular, we have the following well-posedness
result for the system (1) to (5).

Theorem 2.2 (Well-posedness of the local model). Let the Assumptions 2.2, 2.2–2.2 hold and let n = 3. Let
the initial data (𝜑0, 𝜎0) satisfy 𝜑0 ∈ H3(Ω) with 𝜕n𝜑0 = 0 on 𝜕Ω and 𝜎0 ∈ H1(Ω) with 0 ≤ 𝜎0 ≤ 1 a.e. in Ω.

Then there is a unique solution (𝜑, 𝜇, 𝜎) of (1)–(5) with the regularity

𝜑 ∈ L∞(0,T,H2(Ω)) ∩ L2(0,T,H3(Ω)) ∩ H1(0,T,L2(Ω)) ∩ C0(ΩT),

𝜇 ∈ L2(0,T,H2(Ω)) ∩ L∞(0,T,L2(Ω)),

𝜎 ∈ L∞(0,T,H1(Ω)) ∩ L2(0,T,H2(Ω)) ∩ H1(0,T,L2(Ω)), 0 ≤ 𝜎 ≤ 1 a.e. in ΩT ,

such that 𝜑(0) = 𝜑0, 𝜎(0) = 𝜎0 and for a.e. t ∈ (0,T) and all 𝜉 ∈ H1(Ω) it holds

0 = ∫Ω
𝜕t𝜑𝜉 + ∇𝜇 ⋅ ∇𝜉 − (𝜎 −)h(𝜑)𝜉 dx, (19)

0 = ∫Ω
𝜇𝜉 − Ψ′(𝜑)𝜉 − ∇𝜑 ⋅ ∇𝜉 dx, (20)

0 = ∫Ω
𝜕t𝜎𝜉 + ∇𝜎 ⋅ ∇𝜉 + h(𝜑)𝜉 + (𝜎 − 𝜎S)𝜉 dx. (21)

Proof. We refer to Reference 15 (Theorem 2.1). ▪
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Existence of weak solutions of the nonlocal system (6) to (10) has already been shown in Reference 11, where the
authors considered a more general Cahn–Hilliard system including chemotaxis and active transport, as well as possible
relaxation terms for the Cahn–Hilliard equation. The following result is obtained:

Theorem 2.3 (Well-posedness of the non-local model). Let the Assumptions 2.2–2.2 hold and let n = 3. More-
over, we assume that 𝜑0,𝜀, 𝜎0,𝜀 ∈ L2(Ω). Then for 𝜀0 > 0 small and all 𝜀 ∈ (0, 𝜀0] there exists a unique weak
solution (𝜑𝜀, 𝜇𝜀, 𝜎𝜀) of (6)–(10) with the regularity

𝜑𝜀 ∈ H1(0,T,H1(Ω)′) ∩ L2(0,T,H1(Ω)),
𝜇𝜀 ∈ L2(0,T,H1(Ω)),
𝜎𝜀 ∈ H1(0,T,H1(Ω)′) ∩ L2(0,T,H1(Ω)), 0 ≤ 𝜎𝜀(t) ≤ 1 a.e. in Ω, for all t ∈ [0,T],

such that 𝜑𝜀(0) = 𝜑0,𝜀, 𝜎𝜀(0) = 𝜎0,𝜀 and for all 𝜉 ∈ H1(Ω) and a.e. t ∈ (0,T) it holds

0 = ⟨𝜕t𝜑𝜀, 𝜉⟩H1(Ω) + ∫Ω
∇𝜇𝜀 ⋅ ∇𝜉 dx − ∫Ω

(𝜎𝜀 −)h(𝜑𝜀)𝜉 dx, (22)

𝜇𝜀 = 𝜀𝜑𝜀 + Ψ′(𝜑𝜀), (23)

0 = ⟨𝜕t𝜎𝜀, 𝜉⟩H1(Ω) + ∫Ω
∇𝜎𝜀 ⋅ ∇𝜉 + h(𝜑𝜀)𝜉 + (𝜎𝜀 − 𝜎S)𝜉 dx. (24)

Proof. This follows from Reference 11, Theorem 2.14 and Theorem 2.15. Here, 𝜀0 > 0 is such that for some
c0 > 0 it holds

Ψ′′(s) + inf
x∈Ω∫Ω

J𝜀(x − y) dy ≥ c0 for all s ∈ R, 𝜀 ∈ (0, 𝜀0].

The existence of such an 𝜀0 > 0 follows from (15) and

inf
x∈Ω∫Ω

J𝜀(x − y)dy ≥ c
𝜀2 for all 𝜀 ∈ (0, 1]

for some c > 0. Let us briefly remark the ideas for the latter estimate here. First, note that by applying the
transformation rule and a rescaling argument together with the properties of J𝜀 from 2.2, we obtain

∫B𝛿 (x)
J𝜀(x − y)dy ≥ c

𝜀2 for all 𝜀 ∈ (0, 1],

where B𝛿(x) ⊆ Rn is the ball with radius 𝛿 > 0 around x. Here c > 0 is a positive constant that can be chosen
uniformly for all x ∈ Rn and 𝛿 ≥ 𝛿0 > 0, where 𝛿0 is any fixed positive constant. This holds analogously if the
balls are replaced by sectors of such balls based on angles uniformly bounded away from zero. Hence the
task reduces to assign to each point x ∈ Ω such an object contained in Ω. For points x ∈ Ω outside a tubular
neighborhood of 𝜕Ω this is directly clear. For points close to the boundary one can employ the uniform interior
ball condition for 𝜕Ω. ▪

3 CONVERGENCE RESULT

Theorem 3.1. Let the Assumptions 2.2–2.2 hold, let n = 3 and 𝜀0 > 0 be as in Theorem 2.3. Moreover, for the
initial data (𝜑0, 𝜎0) to the local system (1)–(5) we assume 𝜑0 ∈ H3(Ω) with 𝜕n𝜑0 = 0 on 𝜕Ω and 𝜎0 ∈ H1(Ω)
with 0 ≤ 𝜎0 ≤ 1 a.e. in Ω. Additionally, for 𝜀 ∈ (0, 𝜀0] let the initial data for the nonlocal system (6)–(10) satisfy
𝜑0,𝜀, 𝜎0,𝜀 ∈ L2(Ω), ℰ𝜀(𝜑0,𝜀) ≤ C, ∫

𝛺
𝛹 (𝜑0,𝜀) dx ≤ C and

||𝜑0,𝜀 − 𝜑0||H1(Ω)′ + ||𝜎0,𝜀 − 𝜎0||L2(Ω) + |(𝜑0,𝜀)Ω − (𝜑0)Ω| ≤ C
√
𝜀 (25)
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6 of 10 HURM AND MOSER

for some constant C > 0 independent of 𝜀 ∈ (0, 𝜀0].
Then there exists a constant K > 0 such that the weak solution (𝜑𝜀, 𝜎𝜀, 𝜇𝜀) of the nonlocal model (6)–(10) for

𝜀 ∈ (0, 𝜀0] from Theorem 2.3 and the strong solution (𝜑, 𝜎, 𝜇) of the local model (1)–(5) from Theorem 2.2 satisfy
for some constant K > 0 independent of 𝜀,

sup
t∈[0,T]

||𝜑𝜀(t) − 𝜑(t)||H1(Ω)′ + ||𝜑𝜀 − 𝜑||L2(0,T;L2(Ω)) ≤ K
√
𝜀, (26)

sup
t∈[0,T]

||𝜎𝜀(t) − 𝜎(t)||L2(Ω) + ||∇𝜎𝜀 − ∇𝜎||L2(0,T;L2(Ω)) ≤ K
√
𝜀. (27)

Remark 3.1. We assumed n = 3 in the theorem because this is also the case in References 2 and 11. However,
note that Theorem 2.2, Theorem 2.3 and Theorem 3.1 should also work in the case n = 2 because the required
embeddings are improved.

Proof. We denote by (𝜑𝜀, 𝜇𝜀, 𝜎𝜀) the weak solution to the nonlocal model (6) to (10) given by Theorem 2.3 and
with (𝜑, 𝜇, 𝜎) the unique solution to the local model (1) to (5) provided by Theorem 2.2. Then, the functions
𝜑̃ ∶= 𝜑𝜀 − 𝜑, 𝜇̃ ∶= 𝜇𝜀 − 𝜇, 𝜎̃ ∶= 𝜎𝜀 − 𝜎 solve the system

𝜕t𝜑̃ = Δ𝜇̃ + (𝜎𝜀 −)h(𝜑𝜀) − (𝜎 −)h(𝜑) in ΩT , (28)
𝜇̃ = 𝜀𝜑𝜀 + Δ𝜑 + Ψ′(𝜑𝜀) − Ψ′(𝜑) in ΩT , (29)

𝜕t𝜎̃ = Δ𝜎̃ − 𝜎̃ − 𝜎𝜀h(𝜑𝜀) + 𝜎h(𝜑) in ΩT . (30)

in a weak sense. More precisely, the weak formulation is obtained by testing with functions in H1(Ω), cf. the
weak formulations (19) to (21) and (22) to (24).

Testing (28) with (−ΔN)−1(𝜑̃ − 𝜑̃Ω) ∈ H1(Ω), cf. the property (12) for the inverse Neumann Laplacian
above, we obtain

1
2

d
dt
||𝜑̃ − 𝜑̃Ω||2H1(Ω)′ = −∫Ω

𝜇̃(𝜑̃ − 𝜑̃Ω) dx

+ ∫Ω

[
(𝜎𝜀 −)h(𝜑𝜀) − (𝜎 −)h(𝜑)

]
(−ΔN)−1(𝜑̃ − 𝜑̃Ω) dx. (31)

For the second term on the right-hand side of (31), we have

∫Ω

[
(𝜎𝜀 −)h(𝜑𝜀) − (𝜎 −)h(𝜑)

]
(−ΔN)−1(𝜑̃ − 𝜑̃Ω) dx

= ∫Ω
𝜎𝜀(h(𝜑𝜀) − h(𝜑))(−ΔN)−1(𝜑̃ − 𝜑̃Ω) dx

− ∫Ω
(h(𝜑𝜀) − h(𝜑))(−ΔN)−1(𝜑̃ − 𝜑̃Ω) dx

+ ∫Ω
h(𝜑) 𝜎̃(−ΔN)−1(𝜑̃ − 𝜑̃Ω) dx =∶ I1 + I2 + I3.

Using the Lipschitz continuity and boundedness of h, cf. assumption 2.2, and |𝜎𝜀| ≤ 1 a.e. in ΩT due to
Theorem 2.3, we obtain the following estimates, where Lh is the Lipschitz constant of h:

|I1| ≤ Lh||𝜑̃||L2(Ω)||(−ΔN)−1(𝜑̃ − 𝜑̃Ω))||L2(Ω) (32)

≤ 1
36

||𝜑̃||2L2(Ω) + K||𝜑̃ − 𝜑̃Ω||2H1(Ω)′ , (33)

|I2| ≤ 1
36

||𝜑̃||2L2(Ω) +K||𝜑̃ − 𝜑̃Ω||2H1(Ω)′ , (34)
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HURM AND MOSER 7 of 10

|I3| ≤ 1
2
||𝜎̃||2L2(Ω) + K||𝜑̃ − 𝜑̃Ω||2H1(Ω)′ . (35)

In the next step, we test (29) with 𝜑̃ − 𝜑̃Ω. This yields

∫Ω
𝜇̃(𝜑̃ − 𝜑̃Ω) dx = ∫Ω

(𝜀𝜑𝜀 + Δ𝜑)(𝜑̃ − 𝜑̃Ω) dx + ∫Ω

(
Ψ′(𝜑𝜀) − Ψ′(𝜑)

)
(𝜑̃ − 𝜑̃Ω) dx. (36)

For the first term on the right-hand side of (36), it holds

∫Ω
(𝜀𝜑𝜀 + Δ𝜑)(𝜑̃ − 𝜑̃Ω) dx = ∫Ω

(𝜀𝜑 + Δ𝜑)(𝜑̃ − 𝜑̃Ω) dx + ∫Ω
𝜀𝜑̃(𝜑̃ − 𝜑̃Ω) dx. (37)

Recalling that 𝜀𝜑̃Ω = 0, we can add the term − ∫Ω 𝜀𝜑̃Ω(𝜑̃ − 𝜑̃Ω) dx to the right-hand side in (37). Then, by
the symmetry of the interaction kernel J𝜀, we observe that

∫Ω
𝜀(𝜑̃ − 𝜑̃Ω)(𝜑̃ − 𝜑̃Ω) dx = 2𝜀(𝜑̃ − 𝜑̃Ω).

For the second term in (36), we first observe that

∫Ω

(
Ψ′(𝜑𝜀) − Ψ′(𝜑)

)
(𝜑̃ − 𝜑̃Ω) dx = ∫Ω

(
Ψ′(𝜑𝜀) − Ψ′(𝜑)

)
𝜑̃ dx − ∫Ω

(
Ψ′(𝜑𝜀) − Ψ′(𝜑)

)
𝜑̃Ω dx.

For the first term on the right-hand side, we use the Fundamental Theorem of Calculus. Then, the assumption
Ψ′′ ≥ −k4 yields

∫Ω

(
Ψ′(𝜑𝜀) − Ψ′(𝜑)

)
𝜑̃ dx ≥ −k4||𝜑̃||2L2(Ω).

For the second term, we use assumption (16) and get

∫Ω

(
Ψ′(𝜑𝜀) − Ψ′(𝜑)

)
𝜑̃Ω dx ≤ k5 ∫Ω

(1 + |𝜑𝜀|2 + |𝜑|2)|𝜑̃||𝜑̃Ω| dx.

Invoking the inequalities of Hölder and Young, we infer

k5 ∫Ω
(1 + |𝜑𝜀|2 + |𝜑|2)|𝜑̃||𝜑̃Ω| dx ≤ k5||𝜑̃||L2(Ω)

‖‖‖(1 + |𝜑𝜀|2 + |𝜑|2)|𝜑̃Ω|‖‖‖L2(Ω)

≤ k5||𝜑̃||2L2(Ω) + K|𝜑̃Ω|2||(1 + |𝜑𝜀|2 + |𝜑|2)||2L2(Ω)

≤ k5||𝜑̃||2L2(Ω) + K|𝜑̃Ω|2(1 + ||𝜑𝜀||4L4(Ω) + ||𝜑||4L4(Ω)

)
.

In the next step, we need to control the term ||𝜑𝜀||L4(Ω) uniformly in 𝜀. To this end, we test equation (22) by
𝜇𝜀, (23) by −𝜕t𝜑𝜀 and (24) by 𝜎𝜀 and sum the resulting equations. This yields

d
dt

(
𝜀(𝜑𝜀) + ∫Ω

Ψ(𝜑𝜀) dx + ||𝜎𝜀||2L2(Ω)

)
+ ||∇𝜇𝜀||2L2(Ω) + ||∇𝜎𝜀||2L2(Ω)

= ∫Ω
(𝜎𝜀 −)h(𝜑𝜀)𝜇𝜀 dx − ∫Ω

h(𝜑𝜀)𝜎𝜀 dx − ∫Ω
(𝜎𝜀 − 𝜎S)𝜎𝜀 dx.

Since the function h is bounded, we can control the terms on the right-hand side using the assumptions 2.2
and Young’s inequality. In particular, we obtain

d
dt

(
𝜀(𝜑𝜀) + ∫Ω

Ψ(𝜑𝜀) dx + ||𝜎𝜀||2L2(Ω)

)
+ 1

2
||∇𝜇𝜀||2L2(Ω) + ||∇𝜎𝜀||2L2(Ω) ≤ C + C||𝜎𝜀||2L2(Ω).
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8 of 10 HURM AND MOSER

Note that we also used the Poincaré-Wirtinger inequality, in order to absorb ||∇𝜇𝜀||L2(Ω) into the left-hand
side. In fact, testing (23) by 1 and using the properties of Ψ, one can show that 𝜇𝜀 has bounded mean value.
Finally, Gronwalls Lemma and our assumptions on the initial data give uniform estimates independent of 𝜀.
In particular, we have that

∫Ω
Ψ(𝜑𝜀) dx ≤ C.

Then, assumption 2.2 yields that the sequence (𝜑𝜀)𝜀>0 ⊂ L∞(0,T;L4(Ω)) is bounded.
Next, we test equation (30) with 𝜎̃. Then, we obtain

1
2

d
dt
||𝜎̃||2L2(Ω) + ||∇𝜎̃||2L2(Ω) = ∫Ω

((𝜎S − 𝜎𝜀) − (𝜎S − 𝜎))𝜎̃ dx

− ∫Ω
(𝜎𝜀h(𝜑𝜀) − 𝜎h(𝜑))𝜎̃ dx

= −||𝜎̃||2L2(Ω) − ∫Ω
(𝜎𝜀h(𝜑𝜀) − 𝜎h(𝜑))𝜎̃ dx. (38)

For the second term in (38), we observe

∫Ω
(𝜎𝜀h(𝜑𝜀) − 𝜎h(𝜑))𝜎̃ dx = ∫Ω

𝜎𝜀(h(𝜑𝜀) − h(𝜑))𝜎̃ dx + ∫Ω
h(𝜑)|𝜎̃|2 dx

≤ K||𝜎̃||2L2(Ω) +
1

36
||𝜑̃||2L2(Ω), (39)

where we again used |𝜎𝜀| ≤ 1 a.e. in ΩT and the Lipschitz continuity and boundedness of h. Combining the
previous estimates, we obtain

1
2

d
dt

(||𝜑̃ − 𝜑̃Ω||2H1(Ω)′ + ||𝜎̃||2L2(Ω)

)
+ 2𝜀(𝜑̃ − 𝜑̃Ω) + ||∇𝜎̃||2L2(Ω) +

1
2
||𝜑̃ − 𝜑̃Ω||2L2(Ω)

≤ 1
12

||𝜑̃||2L2(Ω) + K||𝜎̃||2L2(Ω) − ∫Ω
(𝜀𝜑 + Δ𝜑)(𝜑̃ − 𝜑̃Ω) dx + (k4 + k5)||𝜑̃ − 𝜑̃Ω||2L2(Ω)

+ K||𝜑̃ − 𝜑̃Ω||2H1(Ω)′ +
1
2
||𝜑̃ − 𝜑̃Ω||2L2(Ω) + K|𝜑̃Ω|2. (40)

Finally, we test (28) with the mean value 𝜑̃Ω and obtain

|Ω|
2
𝜕t|𝜑̃Ω|2 = ∫Ω

𝜕t𝜑̃𝜑̃Ωdx = ∫Ω

[
(𝜎𝜀 −)h(𝜑𝜀) − (𝜎 −)h(𝜑)

]
𝜑̃Ωdx.

With analogous estimates as before, it follows that

𝜕t|𝜑̃Ω|2 ≤ 1
12

||𝜑̃ − 𝜑̃Ω||2L2(Ω) + C(||𝜎̃||2L2(Ω) + |𝜑̃Ω|2).
Moreover, Hölder’s and Young’s inequalities imply

∫Ω
(𝜀𝜑 + Δ𝜑)(𝜑̃ − 𝜑̃Ω) dx ≤ 1

6
||𝜑̃ − 𝜑̃Ω||2L2(Ω) + K||𝜀𝜑 + Δ𝜑||2L2(Ω).

Owing to the inequality,

||𝜑̃||2L2(Ω) ≤ ||𝜑̃ − 𝜑̃Ω||2L2(Ω) + C|𝜑̃Ω|2,
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HURM AND MOSER 9 of 10

we can now collect the terms on the right-hand side in (40) and use inequality (17) with 𝛿 = 6
6(k4+k5)+5

to obtain

(k4 + k5 +
5
6
)||𝜑̃ − 𝜑̃Ω||2L2(Ω) ≤ 𝜀(𝜑̃ − 𝜑̃Ω) + C||𝜑̃ − 𝜑̃Ω||2H1(Ω)′ .

Eventually, we then arrive at

1
2

d
dt

(||𝜑̃ − 𝜑̃Ω||2H1(Ω)′ + ||𝜎̃||2L2(Ω) + |𝜑̃Ω|2) + 𝜀(𝜑̃ − 𝜑̃Ω) + ||∇𝜎̃||2L2(Ω) +
1
2
||𝜑̃ − 𝜑̃Ω||2L2(Ω)

≤ K
(||𝜑̃ − 𝜑̃Ω||2H1(Ω)′ + ||𝜎̃||2L2(Ω) + |𝜑̃Ω|2) + K||𝜀𝜑 + Δ𝜑||2L2(Ω). (41)

Thus, Gronwall’s lemma implies

1
2

sup
t∈[0,T]

||𝜑̃(t) − 𝜑̃Ω(t)||2H1(Ω)′ +
1
2

sup
t∈[0,T]

||𝜎̃(t)||2L2(Ω) +
1
2

sup
t∈[0,T]

|𝜑̃Ω(t)|2
+ ∫

T

0
𝜀(𝜑̃ − 𝜑̃Ω) dt + ∫

T

0
||∇𝜎̃||2L2(Ω) dt + 1

2∫
T

0
||𝜑̃ − 𝜑̃Ω||2L2(Ω) dt

≤
(

1
2
||𝜑̃0 − 𝜑̃Ω,0||2H1(Ω)′ +

1
2
||𝜎̃0||2L2(Ω) +

1
2
|𝜑̃Ω,0|2 + ∫

T

0
||𝜀𝜑 + Δ𝜑||2L2(Ω) dt

)
eCT .

Hence, recalling the assumptions on the initial data, cf. (25), and Theorem 2.1, we obtain

1
2

sup
t∈[0,T]

||𝜑̃(t) − 𝜑̃Ω(t)||2H1(Ω)′ +
1
2

sup
t∈[0,T]

||𝜎̃(t)||2L2(Ω) +
1
2

sup
t∈[0,T]

|𝜑̃Ω(t)|2
+ ∫

T

0
𝜀(𝜑̃ − 𝜑̃Ω) dt + ∫

T

0
||∇𝜎̃||2L2(Ω) dt + 1

2∫
T

0
||𝜑̃ − 𝜑̃Ω||2L2(Ω) dt ≤ C𝜀.

Finally, observe that it holds

||𝜑̃||L∞(0,T;H1(Ω)′) ≤ ||𝜑̃ − 𝜑̃Ω||L∞(0,T;H1(Ω)′) + ||𝜑̃Ω||L∞(0,T)

≤ sup
t∈[0,T]

||𝜑̃(t) − 𝜑̃Ω(t)||2H1(Ω)′ + |𝜑̃Ω,0| ≤ C
√
𝜀,

which shows the convergence in (26). Hence, the proof is complete. ▪
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