
Journal of Systems Architecture 166 (2025) 103459

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

USEFUSE: Uniform stride for enhanced performance in fused layer
architecture of deep neural networksI

Muhammad Sohail Ibrahim a,1, Muhammad Usman b ,∗,1, Jeong-A Lee c,∗
a Department of Mechanical Systems Engineering, Kumoh National Institute of Technology, Gumi-si, Republic of Korea
b Faculty of Informatics and Data Science, University of Regensburg, Regensburg, 93053, Germany
c Department of Computer Engineering, Chosun University, Gwangju, Republic of Korea

A R T I C L E I N F O

Keywords:
Convolution neural network
Online arithmetic
Most-significant-digit-first arithmetic
CNN acceleration
Layer fusion

 A B S T R A C T

Convolutional Neural Networks (CNNs) are crucial in various applications, but deploying them on resource-
constrained edge devices poses challenges. This study presents the Sum-of-Products (SOP) units for convolution,
which utilize low-latency left-to-right bit-serial arithmetic to minimize response time and enhance overall
performance. The study proposes a methodology for fusing multiple convolution layers to reduce off-chip
memory communication and increase the overall performance. An effective mechanism detects and skips
inefficient convolutions after ReLU layers, minimizing power consumption without compromising accuracy. Ad-
ditionally, efficient tile movement guarantees uniform access to the fusion pyramid. An analysis demonstrates
the uniform stride strategy improves operational intensity. Two designs cater to varied demands: one focuses
on minimal response time for mission-critical applications, and another focuses on resource-constrained devices
with comparable latency. This approach notably reduced redundant computations, improving the efficiency of
CNN deployment on edge devices.
1. Introduction

Deep neural network (DNN) is an artificial neural network com-
prised of several layers between input and output layers. They have
been widely used in image recognition [1], semantic segmentation [2],
medical imaging [3], bioinformatics [4], and signal processing [5]
etc. A class of DNN is the convolution neural networks (CNNs) which
play a pivotal role in many applications such as computer vision,
recognition, object detection, etc. This has been made possible due to
the advancements in high performance computing technologies and the
availability of cutting-edge compute resources. The use of CNNs with
many layers has enabled the swift progress in a number of diverse
application domains. CNN designs, inspired by the behavior of optic
nerves in human brain, perform data processing in multiple layers of
neurons to achieve human brain-like performance in image recognition.

There is a pressing need to execute complex neural networks in
mission-critical applications with low latency demands. However, due
to limited compute and storage resources, the implementation of neural
networks on edge devices is limited [6]. Various efforts have been
made to reduce the complexity of neural networks at algorithm level,

I This research was supported by Basic Science Research Program funded by the Ministry of Education through the National Research Foundation of Korea
(NRF-2020R1I1A3063857). The EDA tool was supported by the IC Design Education Center (IDEC), Korea.
∗ Corresponding authors.
E-mail addresses: msohail@kumoh.ac.kr, msohail@chosun.ac.kr (M.S. Ibrahim), muhammad.usman@ur.de (M. Usman), jalee@chosun.ac.kr (J.-A. Lee).

1 Muhammad Sohail Ibrahim and Muhammad Usman contributed equally to this work.

including compression by pruning, quantization, approximation, zero
skipping, etc., at the expense of accuracy [7–9]. Furthermore, several
spatial architectures exploiting the effective data such as weight sta-
tionary [10], output stationary [11] and row stationary [12], have been
proposed to accelerate the computation of neural networks.

In the context of network compression for resource-constrained
hardware, serial processing is usually favored in DNN implementation
where the models can have layer-specific input precision for either
activation or weight (bit-serial with one operand in parallel) [13,
14] or both (bit-serial with both operands in serial) as in [15]. Par-
allel processing accounts for larger area, whereas serial approaches
have longer computation time. Bit-serial designs however, require sim-
pler circuitry and the adjustable precision makes them favorable for
domain-specific hardware accelerators. Bit-serial designs also suffer
from high latency and low throughput issues which are usually ad-
dressed by employing multiple instances of small serial circuits to
deliver higher throughput [13].

In most modern CNNs, convolution accounts for more than 90% of
operations. Although the computation of the convolution operations is
https://doi.org/10.1016/j.sysarc.2025.103459
Received 29 October 2024; Received in revised form 8 April 2025; Accepted 11 Ma
vailable online 27 May 2025
383-7621/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
y 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
https://orcid.org/0000-0002-3393-5211
mailto:msohail@kumoh.ac.kr
mailto:msohail@chosun.ac.kr
mailto:muhammad.usman@ur.de
mailto:jalee@chosun.ac.kr
https://doi.org/10.1016/j.sysarc.2025.103459
https://doi.org/10.1016/j.sysarc.2025.103459
http://creativecommons.org/licenses/by/4.0/

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
Fig. 1. A general CNN architecture.

very simple, involving multiplication and addition, but due to the depth
of such networks the computational complexity increases, subsequently
raising the number of operations. It is found that nearly 85% of the
overall time in a CNN-based classification model is consumed by these
multiplication and addition operations to perform convolution in the
DaDianNao accelerator [13].

A generic CNN architecture is illustrated in Fig. 1, in which the
feature extraction module includes stacks of convolution, activation,
and pooling layers while the classification module contains stacks of
fully connected layers. Activation functions to add non-linearity are
placed either after convolution layer or pooling layer. One of the
simplest and most commonly used activation function in CNNs is the
rectified linear unit (ReLU), which returns same value if the input is
positive and zero if the input is negative. It is reported that around
60% of the convolutions produce negative output and therefore, their
results are not used due to ReLU in the subsequent operations [16].
Such convolutions have no effect on the output and are termed as
ineffectual convolutions. In order to mitigate the computation of inef-
fectual convolutions, researchers have proposed methods to detect such
negative activation and terminate them at an early stage, consequently
resulting in energy and power savings [17]. Several methods have been
proposed to detect these negative results at an early stage and terminate
them to reduce energy consumption [16,18,19]. However, it adds an
overhead to the model. This overhead can be alleviated by utilizing an
unconventional arithmetic known as online arithmetic [20], where all
the computations are performed from left-to-right in most significant
digit first (MSDF) manner.

Moreover, the information in the CNNs flows sequentially, i.e., the
results from one layer are utilized by subsequent layers. This inter-
layer connectivity forms the backbone of CNNs, allowing them to
progressively uncover intricate features as the data travels deeper into
the network. Conventional CNN accelerator implementations perform
the network computation in a layer-by-layer manner where the data is
repeatedly transferred between the processing units and memory. Such
communication burden increases rapidly with the increasing depth of
the network.

In this avenue, exploring the dataflow across the CNN layers can
help in the reduction of memory traffic. Instead of layer-by-layer com-
putation in a CNN, the CNN layers can be fused together to reduce
the communication between memory and the compute engines [21].
In such architectures, it is well-defined in the literature that each
pixel or receptive field in the activation of a particular hidden layer
is dependent on a region in the input activation of the initial layer
of the network. Using a layer fusion strategy can help in merging the
operations of various subsequent layers, in-turn reducing the off-chip
memory access substantially.

In this work, we develop a CNN evaluation scheme by fusing
the convolution layers of the network to reduce the off-chip memory
traffic due to the intermediate data. The proposed approach reduces
the number of duplicate computations by an efficient uniform fusion
2
pyramid movement scheme aided by a uniform stride for each level
of the fusion design. The goal is to select the smallest possible tile
sizes for each layer in the fusion design, maintaining a uniform tile
movement while ensuring minimum overlap between the adjoining
tiles. The contributions of this study can be summarized as follows:

• Design of SoP units for convolution using low-latency left-to-
right bit-serial arithmetic based computation units to minimize
the response time.

• A methodology to fuse several layers of convolution neural net-
work using the proposed SoP computation units to decrease the
off-chip memory communication.

• Mechanism to early detect and skip the computation of convolu-
tions which are ineffectual after ReLU layers without any loss in
accuracy during inference to minimize the power consumption.

• A methodology for tile movement to ensure efficient data access
and uniform movement of fusion pyramid.

• An analysis depicting that the proposed uniform stride strategy
improves the operational intensity irrespective of the dataflow of
the underlying computation units.

• Additionally, we propose two alternate designs possessing the
aforementioned properties; (1) a design aimed at minimal re-
sponse time for mission critical applications, (2) a design suitable
for resource constrained devices with comparable latency as the
contemporary approaches.

The rest of the paper is organized as: a comprehensive review of
relevant literature is discussed in Section 2, the proposed CNN evalua-
tion scheme is presented in the subsequent Section 3. The experimental
results and relevant discussion is presented in Section 4 followed by the
conclusion of the study in Section 6.

2. Related work

This section will review existing bit-serial architectures for CNN
computation, followed by a discussion on fused-layer architectures.
Finally, methods for early detection and termination of negative com-
putations to enhance energy efficiency will be explored.

2.1. Bit-serial accelerators

Over the past decade, researchers have addressed various challenges
in CNN acceleration, such as unnecessary computations and the need
for variable precision across CNN layers [22,23]. These challenges
can lead to increased energy and resource demands in accelerator
designs. Stripes [13], a leading CNN acceleration design, employs bit-
serial arithmetic compute units to exploit variable precision, thereby
speeding up CNN inference.

The primary goal of bit-serial arithmetic designs is to reduce un-
necessary computations and create energy-efficient accelerators. In
this direction, Bitlet [24] proposed a bit-interleaving architecture that
leverages bit-level sparsity and variable precision to accelerate DNN
inference. A mixed-precision CNN accelerator is presented in [25],
achieving high throughput with minimal accuracy loss by quantizing
inputs and weights. Similarly, T-DLA [26] uses 2-bit quantized weights
for performance improvements. TALIPOT [27] enhances energy effi-
ciency using hybrid number representations in most significant bit first
(MSBF) arithmetic units, allowing early operations in subsequent layers
without waiting for complete computation results. Other variable pre-
cision, bit-serial computation-based designs include implementations
such as [14,28,29].

Bit-serial designs provide advantages such as reduced memory
bandwidth requirements and the ability to leverage variable precision
across different DNN layers. However, these designs face drawbacks,
including higher latency, lower throughput, and reduced performance
compared to conventional bit-parallel architectures. Additionally, in
bit-serial designs, the accumulation operation is hindered by carry
propagation, which significantly increases cycle time and lowers the
operating frequency of the processing units [30].

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
2.2. Fused-layer accelerators

Conventional CNN accelerator designs focus on iterative layer com-
putations, generating large amounts of intermediate data. Depending
on the design and tile size, this data can be intra-layer or inter-
layer, requiring off-chip memory storage and retrieval for subsequent
operations. As CNN models grow deeper, memory traffic increases.
To address this, a novel accelerator design that *fuses* multiple CNN
layers was introduced in [21], reducing intermediate memory traffic
by directly feeding data between adjacent compute units, minimizing
off-chip memory use by up to 95% for models like VGGNet-E.

Fused-layer architectures can also take advantage of variable preci-
sion requirements in different layers, improving efficiency. Bit-Fusion
[15] introduced a flexible architecture where bit-level processing el-
ements dynamically fuse to match precision needs, increasing speed
and energy efficiency without accuracy loss. Efficient computation
scheduling is critical for fused-layer designs, as highlighted by Conv-
Fusion [31], which proposed a cost model for scheduling computation
and memory communication, optimizing tiling, loop reordering, data
reuse, layer fusion, and convolution execution schemes. Other layer-
fusion-based designs include DeepThings [32], TGPA [33], and further
approaches explored in [34–36].

The data flow between computation units and external memory
presents significant design challenges and increased energy consump-
tion due to the large volume of data generated during CNN convolution
operations [21]. Fused-layer architectures attempt to mitigate this by
reusing intermediate data, but exploring the design space for data
scheduling, loop tiling, and loop reordering remains challenging.

Olympus [37] addresses memory access traffic by optimizing both
intra-layer and inter-layer data reuse. It employs a memory-oriented
network scheduling technique to reduce memory traffic and enhance
energy efficiency in DNN processors. Other strategies for minimizing
memory access and exploring accelerator design space include [38–41].

Despite the benefits of fused-layer dataflow, certain limitations
remain. Many fused-layer designs overlook the stride of the fusion
tile, which determines how the tile moves after computation. Incorrect
stride determination can lead to excessive duplicate data being reused
or recomputed, requiring large buffers or on-chip storage for intermedi-
ate data and causing significant under-utilization of compute resources.
Storing intermediate data has been shown to be more energy-efficient
than recomputation [21]. The need for large data buffers arises due to
two factors: (1) ineffective computation of tile stride and (2) the use
of conventional arithmetic units that fail to process the generated data
immediately.

2.3. Early negative detection techniques

Rectified Linear Activation (ReLU) is a popular activation function
in neural networks, which sets negative values to zero while keeping
positive values unchanged. With the advancement in deep learning
architectures, various derivatives of the ReLU activation functions have
been proposed, such as PReLU [42], LeakyReLU [43], etc., while many
recent architectures still rely on the ReLU activation [44–47]. Ad-
ditionally, recent research suggests that ReLU can serve as a viable
alternative to softmax, offering advantages in computation efficiency
and parallelization. For instance, [48] proposed a ReLU based self-
attention and feed-forward network to replace softmax in transformer
models, showing that ReLU improves scalability by efficiently handling
a large number of memory slots. Similarly, [49] replaced softmax with
ReLU in vision transformers and demonstrated that the ReLU-based
attention achieves comparable performance to softmax-based attention
in terms of scaling behavior while enabling better parallelization over
the sequence length dimension, reducing the need for gather oper-
ations. These findings indicate that ReLU is not only relevant but
also increasingly explored as a substitute for more complex functions
3
in deep learning architectures. The introduction of ReLU in the net-
work architecture facilitates faster convergence and helps address the
vanishing gradient problem. However, ReLU introduces the issue of
ineffectual convolutions, where a significant portion of a convolution
layer’s output consists of zero activations after applying ReLU. These
zeros are propagated through the network without contributing to the
final output, leading to wasted computational resources. This ineffi-
ciency consumes memory bandwidth, energy, and processing cycles,
ultimately slowing down inference and increasing energy consumption.

As mentioned earlier, while many DNN acceleration techniques
focus on designing fast and energy-efficient computation units, fewer
approaches address the early termination of convolution operations
due to ReLU activations. SnaPEA [17] introduced an early negative
prediction scheme with two modes to address this: (1) Exact Mode:
A single-bit sign check is performed iteratively on the sum of par-
tial products, and computation stops as soon as the sum falls below
zero, and (2) Predictive Mode: The partial sum is compared to a
threshold, and computation is terminated if it drops below this thresh-
old. This mode is faster but slightly reduces accuracy. Other methods
aimed at early termination of convolution operations include Com-
preEND [16], TermiNETor [50], CompRRAE [19], CompEND [18],
BitSET [51], and [52].

Left-to-right or MSDF arithmetic operations can significantly en-
hance the early detection of negative activations. Shuvo et al. [53]
proposed a novel circuit implementation for convolution that allows for
early detection of negative results, enabling the subsequent termination
of related operations. However, existing methods for early detection of
negative activations often rely on digit encoding schemes, threshold-
based predictions, or complex circuitry, which can result in erroneous
decisions or increased overhead.

3. Materials and methods

To address the limitations of the existing works, we propose to
utilize digit serial left-to-right arithmetic-based computation units, ter-
minating the computation of ineffective convolutions at an early stage,
and minimize the communication between memory and compute units
by fusing several successive convolution layers. The details of which
have been explained in the ensuing subsections.

3.1. Online arithmetic

In online arithmetic, computations proceed digit-by-digit, from the
most to the least significant position, for both inputs and outputs.
Algorithms require (𝑗 + 𝛿) input digits to compute the 𝑗th digit of
the result, where 𝛿 is the online delay, typically a small integer (1–4)
depending on the operation. This method employs a redundant number
system to generate the most significant digits first, making the cycle
time independent of the working precision. Online algorithms involve
recurrence relations where residuals are iteratively fed back into com-
putations. The residual part from intermediate calculations contributes
to generating subsequent output digits efficiently.

Online arithmetic enables the overlap of dependent operations, as
the subsequent unit can begin computation once the most significant
digit (MSD) of the preceding unit is available. In contrast, conven-
tional digit-serial arithmetic requires all digits before starting. Although
overlapping is possible in conventional systems if all operations use
either MSDF or least significant digit-first (LSDF) modes, issues arise
when combining MSDF (e.g., division) with LSDF (e.g., multiplication).
Since online arithmetic consistently uses MSDF, it supports seamless
overlapping of dependent operations. In conventional arithmetic, the
subsequent unit can only begin computation if the output of the pre-
ceding unit is generated bit-by-bit and the subsequent unit also accepts
input bit-by-bit. Otherwise, if it requires a parallel input, it must wait
until the entire output is available. Online arithmetic, however, takes
input serially and produces results serially, enabling a technique called

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
computation while communication, where processing and data transfer
occur simultaneously, reducing latency and improving efficiency.

In parallel or pipelined systems where full-precision communication
between modules is not feasible, online arithmetic excels due to its
reduced bandwidth needs. This is particularly advantageous in signal
processing applications where full-precision output is unnecessary. For
instance, in multiplying two 𝑁-bit operands to generate a 2𝑁-bit
result, often only the most significant half is required, as in many DSP
applications. Conventional multipliers produce output starting from the
least significant bits, discarding the lower half and wasting resources.
In contrast, online arithmetic generates output digit-by-digit from the
most significant side, allowing computation to stop once the desired
precision is reached.

The computation from the most significant digit (MSD) to the least
significant digit (LSD) relies on generating output based on partial
information about the input operands. This flexibility is achieved by
introducing redundancy in the input and output operands, which is why
a redundant number representation system is used in online arithmetic.
Typically, a signed digit (SD) redundant number system is employed,
where numbers are represented in radix 𝑟 form, and each signed digit
belongs to the set {−𝑎,… ,−1, 0, 1,… , 𝑎} with the condition 𝑟2 ≤ 𝑎 < 𝑟.
In this work, we utilize a symmetric radix-2 digit set with {−1, 0, 1}.

3.1.1. Online multiplier and adder overview

Algorithm 1 Serial–Parallel Online Multiplication
1: Initialize:

𝑥[−2] = 𝑤[−2] = 0
2: for j=−2,−1 do
3: 𝑣[𝚥] = 2𝑤[𝚥] +

(

𝑥𝑗+2 ⋅ 𝑌]
)

2−2

4: 𝑤[𝚥 + 1] ← 𝑣[𝑗]
5: end for

6: Recurrence:
7: for 𝑗 = 0… 𝑛 + 𝛿 do
8: 𝑣[𝚥] = 2𝑤[𝚥] +

(

𝑥𝑗+2 ⋅ 𝑌]
)

2−2

9: 𝑧𝑗+1 = 𝑆𝐸𝐿𝑀(𝑣[𝑗])
10: 𝑤[𝑗 + 1] ← 𝑣[𝑗] − 𝑧𝑗+1
11: 𝑍out ← 𝑧𝑗+1
12: end for

The fundamental component of the accelerator is the window pro-
cessing unit (WPU), which serves as the core for computing convo-
lutions. The WPU is composed of online multipliers and reduction
trees based on online adders. In the online serial–parallel multiplier,
one operand is fed in serially in a MSDF manner, while the other
operand is a constant available in parallel at implementation time. A
radix-2 serial–parallel online multiplier has an online delay of 2, and
its selection function requires 2 fractional bits and 1 integer bit for
output digit selection. Methods for developing online algorithms and
derivations are discussed in [20]. The online multiplication algorithm
generally consists of two steps: (1) Initialization, during which 𝛿 input
digits (in serial) are collected without generating any output, resulting
in an execution length equal to the online delay (𝛿); and (2) Recurrence,
which runs for 𝑛 iterations, where 𝑛 is the input precision, produc-
ing one output digit in each iteration. A pseudo-code for the online
serial–parallel multiplication algorithm is presented in Algorithm 1.

Here, 𝑥 and 𝑌 are the bit-serial and parallel inputs, respectively,
and 𝑧 is the serial MSDF output. The residual registers to store the
temporary results are denoted by 𝜔 and 𝑣. At any 𝑗th iteration, the
serial output digit (input digit) is represented by 𝑧𝑗 (𝑥𝑗), where 𝑧𝑗 =
𝑆𝑈𝐵(𝑧+, 𝑧−), such that the subtraction of the two bits represents the
value of the digit. 𝑆𝐸𝐿𝑀(.) is the output selection module/function
4
that selects an output from a look-up table on the basis of a few most
significant (𝑡) bits of the residual.

Serial online addition involves full adders and registers to add two
redundant numbers in a MSDF manner. A detailed description of the
online adder and its relevant derivations can be found in Ercegovac and
Lang [20]. Additionally, this reference provides the design and method-
ology for the online serial-serial multiplier, where both input operands
are supplied as serial inputs. In this work, we utilize the online serial–
parallel multiplier proposed in our previous research [54]. This online
serial–parallel multiplier is employed to design the processing units in
the proposed USEFUSE accelerator, with further details and derivations
available in [54].

3.2. Early termination of negative computations

Most CNN accelerator designs concentrate on efficiently generating
the SOP for the activation layer (ReLU). However, few studies have
investigated the early detection of negative values in the SOP, which
presents a significant challenge in accelerators based on conventional
arithmetic. For instance, conventional bit-serial multipliers take the
multiplicand in parallel while processing the multiplier serially. In
each iteration, a partial product is generated and stored in a register,
then shifted into the appropriate position before being added to other
partial products to compute the final result. This process typically
involves a series of adders for reduction. A second level of reduction
is necessary to add 𝑘× 𝑘 products to yield the output pixel, along with
an additional level of reduction for summing multiple input channels.
With conventional bit-serial multipliers, the most significant bit and the
polarity of the result cannot be determined until all partial products
have been generated and added to the previous partial sums.

The challenge of early detection and termination of negative acti-
vations can be addressed by the intrinsic ability of online arithmetic
to generate output digits in an MSDF manner. The proposed design
supports the termination of negative activation computation in 𝑝 < 
cycles, where  is the number of cycles to compute complete result.
This is done by observing the output digits. The process of detecting
the negative activations and subsequently terminating the relevant
computation is summarized in Algorithm 2.

Algorithm 2 Early detection and termination of negative activations
𝑧+𝑗 , 𝑧

−
𝑗 bits

for 𝑗 = 1 𝑡𝑜  do
 𝑧+[𝑗] ← 𝑧+[𝑗] ⌢𝑧+𝑗
 𝑧−[𝑗] ← 𝑧−[𝑗] ⌢𝑧−𝑗
 if 𝑧+[𝑗] < 𝑧−[𝑗] then
Terminate
 else
Continue
 end if
end for

The proposed early negative detection unit (END-U) is equipped
with registers to store 𝑧+𝑗 and 𝑧−𝑗 bits, which represent the positive
and negative output bits of the SOP in redundant form. During each
iteration, new bits are appended to their respective registers. As soon
as the value of 𝑧+[𝑗] falls below the value of 𝑧−[𝑗], a termination
signal is generated, resulting in the cessation of the SOP computation.
The END-U is integrated into each processing unit, as described in
Section 3.4.

3.3. Proposed layer fusion method

This section outlines the proposed layer fusion method and its
components, including the calculation and selection of tile sizes and the
calculation of the uniform stride for tiles. A comprehensive description

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
Fig. 2. Proposed layer fusion accelerator design pipeline.

Fig. 3. General layer fusion scheme.

of the proposed design flow is presented in Fig. 2. The design flow
begins by taking the CNN network configurations and the number
of 𝑄 convolution layers intended for the fusion design, followed by
the calculation of tile sizes for each layer. This is followed by cal-
culating the uniform stride to ensure uniform tile movement across
the respective layers in the fusion design. Next, the start and end
indices of the feature maps intended for each layer are determined.
The information accumulated throughout this process is then utilized
to design accelerators for each layer in the fusion design, with detailed
descriptions of these processes provided later in this section.

3.3.1. Overview
The proposed design follows a layer fusion scheme as depicted in

Fig. 3, where a particular region, referred as Tile, is selected by tracking
the output activation (or a region) of the final layer of the fusion
pyramid to the first layer. The dimensions of the tile depends on the
CNN architecture as well as the dimensions of the intended region of
the output feature map.

The pyramid dimensions are calculated by selecting a suitable re-
gion of the output feature map and the tile dimension of its preceding
layer according to relation (1), presented in [21].
𝐷𝑙 = (𝐷𝑜 − 1) × 𝑆𝑙 +𝐾𝑙 (1)

where 𝐷𝑙 is the dimension of the layer preceding the output layer of
the fusion pyramid, 𝐷𝑜 is the dimension of the selected region of the
output feature map, 𝑆𝑙 and 𝐾𝑙 are the stride and kernel size of the layer
preceding to the output layer, respectively. This procedure is done from
the final layer until the first layer of the fusion architecture to obtain
the tile sizes of the respective layers in the fusion pyramid.

Consider an example of a simple CNN such as LeNet-5 whose first
two convolution layers are to be fused. Each convolution layer is
followed by a sub-sampling layer, like Maxpooling. In a fusion of two
convolution layers, 𝑅 = 𝐶 = 1 output pixels from the second sub-
sampling layer serve as input to the third layer. To determine tile
5
dimensions in the fusion pyramid, Eq. (1) applies to both convolution
and sub-sampling layers. For instance, the input to the third layer
follows a Maxpooling operation (𝑀𝑃𝐿2) on a 2 × 2 output from the
second convolution layer (𝐶𝐿2), which operates on a 6 × 6 input.
Tracing back, 𝑀𝑃𝐿1 requires a 12 × 12 input to produce this, derived
from a 16 × 16 input to 𝐶𝐿1. The generation of neighboring pixels at
the same level requires a separate, overlapping pyramid computation.
The starting index for each layer in this process, known as the tile stride,
differs from the convolution stride. Determining this tile stride is crucial
for two reasons: (1) It ensures the fusion pyramid covers the entire
input feature map without skipping pixels, generating all necessary
output activations. (2) It guarantees consistent execution rounds at
every pyramid level, removing the need for synchronization after each
round [33].

Furthermore, in most CNN models, the feature map dimensions are
downsampled along the depth of the network while the number of
filters increase. The proposed scheme ensures reduction in memory
traffic in earlier as well as later convolution layers. This is due to the
reason that the proposed design incorporates input and output channel
tiling [55]. This means that the filters are loaded into the kernel buffers
only once, while the input feature map sections are loaded into the
input buffers as the fusion tile moves across the input feature map.

To this end, we propose an algorithm in Section 3.3.2 for the
calculation of the tile stride to ensure a uniform movement of the fusion
pyramid for various output region configurations including the tile
dimensions for each layer in the fusion pyramid. It is also worth noting
that this work focuses on the assumption that the tile at each pyramid
level is square-shaped, which is most commonly used.

3.3.2. Algorithm
The pseudocode presented in algorithm 3 depicts a simple frame-

work for calculating the fusion tile sizes of any network using Eq. (1).
It takes the name of the network and the number of layers (𝑄) intended
for fusion as its input and returns the fused-layer tile sizes for all
possible squared output dimensions in the output feature map of the
final layer in the fusion pyramid. It ensures that the tile size 𝐻 for
each layer in the fusion design is bounded by the size of the input
feature map (𝐼𝐹𝑀) of the respective layer. The 𝐹𝑜𝑟 loop iterates over
the various squared dimensions of the output feature map (𝑅𝑄) of
the fused-layer design and results in an (𝑅𝑄 × 𝑄) matrix consisting of
tile sizes (𝐻𝑄,𝐻𝑄−1,… ,𝐻1) for each layer in the fusion pyramid. This
results in all possible fused-layer tile configurations considering that the
tile sizes and respective outputs and inputs of each layer are square.

Algorithm 3 Calculation for the Fusion Pyramid Tile Sizes
Require: Network, Number of Layers 𝑄
Ensure: 𝐻 ≤ 𝐼𝐹𝑀
1: for (i in 𝑅𝑄) do
2: for (𝑗 = 𝑄, 𝑗 ≥ 1, 𝑗–) do
3: 𝐻(𝑖,𝑗) = (𝑖 − 1) × 𝑆𝑗 +𝐾𝑗
4: end for
5: end for
6: Return 𝐇 ∈ R𝑅𝑄×𝑄

Algorithm 3 results in a relatively large design-space which can be
narrowed down further by determining the appropriate stride for each
tile in the fusion pyramid. The algorithm determines the number of
movements 𝛼 that a particular tile should take under various tile stride
𝑆𝑇 values. The 𝑆𝑇 values are calculated using the condition that 𝛼 can
only be an integer. Each value of 𝑆𝑇 dictates the amount of overlap
between the adjoining tiles in a layer in the fusion pyramid. In order
to ensure the least amount of overlap, an 𝑆𝑇 value of 𝐻 − 𝐾 + 𝑆
can be selected. Although this selection ensures the least amount of
overlap as well as the least number of 𝛼, but it can result in a different
number of movements at different levels of the pyramid. For instance,

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
in the previous example of LeNet-5, the tile size for 𝐶𝐿1 and 𝐶𝐿2 were
selected to be 16 × 16 and 6 × 6 respectively. The tile stride for 𝐶𝐿1 and
𝐶𝐿2 will result in 𝑆𝑇

1 = 16−5+1 = 12 and 𝑆𝑇
2 = 6−5+1 = 2, respectively.

The value of 𝑆𝑇
2 shows that the tile representing 𝐶𝐿2 results in 𝛼2 = 5,

while the value of 𝑆𝑇
1 results in a non-integer value of 𝛼1 = 7∕3 which

has to be ruled-out. Also, the movement parameters for 𝐶𝐿1 and 𝐶𝐿2
do not agree, resulting in an asymmetric movement of different tiles in
the fusion pyramid. This can lead to a number of issues; (1) requiring
some synchronization delay between the execution of tiles caused by
the stall cycles inserted between the execution of adjoining tiles, (2)
increased latency due to one tile being executed several times more
due to repeated computations compared to others in-turn decreasing
the overall operating frequency of the design, and (3) the mismatch in
synchronization may require for some intermediate data to be shuttled
back to the memory in case of limited buffer space.

Algorithm 4 Calculation for the Tile Stride
Require: 𝐇 ∈ R𝑅𝑄×𝑄

1: for 𝑖 = 1, 𝑖 ≤ 𝑅𝑄, 𝑖++ do
2: for 𝑗 = 1, 𝑗 ≤ 𝑄, 𝑗++ do
3: for 𝑝 = 1, 𝑝 ≤ 𝐻𝑗 , 𝑝++ do
4: 𝛼(𝑖,𝑗,𝑝) = 𝐼𝐹𝑀𝑗−𝐻𝑗

𝑝 + 1
5: if 𝛼(𝑖,𝑗,𝑝) ∈ Z then
6: 𝛼𝐢,𝐣 ← 𝛼(𝑖,𝑗,𝑝)
7: 𝑆𝑇

𝑖,𝑗 ← 𝑝
8: end if
9: end for
10: end for
11: end for
12: Return 𝛼,𝐒𝐓 ∈ R𝑅𝑄×𝑄

After calculating the 𝑆𝑇 and 𝛼 parameters for the fusion tile size
H ∈ 𝐇 of choice, the values of 𝑆𝑇 resulting in the same 𝛼 parameter
values for each layer in the fusion pyramid can be evaluated and the
corresponding 𝑆𝑇 values for each layer can be obtained. The appropri-
ate 𝑆𝑇 values for each layer resulting in a synchronized fusion pyramid
movement can simply be obtained by analyzing that the candidates for
𝑆𝑇 do not result in skipping the computation of some regions in any
layer. Among these 𝑆𝑇 candidates, the maximum values for 𝑆𝑇 for each
layer is carefully selected after satisfying the condition stated earlier.
Such 𝑆𝑇 values ensure a uniform movement of each tile in the fusion
pyramid, thereby addressing the three problems stated earlier.

3.4. Accelerator designs

In order to show the efficacy of the proposed technique, we present
two distinct approaches to the accelerator design. In one of the con-
figurations, we aim to minimize the latency of the computations by
exploiting the spatial parallelism in convolution operation at the cost
of area. However, we show that conventional arithmetic-based design
with the same configuration does not match the latency and the perfor-
mance provided by the use of online arithmetic-based components. Ad-
ditionally, an alternative, more pragmatic design is introduced, which
performs convolution in a temporal manner and efficiently utilizes
limited computational resources.

Both the aforementioned designs have similar general overall accel-
erator architecture. The overall architecture of the proposed accelerator
is presented in Fig. 4. Depending on the number of convolution layers
in a CNN model, there can be many pyramid levels in the proposed
fused-layer design. Each pyramid level represents a tile in a particular
convolution layer of the CNN model. The depth 𝑄 of the fusion deter-
mines the number of levels in the pyramid. The selection of the depth
𝑄 of the fusion pyramid can also help in optimizing the performance
of the layer fusion acceleration designs. However, this work focuses
6
Fig. 4. Overall architecture. The solid black arrows represent the input, output, and
control connections, while the dotted green arrows represent the filter/weight data. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

primarily on the calculation and selection of tile sizes and uniform
stride, the use of online arithmetic-based compute units, early negative
detection, etc. The optimization related to the selection of the number
of layers (𝑄) in the fusion pyramid is considered as future work. In
the current work, the parameter 𝑄 is selected as referenced in litera-
ture [21,33]. Each pyramid level is followed by an activation buffer
and an optional pooling block. The activation buffer block offers an
on-chip buffer storage for the output features of the previous pyramid
level. It is also noteworthy that for implementation on FPGAs, a large
value of 𝑄 cannot be feasible due to the limited resources. However,
we performed an experiment with 4 convolution layers of VGG-16
CNN and the experimental results show that with enough hardware
resources, the proposed technique can be utilized for larger 𝑄 values.
The proposed technique for the tile stride selection ensures uniform
tile movement across the different pyramid levels. However, it leads
to a slightly larger area of overlap regions within the fusion pyramid
feature maps compared to the (𝐻 − 𝐾 + 𝑆) region, which ensures
minimum overlap. However, it is noteworthy that the proposed tile
stride calculation technique not only ensures uniform movement across
the pyramid levels but also keeps the number of pyramid movement 𝛼
to a minimum. This ensures that the overlap region does not increase
drastically (ensured by the larger tile stride values). Furthermore, the
overlapped output pixels of a pyramid level are stored in the output
buffers to be reused by the subsequent level in the fusion pyramid as
the fusion tile moves across the input feature map for its computation.
This means that the proposed USEFUSE design performs output pixel
reuse instead of recompute as suggested in [21].

3.4.1. Design strategy-1 (DS-1) - spatial design
Each pyramid level in Fig. 4 represents an accelerator of the respec-

tive convolution layer in the fusion pyramid. A general architecture of
the accelerator is presented in Fig. 5. It is composed of 𝑃 = 𝑅 × 𝐶
rows and 𝑀 columns, where 𝑅 × 𝐶 is the dimension of the output
of a tile H, and 𝑀 is the number of output feature maps of the
respective convolution layer. Each input buffer broadcasts the input
data of a unique convolution window to its corresponding row of pixel
processing units (PPUs). The kernel buffers broadcast the convolution
filter to each PPU in a column. The output buffers collect the pixels from
each PPU.

Each row of the array computes a unique 𝐾 × 𝐾 × 𝑁 window of
the input feature map of the corresponding layer within the fusion
pyramid. The 𝐾 × 𝐾 × 𝑁 input to each row, represented by the input

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
Fig. 5. Tile/Pyramid level design.

Fig. 6. Internal architecture of the proposed pixel processing unit with the window
processing unit (WPU-S) that performs convolution in a spatial manner.

buffer, is broadcasted to each PPU in the corresponding row. The array
architecture presented in Fig. 5 also shows that the accelerator array
supports output tiling [55] (𝑡𝑚 = 𝑀) as the number of columns in the
array represent the number of output feature maps. It consists of an
array of pixel processing units (PPU), where each column of the PPU
computes a distinct output feature map (OFM). The filter corresponding
to each OFM is broadcasted to every PPU in the respective column.

Each PPU supports input tiling [55] by the provision of (𝑡𝑛 = 𝑁)
window processing units (WPU-S), where each WPU-S is responsible to
generate the inner product of 𝐾 × 𝐾 pixels from one of the 𝑁 input
features maps. The output of each WPU-S is forwarded to an adder
tree which results in one output pixel in one of the output feature
maps. Each PPU also contains an early negative detection unit (END-
U) responsible for the detection and generating control signals if the
output of a PPU is going to result in a negative value. The architecture
of the PPU is presented in Fig. 6.

3.4.2. Design strategy-2 (DS-2) - temporal design
An alternate design is presented that aims to perform convolutions

in a temporal fashion. Consequently the amount of basic computation
units required to compute a 𝐾 ×𝐾 convolution window are reduced. In
contrast to the WPU-S in the PPU design presented in Fig. 6, the win-
dow processing unit (WPU-T) in the present design allocates only one
online arithmetic-based multiplier for the computation of a convolution
window. This computation is carried out such that the online multiplier
(OLM) is followed by an activation register that collects and stacks
these output digits until all the output digits pertaining to one mul-
tiplication have been collected in the activation register. The contents
of the activation register are then forwarded to an accumulation buffer
until the results of the 𝐾 × 𝐾 multiplications have been accumulated.
The contents of this accumulation register are then forwarded, in an
MSDF manner, to an online arithmetic-based adder tree responsible to
generate the sum across the 𝑁 input channels, ultimately resulting in
the final output to be forwarded to the next operation in the CNN. It
is also worth noting that the WPU-T pertaining to the temporal design
can be replaced with WPU-S used in the PPU design presented in Fig. 6.
The architecture of the WPU-T that leverages the temporal computation
pattern is presented in Fig. 7.
7
Fig. 7. Architecture of the proposed window processing unit (WPU-T) that leverages
the temporal computation pattern in convolution.

Fig. 8. Architecture of the window processing unit (WPU-S), for conventional bit-serial
design, that performs convolution of a 𝐾 ×𝐾 convolution window spatially.

4. Experimental results and discussion

This section presents the experimental setup, performance evalu-
ation parameters, results, comparisons, and discussion on the results
obtained after the evaluation of the proposed designs.

4.1. Experimental setup

In order to evaluate and compare the performance of the proposed
designs with conventional bit-serial architectures, three baseline de-
signs are used; (1) Baseline-1: conventional bit-serial design based on
the processing element from UNPU [14] with the tile stride matching
the convolution stride, (2) Baseline-2: online arithmetic-based design,
also using the tile stride as the convolution stride, and (3) Baseline-3:
conventional bit-serial design where the tile stride matches the pro-
posed designs. All baselines utilze the same accelerator architecture
and array layout as the proposed designs. The architecture for both
baseline conventional bit-serial designs follows a similar structure to
the proposed design. However, in conventional bit-serial designs, the
window processing units (WPUs) use AND gate arrays for partial prod-
uct generation, followed by an accumulator to sum the partial products.
The WPU-S design for spatial design (DS-1) is shown in Fig. 8.

Each of the baseline designs use the same accelerator architecture
and array layout as the proposed designs. The architecture of the
conventional bit-serial arithmetic-based baseline designs for both the
design strategies also follow a similar accelerator architecture as the
proposed design. However, the design of the window processing units
(WPUs) for both the design strategies of conventional bit-serial designs
contain AND gate arrays for partial product generation, followed by an
accumulator to obtain the sum of the partial products. The WPU-S de-
sign, for spatial design (DS-1), is presented in Fig. 8. The accumulation
process in the figure handles the summing of partial products, while
the subsequent adder tree computes the sum of 𝐾 × 𝐾 products. The
resulting SoP from this adder tree is then passed to another adder tree,
shown in the PPU in Fig. 6, which performs the final summation over
𝑁 input channels.

In contrast to the spatial conventional bit-serial design presented in
Fig. 8, a temporal design similar to that presented in Section 3.4.2 is

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
Fig. 9. Architecture of the window processing unit (WPU-T), for conventional bit-serial
design, that performs convolution of a 𝐾×𝐾 convolution window in a temporal fashion.

also devised. The WPU-T architecture for conventional bit-serial design
follows a similar strategy as presented in Fig. 7, where the product of
each of the 𝐾×𝐾 multiplications is carried out using a single multiplier.
The architecture of the conventional bit-serial WPU-T that leverages the
temporal computation pattern in convolution is shown in Fig. 9.

In our experiments, we utilized three popular CNNs: LeNet-5 [56],
AlexNet [57], and VGG-16 [58]. For LeNet-5 and AlexNet, the first
two convolution layers, along with their corresponding non-linear ac-
tivation and pooling layers, were selected for fusion. In VGG-16, the
first two convolution blocks, comprising four convolution layers, in-
cluding their respective activation and pooling layers, were used for
the fused-layer experiments.

The RTL for the proposed and baseline accelerators was designed
in Verilog and functionally verified using Xilinx Vivado 2023.2. We
implemented the proposed designs on the Xilinx Virtex-7 VU19P FPGA.
This FPGA platform was selected based on the availability of logic
resources, as both the proposed and conventional bit-serial designs
do not utilize built-in DSP resources for multiplication; instead, these
resources are reserved for implementing the control units of the acceler-
ators. This is due to the fundamental architectural differences between
conventional DSP operations and MSDF arithmetic. MSDF multipliers
rely on a residual recurrence method rather than traditional partial
product reduction. This approach requires cycle-to-cycle state tracking,
and bidirectional digit propagation which are not supported by current
DSP architectures. Consequently, we have developed the MSDF-based
arithmetic operators implemented using FPGA fabric resources.

4.2. Performance evaluation parameters

The performance of the proposed method can be evaluated us-
ing various parameters such as performance, number of cycles, area,
latency per image, inference speed-up, power efficiency, etc. The per-
formance can be calculated using the following relation.

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑁𝑢𝑚𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠
(2)

Where, the number of operations (𝑁𝑢𝑚𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) for a given convolution
layer can be calculated as 2 ×𝑀 ×𝑁 ×𝑅×𝐶 ×𝐾 ×𝐾. Where 𝑀 and 𝑁
represent the number of output and input feature maps respectively, 𝑅
and 𝐶 represent the height and width of the output feature map, and
𝐾 × 𝐾 is the dimension of the convolution kernel. Furthermore, the
number of execution cycles (referred as 𝐶𝑦𝑐𝑙𝑒𝑠 from here-on) in Eq. (2)
for the proposed online arithmetic-based design DS-1 can be calculated
as;
𝐶𝑦𝑐𝑙𝑒𝑠 = 𝛼2 × (𝛿𝑂𝐿𝑀 + 𝛿𝑂𝐿𝐴 × ⌈log (𝐾1 ×𝐾1)⌉

+ 𝛿𝑂𝐿𝐴 × ⌈log𝑁1⌉ + ⌈log (𝐾1 ×𝐾1)⌉ + ⌈log𝑁1⌉

+ 𝑀𝑃1 +⋯ + 𝛿𝑂𝐿𝑀 + 𝛿𝑂𝐿𝐴 ×
⌈

log (𝐾𝑄 ×𝐾𝑄)
⌉

+ 𝛿𝑂𝐿𝐴 ×
⌈

log𝑁𝑄
⌉

+
⌈

log (𝐾𝑄 ×𝐾𝑄)
⌉

+
⌈

log𝑁𝑄
⌉

+𝑀𝑃𝑄 + 𝑛)

(3)

where 𝛿𝑂𝐿𝑀 and 𝛿𝑂𝐿𝐴 represents the online delay for the multiplier
and the adder respectively. These delays designate the number of
cycles, usually up to 4, that an online arithmetic-based component takes
prior to generating the first digit (MSD) as its output. The expression
8
Fig. 10. Performance vs. operational intensity comparison of the proposed spatial
design (DS-1) with the baseline designs for the first convolution layer of AlexNet.

⌈

log (𝐾𝑄 ×𝐾𝑄)
⌉ and ⌈log𝑁𝑄

⌉ define the number of stages of the adder
trees dedicated for computing the SoP for convolution window and
input channels respectively for a convolution layer. 𝑄 denotes the
number of layers in the fusion design, 𝑀𝑃 denotes the number of
cycles required to perform the maxpooling operation, and 𝑛 denotes
the precision of the input. Similarly, for the design DS-2, the number
of cycles can be calculated as follows.
𝐶𝑦𝑐𝑙𝑒𝑠 = 𝛼2 × ((𝛿𝑂𝐿𝑀 + (𝑛 − 1) + 𝐴𝑐𝑐) ×𝐾 ×𝐾

+ 𝛿𝑂𝐿𝐴 × ⌈log𝑁1⌉ + ⌈log𝑁1⌉ +𝑀𝑃1

+ ⋯ + (𝛿𝑂𝐿𝑀 + (𝑛 − 1) + 𝐴𝑐𝑐) ×𝐾 ×𝐾

+ 𝛿𝑂𝐿𝐴 ×
⌈

log𝑁𝑄
⌉

+
⌈

log𝑁𝑄
⌉

+𝑀𝑃𝑄 + 𝑛)

(4)

Here 𝐴𝑐𝑐 denotes the number of cycles that the accumulator takes
to perform the sum of 2 operands. Both the relations also include the
number of cycles elapsed due to the growth in the output precision due
to the adder trees, and it is denoted by ⌈log (𝐾 ×𝐾)⌉ and ⌈log𝑁⌉ in the
equations.

Other performance evaluation parameters are platform-specific such
as, logic utilization, memory utilization, throughput, inference time
per image, etc. The selection of implementation platform relies on the
capacity of the hardware resources in coordination with the resource
requirements of the accelerator design.

4.3. Experimental results

The proposed tile stride strategy coupled with the online arithmetic-
based accelerator design not only improves the performance but can
also improve the memory communication categorized by the opera-
tional intensity metric [59]. An analysis depicting the efficacy of the
proposed technique is presented in Fig. 10. The figure shows that the
proposed design and Baseline-3 design, using the proposed tile stride
technique, have the same operational intensity as the other baseline de-
signs. However, it is noteworthy that the performance of the proposed
design surpasses that of Baseline-3 design. This demonstrates that the
proposed tiling strategy, in combination with the superior capabilities
of the online arithmetic paradigm, can outperform the conventional
bit-serial design in terms of performance.

Similarly, a comparison of performance vs. operational intensity of
the fused-layer designs for LeNet-5, AlexNet, and VGG CNN models has
been presented in Fig. 11. The performance vs. operational intensity
plots also confirm the findings presented in Fig. 10, that the proposed
tile stride evaluation technique improves the operational intensity.
For instance, the proposed spatial design (DS-1) improves the opera-
tional intensity for the LeNet-5, AlexNet, and VGG models by 8.20×,
17.80×, and 279.40×, respectively. Similarly, utilizing online modules
for arithmetic-based computations can result in significant performance
enhancements, as demonstrated in Figs. 11(a), 11(b), and 11(c).

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
Table 1
Performance comparison of the proposed Spatial design (DS-1) with the baseline designs.
 Network Layer Number of operations Baseline-1 Baseline-2 Baseline-3 Proposed

 Duration Performance Duration Performance Duration Performance Duration Performance

LeNet

CONV1 235200 138.72 μS 1.69 GOPS 57.80 μS 4.07 GOPS 12 μS 19.60 GOPS 5 μS 47.04 GOPS
 CONV2 940800 41.31 μS 22.77 GOPS 21.06 μS 44.67 GOPS 12.75 μS 73.8 GOPS 6.50 μS 144.74 GOPS
 Fused 1 183880 187.43 μS 6.32 GOPS 107.19 μS 11.04 GOPS 25.75 μS 45.97 GOPS 13.75 μS 86.10 GOPS

AlexNet

CONV1 105415200 1109 μS 0.095 TOPS 623 μS 0.169 TOPS 53.46 μS 1.97 TOPS 29.97 μS 3.517 TOPS
 CONV2 223948800 337.50 μS 0.664 TOPS 268.75 μS 0.833 TOPS 43.74 μS 5.12 TOPS 34.83 μS 6.43 TOPS
 Fused 329659136 1499.30 μS 0.219 TOPS 648.7 μS 0.508 TOPS 101.25 μS 3.26 TOPS 63.99 μS 5.15 TOPS

VGG

CONV1 173408256 8.11 ms 21.30 GOPS 5.41 ms 32.10 GOPS 3.78 μS 45.87 TOPS 2.52 μS 68.80 TOPS
 CONV2 3699376128 9.14 mS 404.50 GOPS 7.95 mS 465.30 GOPS 4.14 μS 893.6 TOPS 3.60 μS 1027.60 TOPS
 CONV3 1849688064 2.45 mS 754.56 GOPS 2.13 mS 867.75 GOPS 4.14 μS 446.8 TOPS 3.60 μS 513.80 TOPS
 CONV4 3699376128 2.64 mS 1399.3 GOPS 2.42 mS 1529.50 GOPS 4.23 μS 874.56 TOPS 3.87 μS 955.90 TOPS
 Fused 9 429625856 23.36 mS 403.66 GOPS 18.92 mS 498.40 GOPS 16.83 μS 560.30 TOPS 11.79 μS 799.80 TOPS
Fig. 11. Performance vs. operational intensity comparison of the proposed spatial (DS-
1) and temporal (DS-2) designs with the baseline designs for LeNet-5, AlexNet, and VGG
models.
9
As outlined in the experimental setup, we evaluate the proposed
designs on LeNet-5, AlexNet, and VGG-16 networks. The performance
and evaluation duration using the proposed design (DS-1) compared to
the baseline designs are presented in Table 1. All designs are evaluated
at a frequency of 100 MHz, with inference time (referred to as duration)
and performance listed in the table. Notably, online arithmetic-based
designs consistently outperform conventional bit-serial designs, regard-
less of the tile stride strategy. Specifically, the fused layer design
based on online arithmetic achieves performance improvements of
1.75×, 2.32×, and 1.23× for LeNet-5, AlexNet, and VGG, respectively,
without the proposed tile stride strategy. When using the proposed tile
stride technique, the online arithmetic design outperforms Baseline-3
by achieving 1.87×, 1.58×, and 1.43× superior performance for LeNet-5,
AlexNet, and VGG, respectively.

For the temporal design DS-2, we present the comparative results of
inference time and performance in-terms of GOPS for the conventional
bit-serial design (Baseline-3) and the proposed design that use the
proposed tile stride technique. Table 2 clearly shows that the proposed
online arithmetic-based temporal design achieves 1.66×, 1.68×, and
1.46× superior performance, in-terms of operations per second, for
the fused layer designs of LeNet-5, AlexNet, and VGG respectively.
The results presented in Tables 1 and 2 not only showcases the abil-
ity of online arithmetic-based designs over the conventional bit-serial
arithmetic-based designs, but also confirm the utility of the proposed
layer-fusion technique.

A comparison of the FPGA implementations of the proposed designs
with the conventional bit-serial design (Baseline-3) is presented in
Table 3 for the LeNet-5, AlexNet, and VGG models, all evaluated at
a frequency of 100 MHz. The results indicate that the proposed method
utilizes more logic resources and BRAM compared to the baseline
designs. However, for larger networks like VGG, the BRAM require-
ment for the proposed design is significantly lower than that of the
baseline design. This reduction is attributed to the arithmetic nature
of the proposed design, where output digits in MSDF format can be
directly forwarded to the next processing units, minimizing the need for
large intermediate buffers. Additionally, the proposed design achieves
speedups of 1.87×, 1.58×, and 1.43× for the implementations of LeNet-5,
AlexNet, and VGG, respectively. For instance, for the LeNet-5 design,
the proposed fusion tile size and tile stride calculation resulted in a tile
size of (16 × 16) and (6 × 6) for the first and second convolution layers,
respectively. Particularly, the proposed and the baseline designs process
(16 × 16) and (6 × 6) MACs in parallel for the first and second con-
volution layers respectively. The tile size and tile stride configuration
resulted in the uniform movement parameter (𝛼 = 5). The obtained
tile sizes and uniform tile strides resulted in the execution of one
image in 1375 cycles, with 1.18𝑀 operations for the fused convolution
layers, resulting in a throughput of 86.1 TOPS. Similarly, the 9429.6𝑀
operations for the first 4 convolution layers of the VGG-16 model, with
the uniform tile movement parameter (𝛼 = 3), were executed in 84818
cycles, eventually resulting in a throughput of 799.8 TOPS. It is also
worth noting that the results presented in Table 3 correspond to the

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
Table 2
Performance comparison of the proposed Temporal design (DS-2) with the conventional bit-serial design (Baseline-3) using the proposed tile
stride technique.
 Network Layer Number of Operations Baseline-3 Proposed

 Duration Performance Duration Performance

LeNet

CONV1 235200 0.11 mS 2.21 GOPS 62.50 μS 3.80 GOPS
 CONV2 940800 0.11 mS 8.80 GOPS 64 μS 14.70 GOPS
 Fused 1 183880 0.21 mS 5.53 GOPS 128.25 μS 9.20 GOPS

AlexNet

CONV1 105415200 1.67 mS 63.2 GOPS 0.983 mS 107.20 GOPS
 CONV2 223948800 0.35 mS 641.50 GOPS 0.22 mS 1039.40 GOPS
 Fused 329659136 2.02 mS 163.20 GOPS 1.21 mS 273.50 GOPS

VGG

CONV1 173408256 13.95 μS 1243.10 GOPS 8.64 μS 2007.04 GOPS
 CONV2 3699376128 14.31 μS 258.50 TOPS 9.72 μS 380.60 TOPS
 CONV3 1849688064 14.31 μS 128.30 TOPS 9.72 mS 190.30 TOPS
 CONV4 3699376128 15.03 μS 246.10 TOPS 9.90 mS 370.30 TOPS
 Fused 9 429625856 57.50 μS 163.90 TOPS 39.40 μS 239.20 TOPS
Table 3
Comparison of FPGA implementation of proposed spatial design (DS-1) with the conventional bit-serial design with the proposed tiling scheme (Baseline-3). The FPGA device used
for this experiment is Xilinx Ultrascale+ Vertix-7 VU19P.
 Design Baseline-3 Proposed Baseline-3 Proposed Baseline-3 Proposed
 CNN Model LeNet-5 AlexNet VGG

 Logic Utilization 18.40K (0.21%) 28.80K (0.322%) 5619.30K (63%) 8645K (96.70%) 7091K (79.30%) 7555.50K (94.5%)
 BRAM Utilization 2 (0.05%) 3 (0.06%) 62 (2.90%) 113 (5.20%) 740 (34.30%) 211 (9.80%)
 Throughput (TOPS) 45.97 GOPS 86.10 GOPS 3.26 5.15 560.30 799.80
 Latency/Image (μS) 25.75 13.75 101.25 63.99 16.83 11.79
 Speedup 1 1.87× 1 1.58× 1 1.43×
Table 4
Comparison of FPGA implementation of proposed temporal design (DS-2) with the conventional bit-serial design with the proposed tiling scheme (Baseline-3). The FPGA device
used for this experiment is Xilinx Ultrascale+ Vertix-7 VU19P.
 Design Baseline-3 Proposed Baseline-3 Proposed Baseline-3 Proposed
 CNN Model LeNet-5 AlexNet VGG

 Logic Utilization 4.50K (0.05%) 14.20K (0.16%) 277K (3.10%) 874.20K (9.80%) 1270K (14.20%) 4012.20K (44.90%)
 BRAM Utilization 2 (0.05%) 2 (0.05%) 44 (2.04%) 75 (3.5%) 701 (32.5%) 134 (6.21%)
 Throughput (GOPS) 5.53 9.20 163.20 273.50 164 TOPS 239 TOPS
 Latency/Image (μS) 214.25 128.25 2020.14 1205.30 57.51 39.42
 Speedup 1 1.67× 1 1.68× 1 1.46×
exploitation of the maximum potential of the proposed uniform tiling
method and the online arithmetic-based computation units.

Similarly, the comparison of the proposed temporal design (DS-2)
with the conventional bit-serial baseline design (Baseline-3) is pre-
sented in Table 4. A similar trend in the BRAM utilization can be
observed where for the VGG model fusion design, the proposed method
requires nearly 5.2× less BRAMs compared to the baseline design. This
is due to the inherent property of the proposed online arithmetic-based
design where the intermediate output digits can be used directly for
the computation of the subsequent layer or operations. The results also
show that the proposed temporal design achieves speedup of 1.67×,
1.68×, and 1.46× for the implementation of LeNet-5, AlexNet, and VGG
respectively, compared to the conventional bit-serial baseline design.

We also present the effect of early negative activation detection
caused by ReLU activation function. For this experiment, we present
the results of the proposed early negative detection technique on 10
randomly selected filters for the first convolution layers of AlexNet
and VGG models in Figs. 12(a) and 12(b) respectively. The analysis
of the early negative detection technique show that an average of
43.1% and 41.08% activations per convolution filter were effectively
determined as negative activations for the first convolution layers of
AlexNet and VGG respectively. Nearly 2.36% and 2.11% activations
were undetermined as either negative or positive. Upon examining the
intermediate feature maps, it is determined that most of these undeter-
mined activations were zero and hence did not cause any accuracy loss
in the model classification performance.

Substantial energy savings can be achieved by detecting ineffective
activations. In this context, results of the energy savings for the three
10
networks used in this study are presented in Fig. 13. The figure illus-
trates the energy consumption corresponding to 10 randomly selected
output feature maps of the first convolution layers. We performed
our experiments with the proposed early negative detection (END)
technique as well as without the proposed END technique using 10 000
images for all three networks. The proposed END technique resulted in
substantial energy savings of 46.80%, 48.50%, and 42.60% for LeNet-5,
AlexNet, and VGG networks respectively.

Another experiment was conducted to demonstrate the effectiveness
of the proposed END technique in reducing computation cycles within
a fusion pyramid, using the ResNet-18 network. For this experiment,
we fused two consecutive convolution layers, excluding the first con-
volution layer to ensure that each convolution block contains two
fusion pyramids. We tested this setup on 100 images and report the
average number of effective computation cycles with and without the
proposed END scheme, for both the online arithmetic-based design and
the conventional bit-serial (Baseline-3) design. The impact of the END
technique on effective computation cycles is illustrated in Fig. 14. It can
be observed from the figure that the proposed END technique saves up
to 50.1% cycles for the end-to-end execution of ResNet-18 workload
using the proposed online arithmetic-based design. The comparison
also shows the effectiveness of the online arithmetic-based computa-
tion where the online arithmetic designs with and without the END
technique achieve 59.12% and 18.4% lower number of computation
cycles compared to the conventional bit-serial design that uses the same
accelerator architecture and the proposed tile stride technique.

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
Fig. 12. Percentage of detected negative/ineffective activations for 10 randomly
selected filters in AlexNet and VGG models. The mean number of negative activations
per output feature map is 43.10% and 41.08% for the first convolution layers of AlexNet
and VGG respectively.

4.4. Comparison with previous works

For the comparison with existing accelerators, we aim to accelerate
the convolution layers in VGG-16 and ResNet-18 workloads in an end-
to-end fashion. We conduct the performance comparison on several
performance metrics such as latency per image, throughput in terms
of GOPS, etc. For this experiment, we developed a fusion strategy by
fusing 2 convolution layers in the fusion pyramid. The tiling parameters
such as tile size, tile stride, etc., are calculated using Algorithms 3 and
4. The ImageNet weights from the pre-trained VGG-16 and ResNet-18
models from TorchVision [60] library were loaded and used in the
computation of the convolution layers. Furthermore, the accuracy is
computed offline using the feature maps of the convolution layer before
the classifier layers of the model.

The comparison of the proposed USEFUSE design with previous
designs is presented in Table 5. The results presented in the table
indicate that the proposed design uses comparatively large number
of logic resources than its contemporary counterparts. However, the
proposed USEFUSE design achieves 64.8%, 50.9%, and 38.9% less
BRAMs compared to TGPA [33,61], and ShortcutFusion [62] for VGG-
16 workloads, respectively. For ResNet-18 workloads, USEFUSE uses
34.5% less BRAM resources compared to the design presented in [25].
The proposed design achieves significant throughput improvements
of 3.7×, 3.48×, 9.2×, and 1.9× for VGG-16 workloads compared to
11
Fig. 13. Energy savings with the proposed early negative detection (END) technique for
the first convolution layers of LeNet-5, AlexNet, and VGG models. On average, 46.80%,
48.50%, and 42.60% reduction in energy consumption is observed for LeNet-5, AlexNet,
and VGG respectively.

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
Table 5
Comparison with existing CNN accelerators. The baseline top-1 accuracy for VGG-16 and ResNet-18 are reported as 71.6% and 69.76% on their respective Pytorch [60]
websites.
 Model VGG-16 ResNet-18
 Design TGPA [33] [61] Shortcut-

Fusion
[62]

[63] Proposed [25] T-DLA [26] [64] RLDA [65] Proposed

 FPGA VU9P Stratix 10
GX2800

KCU1500 Alveo U50 VU5P Stratix V Zynq-7000 Arria10
SX660

Ultrascale+
XCZU7EV

VU5P
 Frequency (MHz) 210 300 200 200 100 124 125 170 150 100 Input/Filter Precision 16 16/8 16 8 8/8 8/8 8/2 8 8 8/8 Accuracy (%) – – – 72.32 71.21 69.75 65.6 – 65.5 69.13 Logic Utilization 493K (42%) 469K (50%) 215.3K (33%) 601.7K (69%) 538.1K (89.5%) 380.35K 37.92K (71.28%) 102.6K (41%) 230.4K (88.2%) 542.6K (90.2%) BRAM Utilization 3380 2421 1945 (45%) 1084 (81%) 1188 (58%) 1644 68.93% – 307 (98.4%) 1076 (52.54%) Throughput (GOPS) 1510 1604.57 607.5 2895.5 5594.7 926.84 400 89.286 620 1130.7 Latency per Image (ms) 22.35 19.29 39.27 13.90 9.18 – – – – 14.44
Fig. 14. The average effective computation cycles for each fusion pyramid were
compared between the Baseline-3 design and the proposed design, with and without
the END technique. The results showed that the END technique achieved an average
savings of 50.1% in computation cycles for the end-to-end flow.

TGPA [33,61], ShortcutFusion [62], and [63] respectively. Similarly,
USEFUSE achieved throughput improvements of 1.2×, 2.82×, 12.6×, and
1.82× compared to the designs presented in [25], T-DLA [26,64], and
RDLA [65] respectively, for ResNet-18 workloads. Furthermore, the
proposed design achieved 2.43×, 2.1×, 4.27×, and 1.5× improvement in
latency per image, compared to TGPA [33,61], ShortcutFusion [62],
and [63] for VGG-16 workloads, respectively.

The experimental results indicate that the use of online arithmetic-
based compute units in the processing element can not only perform
efficient computation of the convolution SOP, but also support the
fusion of convolution layers in a CNN. Moreover, the MSDF nature
of online arithmetic also aids in the early detection and subsequent
termination of the ineffective computations that result in negative out-
puts. The proposed method of tile size and uniform stride calculation,
coupled with online arithmetic-based compute units showcase superior
performance compared to the state-of-the-art accelerator designs on
VGG-16 and ResNet-18 workloads.

5. Limitations and future work

While the proposed method offers significant advantages in terms
of computational efficiency, it has certain limitations that we aim to
address in future research. Firstly, the proposed early negative detec-
tion technique limits the applicability to models relying on ReLU. While
ReLU is fundamental and widely adopted, modern architectures also
employ complex activation functions such as GELU, Sigmoid, Softmax,
etc. Additionally, the proposed uniform stride method is specifically
tested on ResNet-18, where skip connections are limited within individ-
ual residual blocks and do not span across multiple convolution blocks.
This restriction allows for a simpler implementation of layer fusion, as
12
the input from the skip connection can be integrated directly into the
pipeline without requiring extensive reconfiguration. However, skip-
connections spanning several convolution blocks may pose a challenge
in determining the effective stride and tile size calculation which will
be addressed in future research.

To overcome these limitations, our future work will focus on extend-
ing the method to support complex activation functions by developing
efficient hardware implementations based on online arithmetic oper-
ators. This includes operations such as division, exponentiation, and
power functions, which are commonly used in activation functions
like Sigmoid and Softmax. This development will address both the
challenges of accelerating modern architectures with complex acti-
vation functions and the need for efficient implementation of these
same activation functions in the final output layers of neural network
architectures to distinguish target applications. Therefore, the develop-
ment of these activation functions will enhance the practicality of the
proposed method by solving both issues simultaneously.

Additionally, for architectures with longer skip connections, we
propose integrating an adder within the pipeline to sum convolu-
tion outputs with skip connection inputs, requiring minimal structural
changes and maintaining performance. Furthermore, a dynamic data
flow control mechanism using multiplexers will be explored, allowing
seamless switching between outputs from activation registers, skip
connection registers, or zero values. These enhancements will allow
the proposed accelerator to efficiently support a wider range of neural
network models.

Extension to modern architectures. For transformer-based models, the
computational dataflow significantly differs from CNNs, as multiple
tokens are processed in parallel, and several attention heads operate
simultaneously. While our current approach is primarily optimized for
CNNs, its underlying principles can be extended to optimize trans-
former workloads. Specifically, the attention mechanism, which in-
volves a sequence of dependent operations, could benefit from our
MSDF mode of operation by enabling efficient pipelining. By restruc-
turing the computation flow to exploit temporal parallelism, our ap-
proach could contribute to the acceleration of self-attention mech-
anisms. As part of our future research, we aim to explore tailored
acceleration strategies for both depthwise convolutions in MobileNet
and self-attention mechanisms in transformers, thereby extending the
applicability of our method beyond CNNs.

Hardware optimizations for low-resource deployment. To enhance the
feasibility of our design for deployment on low-resource edge devices,
several hardware optimizations can be explored. Our proposed tem-
poral design (DS-2) reduces logic utilization by reusing computational
resources over multiple cycles, and additional efficiency gains can be
achieved through composite MSDF arithmetic operators. By designing
a single SOP unit, we can minimize both logic area and latency,
effectively decreasing the online delay while maintaining performance.

Furthermore, incorporating quantization and sparsity-aware opti-
mizations can significantly reduce on-chip memory requirements. In
our design, storage is already structured in multiples of 8-bit precision,

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
making it inherently compatible with quantization techniques. Reduc-
ing precision lowers both memory footprint and compute latency with-
out substantial accuracy degradation. Additionally, sparsity-aware opti-
mizations can further decrease BRAM utilization by eliminating redun-
dant computations and avoiding unnecessary storage of zero-valued pa-
rameters. Adaptive tiling strategies can be employed to maximize data
reuse, thereby minimizing on-chip memory overhead for edge-device
deployments. Moreover, resource-sharing mechanisms can optimize
memory access patterns, ensuring efficient use of available storage.
These optimizations, combined with our proposed design principles,
pave the way for high-performance yet resource-efficient deep learning
accelerators, particularly suited for edge computing applications.

By addressing these challenges, we aim to enhance the practicality
and versatility of the proposed uniform stride and tiling method, en-
abling the accelerator to cater to a wide range of applications such as
classification, detection, and segmentation.

6. Conclusion

This study introduces the use of low-latency left-to-right bit-serial
arithmetic-based SOP units for convolution in fused CNN accelerators.
Two designs cater to varied demands, emphasizing minimal response
time (DS-1) for mission-critical applications and resource-constrained
devices (DS-2). DS-1, a spatial computation pattern-based design, en-
hances operational intensity by 8.20×, 17.80×, and 279.40× for LeNet-5,
AlexNet, and VGG networks, respectively. The temporal computation
pattern-based design achieves speedups of 1.67×, 1.68×, and 1.46×
for LeNet-5, AlexNet, and VGG networks respectively, surpassing con-
ventional bit-serial baselines. An effective mechanism skips inefficient
convolutions after ReLU layers, reducing power consumption with-
out accuracy loss which demonstrates substantial energy savings of
46.80%, 48.50%, and 42.60% for LeNet-5, AlexNet, and VGG networks,
respectively. Furthermore, the proposed USEFUSE has also exhibited
superior performance compared to the existing CNN accelerator de-
signs. These results underscore the efficacy of the proposed Uniform
Stride strategy for an improved operational intensity and optimiz-
ing energy consumption and computational speed in neural network
implementations.

CRediT authorship contribution statement

Muhammad Sohail Ibrahim: Writing – original draft, Visualiza-
tion, Validation, Methodology, Investigation, Formal analysis, Concep-
tualization. Muhammad Usman: Writing – review & editing, Software,
Methodology, Conceptualization. Jeong-A Lee: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] Y. Sun, B. Xue, M. Zhang, G.G. Yen, J. Lv, Automatically designing CNN
architectures using the genetic algorithm for image classification, IEEE Trans.
Cybern. 50 (9) (2020) 3840–3854.

[2] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic
segmentation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3431–3440.

[3] Y.H. Yoon, S. Khan, J. Huh, J.C. Ye, Efficient B-mode ultrasound image
reconstruction from sub-sampled RF data using deep learning, IEEE Trans. Med.
Imaging 38 (2) (2018) 325–336.
13
[4] M. Usman, S. Khan, S. Park, A. Wahab, AFP-SRC: identification of antifreeze
proteins using sparse representation classifier, Neural Comput. Appl. (2022)
1–11.

[5] Y.-W. Chen, K.-H. Hung, Y.-J. Li, A.C.-F. Kang, Y.-H. Lai, K.-C. Liu, S.-W. Fu,
S.-S. Wang, Y. Tsao, CITISEN: A deep learning-based speech signal-processing
mobile application, IEEE Access 10 (2022) 46082–46099.

[6] X. Chen, M. Li, H. Zhong, Y. Ma, C.-H. Hsu, DNNOff: offloading DNN-based
intelligent IoT applications in mobile edge computing, IEEE Trans. Ind. Inform.
18 (4) (2021) 2820–2829.

[7] C.-C. Lin, C.-Y. Liu, C.-H. Yen, T.-W. Kuo, P.-C. Hsiu, Intermittent-aware neural
network pruning, in: 2023 60th ACM/IEEE Design Automation Conference, DAC,
IEEE, 2023, pp. 1–6.

[8] S. Oh, H. Sim, J. Kim, J. Lee, Non-uniform step size quantization for accu-
rate post-training quantization, in: European Conference on Computer Vision,
Springer, 2022, pp. 658–673.

[9] D. Danopoulos, G. Zervakis, K. Siozios, D. Soudris, J. Henkel, Adapt: Fast em-
ulation of approximate dnn accelerators in pytorch, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. (2022).

[10] H.-J. Yoo, S. Park, K. Bong, D. Shin, J. Lee, S. Choi, A 1.93 tops/w scalable deep
learning/inference processor with tetra-parallel mimd architecture for big data
applications, in: IEEE International Solid-State Circuits Conference, IEEE, 2015,
pp. 80–81.

[11] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, O. Temam,
ShiDianNao: Shifting vision processing closer to the sensor, in: Proceedings of
the 42nd Annual International Symposium on Computer Architecture, 2015, pp.
92–104.

[12] Y.-H. Chen, T. Krishna, J.S. Emer, V. Sze, Eyeriss: An energy-efficient reconfig-
urable accelerator for deep convolutional neural networks, IEEE J. Solid-State
Circuits 52 (1) (2016) 127–138.

[13] P. Judd, J. Albericio, T. Hetherington, T.M. Aamodt, A. Moshovos, Stripes:
Bit-serial deep neural network computing, in: 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO, IEEE, 2016, pp. 1–12.

[14] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, H.-J. Yoo, UNPU: An energy-efficient
deep neural network accelerator with fully variable weight bit precision, IEEE
J. Solid-State Circuits 54 (1) (2018) 173–185.

[15] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, H. Esmaeilzadeh,
Bit fusion: Bit-level dynamically composable architecture for accelerating deep
neural network, in: 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture, ISCA, IEEE, 2018, pp. 764–775.

[16] N. Kim, H. Park, D. Lee, S. Kang, J. Lee, K. Choi, ComPreEND: Computation
pruning through predictive early negative detection for ReLU in a deep neural
network accelerator, IEEE Trans. Comput. (2021).

[17] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R.K. Gupta, H. Esmaeilzadeh, Snapea:
Predictive early activation for reducing computation in deep convolutional
neural networks, in: 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture, ISCA, IEEE, 2018, pp. 662–673.

[18] D. Lee, S. Kang, K. Choi, ComPEND: Computation pruning through early negative
detection for ReLU in a deep neural network accelerator, in: Proceedings of the
2018 International Conference on Supercomputing, 2018, pp. 139–148.

[19] X. Chen, J. Zhu, J. Jiang, C.-Y. Tsui, CompRRAE: RRAM-based convolutional
neural network accelerator with r educed computations through ar untime a
ctivation e stimation, in: Proceedings of the 24th Asia and South Pacific Design
Automation Conference, 2019, pp. 133–139.

[20] M.D. Ercegovac, T. Lang, Digital Arithmetic, Elsevier, 2004.
[21] M. Alwani, H. Chen, M. Ferdman, P. Milder, Fused-layer CNN accelerators, in:

2016 49th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO, IEEE, 2016, pp. 1–12.

[22] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N.E. Jerger, R. Urtasun, A.
Moshovos, Proteus: Exploiting precision variability in deep neural networks,
Parallel Comput. 73 (2018) 40–51.

[23] S. Shin, Y. Boo, W. Sung, Fixed-point optimization of deep neural networks
with adaptive step size retraining, in: 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP, IEEE, 2017, pp. 1203–1207.

[24] H. Lu, L. Chang, C. Li, Z. Zhu, S. Lu, Y. Liu, M. Zhang, Distilling bit-level sparsity
parallelism for general purpose deep learning acceleration, in: MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
963–976.

[25] C. Latotzke, T. Ciesielski, T. Gemmeke, Design of high-throughput mixed-
precision CNN accelerators on FPGA, in: 2022 32nd International Conference
on Field-Programmable Logic and Applications, FPL, IEEE, 2022, pp. 358–365.

[26] Y. Chen, K. Zhang, C. Gong, C. Hao, X. Zhang, T. Li, D. Chen, T-DLA: An open-
source deep learning accelerator for ternarized DNN models on embedded FPGA,
in: 2019 IEEE Computer Society Annual Symposium on VLSI, ISVLSI, IEEE, 2019,
pp. 13–18.

[27] M.B. Karadeniz, M. Altun, TALIPOT: Energy-efficient DNN booster employing hy-
brid bit parallel-serial processing in MSB-first fashion, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 41 (8) (2021) 2714–2727.

[28] W. Liu, J. Lin, Z. Wang, A precision-scalable energy-efficient convolutional neural
network accelerator, IEEE Trans. Circuits Syst. I. Regul. Pap. 67 (10) (2020)
3484–3497.

http://refhub.elsevier.com/S1383-7621(25)00131-6/sb1
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb1
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb1
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb1
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb1
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb2
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb2
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb2
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb2
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb2
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb3
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb3
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb3
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb3
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb3
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb4
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb4
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb4
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb4
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb4
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb5
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb5
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb5
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb5
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb5
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb6
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb6
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb6
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb6
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb6
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb7
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb7
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb7
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb7
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb7
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb8
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb8
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb8
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb8
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb8
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb9
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb9
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb9
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb9
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb9
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb10
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb10
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb10
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb10
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb10
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb10
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb10
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb11
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb11
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb11
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb11
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb11
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb11
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb11
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb12
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb12
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb12
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb12
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb12
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb13
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb13
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb13
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb13
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb13
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb14
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb14
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb14
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb14
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb14
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb15
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb15
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb15
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb15
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb15
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb15
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb15
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb16
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb16
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb16
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb16
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb16
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb17
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb17
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb17
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb17
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb17
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb17
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb17
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb18
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb18
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb18
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb18
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb18
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb19
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb19
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb19
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb19
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb19
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb19
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb19
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb20
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb21
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb21
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb21
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb21
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb21
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb22
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb22
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb22
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb22
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb22
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb23
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb23
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb23
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb23
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb23
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb24
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb24
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb24
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb24
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb24
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb24
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb24
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb26
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb26
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb26
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb26
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb26
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb26
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb26
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb27
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb27
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb27
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb27
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb27
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb28
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb28
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb28
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb28
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb28

M.S. Ibrahim et al. Journal of Systems Architecture 166 (2025) 103459
[29] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov, A. Moshovos,
Bit-pragmatic deep neural network computing, in: 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO, 2017, pp. 382–394.

[30] K. Al-Hawaj, O. Afuye, S. Agwa, A. Apsel, C. Batten, Towards a reconfigurable
bit-serial/bit-parallel vector accelerator using in-situ processing-in-sram, in: 2020
IEEE International Symposium on Circuits and Systems, ISCAS, IEEE, 2020, pp.
1–5.

[31] L. Waeijen, S. Sioutas, M. Peemen, M. Lindwer, H. Corporaal, ConvFusion: A
model for layer fusion in convolutional neural networks, IEEE Access 9 (2021)
168245–168267.

[32] Z. Zhao, K.M. Barijough, A. Gerstlauer, Deepthings: Distributed adaptive
deep learning inference on resource-constrained iot edge clusters, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 37 (11) (2018) 2348–2359.

[33] X. Wei, Y. Liang, X. Li, C.H. Yu, P. Zhang, J. Cong, TGPA: Tile-grained pipeline
architecture for low latency CNN inference, in: 2018 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD, ACM, 2018, pp. 1–8.

[34] Q. Xiao, Y. Liang, L. Lu, S. Yan, Y.-W. Tai, Exploring heterogeneous algorithms
for accelerating deep convolutional neural networks on FPGAs, in: Proceedings
of the 54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[35] M. Li, N. Wang, H. Zhou, Y. Duan, J. Wu, Fused-layer-based DNN model
parallelism and partial computation offloading, in: GLOBECOM 2022-2022 IEEE
Global Communications Conference, IEEE, 2022, pp. 5195–5200.

[36] H. Zhou, M. Li, N. Wang, G. Min, J. Wu, Accelerating deep learning inference
via model parallelism and partial computation offloading, IEEE Trans. Parallel
Distrib. Syst. 34 (2) (2022) 475–488.

[37] X. Cai, Y. Wang, K. Tu, C. Gao, L. Zhang, Olympus: Reaching memory-optimality
on DNN processors, IEEE Trans. Comput. 71 (8) (2021) 1939–1951.

[38] S. Tewari, A. Kumar, K. Paul, Minimizing off-chip memory access for CNN
accelerators, IEEE Consum. Electron. Mag. 11 (3) (2021) 95–104.

[39] H. Ahmad, T. Arif, M.A. Hanif, R. Hafiz, M. Shafique, SuperSlash: A unified
design space exploration and model compression methodology for design of deep
learning accelerators with reduced off-chip memory access volume, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 39 (11) (2020) 4191–4204.

[40] S. Tewari, A. Kumar, K. Paul, Bus width aware off-chip memory access minimiza-
tion for CNN accelerators, in: 2020 IEEE Computer Society Annual Symposium
on VLSI, ISVLSI, IEEE, 2020, pp. 240–245.

[41] D. Kang, D. Kang, S. Ha, Multi-bank on-chip memory management techniques
for cnn accelerators, IEEE Trans. Comput. 71 (5) (2021) 1181–1193.

[42] K. Zhang, Y. Li, J. Liang, J. Cao, Y. Zhang, H. Tang, D.-P. Fan, R. Timofte, L.V.
Gool, Practical blind image denoising via swin-conv-unet and data synthesis,
Mach. Intell. Res. 20 (6) (2023) 822–836.

[43] M. Li, W. Liu, W. Chen, An image denoising method based on swin transformer
V2 and U-net architecture, in: 2024 IEEE 16th International Conference on
Advanced Infocomm Technology, ICAIT, IEEE, 2024, pp. 204–209.

[44] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, R. Timofte, Plug-and-play image
restoration with deep denoiser prior, IEEE Trans. Pattern Anal. Mach. Intell. 44
(10) (2021) 6360–6376.

[45] D.-Y. Chen, H. Tennent, C.-W. Hsu, ArtAdapter: Text-to-image style transfer using
multi-level style encoder and explicit adaptation, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024, pp. 8619–8628.

[46] A. Bhattad, J. Soole, D. Forsyth, StyLitGAN: Image-based relighting via latent
control, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 4231–4240.
14
[47] S. Tafasca, A. Gupta, J.-M. Odobez, Sharingan: A transformer architecture for
multi-person gaze following, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 2008–2017.

[48] K. Shen, J. Guo, X. Tan, S. Tang, R. Wang, J. Bian, A study on relu and softmax
in transformer, 2023, arXiv preprint arXiv:2302.06461.

[49] M. Wortsman, J. Lee, J. Gilmer, S. Kornblith, Replacing softmax with relu in
vision transformers, 2023, arXiv preprint arXiv:2309.08586.

[50] U. Mallappa, P. Gangwar, B. Khaleghi, H. Yang, T. Rosing, TermiNETor: Early
convolution termination for efficient deep neural networks, in: 2022 IEEE 40th
International Conference on Computer Design, ICCD, IEEE, 2022, pp. 635–643.

[51] Y. Pan, J. Yu, A. Lukefahr, R. Das, S. Mahlke, BitSET: Bit-serial early termination
for computation reduction in convolutional neural networks, ACM Trans. Embed.
Comput. Syst. 22 (5s) (2023) 1–24.

[52] M. Asadikouhanjani, S.-B. Ko, A novel architecture for early detection of negative
output features in deep neural network accelerators, IEEE Trans. Circuits Syst.
II: Express Briefs 67 (12) (2020) 3332–3336.

[53] M.K. Shuvo, D.E. Thompson, H. Wang, MSB-first distributed arithmetic circuit
for convolution neural network computation, in: 2020 IEEE 63rd International
Midwest Symposium on Circuits and Systems, MWSCAS, IEEE, 2020, pp.
399–402.

[54] M. Usman, M. D. Ercegovac, J.-A. Lee, Low-latency online multiplier with
reduced activities and minimized interconnect for inner product arrays, J. Signal
Process. Syst. (2023) 1–20.

[55] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing FPGA-based
accelerator design for deep convolutional neural networks, in: Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
2015, pp. 161–170.

[56] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[57] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012).

[58] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

[59] G. Ofenbeck, R. Steinmann, V. Caparros, D.G. Spampinato, M. Püschel, Applying
the roofline model, in: 2014 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS, IEEE, 2014, pp. 76–85.

[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

[61] Y. Ma, Y. Cao, S. Vrudhula, J.-s. Seo, Automatic compilation of diverse CNNs
onto high-performance FPGA accelerators, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 39 (2) (2018) 424–437.

[62] D.T. Nguyen, H. Je, T.N. Nguyen, S. Ryu, K. Lee, H.-J. Lee, ShortcutFusion: From
tensorflow to FPGA-based accelerator with a reuse-aware memory allocation for
shortcut data, IEEE Trans. Circuits Syst. I. Regul. Pap. 69 (6) (2022) 2477–2489.

[63] S. Hong, Y.F. Arthanto, J.-Y. Kim, et al., Accelerating deep convolutional neural
networks using number theoretic transform, IEEE Trans. Circuits Syst. I. Regul.
Pap. 70 (1) (2022) 315–326.

[64] X. Xie, J. Lin, Z. Wang, J. Wei, An efficient and flexible accelerator design for
sparse convolutional neural networks, IEEE Trans. Circuits Syst. I. Regul. Pap.
68 (7) (2021) 2936–2949.

[65] H. Fuketa, T. Katashita, Y. Hori, M. Hioki, Multiplication-free lookup-based CNN
accelerator using residual vector quantization and its FPGA implementation, IEEE
Access (2024).

http://refhub.elsevier.com/S1383-7621(25)00131-6/sb29
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb29
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb29
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb29
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb29
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb30
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb30
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb30
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb30
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb30
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb30
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb30
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb31
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb31
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb31
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb31
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb31
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb32
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb32
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb32
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb32
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb32
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb33
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb33
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb33
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb33
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb33
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb34
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb34
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb34
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb34
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb34
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb35
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb35
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb35
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb35
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb35
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb36
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb36
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb36
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb36
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb36
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb37
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb37
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb37
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb38
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb38
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb38
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb39
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb39
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb39
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb39
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb39
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb39
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb39
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb40
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb40
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb40
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb40
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb40
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb41
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb41
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb41
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb42
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb42
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb42
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb42
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb42
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb43
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb43
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb43
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb43
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb43
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb44
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb44
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb44
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb44
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb44
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb45
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb45
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb45
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb45
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb45
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb46
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb46
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb46
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb46
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb46
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb47
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb47
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb47
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb47
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb47
http://arxiv.org/abs/2302.06461
http://arxiv.org/abs/2309.08586
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb50
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb50
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb50
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb50
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb50
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb51
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb51
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb51
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb51
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb51
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb52
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb52
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb52
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb52
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb52
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb53
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb53
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb53
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb53
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb53
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb53
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb53
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb54
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb54
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb54
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb54
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb54
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb55
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb55
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb55
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb55
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb55
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb55
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb55
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb56
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb56
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb56
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb57
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb57
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb57
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb59
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb59
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb59
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb59
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb59
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb60
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb60
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb60
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb60
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb60
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb61
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb61
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb61
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb61
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb61
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb62
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb62
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb62
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb62
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb62
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb63
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb63
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb63
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb63
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb63
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb64
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb64
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb64
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb64
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb64
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb65
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb65
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb65
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb65
http://refhub.elsevier.com/S1383-7621(25)00131-6/sb65

	USEFUSE: Uniform stride for enhanced performance in fused layer architecture of deep neural networks
	Introduction
	Related Work
	Bit-Serial Accelerators
	Fused-Layer Accelerators
	Early Negative Detection Techniques

	Materials and Methods
	Online Arithmetic
	Online Multiplier and Adder Overview

	Early Termination of Negative Computations
	Proposed Layer Fusion Method
	Overview
	Algorithm

	Accelerator Designs
	Design Strategy-1 (DS-1) - Spatial Design
	Design Strategy-2 (DS-2) - Temporal Design

	Experimental Results and Discussion
	Experimental Setup
	Performance Evaluation Parameters
	Experimental Results
	Comparison with Previous Works

	Limitations and Future Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

