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 A B S T R A C T

Convolutional Neural Networks (CNNs) are crucial in various applications, but deploying them on resource-
constrained edge devices poses challenges. This study presents the Sum-of-Products (SOP) units for convolution, 
which utilize low-latency left-to-right bit-serial arithmetic to minimize response time and enhance overall 
performance. The study proposes a methodology for fusing multiple convolution layers to reduce off-chip 
memory communication and increase the overall performance. An effective mechanism detects and skips 
inefficient convolutions after ReLU layers, minimizing power consumption without compromising accuracy. Ad-
ditionally, efficient tile movement guarantees uniform access to the fusion pyramid. An analysis demonstrates 
the uniform stride strategy improves operational intensity. Two designs cater to varied demands: one focuses 
on minimal response time for mission-critical applications, and another focuses on resource-constrained devices 
with comparable latency. This approach notably reduced redundant computations, improving the efficiency of 
CNN deployment on edge devices.
1. Introduction

Deep neural network (DNN) is an artificial neural network com-
prised of several layers between input and output layers. They have 
been widely used in image recognition [1], semantic segmentation [2], 
medical imaging [3], bioinformatics [4], and signal processing [5] 
etc. A class of DNN is the convolution neural networks (CNNs) which 
play a pivotal role in many applications such as computer vision, 
recognition, object detection, etc. This has been made possible due to 
the advancements in high performance computing technologies and the 
availability of cutting-edge compute resources. The use of CNNs with 
many layers has enabled the swift progress in a number of diverse 
application domains. CNN designs, inspired by the behavior of optic 
nerves in human brain, perform data processing in multiple layers of 
neurons to achieve human brain-like performance in image recognition.

There is a pressing need to execute complex neural networks in 
mission-critical applications with low latency demands. However, due 
to limited compute and storage resources, the implementation of neural 
networks on edge devices is limited [6]. Various efforts have been 
made to reduce the complexity of neural networks at algorithm level, 
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including compression by pruning, quantization, approximation, zero 
skipping, etc., at the expense of accuracy [7–9]. Furthermore, several 
spatial architectures exploiting the effective data such as weight sta-
tionary [10], output stationary [11] and row stationary [12], have been 
proposed to accelerate the computation of neural networks.

In the context of network compression for resource-constrained 
hardware, serial processing is usually favored in DNN implementation 
where the models can have layer-specific input precision for either 
activation or weight (bit-serial with one operand in parallel) [13,
14] or both (bit-serial with both operands in serial) as in [15]. Par-
allel processing accounts for larger area, whereas serial approaches 
have longer computation time. Bit-serial designs however, require sim-
pler circuitry and the adjustable precision makes them favorable for 
domain-specific hardware accelerators. Bit-serial designs also suffer 
from high latency and low throughput issues which are usually ad-
dressed by employing multiple instances of small serial circuits to 
deliver higher throughput [13].

In most modern CNNs, convolution accounts for more than 90% of 
operations. Although the computation of the convolution operations is 
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Fig. 1. A general CNN architecture.

very simple, involving multiplication and addition, but due to the depth 
of such networks the computational complexity increases, subsequently 
raising the number of operations. It is found that nearly 85% of the 
overall time in a CNN-based classification model is consumed by these 
multiplication and addition operations to perform convolution in the 
DaDianNao accelerator [13].

A generic CNN architecture is illustrated in Fig.  1, in which the 
feature extraction module includes stacks of convolution, activation, 
and pooling layers while the classification module contains stacks of 
fully connected layers. Activation functions to add non-linearity are 
placed either after convolution layer or pooling layer. One of the 
simplest and most commonly used activation function in CNNs is the 
rectified linear unit (ReLU), which returns same value if the input is 
positive and zero if the input is negative. It is reported that around 
60% of the convolutions produce negative output and therefore, their 
results are not used due to ReLU in the subsequent operations [16]. 
Such convolutions have no effect on the output and are termed as 
ineffectual convolutions. In order to mitigate the computation of inef-
fectual convolutions, researchers have proposed methods to detect such 
negative activation and terminate them at an early stage, consequently 
resulting in energy and power savings [17]. Several methods have been 
proposed to detect these negative results at an early stage and terminate 
them to reduce energy consumption [16,18,19]. However, it adds an 
overhead to the model. This overhead can be alleviated by utilizing an 
unconventional arithmetic known as online arithmetic [20], where all 
the computations are performed from left-to-right in most significant 
digit first (MSDF) manner.

Moreover, the information in the CNNs flows sequentially, i.e., the 
results from one layer are utilized by subsequent layers. This inter-
layer connectivity forms the backbone of CNNs, allowing them to 
progressively uncover intricate features as the data travels deeper into 
the network. Conventional CNN accelerator implementations perform 
the network computation in a layer-by-layer manner where the data is 
repeatedly transferred between the processing units and memory. Such 
communication burden increases rapidly with the increasing depth of 
the network.

In this avenue, exploring the dataflow across the CNN layers can 
help in the reduction of memory traffic. Instead of layer-by-layer com-
putation in a CNN, the CNN layers can be fused together to reduce 
the communication between memory and the compute engines [21]. 
In such architectures, it is well-defined in the literature that each 
pixel or receptive field in the activation of a particular hidden layer 
is dependent on a region in the input activation of the initial layer 
of the network. Using a layer fusion strategy can help in merging the 
operations of various subsequent layers, in-turn reducing the off-chip 
memory access substantially.

In this work, we develop a CNN evaluation scheme by fusing 
the convolution layers of the network to reduce the off-chip memory 
traffic due to the intermediate data. The proposed approach reduces 
the number of duplicate computations by an efficient uniform fusion 
2 
pyramid movement scheme aided by a uniform stride for each level 
of the fusion design. The goal is to select the smallest possible tile 
sizes for each layer in the fusion design, maintaining a uniform tile 
movement while ensuring minimum overlap between the adjoining 
tiles. The contributions of this study can be summarized as follows:

• Design of SoP units for convolution using low-latency left-to-
right bit-serial arithmetic based computation units to minimize 
the response time.

• A methodology to fuse several layers of convolution neural net-
work using the proposed SoP computation units to decrease the 
off-chip memory communication.

• Mechanism to early detect and skip the computation of convolu-
tions which are ineffectual after ReLU layers without any loss in 
accuracy during inference to minimize the power consumption.

• A methodology for tile movement to ensure efficient data access 
and uniform movement of fusion pyramid.

• An analysis depicting that the proposed uniform stride strategy 
improves the operational intensity irrespective of the dataflow of 
the underlying computation units.

• Additionally, we propose two alternate designs possessing the 
aforementioned properties; (1) a design aimed at minimal re-
sponse time for mission critical applications, (2) a design suitable 
for resource constrained devices with comparable latency as the 
contemporary approaches.

The rest of the paper is organized as: a comprehensive review of 
relevant literature is discussed in Section 2, the proposed CNN evalua-
tion scheme is presented in the subsequent Section 3. The experimental 
results and relevant discussion is presented in Section 4 followed by the 
conclusion of the study in Section 6.

2. Related work

This section will review existing bit-serial architectures for CNN 
computation, followed by a discussion on fused-layer architectures. 
Finally, methods for early detection and termination of negative com-
putations to enhance energy efficiency will be explored.

2.1. Bit-serial accelerators

Over the past decade, researchers have addressed various challenges 
in CNN acceleration, such as unnecessary computations and the need 
for variable precision across CNN layers [22,23]. These challenges 
can lead to increased energy and resource demands in accelerator 
designs. Stripes [13], a leading CNN acceleration design, employs bit-
serial arithmetic compute units to exploit variable precision, thereby 
speeding up CNN inference.

The primary goal of bit-serial arithmetic designs is to reduce un-
necessary computations and create energy-efficient accelerators. In 
this direction, Bitlet [24] proposed a bit-interleaving architecture that 
leverages bit-level sparsity and variable precision to accelerate DNN 
inference. A mixed-precision CNN accelerator is presented in [25], 
achieving high throughput with minimal accuracy loss by quantizing 
inputs and weights. Similarly, T-DLA [26] uses 2-bit quantized weights 
for performance improvements. TALIPOT [27] enhances energy effi-
ciency using hybrid number representations in most significant bit first 
(MSBF) arithmetic units, allowing early operations in subsequent layers 
without waiting for complete computation results. Other variable pre-
cision, bit-serial computation-based designs include implementations 
such as [14,28,29].

Bit-serial designs provide advantages such as reduced memory 
bandwidth requirements and the ability to leverage variable precision 
across different DNN layers. However, these designs face drawbacks, 
including higher latency, lower throughput, and reduced performance 
compared to conventional bit-parallel architectures. Additionally, in 
bit-serial designs, the accumulation operation is hindered by carry 
propagation, which significantly increases cycle time and lowers the 
operating frequency of the processing units [30].
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2.2. Fused-layer accelerators

Conventional CNN accelerator designs focus on iterative layer com-
putations, generating large amounts of intermediate data. Depending 
on the design and tile size, this data can be intra-layer or inter-
layer, requiring off-chip memory storage and retrieval for subsequent 
operations. As CNN models grow deeper, memory traffic increases. 
To address this, a novel accelerator design that *fuses* multiple CNN 
layers was introduced in [21], reducing intermediate memory traffic 
by directly feeding data between adjacent compute units, minimizing 
off-chip memory use by up to 95% for models like VGGNet-E.

Fused-layer architectures can also take advantage of variable preci-
sion requirements in different layers, improving efficiency. Bit-Fusion
[15] introduced a flexible architecture where bit-level processing el-
ements dynamically fuse to match precision needs, increasing speed 
and energy efficiency without accuracy loss. Efficient computation 
scheduling is critical for fused-layer designs, as highlighted by Conv-
Fusion [31], which proposed a cost model for scheduling computation 
and memory communication, optimizing tiling, loop reordering, data 
reuse, layer fusion, and convolution execution schemes. Other layer-
fusion-based designs include DeepThings [32], TGPA [33], and further 
approaches explored in [34–36].

The data flow between computation units and external memory 
presents significant design challenges and increased energy consump-
tion due to the large volume of data generated during CNN convolution 
operations [21]. Fused-layer architectures attempt to mitigate this by 
reusing intermediate data, but exploring the design space for data 
scheduling, loop tiling, and loop reordering remains challenging.

Olympus [37] addresses memory access traffic by optimizing both 
intra-layer and inter-layer data reuse. It employs a memory-oriented 
network scheduling technique to reduce memory traffic and enhance 
energy efficiency in DNN processors. Other strategies for minimizing 
memory access and exploring accelerator design space include [38–41].

Despite the benefits of fused-layer dataflow, certain limitations 
remain. Many fused-layer designs overlook the stride of the fusion 
tile, which determines how the tile moves after computation. Incorrect 
stride determination can lead to excessive duplicate data being reused 
or recomputed, requiring large buffers or on-chip storage for intermedi-
ate data and causing significant under-utilization of compute resources. 
Storing intermediate data has been shown to be more energy-efficient 
than recomputation [21]. The need for large data buffers arises due to 
two factors: (1) ineffective computation of tile stride and (2) the use 
of conventional arithmetic units that fail to process the generated data 
immediately.

2.3. Early negative detection techniques

Rectified Linear Activation (ReLU) is a popular activation function 
in neural networks, which sets negative values to zero while keeping 
positive values unchanged. With the advancement in deep learning 
architectures, various derivatives of the ReLU activation functions have 
been proposed, such as PReLU [42], LeakyReLU [43], etc., while many 
recent architectures still rely on the ReLU activation [44–47]. Ad-
ditionally, recent research suggests that ReLU can serve as a viable 
alternative to softmax, offering advantages in computation efficiency 
and parallelization. For instance, [48] proposed a ReLU based self-
attention and feed-forward network to replace softmax in transformer 
models, showing that ReLU improves scalability by efficiently handling 
a large number of memory slots. Similarly, [49] replaced softmax with 
ReLU in vision transformers and demonstrated that the ReLU-based 
attention achieves comparable performance to softmax-based attention 
in terms of scaling behavior while enabling better parallelization over 
the sequence length dimension, reducing the need for gather oper-
ations. These findings indicate that ReLU is not only relevant but 
also increasingly explored as a substitute for more complex functions 
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in deep learning architectures. The introduction of ReLU in the net-
work architecture facilitates faster convergence and helps address the 
vanishing gradient problem. However, ReLU introduces the issue of 
ineffectual convolutions, where a significant portion of a convolution 
layer’s output consists of zero activations after applying ReLU. These 
zeros are propagated through the network without contributing to the 
final output, leading to wasted computational resources. This ineffi-
ciency consumes memory bandwidth, energy, and processing cycles, 
ultimately slowing down inference and increasing energy consumption.

As mentioned earlier, while many DNN acceleration techniques 
focus on designing fast and energy-efficient computation units, fewer 
approaches address the early termination of convolution operations 
due to ReLU activations. SnaPEA [17] introduced an early negative 
prediction scheme with two modes to address this: (1) Exact Mode: 
A single-bit sign check is performed iteratively on the sum of par-
tial products, and computation stops as soon as the sum falls below 
zero, and (2) Predictive Mode: The partial sum is compared to a 
threshold, and computation is terminated if it drops below this thresh-
old. This mode is faster but slightly reduces accuracy. Other methods 
aimed at early termination of convolution operations include Com-
preEND [16], TermiNETor [50], CompRRAE [19], CompEND [18], 
BitSET [51], and [52].

Left-to-right or MSDF arithmetic operations can significantly en-
hance the early detection of negative activations. Shuvo et al. [53] 
proposed a novel circuit implementation for convolution that allows for 
early detection of negative results, enabling the subsequent termination 
of related operations. However, existing methods for early detection of 
negative activations often rely on digit encoding schemes, threshold-
based predictions, or complex circuitry, which can result in erroneous 
decisions or increased overhead.

3. Materials and methods

To address the limitations of the existing works, we propose to 
utilize digit serial left-to-right arithmetic-based computation units, ter-
minating the computation of ineffective convolutions at an early stage, 
and minimize the communication between memory and compute units 
by fusing several successive convolution layers. The details of which 
have been explained in the ensuing subsections.

3.1. Online arithmetic

In online arithmetic, computations proceed digit-by-digit, from the 
most to the least significant position, for both inputs and outputs. 
Algorithms require (𝑗 + 𝛿) input digits to compute the 𝑗th digit of 
the result, where 𝛿 is the online delay, typically a small integer (1–4) 
depending on the operation. This method employs a redundant number 
system to generate the most significant digits first, making the cycle 
time independent of the working precision. Online algorithms involve 
recurrence relations where residuals are iteratively fed back into com-
putations. The residual part from intermediate calculations contributes 
to generating subsequent output digits efficiently.

Online arithmetic enables the overlap of dependent operations, as 
the subsequent unit can begin computation once the most significant 
digit (MSD) of the preceding unit is available. In contrast, conven-
tional digit-serial arithmetic requires all digits before starting. Although 
overlapping is possible in conventional systems if all operations use 
either MSDF or least significant digit-first (LSDF) modes, issues arise 
when combining MSDF (e.g., division) with LSDF (e.g., multiplication). 
Since online arithmetic consistently uses MSDF, it supports seamless 
overlapping of dependent operations.  In conventional arithmetic, the 
subsequent unit can only begin computation if the output of the pre-
ceding unit is generated bit-by-bit and the subsequent unit also accepts 
input bit-by-bit. Otherwise, if it requires a parallel input, it must wait 
until the entire output is available. Online arithmetic, however, takes 
input serially and produces results serially, enabling a technique called
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computation while communication, where processing and data transfer 
occur simultaneously, reducing latency and improving efficiency.

In parallel or pipelined systems where full-precision communication 
between modules is not feasible, online arithmetic excels due to its 
reduced bandwidth needs. This is particularly advantageous in signal 
processing applications where full-precision output is unnecessary. For 
instance, in multiplying two 𝑁-bit operands to generate a 2𝑁-bit 
result, often only the most significant half is required, as in many DSP 
applications. Conventional multipliers produce output starting from the 
least significant bits, discarding the lower half and wasting resources. 
In contrast, online arithmetic generates output digit-by-digit from the 
most significant side, allowing computation to stop once the desired 
precision is reached.

The computation from the most significant digit (MSD) to the least 
significant digit (LSD) relies on generating output based on partial 
information about the input operands. This flexibility is achieved by 
introducing redundancy in the input and output operands, which is why 
a redundant number representation system is used in online arithmetic. 
Typically, a signed digit (SD) redundant number system is employed, 
where numbers are represented in radix 𝑟 form, and each signed digit 
belongs to the set {−𝑎,… ,−1, 0, 1,… , 𝑎} with the condition 𝑟2 ≤ 𝑎 < 𝑟. 
In this work, we utilize a symmetric radix-2 digit set with {−1, 0, 1}.

3.1.1. Online multiplier and adder overview

Algorithm 1 Serial–Parallel Online Multiplication
1: Initialize:

𝑥[−2] = 𝑤[−2] = 0
2: for j=−2,−1 do
3:  𝑣[𝚥] = 2𝑤[𝚥] +

(

𝑥𝑗+2 ⋅ 𝑌 ]
)

2−2

4:  𝑤[𝚥 + 1] ← 𝑣[𝑗]
5: end for

6: Recurrence:
7: for 𝑗 = 0… 𝑛 + 𝛿 do
8:  𝑣[𝚥] = 2𝑤[𝚥] +

(

𝑥𝑗+2 ⋅ 𝑌 ]
)

2−2

9:  𝑧𝑗+1 = 𝑆𝐸𝐿𝑀(𝑣[𝑗])
10:  𝑤[𝑗 + 1] ← 𝑣[𝑗] − 𝑧𝑗+1
11:  𝑍out ← 𝑧𝑗+1
12: end for

The fundamental component of the accelerator is the window pro-
cessing unit (WPU), which serves as the core for computing convo-
lutions. The WPU is composed of online multipliers and reduction 
trees based on online adders. In the online serial–parallel multiplier, 
one operand is fed in serially in a MSDF manner, while the other 
operand is a constant available in parallel at implementation time. A 
radix-2 serial–parallel online multiplier has an online delay of 2, and 
its selection function requires 2 fractional bits and 1 integer bit for 
output digit selection. Methods for developing online algorithms and 
derivations are discussed in [20]. The online multiplication algorithm 
generally consists of two steps: (1) Initialization, during which 𝛿 input 
digits (in serial) are collected without generating any output, resulting 
in an execution length equal to the online delay (𝛿); and (2) Recurrence, 
which runs for 𝑛 iterations, where 𝑛 is the input precision, produc-
ing one output digit in each iteration. A pseudo-code for the online 
serial–parallel multiplication algorithm is presented in Algorithm 1.

Here, 𝑥 and 𝑌  are the bit-serial and parallel inputs, respectively, 
and 𝑧 is the serial MSDF output. The residual registers to store the 
temporary results are denoted by 𝜔 and 𝑣. At any 𝑗th iteration, the 
serial output digit (input digit) is represented by 𝑧𝑗 (𝑥𝑗), where 𝑧𝑗 =
𝑆𝑈𝐵(𝑧+, 𝑧−), such that the subtraction of the two bits represents the 
value of the digit. 𝑆𝐸𝐿𝑀(.) is the output selection module/function 
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that selects an output from a look-up table on the basis of a few most 
significant (𝑡) bits of the residual.

Serial online addition involves full adders and registers to add two 
redundant numbers in a MSDF manner. A detailed description of the 
online adder and its relevant derivations can be found in Ercegovac and 
Lang [20]. Additionally, this reference provides the design and method-
ology for the online serial-serial multiplier, where both input operands 
are supplied as serial inputs. In this work, we utilize the online serial–
parallel multiplier proposed in our previous research [54]. This online 
serial–parallel multiplier is employed to design the processing units in 
the proposed USEFUSE accelerator, with further details and derivations 
available in [54].

3.2. Early termination of negative computations

Most CNN accelerator designs concentrate on efficiently generating 
the SOP for the activation layer (ReLU). However, few studies have 
investigated the early detection of negative values in the SOP, which 
presents a significant challenge in accelerators based on conventional 
arithmetic. For instance, conventional bit-serial multipliers take the 
multiplicand in parallel while processing the multiplier serially. In 
each iteration, a partial product is generated and stored in a register, 
then shifted into the appropriate position before being added to other 
partial products to compute the final result. This process typically 
involves a series of adders for reduction. A second level of reduction 
is necessary to add 𝑘× 𝑘 products to yield the output pixel, along with 
an additional level of reduction for summing multiple input channels. 
With conventional bit-serial multipliers, the most significant bit and the 
polarity of the result cannot be determined until all partial products 
have been generated and added to the previous partial sums.

The challenge of early detection and termination of negative acti-
vations can be addressed by the intrinsic ability of online arithmetic 
to generate output digits in an MSDF manner. The proposed design 
supports the termination of negative activation computation in 𝑝 < 
cycles, where   is the number of cycles to compute complete result. 
This is done by observing the output digits. The process of detecting 
the negative activations and subsequently terminating the relevant 
computation is summarized in Algorithm 2.

Algorithm 2 Early detection and termination of negative activations
𝑧+𝑗 , 𝑧

−
𝑗  bits

for 𝑗 = 1 𝑡𝑜   do
 𝑧+[𝑗] ← 𝑧+[𝑗] ⌢𝑧+𝑗
 𝑧−[𝑗] ← 𝑧−[𝑗] ⌢𝑧−𝑗
 if 𝑧+[𝑗] < 𝑧−[𝑗] then
Terminate
 else
Continue
 end if
end for

The proposed early negative detection unit (END-U) is equipped 
with registers to store 𝑧+𝑗  and 𝑧−𝑗  bits, which represent the positive 
and negative output bits of the SOP in redundant form. During each 
iteration, new bits are appended to their respective registers. As soon 
as the value of 𝑧+[𝑗] falls below the value of 𝑧−[𝑗], a termination 
signal is generated, resulting in the cessation of the SOP computation. 
The END-U is integrated into each processing unit, as described in 
Section 3.4.

3.3. Proposed layer fusion method

This section outlines the proposed layer fusion method and its 
components, including the calculation and selection of tile sizes and the 
calculation of the uniform stride for tiles. A comprehensive description 
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Fig. 2. Proposed layer fusion accelerator design pipeline.

Fig. 3. General layer fusion scheme.

of the proposed design flow is presented in Fig.  2. The design flow 
begins by taking the CNN network configurations and the number 
of 𝑄 convolution layers intended for the fusion design, followed by 
the calculation of tile sizes for each layer. This is followed by cal-
culating the uniform stride to ensure uniform tile movement across 
the respective layers in the fusion design. Next, the start and end 
indices of the feature maps intended for each layer are determined. 
The information accumulated throughout this process is then utilized 
to design accelerators for each layer in the fusion design, with detailed 
descriptions of these processes provided later in this section.

3.3.1. Overview
The proposed design follows a layer fusion scheme as depicted in 

Fig.  3, where a particular region, referred as Tile, is selected by tracking 
the output activation (or a region) of the final layer of the fusion 
pyramid to the first layer. The dimensions of the tile depends on the 
CNN architecture as well as the dimensions of the intended region of 
the output feature map.

The pyramid dimensions are calculated by selecting a suitable re-
gion of the output feature map and the tile dimension of its preceding 
layer according to relation (1), presented in [21]. 
𝐷𝑙 = (𝐷𝑜 − 1) × 𝑆𝑙 +𝐾𝑙 (1)

where 𝐷𝑙 is the dimension of the layer preceding the output layer of 
the fusion pyramid, 𝐷𝑜 is the dimension of the selected region of the 
output feature map, 𝑆𝑙 and 𝐾𝑙 are the stride and kernel size of the layer 
preceding to the output layer, respectively. This procedure is done from 
the final layer until the first layer of the fusion architecture to obtain 
the tile sizes of the respective layers in the fusion pyramid.

Consider an example of a simple CNN such as LeNet-5 whose first 
two convolution layers are to be fused. Each convolution layer is 
followed by a sub-sampling layer, like Maxpooling. In a fusion of two 
convolution layers, 𝑅 = 𝐶 = 1 output pixels from the second sub-
sampling layer serve as input to the third layer. To determine tile 
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dimensions in the fusion pyramid, Eq. (1) applies to both convolution 
and sub-sampling layers. For instance, the input to the third layer 
follows a Maxpooling operation (𝑀𝑃𝐿2) on a 2 × 2 output from the 
second convolution layer (𝐶𝐿2), which operates on a 6 × 6 input. 
Tracing back, 𝑀𝑃𝐿1 requires a 12 × 12 input to produce this, derived 
from a 16 × 16 input to 𝐶𝐿1. The generation of neighboring pixels at 
the same level requires a separate, overlapping pyramid computation. 
The starting index for each layer in this process, known as the tile stride, 
differs from the convolution stride. Determining this tile stride is crucial 
for two reasons: (1) It ensures the fusion pyramid covers the entire 
input feature map without skipping pixels, generating all necessary 
output activations. (2) It guarantees consistent execution rounds at 
every pyramid level, removing the need for synchronization after each 
round [33].

Furthermore, in most CNN models, the feature map dimensions are 
downsampled along the depth of the network while the number of 
filters increase. The proposed scheme ensures reduction in memory 
traffic in earlier as well as later convolution layers. This is due to the 
reason that the proposed design incorporates input and output channel 
tiling [55]. This means that the filters are loaded into the kernel buffers 
only once, while the input feature map sections are loaded into the 
input buffers as the fusion tile moves across the input feature map.

To this end, we propose an algorithm in Section 3.3.2 for the 
calculation of the tile stride to ensure a uniform movement of the fusion 
pyramid for various output region configurations including the tile 
dimensions for each layer in the fusion pyramid. It is also worth noting 
that this work focuses on the assumption that the tile at each pyramid 
level is square-shaped, which is most commonly used.

3.3.2. Algorithm
The pseudocode presented in algorithm 3 depicts a simple frame-

work for calculating the fusion tile sizes of any network using Eq. (1). 
It takes the name of the network and the number of layers (𝑄) intended 
for fusion as its input and returns the fused-layer tile sizes for all 
possible squared output dimensions in the output feature map of the 
final layer in the fusion pyramid. It ensures that the tile size 𝐻 for 
each layer in the fusion design is bounded by the size of the input 
feature map (𝐼𝐹𝑀) of the respective layer. The 𝐹𝑜𝑟 loop iterates over 
the various squared dimensions of the output feature map (𝑅𝑄) of 
the fused-layer design and results in an (𝑅𝑄 × 𝑄) matrix consisting of 
tile sizes (𝐻𝑄,𝐻𝑄−1,… ,𝐻1) for each layer in the fusion pyramid. This 
results in all possible fused-layer tile configurations considering that the 
tile sizes and respective outputs and inputs of each layer are square.

Algorithm 3 Calculation for the Fusion Pyramid Tile Sizes
Require: Network, Number of Layers 𝑄
Ensure: 𝐻 ≤ 𝐼𝐹𝑀
1: for (i in 𝑅𝑄) do
2:  for (𝑗 = 𝑄, 𝑗 ≥ 1, 𝑗–) do
3:  𝐻(𝑖,𝑗) = (𝑖 − 1) × 𝑆𝑗 +𝐾𝑗
4:  end for
5: end for
6: Return 𝐇 ∈ R𝑅𝑄×𝑄

Algorithm 3 results in a relatively large design-space which can be 
narrowed down further by determining the appropriate stride for each 
tile in the fusion pyramid. The algorithm determines the number of 
movements 𝛼 that a particular tile should take under various tile stride 
𝑆𝑇  values. The 𝑆𝑇  values are calculated using the condition that 𝛼 can 
only be an integer. Each value of 𝑆𝑇  dictates the amount of overlap 
between the adjoining tiles in a layer in the fusion pyramid. In order 
to ensure the least amount of overlap, an 𝑆𝑇  value of 𝐻 − 𝐾 + 𝑆
can be selected. Although this selection ensures the least amount of 
overlap as well as the least number of 𝛼, but it can result in a different 
number of movements at different levels of the pyramid. For instance, 
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in the previous example of LeNet-5, the tile size for 𝐶𝐿1 and 𝐶𝐿2 were 
selected to be 16 × 16 and 6 × 6 respectively. The tile stride for 𝐶𝐿1 and 
𝐶𝐿2 will result in 𝑆𝑇

1 = 16−5+1 = 12 and 𝑆𝑇
2 = 6−5+1 = 2, respectively. 

The value of 𝑆𝑇
2  shows that the tile representing 𝐶𝐿2 results in 𝛼2 = 5, 

while the value of 𝑆𝑇
1  results in a non-integer value of 𝛼1 = 7∕3 which 

has to be ruled-out. Also, the movement parameters for 𝐶𝐿1 and 𝐶𝐿2
do not agree, resulting in an asymmetric movement of different tiles in 
the fusion pyramid. This can lead to a number of issues; (1) requiring 
some synchronization delay between the execution of tiles caused by 
the stall cycles inserted between the execution of adjoining tiles, (2) 
increased latency due to one tile being executed several times more 
due to repeated computations compared to others in-turn decreasing 
the overall operating frequency of the design, and (3) the mismatch in 
synchronization may require for some intermediate data to be shuttled 
back to the memory in case of limited buffer space.

Algorithm 4 Calculation for the Tile Stride
Require: 𝐇 ∈ R𝑅𝑄×𝑄

1: for 𝑖 = 1, 𝑖 ≤ 𝑅𝑄, 𝑖++ do
2:  for 𝑗 = 1, 𝑗 ≤ 𝑄, 𝑗++ do
3:  for 𝑝 = 1, 𝑝 ≤ 𝐻𝑗 , 𝑝++ do
4:  𝛼(𝑖,𝑗,𝑝) = 𝐼𝐹𝑀𝑗−𝐻𝑗

𝑝 + 1
5:  if 𝛼(𝑖,𝑗,𝑝) ∈ Z then
6:  𝛼𝐢,𝐣 ← 𝛼(𝑖,𝑗,𝑝)
7:  𝑆𝑇

𝑖,𝑗 ← 𝑝
8:  end if
9:  end for
10:  end for
11: end for
12: Return 𝛼,𝐒𝐓 ∈ R𝑅𝑄×𝑄

After calculating the 𝑆𝑇  and 𝛼 parameters for the fusion tile size 
H ∈ 𝐇 of choice, the values of 𝑆𝑇  resulting in the same 𝛼 parameter 
values for each layer in the fusion pyramid can be evaluated and the 
corresponding 𝑆𝑇  values for each layer can be obtained. The appropri-
ate 𝑆𝑇  values for each layer resulting in a synchronized fusion pyramid 
movement can simply be obtained by analyzing that the candidates for 
𝑆𝑇  do not result in skipping the computation of some regions in any 
layer. Among these 𝑆𝑇  candidates, the maximum values for 𝑆𝑇  for each 
layer is carefully selected after satisfying the condition stated earlier. 
Such 𝑆𝑇  values ensure a uniform movement of each tile in the fusion 
pyramid, thereby addressing the three problems stated earlier.

3.4. Accelerator designs

In order to show the efficacy of the proposed technique, we present 
two distinct approaches to the accelerator design. In one of the con-
figurations, we aim to minimize the latency of the computations by 
exploiting the spatial parallelism in convolution operation at the cost 
of area. However, we show that conventional arithmetic-based design 
with the same configuration does not match the latency and the perfor-
mance provided by the use of online arithmetic-based components. Ad-
ditionally, an alternative, more pragmatic design is introduced, which 
performs convolution in a temporal manner and efficiently utilizes 
limited computational resources.

Both the aforementioned designs have similar general overall accel-
erator architecture. The overall architecture of the proposed accelerator 
is presented in Fig.  4. Depending on the number of convolution layers 
in a CNN model, there can be many pyramid levels in the proposed 
fused-layer design. Each pyramid level represents a tile in a particular 
convolution layer of the CNN model. The depth 𝑄 of the fusion deter-
mines the number of levels in the pyramid. The selection of the depth 
𝑄 of the fusion pyramid can also help in optimizing the performance 
of the layer fusion acceleration designs. However, this work focuses 
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Fig. 4. Overall architecture. The solid black arrows represent the input, output, and 
control connections, while the dotted green arrows represent the filter/weight data. (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

primarily on the calculation and selection of tile sizes and uniform 
stride, the use of online arithmetic-based compute units, early negative 
detection, etc. The optimization related to the selection of the number 
of layers (𝑄) in the fusion pyramid is considered as future work. In 
the current work, the parameter 𝑄 is selected as referenced in litera-
ture [21,33]. Each pyramid level is followed by an activation buffer 
and an optional pooling block. The activation buffer block offers an 
on-chip buffer storage for the output features of the previous pyramid 
level. It is also noteworthy that for implementation on FPGAs, a large 
value of 𝑄 cannot be feasible due to the limited resources. However, 
we performed an experiment with 4 convolution layers of VGG-16 
CNN and the experimental results show that with enough hardware 
resources, the proposed technique can be utilized for larger 𝑄 values. 
The proposed technique for the tile stride selection ensures uniform 
tile movement across the different pyramid levels. However, it leads 
to a slightly larger area of overlap regions within the fusion pyramid 
feature maps compared to the (𝐻 − 𝐾 + 𝑆) region, which ensures 
minimum overlap. However, it is noteworthy that the proposed tile 
stride calculation technique not only ensures uniform movement across 
the pyramid levels but also keeps the number of pyramid movement 𝛼
to a minimum. This ensures that the overlap region does not increase 
drastically (ensured by the larger tile stride values). Furthermore, the 
overlapped output pixels of a pyramid level are stored in the output 
buffers to be reused by the subsequent level in the fusion pyramid as 
the fusion tile moves across the input feature map for its computation. 
This means that the proposed USEFUSE design performs output pixel 
reuse instead of recompute as suggested in [21].

3.4.1. Design strategy-1 (DS-1) - spatial design
Each pyramid level in Fig.  4 represents an accelerator of the respec-

tive convolution layer in the fusion pyramid. A general architecture of 
the accelerator is presented in Fig.  5. It is composed of 𝑃 = 𝑅 × 𝐶
rows and 𝑀 columns, where 𝑅 × 𝐶 is the dimension of the output 
of a tile H, and 𝑀 is the number of output feature maps of the 
respective convolution layer. Each input buffer broadcasts the input 
data of a unique convolution window to its corresponding row of pixel 
processing units (PPUs). The kernel buffers broadcast the convolution 
filter to each PPU in a column. The output buffers collect the pixels from 
each PPU.

Each row of the array computes a unique 𝐾 × 𝐾 × 𝑁 window of 
the input feature map of the corresponding layer within the fusion 
pyramid. The 𝐾 × 𝐾 × 𝑁 input to each row, represented by the input 
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Fig. 5. Tile/Pyramid level design.

Fig. 6. Internal architecture of the proposed pixel processing unit with the window 
processing unit (WPU-S) that performs convolution in a spatial manner.

buffer, is broadcasted to each PPU in the corresponding row. The array 
architecture presented in Fig.  5 also shows that the accelerator array 
supports output tiling [55] (𝑡𝑚 = 𝑀) as the number of columns in the 
array represent the number of output feature maps. It consists of an 
array of pixel processing units (PPU), where each column of the PPU 
computes a distinct output feature map (OFM). The filter corresponding 
to each OFM is broadcasted to every PPU in the respective column.

Each PPU supports input tiling [55] by the provision of (𝑡𝑛 = 𝑁) 
window processing units (WPU-S), where each WPU-S is responsible to 
generate the inner product of 𝐾 × 𝐾 pixels from one of the 𝑁 input 
features maps. The output of each WPU-S is forwarded to an adder 
tree which results in one output pixel in one of the output feature 
maps. Each PPU also contains an early negative detection unit (END-
U) responsible for the detection and generating control signals if the 
output of a PPU is going to result in a negative value. The architecture 
of the PPU is presented in Fig.  6.

3.4.2. Design strategy-2 (DS-2) - temporal design
An alternate design is presented that aims to perform convolutions 

in a temporal fashion. Consequently the amount of basic computation 
units required to compute a 𝐾 ×𝐾 convolution window are reduced. In 
contrast to the WPU-S in the PPU design presented in Fig.  6, the win-
dow processing unit (WPU-T) in the present design allocates only one 
online arithmetic-based multiplier for the computation of a convolution 
window. This computation is carried out such that the online multiplier 
(OLM) is followed by an activation register that collects and stacks 
these output digits until all the output digits pertaining to one mul-
tiplication have been collected in the activation register. The contents 
of the activation register are then forwarded to an accumulation buffer 
until the results of the 𝐾 × 𝐾 multiplications have been accumulated. 
The contents of this accumulation register are then forwarded, in an 
MSDF manner, to an online arithmetic-based adder tree responsible to 
generate the sum across the 𝑁 input channels, ultimately resulting in 
the final output to be forwarded to the next operation in the CNN. It 
is also worth noting that the WPU-T pertaining to the temporal design 
can be replaced with WPU-S used in the PPU design presented in Fig.  6. 
The architecture of the WPU-T that leverages the temporal computation 
pattern is presented in Fig.  7.
7 
Fig. 7. Architecture of the proposed window processing unit (WPU-T) that leverages 
the temporal computation pattern in convolution.

Fig. 8. Architecture of the window processing unit (WPU-S), for conventional bit-serial 
design, that performs convolution of a 𝐾 ×𝐾 convolution window spatially.

4. Experimental results and discussion

This section presents the experimental setup, performance evalu-
ation parameters, results, comparisons, and discussion on the results 
obtained after the evaluation of the proposed designs.

4.1. Experimental setup

In order to evaluate and compare the performance of the proposed 
designs with conventional bit-serial architectures, three baseline de-
signs are used; (1) Baseline-1: conventional bit-serial design based on 
the processing element from UNPU [14] with the tile stride matching 
the convolution stride, (2) Baseline-2: online arithmetic-based design, 
also using the tile stride as the convolution stride, and (3) Baseline-3: 
conventional bit-serial design where the tile stride matches the pro-
posed designs. All baselines utilze the same accelerator architecture 
and array layout as the proposed designs. The architecture for both 
baseline conventional bit-serial designs follows a similar structure to 
the proposed design. However, in conventional bit-serial designs, the 
window processing units (WPUs) use AND gate arrays for partial prod-
uct generation, followed by an accumulator to sum the partial products. 
The WPU-S design for spatial design (DS-1) is shown in Fig.  8.

Each of the baseline designs use the same accelerator architecture 
and array layout as the proposed designs. The architecture of the 
conventional bit-serial arithmetic-based baseline designs for both the 
design strategies also follow a similar accelerator architecture as the 
proposed design. However, the design of the window processing units 
(WPUs) for both the design strategies of conventional bit-serial designs 
contain AND gate arrays for partial product generation, followed by an 
accumulator to obtain the sum of the partial products. The WPU-S de-
sign, for spatial design (DS-1), is presented in Fig.  8. The accumulation 
process in the figure handles the summing of partial products, while 
the subsequent adder tree computes the sum of 𝐾 × 𝐾 products. The 
resulting SoP from this adder tree is then passed to another adder tree, 
shown in the PPU in Fig.  6, which performs the final summation over 
𝑁 input channels.

In contrast to the spatial conventional bit-serial design presented in 
Fig.  8, a temporal design similar to that presented in Section 3.4.2 is 
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Fig. 9. Architecture of the window processing unit (WPU-T), for conventional bit-serial 
design, that performs convolution of a 𝐾×𝐾 convolution window in a temporal fashion.

also devised. The WPU-T architecture for conventional bit-serial design 
follows a similar strategy as presented in Fig.  7, where the product of 
each of the 𝐾×𝐾 multiplications is carried out using a single multiplier. 
The architecture of the conventional bit-serial WPU-T that leverages the 
temporal computation pattern in convolution is shown in Fig.  9.

In our experiments, we utilized three popular CNNs: LeNet-5 [56], 
AlexNet [57], and VGG-16 [58]. For LeNet-5 and AlexNet, the first 
two convolution layers, along with their corresponding non-linear ac-
tivation and pooling layers, were selected for fusion. In VGG-16, the 
first two convolution blocks, comprising four convolution layers, in-
cluding their respective activation and pooling layers, were used for 
the fused-layer experiments.

The RTL for the proposed and baseline accelerators was designed 
in Verilog and functionally verified using Xilinx Vivado 2023.2. We 
implemented the proposed designs on the Xilinx Virtex-7 VU19P FPGA. 
This FPGA platform was selected based on the availability of logic 
resources, as both the proposed and conventional bit-serial designs 
do not utilize built-in DSP resources for multiplication; instead, these 
resources are reserved for implementing the control units of the acceler-
ators. This is due to the fundamental architectural differences between 
conventional DSP operations and MSDF arithmetic. MSDF multipliers 
rely on a residual recurrence method rather than traditional partial 
product reduction. This approach requires cycle-to-cycle state tracking, 
and bidirectional digit propagation which are not supported by current 
DSP architectures. Consequently, we have developed the MSDF-based 
arithmetic operators implemented using FPGA fabric resources.

4.2. Performance evaluation parameters

The performance of the proposed method can be evaluated us-
ing various parameters such as performance, number of cycles, area, 
latency per image, inference speed-up, power efficiency, etc. The per-
formance can be calculated using the following relation. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑁𝑢𝑚𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠
(2)

Where, the number of operations (𝑁𝑢𝑚𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) for a given convolution 
layer can be calculated as 2 ×𝑀 ×𝑁 ×𝑅×𝐶 ×𝐾 ×𝐾. Where 𝑀 and 𝑁
represent the number of output and input feature maps respectively, 𝑅
and 𝐶 represent the height and width of the output feature map, and 
𝐾 × 𝐾 is the dimension of the convolution kernel. Furthermore, the 
number of execution cycles (referred as 𝐶𝑦𝑐𝑙𝑒𝑠 from here-on) in Eq. (2) 
for the proposed online arithmetic-based design DS-1 can be calculated 
as; 
𝐶𝑦𝑐𝑙𝑒𝑠 = 𝛼2 × (𝛿𝑂𝐿𝑀 + 𝛿𝑂𝐿𝐴 × ⌈log (𝐾1 ×𝐾1)⌉

+ 𝛿𝑂𝐿𝐴 × ⌈log𝑁1⌉ + ⌈log (𝐾1 ×𝐾1)⌉ + ⌈log𝑁1⌉

+ 𝑀𝑃1 +⋯ + 𝛿𝑂𝐿𝑀 + 𝛿𝑂𝐿𝐴 ×
⌈

log (𝐾𝑄 ×𝐾𝑄)
⌉

+ 𝛿𝑂𝐿𝐴 ×
⌈

log𝑁𝑄
⌉

+
⌈

log (𝐾𝑄 ×𝐾𝑄)
⌉

+
⌈

log𝑁𝑄
⌉

+𝑀𝑃𝑄 + 𝑛)

(3)

where 𝛿𝑂𝐿𝑀  and 𝛿𝑂𝐿𝐴 represents the online delay for the multiplier 
and the adder respectively. These delays designate the number of 
cycles, usually up to 4, that an online arithmetic-based component takes 
prior to generating the first digit (MSD) as its output. The expression 
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Fig. 10. Performance vs. operational intensity comparison of the proposed spatial 
design (DS-1) with the baseline designs for the first convolution layer of AlexNet.

⌈

log (𝐾𝑄 ×𝐾𝑄)
⌉ and ⌈log𝑁𝑄

⌉ define the number of stages of the adder 
trees dedicated for computing the SoP for convolution window and 
input channels respectively for a convolution layer. 𝑄 denotes the 
number of layers in the fusion design, 𝑀𝑃  denotes the number of 
cycles required to perform the maxpooling operation, and 𝑛 denotes 
the precision of the input. Similarly, for the design DS-2, the number 
of cycles can be calculated as follows. 
𝐶𝑦𝑐𝑙𝑒𝑠 = 𝛼2 × ((𝛿𝑂𝐿𝑀 + (𝑛 − 1) + 𝐴𝑐𝑐) ×𝐾 ×𝐾

+ 𝛿𝑂𝐿𝐴 × ⌈log𝑁1⌉ + ⌈log𝑁1⌉ +𝑀𝑃1

+ ⋯ + (𝛿𝑂𝐿𝑀 + (𝑛 − 1) + 𝐴𝑐𝑐) ×𝐾 ×𝐾

+ 𝛿𝑂𝐿𝐴 ×
⌈

log𝑁𝑄
⌉

+
⌈

log𝑁𝑄
⌉

+𝑀𝑃𝑄 + 𝑛)

(4)

Here 𝐴𝑐𝑐 denotes the number of cycles that the accumulator takes 
to perform the sum of 2 operands. Both the relations also include the 
number of cycles elapsed due to the growth in the output precision due 
to the adder trees, and it is denoted by ⌈log (𝐾 ×𝐾)⌉ and ⌈log𝑁⌉ in the 
equations.

Other performance evaluation parameters are platform-specific such 
as, logic utilization, memory utilization, throughput, inference time 
per image, etc. The selection of implementation platform relies on the 
capacity of the hardware resources in coordination with the resource 
requirements of the accelerator design.

4.3. Experimental results

The proposed tile stride strategy coupled with the online arithmetic-
based accelerator design not only improves the performance but can 
also improve the memory communication categorized by the opera-
tional intensity metric [59]. An analysis depicting the efficacy of the 
proposed technique is presented in Fig.  10. The figure shows that the 
proposed design and Baseline-3 design, using the proposed tile stride 
technique, have the same operational intensity as the other baseline de-
signs. However, it is noteworthy that the performance of the proposed 
design surpasses that of Baseline-3 design. This demonstrates that the 
proposed tiling strategy, in combination with the superior capabilities 
of the online arithmetic paradigm, can outperform the conventional 
bit-serial design in terms of performance.

Similarly, a comparison of performance vs. operational intensity of 
the fused-layer designs for LeNet-5, AlexNet, and VGG CNN models has 
been presented in Fig.  11. The performance vs. operational intensity 
plots also confirm the findings presented in Fig.  10, that the proposed 
tile stride evaluation technique improves the operational intensity. 
For instance, the proposed spatial design (DS-1) improves the opera-
tional intensity for the LeNet-5, AlexNet, and VGG models by 8.20×, 
17.80×, and 279.40×, respectively. Similarly, utilizing online modules 
for arithmetic-based computations can result in significant performance 
enhancements, as demonstrated in Figs.  11(a), 11(b), and 11(c).
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Table 1
Performance comparison of the proposed Spatial design (DS-1) with the baseline designs. 
 Network Layer Number of operations Baseline-1 Baseline-2 Baseline-3 Proposed

 Duration Performance Duration Performance Duration Performance Duration Performance  
 
LeNet

CONV1 235200 138.72 μS 1.69 GOPS 57.80 μS 4.07 GOPS 12 μS 19.60 GOPS 5 μS 47.04 GOPS  
 CONV2 940800 41.31 μS 22.77 GOPS 21.06 μS 44.67 GOPS 12.75 μS 73.8 GOPS 6.50 μS 144.74 GOPS  
 Fused 1 183880 187.43 μS 6.32 GOPS 107.19 μS 11.04 GOPS 25.75 μS 45.97 GOPS 13.75 μS 86.10 GOPS  
 
AlexNet

CONV1 105415200 1109 μS 0.095 TOPS 623 μS 0.169 TOPS 53.46 μS 1.97 TOPS 29.97 μS 3.517 TOPS  
 CONV2 223948800 337.50 μS 0.664 TOPS 268.75 μS 0.833 TOPS 43.74 μS 5.12 TOPS 34.83 μS 6.43 TOPS  
 Fused 329659136 1499.30 μS 0.219 TOPS 648.7 μS 0.508 TOPS 101.25 μS 3.26 TOPS 63.99 μS 5.15 TOPS  
 

VGG

CONV1 173408256 8.11 ms 21.30 GOPS 5.41 ms 32.10 GOPS 3.78 μS 45.87 TOPS 2.52 μS 68.80 TOPS  
 CONV2 3699376128 9.14 mS 404.50 GOPS 7.95 mS 465.30 GOPS 4.14 μS 893.6 TOPS 3.60 μS 1027.60 TOPS 
 CONV3 1849688064 2.45 mS 754.56 GOPS 2.13 mS 867.75 GOPS 4.14 μS 446.8 TOPS 3.60 μS 513.80 TOPS  
 CONV4 3699376128 2.64 mS 1399.3 GOPS 2.42 mS 1529.50 GOPS 4.23 μS 874.56 TOPS 3.87 μS 955.90 TOPS  
 Fused 9 429625856 23.36 mS 403.66 GOPS 18.92 mS 498.40 GOPS 16.83 μS 560.30 TOPS 11.79 μS 799.80 TOPS  
Fig. 11. Performance vs. operational intensity comparison of the proposed spatial (DS-
1) and temporal (DS-2) designs with the baseline designs for LeNet-5, AlexNet, and VGG 
models.
9 
As outlined in the experimental setup, we evaluate the proposed 
designs on LeNet-5, AlexNet, and VGG-16 networks. The performance 
and evaluation duration using the proposed design (DS-1) compared to 
the baseline designs are presented in Table  1. All designs are evaluated 
at a frequency of 100 MHz, with inference time (referred to as duration) 
and performance listed in the table. Notably, online arithmetic-based 
designs consistently outperform conventional bit-serial designs, regard-
less of the tile stride strategy. Specifically, the fused layer design 
based on online arithmetic achieves performance improvements of 
1.75×, 2.32×, and 1.23× for LeNet-5, AlexNet, and VGG, respectively, 
without the proposed tile stride strategy. When using the proposed tile 
stride technique, the online arithmetic design outperforms Baseline-3 
by achieving 1.87×, 1.58×, and 1.43× superior performance for LeNet-5, 
AlexNet, and VGG, respectively.

For the temporal design DS-2, we present the comparative results of 
inference time and performance in-terms of GOPS for the conventional 
bit-serial design (Baseline-3) and the proposed design that use the 
proposed tile stride technique. Table  2 clearly shows that the proposed 
online arithmetic-based temporal design achieves 1.66×, 1.68×, and 
1.46× superior performance, in-terms of operations per second, for 
the fused layer designs of LeNet-5, AlexNet, and VGG respectively. 
The results presented in Tables  1 and 2 not only showcases the abil-
ity of online arithmetic-based designs over the conventional bit-serial 
arithmetic-based designs, but also confirm the utility of the proposed 
layer-fusion technique.

A comparison of the FPGA implementations of the proposed designs 
with the conventional bit-serial design (Baseline-3) is presented in 
Table  3 for the LeNet-5, AlexNet, and VGG models, all evaluated at 
a frequency of 100 MHz. The results indicate that the proposed method 
utilizes more logic resources and BRAM compared to the baseline 
designs. However, for larger networks like VGG, the BRAM require-
ment for the proposed design is significantly lower than that of the 
baseline design. This reduction is attributed to the arithmetic nature 
of the proposed design, where output digits in MSDF format can be 
directly forwarded to the next processing units, minimizing the need for 
large intermediate buffers. Additionally, the proposed design achieves 
speedups of 1.87×, 1.58×, and 1.43× for the implementations of LeNet-5, 
AlexNet, and VGG, respectively. For instance, for the LeNet-5 design, 
the proposed fusion tile size and tile stride calculation resulted in a tile 
size of (16 × 16) and (6 × 6) for the first and second convolution layers, 
respectively. Particularly, the proposed and the baseline designs process 
(16 × 16) and (6 × 6) MACs in parallel for the first and second con-
volution layers respectively. The tile size and tile stride configuration 
resulted in the uniform movement parameter (𝛼 = 5). The obtained 
tile sizes and uniform tile strides resulted in the execution of one 
image in 1375 cycles, with 1.18𝑀 operations for the fused convolution 
layers, resulting in a throughput of 86.1 TOPS. Similarly, the 9429.6𝑀
operations for the first 4 convolution layers of the VGG-16 model, with 
the uniform tile movement parameter (𝛼 = 3), were executed in 84818
cycles, eventually resulting in a throughput of 799.8 TOPS. It is also 
worth noting that the results presented in Table  3 correspond to the 
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Table 2
Performance comparison of the proposed Temporal design (DS-2) with the conventional bit-serial design (Baseline-3) using the proposed tile 
stride technique.
 Network Layer Number of Operations Baseline-3 Proposed

 Duration Performance Duration Performance  
 
LeNet

CONV1 235200 0.11 mS 2.21 GOPS 62.50 μS 3.80 GOPS  
 CONV2 940800 0.11 mS 8.80 GOPS 64 μS 14.70 GOPS  
 Fused 1 183880 0.21 mS 5.53 GOPS 128.25 μS 9.20 GOPS  
 
AlexNet

CONV1 105415200 1.67 mS 63.2 GOPS 0.983 mS 107.20 GOPS  
 CONV2 223948800 0.35 mS 641.50 GOPS 0.22 mS 1039.40 GOPS 
 Fused 329659136 2.02 mS 163.20 GOPS 1.21 mS 273.50 GOPS  
 

VGG

CONV1 173408256 13.95 μS 1243.10 GOPS 8.64 μS 2007.04 GOPS 
 CONV2 3699376128 14.31 μS 258.50 TOPS 9.72 μS 380.60 TOPS  
 CONV3 1849688064 14.31 μS 128.30 TOPS 9.72 mS 190.30 TOPS  
 CONV4 3699376128 15.03 μS 246.10 TOPS 9.90 mS 370.30 TOPS  
 Fused 9 429625856 57.50 μS 163.90 TOPS 39.40 μS 239.20 TOPS  
Table 3
Comparison of FPGA implementation of proposed spatial design (DS-1) with the conventional bit-serial design with the proposed tiling scheme (Baseline-3). The FPGA device used 
for this experiment is Xilinx Ultrascale+ Vertix-7 VU19P.
 Design Baseline-3 Proposed Baseline-3 Proposed Baseline-3 Proposed  
 CNN Model LeNet-5 AlexNet VGG

 Logic Utilization 18.40K (0.21%) 28.80K (0.322%) 5619.30K (63%) 8645K (96.70%) 7091K (79.30%) 7555.50K (94.5%) 
 BRAM Utilization 2 (0.05%) 3 (0.06%) 62 (2.90%) 113 (5.20%) 740 (34.30%) 211 (9.80%)  
 Throughput (TOPS) 45.97 GOPS 86.10 GOPS 3.26 5.15 560.30 799.80  
 Latency/Image (μS) 25.75 13.75 101.25 63.99 16.83 11.79  
 Speedup 1 1.87× 1 1.58× 1 1.43×  
Table 4
Comparison of FPGA implementation of proposed temporal design (DS-2) with the conventional bit-serial design with the proposed tiling scheme (Baseline-3). The FPGA device 
used for this experiment is Xilinx Ultrascale+ Vertix-7 VU19P.
 Design Baseline-3 Proposed Baseline-3 Proposed Baseline-3 Proposed  
 CNN Model LeNet-5 AlexNet VGG

 Logic Utilization 4.50K (0.05%) 14.20K (0.16%) 277K (3.10%) 874.20K (9.80%) 1270K (14.20%) 4012.20K (44.90%) 
 BRAM Utilization 2 (0.05%) 2 (0.05%) 44 (2.04%) 75 (3.5%) 701 (32.5%) 134 (6.21%)  
 Throughput (GOPS) 5.53 9.20 163.20 273.50 164 TOPS 239 TOPS  
 Latency/Image (μS) 214.25 128.25 2020.14 1205.30 57.51 39.42  
 Speedup 1 1.67× 1 1.68× 1 1.46×  
exploitation of the maximum potential of the proposed uniform tiling 
method and the online arithmetic-based computation units.

Similarly, the comparison of the proposed temporal design (DS-2) 
with the conventional bit-serial baseline design (Baseline-3) is pre-
sented in Table  4. A similar trend in the BRAM utilization can be 
observed where for the VGG model fusion design, the proposed method 
requires nearly 5.2× less BRAMs compared to the baseline design. This 
is due to the inherent property of the proposed online arithmetic-based 
design where the intermediate output digits can be used directly for 
the computation of the subsequent layer or operations. The results also 
show that the proposed temporal design achieves speedup of 1.67×, 
1.68×, and 1.46× for the implementation of LeNet-5, AlexNet, and VGG 
respectively, compared to the conventional bit-serial baseline design.

We also present the effect of early negative activation detection 
caused by ReLU activation function. For this experiment, we present 
the results of the proposed early negative detection technique on 10
randomly selected filters for the first convolution layers of AlexNet 
and VGG models in Figs.  12(a) and 12(b) respectively. The analysis 
of the early negative detection technique show that an average of 
43.1% and 41.08% activations per convolution filter were effectively 
determined as negative activations for the first convolution layers of 
AlexNet and VGG respectively. Nearly 2.36% and 2.11% activations 
were undetermined as either negative or positive. Upon examining the 
intermediate feature maps, it is determined that most of these undeter-
mined activations were zero and hence did not cause any accuracy loss 
in the model classification performance.

Substantial energy savings can be achieved by detecting ineffective 
activations. In this context, results of the energy savings for the three 
10 
networks used in this study are presented in Fig.  13. The figure illus-
trates the energy consumption corresponding to 10 randomly selected 
output feature maps of the first convolution layers. We performed 
our experiments with the proposed early negative detection (END) 
technique as well as without the proposed END technique using 10 000
images for all three networks. The proposed END technique resulted in 
substantial energy savings of 46.80%, 48.50%, and 42.60% for LeNet-5, 
AlexNet, and VGG networks respectively.

Another experiment was conducted to demonstrate the effectiveness 
of the proposed END technique in reducing computation cycles within 
a fusion pyramid, using the ResNet-18 network. For this experiment, 
we fused two consecutive convolution layers, excluding the first con-
volution layer to ensure that each convolution block contains two 
fusion pyramids. We tested this setup on 100 images and report the 
average number of effective computation cycles with and without the 
proposed END scheme, for both the online arithmetic-based design and 
the conventional bit-serial (Baseline-3) design. The impact of the END 
technique on effective computation cycles is illustrated in Fig.  14. It can 
be observed from the figure that the proposed END technique saves up 
to 50.1% cycles for the end-to-end execution of ResNet-18 workload 
using the proposed online arithmetic-based design. The comparison 
also shows the effectiveness of the online arithmetic-based computa-
tion where the online arithmetic designs with and without the END 
technique achieve 59.12% and 18.4% lower number of computation 
cycles compared to the conventional bit-serial design that uses the same 
accelerator architecture and the proposed tile stride technique.
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Fig. 12. Percentage of detected negative/ineffective activations for 10 randomly 
selected filters in AlexNet and VGG models. The mean number of negative activations 
per output feature map is 43.10% and 41.08% for the first convolution layers of AlexNet 
and VGG respectively.

4.4. Comparison with previous works

For the comparison with existing accelerators, we aim to accelerate 
the convolution layers in VGG-16 and ResNet-18 workloads in an end-
to-end fashion. We conduct the performance comparison on several 
performance metrics such as latency per image, throughput in terms 
of GOPS, etc. For this experiment, we developed a fusion strategy by 
fusing 2 convolution layers in the fusion pyramid. The tiling parameters 
such as tile size, tile stride, etc., are calculated using Algorithms 3 and 
4. The ImageNet weights from the pre-trained VGG-16 and ResNet-18 
models from TorchVision [60] library were loaded and used in the 
computation of the convolution layers. Furthermore, the accuracy is 
computed offline using the feature maps of the convolution layer before 
the classifier layers of the model.

The comparison of the proposed USEFUSE design with previous 
designs is presented in Table  5. The results presented in the table 
indicate that the proposed design uses comparatively large number 
of logic resources than its contemporary counterparts. However, the 
proposed USEFUSE design achieves 64.8%, 50.9%, and 38.9% less 
BRAMs compared to TGPA [33,61], and ShortcutFusion [62] for VGG-
16 workloads, respectively. For ResNet-18 workloads, USEFUSE uses 
34.5% less BRAM resources compared to the design presented in [25]. 
The proposed design achieves significant throughput improvements 
of 3.7×, 3.48×, 9.2×, and 1.9× for VGG-16 workloads compared to 
11 
Fig. 13. Energy savings with the proposed early negative detection (END) technique for 
the first convolution layers of LeNet-5, AlexNet, and VGG models. On average, 46.80%, 
48.50%, and 42.60% reduction in energy consumption is observed for LeNet-5, AlexNet, 
and VGG respectively.
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Table 5
Comparison with existing CNN accelerators. The baseline top-1 accuracy for VGG-16 and ResNet-18 are reported as 71.6% and 69.76% on their respective Pytorch [60]
websites.
 Model VGG-16 ResNet-18
 Design TGPA [33] [61] Shortcut-

Fusion 
[62]

[63] Proposed [25] T-DLA [26] [64] RLDA [65] Proposed  

 FPGA VU9P Stratix 10 
GX2800

KCU1500 Alveo U50 VU5P Stratix V Zynq-7000 Arria10 
SX660

Ultrascale+ 
XCZU7EV

VU5P  
 Frequency (MHz) 210 300 200 200 100 124 125 170 150 100   Input/Filter Precision 16 16/8 16 8 8/8 8/8 8/2 8 8 8/8   Accuracy (%) – – – 72.32 71.21 69.75 65.6 – 65.5 69.13   Logic Utilization 493K (42%) 469K (50%) 215.3K (33%) 601.7K (69%) 538.1K (89.5%) 380.35K 37.92K (71.28%) 102.6K (41%) 230.4K (88.2%) 542.6K (90.2%)  BRAM Utilization 3380 2421 1945 (45%) 1084 (81%) 1188 (58%) 1644 68.93% – 307 (98.4%) 1076 (52.54%)   Throughput (GOPS) 1510 1604.57 607.5 2895.5 5594.7 926.84 400 89.286 620 1130.7   Latency per Image (ms) 22.35 19.29 39.27 13.90 9.18 – – – – 14.44  
Fig. 14. The average effective computation cycles for each fusion pyramid were 
compared between the Baseline-3 design and the proposed design, with and without 
the END technique. The results showed that the END technique achieved an average 
savings of 50.1% in computation cycles for the end-to-end flow.

TGPA [33,61], ShortcutFusion [62], and [63] respectively. Similarly, 
USEFUSE achieved throughput improvements of 1.2×, 2.82×, 12.6×, and 
1.82× compared to the designs presented in [25], T-DLA [26,64], and 
RDLA [65] respectively, for ResNet-18 workloads. Furthermore, the 
proposed design achieved 2.43×, 2.1×, 4.27×, and 1.5× improvement in 
latency per image, compared to TGPA [33,61], ShortcutFusion [62], 
and [63] for VGG-16 workloads, respectively.

The experimental results indicate that the use of online arithmetic-
based compute units in the processing element can not only perform 
efficient computation of the convolution SOP, but also support the 
fusion of convolution layers in a CNN. Moreover, the MSDF nature 
of online arithmetic also aids in the early detection and subsequent 
termination of the ineffective computations that result in negative out-
puts. The proposed method of tile size and uniform stride calculation, 
coupled with online arithmetic-based compute units showcase superior 
performance compared to the state-of-the-art accelerator designs on 
VGG-16 and ResNet-18 workloads.

5. Limitations and future work

While the proposed method offers significant advantages in terms 
of computational efficiency, it has certain limitations that we aim to 
address in future research. Firstly, the proposed early negative detec-
tion technique limits the applicability to models relying on ReLU. While 
ReLU is fundamental and widely adopted, modern architectures also 
employ complex activation functions such as GELU, Sigmoid, Softmax, 
etc. Additionally, the proposed uniform stride method is specifically 
tested on ResNet-18, where skip connections are limited within individ-
ual residual blocks and do not span across multiple convolution blocks. 
This restriction allows for a simpler implementation of layer fusion, as 
12 
the input from the skip connection can be integrated directly into the 
pipeline without requiring extensive reconfiguration. However, skip-
connections spanning several convolution blocks may pose a challenge 
in determining the effective stride and tile size calculation which will 
be addressed in future research.

To overcome these limitations, our future work will focus on extend-
ing the method to support complex activation functions by developing 
efficient hardware implementations based on online arithmetic oper-
ators. This includes operations such as division, exponentiation, and 
power functions, which are commonly used in activation functions 
like Sigmoid and Softmax. This development will address both the 
challenges of accelerating modern architectures with complex acti-
vation functions and the need for efficient implementation of these 
same activation functions in the final output layers of neural network 
architectures to distinguish target applications. Therefore, the develop-
ment of these activation functions will enhance the practicality of the 
proposed method by solving both issues simultaneously.

Additionally, for architectures with longer skip connections, we 
propose integrating an adder within the pipeline to sum convolu-
tion outputs with skip connection inputs, requiring minimal structural 
changes and maintaining performance. Furthermore, a dynamic data 
flow control mechanism using multiplexers will be explored, allowing 
seamless switching between outputs from activation registers, skip 
connection registers, or zero values. These enhancements will allow 
the proposed accelerator to efficiently support a wider range of neural 
network models.

Extension to modern architectures. For transformer-based models, the 
computational dataflow significantly differs from CNNs, as multiple 
tokens are processed in parallel, and several attention heads operate 
simultaneously. While our current approach is primarily optimized for 
CNNs, its underlying principles can be extended to optimize trans-
former workloads. Specifically, the attention mechanism, which in-
volves a sequence of dependent operations, could benefit from our 
MSDF mode of operation by enabling efficient pipelining. By restruc-
turing the computation flow to exploit temporal parallelism, our ap-
proach could contribute to the acceleration of self-attention mech-
anisms. As part of our future research, we aim to explore tailored 
acceleration strategies for both depthwise convolutions in MobileNet 
and self-attention mechanisms in transformers, thereby extending the 
applicability of our method beyond CNNs.

Hardware optimizations for low-resource deployment. To enhance the 
feasibility of our design for deployment on low-resource edge devices, 
several hardware optimizations can be explored. Our proposed tem-
poral design (DS-2) reduces logic utilization by reusing computational 
resources over multiple cycles, and additional efficiency gains can be 
achieved through composite MSDF arithmetic operators. By designing 
a single SOP unit, we can minimize both logic area and latency, 
effectively decreasing the online delay while maintaining performance.

Furthermore, incorporating quantization and sparsity-aware opti-
mizations can significantly reduce on-chip memory requirements. In 
our design, storage is already structured in multiples of 8-bit precision, 
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making it inherently compatible with quantization techniques. Reduc-
ing precision lowers both memory footprint and compute latency with-
out substantial accuracy degradation. Additionally, sparsity-aware opti-
mizations can further decrease BRAM utilization by eliminating redun-
dant computations and avoiding unnecessary storage of zero-valued pa-
rameters. Adaptive tiling strategies can be employed to maximize data 
reuse, thereby minimizing on-chip memory overhead for edge-device 
deployments. Moreover, resource-sharing mechanisms can optimize 
memory access patterns, ensuring efficient use of available storage. 
These optimizations, combined with our proposed design principles, 
pave the way for high-performance yet resource-efficient deep learning 
accelerators, particularly suited for edge computing applications.

By addressing these challenges, we aim to enhance the practicality 
and versatility of the proposed uniform stride and tiling method, en-
abling the accelerator to cater to a wide range of applications such as 
classification, detection, and segmentation.

6. Conclusion

This study introduces the use of low-latency left-to-right bit-serial 
arithmetic-based SOP units for convolution in fused CNN accelerators. 
Two designs cater to varied demands, emphasizing minimal response 
time (DS-1) for mission-critical applications and resource-constrained 
devices (DS-2). DS-1, a spatial computation pattern-based design, en-
hances operational intensity by 8.20×, 17.80×, and 279.40× for LeNet-5, 
AlexNet, and VGG networks, respectively. The temporal computation 
pattern-based design achieves speedups of 1.67×, 1.68×, and 1.46×
for LeNet-5, AlexNet, and VGG networks respectively, surpassing con-
ventional bit-serial baselines. An effective mechanism skips inefficient 
convolutions after ReLU layers, reducing power consumption with-
out accuracy loss which demonstrates substantial energy savings of 
46.80%, 48.50%, and 42.60% for LeNet-5, AlexNet, and VGG networks, 
respectively. Furthermore, the proposed USEFUSE has also exhibited 
superior performance compared to the existing CNN accelerator de-
signs. These results underscore the efficacy of the proposed Uniform 
Stride strategy for an improved operational intensity and optimiz-
ing energy consumption and computational speed in neural network 
implementations.
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