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 A B S T R A C T

Objectives: This retrospective in vitro study evaluated the impact of input data quantity on the morphology 
of dental crowns generated by AI-based software. The hypothesis suggests that increased input data quantity 
improves the quality of generated occlusal surfaces.
Methods: A dataset comprising n=30 patients (11 males, 19 females; age: 22–31 years) was analyzed. 
Input data was categorized into full dentition (full), quadrant data (quad), and adjacent teeth (adj). AI-
based software (Dentbird Crown, Imageworks Inc.) generated crowns for a single lower first molar (36/46). 
Metrics were proposed to assess the morphology and occlusal relationships of the crowns, with the original 
tooth as reference. Statistics: Friedman Chi-Square tests, Wilcoxon signed rank tests, Kendall correlation and 
Fligner–Killeen tests (𝛼 = 0.05).
Results: Full and quad groups provided consistent reconstruction quality with no significant differences in 
morphology and occlusal relationships. The adj group showed significant (𝑝 < 0.05) morphological deviations 
and higher reconstruction failure rates compared to the full and quad groups. Correlations (median: 0.19; 
min–max range: 0.01–0.54) indicate that the proposed metrics capture distinct morphological and functional 
crown aspects.
Conclusion: The software reliably reconstructed crowns with at least quadrant-level input data. Performance 
declined with reduced input. Full-jaw scans did not enhance accuracy compared to quadrant data.
Clinical Significance: Increased input data quantity can improve the accuracy of AI-based restorations. As 
a result, prosthodontists benefit from predictable, accurate restoration proposals that reduce the need for 
digital chairside adjustments as well as manual modifications after fabrication. This streamlines clinical 
workflows and enhances the quality of restorations. Quadrant-level data has proven sufficient to generate high-
quality reconstructions. Further input data did not significantly improve the accuracy of the reconstructions. 
The proposed metrics enable quantitative assessments of morphological and functional restoration quality, 
supporting reliable AI-driven workflows.
1. Introduction

Advances in digital technologies have transformed dental restora-
tion processes, with computer aided design and computer aided manu-
facturing systems now widely integrated into clinical workflows [1,2]. 
These systems offer reduced labor intensity for both dental technicians 
and clinicians, along with good reconstruction quality. Fully integrated 
chairside systems have streamlined workflows for smaller restorations 
by enabling an in-house, end-to-end process. This includes intraoral 
scanning of the patient’s dentition, designing the fixed dental pros-
thesis, and fabricating the final restoration. To this point, manual 
adjustments are often required to refine the restoration proposal either 
during the design phase or in the clinical setting. This is particularly 

∗ Correspondence to: Department of Prosthetic Dentistry, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany.
E-mail address: martin.rosentritt@ukr.de (M. Rosentritt).

important for ensuring proper masticatory function, encompassing both 
dynamic contacts during mandibular movements and static contacts 
in terminal occlusion. Inaccurate adjustments can lead to occlusal dis-
comfort, temporomandibular disorders, or even restoration failure [3,
4].

While most of the current reconstruction approaches are based 
on conventional digital methods, emerging deep learning (DL)-based 
software offers a novel way to generate accurate dental restorations [5]. 
These systems leverage deep neural networks to infer complex relation-
ships between the existing dentition and the desired restoration based 
on the knowledge acquired from extensive training on large datasets. 
Due to the data-driven nature of DL, the quality and accuracy of the 
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generated restorations is expected to improve with richer and more 
comprehensive input data [6].

The aim of this study is to evaluate the morphology and occlusal re-
lationships of the occlusal surfaces generated by a commercial AI-based 
dental restoration software (Dentbird Crown, Imageworks Inc.) [7] with 
respect to input data quantity. While several studies have compared 
different digital dental restoration systems [8–11], there is a lack 
of research addressing the influence of input data quantity on the 
accuracy of AI-based systems. By investigating the relationship between 
input data quantity and restoration quality, this study seeks to provide 
insights for optimizing data acquisition during clinical practice to 
improve the restoration outcomes. Enhanced restoration accuracy can 
reduce the need for manual adjustments and ensure better clinical out-
comes with the potential to lower costs, streamline treatment processes, 
and provide patients with more reliable and consistent restorations.

To quantitatively evaluate the quality of the generated occlusal 
surfaces, a set of metrics is required to comprehensively assess the 
overall morphology and functional occlusal relationships. While there 
are widely adopted metrics for evaluating the similarity between two 
point clouds (PCDs) [12,13] (i.e. overall morphology), there is a lack 
of common metrics specifically designed to evaluate occlusal surfaces 
with respect to the patient’s contact points [5].

We propose a set of occlusion-specific metrics designed to evaluate 
the occlusal surfaces to quantify the quality of the contact situation 
between a target tooth and its antagonist teeth. We aim to translate 
qualitative and visually assessed information, typically evaluated by 
a dentist during clinical examinations, into a quantitative framework. 
While manual measurements are commonly used in dental research, 
the customized metrics are developed to provide an automated, dif-
ferentiable and quantitative evaluation framework. This mitigates the 
subjectivity and variability of manual measurements and streamlines 
an objective, reproducible evaluation process that is applicable to large 
amounts of data without user intervention. The metrics can then be in-
tegrated for the evaluation of existing methods or as part of customized 
loss functions during the training and validation of new methods.

We hypothesize that increasing the input data quantity significantly 
improves the morphological accuracy and occlusal functionality of 
AI-designed dental crowns.

2. Methods

2.1. Study design

This retrospective in vitro study was conducted using intraoral scan 
data from 𝑛 = 30 patients, including 11 males and 19 females, aged 
between 22 and 31 years. The patients were selected based on the 
total quantity (𝑛teeth,patient ≥ 28) and condition of their teeth. The data 
was acquired using an intraoral scanner (CEREC PrimeScan, Dentsply 
Sirona) and exported as mesh files with the highest resolution setting. 
Each patient was scanned once to provide a single full jaw scan file 
that served as the baseline for the subsequent digital derivation of the 
different data quantities. There were no further patient interventions. 
The intraoral scanning technique used was according to the manufac-
turer’s instructions with occlusal, buccal, lingual and proximal scans 
in a sequence. Soft tissue and unnecessary gingival data were cropped 
during the acquisition process to avoid unwanted artifacts. Ethical 
approval for data usage was obtained from the Ethics Committee of 
the University Regensburg (25-4027-104).

The reconstruction target was the lower first molar (36/46), selected 
based on the condition of the tooth, ensuring it shows no signs of decay 
or structural damage and is free of restorations. The original tooth 
served as the ground truth (GT) for the evaluation.

The data quantity was varied among three categories: full dentition 
(full), the respective quadrant (quad) or the adjacent teeth (adj) of the 
reconstruction target (Fig.  1). The antagonist teeth were included for 
each category to the extents of the lower jaw data quantities.
2 
Fig. 1. Examples of different data quantities (b–d) including their reconstructions (e–g) 
for an exemplary patient and a reconstruction target 46. (a) uncorrupted full jaw data 
(b) full: full jaw data (c) quad: quadrant data (d) adj: adjacent teeth data (e) full 
reconstruction (f) quad reconstruction (g) adj reconstruction.

For each patient, the full dentition was imported into the software as 
a virtual crown case and the reconstruction target tooth was removed. 
The resulting corrupted data 𝑃full,corr was then exported as the baseline 
for the derivation of the additional data quantities 𝑃quad,corr and 𝑃adj,corr . 
To generate these datasets, the full jaw data was manually cropped to 
isolate the respective quadrant or adjacent teeth.

In the following, a PCD is formally defined as a set of points 𝑃 =
{

𝒑𝑖 ∣ 𝒑𝑖 ∈ R3 , 𝑖 ∈ {1,… |𝑃 |}
} with the cardinality |𝑃 | as the number of 

points 𝒑𝑖. The GT for the reconstruction target 𝑃gt can be extracted from 
the complete full jaw data 𝑃full by calculating the minimal distances 
between the corrupted and full points

𝐷full =
{

min
𝑗

‖𝒑full,corr,𝑗 − 𝒑full,𝑖‖2 ∀ 𝑖 ∈ {1,… |𝑃full|}
}

.

The GT is then defined as the points of the full jaw data that lie within 
an empirical threshold 𝜀 = 1 × 10−6 mm from the corrupted data
𝑃gt =

{

𝒑full,𝑖 ∣ 𝑑full,𝑖 < 𝜀
}

.

The insertion direction of a crown in a practical application can 
alter the morphology of the occlusal surface during the design phase. 
Therefore, a fixed direction was established for each patient based on 
the orientation 𝑹𝐵,𝑔𝑡 =

[

𝒓1 𝒓2 𝒓3
] of the bounding box of the GT 

with its three axes 𝒓𝑖 ∈ R3 (Fig.  2). The negative insertion direction 
is defined as the vector 𝒓𝑖 that minimizes the angle between itself and 
the subset of normal vectors 𝑵prep,gt of the preparation surface. This is 
formally defined as
−𝒓ins = argmax

𝒓𝑖
‖𝑵𝑇

prep,gt𝒓𝑖‖2,

where ‖ ⋅ ‖2 represents the 𝐿2 norm of a vector 𝒑 ∈ R𝑛

‖𝒑‖2 =

√

√

√

√

𝑛
∑

𝑖=1
𝑝2𝑖 . (1)

The insertion direction was subsequently used to generate the re-
constructions for the different data quantities. The occlusal surfaces 
of the reconstructions were extracted using boolean operations with 
the respective corrupted input data for all groups full, quad, adj and 
downsampled to a fixed number of points |𝑃rec| = |𝑃gt | = 8192 using 
furthest point sampling [14].

2.1.1. Sample size calculation
The sample size was calculated based on a pilot study with 𝑛 = 5

patients for all data quantities. chamfer,L2 was used as the reference 
metric. The preliminary evaluation yielded mean values of 0.416mm
(full), 0.392mm (quad), 0.673mm (adj) and a mean within group stan-
dard deviation of 0.228mm. The a priori sample size calculation for a 
repeated measures ANOVA with a target power of 0.8, a significance 
level of 0.05 and an effect size of 0.56 determined 𝑛 = 33 per group. 
The final sample size was set to 𝑛 = 30 for an estimated power of 0.77.
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Fig. 2. Determination of the insertion direction for a crown reconstruction target based 
on the orientation of the bounding box of the GT. (a) The three axes of the bounding 
box. The insertion direction is defined as the negative vector of the axis that minimizes 
the angle between itself and the normal vectors of the preparation surface. (b) The 
axis with the smallest angle to the normal vectors is loaded into the software as an 
additional cuboid. (c) The insertion direction is aligned with the axis of the cuboid. 
(d) The cuboid is removed, and the insertion direction is set for the reconstruction.

2.2. Metrics

2.2.1. Morphological metrics
The morphological metrics assess the overall morphology and spa-

tial characteristics of the generated 3D object in comparison to the 
GT. These metrics are widely recognized in the domain of 3D shape 
reconstruction and are well-established for quantifying the similarity 
between two PCDs.

Chamfer Distance (CD): The chamfer distance (CD) [13] is a com-
monly used metric for evaluating the similarity between two PCDs [12]. 
It is defined by the sums of the distances between each point in one 
PCD to its nearest neighbor in the other PCD. Formally, the two-sided 
CD between two point sets 𝑃  and 𝑄 with 𝐿2 distances according to (1) 
is calculated as

CDL2(𝑃 ,𝑄) = 1
|𝑃 |

|𝑃 |
∑

𝑖=1
min
𝑗

‖𝒑𝑖 − 𝒒𝑗‖2 +
1
|𝑄|

|𝑄|

∑

𝑗=1
min
𝑖

‖𝒒𝑗 − 𝒑𝑖‖2.

The CD loss is defined as the mean of the two-sided CD with 

chamfer,L2(𝑃 ,𝑄) =
CDL2(𝑃 ,𝑄)

2
. (2)

Similar to the Root Mean Square Error, the domain agnostic CD eval-
uates all aspects of the 3D object, including the overall shape, spatial 
distribution, and surface details. A low CD indicates that a digital dental 
reconstruction accurately replicates the intricate details of the original 
tooth surface.

Intersection over Union (IoU): In the dental reconstruction con-
text, the intersection over union (IoU) evaluates the pose and spatial 
characteristics of the generated tooth in a broader context, ensuring 
that it fits correctly within the patient’s existing dentition [15]. The spa-
tial alignment of the generated crown with the adjacent and antagonist 
teeth is crucial for the overall functionality and fit of the restoration. 
In contrast to the CD, which measures local discrepancies between 
corresponding points, the IoU evaluates the crown as a whole. The IoU 
between two PCDs 𝑃  and 𝑄 is formally defined as

IoU(𝑃 ,𝑄) =
|𝑃 ∩𝑄|

|𝑃 ∪𝑄|

,

where 𝑃 ∩𝑄 is the intersection of the two PCDs, representing the points 
common to both sets. The union 𝑃 ∪ 𝑄 of the two PCDs includes all 
points belonging to either 𝑃 , 𝑄, or both. In this context, the IoU is 
computed based on the bounding boxes 𝐵𝑃 ∈ R8×3 and 𝐵𝑄 ∈ R8×3, each 
defined by its eight corner points 𝒃𝑖. These bounding boxes represent 
the smallest oriented cuboids that enclose all points of the respective 
3D objects. Their orientation is determined by the principal axes of 
the object, obtained through principal component analysis of the point 
set [16].
3 
Fig. 3. Determination of the occluded points 𝑃occl between the target tooth (tar) and 
the antagonist teeth (anta) based on the normal vectors of the nearest neighbors 𝒏anta,𝑖. 
A point is considered occluded if the dot product of the normal vector and the vector 
between the target 𝒑tar,𝑖 and the nearest neighbor from the antagonist tooth 𝒑anta,nn,𝑖 is 
negative. I.e. the normal vector points in the opposite direction.

The IoU is calculated as the intersection of the two bounding boxes 
divided by their union. This approach is commonly used to calculate 
the IoU for PCDs, as it is computationally more efficient than directly 
calculating the IoU based on the individual points [17]. To align 
with the direction of the other metrics (lower is better), the IoU is 
complemented, and the loss is given by
cIoU = 1 − IoU(𝐵𝑃 , 𝐵𝑄).

2.3. Occlusion specific metrics

2.3.1. Definition of the contact points
All metrics are calculated based on the occluded points 𝑃occl be-

tween the reconstruction 𝑃rec or the GT 𝑃gt and the antagonist teeth 
𝑃anta. For simplicity, the reconstruction or GT data is referred to as the 
target 𝑃tar in the following.

Occluded points: To identify the occluded points, the nearest 
neighbor of each point in 𝑃tar is calculated in 𝑃anta. This process yields 
the points 𝑃anta,nn with its distances 𝐷tar,anta to 𝑃tar . The normal vectors 
of the nearest neighbors are utilized to determine whether the points 
are occluded (Fig.  3).

The occlusion distances 𝐷occl are defined as the set

𝐷occl =

{{

−𝑑tar,anta,𝑖 , if (𝒑tar,𝑖 − 𝒑anta,nn,𝑖)T𝒏anta,𝑖 < 0

𝑑tar,anta,𝑖 , otherwise
∀ 𝑖 ∈ {1,… |𝑃tar |}

}

.

The threshold 𝑑thresh = 0mm defines whether a point is considered 
occluded. Based on this threshold, the set of occluded points is given 
by

𝑃occl =
{

𝒑tar,𝑖 ∣ 𝑑occl,𝑖 < 𝑑thresh
}

.

This formulation identifies points from the target tooth where the 
distance to the antagonist teeth is below the threshold.

Contact points: These points can now be used to calculate the size, 
position, and number of contact points on the occlusal surface, i.e. the 
clusters of occluded points. The mean shift algorithm [18] is used to 
identify the clusters of occluded points with their respective cluster 
centers (Fig.  4). The non-parametric clustering algorithm is used to find 
the modes of a set of points 𝑃 . The algorithm is based on the concept of 
kernel density estimation and iteratively shifts the points towards the 
modes of the data distribution.

Given the set of points 𝑃 , the mean shift algorithm aims to find the 
updated positions 𝒎𝑖 for each point 𝒑𝑖 in the set. For each point 𝒑𝑖, the 
pairwise distance 𝑑𝑖𝑗 to all other points 𝒑𝑗 is calculated as
𝑑𝑖𝑗 = ‖𝒑𝑖 − 𝒑𝑗‖2.

The distances are used to determine the weights 𝑤𝑖𝑗 between the points 
using the Gaussian kernel K(𝑑𝑖𝑗 , ℎG). It is given by

𝑤𝑖𝑗 = K(𝑑𝑖𝑗 , ℎG) = exp

(

−1
(𝑑𝑖𝑗

)2)

,

2 ℎG
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Fig. 4. Visualization of the mean shift algorithm used for clustering the occluded points 
of a reconstruction target. The initial point 𝒑0 is adjusted to its new position 𝒎0 by 
calculating the weighted average of distances to other points within the kernel region. 
The update is performed by adding the mean shift vector, 𝒎0 − 𝒑0, to the initial point.

Fig. 5. The clustering results for four exemplary teeth with each cluster represented 
by a distinct color. The cluster centers, denoted as 𝒎𝑖, are indicated by black dots, and 
the associated occluded points are enclosed within black ellipses.

where ℎG is the bandwidth of the Gaussian kernel and exp (⋅) is the 
natural exponential function. The new position 𝒎𝑖 for each point 𝒑𝑖 is 
calculated as

𝒎𝑖 =

∑

|𝑃 |
𝑗=1 𝑤𝑖𝑗𝒑𝑗
∑

|𝑃 |
𝑗=1 𝑤𝑖𝑗

,

where 𝒎𝑖 is the updated position of 𝒑𝑖. The algorithm iterates until 
convergence is reached with

max
𝑖

‖𝒎𝑖 − 𝒑𝑖‖2 < 𝜀conv.

That is, the maximum distance between the updated position and the 
original position of each point is below a threshold 𝜀conv. The threshold 
𝜀conv = 0.45mm is a predefined empirical tolerance level that was 
determined for the given data by comparison of the clustering results 
to the visual representation of the occluded points in a 3D visualization 
environment (Fig.  5). If the condition is satisfied, the algorithm stops 
and each point 𝒑𝑖 is assigned to the nearest cluster center 𝒎𝑖 ∈ 𝑀 . The 
assignment is based on minimizing the distance ‖𝒑𝑖−𝒎𝑗‖2 for all cluster 
centers.
4 
2.3.2. Definition of the metrics
Based on the occluded points 𝑃occl and the cluster centers 𝑀 of 

the occluded points (contact points), the occlusion specific metrics are 
defined as follows:

Penetration loss pen: The penetration is the sum over all penetra-
tion distances
𝐷pen =

{

𝑑occl,𝑖 ∣ 𝑑occl,𝑖 < 𝑑thresh
}

between the generated occlusal surface and the antagonist teeth. The 
penetration loss is used to compare the mean penetration depth of the 
GT and the generated occlusal surfaces. It is given by

pen =

√

√

√

√

√

√

⎛

⎜

⎜

⎝

1
|𝑃pen,gt |

|𝑃pen,gt |
∑

𝑖=1
𝑑pen,gt,𝑖 −

1
|𝑃pen,rec|

|𝑃pen,rec|
∑

𝑖=1
𝑑pen,rec,𝑖

⎞

⎟

⎟

⎠

2

.

Contact point distance loss cp,dist : The contact point distance loss 
is used to compare the overall spatial spread of the contact points 
for the GT and the generated occlusal surfaces. The mean contact 
point distance is defined as the mean of all off-diagonal elements of 
the pairwise distance matrix 𝑫 of the contact points 𝒎𝑖,𝒎𝑗 ∀ 𝑖, 𝑗 ∈
{1,… |𝑀|} according to
𝑑𝑖𝑗 = ‖𝒎𝑖 −𝒎𝑗‖2.

This denotes the element in the 𝑖–th row and 𝑗–th column of the matrix 
𝑫. Fig.  6 (a) illustrates the intra contact point distances for two sets of 
contact points.

With

𝜇̃𝑫 = 1
|𝑀|(|𝑀| − 1)

|𝑀|

∑

𝑖,𝑗=1
𝑖≠𝑗

𝑑𝑖𝑗

the loss can be calculated as

cp,dist =
√

(

𝜇̃𝑫,gt − 𝜇̃𝑫,rec
)2.

Contact point position loss cp,pos: The contact point position loss 
measures the positional deviation of the contact points to compare the 
overall shape of the contact point pattern. Following (2), it is defined as 
the CD between the contact points of the GT and the generated occlusal 
surfaces with
cp,pos = chamfer,L2(𝑀gt ,𝑀rec).

Fig.  6 (b) shows the inter contact point position distances for two sets 
of contact points.

Contact point number loss cp,num: The contact point number loss 
determines the deviation in the number of contact points between the 
GT and the generated occlusal surfaces. It is defined as

cp,num =
√

(

|𝑀gt | − |𝑀rec|
)2

with |𝑀gt | and |𝑀rec| as the number of the contact points for the GT 
and the generated occlusal surfaces, respectively.

Table  1 presents an overview of the evaluation metrics, outlining 
their technical characteristics and the specific aspects of the occlusal 
surface they assess.

2.3.3. Evaluation
The generated reconstructions were evaluated based on the pre-

viously proposed metrics. Since each patient contributed data across 
all three data quantity groups and all metrics failed the normality 
assumption according to the Shapiro–Wilk test (𝑝 < 0.05), the statistical 
analysis employed Friedman Chi-Square tests to detect significant dif-
ferences among the groups. One-sided Wilcoxon signed rank tests were 
then used for the post hoc inter-group comparisons. The comparison 
groups were defined as 𝐺1: quad–full, 𝐺2: adj–quad, and 𝐺3: adj–full. 
The alternative hypothesis for the test was defined as 𝐻1: median(𝑔𝑖 −
𝑔 ) > 0 where median(⋅) refers to the median of the respective group 
𝑗
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Table 1
Summary of the evaluation metrics, detailing their function and purpose. The function describes the technical characteristics of each metric, while the purpose explains the 
specific aspect of the generated occlusal surface being assessed. ↓↑ show the direction of the metric, indicating whether higher or lower values are preferable.
 Metric Function Purpose  
 Morphological metrics
 Chamfer Distance chamfer,L2 ↓ Nearest average distances between points in the 

reconstruction and GT.
General morphological accuracy.  

 Complemented Intersection over Union cIoU ↓ Overlap of two objects with respect to their union. Spatial alignment and fit in the tooth gap.  
 Occlusion specific metrics
 Penetration loss pen ↓ Deviation of mean penetration depths for all occluded points. Contact strength.  
 Contact point distance loss cp,dist ↓ Deviation of mean contact point distances. Spatial spread of the contact points.  
 Contact point position loss cp,pos ↓ Nearest average distances between the contact point centers 

of the GT and the reconstruction.
Shape of the contact point pattern.  

 Contact point number loss cp,num ↓ Deviation in the number of contact points. Number of contact points.  
Fig. 6. Visualization of cp,dist and cp,pos: (a) cp,dist measures the error in the mean 
pairwise distances between the contact points in each set. (b) cp,pos quantifies the 
discrepancy using the CD, defined as the distance between each contact point and its 
nearest neighbor in the opposing set.

𝑔𝑖 ∈ 𝐺. A post hoc power analysis was conducted using simulation 
with 𝑛sim = 1000 bootstrap iterations to estimate the power of the 
statistically significant tests. There was no 𝑝-correction for multiple 
comparisons due to the hypothesis-driven nature of the study with its 
limited number of comparison groups.

The results of all metrics were normalized to [0, 1] according to 
the maximum and minimum values of the respective metric across all 
groups. This ensures comparability between the metrics and allows for 
a comprehensive evaluation of the quality of the generated occlusal 
surfaces across different data quantities. All metrics were implemented 
such that lower values indicate better performance.

To account for cases where the process failed to generate a morpho-
logically sound reconstruction for specific data quantities or patients, 
resulting in the inability to calculate any metrics, all metrics were 
assigned a value of 1.1. Similarly, for cases where the process failed 
to establish occlusion between the target and antagonist teeth, the 
occlusion-specific metrics were set to 1.1. This approach ensures that 
failed reconstructions and failed occlusion establishment are included 
in the evaluation, emphasizing potential limitations of the software for 
certain data quantities.

The set of metrics was evaluated using Kendall correlation to ex-
amine inter-metric relationships and identify potential redundancies or 
dependencies. Kendall correlation was chosen due to the non-normality 
of the metric distributions and its robustness against outliers.

The insertion direction dependent deviation of the generated oc-
clusal surfaces was evaluated with the same metrics. For each insertion 
direction type, 𝑛 = 15 new cases were created in the software and 
crowns were generated for a fixed single patient. This allowed for a 
direct comparison of the variance in the occlusal surfaces based on the 
insertion direction. The variances of the metrics were compared using 
Fligner–Killeen tests with the alternative hypothesis 𝐻1: var(𝑔auto) ≠
var(𝑔 ).
f ix

5 
Fig. 7. Normalized results of the evaluation for 𝑛 = 15 fixed and auto insertion 
direction cases. The labels on the significance bars refer to statistically significant 
deviations in variances of the metrics. The significance level is set to 𝛼 = 0.05.

3. Results

Fig.  7 displays the normalized metrics for fixed and auto insertion 
directions. Table  2 provides the ranges of real values for the normal-
ized metrics that correspond to 0 and 1. The results show significant 
differences in variance (𝑝 < 0.05) for cIOU and pen. The post hoc 
power analysis revealed a median power of 0.55 with a min–max 
range of 0.39 − 0.61 for the Fligner–Killeen tests. The fixed insertion 
direction demonstrates lower variances in these metrics compared to 
the auto-determined insertion direction, indicating greater consistency 
in generating occlusal surfaces. As a result, the fixed insertion direction 
was adopted for subsequent evaluations.

Fig.  8 displays the results for all normalized metrics for the main 
part of the study. The data is arranged in descending order of in-
put data quantity from left to right. Table  2 provides the ranges 
of real values for the normalized metrics that correspond to 0 and 
1. Additionally, Table  3 provides a comprehensive summary of the 
statistical differences between the three comparison groups for the 
evaluation metrics. Significant differences (𝑝; power) between groups 
were detected for chamfer,L2 (0.007; 0.80) and pen (0.018; 0.75) based 
on Friedman Chi-Square tests. The post hoc Wilcoxon tests revealed 
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Fig. 8. Normalized results of the evaluation for the different comparison groups with 
𝑛 = 30 patients each. The labels on the significance bars refer to statistically significant 
deviations of the metrics according to Wilcoxon signed-rank tests. The significance level 
is set to 𝛼 = 0.05. Lower values indicate better performance.

Table 2
Ranges of real values for the evaluation metrics in Figs.  7 and 8. The min and max 
values correspond to 0 and 1 in the normalized results, respectively. Lower values 
indicate better performance.
 Metric minFig.  7 maxFig.  7 minFig.  8 maxFig.  8 
 chamfer,L2 0.379 0.448 0.247 1.616  
 cIoU 0.290 0.474 0.198 0.648  
 pen 0.001 0.034 0.001 0.153  
 cp,num 1.000 2.000 0.001 4.000  
 cp,pos 2.314 3.721 0.511 4.755  
 cp,dist 1.152 5.813 0.022 5.975  

Table 3
Statistically significant differences (𝑝 < 0.05) of the evaluation metrics across the 
different comparison groups based on Wilcoxon tests with 𝐻1: median(𝑔𝑖 − 𝑔𝑗 ) > 0. 
Significant differences for the respective comparison group (column) and the metric 
(row) are shown as (𝑝; power).
 Metric 𝐺1: quad–full 𝐺2: adj–quad 𝐺3: adj–full 
 chamfer,L2 – 0.008; 0.80 0.001; 0.97  
 cIoU – 0.041; 0.55 0.037; 0.57  
 pen – 0.016; 0.70 –  
 cp,num – – –  
 cp,pos – – –  
 cp,dist – – –  

significant differences in the medians of the metrics across the compar-
ison groups with additional pairwise significances in cIOU. The power 
analysis showed a median power of 0.86 (range: 0.66–0.99).

The software failed to generate a morphologically sound reconstruc-
tion in four instances, all of which occurred in the adj group. Occlusion 
establishment failed across all groups for one specific patient, with the 
full group exhibiting one additional occlusion failure for a different 
patient. These failures are separate from cases where the software 
was unable to generate a morphologically sound reconstruction. All of 
these cases were included in the evaluation and assigned the respective 
metric values of 1.1. Additionally, the software failed to correctly 
identify the reconstruction target tooth in 23 cases within the adj group, 
requiring manual user intervention to select the correct tooth. The 
quad and full groups each exhibited one instance of failed target tooth 
identification, both involving the same patient.

The results reveal that the overall morphological details and spatial 
characteristics of the occlusal surfaces compared to the GT ( , 
chamfer,L2

6 
Fig. 9. Kendall correlations between the evaluation metrics. The correlation coefficients 
are color-coded according to the strength of the correlation with values ranging from −1 
(strong negative correlation) to 1 (strong positive correlation). Statistical significances 
(𝑝 < 0.05) are marked with asterisks..

cIoU) are significantly affected (𝑝 < 0.05) when the data quantity drops 
below the respective quadrant of the reconstruction target. Statistically 
significant differences in medians for these metrics are observed for 
comparison groups 𝐺2 and 𝐺3 in favor of higher data quantities.

Among the occlusion-specific metrics, the penetration loss (pen) is 
the only metric to show significant differences. Medians differ signifi-
cantly for comparison group 𝐺2. The remaining metrics (cp,num, cp,pos, 
cp,dist) exhibit no statistically significant differences between groups, 
indicating that the number and distribution of contact points are not 
influenced by data quantity.

The correlation analysis between the metrics in Fig.  9 reveals mostly 
weak to moderate correlations with a median of 0.19 and a min–max 
range of 0.01−0.54. cIoU shows moderate correlations with chamfer,L2. 
Similarly, cp,pos shows moderate correlations with cp,num and cp,dist .

4. Discussion

The results indicate that an increase in input data quantity sig-
nificantly improves the morphological accuracy of AI-designed dental 
crowns. However, since only one occlusion-specific metric showed a 
significant difference, the hypothesis is only partially supported. This 
suggests that occlusal relationships are largely independent of input 
data quantity and mainly determined by the presence and morphology 
of the antagonist teeth. The penetration loss (pen) is the only occlusion 
specific metric to show significant differences between groups quad and 
adj. Notably, there was no significant difference between the full and 
adj group. While the results suggest that the software can benefit from 
increased input data quantity to achieve a more accurate strength of 
the established contact points, the sample size might not be sufficient 
to detect smaller effects. Future studies with larger sample sizes could 
provide further insights into the impact of data quantity specifically on 
the occlusion-specific metrics.

If the input data solely consists of the adjacent teeth (adj), the 
software’s potential accuracy is significantly impaired. This leads to 
statistically significant deviations of the reconstructions general mor-
phology (chamfer,L2) and spatial characteristics (cIoU) compared to the 
GT. It is to be noted that while no significant difference between groups 
was detected with Friedman tests for cIoU, the post hoc Wilcoxon 
tests revealed significant differences between the adj and the remaining 
groups. Since the power of the pairwise tests for   was below 
cIoU
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the conventional threshold of 0.80, these results should be considered 
exploratory and require further validation in future research.

Although the adj data appears to include all the necessary infor-
mation to establish the correct relationship between the target tooth 
and its surrounding teeth, the software benefits from supplementary 
data to produce more accurate outcomes. Apart from overall decreased 
accuracy as shown by the metrics, the software further struggles to 
identify the correct target tooth, establish occlusion or generate a 
morphologically sound reconstruction for the adj group. While quad 
and full groups did not exhibit any failed reconstructions, approx. 
13% of the adj group reconstructions were not successful with output 
that severely deviated from the morphology of a human tooth. This 
indicates that the overall performance of the software is dependent on 
the presence of the quadrant data.

Data quantities above the respective quadrant of the reconstruction 
target do not lead to significant improvements in the occlusal surface 
quality. This suggests that the specific software does not effectively 
utilize the additional data present in full jaw scans compared to the 
quadrant scans. Given that the software is based on a 2D deep learning 
approach [9], the inherent data loss during the 2D–3D conversion 
process likely explains the observed outcomes. That is, even though 
full jaw scans contain more data, the conversion process primarily 
preserves the most salient features that are already captured in the 
quadrant scans. Furthermore, training data may not have included 
sufficient information to introduce necessary connections between the 
morphological features of the target tooth and teeth from other quad-
rants. As a result, the model was unable to effectively leverage the 
additional inter-quadrant context provided by full-jaw scans.

The exclusive use of the single software solution may therefore con-
strain the generalizability of the findings. Given the proprietary nature 
of the methodologies employed in commercial software, performance 
outcomes can differ across platforms. Future research should evaluate 
multiple AI-based software solutions on identical datasets to provide a 
more comprehensive understanding of the impact of data quantity on 
occlusal surface reconstruction.

Finally, there is the software independent possibility of anatomical 
irrelevance in the additional data, which would not contribute to the 
reconstruction process even it was utilized by the software. Based 
on the presented data, future studies can be designed with larger 
sample sizes to further investigate the effect of data quantity and detect 
potential smaller effects between full and quad groups for multiple 
software solutions.

Other approaches for occlusal surface reconstruction using 2D deep 
learning methods [15,19–22] have shown good results even with lim-
ited input data that is similar to the adj group. As commonly observed 
in DL applications, the data used for training and testing are often 
subsets of a shared dataset that may not be representative of an inter-
national patient population. The used dataset for this study is based 
on a European patient population, while the software is developed 
by a Korean company and therefore may be trained on a different 
ethnical dataset. This discrepancy in demographic and anatomical char-
acteristics could partly explain the observed differences in performance 
compared to other studies using self-validated methods. To thoroughly 
evaluate the generalizability of AI-based software, future studies should 
consider testing the models on diverse, multi-ethnic datasets that en-
compass a broader range of patient demographics. Cross-validation 
across different geographic regions and ethnic groups would not only 
clarify the impact of demographic variation on performance but also 
show necessary adjustments for new methods to be reliably applied in 
various clinical settings worldwide.

The correlation analysis revealed that the metrics are mostly uncor-
related, indicating that they capture different aspects of the occlusal 
surfaces. The moderate correlation between the cIoU and chamfer,L2
can be attributed to the shared spatial characteristics these metrics 
evaluate, albeit at different scales. The moderate correlations between 
7 
the cp,pos and the cp,num, cp,dist metrics, respectively, suggest that the 
spatial distribution of the contact points is related to the number and 
distance of the contact points. That is, with a higher deviation in the 
number of contact points and a differing spatial spread, the positional 
deviation of the contact points also increases with respect to the GT. 
However, due to the weak to moderate correlations, the metrics are not 
considered redundant and provide complementary information about 
the quality of the generated occlusal surfaces.

5. Conclusions

This study evaluated the impact of input data quantity on the 
morphology of crowns generated by AI-based dental restoration soft-
ware. The results indicate that while the software achieves consistent 
results with full and quadrant input data, its performance significantly 
declines when the input is reduced to adjacent teeth only. Specifically, 
reductions in input data led to statistically significant impairments in 
the overall morphology and spatial characteristics of the reconstructed 
occlusal surfaces, as evidenced by higher values in CD (chamfer,L2) and 
complemented IoU (cIoU). Additionally, the frequency of reconstruc-
tion failures and target tooth misidentifications increased. The results 
for cIoU suggest that an increase in data quantity contributes to greater 
accuracy in the fit of the crown with respect to its surrounding teeth, 
i.e. the antagonist and adjacent teeth.

The proposed occlusion metrics represent clinically relevant param-
eters, including the number of contact points, the distances between 
them, their spatial distribution, and the contact strength. By adhering 
to established dental concepts, these metrics offer a comprehensive and 
clinically meaningful evaluation of the generated occlusion.

The analysis of the occlusion metrics indicates that the quality of 
occlusal relationships (number, position, and distribution of contact 
points) shows minimal dependency on the quantity of input data. 
Among these metrics, only the penetration loss (pen) demonstrated 
a statistically significant deviation, implying that a larger quantity of 
input data enhances the accuracy of contact point strength.

The insertion direction was found to significantly impact the vari-
ance of the occlusal surfaces generated by the software for an identical 
clinical situation. That is, suboptimal insertion directions due to specific 
preparation designs may lead to increased variance in the generated 
occlusal surfaces.

The study also identified limitations in the software’s ability to 
utilize full jaw data effectively. This may stem from the 2D–3D conver-
sion process inherent in the software’s methodological approach. The 
results underscore the importance of comprehensive data acquisition 
in clinical workflows in order to achieve reliable and accurate dental 
restorations with AI-based software and reduce the need for man-
ual intervention. Based on the presented results, clinical practitioners 
should be aware of the potential limitations of AI-based dental restora-
tion software when using reduced input data quantities. The findings 
suggest that the software’s performance is significantly impacted by 
the quantity of input data (scanned area), with adjacent teeth data 
alone potentially yielding suboptimal or no results and necessitating 
a rescanning process to obtain adequate information.
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