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ARTICLE INFO ABSTRACT

Keywords: Objectives: This retrospective in vitro study evaluated the impact of input data quantity on the morphology
Tooth reconstruction of dental crowns generated by Al-based software. The hypothesis suggests that increased input data quantity
Dental prosthesis design improves the quality of generated occlusal surfaces.

Deep learning
Input data quantity
Digital dentistry

Methods: A dataset comprising n=30 patients (11 males, 19 females; age: 22-31 years) was analyzed.
Input data was categorized into full dentition (full), quadrant data (quad), and adjacent teeth (adj). AlI-
based software (Dentbird Crown, Imageworks Inc.) generated crowns for a single lower first molar (36/46).
Metrics were proposed to assess the morphology and occlusal relationships of the crowns, with the original
tooth as reference. Statistics: Friedman Chi-Square tests, Wilcoxon signed rank tests, Kendall correlation and
Fligner—Killeen tests (« = 0.05).

Results: Full and quad groups provided consistent reconstruction quality with no significant differences in
morphology and occlusal relationships. The adj group showed significant (p < 0.05) morphological deviations
and higher reconstruction failure rates compared to the full and quad groups. Correlations (median: 0.19;
min-max range: 0.01-0.54) indicate that the proposed metrics capture distinct morphological and functional
crown aspects.

Conclusion: The software reliably reconstructed crowns with at least quadrant-level input data. Performance
declined with reduced input. Full-jaw scans did not enhance accuracy compared to quadrant data.

Clinical Significance: Increased input data quantity can improve the accuracy of Al-based restorations. As
a result, prosthodontists benefit from predictable, accurate restoration proposals that reduce the need for
digital chairside adjustments as well as manual modifications after fabrication. This streamlines clinical
workflows and enhances the quality of restorations. Quadrant-level data has proven sufficient to generate high-
quality reconstructions. Further input data did not significantly improve the accuracy of the reconstructions.
The proposed metrics enable quantitative assessments of morphological and functional restoration quality,
supporting reliable Al-driven workflows.

1. Introduction important for ensuring proper masticatory function, encompassing both
dynamic contacts during mandibular movements and static contacts
Advances in digital technologies have transformed dental restora- in terminal occlusion. Inaccurate adjustments can lead to occlusal dis-
tion processes, with computer aided design and computer aided manu- comfort, temporomandibular disorders, or even restoration failure [3,
facturing systems now widely integrated into clinical workflows [1,2]. 4].
These systems offer reduced labor intensity for both dental technicians While most of the current reconstruction approaches are based
and clinicians, along with good reconstruction quality. Fully integrated on conventional digital methods, emerging deep learning (DL)-based
chairside systems have streamlined workflows for smaller restorations software offers a novel way to generate accurate dental restorations [5].
by enabling an in-house, end-to-end process. This includes intraoral These systems leverage deep neural networks to infer complex relation-
scanning of the patient’s dentition, designing the fixed dental pros- ships between the existing dentition and the desired restoration based
thesis, and fabricating the final restoration. To this point, manual on the knowledge acquired from extensive training on large datasets.

adjustments are often required to refine the restoration proposal either Due to the data-driven nature of DL, the quality and accuracy of the
during the design phase or in the clinical setting. This is particularly
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generated restorations is expected to improve with richer and more
comprehensive input data [6].

The aim of this study is to evaluate the morphology and occlusal re-
lationships of the occlusal surfaces generated by a commercial Al-based
dental restoration software (Dentbird Crown, Imageworks Inc.) [7] with
respect to input data quantity. While several studies have compared
different digital dental restoration systems [8-11], there is a lack
of research addressing the influence of input data quantity on the
accuracy of Al-based systems. By investigating the relationship between
input data quantity and restoration quality, this study seeks to provide
insights for optimizing data acquisition during clinical practice to
improve the restoration outcomes. Enhanced restoration accuracy can
reduce the need for manual adjustments and ensure better clinical out-
comes with the potential to lower costs, streamline treatment processes,
and provide patients with more reliable and consistent restorations.

To quantitatively evaluate the quality of the generated occlusal
surfaces, a set of metrics is required to comprehensively assess the
overall morphology and functional occlusal relationships. While there
are widely adopted metrics for evaluating the similarity between two
point clouds (PCDs) [12,13] (i.e. overall morphology), there is a lack
of common metrics specifically designed to evaluate occlusal surfaces
with respect to the patient’s contact points [5].

We propose a set of occlusion-specific metrics designed to evaluate
the occlusal surfaces to quantify the quality of the contact situation
between a target tooth and its antagonist teeth. We aim to translate
qualitative and visually assessed information, typically evaluated by
a dentist during clinical examinations, into a quantitative framework.
While manual measurements are commonly used in dental research,
the customized metrics are developed to provide an automated, dif-
ferentiable and quantitative evaluation framework. This mitigates the
subjectivity and variability of manual measurements and streamlines
an objective, reproducible evaluation process that is applicable to large
amounts of data without user intervention. The metrics can then be in-
tegrated for the evaluation of existing methods or as part of customized
loss functions during the training and validation of new methods.

We hypothesize that increasing the input data quantity significantly
improves the morphological accuracy and occlusal functionality of
Al-designed dental crowns.

2. Methods
2.1. Study design

This retrospective in vitro study was conducted using intraoral scan
data from n = 30 patients, including 11 males and 19 females, aged
between 22 and 31 years. The patients were selected based on the
total quantity (meen paient = 28) and condition of their teeth. The data
was acquired using an intraoral scanner (CEREC PrimeScan, Dentsply
Sirona) and exported as mesh files with the highest resolution setting.
Each patient was scanned once to provide a single full jaw scan file
that served as the baseline for the subsequent digital derivation of the
different data quantities. There were no further patient interventions.
The intraoral scanning technique used was according to the manufac-
turer’s instructions with occlusal, buccal, lingual and proximal scans
in a sequence. Soft tissue and unnecessary gingival data were cropped
during the acquisition process to avoid unwanted artifacts. Ethical
approval for data usage was obtained from the Ethics Committee of
the University Regensburg (25-4027-104).

The reconstruction target was the lower first molar (36/46), selected
based on the condition of the tooth, ensuring it shows no signs of decay
or structural damage and is free of restorations. The original tooth
served as the ground truth (GT) for the evaluation.

The data quantity was varied among three categories: full dentition
(full), the respective quadrant (quad) or the adjacent teeth (adj) of the
reconstruction target (Fig. 1). The antagonist teeth were included for
each category to the extents of the lower jaw data quantities.
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Fig. 1. Examples of different data quantities (b—d) including their reconstructions (e-g)
for an exemplary patient and a reconstruction target 46. (a) uncorrupted full jaw data

(b) full: full jaw data (c) quad: quadrant data (d) adj: adjacent teeth data (e) full
reconstruction (f) quad reconstruction (g) adj reconstruction.

For each patient, the full dentition was imported into the software as
a virtual crown case and the reconstruction target tooth was removed.
The resulting corrupted data Py .., Was then exported as the baseline
for the derivation of the additional data quantities Py corr a0 Pygj corr-
To generate these datasets, the full jaw data was manually cropped to
isolate the respective quadrant or adjacent teeth.

In the following, a PCD is formally defined as a set of points P =
{p; | p; €R3, i €{1,...|P|}} with the cardinality | P| as the number of
points p;. The GT for the reconstruction target Py, can be extracted from
the complete full jaw data Py, by calculating the minimal distances
between the corrupted and full points

Dy = {mjiﬂ lPruncorr,; — Pramills Vi € {1, ... | Peyyl} } .

The GT is then defined as the points of the full jaw data that lie within
an empirical threshold & = 1 x 10~® mm from the corrupted data

Py = {Prany | drun; <€}

The insertion direction of a crown in a practical application can
alter the morphology of the occlusal surface during the design phase.
Therefore, a fixed direction was established for each patient based on
the orientation Rz, = [r, r, rs] of the bounding box of the GT
with its three axes r; € R? (Fig. 2). The negative insertion direction
is defined as the vector r; that minimizes the angle between itself and
the subset of normal vectors N .., , of the preparation surface. This is
formally defined as

prep.gl

T

—Tipg = argmax ”Np,-ep,gtrillb
ri

where || - ||, represents the L, norm of a vector p € R”

lplly = €8]

The insertion direction was subsequently used to generate the re-
constructions for the different data quantities. The occlusal surfaces
of the reconstructions were extracted using boolean operations with
the respective corrupted input data for all groups full, quad, adj and
downsampled to a fixed number of points |P.| = |Py| = 8192 using
furthest point sampling [14].

2.1.1. Sample size calculation

The sample size was calculated based on a pilot study with n = 5
patients for all data quantities. L£amfer2 Was used as the reference
metric. The preliminary evaluation yielded mean values of 0.416 mm
(full), 0.392mm (quad), 0.673 mm (adj) and a mean within group stan-
dard deviation of 0.228 mm. The a priori sample size calculation for a
repeated measures ANOVA with a target power of 0.8, a significance
level of 0.05 and an effect size of 0.56 determined n = 33 per group.
The final sample size was set to n = 30 for an estimated power of 0.77.
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Fig. 2. Determination of the insertion direction for a crown reconstruction target based
on the orientation of the bounding box of the GT. (a) The three axes of the bounding
box. The insertion direction is defined as the negative vector of the axis that minimizes
the angle between itself and the normal vectors of the preparation surface. (b) The
axis with the smallest angle to the normal vectors is loaded into the software as an

additional cuboid. (¢) The insertion direction is aligned with the axis of the cuboid.
(d) The cuboid is removed, and the insertion direction is set for the reconstruction.
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2.2. Metrics

2.2.1. Morphological metrics

The morphological metrics assess the overall morphology and spa-
tial characteristics of the generated 3D object in comparison to the
GT. These metrics are widely recognized in the domain of 3D shape
reconstruction and are well-established for quantifying the similarity
between two PCDs.

Chamfer Distance (CD): The chamfer distance (CD) [13] is a com-
monly used metric for evaluating the similarity between two PCDs [12].
It is defined by the sums of the distances between each point in one
PCD to its nearest neighbor in the other PCD. Formally, the two-sided
CD between two point sets P and Q with L, distances according to (1)
is calculated as

1 |P| 1 10|
CD,(P,Q) = = Y min [Ip; = g;ll, + — Yminllg; - p,>.
1P| &) lo] &

The CD loss is defined as the mean of the two-sided CD with
CD;,(P,0)

—

Similar to the Root Mean Square Error, the domain agnostic CD eval-
uates all aspects of the 3D object, including the overall shape, spatial
distribution, and surface details. A low CD indicates that a digital dental
reconstruction accurately replicates the intricate details of the original
tooth surface.

Intersection over Union (IoU): In the dental reconstruction con-
text, the intersection over union (IoU) evaluates the pose and spatial
characteristics of the generated tooth in a broader context, ensuring
that it fits correctly within the patient’s existing dentition [15]. The spa-
tial alignment of the generated crown with the adjacent and antagonist
teeth is crucial for the overall functionality and fit of the restoration.
In contrast to the CD, which measures local discrepancies between
corresponding points, the IoU evaluates the crown as a whole. The IoU
between two PCDs P and Q is formally defined as

[PnO|

[PuQl’

where PNQ is the intersection of the two PCDs, representing the points
common to both sets. The union P U Q of the two PCDs includes all
points belonging to either P, Q, or both. In this context, the IoU is
computed based on the bounding boxes B, € R¥? and B, € R¥3, each
defined by its eight corner points b;. These bounding boxes represent
the smallest oriented cuboids that enclose all points of the respective
3D objects. Their orientation is determined by the principal axes of
the object, obtained through principal component analysis of the point
set [16].

£chamfer,L2(P! 0)= 2)

IoU(P, Q) =
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Fig. 3. Determination of the occluded points P, between the target tooth (tar) and
the antagonist teeth (anta) based on the normal vectors of the nearest neighbors n,,, ;.
A point is considered occluded if the dot product of the normal vector and the vector
between the target p,,; and the nearest neighbor from the antagonist tooth p,, .., is
negative. Le. the normal vector points in the opposite direction.

The IoU is calculated as the intersection of the two bounding boxes
divided by their union. This approach is commonly used to calculate
the IoU for PCDs, as it is computationally more efficient than directly
calculating the IoU based on the individual points [17]. To align
with the direction of the other metrics (lower is better), the IoU is
complemented, and the loss is given by

Loy = 1 = 1oU(Bp, By).

2.3. Occlusion specific metrics

2.3.1. Definition of the contact points

All metrics are calculated based on the occluded points P, be-
tween the reconstruction P, or the GT P, and the antagonist teeth
P,.,- For simplicity, the reconstruction or GT data is referred to as the
target P, in the following.

Occluded points: To identify the occluded points, the nearest
neighbor of each point in P, is calculated in P,,. This process yields
the points P, ,, with its distances Dy, ,;, to P,,,. The normal vectors
of the nearest neighbors are utilized to determine whether the points
are occluded (Fig. 3).

The occlusion distances D, are defined as the set

_dlar anta,i > if (plarf ~ Pantamn i)Tnanlai <0
occl = { e ' - : Vie{l,...|Pyl} p-

Ay e »  Otherwise
The threshold d,j.., = 0mm defines whether a point is considered
occluded. Based on this threshold, the set of occluded points is given
by

Poccl = {ptar,[ [ docc],i < dlhresh} .

This formulation identifies points from the target tooth where the
distance to the antagonist teeth is below the threshold.

Contact points: These points can now be used to calculate the size,
position, and number of contact points on the occlusal surface, i.e. the
clusters of occluded points. The mean shift algorithm [18] is used to
identify the clusters of occluded points with their respective cluster
centers (Fig. 4). The non-parametric clustering algorithm is used to find
the modes of a set of points P. The algorithm is based on the concept of
kernel density estimation and iteratively shifts the points towards the
modes of the data distribution.

Given the set of points P, the mean shift algorithm aims to find the
updated positions m; for each point p; in the set. For each point p;, the
pairwise distance d;; to all other points p; is calculated as

di; = lpi = pjll>-

The distances are used to determine the weights w;; between the points

using the Gaussian kernel K(d;;, hg). It is given by

d;\?
1 ij
w;; = K(d;j, hg) = exp <_§ <%> ),
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Fig. 4. Visualization of the mean shift algorithm used for clustering the occluded points
of a reconstruction target. The initial point p, is adjusted to its new position m, by
calculating the weighted average of distances to other points within the kernel region.
The update is performed by adding the mean shift vector, m, — p,, to the initial point.

Fig. 5. The clustering results for four exemplary teeth with each cluster represented
by a distinct color. The cluster centers, denoted as m;, are indicated by black dots, and
the associated occluded points are enclosed within black ellipses.

where hg is the bandwidth of the Gaussian kernel and exp(-) is the
natural exponential function. The new position m; for each point p; is
calculated as

lel WD,
&=l ijPj

m= ————

oyl
j=1 "0

where m; is the updated position of p;. The algorithm iterates until
convergence is reached with

m;dX ”ml _pi”2 < Econv+

That is, the maximum distance between the updated position and the
original position of each point is below a threshold ¢, . The threshold
Econy = 0.45mm is a predefined empirical tolerance level that was
determined for the given data by comparison of the clustering results
to the visual representation of the occluded points in a 3D visualization
environment (Fig. 5). If the condition is satisfied, the algorithm stops
and each point p; is assigned to the nearest cluster center m; € M. The

assignment is based on minimizing the distance ||p;~m,;||, for all cluster
centers.
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2.3.2. Definition of the metrics

Based on the occluded points P, and the cluster centers M of
the occluded points (contact points), the occlusion specific metrics are
defined as follows:

Penetration loss L,: The penetration is the sum over all penetra-
tion distances

Dpen = {doccl,i | dochi < dlhresh}

between the generated occlusal surface and the antagonist teeth. The
penetration loss is used to compare the mean penetration depth of the
GT and the generated occlusal surfaces. It is given by

2
[Poen,gt| [Ppen,rec

1 1
Z dpen,rec,i
i=1

= || —— d
pen [ Poen,gt Z‘

Contact point distance loss L, 4;: The contact point distance loss
is used to compare the overall spatial spread of the contact points
for the GT and the generated occlusal surfaces. The mean contact
point distance is defined as the mean of all off-diagonal elements of
the pairwise distance matrix D of the contact points m;,m;Vi,j €
{1,...|M|} according to

en,gt,i ~
peng | A pen,recl

dij = |lm; —my|l,.

This denotes the element in the i-th row and j—th column of the matrix
D. Fig. 6 (a) illustrates the intra contact point distances for two sets of
contact points.

With
1 |M|
jp= ———— d..
P MM - 1) Z i
i#]

the loss can be calculated as

[’cp.dist = (ﬁD,gt - ﬁD,rec)z'

Contact point position loss L, ,.;: The contact point position loss
measures the positional deviation of the contact points to compare the
overall shape of the contact point pattern. Following (2), it is defined as
the CD between the contact points of the GT and the generated occlusal

surfaces with

Bcp,pos = Echamfer,LZ(Mgt > Mrec)'

Fig. 6 (b) shows the inter contact point position distances for two sets
of contact points.

Contact point number loss £, ,,,,: The contact point number loss
determines the deviation in the number of contact points between the
GT and the generated occlusal surfaces. It is defined as
L = (lMgtl_erec|)2

cp,num

with |[My| and |M,.| as the number of the contact points for the GT
and the generated occlusal surfaces, respectively.

Table 1 presents an overview of the evaluation metrics, outlining
their technical characteristics and the specific aspects of the occlusal
surface they assess.

2.3.3. Evaluation

The generated reconstructions were evaluated based on the pre-
viously proposed metrics. Since each patient contributed data across
all three data quantity groups and all metrics failed the normality
assumption according to the Shapiro-Wilk test (p < 0.05), the statistical
analysis employed Friedman Chi-Square tests to detect significant dif-
ferences among the groups. One-sided Wilcoxon signed rank tests were
then used for the post hoc inter-group comparisons. The comparison
groups were defined as G,: quad—full, G,: adj-quad, and G;: adj—full.
The alternative hypothesis for the test was defined as H,: median(g; —
g;) > 0 where median(-) refers to the median of the respective group
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Table 1
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Summary of the evaluation metrics, detailing their function and purpose. The function describes the technical characteristics of each metric, while the purpose explains the
specific aspect of the generated occlusal surface being assessed. |1 show the direction of the metric, indicating whether higher or lower values are preferable.

Metric Function

Purpose

Morphological metrics

Chamfer Distance £pmferi2
reconstruction and GT.

Complemented Intersection over Union L,y |

Nearest average distances between points in the

Overlap of two objects with respect to their union.

General morphological accuracy.

Spatial alignment and fit in the tooth gap.

Occlusion specific metrics

Penetration loss £, | Deviation of mean penetration depths for all occluded points.

Contact point distance loss L, 4 |

Contact point position loss £, ., |

Deviation of mean contact point distances.

Nearest average distances between the contact point centers

Contact strength.
Spatial spread of the contact points.

Shape of the contact point pattern.

of the GT and the reconstruction.

Contact point number loss L, |

Deviation in the number of contact points.

Number of contact points.

‘\d1,11

d2,11\ﬂ

@ \@,42
d
da 24 ‘ %229
d2 22
diss\ ) dass

(b)

Fig. 6. Visualization of L, 4, and L, () L, measures the error in the mean

cp,pos*

cp.dist
pairwise distances between the contact points in each set. (b) L, quantifies the
discrepancy using the CD, defined as the distance between each contact point and its
nearest neighbor in the opposing set.

epdist

g € G. A post hoc power analysis was conducted using simulation
with ng,, = 1000 bootstrap iterations to estimate the power of the
statistically significant tests. There was no p-correction for multiple
comparisons due to the hypothesis-driven nature of the study with its
limited number of comparison groups.

The results of all metrics were normalized to [0,1] according to
the maximum and minimum values of the respective metric across all
groups. This ensures comparability between the metrics and allows for
a comprehensive evaluation of the quality of the generated occlusal
surfaces across different data quantities. All metrics were implemented
such that lower values indicate better performance.

To account for cases where the process failed to generate a morpho-
logically sound reconstruction for specific data quantities or patients,
resulting in the inability to calculate any metrics, all metrics were
assigned a value of 1.1. Similarly, for cases where the process failed
to establish occlusion between the target and antagonist teeth, the
occlusion-specific metrics were set to 1.1. This approach ensures that
failed reconstructions and failed occlusion establishment are included
in the evaluation, emphasizing potential limitations of the software for
certain data quantities.

The set of metrics was evaluated using Kendall correlation to ex-
amine inter-metric relationships and identify potential redundancies or
dependencies. Kendall correlation was chosen due to the non-normality
of the metric distributions and its robustness against outliers.

The insertion direction dependent deviation of the generated oc-
clusal surfaces was evaluated with the same metrics. For each insertion
direction type, n = 15 new cases were created in the software and
crowns were generated for a fixed single patient. This allowed for a
direct comparison of the variance in the occlusal surfaces based on the
insertion direction. The variances of the metrics were compared using
Fligner—Killeen tests with the alternative hypothesis H,: var(g,,,) #
var(gix)-

morphological occlusal fix
auto
SR
1.1 4
1.0 A 8 o)
o o
(U]
3 0.8 A
©
>
e}
_g 0.6
£,./%
5 0.4
=2
0.2 =
o)
0.0 - T T T T T QI_
xe“& V‘\O\) o & Q ¢ Q§\ ;
& A

Fig. 7. Normalized results of the evaluation for n = 15 fixed and auto insertion
direction cases. The labels on the significance bars refer to statistically significant
deviations in variances of the metrics. The significance level is set to « = 0.05.

3. Results

Fig. 7 displays the normalized metrics for fixed and auto insertion
directions. Table 2 provides the ranges of real values for the normal-
ized metrics that correspond to O and 1. The results show significant
differences in variance (p < 0.05) for Loy and L. The post hoc
power analysis revealed a median power of 0.55 with a min-max
range of 0.39 — 0.61 for the Fligner—Killeen tests. The fixed insertion
direction demonstrates lower variances in these metrics compared to
the auto-determined insertion direction, indicating greater consistency
in generating occlusal surfaces. As a result, the fixed insertion direction
was adopted for subsequent evaluations.

Fig. 8 displays the results for all normalized metrics for the main
part of the study. The data is arranged in descending order of in-
put data quantity from left to right. Table 2 provides the ranges
of real values for the normalized metrics that correspond to 0 and
1. Additionally, Table 3 provides a comprehensive summary of the
statistical differences between the three comparison groups for the
evaluation metrics. Significant differences (p; power) between groups
were detected for Lopamer,i2 (0.007; 0.80) and £,e, (0.018; 0.75) based
on Friedman Chi-Square tests. The post hoc Wilcoxon tests revealed
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Fig. 8. Normalized results of the evaluation for the different comparison groups with
n =30 patients each. The labels on the significance bars refer to statistically significant
deviations of the metrics according to Wilcoxon signed-rank tests. The significance level
is set to a = 0.05. Lower values indicate better performance.

Table 2

Ranges of real values for the evaluation metrics in Figs. 7 and 8. The min and max
values correspond to 0 and 1 in the normalized results, respectively. Lower values
indicate better performance.

Metric ming;, ; mMaXgig 7 ming;, g maXgi, g
L chamer.L2 0.379 0.448 0.247 1.616
Loou 0.290 0.474 0.198 0.648
Loen 0.001 0.034 0.001 0.153

cp.num 1.000 2.000 0.001 4.000
Ly pos 2.314 3.721 0.511 4.755
Lep ais 1.152 5.813 0.022 5.975

Table 3

Statistically significant differences (p < 0.05) of the evaluation metrics across the
different comparison groups based on Wilcoxon tests with H,: median(g; — g;) > 0.
Significant differences for the respective comparison group (column) and the metric
(row) are shown as (p; power).

Metric G,: quad-full G,: adj—quad G5 adj-full
L hamfer, L2 - 0.008; 0.80 0.001; 0.97
Lo - 0.041; 0.55 0.037; 0.57
Loen - 0.016; 0.70 -

cp,num

€p.pos

cp,dist

significant differences in the medians of the metrics across the compar-
ison groups with additional pairwise significances in L qy. The power
analysis showed a median power of 0.86 (range: 0.66-0.99).

The software failed to generate a morphologically sound reconstruc-
tion in four instances, all of which occurred in the adj group. Occlusion
establishment failed across all groups for one specific patient, with the
full group exhibiting one additional occlusion failure for a different
patient. These failures are separate from cases where the software
was unable to generate a morphologically sound reconstruction. All of
these cases were included in the evaluation and assigned the respective
metric values of 1.1. Additionally, the software failed to correctly
identify the reconstruction target tooth in 23 cases within the adj group,
requiring manual user intervention to select the correct tooth. The
quad and full groups each exhibited one instance of failed target tooth
identification, both involving the same patient.

The results reveal that the overall morphological details and spatial
characteristics of the occlusal surfaces compared to the GT (£ amfer 125
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Fig. 9. Kendall correlations between the evaluation metrics. The correlation coefficients
are color-coded according to the strength of the correlation with values ranging from —1
(strong negative correlation) to 1 (strong positive correlation). Statistical significances
(p < 0.05) are marked with asterisks..

L oy) are significantly affected (p < 0.05) when the data quantity drops
below the respective quadrant of the reconstruction target. Statistically
significant differences in medians for these metrics are observed for
comparison groups G, and Gj in favor of higher data quantities.

Among the occlusion-specific metrics, the penetration loss (£,,) is
the only metric to show significant differences. Medians differ signifi-
cantly for comparison group G,. The remaining metrics (L, nums Lep,poss
L i) €xhibit no statistically significant differences between groups,
indicating that the number and distribution of contact points are not
influenced by data quantity.

The correlation analysis between the metrics in Fig. 9 reveals mostly
weak to moderate correlations with a median of 0.19 and a min-max
range of 0.01 —0.54. £ ,; shows moderate correlations with £y, rer12-

Similarly, L, ., shows moderate correlations with L\, and L, gi-

4. Discussion

The results indicate that an increase in input data quantity sig-
nificantly improves the morphological accuracy of Al-designed dental
crowns. However, since only one occlusion-specific metric showed a
significant difference, the hypothesis is only partially supported. This
suggests that occlusal relationships are largely independent of input
data quantity and mainly determined by the presence and morphology
of the antagonist teeth. The penetration loss (£,.,) is the only occlusion
specific metric to show significant differences between groups quad and
adj. Notably, there was no significant difference between the full and
adj group. While the results suggest that the software can benefit from
increased input data quantity to achieve a more accurate strength of
the established contact points, the sample size might not be sufficient
to detect smaller effects. Future studies with larger sample sizes could
provide further insights into the impact of data quantity specifically on
the occlusion-specific metrics.

If the input data solely consists of the adjacent teeth (adj), the
software’s potential accuracy is significantly impaired. This leads to
statistically significant deviations of the reconstructions general mor-
phology (L pamfer.12) and spatial characteristics (£y,;;) compared to the
GT. It is to be noted that while no significant difference between groups
was detected with Friedman tests for £, the post hoc Wilcoxon
tests revealed significant differences between the adj and the remaining
groups. Since the power of the pairwise tests for L,y was below
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the conventional threshold of 0.80, these results should be considered
exploratory and require further validation in future research.

Although the adj data appears to include all the necessary infor-
mation to establish the correct relationship between the target tooth
and its surrounding teeth, the software benefits from supplementary
data to produce more accurate outcomes. Apart from overall decreased
accuracy as shown by the metrics, the software further struggles to
identify the correct target tooth, establish occlusion or generate a
morphologically sound reconstruction for the adj group. While quad
and full groups did not exhibit any failed reconstructions, approx.
13% of the adj group reconstructions were not successful with output
that severely deviated from the morphology of a human tooth. This
indicates that the overall performance of the software is dependent on
the presence of the quadrant data.

Data quantities above the respective quadrant of the reconstruction
target do not lead to significant improvements in the occlusal surface
quality. This suggests that the specific software does not effectively
utilize the additional data present in full jaw scans compared to the
quadrant scans. Given that the software is based on a 2D deep learning
approach [9], the inherent data loss during the 2D-3D conversion
process likely explains the observed outcomes. That is, even though
full jaw scans contain more data, the conversion process primarily
preserves the most salient features that are already captured in the
quadrant scans. Furthermore, training data may not have included
sufficient information to introduce necessary connections between the
morphological features of the target tooth and teeth from other quad-
rants. As a result, the model was unable to effectively leverage the
additional inter-quadrant context provided by full-jaw scans.

The exclusive use of the single software solution may therefore con-
strain the generalizability of the findings. Given the proprietary nature
of the methodologies employed in commercial software, performance
outcomes can differ across platforms. Future research should evaluate
multiple Al-based software solutions on identical datasets to provide a
more comprehensive understanding of the impact of data quantity on
occlusal surface reconstruction.

Finally, there is the software independent possibility of anatomical
irrelevance in the additional data, which would not contribute to the
reconstruction process even it was utilized by the software. Based
on the presented data, future studies can be designed with larger
sample sizes to further investigate the effect of data quantity and detect
potential smaller effects between full and quad groups for multiple
software solutions.

Other approaches for occlusal surface reconstruction using 2D deep
learning methods [15,19-22] have shown good results even with lim-
ited input data that is similar to the adj group. As commonly observed
in DL applications, the data used for training and testing are often
subsets of a shared dataset that may not be representative of an inter-
national patient population. The used dataset for this study is based
on a European patient population, while the software is developed
by a Korean company and therefore may be trained on a different
ethnical dataset. This discrepancy in demographic and anatomical char-
acteristics could partly explain the observed differences in performance
compared to other studies using self-validated methods. To thoroughly
evaluate the generalizability of Al-based software, future studies should
consider testing the models on diverse, multi-ethnic datasets that en-
compass a broader range of patient demographics. Cross-validation
across different geographic regions and ethnic groups would not only
clarify the impact of demographic variation on performance but also
show necessary adjustments for new methods to be reliably applied in
various clinical settings worldwide.

The correlation analysis revealed that the metrics are mostly uncor-
related, indicating that they capture different aspects of the occlusal
surfaces. The moderate correlation between the L.,y and L ,ufer 12
can be attributed to the shared spatial characteristics these metrics
evaluate, albeit at different scales. The moderate correlations between
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the L, o, and the Lo, yum, Lo gie Metrics, respectively, suggest that the
spatial distribution of the contact points is related to the number and
distance of the contact points. That is, with a higher deviation in the
number of contact points and a differing spatial spread, the positional
deviation of the contact points also increases with respect to the GT.
However, due to the weak to moderate correlations, the metrics are not
considered redundant and provide complementary information about
the quality of the generated occlusal surfaces.

5. Conclusions

This study evaluated the impact of input data quantity on the
morphology of crowns generated by Al-based dental restoration soft-
ware. The results indicate that while the software achieves consistent
results with full and quadrant input data, its performance significantly
declines when the input is reduced to adjacent teeth only. Specifically,
reductions in input data led to statistically significant impairments in
the overall morphology and spatial characteristics of the reconstructed
occlusal surfaces, as evidenced by higher values in CD (£ fer.12) and
complemented IoU (£ ;). Additionally, the frequency of reconstruc-
tion failures and target tooth misidentifications increased. The results
for L j,y suggest that an increase in data quantity contributes to greater
accuracy in the fit of the crown with respect to its surrounding teeth,
i.e. the antagonist and adjacent teeth.

The proposed occlusion metrics represent clinically relevant param-
eters, including the number of contact points, the distances between
them, their spatial distribution, and the contact strength. By adhering
to established dental concepts, these metrics offer a comprehensive and
clinically meaningful evaluation of the generated occlusion.

The analysis of the occlusion metrics indicates that the quality of
occlusal relationships (number, position, and distribution of contact
points) shows minimal dependency on the quantity of input data.
Among these metrics, only the penetration loss (£,.,) demonstrated
a statistically significant deviation, implying that a larger quantity of
input data enhances the accuracy of contact point strength.

The insertion direction was found to significantly impact the vari-
ance of the occlusal surfaces generated by the software for an identical
clinical situation. That is, suboptimal insertion directions due to specific
preparation designs may lead to increased variance in the generated
occlusal surfaces.

The study also identified limitations in the software’s ability to
utilize full jaw data effectively. This may stem from the 2D-3D conver-
sion process inherent in the software’s methodological approach. The
results underscore the importance of comprehensive data acquisition
in clinical workflows in order to achieve reliable and accurate dental
restorations with Al-based software and reduce the need for man-
ual intervention. Based on the presented results, clinical practitioners
should be aware of the potential limitations of Al-based dental restora-
tion software when using reduced input data quantities. The findings
suggest that the software’s performance is significantly impacted by
the quantity of input data (scanned area), with adjacent teeth data
alone potentially yielding suboptimal or no results and necessitating
a rescanning process to obtain adequate information.
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