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The tomographic Fermi liquid (TFL) hypothesis posits starkly different relaxation times for odd and
even angular harmonics of electron distribution function in two-dimensional systems, but its experimental
verification remains elusive. Traditional electrical transport struggles to discern these lifetimes, as
resistivity is largely unaffected by electron scattering. Here, we demonstrate that high-order cyclotron
resonance (CR) offers a direct probe: The linewidth of the mth CR peak directly reflects the relaxation rate
Ym = 1/7,, of the corresponding angular harmonic. Combining theory and terahertz photoconductivity
measurements in graphene, we show that the third-order CR exhibits a narrower linewidth than the second-
order CR, yielding 73 > 7,. This hierarchy defies conventional impurity or phonon scattering models,
instead aligning with TFL predictions where odd harmonics evade relaxation via head-on collisions. Our
results provide definitive evidence for the TFL regime and establish high-order CR as a powerful tool to

unravel hydrodynamic transport in quantum materials.
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The concept of hydrodynamics has recently evolved
beyond traditional fluid dynamics, extending its reach to
the behavior of electrons in solids, particularly in low-
dimensional systems such as graphene [1] and its deriv-
atives, GaAs-based heterostructures [2], and WTe, [3], to
name a few (see Ref. [4] for review). Since hydrodynamics
provides a natural framework for exploring the behavior of
strongly interacting many-body systems, experiments on
model platforms supporting hydrodynamic flow can offer
insights into more complex systems, such as quark-gluon
plasma [5], strange metals [6], and cold atoms [7,8],
substantiating interest in the field.

Electron hydrodynamics appears in interacting electron
systems with momentum-conserving scattering among
charge carriers dominating over other scattering processes
[9]. Recent theoretical studies [10] have identified a new
hydrodynamiclike transport regime in two dimensions,
where electron distribution in phase space rapidly diffuses
along the velocity direction, and this direction slowly
rotates [11]. Such motion, reminiscent of scanning pro-
cedure in tomographs, led to the notion of “tomographic
transport.” Emergence of tomographic transport traces
down to dramatically different relaxation times of the
odd and even angular harmonics of the distribution function
[12—-14]. The difference stems from kinematic constraints
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for two-particle collisions, which are either low-angle or
head-on [Figs. 1(a) and 1(b)]. Low-angle collisions always
make a minor effect on momentum redistribution, while
head-on collisions require two electrons at the opposite
ends of Fermi surface. The momentum-odd distributions,
conversely, have an electron and a hole at opposite ends
[Fig. 1(b)] and are, thus, immune to the head-on collisions.

If observed, the tomographic transport would challenge the
conventional concepts of hydrodynamics and Fermi liquid
(FL) used to describe many-body systems. Historically,
deviations from the FL framework were observed only in
specific cases, such as one-dimensional Luttinger liquids
[15], small Fermi surfaces [16], systems with flat bands
[17,18], and strongly correlated materials near quantum
critical points. The tomographic regime represents a signifi-
cant departure from these established scenarios, with pro-
found implications for the understanding of hydrodynamic
electron transport and electrodynamic response in low-
dimensional materials.

Despite its fundamental importance, experimental veri-
fication of the tomographic Fermi liquid (TFL) hypothesis
remains a significant challenge. The only known approach
involves measuring electron viscosity as a function of
various tuning parameters—including sample width W [10],
frequency w [19], and temperature 7 [20]—and comparing
the observed functional dependencies with predictions from
both conventional and tomographic Fermi liquid theories.
However, electron viscosimetry [21] itself presents sub-
stantial technical difficulties due to unavoidable residual
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FIG. 1. Electron collisions in two dimensions and cyclotron

resonance. Head-on electron-electron collisions, shown in (a)
and (b), result in strong momentum relaxation of high-order
(m > 2) harmonic deformations of the Fermi sphere. However,
such collisions are impossible for odd harmonics [m =3 is
shown in (b) as an example], where an electron (orange dot) does
not have a “partner” for collision (empty dot) on the opposite end
of the deformed Fermi surface. (c) and (d) show the similarity
between harmonic Fermi surface deformations (orange line) and
its deformations under high-order cyclotron resonances (red and
green lines). The green line corresponds to an almost uniform
field (gR. =0.4) and the red line to a nonuniform field
with gR, = 1.5.

scattering from impurities and phonons. Furthermore, the
similar scaling exponents predicted by conventional FL and
TFL theories for viscosity make it challenging to definitively
distinguish between these regimes experimentally.

In this Letter, we show that high-order cyclotron reso-
nance (CR) [22-25] provides unique insights into the
relaxation times of angular harmonics of the distribution
function. Upon high-order resonance, an electron absorbs
radiation with frequency w of several cyclotron frequencies
mw., m > 2, o. = e|B|/m*, B is the magnetic field, and
m* is the effective mass. The high-order CR emerges in
nonuniform electromagnetic fields, which appear upon
illumination of deep subwavelength structures. We prove
that the width of the mth cyclotron resonance, I',,, and the
relaxation rate of the mth distribution function harmonic,
Ym» are equal, i.e., y,, = I',,,. This relation holds under weak
scattering conditions, y,, < ®,, and for relatively uniform
electromagnetic fields, gR,. < 1, where R.. is the cyclotron
radius and ¢ is the wave vector. In highly nonuniform fields
with gR. ~ 1, a more general relation between I',, and y,,

emerges. We further measure the widths of sequential CR
peaks [26] in high-mobility doped graphene and find that
even and odd distribution harmonics relax at different
rates, providing direct experimental support for the TFL
hypothesis.

The relation between mth-order CR linewidth and
relaxation rate of mth angular harmonic can be understood
as follows. The electromagnetic field changes its direction
m times during the mth-order cyclotron resonance, causing
an m-fold deformation of the Fermi surface, §f(6,) «
e see Figs. 1(c) and 1(d). The field nonuniformity adds
a phase factor e¢/@Rsin0 to the distribution function (see
Refs. [27,28] and Supplemental Material Sec. I [29]). Still,
this phase factor makes no effect on linewidth in the
limit gR, < 1.

We proceed to a rigorous solution of the CR problem in
tomographic Fermi liquid. For this purpose, we solve the
kinetic equation for an ac field-induced correction Jf to the
distribution function:

0
—iwdf +iqupcos8,6f — eaipoE
o5f
— = of}. 1
+wC 09 Cee{ f} ( )

Above, q is the wave vector directed along the x axis, E «
exp(—iwt + iqr) is the small ac electric field causing the
CR directed, v is the Fermi velocity in a two-dimensional
electron system (2DES), 6 is the angle between electron
momentum and direction of field nonuniformity q, and C,,
is the electron-electron collision integral. We further
introduce the parametrization of distribution function in
terms of angular harmonics:

d )
of = 205 e, @

The harmonic coefficients y,, with the dimension of energy
now weakly depend on ¢, and the principal energy
dependence is absorbed in the prefactor df,/de. The main
convenience of representation (2) is the simple structure of
collision integral in the harmonics’ basis, guaranteed by the
rotational invariance:

Cee{)(m} = ~YmAm- (3)

Above, we have introduced the relaxation rates for mth
angular harmonics of the distribution function y,, = 1/7,,.
The lowest three rates are zeros due to conservation of
particle number and momentum upon collisions, 7y +; = 0
[38]. According to the tomographic Fermi liquid hypoth-
esis, further harmonics satisfy ygen > Voqq- In further
numerical calculations, we shall take all even and all
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odd relaxation rates as identical Yo; = Vevens Yoki1 =
Yevens K = 1,2, 3.... Our symbolic results remain applicable
to arbitrary dependences of y,, on harmonic number m.

Further on, it would be convenient to present the kinetic
equation in the operator form similar to that used in
quantum mechanics [10,12]. We introduce the ket vector
for the distribution function [y) related to the angular
harmonics |m) as [y) = >_ y,,|m) and the ket vector for the
electric forces |F) as

F) = iZL(E ) + E_| - 1)). (4)

V2

Above, E, = (E, + iE,)/ /2 are the amplitudes of circu-
larly polarized electric fields. With these notations, the
kinetic equation becomes
(wI_H+ iéee)')ﬁ = |F> (5)
Here, 1 is the identity operator, the “dynamic matrix” A

governs the classical electron motion in the magnetic field
and has the tridiagonal structure:

0 0 0
qur/2 (m+1)w. qup/2 0 0
H= 0 qup/2 mw.  qug/2 0 ,
0 0 que/2 (m=1)w. qug/2
0 0 0

(6)

and C,, = diag{y,,} is the matrix representation of the e-e
collision integral.

The solution of (5) is reached once the eigenfrequencies
w, + i’y and eigenvectors |s) of the dynamic operator A —
iC,, are found. The former correspond to the frequencies
and linewidths of the sth-order cyclotron resonances.
Performing the operator inversion, we find the distribution
function |y) and the conductivity tensor

aﬁ_ﬁDZw w;

§=—00

T (sla){Bls), (7)

where 6 = ie?vip(er)/2w is the high-frequency Drude
conductivity and p(er) is the density of states at the Fermi
level. Equation (7) is applicable both to the 2D electron
systems with parabolic bands (e.g., GaAs-based quantum
wells) and to the massless electrons in graphene. It also
applies in both the circular and Cartesian bases. In the
first case, @ and f take on the values of 41 for the
right-circular field and —1 for the left-circular field. In
the second case, @ = {x,y} and # = {x, y} enumerate the
Cartesian axes. The Cartesian eigenvectors are related to

6
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FIG. 2. The real part of the longitudinal 2DES conductivity
Reo,,, normalized by the collisionless Drude conductivity op =
[(ne?)/(mw)] for different values of ¢ with Tee =2 ps,
Yodd = 10 ps, and w./27x = 1 THz.

the angular harmonics via |x) = (|+) +|-))/v/2 and
) = (1) = =)/ V.

The calculated frequency-dependent conductivity of the
tomographic Fermi liquid (7) is shown in Fig. 2 [39]. The real
part of the conductivity displays sharp resonances at
@ = mw,,m > 1. The cyclotron harmonics become stronger
with increasing the field nonuniformity, i.e., at larger ¢g. The
main CR broadens at larger g, which is a consequence of
the viscous character of damping in FL. So far, all these
observations are in agreement with previous studies of CR in
2DES with weak carrier-carrier collisions [28,40,41].

A distinctive feature of tomographic electron fluid is the
relation between widths of subsequent cyclotron resonan-
ces. Namely, the third CR in Fig. 2 is very narrow compared
to the second one, while the fourth is broad again. This
alternating character of the resonance widths is a direct
consequence of slow decay of the odd distribution har-
monics and fast decay of even ones. The above rule holds as
soon as the field remains uniform, gR,. < 1. For a cyclo-
tron frequency ./2z =1 THz and Fermi velocity
vp = 10° m/s, the cyclotron radius is estimated as
R. =~ 0.15 pm. In highly nonuniform fields (black curve
in Fig. 2), seemingly all harmonics are equally broad,
though the situation is even more intricate.

As apparent from conductivity spectra, the width of CR is
the quantity affected by the tomographic nature of the 2D
Fermi liquid. A direct measure of this width is the imaginary
part of eigenfrequency I',. To access it analytlcally, we apply
the perturbation theory for the operator A — zCee, consid-
ering the collisions as a small perturbation. From a math-
ematical viewpoint, A is equivalent to the Hamiltonian of
the tight-binding chain in a dc electric field, o, playing the
role of voltage drop along one cell, and gv/2 playing the
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role of hopping integral. The eigenvalues of H are perfectly
localized each at sth harmonic (atomic site) in the absence of
spatial dispersion (hopping). This implies the identity
between cyclotron resonances |s) and angular harmonics
|m) in the limit gR . << 1. In this limit, inclusion of collisions
trivially adds the damping I'y = y, to each eigenfrequency.

In the presence of spatial dispersion, the eigenvectors of
H are spread across various angular harmonics (atomic
sites) according to [42]

<m|s> = J\s—m\(ch)! (8)

where J;(x) is the Bessel function of the /th order. The first-
order perturbative correction to the frequency of the
spatially dispersive states (8) is purely imaginary and
given by

sw = (s]iC,,|s) = i, (9)

Fs = JO(ch)ZYs + Z‘Ii(ch)z(Ys+i + ys—i)' (10)
i=1

Figure 3 illustrates the main features of cyclotron line-
width. In Fig. 3(a), we prove that variations of the odd
angular harmonic lifetimes y,qq affect only the width of
odd-s cyclotron resonances in weakly nonuniform fields
gR. < 1. One observes that all odd and all even I
coalesce onto two curves. The linewidths I'5, are not
affected by variations of y,qq at all. Figure 3(b) displays
the wave vector dependences of linewidths. The odd
linewidths, being initially small, start growing at gR,. ~ 1.
This occurs due to the “admixture” of the even angular
harmonics to the odd cyclotron resonance. Remarkably, the
linewidths of the even CRs (say, second and fourth) can
drop down to the very small values. This occurs due to the
oscillatory nature of the spectral weight |Jo(gR,)[> and
happens at gR,. equal to the zeros of Bessel function J,. We
finally note that the general expression for the linewidth (9)
reproduces the viscous damping of the principal CR I'}
g* at small wave vectors [28,40,41].

The experimental test of the TFL hypothesis now amounts
to the measurement of the 2D conductivity at a given wave
vector and frequency o(q,w). Its real part governs the
absorbed power Py, = 1/23°, 6'(q. w)|E,,[*, where
E,, is the spectral composition of the electric ac field in
the 2DES plane. One method for measuring Py, relies on
transmission spectroscopy of grating-gated 2DES [25].
Such data are available only for the 2DES with modulated
lateral doping [22,23], which complicates their analysis.

Another powerful technique for measuring the absorp-
tion spectra of low-dimensional systems relies on the
photoresistance [43-45], i.e., the change in the dc resis-
tance AR, induced by radiation. It relies on the fact that
AR, is proportional to the absorbed electromagnetic
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FIG. 3. Cyclotron linewidths I'y in the tomographic Fermi
liquid. (a) T’y in units of @, vs variable relaxation time of odd
angular harmonics y,qq With constant z.,., = 2 ps. Wave vector
g =1 pum~'. (b) Linewidth T, for several lowest s = 1...5 vs
wave vector of the electromagnetic field g. The results obtained
by numerical diagonalization of dynamic matrix are shown with
solid lines; the analytical result of the perturbation theory is
shown by the dashed ones. In both panels, charge carrier
concentration is n = 102 cm™ and cyclotron frequency
w./2x =1 THz.

power, and resonances in absorption at certain @ and B
should greatly enhance the measured value of AR,,.

We have performed the photoresistance measurements
on a high-quality graphene sample in classically strong
magnetic fields B < 1 T. The CR and its harmonics were
excited by coherent THz radiation generated by a continu-
ous wave optically pumped molecular laser. Details on
sample fabrication and experimental technique can be
found in Supplemental Secs. II and IIT [29]. We intention-
ally fabricated narrow (~1 pm in width) metallic Hall
contacts to the sample partially embedding into the chan-
nel. This configuration provides highly nonuniform electro-
magnetic fields and is, thus, particularly suitable for
observation of high-order CRs [46].
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FIG. 4. Measured graphene photoresistance (PR) as a function
of the magnetic field for different values of temperature. The PR
is defined as a change in a longitudinal resistance upon
illumination AR, normalized by radiation intensity /. (a) shows
the B-dependent PR in the vicinity of second, third, and fourth
CR harmonics at different temperatures (marked by numbers);
(b) shows the magnified view of PR at 7 = 2 K in the vicinity of
third and fourth harmonics. Solid lines show the fit according to
Eq. (11); dashed vertical lines label the theoretically anticipated
position of the CR. Radiation frequency is f = 0.69 THz; carrier
density is 3.9 x 10'2 cm™2. (c) Extracted widths of the second
(X2) and third (X3) cyclotron resonances at different temper-
atures. Green and orange data points were obtained at a different
carrier density n, = 3.25 x 10> cm™? and T = 4 K (raw data in
Supplemental Sec. IV [29]).

Figures 4(a) and 4(b) show the example of the measured
photoresistance at f =0.69 THz and n, =3.9 x 10! cm~2,
where up to three CR overtones (s = 2...4) are observed.
We note that the PR signal at the main s = 1 CR is very
weak at that frequency and density but reappears at larger f
and n, (Supplemental Sec. IV [29]) [47]. At given n
controlled by the back gate, we confidently identify all
spikes to CR or its harmonics according to B = 2zmf/|e|s,
where s is an integer and m = h,/zn;/ vy for single-layer
graphene. The anticipated resonance positions are marked
by vertical dashed lines in Figs. 4(a) and 4(b) and agree well
with observed photoresistance peaks. This agreement ena-
bles further linewidth analysis.

To reproduce the highly asymmetric shape of the
absorption, one has to account for the plasmonic effects,
i.e., screening of the incident field E by the 2D electrons
[25,48]. They are taken into account by relating the total
field E,,, to the incident field E, via the dielectric function
of 2DES ¢(q. ), E,, = Ey/€(q. ). The dominant con-
tribution to the antiscreening comes from the waves with
nearly zero group velocity, the so-called Bernstein modes
[49-51]. In such a situation, the spectral dependence of
absorbed power is suitably described by [26]

X, 1
Pabs(wC) :P0+ AsRe<*—) (11)
s; Vg — o, + IFA‘

Expression (11) is different from a more common
Lorentzian fit due to the continuous spectrum of 2D
plasmons in the vicinity of each cyclotron harmonic. Its
functional form does not depend on the composition of
substrates, yet the coefficients P, and A, do; see
Supplemental Sec. V for a derivation [29].

We extracted the linewidths I'; of cyclotron resonances
by fitting the photoresistance data with model (11) con-
sidering A, @, and T’y as fitting parameters. The extracted
values of I'y together with their error bars are shown in
Fig. 4(c). The fitting procedure shows that third-order CR is
systematically narrower than the second-order one at all
temperatures where it is seen, 2 K < 7" < 20 K [52]. This
fact agrees with TFL hypothesis qualitatively. Namely,
relaxation of the odd-order (third) cyclotron resonance
appears to be weaker than that of the even order (second).
The theory outlined above traces this fact to the different
relaxation rates of even- and odd-order distribution
functions.

The small scattering rate of the third harmonic of
distribution function, as compared to the second one, cannot
be explained within impurity or electron-phonon scattering
models. It is easy to show that both models predict stronger
relaxation with increasing the harmonic number m (see
Ref. [53] and Supplemental Sec. VI [29]). The TFL
hypothesis is currently the only one capable of explaining
the unusual relation I'; < I',. Still, it is worth noting that the
impurity scattering contributes to the observed linewidth by
providing finite I'; (7 — 0). The excess linewidth I',(T =
20 K) —=T'»(T = 4 K) ~ 3 x 10'° s7! agrees, by the order
of magnitude, with normal Coulomb scattering lifetime in
2DES given by [54] z/(8%)(kT)*/er =4 x 101%s7! for
er = 100 meV. At the same time, ['; shows no systematic
temperature dependence within the accuracy of experiment.
This is not unusual, as y,44 for e-e collisions should be, in
theory, by a factor of 72 /¢% smaller than ¥, and unde-
tectable even in the cleanest samples. A smaller contribution
of impurities to the observed CR linewidth is anticipated in
high-mobility GaAs quantum wells [55,56] and ultracold
atomic Fermi gases [7,8].

In conclusion, we have shown that the width of mth-
order cyclotron resonance in a two-dimensional system is
linked to the relaxation rate of the mth angular harmonic of
the distribution function. For long-wavelength fields, these
two quantities are exactly equal. The magnetoabsorption
data of high-quality graphene at THz frequencies point out
the weaker relaxation of the third-order CR, as compared to
the second-order one. Such an anomalous relation between
relaxation rates of the second and third angular harmonics
of distribution function points to the validity of tomo-
graphic Fermi liquid hypothesis.
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