Logo des Repositoriums
 
Konferenzbeitrag

SeeME: A General, Reusable Graph Schema for Data Preprocessing of Eye-Tracking Data

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2025

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

To track eye movement over time and to gain information about points of interest through fixation data, eye-tracking is used in a wide range of fields. In this paper, we present a general, reusable approach to store eye-tracking data and to realize data preprocessing tasks in-database. To achieve this, a graph databases graph schema for any eye-tracking data, consisting of 1) a time series data level and 2) a meta level is developed. Follow-up experiments or additional data like demographic data can easily be integrated into the meta level of the general schema. We use Neo4j to implement this general graph schema. To prepare the time series data for machine learning tasks we additionally present a modular in-graph-database preprocessing pipeline, empowering researchers to either compare different operators or select the best fitting one. For each preprocessing step Cypher code for at least two preprocessing algorithms for time series are at hand.

Beschreibung

Hausler, Dominique; Landes, Jennifer; Klettke, Meike (2025): SeeME: A General, Reusable Graph Schema for Data Preprocessing of Eye-Tracking Data. Datenbanksysteme für Business, Technologie und Web - Workshopband (BTW 2025). DOI: 10.18420/BTW2025-126. Gesellschaft für Informatik, Bonn. PISSN: 2944-7682. pp. 219-233. Workshop Data Engineering for Data Science (DE4DS). Bamberg. 3.-7. März 2025

Schlagwörter

Zitierform

Tags