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Atom transfer radical addition (ATRA) of aroyl chlorides to access
B-chloroacyl derivatives via photoredox catalysis remains hamstrung by

the need to use preciousiridium photocatalysts and activated alkenes
asacceptors. Here we report a unified platform for the regioselective
chlorocarbonylation of alkenes via visible-light-mediated ATRA of aroyl
chlorides catalysed by a heteroleptic Cu(l) complex featuring extensive
substrate scope, scalability and functional group tolerance. In addition,
alkynes are amenable substrates, allowing E-selective 3-chlorovinyl ketone
formation. The synthetic utility of the protocol is demonstrated through the
functionalization of complex substrates, post-modifications of the products
and the formal synthesis of pharmacologically relevant haloperidol,
seratrodast and the naturally occurring piperidine alkaloid (-)-sedamine.
This study undergirds the exclusive role of a heteroleptic copper(l) complex,
which outperforms homoleptic copper(l) complexes—efficient for many
ATRA processes—owing toits longer excited-state lifetime and adaptive
ligand environment being tailored for the distinctive mechanistic steps
catalysed by Cu(l) and Cu(ll) in the title reaction.

Atom transfer radical addition (ATRA) reactions, pioneered by
Kharaschetal.,increase molecular complexity through the selective
difunctionalization of alkenes and alkynes with high atom and step
economy’’. When combined with visible-light photoredox catalysis®,
ATRA reactions can be markedly diversified*. Among the various
photocatalysts that were discovered to promote ATRA processes,
homoleptic copper(l)-phenanthroline complexes have enabled trans-
formations, diverted conventional reaction pathways and fostered
theinvention of new catalytic modes given their ability to engage with
substrates to act beyond single-electron transfer (SET) reagents® .
Thetransformation can proceed either through a Cu(I)/Cu(ll) catalytic
cycleinvolving SET, ligand exchange and ligand transfer or through

a Cu(l)/Cu(II)/Cu(lll) catalytic cycle involving SET-radical rebound,
ligand exchange and reductive elimination" to ultimately deliver the
products (Extended Data Fig. 1). A wide range of ATRA processes get
accelerated due to the ability of Cu(ll), a persistent radical, to inter-
cept transient radical species generated via the addition of Re to an
alkene or alkyne. Despite these remarkable advancements, organic
molecules compatible with Cu(l)-photocatalysed ATRA processes are
mainly limited to Csp*-X precursors (X = halides, thiocyanates and so
on)*™, Cu(l)-promoted photoactivation of Csp?>-X molecules such
as aroyl chlorides to perform ATRA of alkenes or alkynes to access
B-chloroacyl derivatives represents an exciting frontier for future
research and development.
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@ State of the art: background of photocatalytic strategies for B-chloroacylation

Friedel-Crafts acylation reaction under Lewis acidic condition Acyl radical addition to alkene: without Cl incorporation
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Fig.1| General overview of B-chloroacylation of alkenes. a, The state of the art in 3-chloroacylation of alkenes (Ngai, 2019, 2022 (refs. 25,31), Xu, 2019 (ref. 33), Oh,
2020 (ref. 26) and Liu, 2024 (ref. 27)). * denotes the excited state of the photocatalyst. b, This work: photocatalytic B-chloroacylation of alkenes using a heteroleptic
Cu(l) complex. £, triplet energy; 7, excited-state lifetime.
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B-Chloroacylation of alkenes using the well-known Friedel-Crafts
acylationgenerally leads to the formation of &, 3-unsaturated ketones
due to the instability of B-chloroketones under acidic conditions®® %
(Fig.1a). Thus, the thermal reaction modes to access [3-chloroketones
are limited to BiCl,-catalysed chlorination of 3-silyloxy ketones using
trimethylsilyl chloride? and SiCl,/PhOH-promoted hydrochlorina-
tion of a,B-unsaturated ketones*. In 2019, the Ngai group developed
the proton-coupled electron-transfer-mediated chloroacylation of
styrenes from aroyl chlorides (F®=-1.26 V versus saturated calomel
electrode (SCE) for benzoyl chloride) using fac-Ir(ppy); (E°¢,,*(*Ir**/
Ir**) =-1.73 V versus SCE) for the synthesis of a, 3-unsaturated ketones
in which 2,6-di-tert-butyl-4-methyl-pyridine was used to form the
corresponding *Py-HCI as a proton-coupled electron-transfer cata-
lyst® (Fig. 1a). While this work formally constitutes the photolytic
Friedel-Crafts acylation of styrenes, the isolation of 3-chloroketones
was achieved only for two substrates after a reverse-phase
high-performance liquid chromatography purification. Recently, the
visible-light-mediated intermolecular 3-chloroacylation of styrenes
and a-CF;-substituted styrenes has been reported separately by Oh
et al.”® and Liu et al.” using fac-Ir(ppy); as the photocatalyst (Fig. 1a).
Nevertheless, its translation to unactivated alkenes has proved elusive.
The Xugroup’sand Ngai group’s findings onthe addition of acyl radical
speciesto alkenes under photolytic conditions using Ir photocatalyst
have led to the formation of fused pyran® and 3,3-dialkyl 2-oxindole
derivatives” and functionalized 1,4-, 1,6- and 1,7-diketones® in an
intramolecular fashion without chlorineincorporation. Inaddition, the
photoactivation of aroyl chlorides using Cu(l)/rac-BINAP was reported
by the Ngai group for the synthesis of different heterocycles and car-
bocycles viaintramolecular radical cyclization following the addition
of acyl radicals to alkenes with no chlorine incorporation®* (Fig. 1a).
By contrast, the Xu group reported aroylchlorination of 1,6-dienes via
acyl radical addition to activated acrylamides followed by intramo-
lecular atom transfer radical cyclization process using Ir(ppy); as the
photocatalyst (Fig. 1a)*.

Despite the exceptional progress achieved, this type of trans-
formation must be revised to avoid restrictions such as limited
substrate scope and the use of precious Ir photocatalysts. The
1,2-chloroacylation of all kinds of alkene would produce molecules
with greater three-dimensionality, thus offering a larger accessible
chemical space that canbe leveraged in pharmaceutical research. From
previous reports, it can be concluded that the challenges associated
with developing such a transformation are primarily due to the insta-
bility of the generated alkyl radicalintermediate Il unlessitis benzylic
(Fig. 1a, case of styrenes) or tertiary®. Further, using acid-sensitive Ir
photocatalysts is hampered due to the necessity to use a base, result-
ing in the competitive elimination of the carbocation intermediate
Il (Fig. 1a). A Cu(l)-promoted photocatalytic ATRA platform has the
potential to avoid the formation of cation lll viaaninner-sphere radical
rebound mechanism initiated from a Cu(ll)-Cl complex by chlorine
atom transfer or by a radical capture generating a transient Cu(lIIl)
complexIVthat forgesthe C-Clbond through areductive elimination
(vide infra, Fig. 8a). However, such reactions have not been reported
using the well-known Cu(l)-phenanthroline complexes despite having
reduction potentials (Ec,qycuq = —1.43 V versus SCE for [Cu(dap),]CI
(dap, 2,9-di(p-anisyl)-1,10-phenanthroline) and Ec,,g,c,q = —1.54 V ver-
sus SCE for [Cu(dmp),]CI) (dmp, 2,9-dimethyl-1,10-phenanthroline)**
thatare sufficienttoreduce aroyl chlorides. This may be aconsequence
of the short excited-state lifetimes (90 ns to 270 ns) of homoleptic
Cu(l)-phenanthroline complexes to execute the single electron reduc-
tion of aroyl chlorides. We posited heteroleptic Cu(l)-bisphosphine-
phenanthroline complexes could emerge as aselective and sustainable
alternative owing to their longer excited-state lifetimes and specialized
dualligand environment. Despite the introduction of such heteroleptic
Cu(l) complexesin photochemistry three decades ago® ¥, their utility
in organic synthesis has remained underexplored” .

In this work, we identify [Cu(dmp)(BINAP)]BF, as an easy-to-
prepare and bench stable Cu(l) complex (Fig. 1b) that establishes
a unified platform for the B-chloroacylation of alkenes. Our study
reveals that both the excited-state lifetime and ligand environment
of the heteroleptic Cu(l) photocatalyst are crucial to the outcome of
the reaction. A key aspect is the different coordination modes of the
ligands to Cu(l) and Cu(ll): while the sterically bulky bisphosphine
ligand provides the environment for Cu(l) boasting of a sufficient
excited-state lifetime and reduction potential to achieve the initial
one-electron reduction of the acyl chlorides, the bisdiamine ligand
exclusively coordinates to Cu(ll), allowing the chloride transfer to the
carbon-centred radicals generated as reactive intermediates (Fig. 1b).
Thus, synthetically versatile B-chloroaroyl compounds become widely
accessible from different classes of alkenes or alkynes, surpassing
classical, photocatalysed acyl radical additions that are restricted to
activated alkenes.

Results

Reaction development

We explored the possibility of a 3-chloroacylation of alkenes using unac-
tivated 1-phenylbutene (A1) and benzoyl chloride (B1) in the presence
of catalyticamounts of various homo- and heteroleptic Cu(l) complexes
underirradiation with ablue light-emitting diode (LED; Fig. 2; for more
details, see Supplementary Tables 1-5). Several critical reaction param-
eters were recognized. Using tetrahydrofuran (THF) as the solvent at
aconcentration of 0.0625 M is best for the success of the reaction,
which moreover takes an active role in the acyl radical coupling with
electron-deficient alkenes (vide infra, see Fig. 8h). Using homoleptic
Cu(l) complexes [Cu(dap),]Cland [Cu(dmp),]Clresulted in no product
formation, probably due to their insufficient excited-state lifetimes.
Movingto heteroleptic Cu(l) complexes, [Cu(dmp)(BINAP)]BF, (BINAP,
2,2’-bis(diphenylphosphino)-1,1’-binaphthyl) gave rise to the desired
product1in76%yield, while other Cu(l) heteroleptic complexes such as
[Cu(dmp)(XantPhos)]BF, (XantPhos, (9,9-dimethyl-9H-xanthene-4,5-
diyl)bis(diphenylphosphane)) and [Cu(phen)(XantPhos)]BF, (phen,
9,10-phenanthroline) were vastly inferior (7-12% yield), whichis again
in agreement with their much shorter excited-state lifetime values.
The presence of base (Na,CO;) negatively impacted the efficiency of
the reaction. Control experiments confirmed the necessity for light
and the Cu(l) catalyst. Furthermore, an inert atmosphere is essential
for this reaction; only trace amounts of product were generated when
the reaction was performed in air. When styrene A2, as an example of
an activated alkene, was used, the desired product 2 was obtained in
near-quantitative yield under the standard reaction conditions, being
superior to other variations tried (for detailed optimization, see Sup-
plementary Table 6). The protocol developed here operates at room
temperature and does not require base and additional oxidants or
reductants.

Substrate scope evaluation

Having established the optimized conditions, we examined the substrate
scope of this transformation (Fig. 3). Simple unfunctionalized aromatic
and aliphatic alkenes could be smoothly converted to -chloroketones
in 59-80% yields (Fig. 3a,1and 3-6). Various transformable handles,
including halides (7 and 8), aldehyde (9), ketone (10), ester (11), cyano
(12), acid (13) and amide (14) were well tolerated at different positions
ofthealiphatic chains. The limitation was found for amino or hydroxyl
groups presentinthe alkene. Such substrates underwent direct coupling
with the acid chloride used: 15 was not observed at all, while 17 was
obtained only in low yield (25%). Instead, protected amine (NHBoc;
Boc, tert-butyloxycarbonyl) and hydroxyl (OTBDMS, OTs; TBDMS,
tert-butyldimethylsilyl) alkene derivatives proceed in good yields (16,
18 and 19). Alkenes bearing heterocycles such as oxirane, carbazole
and phenothiazine moieties were compatible with this transformation
(20-22). Boron- and silicon-containing alkenes were also successful,
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Fig.2| Optimization of the reaction conditions. a, Optimization for the
B-chloroacylation of alkenes: Condition 1: A1(0.5 mmol), B1(0.25 mmol),
[Cu(dmp)(BINAP)IBF, (2 mol%), THF (4 ml), blue LED, room temperature
(r.t.), 24 h. Condition 2: A2 (0.25 mmol), B1 (0.5 mmol), [Cu(dmp)(BINAP)]
BF, (2 mol %), THF (4 ml), blue LED, r.t., 24 h.*The bar diagramis prepared on

the basis of a single experiment for each entry and corresponding NMR yield
values. "The 'H-NMR yields are measured using 1,1,2,2-tetrachloroethane as the
internal standard. b, Photocatalysts used in this study. None, standard reaction
conditions; DCE, dichloroethane; DMA, dimethylacetamide.

forming the difunctionalized products 23 and 24. Di- and trisubsti-
tuted alkenes smoothly afforded the desired products 25 and 26; how-
ever, no conversion was observed for tetrasubstituted alkenes. Six- to
eight-membered cyclic alkenes withinternal double bonds proved tobe
efficient substrates (27-29) with moderate-to-excellent diastereoselec-
tivity. The highssite selectivity for -chloroacyl derivatives 26 and 29 may
arise from the synergistic steric and stereoelectronic effects upon radi-
cal addition. Moreover, exocyclic alkenes exhibited perfect regio-and
stereoselectivity to provide 30 and 31. The X-ray crystal structure of 30
confirms the configuration of the major diastereomer (Supplementary
Fig.32). To demonstrate the preparative utility, B-chloroketones1and
30 weresynthesized ona5.0 mmolscale without a substantial decrease
inyield (70% and 58%, respectively; Fig. 3a).

Moving away from unactivated alkenes, the protocol was then
applied to a variety of functionalized styrenes (Fig. 3b). A selec-
tion of vinyl arenes decorated with both electron-donating and
electron-withdrawing substituents afforded the desired difunction-
alized products (2 (see Supplementary Fig. 31 for X-ray analysis of
compound 2), 32-37 and 40-52) in generally high yields (>70%) with
noapparent preference for the electronic nature of the aryl substituent.
Notably, highly electron-deficient pentafluoro styrene, alsoin combi-
nation with steric congestion as seen for 2,6-dichlorostyrene, furnished
the products43 and 45. Functional groups such asbenzyl chloride (49),

trimethylsilyl (TMS) (50), carboxylic acid (51) and boronic acid (52)
werealsowelltolerated. Substituents flanking the a- or B-position of the
styrene gave the desired products 53 and 54. Of note, 3-chloroacylation
ofindene selectively provided the trans-isomer 56. 3-Chloroacylation
of vinyl naphthalene provided compound 57; however, vinyl pyri-
dines showed no conversion, perhaps due to its coordination with
higher-valence copper ion (for example, 58 could not be obtained).
Inthe case of styrene derivatives bearing para-methoxy and a-phenyl
groups, the corresponding dehydrochlorinated products (38,39 and
55) were formed, which might be anindication for achange in mecha-
nism, that is, that for these substrates the oxidation of the radical
intermediate of type I (Fig. 1b) to the cation Ill proceeds as opposed
to delivering the chlorine via anintermediate IV (cf. Fig. 8a).

Next, we examined a series of aroyl chlorides using 1-octene or
styrene as the alkene component (Fig. 3c, 59-68), in which the sub-
stituents on the aromatic ring exhibited neither a pronounced steric
or electronic effect on the efficiency. The structure of thiophene 68
was unambiguously confirmed by single-crystal X-ray analysis (Sup-
plementary Fig. 33).

Late-stage modification
The robustness and high site selectivity showcased suggest that it
canbe used as a precision tool to perform late-stage modifications of
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B (0.25 mmol), [Cu(dmp)(BINAP)IBF, (2 mol%), THF (4 ml), blue LED, r.t., 24 h.
Condition 2 (for activated alkenes): A (0.25 mmol), B (0.5 mmol), [Cu(dmp)

(BINAP)IBF, (2 mol%), THF (4 ml), blue LED, r.t., 24 h. Yields are calculated on the
basis of the isolated products. d.r., diastereomeric ratio.

biologically relevant scaffolds (Fig. 4). Unactivated alkenes derived
fromethyllactate, methyl paraben, estrone, vitamin E, phenylalanine,
indomethacine, ibuprofen and oxaprozin were converted into the cor-
responding B-chloroketones 69-76 (Fig. 4a). In (-)-B-caryophyllene,
featuringbothendocyclic and exocyclic double bonds, the acyl radical
additiontook place selectively at the endocyclic one, affording 77 as a
mixture of diastereomers.

Furthermore, avariety of vinyl arenes derived from natural prod-
ucts and pharmaceutical agents were compatible, demonstrating a
viable approach for their modification (Fig. 4b, 78-85).

B-Chloroacylation of alkynes
Next, we extended this methodology to the B-chloroacylation of
alkynes. The well-known Friedel-Crafts acylation of alkynes with acid
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Fig. 5| General overview of Cu(l)-photocatalysed B-chloroacylation of
alkynes. a, The state of the art in 3-chloroacylation of alkynes (Tsuji, 2009,
2012 (refs. 51,52); Oh, 2019 (ref. 53). b, This work: photocatalytic E-selective
B-chloroacylation of alkynes using a heteroleptic Cu(l) complex. ¢, Substrate

100, from (+)-isoborneol, 41%
E:Z=199:1

101, from diacetone-p-glucose, 59%
EZ=196:4

scope. Reaction conditions: aromatic alkyne (0.5 mmol), aroyl chloride
(0.25 mmol), THF (4 ml), [Cu(dmp)(BINAP)IBF, (2 mol%), blue LED, r.t., 24 h.
Yields are calculated on the basis of the isolated products. LA, Lewis acid.

chlorides**° and Ir-catalysed addition of acid chlorides to alkynes®"*
to access B-chlorovinyl ketones generally proceeds with complete
Z-selectivity (Fig. 5a). Recently, the Oh group has developed the
Friedel-Crafts acylation of alkynes in a flow set-up to increase the
E-selectivity in B-chlorovinyl ketone formation® (Fig. 5a). However,
the E-selective 3-chloroacylation of alkynes in a catalytic manifold
has not beenreported.

Upon combining phenylacetylene A3 with benzoyl chloride B1
in the presence of 2 mol% [Cu(dmp)(BINAP)]BF, under blue-light
irradiation, the B-chlorovinyl ketone 86 was obtained as a single
regioisomer in 65% yield with excellent E-stereoselectivity (£:Z= 95:5;
Supplementary Table 7). Likewise, para- and meta-alkyl substituted

phenylacetylenes were suitable substrates (Fig. 5c, 87-90). The reac-
tion yield was hampered by ortho substitution on the aryl motif (91)
withincreased steric hindrance; however, it did not affect the stereose-
lectivity. Functional groups, such as halides (92 and 93), trifluorome-
thyl (94), ester (95) and aldehyde (96) were tolerated well in terms of
bothyield and E-selectivity. In the case of electron-rich arene alkynes,
B-chlorovinyl ketones 97 and 98 were obtained in good yields but
with notably decreased E-selectivity. However, 3-thiophenylacetylene
afforded the corresponding 3-chlorovinyl ketone 98 with excellent
E-selectivity. Phenylacetylenes derived from (+)-isoborneol and
diacetone D-glucose furnished 100 and 101, again with almost per-
fect E-selectivity (Fig. 5c). However, disubstituted alkynes such as
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1-phenyl-1-propyne and unactivated alkynes such as 1-hexyne were
found to be unreactive.

Synthetic utility

The synthetic value of -chloroketones derived fromvinyl arenes and
phenylacetylenes is well documented in the literature®** (Fig. 6a).
Selecting some representative examples, such transformations can also
be carried out efficiently, starting from1and 4 to obtain dihydropyra-
zole102 and -chloro alcohol103 (Fig. 6b). In addition, we envisioned
that the library of B-chloroketones available in our arsenal could be
used further as pluripotent intermediates for skeletal diversification
(Fig. 6b). NaH-mediated dehydrochlorination of 103 provided exclu-
sively homoallylicalcohol 104 as asingle diastereomer. Taking advan-
tage of this synthetic pathway, alkene diol 106 was synthesized starting
from 8in 77%yield, which was transformed to the linear hydrocarbon
phenyldodecane (107) after mesyl protection and hydrogenation.
The reduction-elimination sequence of cyclic -chloroketone 30 led
tothe formation of oxabicyclo[3.2.0]heptane derivative 108 possibly
viaintramolecular Michael addition of intermediate VII. Moreover,
we demonstrated that this strategy could be utilized in the construc-
tion of pyrrolodinone 109 in 88% yield by NaH-mediated cyclization
of 14. 2-Phenyltoluene (110) was efficiently synthesized via an intra-
molecular McMurry coupling-dehydrochlorination-aromatization
cascade of chloroketone 10. Furthermore, 3-chloropropiophenone
111, a key synthetic intermediate to access (R)/(S)-fluxeotine, tomox-
etine and nisoxetine™, could be obtained by exposing 24 to potassium
tert-butoxide in dimethyl sulfoxide (DMSO; Fig. 6¢). Epoxy-alcohol 112
was received by a desilylative cyclization followed by conversion to
1,3-diol 113 using reported methods***°, being valuable for the synthesis
of fesoteridone”, dapoxetine*®, atomoxetine*’ and ezetimibe® (Fig. 6¢).

Formal synthesis of haloperidol, (+)-seratrodast and
(-)-sedamine

The potential of this method was further underpinned by the formal
synthesis of active pharmaceutical ingredients haloperidol, seratrodast
and naturally occurring piperidine alkaloid (-)-sedamine. Haloperidol
is extensively used in the treatment of schizophrenia and Tourette’s
syndrome. The first synthesis of ®F-labelled haloperidol was accom-
plished in a multistep process starting from N-phenylacetamide
114 and 4-chlorobutanoyl chloride 115 followed by nucleophilic
displacement with commercially available piperidine nucleophile
116 (ref. 61). Recently, the MacMillan group elegantly reported a
photoredox-enabled aldehyde C-H alkylation strategy for the syn-
thesis of y-chloroarylketone 120 via coupling of 4-chlorobutanal 119
and 1-bromo-4-fluorobenzene 118 (ref. 62). Nucleophilic displacement
of ketone 120 with piperidine 116 delivered haloperidol 117. However,
the practical usefulness of this approach is hampered by the use of
very expensive 4-chlorobutanal®. By adding commercially available
and inexpensive 4-fluorobenzoyl chloride B2 and allyl chloride A4 to
our reaction conditions followed by one-pot elimination and subse-
quent chemoselective double-bond reduction, the desired ketone
120 was afforded in 61% yield over two steps, which can be converted
to haloperidol 117 following reported methods®* (Fig. 7a). Moreover,
y-chloroarylketone 120 can be used to obtain dehydroxyhaloperidol,
melperone, lenperone and fluanisone via nucleophilic displacement
with commercially available corresponding piperidine derivatives. The
synthesis of seratrodast, an antiasthmatic and eicosanoid antagonist,
was reported by Takai and co-workers®. The key intermediate 122 was
prepared vialn-catalysed reaction of diketone 121 with ethanol (EtOH)
followed by NaBH, reduction. In our approach, 3-chloroacylation of
methyl-5-hexenoate A5 with benzoyl chloride B1 furnished the com-
pound 125. Base-mediated dehydrochlorination and subsequent
reduction delivered the desired alcohol ester derivative 126, which
canbe transformed to seratrodast using aliterature method®* (Fig. 7b).
Sedamine, a piperidne alkaloid, first isolated from Sedum acre®, has

66-70 71-80

beensynthesized either asaracemate® ™" orasasingle enantiomer
The first synthesis of (-)-sedamine 132 was documented by the Beyer-
man group in 1956. Metal-hydride-mediated sequential reduction of
aminoalcohol 129 and ketoacid 130 led to the formation of racemic
sedamine 131, which could be converted to (-)-sedamine 132 by opti-
calresolution’’? (Fig. 7c). Ag-catalysed asymmetric Mannich reaction
was developed by the Hoveyda group for the synthesis of (-)-sedamine
using chiral ligand 136 (ref. 76). Our method facilitates the generation
of the piperidinone building block 139 (refs. 68,72) of (-)-sedamine
directly from amide A6 and benzoyl chloride Blin two steps with 54%
overallyield, allowing a greatly streamlined 3-chloroacylation-cycli-
zationsequence (Fig. 7c). Importantly, this approach underscores the
potential for the rapid library synthesis of different lactam analogues
(forexample, 109; cf. Fig. 6).

Mechanistic investigation and proposed catalytic cycle

The developed method can be performed chemoselectively on
activated alkenes over unactivated ones, as illustrated by the pref-
erential formation of mono-chloroacylated product 140 (Extended
Data Fig. 2a). When 3 equiv. of benzoyl chloride B1 were used, the
di-chloroacylated product 141 was formed exclusively. Alternatively,
thedi-chloroacylated product 141 can be obtained by sequential reac-
tion at the activated and unactivated double bonds (Extended Data
Fig.2a). The reaction of diene A8 proceeds in a 1,4-fashion delivering
the product 142 with excellent diastereoselectivity (Extended Data
Fig.2b). Aradical trap experiment performed by adding 2,2,6,6-tetra
methyl-1-piperidinyloxy (TEMPO), completely inhibited the reaction
and produced the aroyl-TEMPO adduct 144 (Extended Data Fig. 2d),
supporting the formation of an aroyl radical. In agreement, using the
radical clock reagent 3-pinene A9 under the standard conditions pro-
vided exclusively 143 through the aroyl radical initiated ring-opening
followed by chlorine incorporation (Extended Data Fig. 2c). The quan-
tum yield of the standard reaction was measured to be 0.046, which
indicates thatan extended radical chain processis unlikely (Supplemen-
tary Table 8). Ultraviolet-visible (UV-vis) absorption shifts of the binary
mixture of photocatalyst [Cu(dmp)(BINAP)]BF, and benzoyl chloride
Blbeforeirradiationindicated coordination of ATRA reagent B1to the
photocatalyst (Extended Data Fig. 2e and Supplementary Figs. 6 and 7).
Stern-Volmer quenching experiments revealed that aroyl chloride B1
quenched the excited [Cu(dmp)(BINAP)]BF, species more efficiently
thanthealkene substrate Al (Extended Data Fig. 2f and Supplementary
Fig.10). Next, we analysed the impact of excited-state lifetime and
ligand environment of heteroleptic Cu(l) photocatalysts. Besides the
three heteroleptic Cu(l) photocatalysts that were screened during
optimization (cf. Fig. 2), we additionally evaluated [Cu(phen)(BINAP)]
BF, (=3 ns) and [Cu(dmp)(DPEPhos)]BF, (7 =14,300 ns) (DPEPhos,
bis[(2-diphenylphosphino)phenyl]ether) with contrasting excited-state
lifetime values to compare their efficacy (Extended Data Fig. 2g). The
reduction potential of the catalysts is capable of reducing aroyl choride
B1, but nevertheless gave different outcomes. The highest yield of 1was
obtained using[Cu(dmp)(BINAP)]BF, having r=2,188 ns. Intriguingly,
when [Cu(dmp)(DPEPhos)]BF,isused, the desired 3-chloroketone1was
obtainedin10% yield despite having a very high excited-state lifetime
0f14,300 ns. A similar trend was observed for [Cu(dmp)(XantPhos)]
BF, (r=1,133 ns). These results suggested that the presence of BINAP
asabidentate phosphorousligandis crucial asthe narrower bite angle
of BINAP compared with DPEPhos and XantPhos renders [Cu(dmp)
(BINAP)IBF, less photostability*®, facilitating faster dissociation of
the dmp ligand (cf. Fig. 8). However, [Cu(phen)(BINAP)]BF, with an
excited-state lifetime of only 3 ns provided the 3-chloroketone 1in
30%yield, highlighting the importance of substituted diamine ligand
(dmp) compared with unsubstituted one (phen) providing a longer
excited-state lifetime to the Cu(l) catalysts*®. These results underscore
the importance of a specialized ligand environment of heteroleptic
Cu(l) photocatalysts comprising both bidentate phenanthroline and
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Fig. 6 | Synthetic applications. a, Reported synthetic transformations of
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phosphineligandsinits coordination sphere for obtaining the highest
catalytic efficiency in the title reaction. Moreover, to assess the effi-
ciency of the formation of Cu(lll)-species of type IV we conducted the
ATRA of alkene A10 where 3-chloroacylation competes with intramo-
lecular cyclization (Extended Data Fig. 2h).In2022, Ngai et al. reported
that reaction of alkene A10 with aroyl chloride led to the formation

of heterocycle 146 via an intramolecular cyclization-aromatization
pathway”. Conversely, under the standard reaction conditions devel-
oped in this work, ATRA product 145 was obtained exclusively in 62%
yield, pointing towards a different course of the reaction pathway. In
Ngai’s work, the combination of [Cu(BINAP),]PF, and [Cu(IPr),]PF as
the catalytically active species was postulated, where the homoleptic
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transfer. g, Light on-off experiment for the reaction of A2 with B1.

h, B-Chloroacylation versus hydroacylation of Michael acceptors: synthetic
evidence for Cu(ll)-Cl bond formation. GC-MS, gas chromatography-mass
spectrometry. EWG, electron-withdrawing group.
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[Cu(BINAP),]PF, is responsible for the reduction of aroyl chlorides™.
Wereason that the heteroleptic [Cu(dmp)(BINAP)]BF, performs adual
rolevialigand exchange: reduction of aroyl chlorides and rapid capture
oftransientradical of type IX by persistent Cu(ll)-Clintermediate VIII
to prevent competitive cyclization (cf. Fig. 8).

Investigating [Cu(dmp)(BINAP)]BF, in the presence of aroyl chlo-
ride, in the dark no ligand exchange is observed, while irradiation at
455 nmresultsin the rapid formation of the phosphine-bound bridged®
Cu(I)-Cl complex 147 due to facile dissociation of the phenanthro-
line ligand (Fig. 8a). Cu(l)-Cl complex 147 was fully characterized by
independent single-crystal X-ray analysis (Fig. 8c and Supplementary
Fig. 34) and nuclear magnetic resonance (NMR) spectroscopy (Sup-
plementary Figs.16-18). The excited-state reduction potential of 147
(Ecuanycuqy = —2.19 versus Fc*/Fc; -1.81V versus SCE; Supplementary
Figs.23 and 24)is sufficient to reduce benzoyl chloride as confirmed by
Stern-Volmer analysis (Fig. 8d and Supplementary Figs.19-21). Similar
interaction between147 and benzoyl chloride was observed in UV-vis
spectra. Furthermore, abathochromic shift in the UV-vis absorption
spectra of complex 147 compared with [Cu(dmp)(BINAP)IBF, (Sup-
plementaryFig. 22) can explain why the highest reaction efficiency was
obtained when the reaction was performed above 400 nm, but not at
385 nm (Supplementary Table 5). Hence, 147 acts as the active photo-
catalyst tofacilitate the formation of aroyl radical lupon one-electron
reduction of benzoyl chloride or the corresponding benzoyl cation
with the generation of phenanthroline Cu(ll)-Cl species® VIl after a
ligand exchange. The formation of Cu(ll)-Cl species VII was confirmed
with the aid of electron paramagnetic resonance (EPR) and UV-vis
spectroscopic studies (Fig. 8e, Supplementary Figs. 25-27 and Sup-
plementary Table 9). The ligand exchange between BINAP and dmp is
consistent with the change of oxidation state from Cu(I) to Cu(ll), with
the latter preferring the harder phenanthroline ligand to the softer
bisphosphine ligand. This phenomenon in relation to Cu(I)/Cu(lIl)
catalysis has previously been recognized by the Fu group for asym-
metricamidationreactions®’. Theradical ladds to the alkene, forming
the transient radical IX, which can interact with VIII. Chlorine is then
transferred via aninner-sphere radical rebound mechanism initiated
by aradical capture generating transient Cu(lll) complex'>'*#5 [V that
forges the C-Clbondinthefinal product through areductive elimina-
tion. Alternatively, direct chlorine abstraction from Cu(ll)-Cl species
VIII by radical IX may deliver the desired product in an outer-sphere
pathway (Supplementary Figs. 12 and 13). The dual nature of the het-
eroleptic copper complex (Cu(l)-BINAP for SET and Cu(Il)-dmp for
chloride transfer)is further corroborated by the fact that neither Cu(I)
(dmp),ClI (cf. Fig. 2) nor [Cu(l)-BINAP-CI], 147 is capable to promote
the title reaction efficiently, while independently prepared 147 to
which dmp is added again results in good catalytic turnover (Fig. 8f).
Alight-on-offexperiment (Fig. 8g and Supplementary Fig.11) further
suggests that the catalytic Cu(l) species responsible for SET can be
reactivated upon light irradiation. For styrene derivatives bearing
a strongly electron-donating para-methoxy group or an a-phenyl
substituent, the reaction proceeds via aback-electrontransfer mecha-
nism by oxidation of the radical intermediate IX to the corresponding
carbocation X followed by combination with the chlorine anionto 38,
39 and 55 under regeneration of the photocatalyst. In case of aromatic
alkynes, the vinylradical intermediate XI, generated after aroyl radical
Iadditiontoalkynes, could interact with Cu(ll)-chlorine intermediate
VIII, leading to the formation of Cu(lll) species XII-A or XII-B (Fig. 8b).
Formation of the Cu(lll) species presumably controls the stereoselec-
tivity, and it is proposed that the reaction proceeds via the sterically
more favoured intermediate XII-A to deliver the E-B-chlorovinyl ketone
selectively upon reductive elimination. Previously, Collins et al. have
reported that heteroleptic copper complexes canfacilitate F <~ Zalkene
isomerization under light irradiation via an energy transfer process
due to their higher triplet energy and longer excited-state lifetime®®.
Accordingly, it would also be possible that chlorine abstraction from

the Cu(ll) species VIII by vinyl radical intermediate XI and ensuing
photoisomerization in the presence of [Cu(dmp)(BINAP)]BF, leads
to E-selective formation of B-chlorovinyl ketones (Supplementary
Figs. 14 and 15). Further evidence for the Cu(ll)-Cl species VIl as the
chlorine atom transfer species was found for the 3-chloroacylation of
«,B-unsaturated Michael systems (Fig. 8h and Supplementary Fig. 28).
With increasing electrophilicity of alkenes®, the electrophilic alkyl
radical XIII could neither bind with the electrophilic Cu(ll) centre
(inner-sphere pathway) nor it could abstract an electrophilic Cl atom
from VIII (outer-sphere pathway). Instead, XIIl abstracts a hydrogen
atom from THF, resulting in the hydroacylation of the alkene (Fig. 8h).
The nucleophilic THF-radical XIV then captures the Clatom from VIII,
aligned with the formation of 2-chlorotetrahydrofuran and dihydro-
furan confirmed by gas chromatography-mass spectrometry analysis
(Supplementary Figs. 29 and 30). Finally, it is understood that the
ultimate proof of the mechanistic proposal would be the isolation of
aCu(lll) intermediate along the reaction pathway, which represents a
formidable challenge®° given the rapid reductive elimination that
cantake placetoyield the ATRA product with concurrent regeneration
of the Cu(l) photocatalyst.

Conclusions

In summary, we have developed a highly efficient method for the
B-chloroacylation of readily available alkenes and alkynes with aroyl
chlorides. This modular approachleverages a heteroleptic Cu(l) photo-
catalystto control acylradical generation and C-Clbond formation. It
demonstrates remarkable compatibility with diverse functional groups
and encompasses a broad substrate scope, thereby empowering the
synthesis of valuable (3-chloroketones across various chemical con-
texts, advocating this method to practical application in chemistry,
pharmaceutical science and materials science. Notably, our design
features theintroduction of an E-selective B-chloroacylation of pheny-
lacetylene derivatives ina catalytic manifold highlighting the efficient
regio-and stereocontrol of this ATRA process for aromatic alkynes. The
effectiveness of this protocol in late-stage contexts is demonstrated,
allowing the rapid generation of molecular complexity fromlarge and
densely functionalized olefins derived from biomolecules and phar-
maceuticals. The synthetic utility of this method is demonstrated via
the construction of various heterocycle and carbocycle scaffolds and
the preparation of molecules widely used as building blocks for the
synthesis of different natural products. Furthermore, this method
paves the way towards the formal synthesis of pharmaceutically rel-
evant haloperidol and seratrodast and naturally occurring piperidine
alkaloid (-)-sedamine, overcoming the limitation of the title reaction
towards unactivated alkenes. Multifaceted mechanistic studies have
revealed that the method exploits a heteroleptic copper complex in
whichabidentate phosphine binds to Cu(l) to produce a photocatalyst
toactivate thearoyl chlorides, and abidentate phenanthroline ligand
binds to Cu(ll) to effect highly efficient and expeditious rebound of
Cu(ll) after aroyl radical addition to olefins that can even outcompete
afavourable intramolecular radical cyclization process®.

Methods

[Cu(dmp)(BINAP)]BF,-catalysed B-chloroacylation of unacti-
vated alkenes using aroyl chlorides

To a glass reaction vial (5 ml size) equipped with a stir bar [Cu(dmp)
(BINAP)]BF, (4.9 mg, 0.005 mmol), unactivated alkenes (if solid at room
temperature, 0.5 mmol) and benzoyl chloride B1 (30 pl, 0.25 mmol)
were added. The vial was then sealed with a rubber septum and
evacuated-backfilled with N, three times. Then, 4.3 ml of freshly dis-
tilled THF was added into the vial and the solution was purged with
nitrogen for 7-10 min until a solution volume of around 4 ml. Then,
unactivated alkene (if liquid at room temperature, 0.5 mmol) was
added into the solution under positive nitrogen atmosphere. The vial
was irradiated with blue LED (4,,,, = 455 nm) at room temperature for
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24 h. After completion of the reaction (monitored by thin layer chro-
matography (TLC) analysis), the whole reaction mixture was diluted
with dichloromethane (DCM) and transferred to around-bottom flask.
Following concentration in vacuo, the crude product was purified by
columnchromatography onsilicagel (eluent: hexanes and ethyl acetate
incertainratio as needed).

[Cu(dmp)(BINAP)]IBF ,-catalysed B-chloroacylation of
activated alkenes using aroyl chlorides

To a glass reaction vial (5 ml size) equipped with a stir bar [Cu(dmp)
(BINAP)]BF, (4.9 mg, 0.005 mmol), activated alkenes (if solid at room
temperature, 0.25 mmol) and benzoyl chloride B1 (60 pl, 0.5 mmol)
were added. The vial was then sealed with a rubber septum and
evacuated-backfilled with N, three times. Then, 4.3 ml of freshly dis-
tilled THF was added into the vial and the solution was purged with
nitrogen for 7-10 min until a solution volume of around 4 ml. Then,
activated alkene (if liquid at room temperature, 0.25 mmol) was added
into the solutionunder positive nitrogen atmosphere. The vial wasirra-
diated withblue LED (A,,,,, = 455 nm) at room temperature for 24 h. After
completion of the reaction (monitored by TLC analysis), the whole reac-
tion mixture was diluted with DCM and transferred to around-bottom
flask. Following concentration in vacuo, the crude product was purified
by column chromatography on silica gel (eluent: hexanes and ethyl
acetatein certainratio as needed).

[Cu(dmp)(BINAP)]BF,-catalysed B-chloroacylation of
aromatic alkynes using aroyl chlorides

To a glass reaction vial (5 ml size) equipped with a stir bar [Cu(dmp)
(BINAP)]BF, (4.9 mg, 0.005 mmol), aromatic alkynes (if solid at room
temperature, 0.5 mmol) and benzoyl chloride B1 (30 pl, 0.25 mmol)
were added. The vial was then sealed with a rubber septum and
evacuated-backfilled with N, for three times. Then, 4.3 mL of freshly
distilled THF was added into the vial and the solution was purged
with nitrogen for 7-10 min until a solution volume of around 4 ml.
Then, aromatic alkyne (if liquid at room temperature, 0.5 mmol) was
addedinto the solution under positive nitrogen atmosphere. The vial
was irradiated with blue LED (A, = 455 nm) at room temperature for
24 h. After completion of the reaction (monitored by TLC analysis),
the whole reaction mixture was diluted with DCM and transferred to
around-bottom flask. Following concentration in vacuo, the crude
productwas purified by column chromatography onsilicagel (eluent:
hexanes and ethyl acetate in certain ratio as needed).

Data availability

The data supporting the findings of this study are available within the
Article and its Supplementary Information and upon request from
the corresponding author. Crystallographic data for the structures
reportedin this Article have been deposited at the Cambridge Crystal-
lographic Data Centre, under deposition numbers CCDC 2387681 (2),
2412563 (30), 2387682 (68) and 2412567 (147). Copies of the data can
be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/.
Source data are provided with this paper.
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Cu(l)-complexes as standalone photocatalysts: Mechanistic paradigms
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Extended Data Fig. 1| Cu(l)-Photocatalysis: Mechanistic paradigms. Different facets of Cu(l)-photocatalysis via outer-sphere and inner-sphere electron transfer
pathways. Nu=nucleophile, L=ligand.
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a. One-pot reaction with both activated and unactivated alkenes
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d. Radical trapping experiment using TEMPO
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g. Comparative study: Heteroleptic Cu(l)-Photocatalysts h. B-Chloroacylation vs. Intramolecular Cyclization
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Extended Data Fig. 2| Mechanistic investigations. Unless otherwise noted experiment of different reaction components, Cu(l)-catalyst, and reaction
yields are of the isolated products. *t = Excited-state lifetime. "IH-NMR yields mixture before and after irradiation. f. Stern-Volmer plot for luminescence
are measured using1,1,2,2-tetrachloroethane as the internal standard. quenching of Cu(l)-catalyst in the presence of aroyl chloride and alkene.
a.p-Chloroacylationin the presence of both activated and unactivated alkenes. g. Tabular representation of spectroscopic data for different heteroleptic
b. B-Chloroacylation of conjugated diene. c. Radical clock experiment with Cu(l)-photocatalysts and their performance in B-Chloroacylation reaction.
B-pinene. d. Radical trapping experiment in the presence of TEMPO. e. UV-vis h. B-Chloroacylation vs intramolecular cyclization.
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