
Nature Catalysis | Volume 8 | June 2025 | 607–622 607

nature catalysis

https://doi.org/10.1038/s41929-025-01357-yArticle

1Institut für Organische Chemie, Universität Regensburg, Regensburg, Germany. 2These authors contributed equally: Tirtha Mandal, Mangish Ghosh. 
 e-mail: oliver.reiser@chemie.uni-regensburg.de

A general photocatalytic platform for the 
regio- and stereoselective β-chloroacylation 
of alkenes and alkynes using a heteroleptic 
copper(I) complex
 

Tirtha Mandal    1,2, Mangish Ghosh    1,2, Hendrik Paps1, Tanumoy Mandal1 & 
Oliver Reiser    1 

Atom transfer radical addition (ATRA) of aroyl chlorides to access 
β-chloroacyl derivatives via photoredox catalysis remains hamstrung by 
the need to use precious iridium photocatalysts and activated alkenes 
as acceptors. Here we report a unified platform for the regioselective 
chlorocarbonylation of alkenes via visible-light-mediated ATRA of aroyl 
chlorides catalysed by a heteroleptic Cu(I) complex featuring extensive 
substrate scope, scalability and functional group tolerance. In addition, 
alkynes are amenable substrates, allowing E-selective β-chlorovinyl ketone 
formation. The synthetic utility of the protocol is demonstrated through the 
functionalization of complex substrates, post-modifications of the products 
and the formal synthesis of pharmacologically relevant haloperidol, 
seratrodast and the naturally occurring piperidine alkaloid (−)-sedamine. 
This study undergirds the exclusive role of a heteroleptic copper(I) complex, 
which outperforms homoleptic copper(I) complexes—efficient for many 
ATRA processes—owing to its longer excited-state lifetime and adaptive 
ligand environment being tailored for the distinctive mechanistic steps 
catalysed by Cu(I) and Cu(II) in the title reaction.
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Atom transfer radical addition (ATRA) reactions, pioneered by 
Kharasch et al., increase molecular complexity through the selective 
difunctionalization of alkenes and alkynes with high atom and step 
economy1,2. When combined with visible-light photoredox catalysis3, 
ATRA reactions can be markedly diversified4. Among the various 
photocatalysts that were discovered to promote ATRA processes, 
homoleptic copper(I)–phenanthroline complexes have enabled trans-
formations, diverted conventional reaction pathways and fostered 
the invention of new catalytic modes given their ability to engage with 
substrates to act beyond single-electron transfer (SET) reagents5–10. 
The transformation can proceed either through a Cu(I)/Cu(II) catalytic 
cycle involving SET, ligand exchange and ligand transfer11,12 or through 

a Cu(I)/Cu(II)/Cu(III) catalytic cycle involving SET-radical rebound, 
ligand exchange and reductive elimination13,14 to ultimately deliver the 
products (Extended Data Fig. 1). A wide range of ATRA processes get 
accelerated due to the ability of Cu(II), a persistent radical, to inter-
cept transient radical species generated via the addition of R• to an 
alkene or alkyne. Despite these remarkable advancements, organic 
molecules compatible with Cu(I)-photocatalysed ATRA processes are 
mainly limited to Csp3–X precursors (X = halides, thiocyanates and so 
on)15–19. Cu(I)-promoted photoactivation of Csp2–X molecules such 
as aroyl chlorides to perform ATRA of alkenes or alkynes to access 
β-chloroacyl derivatives represents an exciting frontier for future 
research and development.
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a State of the art: background of photocatalytic strategies for β-chloroacylation
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Fig. 1 | General overview of β-chloroacylation of alkenes. a, The state of the art in β-chloroacylation of alkenes (Ngai, 2019, 2022 (refs. 25,31), Xu, 2019 (ref. 33), Oh, 
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β-Chloroacylation of alkenes using the well-known Friedel–Crafts 
acylation generally leads to the formation of α,β-unsaturated ketones 
due to the instability of β-chloroketones under acidic conditions20–22 
(Fig. 1a). Thus, the thermal reaction modes to access β-chloroketones 
are limited to BiCl3-catalysed chlorination of β-silyloxy ketones using 
trimethylsilyl chloride23 and SiCl4/PhOH-promoted hydrochlorina-
tion of α,β-unsaturated ketones24. In 2019, the Ngai group developed 
the proton-coupled electron-transfer-mediated chloroacylation of 
styrenes from aroyl chlorides (Ered = −1.26 V versus saturated calomel 
electrode (SCE) for benzoyl chloride) using fac-Ir(ppy)3 (Ered

1/2*(*Ir3+/
Ir4+) = −1.73 V versus SCE) for the synthesis of α,β-unsaturated ketones 
in which 2,6-di-tert-butyl-4-methyl-pyridine was used to form the 
corresponding *Py-HCl as a proton-coupled electron-transfer cata-
lyst25 (Fig. 1a). While this work formally constitutes the photolytic 
Friedel–Crafts acylation of styrenes, the isolation of β-chloroketones 
was achieved only for two substrates after a reverse-phase 
high-performance liquid chromatography purification. Recently, the 
visible-light-mediated intermolecular β-chloroacylation of styrenes 
and α-CF3-substituted styrenes has been reported separately by Oh 
et al.26 and Liu et al.27 using fac-Ir(ppy)3 as the photocatalyst (Fig. 1a). 
Nevertheless, its translation to unactivated alkenes has proved elusive. 
The Xu group’s and Ngai group’s findings on the addition of acyl radical 
species to alkenes under photolytic conditions using Ir photocatalyst 
have led to the formation of fused pyran28 and 3,3-dialkyl 2-oxindole 
derivatives29 and functionalized 1,4-, 1,6- and 1,7-diketones30 in an 
intramolecular fashion without chlorine incorporation. In addition, the 
photoactivation of aroyl chlorides using Cu(I)/rac-BINAP was reported 
by the Ngai group for the synthesis of different heterocycles and car-
bocycles via intramolecular radical cyclization following the addition 
of acyl radicals to alkenes with no chlorine incorporation31,32 (Fig. 1a). 
By contrast, the Xu group reported aroylchlorination of 1,6-dienes via 
acyl radical addition to activated acrylamides followed by intramo-
lecular atom transfer radical cyclization process using Ir(ppy)3 as the 
photocatalyst (Fig. 1a)33.

Despite the exceptional progress achieved, this type of trans-
formation must be revised to avoid restrictions such as limited 
substrate scope and the use of precious Ir photocatalysts. The 
1,2-chloroacylation of all kinds of alkene would produce molecules 
with greater three-dimensionality, thus offering a larger accessible 
chemical space that can be leveraged in pharmaceutical research. From 
previous reports, it can be concluded that the challenges associated 
with developing such a transformation are primarily due to the insta-
bility of the generated alkyl radical intermediate II unless it is benzylic 
(Fig. 1a, case of styrenes) or tertiary33. Further, using acid-sensitive Ir 
photocatalysts is hampered due to the necessity to use a base, result-
ing in the competitive elimination of the carbocation intermediate 
III (Fig. 1a). A Cu(I)-promoted photocatalytic ATRA platform has the 
potential to avoid the formation of cation III via an inner-sphere radical 
rebound mechanism initiated from a Cu(II)–Cl complex by chlorine 
atom transfer or by a radical capture generating a transient Cu(III) 
complex IV that forges the C–Cl bond through a reductive elimination 
(vide infra, Fig. 8a). However, such reactions have not been reported 
using the well-known Cu(I)–phenanthroline complexes despite having 
reduction potentials (ECu(II)/Cu(I)* = −1.43 V versus SCE for [Cu(dap)2]Cl 
(dap, 2,9-di(p-anisyl)-1,10-phenanthroline) and ECu(II)/Cu(I)* = −1.54 V ver-
sus SCE for [Cu(dmp)2]Cl) (dmp, 2,9-dimethyl-1,10-phenanthroline)34 
that are sufficient to reduce aroyl chlorides. This may be a consequence 
of the short excited-state lifetimes (90 ns to 270 ns) of homoleptic 
Cu(I)–phenanthroline complexes to execute the single electron reduc-
tion of aroyl chlorides. We posited heteroleptic Cu(I)–bisphosphine–
phenanthroline complexes could emerge as a selective and sustainable 
alternative owing to their longer excited-state lifetimes and specialized 
dual ligand environment. Despite the introduction of such heteroleptic 
Cu(I) complexes in photochemistry three decades ago35–37, their utility 
in organic synthesis has remained underexplored37–48.

In this work, we identify [Cu(dmp)(BINAP)]BF4 as an easy-to- 
prepare and bench stable Cu(I) complex (Fig. 1b) that establishes 
a unified platform for the β-chloroacylation of alkenes. Our study 
reveals that both the excited-state lifetime and ligand environment 
of the heteroleptic Cu(I) photocatalyst are crucial to the outcome of 
the reaction. A key aspect is the different coordination modes of the 
ligands to Cu(I) and Cu(II): while the sterically bulky bisphosphine 
ligand provides the environment for Cu(I) boasting of a sufficient 
excited-state lifetime and reduction potential to achieve the initial 
one-electron reduction of the acyl chlorides, the bisdiamine ligand 
exclusively coordinates to Cu(II), allowing the chloride transfer to the 
carbon-centred radicals generated as reactive intermediates (Fig. 1b). 
Thus, synthetically versatile β-chloroaroyl compounds become widely 
accessible from different classes of alkenes or alkynes, surpassing 
classical, photocatalysed acyl radical additions that are restricted to 
activated alkenes.

Results
Reaction development
We explored the possibility of a β-chloroacylation of alkenes using unac-
tivated 1-phenylbutene (A1) and benzoyl chloride (B1) in the presence 
of catalytic amounts of various homo- and heteroleptic Cu(I) complexes 
under irradiation with a blue light-emitting diode (LED; Fig. 2; for more 
details, see Supplementary Tables 1–5). Several critical reaction param-
eters were recognized. Using tetrahydrofuran (THF) as the solvent at 
a concentration of 0.0625 M is best for the success of the reaction, 
which moreover takes an active role in the acyl radical coupling with 
electron-deficient alkenes (vide infra, see Fig. 8h). Using homoleptic 
Cu(I) complexes [Cu(dap)2]Cl and [Cu(dmp)2]Cl resulted in no product 
formation, probably due to their insufficient excited-state lifetimes. 
Moving to heteroleptic Cu(I) complexes, [Cu(dmp)(BINAP)]BF4 (BINAP, 
2,2′-bis(diphenylphosphino)-1,1′-binaphthyl) gave rise to the desired 
product 1 in 76% yield, while other Cu(I) heteroleptic complexes such as 
[Cu(dmp)(XantPhos)]BF4 (XantPhos, (9,9-dimethyl-9H-xanthene-4,5-
diyl)bis(diphenylphosphane)) and [Cu(phen)(XantPhos)]BF4 (phen, 
9,10-phenanthroline) were vastly inferior (7–12% yield), which is again 
in agreement with their much shorter excited-state lifetime values. 
The presence of base (Na2CO3) negatively impacted the efficiency of 
the reaction. Control experiments confirmed the necessity for light 
and the Cu(I) catalyst. Furthermore, an inert atmosphere is essential 
for this reaction; only trace amounts of product were generated when 
the reaction was performed in air. When styrene A2, as an example of 
an activated alkene, was used, the desired product 2 was obtained in 
near-quantitative yield under the standard reaction conditions, being 
superior to other variations tried (for detailed optimization, see Sup-
plementary Table 6). The protocol developed here operates at room 
temperature and does not require base and additional oxidants or 
reductants.

Substrate scope evaluation
Having established the optimized conditions, we examined the substrate 
scope of this transformation (Fig. 3). Simple unfunctionalized aromatic 
and aliphatic alkenes could be smoothly converted to β-chloroketones 
in 59–80% yields (Fig. 3a, 1 and 3–6). Various transformable handles, 
including halides (7 and 8), aldehyde (9), ketone (10), ester (11), cyano 
(12), acid (13) and amide (14) were well tolerated at different positions 
of the aliphatic chains. The limitation was found for amino or hydroxyl 
groups present in the alkene. Such substrates underwent direct coupling 
with the acid chloride used: 15 was not observed at all, while 17 was 
obtained only in low yield (25%). Instead, protected amine (NHBoc; 
Boc, tert-butyloxycarbonyl) and hydroxyl (OTBDMS, OTs; TBDMS, 
tert-butyldimethylsilyl) alkene derivatives proceed in good yields (16, 
18 and 19). Alkenes bearing heterocycles such as oxirane, carbazole 
and phenothiazine moieties were compatible with this transformation 
(20–22). Boron- and silicon-containing alkenes were also successful, 
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forming the difunctionalized products 23 and 24. Di- and trisubsti-
tuted alkenes smoothly afforded the desired products 25 and 26; how-
ever, no conversion was observed for tetrasubstituted alkenes. Six- to 
eight-membered cyclic alkenes with internal double bonds proved to be 
efficient substrates (27–29) with moderate-to-excellent diastereoselec-
tivity. The high site selectivity for β-chloroacyl derivatives 26 and 29 may 
arise from the synergistic steric and stereoelectronic effects upon radi-
cal addition. Moreover, exocyclic alkenes exhibited perfect regio- and 
stereoselectivity to provide 30 and 31. The X-ray crystal structure of 30 
confirms the configuration of the major diastereomer (Supplementary 
Fig. 32). To demonstrate the preparative utility, β-chloroketones 1 and 
30 were synthesized on a 5.0 mmol scale without a substantial decrease 
in yield (70% and 58%, respectively; Fig. 3a).

Moving away from unactivated alkenes, the protocol was then 
applied to a variety of functionalized styrenes (Fig. 3b). A selec-
tion of vinyl arenes decorated with both electron-donating and 
electron-withdrawing substituents afforded the desired difunction-
alized products (2 (see Supplementary Fig. 31 for X-ray analysis of 
compound 2), 32–37 and 40–52) in generally high yields (>70%) with  
no apparent preference for the electronic nature of the aryl substituent. 
Notably, highly electron-deficient pentafluoro styrene, also in combi-
nation with steric congestion as seen for 2,6-dichlorostyrene, furnished 
the products 43 and 45. Functional groups such as benzyl chloride (49), 

trimethylsilyl (TMS) (50), carboxylic acid (51) and boronic acid (52) 
were also well tolerated. Substituents flanking the α- or β-position of the 
styrene gave the desired products 53 and 54. Of note, β-chloroacylation 
of indene selectively provided the trans-isomer 56. β-Chloroacylation 
of vinyl naphthalene provided compound 57; however, vinyl pyri-
dines showed no conversion, perhaps due to its coordination with 
higher-valence copper ion (for example, 58 could not be obtained). 
In the case of styrene derivatives bearing para-methoxy and α-phenyl 
groups, the corresponding dehydrochlorinated products (38, 39 and 
55) were formed, which might be an indication for a change in mecha-
nism, that is, that for these substrates the oxidation of the radical 
intermediate of type II (Fig. 1b) to the cation III proceeds as opposed 
to delivering the chlorine via an intermediate IV (cf. Fig. 8a).

Next, we examined a series of aroyl chlorides using 1-octene or 
styrene as the alkene component (Fig. 3c, 59–68), in which the sub-
stituents on the aromatic ring exhibited neither a pronounced steric 
or electronic effect on the efficiency. The structure of thiophene 68 
was unambiguously confirmed by single-crystal X-ray analysis (Sup-
plementary Fig. 33).

Late-stage modification
The robustness and high site selectivity showcased suggest that it 
can be used as a precision tool to perform late-stage modifications of 
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biologically relevant scaffolds (Fig. 4). Unactivated alkenes derived 
from ethyl lactate, methyl paraben, estrone, vitamin E, phenyl alanine, 
indomethacine, ibuprofen and oxaprozin were converted into the cor-
responding β-chloroketones 69–76 (Fig. 4a). In (−)-β-caryophyllene, 
featuring both endocyclic and exocyclic double bonds, the acyl radical 
addition took place selectively at the endocyclic one, affording 77 as a 
mixture of diastereomers.

Furthermore, a variety of vinyl arenes derived from natural prod-
ucts and pharmaceutical agents were compatible, demonstrating a 
viable approach for their modification (Fig. 4b, 78–85).

β-Chloroacylation of alkynes
Next, we extended this methodology to the β-chloroacylation of 
alkynes. The well-known Friedel–Crafts acylation of alkynes with acid 
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chlorides49,50 and Ir-catalysed addition of acid chlorides to alkynes51,52 
to access β-chlorovinyl ketones generally proceeds with complete 
Z-selectivity (Fig. 5a). Recently, the Oh group has developed the 
Friedel–Crafts acylation of alkynes in a flow set-up to increase the 
E-selectivity in β-chlorovinyl ketone formation53 (Fig. 5a). However, 
the E-selective β-chloroacylation of alkynes in a catalytic manifold 
has not been reported.

Upon combining phenylacetylene A3 with benzoyl chloride B1 
in the presence of 2 mol% [Cu(dmp)(BINAP)]BF4 under blue-light 
irradiation, the β-chlorovinyl ketone 86 was obtained as a single 
regioisomer in 65% yield with excellent E-stereoselectivity (E:Z = 95:5; 
Supplementary Table 7). Likewise, para- and meta-alkyl substituted 

phenylacetylenes were suitable substrates (Fig. 5c, 87–90). The reac-
tion yield was hampered by ortho substitution on the aryl motif (91) 
with increased steric hindrance; however, it did not affect the stereose-
lectivity. Functional groups, such as halides (92 and 93), trifluorome-
thyl (94), ester (95) and aldehyde (96) were tolerated well in terms of 
both yield and E-selectivity. In the case of electron-rich arene alkynes, 
β-chlorovinyl ketones 97 and 98 were obtained in good yields but 
with notably decreased E-selectivity. However, 3-thiophenylacetylene 
afforded the corresponding β-chlorovinyl ketone 98 with excellent 
E-selectivity. Phenylacetylenes derived from (±)-isoborneol and 
diacetone d-glucose furnished 100 and 101, again with almost per-
fect E-selectivity (Fig. 5c). However, disubstituted alkynes such as 
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1-phenyl-1-propyne and unactivated alkynes such as 1-hexyne were 
found to be unreactive.

Synthetic utility
The synthetic value of β-chloroketones derived from vinyl arenes and 
phenylacetylenes is well documented in the literature26,52 (Fig. 6a). 
Selecting some representative examples, such transformations can also 
be carried out efficiently, starting from 1 and 4 to obtain dihydropyra-
zole 102 and β-chloro alcohol 103 (Fig. 6b). In addition, we envisioned 
that the library of β-chloroketones available in our arsenal could be 
used further as pluripotent intermediates for skeletal diversification 
(Fig. 6b). NaH-mediated dehydrochlorination of 103 provided exclu-
sively homoallylic alcohol 104 as a single diastereomer. Taking advan-
tage of this synthetic pathway, alkene diol 106 was synthesized starting 
from 8 in 77% yield, which was transformed to the linear hydrocarbon 
phenyldodecane (107) after mesyl protection and hydrogenation. 
The reduction–elimination sequence of cyclic β-chloroketone 30 led 
to the formation of oxabicyclo[3.2.0]heptane derivative 108 possibly 
via intramolecular Michael addition of intermediate VII. Moreover, 
we demonstrated that this strategy could be utilized in the construc-
tion of pyrrolodinone 109 in 88% yield by NaH-mediated cyclization 
of 14. 2-Phenyltoluene (110) was efficiently synthesized via an intra-
molecular McMurry coupling–dehydrochlorination–aromatization 
cascade of chloroketone 10. Furthermore, 3-chloropropiophenone 
111, a key synthetic intermediate to access (R)/(S)-fluxeotine, tomox-
etine and nisoxetine54, could be obtained by exposing 24 to potassium 
tert-butoxide in dimethyl sulfoxide (DMSO; Fig. 6c). Epoxy-alcohol 112 
was received by a desilylative cyclization followed by conversion to 
1,3-diol 113 using reported methods55,56, being valuable for the synthesis 
of fesoteridone57, dapoxetine58, atomoxetine59 and ezetimibe60 (Fig. 6c).

Formal synthesis of haloperidol, (±)-seratrodast and 
(−)-sedamine
The potential of this method was further underpinned by the formal 
synthesis of active pharmaceutical ingredients haloperidol, seratrodast 
and naturally occurring piperidine alkaloid (−)-sedamine. Haloperidol 
is extensively used in the treatment of schizophrenia and Tourette’s 
syndrome. The first synthesis of 18F-labelled haloperidol was accom-
plished in a multistep process starting from N-phenylacetamide 
114 and 4-chlorobutanoyl chloride 115 followed by nucleophilic 
displacement with commercially available piperidine nucleophile 
116 (ref. 61). Recently, the MacMillan group elegantly reported a 
photoredox-enabled aldehyde C–H alkylation strategy for the syn-
thesis of γ-chloroarylketone 120 via coupling of 4-chlorobutanal 119 
and 1-bromo-4-fluorobenzene 118 (ref. 62). Nucleophilic displacement 
of ketone 120 with piperidine 116 delivered haloperidol 117. However, 
the practical usefulness of this approach is hampered by the use of 
very expensive 4-chlorobutanal63. By adding commercially available 
and inexpensive 4-fluorobenzoyl chloride B2 and allyl chloride A4 to 
our reaction conditions followed by one-pot elimination and subse-
quent chemoselective double-bond reduction, the desired ketone 
120 was afforded in 61% yield over two steps, which can be converted 
to haloperidol 117 following reported methods62 (Fig. 7a). Moreover, 
γ-chloroarylketone 120 can be used to obtain dehydroxyhaloperidol, 
melperone, lenperone and fluanisone via nucleophilic displacement 
with commercially available corresponding piperidine derivatives. The 
synthesis of seratrodast, an antiasthmatic and eicosanoid antagonist, 
was reported by Takai and co-workers64. The key intermediate 122 was 
prepared via In-catalysed reaction of diketone 121 with ethanol (EtOH) 
followed by NaBH4 reduction. In our approach, β-chloroacylation of 
methyl-5-hexenoate A5 with benzoyl chloride B1 furnished the com-
pound 125. Base-mediated dehydrochlorination and subsequent 
reduction delivered the desired alcohol ester derivative 126, which 
can be transformed to seratrodast using a literature method64 (Fig. 7b). 
Sedamine, a piperidne alkaloid, first isolated from Sedum acre65, has 

been synthesized either as a racemate66–70 or as a single enantiomer71–80. 
The first synthesis of (–)-sedamine 132 was documented by the Beyer-
man group in 1956. Metal-hydride-mediated sequential reduction of 
aminoalcohol 129 and ketoacid 130 led to the formation of racemic 
sedamine 131, which could be converted to (–)-sedamine 132 by opti-
cal resolution71,72 (Fig. 7c). Ag-catalysed asymmetric Mannich reaction 
was developed by the Hoveyda group for the synthesis of (–)-sedamine 
using chiral ligand 136 (ref. 76). Our method facilitates the generation 
of the piperidinone building block 139 (refs. 68,72) of (–)-sedamine 
directly from amide A6 and benzoyl chloride B1 in two steps with 54% 
overall yield, allowing a greatly streamlined β-chloroacylation–cycli-
zation sequence (Fig. 7c). Importantly, this approach underscores the 
potential for the rapid library synthesis of different lactam analogues 
(for example, 109; cf. Fig. 6).

Mechanistic investigation and proposed catalytic cycle
The developed method can be performed chemoselectively on 
activated alkenes over unactivated ones, as illustrated by the pref-
erential formation of mono-chloroacylated product 140 (Extended 
Data Fig. 2a). When 3 equiv. of benzoyl chloride B1 were used, the 
di-chloroacylated product 141 was formed exclusively. Alternatively, 
the di-chloroacylated product 141 can be obtained by sequential reac-
tion at the activated and unactivated double bonds (Extended Data 
Fig. 2a). The reaction of diene A8 proceeds in a 1,4-fashion delivering 
the product 142 with excellent diastereoselectivity (Extended Data 
Fig. 2b). A radical trap experiment performed by adding 2,2,6,6-tetra
methyl-1-piperidinyloxy (TEMPO), completely inhibited the reaction 
and produced the aroyl-TEMPO adduct 144 (Extended Data Fig. 2d), 
supporting the formation of an aroyl radical. In agreement, using the 
radical clock reagent β-pinene A9 under the standard conditions pro-
vided exclusively 143 through the aroyl radical initiated ring-opening 
followed by chlorine incorporation (Extended Data Fig. 2c). The quan-
tum yield of the standard reaction was measured to be 0.046, which 
indicates that an extended radical chain process is unlikely (Supplemen-
tary Table 8). Ultraviolet–visible (UV–vis) absorption shifts of the binary 
mixture of photocatalyst [Cu(dmp)(BINAP)]BF4 and benzoyl chloride 
B1 before irradiation indicated coordination of ATRA reagent B1 to the 
photocatalyst (Extended Data Fig. 2e and Supplementary Figs. 6 and 7). 
Stern–Volmer quenching experiments revealed that aroyl chloride B1 
quenched the excited [Cu(dmp)(BINAP)]BF4 species more efficiently 
than the alkene substrate A1 (Extended Data Fig. 2f and Supplementary 
Fig. 10). Next, we analysed the impact of excited-state lifetime and 
ligand environment of heteroleptic Cu(I) photocatalysts. Besides the 
three heteroleptic Cu(I) photocatalysts that were screened during 
optimization (cf. Fig. 2), we additionally evaluated [Cu(phen)(BINAP)]
BF4 (τ = 3 ns) and [Cu(dmp)(DPEPhos)]BF4 (τ = 14,300 ns) (DPEPhos, 
bis[(2-diphenylphosphino)phenyl]ether) with contrasting excited-state 
lifetime values to compare their efficacy (Extended Data Fig. 2g). The 
reduction potential of the catalysts is capable of reducing aroyl choride 
B1, but nevertheless gave different outcomes. The highest yield of 1 was 
obtained using [Cu(dmp)(BINAP)]BF4 having τ = 2,188 ns. Intriguingly, 
when [Cu(dmp)(DPEPhos)]BF4 is used, the desired β-chloroketone 1 was 
obtained in 10% yield despite having a very high excited-state lifetime 
of 14,300 ns. A similar trend was observed for [Cu(dmp)(XantPhos)]
BF4 (τ = 1,133 ns). These results suggested that the presence of BINAP 
as a bidentate phosphorous ligand is crucial as the narrower bite angle 
of BINAP compared with DPEPhos and XantPhos renders [Cu(dmp)
(BINAP)]BF4 less photostability48, facilitating faster dissociation of 
the dmp ligand (cf. Fig. 8). However, [Cu(phen)(BINAP)]BF4 with an 
excited-state lifetime of only 3 ns provided the β-chloroketone 1 in 
30% yield, highlighting the importance of substituted diamine ligand 
(dmp) compared with unsubstituted one (phen) providing a longer 
excited-state lifetime to the Cu(I) catalysts48. These results underscore 
the importance of a specialized ligand environment of heteroleptic 
Cu(I) photocatalysts comprising both bidentate phenanthroline and 
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phosphine ligands in its coordination sphere for obtaining the highest 
catalytic efficiency in the title reaction. Moreover, to assess the effi-
ciency of the formation of Cu(III)-species of type IV we conducted the 
ATRA of alkene A10 where β-chloroacylation competes with intramo-
lecular cyclization (Extended Data Fig. 2h). In 2022, Ngai et al. reported 
that reaction of alkene A10 with aroyl chloride led to the formation 

of heterocycle 146 via an intramolecular cyclization-aromatization 
pathway31. Conversely, under the standard reaction conditions devel-
oped in this work, ATRA product 145 was obtained exclusively in 62% 
yield, pointing towards a different course of the reaction pathway. In 
Ngai’s work, the combination of [Cu(BINAP)2]PF6 and [Cu(IPr)2]PF6 as 
the catalytically active species was postulated, where the homoleptic 
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a    Plausible mechanism for the β-chloroacylation of alkenes b    Plausible mechanism for the β-chloroacylation of alkynes 
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[Cu(BINAP)2]PF6 is responsible for the reduction of aroyl chlorides31. 
We reason that the heteroleptic [Cu(dmp)(BINAP)]BF4 performs a dual 
role via ligand exchange: reduction of aroyl chlorides and rapid capture 
of transient radical of type IX by persistent Cu(II)–Cl intermediate VIII 
to prevent competitive cyclization (cf. Fig. 8).

Investigating [Cu(dmp)(BINAP)]BF4 in the presence of aroyl chlo-
ride, in the dark no ligand exchange is observed, while irradiation at 
455 nm results in the rapid formation of the phosphine-bound bridged81 
Cu(I)–Cl complex 147 due to facile dissociation of the phenanthro-
line ligand (Fig. 8a). Cu(I)–Cl complex 147 was fully characterized by 
independent single-crystal X-ray analysis (Fig. 8c and Supplementary 
Fig. 34) and nuclear magnetic resonance (NMR) spectroscopy (Sup-
plementary Figs. 16–18). The excited-state reduction potential of 147 
(ECu(II)/Cu(I)* = −2.19 versus Fc+/Fc; −1.81 V versus SCE; Supplementary 
Figs. 23 and 24) is sufficient to reduce benzoyl chloride as confirmed by 
Stern–Volmer analysis (Fig. 8d and Supplementary Figs. 19–21). Similar 
interaction between 147 and benzoyl chloride was observed in UV–vis 
spectra. Furthermore, a bathochromic shift in the UV–vis absorption 
spectra of complex 147 compared with [Cu(dmp)(BINAP)]BF4 (Sup-
plementary Fig. 22) can explain why the highest reaction efficiency was 
obtained when the reaction was performed above 400 nm, but not at 
385 nm (Supplementary Table 5). Hence, 147 acts as the active photo-
catalyst to facilitate the formation of aroyl radical I upon one-electron 
reduction of benzoyl chloride or the corresponding benzoyl cation 
with the generation of phenanthroline Cu(II)–Cl species34 VIII after a 
ligand exchange. The formation of Cu(II)–Cl species VIII was confirmed 
with the aid of electron paramagnetic resonance (EPR) and UV–vis 
spectroscopic studies (Fig. 8e, Supplementary Figs. 25–27 and Sup-
plementary Table 9). The ligand exchange between BINAP and dmp is 
consistent with the change of oxidation state from Cu(I) to Cu(II), with 
the latter preferring the harder phenanthroline ligand to the softer 
bisphosphine ligand. This phenomenon in relation to Cu(I)/Cu(II) 
catalysis has previously been recognized by the Fu group for asym-
metric amidation reactions82. The radical I adds to the alkene, forming 
the transient radical IX, which can interact with VIII. Chlorine is then 
transferred via an inner-sphere radical rebound mechanism initiated 
by a radical capture generating transient Cu(III) complex18,19,83–85 lV that 
forges the C–Cl bond in the final product through a reductive elimina-
tion. Alternatively, direct chlorine abstraction from Cu(II)–Cl species 
VIII by radical IX may deliver the desired product in an outer-sphere 
pathway (Supplementary Figs. 12 and 13). The dual nature of the het-
eroleptic copper complex (Cu(I)–BINAP for SET and Cu(II)–dmp for 
chloride transfer) is further corroborated by the fact that neither Cu(I)
(dmp)2Cl (cf. Fig. 2) nor [Cu(I)-BINAP-Cl]2 147 is capable to promote 
the title reaction efficiently, while independently prepared 147 to 
which dmp is added again results in good catalytic turnover (Fig. 8f). 
A light-on–off experiment (Fig. 8g and Supplementary Fig. 11) further 
suggests that the catalytic Cu(I) species responsible for SET can be 
reactivated upon light irradiation. For styrene derivatives bearing 
a strongly electron-donating para-methoxy group or an α-phenyl 
substituent, the reaction proceeds via a back-electron transfer mecha-
nism by oxidation of the radical intermediate IX to the corresponding 
carbocation X followed by combination with the chlorine anion to 38, 
39 and 55 under regeneration of the photocatalyst. In case of aromatic 
alkynes, the vinyl radical intermediate XI, generated after aroyl radical 
I addition to alkynes, could interact with Cu(II)–chlorine intermediate 
VIII, leading to the formation of Cu(III) species XII-A or XII-B (Fig. 8b). 
Formation of the Cu(III) species presumably controls the stereoselec-
tivity, and it is proposed that the reaction proceeds via the sterically 
more favoured intermediate XII-A to deliver the E-β-chlorovinyl ketone 
selectively upon reductive elimination. Previously, Collins et al. have 
reported that heteroleptic copper complexes can facilitate E ↔ Z alkene 
isomerization under light irradiation via an energy transfer process 
due to their higher triplet energy and longer excited-state lifetime86. 
Accordingly, it would also be possible that chlorine abstraction from 

the Cu(II) species VIII by vinyl radical intermediate XI and ensuing 
photoisomerization in the presence of [Cu(dmp)(BINAP)]BF4 leads 
to E-selective formation of β-chlorovinyl ketones (Supplementary 
Figs. 14 and 15). Further evidence for the Cu(II)–Cl species VIII as the 
chlorine atom transfer species was found for the β-chloroacylation of 
α,β-unsaturated Michael systems (Fig. 8h and Supplementary Fig. 28). 
With increasing electrophilicity of alkenes87, the electrophilic alkyl 
radical XIII could neither bind with the electrophilic Cu(II) centre 
(inner-sphere pathway) nor it could abstract an electrophilic Cl atom 
from VIII (outer-sphere pathway). Instead, XIII abstracts a hydrogen 
atom from THF, resulting in the hydroacylation of the alkene (Fig. 8h). 
The nucleophilic THF-radical XIV then captures the Cl atom from VIII, 
aligned with the formation of 2-chlorotetrahydrofuran and dihydro-
furan confirmed by gas chromatography–mass spectrometry analysis 
(Supplementary Figs. 29 and 30). Finally, it is understood that the 
ultimate proof of the mechanistic proposal would be the isolation of 
a Cu(III) intermediate along the reaction pathway, which represents a 
formidable challenge88–90 given the rapid reductive elimination that 
can take place to yield the ATRA product with concurrent regeneration 
of the Cu(I) photocatalyst.

Conclusions
In summary, we have developed a highly efficient method for the 
β-chloroacylation of readily available alkenes and alkynes with aroyl 
chlorides. This modular approach leverages a heteroleptic Cu(I) photo-
catalyst to control acyl radical generation and C–Cl bond formation. It 
demonstrates remarkable compatibility with diverse functional groups 
and encompasses a broad substrate scope, thereby empowering the 
synthesis of valuable β-chloroketones across various chemical con-
texts, advocating this method to practical application in chemistry, 
pharmaceutical science and materials science. Notably, our design 
features the introduction of an E-selective β-chloroacylation of pheny-
lacetylene derivatives in a catalytic manifold highlighting the efficient 
regio- and stereocontrol of this ATRA process for aromatic alkynes. The 
effectiveness of this protocol in late-stage contexts is demonstrated, 
allowing the rapid generation of molecular complexity from large and 
densely functionalized olefins derived from biomolecules and phar-
maceuticals. The synthetic utility of this method is demonstrated via 
the construction of various heterocycle and carbocycle scaffolds and 
the preparation of molecules widely used as building blocks for the 
synthesis of different natural products. Furthermore, this method 
paves the way towards the formal synthesis of pharmaceutically rel-
evant haloperidol and seratrodast and naturally occurring piperidine 
alkaloid (−)-sedamine, overcoming the limitation of the title reaction 
towards unactivated alkenes. Multifaceted mechanistic studies have 
revealed that the method exploits a heteroleptic copper complex in 
which a bidentate phosphine binds to Cu(I) to produce a photocatalyst 
to activate the aroyl chlorides, and a bidentate phenanthroline ligand 
binds to Cu(II) to effect highly efficient and expeditious rebound of 
Cu(II) after aroyl radical addition to olefins that can even outcompete 
a favourable intramolecular radical cyclization process31.

Methods
[Cu(dmp)(BINAP)]BF4-catalysed β-chloroacylation of unacti-
vated alkenes using aroyl chlorides
To a glass reaction vial (5 ml size) equipped with a stir bar [Cu(dmp)
(BINAP)]BF4 (4.9 mg, 0.005 mmol), unactivated alkenes (if solid at room 
temperature, 0.5 mmol) and benzoyl chloride B1 (30 µl, 0.25 mmol) 
were added. The vial was then sealed with a rubber septum and 
evacuated-backfilled with N2 three times. Then, 4.3 ml of freshly dis-
tilled THF was added into the vial and the solution was purged with 
nitrogen for 7–10 min until a solution volume of around 4 ml. Then, 
unactivated alkene (if liquid at room temperature, 0.5 mmol) was 
added into the solution under positive nitrogen atmosphere. The vial 
was irradiated with blue LED (λmax = 455 nm) at room temperature for 
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24 h. After completion of the reaction (monitored by thin layer chro-
matography (TLC) analysis), the whole reaction mixture was diluted 
with dichloromethane (DCM) and transferred to a round-bottom flask. 
Following concentration in vacuo, the crude product was purified by 
column chromatography on silica gel (eluent: hexanes and ethyl acetate 
in certain ratio as needed).

[Cu(dmp)(BINAP)]BF4-catalysed β-chloroacylation of 
activated alkenes using aroyl chlorides
To a glass reaction vial (5 ml size) equipped with a stir bar [Cu(dmp)
(BINAP)]BF4 (4.9 mg, 0.005 mmol), activated alkenes (if solid at room 
temperature, 0.25 mmol) and benzoyl chloride B1 (60 µl, 0.5 mmol) 
were added. The vial was then sealed with a rubber septum and 
evacuated-backfilled with N2 three times. Then, 4.3 ml of freshly dis-
tilled THF was added into the vial and the solution was purged with 
nitrogen for 7–10 min until a solution volume of around 4 ml. Then, 
activated alkene (if liquid at room temperature, 0.25 mmol) was added 
into the solution under positive nitrogen atmosphere. The vial was irra-
diated with blue LED (λmax = 455 nm) at room temperature for 24 h. After 
completion of the reaction (monitored by TLC analysis), the whole reac-
tion mixture was diluted with DCM and transferred to a round-bottom 
flask. Following concentration in vacuo, the crude product was purified 
by column chromatography on silica gel (eluent: hexanes and ethyl 
acetate in certain ratio as needed).

[Cu(dmp)(BINAP)]BF4-catalysed β-chloroacylation of  
aromatic alkynes using aroyl chlorides
To a glass reaction vial (5 ml size) equipped with a stir bar [Cu(dmp)
(BINAP)]BF4 (4.9 mg, 0.005 mmol), aromatic alkynes (if solid at room 
temperature, 0.5 mmol) and benzoyl chloride B1 (30 µl, 0.25 mmol) 
were added. The vial was then sealed with a rubber septum and 
evacuated-backfilled with N2 for three times. Then, 4.3 mL of freshly 
distilled THF was added into the vial and the solution was purged 
with nitrogen for 7–10 min until a solution volume of around 4 ml. 
Then, aromatic alkyne (if liquid at room temperature, 0.5 mmol) was 
added into the solution under positive nitrogen atmosphere. The vial 
was irradiated with blue LED (λmax = 455 nm) at room temperature for 
24 h. After completion of the reaction (monitored by TLC analysis), 
the whole reaction mixture was diluted with DCM and transferred to 
a round-bottom flask. Following concentration in vacuo, the crude 
product was purified by column chromatography on silica gel (eluent: 
hexanes and ethyl acetate in certain ratio as needed).

Data availability
The data supporting the findings of this study are available within the 
Article and its Supplementary Information and upon request from 
the corresponding author. Crystallographic data for the structures 
reported in this Article have been deposited at the Cambridge Crystal-
lographic Data Centre, under deposition numbers CCDC 2387681 (2), 
2412563 (30), 2387682 (68) and 2412567 (147). Copies of the data can 
be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/. 
Source data are provided with this paper.
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Extended Data Fig. 1 | Cu(I)-Photocatalysis: Mechanistic paradigms. Different facets of Cu(I)-photocatalysis via outer-sphere and inner-sphere electron transfer 
pathways. Nu = nucleophile, L = ligand.
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Extended Data Fig. 2 | Mechanistic investigations. Unless otherwise noted 
yields are of the isolated products. aτ = Excited-state lifetime. b1H-NMR yields  
are measured using 1,1,2,2-tetrachloroethane as the internal standard.  
a. β-Chloroacylation in the presence of both activated and unactivated alkenes. 
b. β-Chloroacylation of conjugated diene. c. Radical clock experiment with 
β-pinene. d. Radical trapping experiment in the presence of TEMPO. e. UV-vis 

experiment of different reaction components, Cu(I)-catalyst, and reaction 
mixture before and after irradiation. f. Stern-Volmer plot for luminescence 
quenching of Cu(I)-catalyst in the presence of aroyl chloride and alkene.  
g. Tabular representation of spectroscopic data for different heteroleptic  
Cu(I)-photocatalysts and their performance in β-Chloroacylation reaction.  
h. β-Chloroacylation vs intramolecular cyclization.
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