https://www.uni-regensburg.de/wirtschaftswissenschaften/bwl-schwarz/

Allocating Patients to Rooms under Uncertainty: An MDP-Based Approach

Philipp Pelz

Chair of Production Management, University of Regensburg

Fabian Schäfer

Chair for Supply and Value Chain Management, Technical University of Munich

Abstract

Effective bed management in hospitals is becoming increasingly important due to rising demand and limited bed availability. Patient-to-room allocation is a challenging task influenced by (i) stochastic factors, such as the arrival for emergency patients and the variability in the length of stay; (ii) constraints like limited bed capacities in specific rooms and gender-based room-allocations; and (iii) the handling of overflow situations. Undesirable actions—such as patient transfers, overflow area allocations, or rejections—should be minimized to ensure high-quality patient care.

The existing literature often relies on deterministic approaches that either assume full prior knowledge or use dynamic rolling-horizon approaches, which iteratively solve deterministic problems while updating current states. In contrast, we propose a Markov Decision Process (MDP) formulation that incorporates explicitly stochastic influences within a finite planning horizon. The model considers allocating patients to regular rooms, the overflow area, or rejecting them, as well as transferring patients to a different room based on the current state. We present the MDP model and preliminary numerical results, highlighting the value of modeling uncertainty.