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Zusammenfassung

In der dynamisch wachsenden Mensch-Computer Interaktion bietet die Integration
physiologischer Korpersignale eine innovative Moglichkeit zur Systemsteuerung.
In Situationen, in denen herkémmliche Interaktionsmethoden aufgrund des Be-
darfs an intuitiveren Kontrollmechanismen vor Herausforderungen stehen, konnen
physiologische Signale alternative Methoden der Interaktion bieten, wenn sie von
Computersystemen als Benutzerreaktionen integriert werden. Physiologische Ein-
gaben haben das Potenzial, eine nahtlosere und direktere Steuerung innerhalb von
Computerschnittstellen zu ermdéglichen, insbesondere in Systemen fiir sitzende,
freihdndige Interaktion, da sie nur minimale Bewegungen erfordern. Um die Inter-
aktion mit physiologischen Eingaben zu verbessern, konnen assistive Techniken
aus dem Gesundheits- und Sportkontext entlehnt werden. Bei der Technik des
Biofeedback werden die physiologischen Signale des Korpers an die Benutzenden
reflektiert. Es verbessert die Interaktion, indem es den Benutzenden ermoglicht,
zu lernen, ihre physiologischen Signale als Input zu kontrollieren und die Selbstre-
gulierung fordert. Biofeedbacksysteme erfordern eine angemessene Vorbereitung,
um sicherzustellen, dass die Personen die bereitgestellten Informationen bewusst
verarbeiten und sie mit ihren physiologischen Eingaben in Verbindung bringen.
Dieser Prozess kann durch die Unterstiitzung eines angemessenen Bewusstseins
der Benutzenden iiber ihr Biofeedback erleichtert werden und durch die Einbe-

ziehung von Muskel Priming, d.h. von Signalen vor einer Aktion oder einem



Ereignis, den Benutzenden dabei helfen ihre physiologischen Antworten kogni-
tiv zu antizipieren. In dieser Dissertation wird die verbesserte Interaktion mit
physiologischen Eingaben durch diese assistiven Techniken untersucht.

Die fiinf in dieser Dissertation vorgestellten Studien bieten tiefere Einblicke
in die Interaktion mit physiologischem Input von verschiedenen Korperstellen,
um Leistung, Effektivitit und physische Reaktionen zu verbessern und gleich-
zeitig die kognitive Arbeitsbelastung zu reduzieren. Wir haben herausgefunden,
dass das multimodale Biofeedback von visuellen und taktilen Modalitéiten die
Interaktion in einer muskelbasierten Schnittstelle verbessern kann. Der physiolo-
gische Input ist bei den getesteten Muskelstellen vergleichbar, was die Flexibilitit
muskelbasierter interaktiver Systeme unterstreicht. Wir untersuchen die Rolle
des Biofeedback-Bewusstseins der Benutzenden als Mittel zur Optimierung phy-
siologischer Selbstregulierung. Die Ergebnisse deuten auf eine wichtige Rolle
des Biofeedback-Bewusstseins hin, um die aktive Kontrolle des physiologischen
Inputs zu beeinflussen und zu férdern. Die Beobachtung, dass das Beriihren
der Muskelstellen wihrend der experimentellen Vorbereitungsphasen den Teil-
nehmern half, ihre Muskeln zu lokalisieren, regte zu weiteren Untersuchungen
dariiber an, wie die Vorbereitung des Benutzers physiologische Reaktionen verfei-
nern konnte. Aufbauend auf diesen Erkenntnissen untersuchten wir das Konzept
des Vorstimulationsfeedbacks, das als Muskel Priming vor der Interaktion auf
die Muskeln wirkt und sowohl visuelle als auch taktile Modalititen verwendet.
Um die Auswirkungen des taktilen Feedbacks weiter zu erforschen, trennten wir
die taktilen Modalititen in vibrotaktiles und elektrotaktiles Vortimulationsfeed-
back und untersuchten ihren Einfluss an verschiedenen Muskelstellen. Bei der
Untersuchung des Konzepts der vorbereitenden Hinweise fanden wir Evidenz
dafiir, dass Vorstimulationsfeedback von allen Modalitidten die Interaktion mit
muskelbasiertem Input verbessern kann, wobei die Wadenmuskelatur in unserem
System am schnellsten reagierte. Diese Dissertation schlieSt mit Implikationen
fiir physiologischen Input in Assistenzsystemen und deren Verbesserung mit mul-
timodalem Biofeedback und Vortimulationsfeedback fiir die Mensch-Computer

Interaktion.



Abstract

In the rapidly evolving field of human-computer interaction, the integration of
input from physiological signals of the human body presents an innovative way
to interact with computing systems. In situations where traditional interaction
methods face challenges due to the need for more intuitive control mechanisms,
physiological signals can enable alternative interaction methods when compu-
tational systems integrate them as user responses. Physiological input has the
potential to enable more seamless and direct control within computer interfaces,
particularly in systems for sedentary hands-free interaction because it requires
minimal movement. To enhance the interaction with physiological input assistive
techniques known from health and sports contexts can be adapted. The technique
of biofeedback involves simultaneously reflecting the body’s physiological signals
to the user. It enhances interactions by enabling users to learn to control their
physiological signals as input and fostering self-regulation. Biofeedback systems
require proper preparation to ensure that individuals consciously process the
provided information and accurately associate it with their physiological input.
This process can be facilitated by promoting appropriate awareness of the users
of their biofeedback and incorporating muscle priming, signals provided before
reaction, to help users to cognitively anticipate their physiological responses. This
thesis investigates the enhanced interaction with physiological input by these

assistive techniques.



The five studies presented in this thesis provide deeper insights into interaction
with physiological input from various body locations to enhance performance,
effectiveness, and physical responses while reducing cognitive workload. We
found that multimodal biofeedback from visual and tactile modalities can enhance
the interaction in a muscle-based interface. Physiological input is comparable
amongst the muscle locations tested, emphasizing the flexibility of muscle-based
interactive systems. We investigate the role of biofeedback awareness of users
as a means to optimize physiological self-regulation. Results point towards an
important role of biofeedback awareness to impact and foster active control
of physiological input. The observation that touching the muscle site during
the experimental preparation phases helped participants localize their muscles
inspired further exploration into how user preparation could refine physiological
responses. Building on these findings, we investigated the concept of prior
stimulation feedback at muscles, acting as muscle priming before the interaction,
using both visual and tactile modalities. To further explore the effects of tactile
feedback, we separated the tactile modalities into vibrotactile and electrotactile
prior stimulation feedback and examined their influence at different muscle
locations. We found evidence that prior stimulation feedback from all modalities
can enhance the interaction with muscle-based input, highlighting that the calf
muscles showed the fastest response in our system. This thesis concludes with
implications for physiological input in assistive systems and enhancing them
with multimodal biofeedback and prior stimulation feedback for human-computer

interaction.
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Introduction

The emergence of interaction paradigms that leverage physiological signals of
the human body as an input source, rather than relying solely on the motion of
physical objects like mice, keys, or controllers, offers promising opportunities
for human-computer interaction (HCI) [66, 198, 246, 250]. These approaches
enable users to consciously modulate internal physiological processes, thereby
establishing a direct and intentional link between the body and digital systems.
Such interoceptive control, the focus on internal body signals, can enhance
bodily awareness, improve reaction times, and refine motor performance [135,
136]. When combined with biofeedback, these systems amplify the perception of
internal body signals, supporting users in learning to regulate physiological states
as intentional input [131, 198, 265].

Physiological signals from the human body can not only be used to measure
physiological reactions based on muscle activity (electromyography (EMG)) or
skin conductivity due to the activity of the sympathetic nervous system (elec-
trodermal activity (EDA)), but also offer a seamless and touchless alternative to
interact with computational systems. Integrating input based on physiological
sensing like EMG and EDA offers a novel approach to facilitate intuitive and
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responsive control mechanisms for HCI systems [165, 326, 327]. Ultimately,
interoception-driven interaction frameworks have the potential to augment human-
device communication and extend the boundaries of embodied digital interaction.

In situations where it is desired to prevent unintentional motion-based in-
put or when movements are infeasible, e.g., for mechanical control of electric
wheelchairs [195], exoskeletons [178], and remote robotic systems [10, 109, 329],
traditional interaction methods like keyboards, mice, and hand-held controllers
can be inefficient. Furthermore, traditional input methods can be cumbersome
for untrained users [296], leading to prolonged response times [291] and frustra-
tion [262]. This makes them impractical for individuals with limited mobility [76,
85, 196]. When unobtrusive interactions are desired, e.g., for interpersonal com-
munication in public space [193] or more subtle input interfaces for mobile
computing [39], alternative input methods are needed. Input from physiological
signals, e.g., from muscle contractions, can then be employed for mobile inter-
faces to realize unobtrusive, minimal interactions with connected devices [47,
48]. Interactions derived from physiological input channels like muscle activity,
utilizing EMG, or skin conductivity as response from the sympathetic nervous
system, utilizing EDA, provide a promising avenue for accessible interfaces [237,
315] while they force the users to concentrate on their bodily functions and the
control of it, therefore enabling the focus on their body interoception, which
consequently leads to the development of it.

Utilizing physiological input from EMG requires distinguishing between iso-
tonic contractions, where muscles change length during movement [108, 203],
and isometric contractions, where muscles exert tension without length alter-
ation [203]. Physiological input based on isometric EMG is a promising method
for hands-free interaction [208]. This technique is particularly suitable for users
with mobility constraints because such systems are controllable with minimal
movement, but therefore also require special tracking technology apart from
motion-detection sensors [14, 82, 271]. Isometric EMG can be used to register
the physiological activity of muscles at various locations on the body [165] and

allows for continuous or discrete physiological input [5, 58, 237]. However,
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challenges remain because isometric contractions are difficult to detect [307],
can lead to rapid muscle fatigue [6, 58, 91], and are not easily visible without
specialized sensors with high resolution [227].

One way to gain increased control and more awareness during interactions
based on physiological sensing is to display the signal back to the user via biofeed-
back. Tt offers great potential for enhancing interactions because the reflection of
one’s physiological signal during interaction fosters self-regulation and enables
users to learn to control their physiological signals as input. Thus, isometric
muscle contractions are often used with biofeedback to visualize EMG signals for
improved awareness and body control [38, 114, 177]. Biofeedback increases body
awareness by providing real-time feedback on physiological processes, enabling
users to control previously unconscious responses, such as muscle tension, heart
rate, or skin conductance [153, 166, 303, 322]. A key strategy involves closing
the biofeedback loop, which facilitates neuroplasticity [102]. Users can then
deliberately learn to control these responses and the related effects [11, 28, 275].
This technique is well known in psychophysiology for helping patients relax in
stressful situations, often using EDA measures integrated into the biofeedback
loop. EDA signals are a commonly used tool for biofeedback applications ad-
dressing relaxation, usually visually represented within these systems [138, 140,
322]. However, biofeedback systems require proper preparation because it is im-
portant to ensure the users consciously process the provided information to enable
them to accurately relate it to the physiological signals from their body [87, 252,
257]. According to Gazzoni and Cerone [84], current biofeedback techniques
are simplistic and not intuitive, limiting clinical effectiveness and suggesting
the use of multimodal approaches. Research has explored various physiological
signal feedback modalities [231]. However, combined feedback modalities to
enhance physiological input remain underexplored, as such multimodal HCT ex-
periments are resource-intensive and complex to conduct. Christopher Wickens’
Multiple Resource Theory states that tasks in human attention compete for cogni-
tive resources when they share similar characteristics [280]. Extensions to this

model suggest using various modalities (visual, auditory, tactile) and processing
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codes (spatial, temporal) to balance the cognitive load and improve multitasking.
Multimodal biofeedback in rehabilitation facilitates neuroplasticity necessary for
regaining lost motor abilities [266].

This thesis aims to investigate how the biofeedback loop can be closed effi-
ciently using different modalities to engage multiple senses simultaneously to
reduce cognitive load, support multitasking, and enhance performance. It looks
at how to enhance and accelerate interactions with physiological input. It sheds
light on how biofeedback systems can amplify internal body signals to improve
interface quality, and interoceptive awareness influences bodily control.

1.1 Research Questions

This thesis focuses on advancing HCI with input based on physiological sensing
and output based on biofeedback principles. These efforts aim to develop more
intuitive and efficient interfaces for a sedentary hands-free context with minimal
movement. They offer practical insights for designing interactive systems with
physiological input to provide developers and bioengineers with design guidelines
to enhance user interfaces based on physiological input. Empirical studies are
used to validate the effectiveness and practicality of the developed approaches.
To inform the enhancement of applications for sedentary hands-free interaction
with physiological input from EMG and EDA, we present five studies to explore
the five research questions from Table 1.1.

‘We highlight the usefulness of isometric muscle-based input with EMG for
use cases with restricted movement and as an alternative interaction method
to traditional input mechanisms and to explore new ways of HCI paradigms.
To refine EMG-based interaction methods for increased user performance and
workload reduction, it is necessary to investigate optimal muscle locations for
physiological input from isometric EMG. To identify optimal strategies for EMG
sensor placement, we need to understand the difference among various muscle
locations to optimize isometric EMG input in user interfaces (RQ1).

Isometric EMG input, derived from raw data and after signal processing,
can be mapped to biofeedback modalities from multiple sensory cues. To com-
prehensively understand how different biofeedback modalities influence user
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performance and perceived workload in interactive muscle-based applications, it
is necessary to investigate these modalities both individually and in full-factorial
combinations. By experimental comparison of the effects of auditory, tactile, and
visual feedback modalities and evaluating their impact on information throughput,
it can be assessed which biofeedback modality most effectively supports isometric
EMG-based interactions. To explore multimodal biofeedback mechanisms that
relay muscle tension information back to users during interaction, it is necessary
to understand which modalities enhance isometric EMG-based input performance
and the effects of various biofeedback modalities on interaction (RQ 2).

Observations of participants during the previous study on isometric EMG
interaction from various muscle locations revealed that they could localize their
muscles faster when the experimenter touched the muscle site with the fingertip
before the interaction. This supports the assumption that tactile muscle priming
could speed up the recognition and interpretation of muscle activity. This priming
of muscles for interaction can lead to faster and more accurate muscle contractions
for input in systems with a deterministic repetitive input pattern. This applies
when the system knows which muscle needs to be contracted next, and a learning
effect enhances interaction. For the reduction of reaction times from relatively
slow input from isometric muscle contractions, we therefore evaluate the effect of
prior stimulation feedback on their responses. We employ visual, vibrotactile, and
electrotactile cues for prior stimulation, due to their quick response timesand based
on the findings from our previous study on multimodal biofeedback-enhanced
interaction, which reports positive results from visual and tactile modalities. This
includes the determination of the most effective modalities and muscle locations
for enhancing user reaction times with prior stimulation feedback during isometric
EMG interaction (RQ3 and RQ4).

It is currently unknown if increased or decreased biofeedback awareness of
being in a closed biofeedback loop changes the physiological response to stress
in an adaptive immersive environment. This addresses the important question in
biofeedback research, whether the conscious recognition of biofeedback alters
the effectiveness of physiological self-regulation to enhance the effectiveness in

adaptive biofeedback applications based on physiological input (RQ5).
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In summary, we integrate non-invasive physiological sensing technologies,
which have firmly established their role in HCI, for interaction that we enhance
through assistive techniques derived from rehabilitation and sports, such as
biofeedback and muscle priming. By integrating these into comprehensive inter-
active methods this thesis advances the development of assistive systems with
physiological input from various muscle locations, for multimodal biofeedback,
introducing the concept of prior stimulation feedback into HCI, and investigating
the role of biofeedback awareness. This is important for interaction designers
who are interested in creating novel human-machine interfaces and bioengineers
who aim to implement sedentary hands-free input techniques for real-time and
responsive systems for users with and without (motor) disabilities.

Topic No. Research Question Chap.

RQ1  Which muscle locations are optimal 3
Muscle Interaction for EMG-based real-time interac-
tions considering user performance
and perceived workload?

RQ2 How do different feedback modali- 4
ties (auditory, tactile, visual) influ-
ence the performance and workload
of EMG-based interactions?

Biofeedback-
Enhanced Interaction

RQ3 Does prior stimulation feedback en- 5

Enhanced Muscle hance EMG-based interactions in
Responses .
reaction time tasks?
RQ4 Do muscle location responses dif-
fer in EMG-based interactions with
prior stimulation feedback in reac-
tion time tasks?
. RQ5 How does awareness of biofeed- 6
Biofeedback back, provided through EDA, in-
Awareness

fluence physiological signal re-
sponses?

Table 1.1: Summary of research questions of this thesis.
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1.2 Methodology

The improvement and enhancement of innovative interaction techniques represent
a central focus within HCI. Throughout this thesis, we gathered quantitative and
qualitative data in user studies to evaluate enhanced interaction techniques based
on physiological sensing. The studies were conducted in laboratory environ-
ments and virtual reality (VR), mainly functioning as an experimental setup to
shield participants from external influences. Immersive environments offer a non-
distracting platform for engaging users in their interoception and therefore enable
them to focus on their self-management of their physiological state. Such isolated
environments allow interventions by providing a controlled yet dynamic setting
where physiological responses can be fully monitored and modulated in real-time.
The immersive nature of VR and interactive environments enhances the user’s
sense of presence, making the biofeedback experience more impactful [187].

Based on previous work, we developed interactive prototypes that integrated
physiological signal hardware with virtual real-time environments to explore inter-
actions based on physiological sensing and related effects. We selected simplified
and easy-to-understand visual stimuli in virtual versions of well-established re-
search methodologies in HCI like Fitts’ Law Tasks (c.f., [79, 180, 181]), the
Mental-Arithmetic task from the Trier Social Stress test (TSST) (c.f., [144]),
and a reaction time task from the well-established Vienna Test System (VTS)
approach (c.f., [103]). This was to unify the reactions of participants while the
system prototypes were developed according to our research questions.

A new apparatus, consisting of software and hardware prototypes, has been de-
veloped to virtually adopt a standardized Fitts’ Law target selection task setup [79,
180, 181], widely used in HCI for estimation of the information throughput from
the muscle-computer interfaces in chapters 3 and 4. To adequately relate the
physiological signal baselines of users a virtual version of a mental arithmetic task
from the Trier Social Stress test [144] was developed in a new software prototype.
alongside an immersive VR scenario that adapted to the user’s biofeedback narra-
tively by changing the theater parameters of the environment for the investigations
of chapter 5. We developed a new software and hardware prototype consisting

of a virtually adapted standardized response-based reaction test following the
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Vienna Test System (VTS) approach (c.f., [103]), common in computer-based
psychometric assessments, for muscle-computer interfacing in chapter 6. To
further highlight the results, a signal database was created to classify EMG data
according to muscle locations.

We took objective and subjective measures using a set of established methods
and tools from the literature. Statistical analysis was performed using accepted
approaches from the literature and previous work. For hypotheses testing, we used
parametric and non-parametric tests at a significance level & of .05. The research
in this thesis was conducted based on well-established research methodologies in
HCI. This thesis investigates the proposed research questions using a combina-
tion of qualitative and quantitative methods, including questionnaires, surveys,
and physiological signal analysis, across various empirical user study designs.
Research techniques include controlled lab experiments, using both subjective
user feedback and objective performance metrics, and observational methods. A
key focus was on selecting and applying the correct algorithms for physiological
signal processing, both in real-time and in post-processing. Statistical analysis
was employed to interpret the complex data sets, drawing on existing models
and frameworks from prior research. This thesis provides artifact and dataset
contributions [312], and the source code for all applications is obtainable in an
accompanying Open Science Framework (OSF) repository.

1.3 Research Context

The work in this thesis was conducted for about three years in the context of
the Research Center FUTURE AGING at the Frankfurt University of Applied
Sciences (FUAS), the Mixed Reality Lab of Faculty 2: Informatics and Engineer-
ing, and the Innovation Lab 5.0 in the HoST - House of Science and Transfer in
Frankfurt am Main, Germany. It was supervised by Prof. Dr. Valentin Schwind at
the FUAS and Prof. Dr. Niels Henze at the University of Regensburg. During this
time, several collaborations with researchers have shaped this thesis, particularly
with Prof. Dr. Thomas Kosch. This research was funded by the Hessian Ministry
for Science and Art, Germany (FL1, Mittelbau). Beyond the scope of this thesis,
several publications were produced during its preparation, contributing to related
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research topics and enriching the broader scientific discourse in the fields of
assistive systems [234, 258, 262, 263], wearable technologies [259, 261], Mixed
Reality (MR) [148], and experimental practice [255, 256].

1.4 Thesis Outline

This thesis consists of seven chapters, a bibliography, and an appendix. In the
conclusion chapter, we present the results and evaluations of five empirical studies,
an extensive review of related work, and a discussion and summary of the findings.
We structure the work as follows:

Chapter 1 - Introduction motivates the research in this thesis and gives an
overview of the research questions and the contributions of this thesis. We further
introduce the concept of an innovative system for sedentary hands-free interaction
based on physiological input for hands-free VR interaction using EMG and EDA
multimodal biofeedback as part of an evolving system for sedentary hands-free

interaction.

Chapter 2 - Background and Related Work provides an overview of the context
of multimodal interaction techniques, an explanation of the physiological sensing
technologies in use, and an extensive review of related work on physiological
input in Virtual Reality, Augmented Reality, and beyond.

Chapter 3 - Body Locations for EMG Interaction describes the results of a study
exploring the foundational question of which body locations are most effective
for EMG-based interaction. It provides basic explorations of EMG interaction to
lay the groundwork by exploring different body locations.

Chapter 4 - Multimodal Feedback for EMG Interaction describes the results of a
study investigating how auditory, tactile, and visual feedback, as well as their com-
binations, can enhance sedentary hands-free interaction with minimal movement.
It provides basic explorations of EMG interaction with multimodal feedback to
lay the groundwork by exploring different methods and their effectiveness.
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Chapter 5 - Prior Stimulation Feedback to Improve EMG Reaction Times de-
velops how stimulation beforehand the interaction reduces EMG reaction times
and enhances performance. It introduces the concept of muscle priming for prior
stimulation during an EMG-based system for sedentary hands-free interaction.

Chapter 6 - Biofeedback Awareness discusses how awareness of physiologi-
cal states (e.g., electrodermal activity) impacts users’ control of their biosignal
response. It introduces awareness as a crucial factor for effective interaction to
highlight how informing users about their biofeedback can enhance the control of

physiological input.
Chapter 7 - Conclusion and Future Work examines the results presented in

the earlier chapters, synthesizes them, and outlines potential avenues for future

research.
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Background and Related Work

Physiological sensing has significantly evolved, transitioning from invasive meth-
ods to sophisticated non-invasive technologies integral to modern healthcare
and HCI. This chapter provides an overview of the history and development of
non-invasive physiological sensing with EMG and EDA, biofeedback, and human-
machine interfacing. It introduces the technical foundations of physiological
signal processing for biofeedback techniques used in the system prototypes for
the studies of this thesis and reports on how related work integrates these methods
in the context of healthcare and sports, and HCIL.

2.1 Background

Physiological sensing has its roots in medical and scientific research aimed
at understanding human biology. The development of non-invasive methods,
particularly for EMG and EDA, electrotechnical and computing breakthroughs,
and advanced signal processing technologies marked significant milestones in
this field.
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Figure 2.1: First EMG recording apparatus at the Mayo Clinic Medical Sciences EMG
Lab. Ervin L. Schmidt is in the chair, and Mildred Windesheim’s arm is holding the
electrode (1954).

2.1.1 History and Development

Physiological sensing has its roots in medical and scientific research aimed at
understanding human biology. The development of non-invasive methods, par-
ticularly for EMG and EDA, electrotechnical and computing breakthroughs, and
advanced signal processing technologies marked significant milestones in this
field. EMG history began in 1666 with Francesco Redi’s discovery of muscle-
generated electricity in electric rays [229]. Galvani (1792) showed electricity
induces muscle contraction and du Bois-Reymond (1849) recorded muscle ac-
tivity [23, 81]. Marey coined "EMG" and made the first recording in 1890 [51].
In the 1950s, Lambert and Schmidt developed the first portable EMG machine
(Figure 2.1), while EMG emerged in the 1960s with refinements by Cram and
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a) EMG-driven bee touching flowers  b) EMG-controlled cars on Playmobil tracks.
sliding on the screen.

Figure 2.2: Examples of two dynamic biofeedback games: (a) An EMG signal controls
a bee in a video game, requiring muscle contractions to guide it to flowers or avoid
danger as the background scrolls left. (b) EMG amplitude determines the speed of a
slot car. (Courtesy of Compagniadi San Paolo, Torino, Italy.)

Steger in the 1980s, while Erik Stalberg led advancements in EMG analysis
since 1950 [137]. From 1950 to 1973, EMG signals were recorded and ana-
lyzed manually on film or paper. Between 1973 and 1982, modular digital EMG
systems emerged, enabling limited digital analysis. 1982 the first microprocessor-
controlled EMG system was introduced [160]. From 1982 to 1993, EMG systems
introduced new analysis methods and reporting features. Since 1993, personal
computers with standard software and hardware have been used for recording,
analyzing, and documenting EMG data. Similarly, EDA sensing has progressed
from large galvanometers to compact, skin-mounted sensors that measure sweat
gland activity, reflecting sympathetic nervous system arousal [297]. While EDA
was first observed in the 19th century, the term "EDA" was adopted as a standard
reference for the skin’s electrical phenomena around 50 years ago [161]. EDA
has become a widely used method in neuropsychiatry research to detect the skin
conductance response (SCR) triggered by various sensory and psychological
stimuli and, with advances in amplifiers and an understanding of its principles, is

now applied in clinical disciplines [25].
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The Emergence of Biofeedback Biofeedback was introduced as a technique that
used physiological sensing to help individuals control involuntary bodily functions
in the 1960s. Early systems employed EMG for neuromuscular disorders and
EDA for stress management, showing that real-time feedback could aid recovery
and performance improvement [69, 92, 313]. Neal Miller’s research from the
1980s demonstrated voluntary control of autonomic functions through operant
conditioning, inspiring biofeedback devices that, with advances in portable sen-
sors, expanded from clinical therapy to broader applications [317]. Biofeedback
measures physiological signals and presents them in an understandable format,
helping individuals gain awareness and control of their bodily processes [87, 252,
270]. With biofeedback acting as a "sixth sense" to perceive internal functions,
individuals can hear and see their physiological responses [189]. Biofeedback
serves as a "psychophysiological mirror," allowing individuals to observe their
body’s physiological signals and use them to develop self-regulation of specific
bodily responses [215].

Technological advances The acquisition of physiological signals and electrical
interfacing with the human body has become significantly more accessible over
time. Fifty years ago, physiological signal devices were expensive, bulky, and
primarily used for medical diagnostics and sports science research. The shift
from analog to digital technologies in the 1980s introduced the first consumer
biofeedback devices. Recent advancements in electronic technologies have further
transformed physiological sensing. Faster data transfer protocols, improved power
supply, and increased storage capacity have enabled the development of handheld
devices with powerful microprocessors capable of running training programs and
storing user data. Wireless technologies like Wi-Fi and Bluetooth now provide
greater mobility, allowing EMG signals to be transmitted wirelessly to PCs for
processing and analysis.

A key milestone in this evolution was the progression from invasive to non-
invasive physiological signal sensing. In the mid-20th century, the development
of EMG enabled the detection of muscle electrical activity using electrodes placed
on the skin, significantly enhancing the safety, comfort, and accessibility of physi-
ological assessments in medical diagnostics and research [224]. Clinical EMG
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Figure 2.3: Body surface biopotential electrodes (Ag-AgCl) are often used in physiolog-
ical sensing apparatus (adapted from [93]).

devices utilize invasive needle electrodes, besides adhesive electrodes, which
limits their applications outside clinical settings. In the mid-20th century, ad-
vancements in electrode technology enabled EMG, allowing muscle activity to be
measured non-invasively using adhesive electrodes on the skin. At the electrode in-
terface, a charge carrier exchange occurs between dissolved ions in the electrolyte
and free electrons in the metal, for accurate signal acquisition [19]. Similarly,
advancements in EDA measurement techniques enabled the non-invasive mon-
itoring of skin conductance, providing insights into autonomic nervous system
activity. Figure Figure 2.3 shows the silver/silver chloride (Ag-AgCl) electrodes
that are often used today in biopotential applications like EMG or EDA.

Figure 2.4: Fully working Atari Mindlink Prototypes for forehead EMG detection, shown
by the Atari Museum at the 2003 Austin Gaming Expo (left), advertisement (middle),
and view of the subsequent "Bionic" interface (right) (Courtesy atarimuseum’).

Human-Machine Interfacing The Atari Mindlink, introduced as a prototype in
1984, was one of the first HCI devices to use physiological expressions to control
an interface. It functioned as a basic EMG device, measuring forehead muscle
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activity (e.g., frowning) to control input, contrary to its advertisement as a device
for measuring EEG brain waves [249]. Demonstrated at the June CES in Chicago
in 1984 (Figure 2.4), it tracked muscle signals to move screen objects left-right
or up-down. Despite its innovative concept, development was canceled after
Atari’s Consumer Electronics division was sold to Tramiel Technologies one
month later. Interestingly, the project was originally proposed in the context of
the Special Olympics (Paralympics), with the Rose Kennedy Foundation offering
to cover the full development cost. The plan was for Atari to develop sports
software for the Special Olympics, potentially paving the way for advancements
in computer interfaces for individuals with disabilities. In applications for human-
machine interfacing, muscles are used as biological amplifiers of efferent nerve
activity because of the one-by-one association between action potentials traveling
along the axons of motor neurons and the electrical activity generated in the
innervated muscle fibers [70, 74, 157]. Concerning direct nerve interfacing,
muscle recordings do not necessarily need invasive techniques and provide greater
signal-to-noise ratios. Therefore, the use of EMG can be seen as a general neural
interface providing information on the activity of the motor neurons innervating
the target muscle [76, 190].

2.1.2 Physiological Sensing and Feedback

Physiological Sensing technologies like EMG and EDA measure the electrical
activity produced by skeletal muscles [105, 116] or the electrodermal activity of
the hands [25, 161]. Physiological Sensing technologies can be integrated into
Virtual Reality Systems to control an adaptive environment or enable new forms
of interaction with the system for more intuitive, precise, or direct control within
computer interfaces [145, 208, 326].

Electromyography (EMG) Skeletal muscle activity produces electrical signals
that can be captured using EMG technology. A small electrical current is produced
by the exchange of ions across the muscle membranes, gets amplified, and
is recorded using two electrodes placed over the target muscle (typically in
parallel with muscle fibers) plus a separate reference electrode on a neutral site
(often a bony region) [116]. This setup is referred to as bipolar EMG or single-
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Figure 2.5: The action potential in saltatory conduction jumps between nodes of
Ranvier, regenerating at each node, with a nerve conduction velocity of 10-50 m/s. The
subfigures on the left and right represent different time points (reproduced from [19]).

differential configuration [30]. EMG measures the electrical activity generated by
muscle fibers during contraction. This activity originates from action potentials
of electrical signals that travel along nerve and muscle fibers when muscles are
activated. The voltage at one electrode is compared to the voltage at another
(reference electrode). The difference between the two provides the differential
signal, which is what we use for analysis [19]. Surface electrodes are placed on the
skin above a muscle. These electrodes detect the voltage difference between two
points on the skin. The voltage difference reflects the summed electrical activity
of multiple motor units (groups of muscle fibers activated by the same nerve)
beneath the skin [80]. The action potential propagation in saltatory conduction
of such muscle fibers is shown in Figure 2.5. Depolarization occurs in rapid
jumps from one node of Ranvier of a nerve to the next, resulting in conduction
speeds of 10-50 m/s. The electrical field spreads almost instantaneously along
the myelinated segments of the nerve, causing the potential at the next node to
rise faster than in the myelinated region, therefore moving along the nerve [19].
While using surface electromyography (SEMG) signals are measured with the
help of electrodes attached to the skin surface, EMG can also refer to invasive
needle electrodes where the electrical current is measured within the muscle. For
consistency with related work, however, we use the term EMG for this entire work.
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Due to the noninvasive usage of EMG, the sensor technology is also in focus of
non-medical research. Engineers and developers of biomedical applications use
the EMG signal to control hardware or software [189]. EMG is used for medical
applications and diagnostics of muscle-related disorders or diseases [282, 308].
Particularly assessing the muscle activity using EMG is indispensable for a wide
range of medical, assistive, and interactive applications [5, 179, 282, 320].

The European Recommendations for Surface Electromyography (SENIAM)
protocol [105] proposed common standards for assessing signals with EMG
sensor technology, particularly for electrode placement instructions. Challenges
affecting the EMG signal are individual tissue properties, physiological cross-talk
in-between two muscles, and potential distance changes between muscle and
electrode [50, 189].

Isometric Muscle Control To accurately trace back EMG signals to their source,
it is essential to distinguish between signals from muscle tension based on move-
ments, namely isofonic contractions [108, 203], and signals measured from muscle
tension without movement, based on voluntary, namely isometric contractions [55,
75, 203]. Isotonic contractions are suitable for detecting movements, e.g., ges-
tures [3, 142, 245] or locomotion [306], and can be combined with other sensors
for improved recognition accuracy [326]. In contrast to isotonic contractions,
isometric contractions generate and maintain constant tension without changing
the length of the muscle and are frequently used in fitness training to maintain
posture [230].

The maximum voluntary isometric contraction (MVIC) method, where users
tense their muscles with the maximum possible strength, is recommended when
investigators desire no corresponding movements with cross-talking muscles,
employ multiple muscle positions [45], and aim to isolate the signal of actual
muscle tension from artifacts caused by movements [230, 245, 288]. A MVIC
from EMG signal generally should be repeated three times to detect the highest
amplitude of a muscle signal for processing physiological input from this muscle
strength baseline [150].
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Electrodermal Activity (EDA) The electrical conductance of the skin, which
varies with sweat gland activity, can be assessed using EDA technology. This
sweat secretion is controlled by the sympathetic nervous system, so it correlates
with physiological arousal (e.g., stress or excitement) [25, 117, 251, 301, 321].
Instead of measuring voltage differences, as EMG does, EDA, or galvanic skin
response (GSR), measures how easily current flows through the skin, which
changes with the moisture level. Two electrodes are placed on the skin, typically
on the palms or fingers, where sweat gland density is high. One electrode applies a
very small, constant voltage (e.g., 0.5-1 V). The other measures how much current
flows between the two, which depends on the skin’s conductance (or resistance).
EDA works with electrodes placed on the middle and ring fingers because they
form a closed electrical circuit over the skin. EDA is a non-invasive, sensitive,
and reliable marker of the sympathetic nervous system’s activity, making it an
ideal metric for biofeedback of bodily responses in the fields of healthcare and
psychotherapy [194, 202, 204], and for applications in HCI [67, 96, 226, 241,
314].

Multimodal Feedback In the studies of this thesis, we consider visual, audi-
tory, and tactile (later separated into vibro- and electrotactile) modalities in the
interaction-based experiments due to their quick response times over sensations
such as temperature, smell, taste, olfaction, or perceptions from organs in the
vestibular system [107, 149]. Tactile stimuli are processed faster than cuta-
neous stimuli, such as temperature or pain [32] because their perception relies
on mechanoreceptors. Mechanoreceptors typically have quicker response times
compared to thermoreceptors or nociceptors (for pain, also related to very high
temperature) [123, 184].

Researchers employ EMG-based visual feedback to enable subjects to increase
their control over their muscle activation, e.g., for the movement of a robotic
platform in real-time [42] or tend to prefer the use of visual and auditory cues for
multimodal biofeedback applications for the simultaneous rendering of the physi-
ological signal using multiple perceptual channels [84, 131, 231]. Biofeedback
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techniques are predominantly based on vision [273], or auditory [131, 298, 322]
feedback, while some innovative applications employ biofeedback techniques
rendering physiological signals using tactile [37, 131, 248].

Vibrotactile stimulation, which uses vibrations to engage skin receptors, has
been applied to improve body awareness [183], with research in HCI exploring
optimal placement [68], intensity [112], and user perception [316]. Vibrotactile
patterns can stimulate tactile sensations in virtual reality [285], affect muscle
activity [118, 119, 127, 192], and assist amputees or those with neuropathol-
ogy [121, 221]. Such stimulations aid in balance rehabilitation [304], enhance
EMG-controlled computing systems [168, 300], and prior vibrotactile stimulation
(at the index finger) can increase force production, likely due to a brain response
for limb stabilization and pattern memory [119].

While vibrotactile feedback stimulates skin receptors, electrotactile stimu-
lation applies electrical currents to skin nerve endings to induce tactile sensa-
tions [127, 310]. Electrical currents with shorter pulse widths ( 50-125 us)
and lower intensities are known as transcutaneous electrical nerve stimulation
(TENS) [176], providing electrotactile feedback without muscle contraction, in
contrary to electrical currents with longer pulse widths ( 150-350 us) and higher
intensities, causing muscle contraction by depolarization of deeper muscle fibers,
known as electrical muscle stimulation (EMS) [217, 287]. TENS can inhibit the
transmission of pain signals to the brain by instead targeting dedicated sensory
nerve fibers (A-beta fibers) [124, 125], responsible for transmitting tactile sen-
sations from the location of the current [12, 26, 139, 223]. While TENS is used
in the rehabilitative field for pain management [124, 147], it can be supportive
for dementia [27], for tactile feedback with prosthetics [65], in VR [289], or to

simulate muscle proprioception [130].

2.1.3 Signal Processing

Over the past 20 years, analog-digital converters and operational amplifiers have
improved massively and become cheap. Microcontrollers and processors are
widely available and can be easily integrated with the acquisition hardware.
Figure 2.6 depicts the basic architecture of a physiological signal-acquisition
system for EMG.
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Figure 2.6: Simplified block diagram of surface electromyogram acquisition (reproduced
from [31]). Block diagram illustrating the main steps involved in acquiring surface
electromyograms: (1) detection of myoelectric signals using surface electrodes and a
reference electrode, shown schematically on the medial epicondyle of the humerus;
(2) amplification of the signals through differential amplifiers; (3) analog filtering of the
amplified signals to prevent aliasing; (4) sampling the surface electromyogram into
digital voltage values; and (5) storing the digital data on a computer.

Filtering We relied on the built-in pre-processing, low-noise signal condition-
ing, and amplification circuit designs provided by the EMG and EDA sensors
of biosignalplux! 2. The integrated low-noise high-speed operational amplifiers
performed bandpass filtering and amplification on the basis of bitalino technol-
ogy [93]. When a continuous signal is sampled, the samples represent the signal’s
amplitude at specific points in time. If the sample frequency is not high enough,
multiple signals of different frequencies could match the same sampled points,
causing aliasing, and making it difficult to accurately reconstruct the signal (step 3

"https://support.pluxphysiologicalsignals.com/wp-content/uploads/2021/
10/physiologicalsignalsplux-Electromyography-EMG-Datasheet.pdf

*https://support . pluxphysiologicalsignals.com/wp- content/uploads/2021/
11/Electrodermal_Activity_EDA_Datasheet.pdf
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in Figure 2.6). The sampling rate should be at least double the size of the highest
expected frequency of the signal according to the Nyquist-Shannon Sampling
Theorem [269].

EMG-specific signal processing enhances parameter reliability and validity.
Scientific guidelines (ISEK, SENIAM, c.f. [105]) recommend recording raw
signals without hardware filtering, except for a bandpass filter (10500 Hz) to
prevent aliasing (step 3 in Figure 2.6). Ideally, post-hoc processing should be
reversible to the raw signal. Key post-processing steps are outlined below.

Analog to Digital Conversion Electrical signals that originate from neural activ-
ity can be measured on the surface of the human body based on muscle activity,
e.g., with EMG, and based on the consequences of the arousal of the sympathetic
nervous system, e.g., with EDA. Different types of measurement principles can
be used, which in our case are voltage potential differential principles, used for
EMG measurements [19] and conductance measurements, such as those based on
the basic principles of electrical current with EDA [93]. Based on their source,
they differ in their measure-related amplitude and their frequency [44]. In our ex-
periments, we followed the introductions from biosignalplux hardware datasheets,
considering the specifications of an Analog-to-Digital Converter (ADC) system
(step 4 in Figure 2.6). The given formula represents a process for converting an
analog EMG signal to a digital format and then expressing it in millivolts (mV)
(as suggested by the biosignalplux EMG sensor datasheet):

ADC 1 vce
EMG(V)= [ —= -~ . 2.1)
2n—1 2 ) Geuc
EMG(mV) = EMG(V) - 1000 2.2)
VCC = 3V — Operating voltage of the system EMG(mV) — EMG value in millivolts (mV)
EMG(V) - EMG value in Volts (V) ADC — Value sampled from the channel ADC

n — Number of bits of the ADC channel (we use 16-bit) Ggmc = 1000 — Gain of the EMG sensor system

On the contrary, the typical range of skin conductance used to measure EDA
is 1 to 500kQ for resistance, corresponding to 0.002 to 1°S for conductance,
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depending on the individual and their arousal state. To convert the raw values
(ADC) into micro siemens ((S) as physical units we used the following conversion
formula (as suggested by the biosignalplux EDA sensor datasheet):

EDA(uS) — 2 *VCC 2.3

(1S) =517 (2.3)
EDA(uS) = EDA(S)-1-107¢ (2.4)

VCC = 3V - Operating voltage of the system EDA(uS) — EDA value in microsiemens

EDA(S) — EDA value in siemens ADC - Value sampled from the channel ADC

n — Number of bits of the ADC channel (we use 16-bit)

EDA changes much more slowly than EMG. The signal’s frequency range
is 0.01 to 1 Hz because sweat gland activity occurs on a much slower timescale
compared to muscle activation. Since EDA changes slowly, it can be sampled at a
lower frequency (e.g., 10-50 Hz), sufficient to capture all relevant variations.

EMG voltage differences are tiny, typically in the range of 0.1 to 5 millivolts
(mV). They are time-varying and can oscillate rapidly due to the fast firing rates
of motor units. The frequency content of EMG typically ranges from 10 to
450 Hz, with most of the energy concentrated below 250 Hz. EMG signals are
high-frequency and require a high sampling rate (e.g., 1000 Hz or higher) to
accurately capture the details of the signal. These signals are processed following
the analog-to-digital (A/D) conversion via the biosignalplux API for Unity!, with
EMBG signals sampled at a high frequency (e.g., 1000 Hz) to preserve detail in
rapid changes and EDA signals typically sampled at lower frequencies (e.g., 10-50
Hz) due to their slower dynamics. This provides us with the raw physiological

signal measures from the corresponding signal sensors.

On-Set Detection in Real-Time The Teager-Kaiser Energy Operator (TKEO) is
particularly well-suited for detecting onset periods in threshold-based interactive
systems using EMG. It calculates the "instantaneous energy" of the signal and is

widely used for activation detection and real-time control. A study by Solnik et al.

'https://github.com/pluxphysiologicalsignals/unity-sample
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demonstrated that incorporating the TKEO into signal processing significantly
improves the accuracy of EMG onset detection in EMG signals, particularly in
EMG signals that originate from isometric muscle tension [278]. The Teager-
Kaiser Energy Operator (TKEO) enhances the characteristic features of a signal,
particularly those associated with rapid energy changes. This improves the
signal-to-noise ratio and emphasizes signal components with high amplitudes,
which are typically generated by muscle activity. The TKEO is commonly
used for detecting muscle activation phases, extracting features like energy or
frequency patterns for movement classification or prosthesis control, and filtering
out baseline fluctuations or high-frequency noise to prepare signals for further
analysis [277].

Rectification and Smoothing Raw EMG signals are captured as voltage differ-
ences, representing muscle activation, and require rectification, besides smoothing
to extract meaningful activity levels to serve as appropriate input for interactive
scenarios. Raw EDA signals are recorded as skin conductance levels (in mi-
crosiemens), reflecting physiological arousal, and typically require smoothing but
not rectification.

In the rectification process, all negative amplitudes are converted to positive
values through mathematical absolute value calculation, effectively "flipping"
the negative signal deflections upward (Figure 2.8). This simplifies amplitude
detection and enables the calculation of standard amplitude parameters such as
mean, maximum, minimum, and integral. Bipolar raw signals, by contrast, have a
mean or integral value of zero. Rectification ensures the EMG signal does not
average to zero by eliminating its negative components. This can be done through
full-wave or half-wave rectification [228]. Full-wave rectification converts the
entire EMG signal to positive values, preserving all signal energy for analysis,
making it the preferred rectification method [302].

To provide a reasonable level of signal smoothing, it is common to average a
constant number of signal values by continuously calculating the average within
a constant moving window (Figure 2.9). When applied to rectified signals and

appropriately parameterized, it serves as a reliable parameter for estimating
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Figure 2.7: lllustration of the effect of a
TKEO algorithm for onset detection of an

EMG signal before it goes into rectification.

On the right side, with the TKEO applied,
a baseline segment and an EMG burst
were extracted from a raw EMG reference
signal to emphasize the characteristics of
the signal (image reproduced from [278]).

Figure 2.8: Raw EMG recording in the
upper channel of a signal acquisition
software and its fully rectified version
in the lower channel (image reproduced
from [150]).

Movag at 300 ms

Figure 2.9: lllustration of the effect of
a sliding window algorithm for signal
smoothing of EMG amplitude measures
shown by the black lines (image repro-
duced from [150]).

amplitude behavior in EMG measures [105, 150]. Using a sliding window

technique with a defined length is also useful to smooth the raw EDA signal [161]

for further processing.

Biofeedback Mapping Two main mapping strategies are employed in this thesis

to interface the physiological signals of individuals with computing devices and
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Sensory Feedback

Multimodal Biofeedback Simulation

Figure 2.10: Schematic of a Biofeedback Loop: The physiological signals of the human
body are displayed back during interactions, informing about the body’s physiological
state. Signals are recorded from EMG and EDA, processed and mapped, and trans-
formed into multimodal biofeedback that reflects a feature (such as amplitude) or a
pattern of the physiological signal as sensory feedback back at the human.

provide biofeedback: threshold-based mapping and linear mapping. Figure 2.10
illustrates the biofeedback loop, where the physiological data of the individual is
sensed, processed, and displayed back in an interpretable format by the system.

Threshold-based mapping triggers events when signals exceed predefined
thresholds, such as selecting a UI element by contracting and relaxing a muscle
beyond set upper and lower thresholds of the EMG value. This approach is similar
to up and down training of muscles known from physiological training [59, 163,
211] and can also support biofeedback mechanisms. The most common EMG in-
dices in such contexts are signal amplitude and muscle activation timing, typically
expressed as the percentage of time the amplitude exceeds a threshold. EMG
biofeedback is used in the context of rehabilitation for “up-training” to increase
muscle activation during tasks [163], and for “down-training” to promote muscle
relaxation [63, 205] or to reduce contraction during incorrect postures [211] or
spasticity [59]. We employed such techniques known from rehabilitation for in-
teractive scenarios and applied them to facilitate the selection process of elements
in VR-based user interfaces to compare different aspects that may enhance the
interaction with muscle physiological signals.
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Linear mapping establishes a direct proportionality between the parameters
of the physiological signal and a virtual parameter, such as translating EMG
values into a visual feedback parameter [42] that changes based on muscle tension
intensity, or when EDA values are mapped to the intensity of a virtual parameter
that guides the appearance of the VR environment, like the percentage value of a
preset that influences the surrounding weather state. This mapping strategy can be
employed in a multimodal biofeedback UI to reflect and inform individuals about
the state of the employed physiological signal with more than visual feedback, but
also vibrotactile or electrotactile feedback. Linear EMG biofeedback can be used
to inform the subject on the timing of their muscle activity when translated to
informative visual patterns [4, 131] and to promote the occurrence of rest periods
in the case where a muscle is continuously active [104]. Similarly, linear mapping
of EDA biofeedback promotes relaxation in biofeedback applications for stress
reduction [117, 202].

A combination of threshold-based and linear mapping strategies was used in
the studies of this thesis, where muscle tension thresholds trigger interactions
while providing multimodal feedback that is then linearly mapped to muscle
activity and displayed as visual, vibrotactile, and auditory parameters. In chapter 3,
threshold-based mapping was used to trigger interactions, in chapter 4, threshold-
based mapping was used to trigger interactions, and linear mapping was used
to generate multimodal biofeedback, in chapter 5, linear mapping was used
to generate visual biofeedback while signals were post-processed for reaction
time evaluation, and in chapter 6 linear mapping was used to generate visual
biofeedback.

Biosignal Classification ~Approaches for physiological signal classification from
EMG data are less developed than, e.g., heart rate (HR) signal classification,
utilized to assess user engagement, and cognitive load in HCI [173], or for
diagnosing cardiovascular conditions [2]. This might be due to EMG signals
being highly variable related to muscle location, interference, and individual
physiology.

The majority of research on interactive systems with EMG signal classification
employs high-density surface EMG (HD-EMG), an array of numerous electrodes
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to sample muscle signals at multiple points over one muscle site or around
limbs, e.g., around the wrist to decode handwriting gestures [129]. The grid-like
structure of HD-EMG instead of a bipolar electrode setup requires a higher data
volume to be analyzed. Still, it can be appropriate for decoding input for gesture
recognition and advanced prosthetic control [30, 129]. At the same time, its
machine learning integration is more suitable for deep learning methods that
exploit spatial correlations, similar to image detection [122].

In recent years, machine learning has enabled new biosignal processing ap-
proaches for human—computer interaction, with ensemble methods, such as ran-
dom forests, playing a key role. Random forest classifiers can robustly identify
patterns in bipolar EMG signals (e.g., hand gestures or muscle activation states)
with high accuracy and strong noise resistance [120]. Recent studies demonstrate
that random forests can decode EMG-based hand gestures to control computers
or prosthetic devices with excellent performance (often >95% accuracy) [128].
Random forests have also been integrated to estimate continuous joint movements
from EMG, enabling intuitive control of prosthetic limbs or wearable robots [171].

In this thesis, data from the study of Chapter 5 is used to uncover patterns in
signals from different muscle locations. We present a novel approach that, instead
of employing HD-EMG arrays for biosignal acquisition, uses a bipolar EMG
setup and that, instead of using random forest models for real-time detection,
retrospectively analyzes bipolar EMG data to demonstrate machine learning as a
post-hoc analytical tool, extending beyond real-time gesture control.

2.2 Related Work

Measuring physiological signals, using those for computational input, and ren-
dering those signals as biofeedback are subjects in multiple disciplines of related
work. In this section, we built upon relevant research in the context of registering
and using physiological signals as well as rendering biofeedback. We report
on relevant research on EMG as physiological input as an interaction technique
and the integration of biofeedback for the improvement of body perception and
training in the healthcare and sports field, as well as for the enhancement of
systems in HCL.
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2.2.1 Interacting with Muscles

By translating muscle activity to input, EMG-based systems enable natural, hands-
free interactions, crucial in muscle-computer interfaces, assistive technologies,
and accessibility. For interactions with computing systems, EMG offers a promis-
ing avenue for enhancing interactions through muscle-based input methods [9,
47, 48, 175, 193, 247]. Research in HCI explores the feasibility of muscle-
computer interfaces as interaction methodology between humans and devices
for gesture detecting [9], remote rehabilitative exercise monitoring [151], and
creating haptic full-body immersive experiences using EMG in VR [54], while
early approaches showed an interest in decoding human-muscular activity rather
than relying on physical device actuation [245]. Gesture recognition [245] or
translating the intensity of muscle activity to select letters while typing [156]
are additional use cases of EMG devices in HCI research. EMG has also been
explored providing off-desktop mobile or wearable interaction systems [159] and
as interactive communication tool between persons [247]. EMG input devices
can enable mobile interfaces to realize unobtrusive and intimate communication
based on isometric muscle contractions [47, 48] allowing subtle and minimal
interactions with connected devices to stay unnoticed by observers, and integrate
EMG input in applications for public space with motion-less gestures to enable
private interpersonal communication [193].

In the fields of biomedical and interactive applications, physiological in-
put was leveraged for active hardware and software control [189, 199]. It has
gained popularity in non-medical research, particularly for enhancing body aware-
ness, motion, interactive device control [38, 114, 177], and assisted control of
interaction-based selections [14]. Thus, apart from its general relevance in rehabil-
itation and sports [15, 131, 207, 282], particularly EMG-based input mechanisms
find applications in exoskeletons [178, 290], prosthetic control [29, 237], tele-
operated robotic systems [10, 109, 329]. EMG feedback for active control of
immersive, virtual applications has expanded into motor imagery applications,
such as training for direct limb control for amputees [5, 58, 209] and post-stroke
rehabilitation [111].

Research has reported different effects of EMG sensor placement at different

muscle locations for interaction [45, 165]. For example, in terms of adaptive
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gameplay, participants in a study by Nacke et al. [198] report headaches when
EMG sensors were placed on the forehead to imitate joystick input. The authors
also refer to the positive effects of isotonic contractions from physiological
sensors when EMG is being placed at the leg, evaluating them as convenient
and fun to use, leading to high subjective ratings of the game mechanics [198].
Also related to games is when EMG is connected to game mechanics to support
rehabilitation and motivation. For example, Ma et al. [179] present an EMG VR
system that aids muscle rehabilitation through a balloon shooting game, which
uses the actions of rotation and grasping of the hand as input and delivers visual
feedback. Consequently, Garcia-Hernandez et al. [83] concluded that gamified
EMG and VR therapy can lead to engagement and motivation. Supporting
muscle training in multi-modal VR/augmented reality (AR) environments can
also improve learning, for example, how to use a new prosthetic [197, 201] or
even a virtual hand [162, 209]. The process of muscle priming, a phenomenon
from neurophysiology, suggests that prior stimulation of muscles can enhance
performance and cognitive processing [61, 62, 89, 272] and could therefore
enhance EMG interaction. Similarly, muscle activation during warm-up exercises
can lead to improvements in various metrics [20, 94, 293].

To interact with EMG related work mostly used threshold-based action triggers
(ca. 20 - 50% of the maximal signal strength) to translate the continuous signal
into discrete events for target selection or event triggering [21, 170, 233]. For
target pointing or aiming in combination with EMG triggers, researchers use
eye gaze [208, 242], upper and lower arm rotation [99, 233] (c.f. Thalmic Labs’
discontinued Myo Gesture Control armband), hand rotation [179, 208], and head
rotation [179, 208]. Related research uses pointing via head-gaze with an head-
mounted display (HMD) in hands-free interaction [98, 315] with EMG-based
triggers, and showed that this method works better concerning the information
throughput [181] than eye-gaze pointing.

Isometric Muscle Tension Applications of isometric EMG are commonly known
from systems in rehabilitation following injuries and from control mechanisms
in assistive systems for users with limited mobility, with a few examples from
HCI. Isometric muscle contractions are suitable for users with injuries or medical
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conditions that restrict movement [106] because the muscle does not change its
length or position during tension. They can be employed to increase muscle sta-
bility, such as holding the weight over longer periods [164], or to address muscle
stiffness and reduce blood pressure [164, 191]. After a fracture, when the arm is
fixated to prevent movement, isometric contractions based on EMG-supported
feedback can prevent muscle loss without destabilizing the fracture [279]. They
improve control in assistive systems for users with limited movement, aiding
therapists, researchers, and developers [199, 276]. These interfaces provide ac-
cessible solutions for users with physical disabilities to interact with computing
devices [14]. This approach is particularly valuable for health-related applica-
tions after events like strokes, where only the intention to move a limb can be
tracked [82, 271]. Isometric EMG interfaces enable a layer of motionless [39],

subtle, and unobtrusive (social) interactions [48, 193, 264].

2.2.2 Biofeedback in Healthcare and Sports

Rendering a signal from a physiological activity to its user in real-time is com-
monly referred to as the term biofeedback. This allows the user to influence that
signal. Biofeedback is used to increase awareness and consciousness of that phys-
iological function [87]. Using biofeedback with EMG signals mainly emerged
from the field of medical and clinical rehabilitation [15]. Actively monitoring
one’s physical activity of the muscles can be supportive of reacting, adapting, or
understanding one’s physiological-based parameters such as behavior, movements,
and postures [210]. EMG biofeedback can, for example, be used to facilitate
or inhibit muscle contraction and is considered a suitable treatment for a wide
range of musculoskeletal disorders [324], neuromotor [110], and stroke rehabil-
itation [286]. Yoo et al. [320], for example, treat a neuromuscular imbalance
between the triceps and biceps using EMG and visual biofeedback in VR with
children with spastic cerebral palsy. Typically, biofeedback is presented visually,
but the signal can also be reflected using other perceptual channels [34, 37, 131,
248]. In particular, rendering biofeedback using multi-modal systems such as in
VR or AR has been extensively investigated by previous work [174, 209, 244].
To assess stress in biofeedback applications and in real-time, medical prac-
titioners and researchers use EDA. Closing the biofeedback loop Figure 2.10
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depends on the user’s awareness of consciously perceiving the biofeedback pro-
cess and the extent of feeling to directly control the physiological response. For
example, researchers found an increased muscle activity in high-awareness tasks
using EMG and a reduced activity where participants were not fully aware of
the functional control [257, 264, 281]. Thus, an increased or higher awareness
of the physiological function may significantly alter the strategy to control the
physiological response and could be used to enhance or decrease the effectiveness
of biofeedback techniques. This is important for HCI researchers and healthcare
practitioners utilizing a wide range of applications, such as in virtual reality [200].
These applications do not only comprise measuring stress in VR [67, 226, 241],
but also using the signal as biofeedback modality [314] such as for anxiety [202]
or phobia treatment [194], trauma coping [204], emotion-adaptive games [96],
skill training [239] or architectural feedback in VR [212], or for altered appear-
ances of one’s own avatar [274]. Biofeedback for stress management with EDA is
important for enhancing individual well-being and health [7, 56, 138, 167, 323].
By enabling individuals to monitor and adjust their physiological states, biofeed-
back offers a responsive and effective alternative to managing stress, potentially
reducing the reliance on pharmacological interventions and promoting holistic
health. Emerging evidence suggests that biofeedback systems can serve as a
valuable adjunct to traditional therapeutic modalities, particularly for conditions
like anxiety, phobias, and trauma [117].

2.2.3 Biofeedback in Human-Computer Interaction

Previous work from HCI discussed how the biofeedback loop can efficiently be
closed using different modalities in EMG interfaces [131], investigating the effect
of visual and auditory biofeedback for physical training exercises. However,
based on their findings, the authors conclude that multimodal feedback systems
should provide a choice for the user to prevent sensory overload [131]. While it
appears that addressing two senses simultaneously can lead to an increased cogni-
tive processing [222, 292, 319], there are also cognitive models predicting that
combining too many external influences can increase the likelihood of information
overload [13, 115, 311]. Biofeedback in VR is particularly impactful because
immersive environments enhance presence and make biofeedback experiences
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more engaging [187] to improve sports, training, and fitness efficiency [43, 52,
299]. Here, VR has been established as a stimulating and motivating kind of
application not only to support training but also multi-modal muscle control [114,
219, 232, 271].

The application of EMG in interactive systems has shown promise in enhanc-
ing user interaction from different muscle locations through biofeedback [165,
326]. EMG is widely used for various health-related interactive applications [35,
111, 145, 172, 244, 295], with biofeedback enhancing immersion and engage-
ment [83, 162, 179, 197, 201, 209]. As these technologies provide high levels
of immersion, motivation, and engagement that can be fostered by virtual, visual
feedback [5, 185, 244], the usage of AR and VR is the subject of several use cases
in many EMG-related disciplines such as in fitness and sports [84], for hands-free
interaction [208], health [172], and rehabilitation applications [201, 209, 295]. Re-
cent studies in HCI exploring machine learning methods, including random forests
(RF), for interpreting bipolar EMG signals, have proven effective for classifying
EMG-based user gestures and muscle activities. For instance, Dwivedi et al. [64]
employed a Random Forest model to decode object manipulation motions in a
VR setting using forearm EMG, enabling immersive muscle-computer interfaces.
Similarly, Findik et al. [268] applied a random forest classifier to multi-channel
surface EMG for hand gesture recognition and muscle forces, achieving accurate
classification of individual finger movements.

Body awareness, the systematic cognitive processing of sensory cues, involves
both visual and tactile stimulation in HCI [60, 188] with recent research focusing
on using these for biofeedback in EMG interaction with the own body [73, 131—
134, 141, 264]. Similar research in HCI addressed the mechanism using isotonic
contractions [152], e.g., while playing music instruments [126].

The integration of EDA into HCI, such as in Games [198, 213, 235] and immer-
sive environments [36, 154, 187, 309], has recently gained increased interest for
HCTI researchers. EDA-driven systems dynamically adjust virtual environments
on base of biofeedback principles to reduce stress, offering real-time interventions
for relaxation training, or productivity enhancement [90, 212]. EDA with visual,
narrative feedback has been increasingly recognized, e.g., for its potential in
treating a variety of stress-related conditions [77, 214, 243]. Furthermore, the
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applications of EDA biofeedback extend beyond stress management and have
been widely explored to enhance the mind-body connection, enabling users to
gain greater control over psychophysiological states [11].

2.3 Summary

This chapter explores the historical development, technical foundations, and inter-
disciplinary applications of physiological sensing, biofeedback, and their integra-
tion into HCI systems. It explains the technical foundations and advancements in
physiological sensing and signal processing for the design and implementation of
interactive systems, emphasizing non-invasive techniques like EMG and EDA.
Signal processing techniques enable the extraction of meaningful data from noisy
physiological signals, such as EMG and EDA. Mapping strategies (threshold-
based and linear) allow interactive systems to translate physiological activity into
user feedback, fostering more intuitive control.

Related work has leveraged EMG for muscle-computer interfaces, gesture
recognition, and assistive technologies. However, challenges like optimal sensor
placement and related interaction performance remain unexplored in detail. EMG
at different muscles is used in a wide number of health-related and even interactive
applications [35, 111, 145, 172, 244, 295]. Therefore, we investigate the impact
of different muscle locations on user performance and workload in sedentary
hands-free interaction, addressing RQ1.

Biofeedback has been widely used in related research for therapeutic applica-
tions in healthcare, such as neuromuscular re-education, stroke rehabilitation, and
stress management. Biofeedback measures physiological signals and presents
them in an understandable format, helping individuals gain awareness and control
of their bodily processes [87, 252, 270]. Related work reports on relevant aspects
of the integration of multimodal feedback modalities to enhance user interaction
with physiological input like EMG. Single- and multi-modal biofeedback can be
presented to the user to gain control over one’s own muscle contractions [15, 43,
52, 87, 131, 299] and for immersion and engagement [83, 162, 179, 197, 201,
209]. It is unknown which biofeedback modalities [131, 248, 298] can be used
for optimal interaction with EMG devices. While multimodal biofeedback has
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shown potential, sensory overload and cognitive load are key concerns. However,
no comprehensive comparison of multimodal biofeedback techniques to enhance
EMG interactions has been investigated so far, therefore, we address this by
investigating RQ2.

Previous work uses EMG to measure isometric contractions for various appli-
cations, including hands-free interaction in real-time systems [68, 112, 124, 125,
127, 183, 192, 285, 316]. Research indicates that vibrations as prior stimulation
can affect muscle activity [118, 119]. However, it is currently unknown if this
principle applies to isometric contractions and electrotactile stimulation. Addi-
tionally, the impact of these factors on muscle reaction time, vital for hands-free,
real-time interactions, remains unclear. While research on muscle priming in
sports and rehabilitation is established, its integration into EMG-based interactive
systems remains to be explored. Related work demonstrates strong performance
of random forest classification on EMG pattern recognition tasks, which is valu-
able for real-time control systems, but the use for post-hoc analysis of EMG data
remains underexplored. This provides a foundation for addressing RQ3 and RQ4
by evaluating the effects of muscle priming with prior stimulation feedback on
reaction times and muscle-specific responses.

Biofeedback acts as a "psychophysiological mirror", enhancing body aware-
ness by visualizing internal states [11, 215]. Previous studies have demonstrated
the effects of EDA biofeedback applications to improve health-related issues
and report on reduced activity where participants were not fully aware of the
functional control [257, 281]. How EDA-based awareness impacts physiological
responses remains unclear; therefore, we investigate this by addressing RQ5.
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Muscle Locations for EMG
Interaction

This chapter explores the potential of various muscle locations for EMG input,
focusing on sedentary, hands-free interaction. We investigate how isometric
EMG from different muscle locations can optimize interaction performance. To
study the interaction of participants targets appear on a virtual panel in front
of them. The participants are asked to select the targets as fast as possible
by pointing at them with their head rotation (head-gaze) tracked by the VR
HMD and trigger the targets by tensioning their biceps muscle to exert a signal
threshold. Understanding muscle control as an interaction technique requires
distinguishing between isotonic contractions (e.g., limb movement) and isometric
contractions (force exertion without movement) [39, 193]. Isometric control is
essential in EMG-based systems where unintentional motion must be avoided,
such as electric wheelchairs [195], exoskeletons [178], and robotic systems [10,
109, 329]. Previous research highlights the versatility of isometric EMG-based
interfaces in health and interactive applications [35, 111, 145, 172, 244, 295],
while it reports on isometric EMG interaction promoting muscle fatigue [91].

However, the optimal muscle locations concerning throughput and workload with
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isometric EMG remain unclear. To address this, we conducted an exploratory
study examining the effects of isometric EMG from different muscle locations on

interaction performance.

Parts of this chapter are based on the following publication:

J. Sehrt, T. WiBmann, J. Breitenbach, and V. Schwind. “The Effects of Body Location
and Biosignal Feedback Modality on Performance and Workload Using Electromyography
in Virtual Reality.” In: Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. CHI '23. Hamburg, Germany: Association for Computing Machinery,
2023. ISBN: 9781450394215. pol: 10.1145/3544548.3580738

3.1 Method

As humans do not activate and use all of their muscles in the same way, we
hypothesize that there are differences in the users’ input performance between
different muscle locations. To shield users from external influences, we conducted
the exploratory user study in VR.

3.1.1 Study Design

We conducted a VR user study using a within-subjects design with the independent
variable BODY LOCATION. Based on a standardized Fitts’ law target selection
task using EMG and an HMD as the pointing device (cf. ISO 9241-411 [113,

181]) as well as subjective assessments, we measured performance and workload.

Muscle Locations Research investigating EMG as muscle input uses the upper
front arm (Biceps bracchii) [5, 273], the upper back arm (Triceps brachii caput
laterale) [5], the temple (Temporalis anterior) [156, 294], the inner calf (Gas-
trocnemius) [198], or forearm (Flexor carpi radialis) [5, 245]. During system
development, we found that EMG signals from the shoulder muscles (Infraspina-
tus) [328] are being compromised by the head rotation with the HMD and did
not include the location. As a control condition, we included the VR Controller
(Hand) of the headset.
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VR Controller Biceps brachii Triceps brachii cp.
(Hand) (Upper Front Arm) lat. (Upper Back Arm)

T

Gastrocnemius cap. Temporalis anterior Flexor carpi radialis
med. (Inner Calf) (Temple) (Forearm)

Figure 3.1: The six conditions with corresponding muscles (blue) and muscle locations
(1-6) for EMG sensor placement used in the user study.

3.1.2 Apparatus

We created a virtual version of a Fitts” Law task [113, 181] using Unity Engine
(Version 2019.4.1f) running on a PC with AMD Ryzen 5900X, GeForce RTX
3070, and 16 GB RAM to measure performance and workload. Targets were acti-
vated reciprocally clockwise, beginning with the uppermost target (at 12 o’clock),
and were hidden until activated. The virtual scene was kept as simple as possi-
ble and contained a panel in front of the participant for calibration instructions
and the display of the targets of the 2D Fitts’ law target selection task right in
front of the participants. An HTC Vive Pro with 90 fps was used as HMD and
tracked using four lighthouse boxes for high accuracy. The head orientation of
the headset was used to control the camera view ray casting towards the center of
the view and indicated by a small red dot. In the muscle-controlled conditions,
the EMG signal was used for action triggering during target selection. In the VR
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controller condition, action triggering was performed using the index finger on
the trigger button of a regular HTC Vive Controller. A biosignalplux 4-Channel
Hub' with EMG sensors and Kendall H124SG electrodes was used to assess
muscle activity. The sampling rate of EMG frequency measurement was set to
1000 Hz in 16-bit resolution according to the datasheet. The integrated low-noise
high-speed operational amplifiers performed bandpass filtering and amplification
on the basis of bitalino technology [93]. Signal strength above 20% was accepted
as the trigger threshold. To ensure that muscle tension was released between
target hitting edge-detection was implemented. To prevent constant triggering,
the signal strength had to drop below 10% to release the EMG trigger again.
Controlled variables in the Unity scene were target amplitude (A = 1.4, 1.8,2.0 &
2.2 meters) and target width (W = 0.1, 0.2, 0.3, 0.6 & 1.1 meters), resulting in the
index of difficultys (IDs) 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5.

3.1.3 Measures

As recommended by biosignalplux and in line with previous research on EMG for
event detection, EMG signal was smoothed and rectified, and processed through
a Taeger-Kaiser energy operator to improve onset detection [277]. The mean
of all EMG values within a sliding window of 10 values (every 10 milliseconds
with 1000 Hz) was calculated to provide signal smoothing. For determining the
throughput performance, we recorded target selection time, the corresponding
IDs, target position, and actual hit point coordinates. In addition, we recorded
the timestamps of the experiment. For perceived workload, participants filled
out the raw NASA-Task Load Index (raw TLX) as a widely used tool in HCI for
workload assessments [101] (c.f. Appendix Section 7.3) with a digital version
of the questionnaire in VR. This avoids putting off the headset and potential
inconsistencies of placement of body posture and hardware [253]. Qualitative
feedback was obtained by a post-VR interview and noted by the experimenter.

"https://www.pluxphysiologicalsignals.com/collections/research-kits/
products/copy-of-explorer
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3.1.4 Procedure

After signing the informed consent, the participants were asked about their demo-
graphics and introduced to the goals of the study as well as the functionality of
the EMG and VR system. Participants were brought into a comfortable seated po-
sition with elbows and knees brought to an approximate 90° angle. The dominant
arm and leg were identified as stated by the participant, and all conditions were
tested on this body half. To ensure correct sensor placement, the experimenters
were provided with a scheme of human anatomical landmarks. The skin at each
location was prepared with an alcoholic pad, shaving the hair with a disposable
razor, if necessary. Two electrodes were placed at a distance of 1 cm on the
muscle stomach for each condition repetitively, and a reference electrode was
consistently placed at the elbow joint bone. The experimenter put on the HMD
for the participant. Lens distance was adjusted according to the participants’
individual preferences. Participants were orally instructed on how to use their
muscle tension as a trigger and that they should “select the targets as fast as
possible”. Before calibration, participants were free to ask questions.

During the calibration process, a text on a virtual panel was presented: "Please

2

tense your muscle with effort...”. The participant’s physiological signal was
rendered for the experimenter to ensure that the desired amplitude had been
registered. In cases where participants were not able to activate their muscles
correctly, they were guided by the experimenter, who touched the muscle section
with the fingertips. Maximum muscle strength was then derived from at least three
intensive but still comfortable muscle tension phases, as the individual and muscle-
specific trigger threshold. Each muscle of the recent condition was separately
calibrated. In cases where the experimenter had issues with the correct sensor
placement on the muscle stomach, we brought the participants’ limb into zero
position as recommended by SENIAM [105] except for the temple. Afterward,
we brought the participants back into a seated position.

Before starting, the participant was explicitly instructed not to move any limbs
to ensure isometric muscle activation and to “’select the targets as fast as possible”.
Then, the participant performed the Fitts’ law task with pseudo-randomized IDs
and filled the raw TLX on the virtual panel. After each condition, a new set of

disposable electrodes was attached to the subsequent muscle locations in counter-
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balanced order according to the randomization by a Latin square. During the
procedure, the experimenters noted comments and suggestions from participants.
After finalizing the last condition, participants were debriefed and could express

individual observations about their experience.

3.1.5 Participants

Eighteen students (5 female, 13 male) from computer science courses were invited
via social networks, mailing lists, and word of mouth to participate in the study.
Their mean age was 25.888 (SD = 4.600), ranging from 21 to 41. All participants
were informed that they could withdraw from the experiment at any point without
penalty. No volunteers were excluded from the study. No participant desired
to quit or pause the study. All participants were student volunteers in the field
of computer science or mechanical engineering and were rewarded with credit
points for their lectures. The study received ethical clearance according to the
regulations and hygiene protocols for user studies during the COVID-19 pandemic
as required by our institution.

3.1.6 Data Analysis

The objective data of two participants could not be taken into account due to
broken data stream recordings during the experimental trial. As their interaction
was not affected, their subjective feedback has been taken into account. The
effective throughput (TPe) was calculated using the target selection model for
2D tasks as proposed by MacKenzie and Buxton [181]. Their model is part of
ISO 9241-411 [113] for the evaluation of physical input devices and provides an
improved link to information theory, better fits, and IDs that cannot be negative.
With A as amplitude (distance between two targets) and W, as the effective
target width calculated by the distribution of targets over a sequence of trials. To
calculate the effective throughput (TPe) we used the effective effective index of
difficulty (IDe) and the mean time (MT) as shown in equation :

A D,
ID, =1 —+1 TP, = 3.1
e 082 (We + ) ) e MT ( )
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Figure 3.2: Objective performance measures of the study. The average throughput
from the Fitts’ law task for each condition. All error bars show 95% confidence intervals
(CI95).

3.2 Results
3.2.1 Throughput

Objective performance measures of the study on the throughput measures are
shown in Figure 3.2. Shapiro-Wilk’s test was performed to detect any violations of
normality of the objective throughput data of the target selection task, which could
not be found (all conditions with p > .529). Thus, we performed a parametric
one-way repeated measures analysis of variance (RM-ANOVA) to compare the
effect of BODY LOCATION on the throughput. Effect sizes were labeled following
recommendations by Fields [78]. The analysis revealed a statistically significant
effect, F(5,75) = 11.283, p < .001, n; = 0.429 (large). Pairwise comparisons
using Tukey’s HSD test (see Table 3.1.) showed that the mean values between VR
Controller and Biceps brachii, VR Controller and Triceps cap. lat., VR Controller
and Gastrocnemius cap. med, Triceps brachii cap. lat. and Temporalis anterior,
as well as between Gastrocnemius cap. med. and Temporalis anterior, were
significantly different. Thus, both Triceps brachii cap. lat. and Gastrocnemius
cap. med. had a significantly lower throughput than the VR Controller and
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Table 3.1: P-values of pairwise comparisons between the tested muscle locations for
throughput (TP) and workload (RTLX) scores.

Biceps brachii Triceps brachii Gastrocn.

VR Controller Temporalis
(Upper (Upper cap. med.
(Hand) Front Arm) Back Arm) (Inner Calf) ant. (Temple)
TP RTLX TP RTLX TP RILX TP  RILX TP  RTLX
Biceps brachii
(Upper
Front Arm) .007*  .053
Triceps brachii
(Upper
Back Arm) .001* .183 .990 1.000
Gastrocn.
cap. med.
(Inner Calf) .001*  1.000 .995 1.000 1.000 1.000
Temporalis
ant. (Temple) .862 1.000 150 .092 .034*  .024* .042 .657
Flexor
carpi rad.
(Forearm) .065 1.000 .969 1.000 .730 1.000 .780 1.000 .558 229
2500 | -2284391x, R?= :
5¢ ) . i Muscle Location
| e
— . ° T g —e— VR Controller (Hand)
g y=215+412x, R°=0.97 27 ].e
_ 2 _ /‘. L s
;2000 y=318+375x, R"=0.95 0| e B e Biceps brachii
£ ’ (Upper Front Arm)
P Triceps brachii cap.
o lat. (Upper Back
B Arm)
(7] .
o 1500 Gastrocnemius cap.
» med. (Inner Calf)
®
> .e.. Temporalis anterior
8 (Temple)
. —e . Flexor carpi
1000 ° radialis (Forearm)
2 25 3 3.46 3.91 4.52

effective index of difficulty (bits)

Figure 3.3: The regression slopes show the target selection time of each condition as
a function of the IDe. All error bars show 95% confidence intervals (CI195).
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Temporalis anterior. Moreover, the VR Controller was significantly faster than
the Biceps brachii. Any significant differences between Flexor carpi radialis and
the other MUSCLE LOCATIONS or between other condition pairs could not be
found (all with p > .065). No gender-related effects or interactions were found
(all p > .05).

3.2.2 Target Selection Time

The regression fits for the mean target selection time of the individual MUSCLE
LOCATIONS based on the IDe and the resulting slope parameters (constants a
and b from the Fitts’ task) can be found in Figure 3.3. We further analyzed the
log-transformed mean target selection time on the participant level and included
the ID as co-variate in a repeated measures analysis of covariance (RM-ANCOVA)
to understand if the difficulty during the target selection task affected the perfor-
mance of the BODY LOCATION. As Mauchly’s test showed a violation of the
assumption of sphericity (W = 0.751,p < .001), we used Huynd-Feldt correction
(€ = 0.892) to adjust the degrees of freedoms. There were statistically significant
effects of BODY LOCATION, F(6.00,103.00) = 51.548, p < .001, nﬁ =0.750
(large) and ID, F(4.69,482.65) = 33.050, p < .001, n]% =0.243 (large), however,
there was no interaction effect , F(28.12,482.65) =0.596, p =0.952, nl% =0.034
(medium), indicating that the target selection time of the EMG device is indepen-
dent of the difficulty during target selection.

3.2.3 Subjective Workload

Subjectively perceived workload was assessed using the raw TLX questionnaire
with results shown in Figure 3.4. Shapiro-Wilk’s tests on the scores could
not detect violations of normality (all conditions with p > .245). A one-way
RM-ANOVA with BODY LOCATION as factor revealed a statistically signifi-
cant effect, F(5,80) = 4.449, p = 0.001, TI;% = 0.218 (large) on the workload
scale. Bonferroni-corrected pairwise comparisons revealed a significant differ-
ence between Triceps brachii cap. lat. and Temporalis anterior (p = 0.024),
on the performance measure and VR Controller and Biceps brachii (p = 0.019),

for perceived effort. An analysis of the subscale scores revealed no effect on
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Figure 3.4: Bar charts of the raw TLX task workload score and subscales in the study.
Regarding the main score, the triceps received a significantly higher workload rating
than the muscle at the temple. The VR controller received significantly lower ratings for
perceived performance than the triceps and also significantly lower ratings for effort
than the biceps.

mental demand, F(2.9,46.32) = 0.65, p = 0.582, n; = 0.039 (medium). How-
ever, there were significant effects on physical demand, F(5,80) = 4.482, p <
0.001, 7‘[5 = 0.219 (large), temporal demand, F(3.49,55.84) = 2.812, p = 0.04,
n% = 0.149 (medium), performance, F(5,80) = 3.052, p = .014, n2 = 0.160
(large), effort, F(5,80) = 3.052, p = .014, n; = 0.170 (medium), and frustra-
tion, F(5,80) = 3.052, p = .014, TI[% = 0.161 (medium). Bonferroni-corrected
pairwise comparisons, however, only revealed significant differences between
VR Controller and Triceps brachii cap. lat. (p = 0.015), on the performance
measure and VR Controller and Biceps brachii (p = 0.019), for perceived effort.
All means and 95% confidence intervals (CI95) are shown in Figure 3.4.
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3.2.4 Qualitative Results

After the experiment, we asked participants which body location (without a VR
controller) they finally preferred based on overall comfort. The post-experimental
semi-structured interview feedback was transcribed verbatim and analyzed by
two of the researchers.

Twelve participants (63.2%) stated they prefer the EMG sensor at the Tempo-
ralis anterior (temple), four participants (21.053%) preferred the Gastrocnemius
cap. med. (calf), and three (15.8%) the Flexor carpi radialis (Forearm). One
of the comments revealed that the participants probably did not activate their
muscles using isometric movement despite our instructions: “temple is only good
to control because you can press the jaw to activate the temple muscle” (P2).
Similarly, P4 just learned that “temple muscle activation needs movement of the
eyebrow and forehead if you do not want to involve the pressing of the jaw”.
The participant also complained that his eyebrow movement was irritated by
the headset. Without not allowing to move any limb the instructions prevented
non-isometric activation of the arms and legs: “If you would have been allowed
to lift the arm for biceps, triceps or press towards the table these would the same
way be easy to address” (P2). Many participants particularly highlighted that the
triceps, calf, as well as forearm, were “extremely hard to address” (P4, P8, P11,
P12, P14, P15). P15 mentioned that one muscle (triceps) was hard to activate as
he “couldn’t find a connection to control it”. When placing the sensors, we asked
the participants to activate the muscles. An interesting observation was made by
two participants, who stated that a connection to a muscle, was “helpful when an
external person touched the body region”.

3.3 Discussion

We compared the ability of participants to control their muscle tension at different
muscle locations in their body and to interact with the EMG system in a target
selection task with the headset as a directional pointer. The highest input per-
formance was found at the temple with 94.1% compared to hand-based control.
However, qualitative feedback from the participants indicated that they used eye-
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brow movement or jaw pressure during that condition to activate their muscles
despite being specifically instructed to not perform any movements and only to
tense their muscles by isometric contractions. Consequently, the participants
likely performed isotonic muscle contractions at the Temporalis anterior. While
the participants wore the VR headset it was not possible for the experimenter to
externally validate or even intervene when the muscle tension in the condition
Temporalis anterior at the temple was not induced through isometric contrac-
tions during the calibration or the experiment. We cannot rule out whether the
participants deliberately ignored the instruction to “select the targets without
movement” or whether they were forced to move their temple muscles as long as
the weight of the headset put pressure on their heads. However, the finding was
informative insofar as it was previously unclear whether the electrodes can be
used under the HMD and could be of interest to manufacturers of such headsets,
who could build the electrodes into a device to allow more interactions using
facial parts. The performance of muscles activated through isometric contractions
was correspondingly lower. The lowest throughput was found on the triceps with
78.4% compared to hand-based control. However, no significant differences were
found between the biceps, triceps, calf, and forearm with the highest throughput
at the forearm (85.6%). Thus, the results suggest that stationary, isometric mus-
cle contractions do not significantly differ in terms of their input performance
between the muscle groups tested. Importantly, there were no interaction effects
with the index of difficulty. This finding indicates that the participants tend to
point equally well during conditions with all muscle locations independent from
the level of difficulty. Related research has reported different effects of EMG
sensor placement at different muscle locations for interaction [45, 165] and in-
vestigated EMG as muscle input from various muscle locations with differing
results [5, 156, 198, 245, 273, 294], highlighting flexibility of employing EMG
input as interaction technique, which is in line with our results. Participants in
our exploratory study reported difficulty in sustaining isometric contractions due
to muscle fatigue, aligning with previous research [6, 91].
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3.3.1 Limitations and Future Research Directions

Future research could also explore additional muscle locations, such as the shoul-
ders or back muscles, and compare feedback modalities (e.g., visual vs. tactile).
In this foundational exploratory study, the aim was to keep the setup simple with
a limited set of muscle locations in the arms and the easily accessible calf muscle.
The upper leg muscle was not included, as it posed practical challenges due to
its proximity to sensitive areas. A more conservative approach was taken to en-
sure participant comfort and maintain procedural ease. In subsequent studies, as
methodological confidence increased, the thighs at the upper leg were integrated
into the setup to broaden the experimental scope.

The integration of signal classification techniques (e.g., machine learning)
could further improve interaction accuracy in dynamic settings. Advancements
in signal processing using machine learning classifiers could enhance isometric
muscle signal detection and processing. Such methods could mitigate interference

from voluntary and continuous muscle activity.

3.4 Summary

Chapter 3 explores the foundational question of optimal sensor placement for
EMG-based real-time interaction, addressing RQ1 "Which muscle locations are
optimal for EMG-based real-time interactions considering user performance and
perceived workload?". Using a standardized Fitts’ Law task in VR, we evaluated
the performance of isometric muscle contractions at various muscle locations,
focusing on user performance and perceived workload. Results indicated no sig-
nificant difference in input performance between muscle locations with isometric
muscle contractions. However, participants reported challenges in controlling
isometric contractions due to muscle fatigue, emphasizing the importance of
feedback mechanisms in interaction design. Qualitative feedback highlighted that
tactile cues (e.g., touching the muscle site) facilitated muscle localization and
improved ease of use during the initial setup. Exploring alternative biofeedback
visualizations (e.g., rendering audio, visual, or tactile cues) and their combinations
could further refine interaction designs. These findings establish a foundation for
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designing EMG-based systems in VR, underscoring the need to accommodate
the physical and cognitive demands of isometric muscle control. The findings are
relevant for designing games, wearable devices, and therapeutic applications that
use EMG input.

3.4.1 Lessons Learned

From the investigation into EMG-based interaction at various muscle locations,

the following insights were derived:

Isometric Interactions Across Muscle Locations Are Feasible The study demon-
strated that isometric muscle contractions can be used effectively for real-time
interaction in VR, with no observed differences in input performance between
tested muscle locations. This indicates the robustness of EMG-based systems for

diverse muscle sites.

Challenges with Isometric Control Participants reported fatigue from sustaining
isometric muscle tension for interaction. This finding highlights the need for
systems that minimize prolonged muscle use and support users with fatigue-aware
feedback mechanisms.

Tactile Cues (from touch) Facilitate Muscle Localization Tactile feedback during
the initial setup and calibration procedure improved participants’ ability to locate
and activate the target muscle. This suggests that tactile cues could enhance
usability and reduce the learning curve for EMG-based systems.

3.4.2 Data Sets

To enable replication and further exploration, we provide the dataset and source
code used in this study. The data and source code are publicly available on GitHub
https://github.com/JessicaSehrt/EMG-VR-biofeedback.git This re-
source supports reproducibility and encourages further research into optimal

muscle locations for EMG-based interactions.
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Biofeedback Modalities for EMG
Interaction

Closing the biofeedback loop using EMG enables users to gain control over mus-
cle activity, supporting motor functions in applications such as rehabilitation [38,
177, 220]. This approach can even support the restoration of neural pathways
when only the intention to move a limb is trackable e.g., after a stroke [82, 271].

This chapter builds on the previous chapter by choosing a muscle location
amongst the results of the previous exploratory study that showed a relatively low
throughput with means of enhancement. We use the biceps muscle location and
examine how combining visual, auditory, and tactile feedback can enhance user
interaction. We compare the effects on performance and perceived workload in
the same Fitts’ law task from the apparatus of the previous chapter to enhance in-
teractions in isometric EMG-based interactions for sedentary hands-free systems.
Vision, audio, and tactile senses are perceived faster compared to senses like smell,
taste, olfaction, or senses from the vestibular system [107, 149]. Tactile stimuli
are processed faster because they rely on mechanoreceptors with quicker sensory
processing than thermoreceptors or nociceptors related to cutaneous stimuli, such
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as temperature or pain [123, 184]. Therefore the study of this chapter explores
how high-paced visual, auditory, and tactile cues can be used to effectively render
biofeedback [32].

While previous research demonstrates that EMG biofeedback helps users fo-
cus on muscle tension and gain control over it [38, 177, 220], given the limitations
of human cognitive resources [311], multimodal feedback could pose challenges
in sensory processing and task performance. Researchers tend to prefer the use of
multiple perceptual channels for simultaneous rendering of physiological signals
[84, 131, 231]. However, the optimal biofeedback modalities for EMG-based
interaction remain unknown [131, 248, 298]. To address this, we conducted an
empirical user study to investigate the effects of different modalities on users’

interaction performance.

Parts of this chapter are based on the following publication:

J. Sehrt, T. WiBmann, J. Breitenbach, and V. Schwind. “The Effects of Body Location
and Biosignal Feedback Modality on Performance and Workload Using Electromyography
in Virtual Reality.” In: Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. CHI '23. Hamburg, Germany: Association for Computing Machinery,
2023. ISBN: 9781450394215. pol: 10.1145/3544548.3580738

4.1 Method

To answer the research questions on which multimodal sensory cues for biofeed-
back modalities improve interaction with an isometric EMG device, we conducted
a user study in VR, shielding users from external sensory influences.

4.1.1 Study Design

We investigated the three modalities in a three-way full-factorial within-subject
design. As each of the three modalities (and their combinations) were either
present or not we had eight conditions (none, visual, auditory, tactile, visual +
auditory, visual + tactile, tactile + auditory, visual + auditory + tactile) ordered
in an 88 balanced Latin square study design. We conducted a Fitts’ law target
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Figure 4.1: Screenshot of the user’s view in VR during the visual feedback modality
performing the Fitts’ law task. Left: 30%, right: 60% muscle strength amplitude.

selection task [113, 181] to measure performance and workload. Due to the
low variance of the throughput in the first experiment, its observability during
the experiment to ensure isometric contractions, and its prominence in related
literature [5, 35, 172, 320, 328], we only used the Biceps brachii (at the front of
the upper arm) for EMG input.

4.1.2 Biofeedback Modalities

Auditory feedback was rendered via the headphones of the HMD and consisted
of a neutral summing sound that changed its pitch depending on how strongly the
participants tensed their biceps. As the discrimination power of pitch sequences is
higher compared to loudness [49, 186] we used sound pitching as one-parametric
modulation of the audio cue keeping the loudness constant and best recognizable
for the participants. For tactile feedback, we used amplified vibration of a coin-
type vibration motor. As the index fingers have a high density of nerve cells, we
placed the motor at the index finger of the opposite arm where the EMG signal
has been recorded. To ensure that participants were not able to ignore it, we
placed the visual feedback as an orange-colored torus-shape indicator of muscle
strength in the center of the participant’s field of view (see Figure 4.1). A concept
of how the modalities closed the biofeedback loop in our experiment is shown in
Figure 4.2.
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Figure 4.2: User in the apparatus in VR experiencing the three feedback modalities.
The system renders the EMG signal from the user with visual, auditory, and tactile cues.
A circled pointer in the shape of a partial torus renders the visual feedback. A pitched
sound is used as an auditory cue from the EMG device. A vibration motor fixated under
the index finger renders tactile feedback.

4.1.3 Apparatus

Calibration and task ran in a Unity3D application running on a PC with AMD
Ryzen 5900X, GeForce RTX 3070, and 16 GB RAM. We reused the virtual
version of a Fitts’ Law task [113, 181] from the study of chapter 3 to measure
performance and workload, and the same scripts for the integration of the biosig-
nalplux 4-Channel Hub! with EMG sensors for isometric muscle tension detection
and HMD display (HTC Vive Pro) for head-gaze pointing. Additionally, edge
detection was implemented with 20% upper and 10% lower trigger thresholds.
We used Unity 3D Ardity API (9600 Baud) to communicate with an Arduino
UNO R3 microcontroller that outputs a pulse-width modulation (PWM) to power
an Iduino TC-9520268 coin-type vibration motor with an operating voltage of 3.0

"https://www.pluxphysiologicalsignals.com/collections/research-kits/
products/copy-of-explorer
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V/DC - 5.3 V/DC. The duty cycle of PWM was controlled in steps from 80 to
255, 255 being 100% duty cycle at 5 V. The vibration motor was operated at the
maximum speed capacity possible, modulated by PWM with a frequency of 490
Hz in linear mapping relation to the amplitude of the muscle strength tension. An
audio source in Unity was a looped A-major chord! with a pitch value starting
at 0 % pitch to 100% pitch. The pitch value was modulated using the calibrated
muscle strength value amplitude multiplied by a constant of 0.4 for noticeable
and optimal hearing differences. The orange-colored (RGB: 255,133,57) circle
was clipped using radial fill (radial 360°) in Unity starting from O fill to 1. The
animation of the visual feedback and the pitch of the sound was also linearly
mapped using the amplitude of the muscle strength tension.

4.1.4 Measures

We recorded the Fitts’ law-related measures as in our first study (target selection
time, effective IDs, target position, and actual hit point coordinates) and the
subjectively perceived workload using the raw TLX (c.f. Appendix Section 7.3).
To gain a deeper understanding of how participants perceived the individual
modalities and how well they were able to control their muscle tension using that
feedback, we conducted a semi-structured interview. The questions in the survey
focused on the participants’ opinions (positively and negatively) on the modalities
and their combinations, the system, and the task. The subjects were also asked

about any other remarks they might have regarding the experiment.

4.1.5 Procedure

As in our first study, participants signed the informed consent and were introduced
to the system. The general procedure regarding the EMG sensor placement at
the dominant arm was identical to the first study, except that the muscles were
not changed, but only the biceps were tested. Additionally, the non-dominant
arm was identified and placed on a pillow beside it for comfort. In addition, we
put the vibration motor between two rubber finger cots on the index finger at the

non-dominant hand, followed by comprehensive instructions. The participant

'https://samplefocus.com/samples/atmosphere-loop-choir-5 (Public Domain)
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received and adjusted the HMD. To ensure the correct operation of the device,
headphones, and vibration motor were tested with constant intensity and vibration
at full level. Participants were asked if they perceived all signals clearly and the
intensity was adjusted if desired. Participants were free to ask any questions.
Calibration without any feedback was started while the EMG raw physiologi-
cal signal was visible for the experimenter to ensure that the desired amplitude
had been registered correctly. Maximum muscle strength was derived from at
least three intensive but still comfortable muscle tension phases as the individual
trigger threshold, following the same procedure as in the first study. There was one
calibration for all conditions of an individual participant. Participants were asked
to “select the targets as fast as possible” and were also instructed to “think aloud”
in case of any concerns during system usage. The Fitts’ law task then started
with pseudo-randomized IDs The following conditions with the corresponding
modalities and their combinations were randomized using the balanced Latin
square design. After each condition, the participants filled in the raw TLX within
the virtual environment. After the VR experience and removal of the headset and
electrodes, we collected the participants’ qualitative feedback in a semi-structured

interview.

4.1.6 Participants

Participants were recruited using social networks and mailing lists of our insti-
tution as well as via word of mouth. A total of 47 members of our institution
participated in the study. No volunteers were excluded. The mean age of the
participants (18 female, 29 male) was 29.106 (SD = 6.312) ranging from 22 to
58 years. All students were from a Master’s course in computer science and were
compensated using credit points for their lectures. They were informed that they
could withdraw from the experiment at any point without penalty. Staff members
were reimbursed for their working hours. No participant desired to quit or pause
the study. The study received ethical clearance according to the regulations and
COVID-19 protocols required by our institution. Seven participants could not

be taken into account in the further analysis due to multiple reasons (unilateral
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Figure 4.3: Bar charts of the throughput performance measures for each biofeedback
modality used in the study. The highest throughput was achieved using visual and
tactile feedback simultaneously as well as when no feedback was rendered. A main
effect for the auditory feedback indicates that the average throughput was significantly
lower when auditory cues were present compared to when not. All error bars show
Cl95.
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Table 4.1: Summary of the RM-ANOVA results of throughput and workload for the three
modalities tested.

Throughput Workload (RTLX)

F139) p m, F(139) p 1,
Auditory 4.857 .033*0.111  4.214 .047*0.067
Tactile 1.373 248 0.034 1254 .270 0.032
Visual 0.084 .7740.002 2741 .106 0.067
Auditory x Tactile 2133 .1520.052  1.300 .261 0.033
Auditory x Visual 0.679 4150.017  1.494 .229 0.038
Tactile x Visual 4706 .036*0.108  2.186 .148 0.054

Auditory X Tactile x Visual  0.637 .429 0.016 2.346 .134 0.058

vision, invalid sensor placement, or broken vibration motors during the interaction
trial). Thus, a total of 40 participants (12 female, 28 male) were considered in the
final analysis of the results.
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4.1.7 Data Analysis

For data analysis of the recorded data samples from the target selection task,
we performed simple outlier filtering (Q1/Q3 £ 1.5IQR rule) and included
17105 from a total of 18179 samples (94.1%). The duration of the experimental
procedure was M = 25.536 minutes (SD = 7.159). As in our first study, the TPe
of the Fitts’ law target selection task was calculated using the model for 2D tasks
as proposed by MacKenzie and Buxton [79, 113, 181].

4.2 Results

4.2.1 Throughput

Shapiro-Wilk’s test among all conditions (all with p > .203) indicated a normal
distribution of the throughput measures. We conducted a three-way RM-ANOVA
to investigate the effect of AUDITORY, TACTILE, and VISUAL feedback modal-
ities on throughput. There were statistically significant effects for AUDITORY
and TACTILE X VISUAL biofeedback modalities. The statistical power for the
TACTILE x VISUAL interaction was 83.9%, indicating a strong likelihood of
correctly rejecting the null hypothesis. No gender-related effects or interactions
were found (all p > .05).

Individual throughput results of all conditions are shown in Figure 4.3. The
lack of three-way interaction indicates that the throughput decreased when au-
ditory and tactile cues were present and increased when tactile and visual cues
were present. Thus, the main effect for AUDITORY indicates that the average
throughput was significantly lower when auditory cues were present compared
to when not. The interaction effect between TACTILE x VISUAL modalities
suggests that throughput performance was higher when both cues were present
simultaneously, compared to conditions where only tactile or only visual feedback
was provided, or when both were absent. An overview of the results is shown in
Table 4.1.
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Figure 4.4: Target selection time for each biofeedback modality as a function of the
IDe. All error bars show CI95.

4.2.2 Mean Target Selection Time

The target selection time as a function of difficulty and the condition-wise re-
gression equations can be found in Figure 4.4. We performed an RM-ANCOVA
of the log-transformed mean time adding the ID as a co-variate. The analysis
revealed a significant main effect of AUDITORY, F(1,269) = 6.140, p = .014,
11[2, = 0.022 (medium). We also found two-way interaction with all three possible
combinations, AUDITORY x TACTILE, F(1,269) = 8.950, p = .003, n,% =0.032
(medium), AUDITORY X VISUAL, F(1,269) = 3.993, p = .047, n,% =0.015
(medium), and TACTILE x VISUAL, F(1,269) = 8.367, p =.004, 7 = 0.030
(medium). Interestingly, there was no three-way interaction AUDITORY x TAC-
TILE X VISUAL, F(1,269) =0.010, p = .919, n[% = 0.000 (undetectable). The
analysis further revealed a significant main effect of the covariate ID, F'(6,269) =
61.579, p < .001, 111% = 0.579 (large), however, showed no interaction effect with
the other factors (all with p > .136), indicating that the target selection time is
independent of the difficulty during target selection with the modalities. Consider-
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ing the absence of an overarching three-way interaction, the analysis of the target
selection time revealed that the time independent from the difficulty is always
affected by two modalities.

4.2.3 Response Time vs Fatigue

All conditions were performed in counter-balanced order using the same muscle
(Biceps brachii) and over a relatively long period of time (M = 25.536 min., SD =
7.159). Average trial time (without questionnaires and calibration) per condition
was M = 3.192 min (SD = 0.895). The participants reported strong learning as
well as potential fatigue effects (see qualitative results) indicating that there is a
non-linear relationship between the duration of the experimental trial and muscle
response time. Thus, we evaluated the data to determine a functional relationship
between the target selection time and trial duration regarding the different levels
of difficulty. We performed a locally estimated scatterplot smoothing (loess) fit to
determine the convergence and inflection points when the learning and potential
fatigue effects had their best trade-off. Bias-corrected local polynomial regression
with automatic smoothing parameter selection and generalized cross-validation
(GCV) determined a smoothing matrix with 5.53 parameters based on 17105
observations. The fit (df = 1) determined 0.696 as an optimal span control
parameter.

The final loess fit for movement time among the individual IDs is shown
in Figure shown in Figure 4.5. For control, we computed the inflection points
and found that the lowest movement times ranged from 13.907 to 17.173 mins
(M = 15.449, SD = 0.978). Spearman correlations coefficients of the IDs with
a second-wise sampling of the function fits ranged from 0.650 (strong) to 0.990
(very strong), (all with p < .001), indicating that learning and potential fatigue

effects converge similarly among the IDs.

4.2.4 Subjective Workload

Shapiro-Wilk test on all conditions did not show any evidence of non-normality on
the raw TLX score (all with p > .15). The results of the analysis are summarized
in Table 4.1. All raw TLX scores and subscales results are shown in Figure 4.6.
6.1 A three-way RM-ANOVA revealed a significant interaction main effect of

72 4 | Biofeedback Modalities for EMG Interaction



2600
. 2.50

2400
gzzoo T 225 _ ID
= - T e 149
(O] a ,
EZOOO“"’——-._. 200L§
e — 25
c - — 3
%1800 '''''''''' ~ _.-"T175 & s
2 1600 .., = e Tasmn| 1616 ms] 3 e ss
B e U ) S e T 1505 -e 391
gMOO { W:Z/mT 1304 ms | g 16 min ugmns; % — .
S B 125
+ 1200 . - Al
\ = —
1000 4 1.00
e
0 5 10 15 20 25

experimental trial time (min)

Figure 4.5: Target selection time throughout the experiment. The fitted curves indicate
a decrease in target selection time due to learning effects and a decrease after po-
tential fatigue. Difficulty-dependent inflection points were found between 13.907 mins
(ID=4.52) and 17.173 mins (ID=2). Colored areas indicate the standard error of the
loess fit.

AUDITORY feedback. An analysis of the raw TLX subscales revealed a main effect
of VISUAL on performance, F(1,39) = 6.029, p = .019, né =0.134 (medium), a
main effect of AUDITORY on frustration, F(1,39) = 5.245, p = .027, Tl,% =0.119
(medium), and an interaction effect of TACTILE X VISUAL, F(1,39) =9.145,
p =.004, nI% = 0.190 (large), no further main or interactions were found between
those and other raw TLX subscales. Thus, perceived performance was higher
with visual cues. Frustration was lower when audio was on, and higher when

tactile and visual cues were rendered compared to when the modalities were off.

4.2.5 Subjective Modality Preferences

We also asked participants, which feedback they finally preferred and did not pre-
fer. A majority of 23.4% (N = 11) preferred VISUAL feedback only. AUDITORY,
TACTILE, AUDITORY & VISUAL, TACTILE & VISUAL were preferred by 12.8%
(N = 6) each. All modalities at once were preferred by 8.5% (N = 4). Least
preferred was AUDITORY & TACTILE with 4.3% (N = 2). Only one participant
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Figure 4.6: Score and subscale ratings of the NASA Raw-TLX questionnaire of the
study. All error bars show CI95.

(2.1%) desired no feedback. 12.5% (N = 5) participants were too vague or unde-
cided about the best modality. Regarding the worst experience, most participants
25.5% (N = 12) rejected AUDITORY modality. 19.1% (N = 9) found that lacking
feedback at all worst. 17.0% (N = 8) found TACTILE worst, 7.50% (N = 4)
VISUAL. 6.4% (N = 3) each rejected the AUDITORY & VISUAL, AUDITORY
& TACTILE, or AUDITORY & TACTILE & VISUAL combinations. Only two
participants (4.3%) found TACTILE & VISUAL to be worst, and three (6.4%)
were not sure or remained vague.
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4.2.6 Qualitative Results

Inductive thematic analysis was used to build a structure and deeper understanding
of the qualitative assessments after verbatim transcription [22]. Two researchers
went independently through the comments and coded them to identify when and
where common categories and patterns occurred. In the next stage, we combined
the codes into overarching themes, and a coherence meeting was held to merge
the results and solve the final discrepancies.

Biofeedback is generally appreciated. The participants found that the feedback
methods “were coherent to muscle tension” (P3), “helped me to feel like I have
control over my muscle” (P20), the feedback “came pretty quick and accurate
to represent the strength imposed” (P44), and that it “made the task easier to
complete” (P4, P32). The participants pointed out that all feedback methods
were generally “helpful” (P46), “responsive” (P17, P35), “enjoyable” (P25),
“interactive” (P31), and that “the apparatus worked quite well” (P42).

Informativeness for usability and flow Due to the repetitive nature of the task,
comments on usability were often related to the concept of flow and distractions
interrupting it. The supportive relationship between informativeness and flow
becomes evident in statements about the feedback as it “increases concentration,
reduces stress levels, reduces mental stress and physical exertion” (P39) and
that “the pressure indicator helps to focus” (P25). Fifteen participants found
the visual feedback as being generally informative, nine of them additionally
highlighted that it helps to estimate the muscle tension correctly. It received the
most unequivocal positive comments regarding its informativeness and usability,
considered as “very clear and understandable” (P3), “best compared to tactile and
audio” (P38), “noticeable and easy to understand, how it represented the muscle
activation” (P13), and “useful to notice the strength I put in the muscle” (P24).
Tactile cues were particularly highlighted by P29, “as supportive co-information”
alongside visual feedback. Similarly, P18 mentioned that “the visual feedback
was good to have as co-information, but vibration would be preferred by me”.
Seven participants perceived tactile feedback as the most preferred one. Most of
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the comments were related to its usability. The vibrations were perceived as “very
unobtrusive” (P30), “quick and very easy to sense” (P27), “very pleasant” (P10),
and “easier to perform the task” (P33).

The least informative and usable cue was the auditory feedback. Only six
participants found the auditory feedback to be supportive, one of them acknowl-
edged “the coherence of the required muscle tension” (P3) and others found that
the feedback “helps to concentrate” (P25) and mentioned that the “sound was
a confirmation of the selection” (P26). Participants stated that “some feedback
methods on their own were very powerful and could perform better than the other
combinations” (P40), and some particularly highlighted that only combined feed-
back is more informative. For example, P23 pointed out that ’the more feedback
methods, the better you knew if you hit the points”. Still only two participants
(P40, P42) preferred single modality feedback compared to multi-modal feedback,
indicating that more cues provide more informativeness about the state of the

muscle.

Information overload, obtrusiveness, and repetitive patterns distract. P20 high-
lighted that the “combination of all feedback methods stressed me”, and saw
an effect on the physiological response: “and sometimes even made me tens-
ing my muscle” (P20), concerned regarding an information overload. Similarly,
P23 stated that “the more feedback, the more stressed I was. Sound was the
most stressful”. Particularly, the repetitive patterns in the auditory modality was
considered to be “annoying” (P7, P30, P41, P27) and “stressing” (P14, P23,
P41). Participants wondered about the “sound might be better if it was a simple
beep” (P30) or considered the circular shape of the visual feedback as sometimes
“distracting” (P29, P30). Lacking obtrusiveness could also be perceived negatively.
P40, for example, mentioned that “without visual feedback, it was a little difficult
to follow” or P38 was not able “to focus on vibrations™ as it was “not very much
influencing during the tasks”, both indicating that the participants tried to find
support for their flow.

Fatigue/exhaustion, inconsistency, and habituation Many of the suggestions
around fatigue/exhaustion were related to the ergonomics of the system and
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the procedure in general, stating the headset felt “heavy after a while” (P6,
P37), one had “to bend my neck down a lot for the lower circles as the virtual
wall was pretty close” (P14) and “the eyes start straining after using for more
than 30 minutes” (P6). The upper arm as a trigger was also criticized because
“physical strain on muscle discourages to continue” (P25), “contracting muscle
over a long period of time is inconvenient.” (P18) and “triggering via the upper
arm can be difficult because [...] my head moves slightly when I tense my
muscle” (P34). P17 complained that the system was generally “not consistent with
actual muscle contraction”, some participants had difficulties anticipating between
muscle activation and sound, such as P31 stating that “auditory [feedback] took
time for me to get it” and one participant found that the vibration baseline was
“too intense”, pointing to perceived inconsistency. Interestingly, one participant
particularly highlighted that “tactile feedback increased the inner frustration with
wrong targeting” (P28).

A convergence of learning and fatigue/exhaustion became evident statements
such as from P36, who mentioned that “frustration started peaking at the end
because I started to feel that it was on purpose that sometimes I had to tense
my muscle longer or harder to make the dot disappear, whereas, in the begin-
ning, I thought it was because I wasn’t good at clenching the specific muscle
needed”. Participants noted that “it was a great experience” (P16), “like playing
a video game” (P38), and that they became more proficient after a period of
time (P22, P23). Thus, the participants perceived learning as a positive side
effect of habituation. One participant also desired to improve the system usage
through more training sessions (P1) indicating that not all participants suffered
from fatigue/exhaustion and even desired to become more familiar with their own

muscle activity.

Summary of Qualitative Results The participants appreciated informativeness
and usability in their biofeedback modalities as support for their flow while using
the system. Importantly, the results show that some modalities can produce stress
due to their obtrusiveness, through repetitive patterns, or even by information
overload, e.g., while using too many modalities. More unpleasant emotions were
caused by fatigue/exhaustion of the muscle or through the system in general, and
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an inconsistency between the signal and the biofeedback modality. Interesting
findings here were that some participants noticed an interplay of learning and
fatigue effects on their own performance, and reflected on learning the procedure
by improving their own performance as well as that habituation supported their

learning.

4.3 Discussion

The analysis of the results revealed significant main and interaction effects of
the feedback modality on objective and subjective measures. The results also
show that there is no single modality that systematically improves the target
selection time or workload. Even when the qualitative feedback revealed that
most participants rather tend to prefer visual feedback, there is no evidence that
visual feedback alone increases the objective input performance. However, a main
effect of the sound-based conditions revealed that the throughput was generally
and negatively influenced by auditory feedback. An interaction effect of auditory
with tactile feedback in the meantime indicates that performance can decrease
when more feedback is being rendered. Interestingly, while the main effect
indicates that audio has a negative impact on throughput and audio was the least
favored in the qualitative comments, the subjective frustration was lower when
audio was on. A two-way interaction effect on the throughput while using tactile
and visual feedback indicates that combined modalities can have a positive impact
on the input performance. This is in line with qualitative comments stating that
some combinations of feedback modalities can support the participants. However,
rendering all modalities at the same time is rather being perceived as distracting
and does not necessarily increase objective performance measures.

The participants’ qualitative comments provided additional insights into the
usage of EMG systems. In particular, the participants noticed a learning effect that
converged with potential muscle fatigue after a certain time. This was also evident
in the objective data and we were able to determine a maximum throughput after
15.9 mins (without calibration phase) at which the participants could optimally
activate their biceps. A non-linear relationship between experimental trial time
and input performance indicates that participants became familiar with the EMG

78 4 | Biofeedback Modalities for EMG Interaction



input after a certain time, but also that the muscles then began to tire after a short
time. Thus, the results may depend on the nature of Fitts’ tasks, since participants
who select potential targets faster also tire more quickly. As participants went
subsequently through the conditions and some were faster than others, we can
only conditionally assume that everyone experienced sets of muscle fatigue in
the same way — which is why we define these as potential fatigue effects, as
other factors (general fitness, endurance, body awareness, etc.) also could play an
individual role after reaching an average optimum.

Related Work addresses that two senses simultaneously can lead to an in-
creased cognitive processing [222, 292, 319], but there is no strong evidence
that combining modalities increases workload in our system. Authors of related
research conclude that multimodal feedback systems should provide different
modalities for feedback, but not simultaneously, to prevent sensory overload [131],
while we found that only simultaneous visual and tactile feedback had the high-
est throughput in our system compared to single modalities, while too many
modalities received complaints on sensory overload during qualitative feedback.

Researchers employ EMG-based visual feedback to enable subjects to in-
crease their control over their muscle activation, e.g., for the movement of a
robotic platform in real-time [42], while the visual modality did not significantly
reduce perceived workload compared to the other modalities in our system. The
visual modality by itself does not significantly improve throughput. However,
interaction effects, such as tactile x visual, might indicate that combining vi-
sual feedback with other modalities (like tactile) could enhance performance
in specific scenarios. Some innovative applications employ biofeedback tech-
niques rendering physiological signals using tactile [37, 131, 248]. In our system,
the tactile modality alone does not significantly improve throughput or reduce
perceived workload while provided as biofeedback. Researchers tend to prefer
the use of visual and auditory cues for multimodal biofeedback applications for
the simultaneous rendering of the physiological signal using multiple perceptual
channels [84, 131, 231]. While in our system frustration from perceived workload
results were lower when audio was on, the throughput while interacting with

auditory feedback was the lowest.
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Related work from HCI [60, 188] argues that both visual and tactile modalities
contribute to the development of body awareness, with recent research focusing on
using these modalities for biofeedback in EMG interaction with the own body [73,
131-134, 141, 264]. That underpins our results, that tactile and visual modalities
in combination have significantly improved the throughput of our system, and
even though the tactile and visual modalities together do not significantly reduce
perceived workload, they show a potential trend toward reduced workload, even

if it was not significant in this study.

4.3.1 Limitations and Future Directions

The subject of future work should be an investigation of alternative biofeed-
back visualizations rendering visual, but importantly also different tactile feed-
back modalities, like vibrotactile and electrotactile. Combined EMS and EMG
(c.f. [147, 206]) or comparison of different body locations for visual, vibrotactile,
and electrotactile feedback should be investigated as complementing research.

4.4 Summary

Chapter 4 addresses RQ2: "How do different feedback modalities (auditory,
tactile, visual) influence the performance and workload of EMG-based interac-
tions?". Using a standardized Fitts’ Law task in VR, the study evaluated the
role of multimodal biofeedback in enhancing interaction performance during
isometric muscle contractions. Results revealed that a combination of tactile and
visual feedback significantly improved performance, while auditory feedback
negatively affected it. Participants noted that tactile cues enhanced their ability to
direct muscle contractions, suggesting the potential of multimodal biofeedback
to improve EMG-based interaction ease and effectiveness. However, qualitative
feedback highlighted challenges such as muscle fatigue and learning effects.
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4.4.1 Lessons Learned

From the study, the following key insights were derived:

Combined tactile and visual feedback improves performance The combination
of tactile and visual biofeedback significantly enhanced the throughput during
EMG-based interactions, while participants stated enhanced control with tactile
biofeedback modalities. This suggests that multimodal biofeedback can effec-
tively support hands-free interactions, particularly in complex target selection
tasks.

Auditory Feedback May Hinder Control Auditory feedback negatively impacted
participants’ ability to control their muscles, indicating that it may be less effective
or even counterproductive in EMG-based systems. This finding highlights the
importance of selecting appropriate feedback modalities based on the interaction
context.

Challenges of Muscle Fatigue and Learning Effects in Isometric Interactions
Muscle fatigue impacts performance over time in sustaining isometric contrac-
tions, as evidenced by qualitative feedback and turning points in response times.
Future designs should consider fatigue and include measures to mitigate its effects
during prolonged use. Learning effects were also noted, emphasizing the need
for designs that account for physical and cognitive demands during prolonged
interactions.

4.4.2 Data Sets

The dataset used in this study is publicly available to support replication and
further exploration. The dataset and resources can be accessed on GitHub https:
//github.com/JessicaSehrt/EMG-VR-biofeedback.git.
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Prior Stimulation Feedback to
Improve EMG Reaction Times

Results from the study of the previous chapter 4 of this thesis on multimodal
biofeedback in a Fitts’ law study demonstrated modest improvements in user
performance when visual and tactile modalities were combined with isometric
EMG interaction [264]. Additionally, finger tapping on the muscle site before
interaction facilitated muscle localization and activation. Building on these
findings, the study of this chapter investigates whether automatically provided
tactile or visual interventions can reduce reaction times in isometric EMG-based
responses.

The technique of muscle priming, known from sports and physiotherapy, is
a concept in which stimulation before, rather than during interaction, is used
to enhance neuromuscular response times [62, 89] and related cognitive pro-
cessing [61]. Similarly, muscle warm-up exercises have demonstrated perfor-
mance benefits across various domains [20, 94, 293]. This chapter examines how
different prior stimulation feedback mechanisms, inspired by muscle priming
techniques, can be used to refine sedentary hands-free interaction systems. To

explore the concept of prior stimulation, we employed visual, vibrotactile, and
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electrotactile modalities, while we excluded auditory because it resulted in overall
lower throughput across conditions in the previous studies from chapter 3 and 4
of this thesis [264], and findings on its disruptive nature from related studies [72].
Electrotactile feedback, delivered via TENS, was hypothesized to enhance the
development of an internal body map through repeated muscle priming [100].
Mechanoreceptors in the skin, crucial for tactile perception [46, 225], significantly
influence body awareness [57]. Visual cues, alongside tactile stimulation, also
play a critical role in body localization, as shown in studies on the virtual and
rubber hand illusions [24, 216, 254].

The system design explored in this chapter relies on predetermined patterns,
allowing the system to anticipate which muscle has to be activated next. This
design is particularly suitable for applications with repetitive interaction patterns,
such as gaming [198], driving assistance [8], multi-channel prosthetic training [1,
143, 236], and remote learning scenarios for industrial workers [18] with limited
range of motion. Priming muscles can prepare an individual to respond appropri-
ately because they help them anticipate the physiological response and therefore
speed up the reaction. Feedback given prior to muscle actuation sharpens the
user’s awareness of upcoming actions and maintains the user’s sense of agency by
allowing the cognitive association between movement initiation and intent. This
contrasts with stimulation during muscle actuation [135] and may be particularly
advantageous for applications in such training or learning contexts.

While prior research has used EMG to measure isometric contractions for
hands-free, real-time systems [68, 112, 124, 125, 127, 183, 192, 285, 316], the
impact of prior stimulation on isometric contractions and electrotactile feedback
remains underexplored.

Parts of this chapter are based on the following publication:

J. Sehrt, L. Ferreira, K. Weyers, A. Mahmood, T. Kosch, and V. Schwind. “Improving
Electromyographic Muscle Response Times through Visual and Tactile Prior Stimulation
in Virtual Reality.” In: Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems. CHI '24. Honolulu, HI, USA: ACM, Jan. 1, 2024. I1SBN: 979-8-4007-
0330-0/24/05. poI: 10.1145/3613904 . 36420
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5.1 Method

To learn if tactile prior stimulation of muscles leads to faster reaction times using
an EMG device, we conducted a response-based experiment. To shield users from
external influences we conducted the study in VR. As humans use their arms
and legs in different ways, we also hypothesized that there are differences in the
corresponding muscles’ input.

5.1.1 Study Design

We conducted a user study in VR using a full-factorial within-subject design
to investigate the effects of two independent variables: PRIOR STIMULATION
and MUSCLE LOCATION on the reaction times as the dependent variable. We
used EMG for performance assessment and conducted subjective pre- and post-
assessments. Four levels of PRIOR STIMULATION, and four levels of MUSCLE
LOCATION resulted in sixteen conditions presented to the participants twice in
randomized order.

5.1.2 Independent and Dependent Variables

The four levels of the independent variable PRIOR STIMULATION were no, visual,
vibrotactile, and electrotactile stimulation. PRIOR STIMULATION was presented
before the signal for the reaction test. The visual conditions consisted of a
schematic anatomical line drawing with the corresponding muscle highlighted in
red (see Figure 5.3). The vibrotactile conditions consisted of a vibration applied at
the center of the corresponding muscle, and the electrotactile conditions consisted
of a TENS impulse at the corresponding muscle. Each PRTOR STIMULATION
was presented for the same duration of 3 seconds during the trial procedure (see
Figure 5.3).

With the paradigm of hands-free interaction in mind, we tested four levels
of the independent variable MUSCLE LOCATION frequently used by related
work: the upper front arm (Biceps brachii) 5, 273], the upper back arm (Triceps
brachii caput laterale) [5, 264], the upper leg (Vastus medialis) [151], and the
calf (Gastrocnemius caput medialis) [151, 198] (see Figure 5.1). To ensure
reproducibility and comparability, we tested the four limb muscles exclusively
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on the right side of the body. The EMG and TENS electrodes were positioned
uniformly with enough space for the vibration motors. Thus, the EMG signal
was not influenced by any movements (e.g., head movements at the shoulder),
breathing, or talking (e.g., by natural movements of the chest).

The key quantitative objective measure in our study is the time the participants
needed to tense their muscles. Reaction time was determined using EMG signals
recorded at 1000 Hz and analyzed with the raw data (see Data Analysis) as the
dependent variable.

5.1.3 Subjective Measures

We conducted a subjective muscle assessment both before and after the experiment
by asking participants to rate the ability to tense each MUSCLE LOCATION using
a visual analog scale (VAS) ranging from O to 10. Post-Experiment, participants
completed the raw TLX, a standard tool in HCI for workload assessments [101]
(c.f. Appendix Section 7.3) with two additional questions on perceived pain and
fatigue. They also responded to a questionnaire using a 7-point Likert scale on
the item "To which extent do you agree with the statement that [stimulation]
helped me to locate my [muscle]?", evaluating the extent to which various PRIOR
STIMULATIONS aided in identifying the tested MUSCLE LOCATIONS (subjective
survey on muscle localization and reaction time), and whether they perceived any
changes in their reaction time during the experiment. Finally, we conducted semi-
structured interviews to gain further insights into the participant’s exhaustion,
positive and negative experiences, preferences, and overall impression of the

experiment.

5.1.4 Task

Participants’ reaction times were measured using a modified Vienna Test System
(VTS) adapted for VR according to Prieler et al. [103]. In its setup, participants
responded to alternating red and green lights, with the green light and a beeping
tone serving as the stimuli. They reacted by tensing specific muscles, indicated
by text and highlighted on a schematic anatomical drawing. Each trial began
with 2 seconds of rest, followed by a 3-second prior stimulation phase, and then
the green light stimuli appeared randomly after a period from 3 to 13 seconds,
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Upper Back Arm

(c) Upper Leg (d) Calf

Figure 5.1: The placement of EMG electrodes [1], vibration motors [2], and TENS
electrodes [3] at the four tested muscle locations: Biceps brachii (upper front arm)a,
Triceps brachii caput laterale (upper back arm) b, Vastus medialis (upper leg) ¢, and
Gastrocnemius caput medialis (calf) d.
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lighting up for 2 seconds duration to indicate that the muscle now has to be tensed
(green light phase). Trials were 20 seconds each, with varying combinations
of PRIOR STIMULATION, MUSCLE LOCATION, and stimuli timing, presented
twice in random order (see Figure 5.3). The whole experimental procedure
resulted in 192 conditions and a total duration of 64 minutes. The fixed duration
of the experiment, with variable timeframes for employing prior stimulation
and considering the muscle location, enables the reliable determination of both

reaction times and muscle fatigue effects.

5.1.5 Apparatus

A virtual 3D environment for the simple reaction test was created using Unity
Engine (Version 2021.3.5f1) running on a PC with AMD Ryzen 5900X, GeForce
RTX 3070, and 16 GB RAM. The minimalistic scene contained a 3D panel for
displaying test instructions and stimuli. An HTC Vive Pro with 90 fps was used
as HMD and tracked using four lighthouse boxes for high accuracy. Muscle
activity was monitored using a biosignalplux 4-Channel Hub! with EMG sensors
at 1000 Hz sampling rate with 16-bit resolution and Kendall H124SG electrodes.
The integrated low-noise high-speed operational amplifiers performed bandpass
filtering and amplification on the base of bitalino technology [93]. Two Sanitas
SEM 47 EMS/TENS devices were used with self-adhesive electrodes according
to the manual (see Figure 5.2).

The Unity3D Ardity API (9600 Baud) with an Arduino UNO R3 controlled
four solid-state relays (Vishay LH1546ADF optocoupler) acting like switches
of four TENS channels, as well as four coin-type vibration motors (Iduino TC-
9520268) operating at a maximum duty cycle of 3.3 V. Stimuli audio source
was a neutral beeping tone”. An orange-colored (RGB: 255,133,57) circle that
indicated the muscle strength was clipped using radial fill (radial 360°) from 0.2
fill to 1, presented in the heads-up display (HUD) and linearly mapped using
the muscle strength tension from the EMG raw signal. Stimuli lights were

"https://www.pluxphysiologicalsignals.com/collections/research-kits/
products/copy-of-explorer
*https://freesound.org/people/barb/sounds/12637/ (Public Domain)
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Arduino Uno R3

. 4x vibration motors
microcontroller

4x set TENS electrodes
4x set EMG electrodes
1x ground electrode

2x Sanitas SEM 47 J\
EMS/TENS device

Figure 5.2: Apparatus with the hardware components, consisting of two EMS/TENS
devices, an Arduino R3 microcontroller, and four solid state relays, connected to the
participant by four pairs of TENS electrodes on the one hand and a biosignalplux
4-Channel Hub, connected to the participant by four pairs of EMG electrodes (and a
ground electrode).

made with opaque rendering mode and green-colored (RGB: 0,255,43) and red-
colored (RGB: 255,76,52) spot-type light sources. The system featured real-time
monitoring of EMG signals and participant VR view.

5.1.6 Study Procedure

In the following, we divide the study procedure into three phases: (1) introduction
and dry run, (2) body/electrode preparation, and (3) the EMG experiment in VR.

Phase 1: Introduction and Dry-run  Participants consented to use their images
and video, then provided demographics, working, and sports habits. They were
introduced to the goals of the study and rated their muscle tensing ability using
a VAS scale. We clarified relevant terms and conducted a dry run to ensure an
understanding of the reaction time test. Participants adjusted their HMD settings,
including audio. During the dry run, they responded verbally to stimuli without
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muscle location descriptions. We confirmed their understanding and repeated the
dry run in VR. We explained and demonstrated isometric muscle tension at all
four muscle locations on the left side of the participant’s body.

Phase 2: Body/Electrode Preparation We calibrated the TENS device for elec-
trotactile stimulation by presenting incrementing values for the impulse intensity
until the participants until a very light muscle tension was observable, keeping it
then just under this threshold. To not compromise any of the muscle locations
tested on the dominant body half of the participants, we initially attached the
TENS electrodes to other, non-dominant body half to avoid priming effects. The
participants preferred TENS impulse intensities ranging from 8-52 mA for the
biceps, 20-56 mA for the triceps, 20-80 mA for the upper leg, and 28-100 mA
for the calf. To keep the applied electrotactile stimulation suitable for all muscle
locations the two digital Sanitas EMS/TENS SEM 43 devices were set to 25 Hz
impulse frequency with a TENS program function that automatically moved the
pulse widths from 50 to 250 ps continuously. This ensured a greater suitability to
various muscle anatomy and facilitated the calibration procedure. Placement of
the TENS electrodes followed the manufacturer’s manual !, with skin preparation
involving alcoholic pads and shaving, if necessary. We also calibrated the TENS
strength for all muscle locations by asking if a stinging or burning sensation
or any discomfort was felt. If necessary, electrodes were re-positioned and the
intensity was adjusted. We mirrored the electrode placements to the right side of
the participant’s body using rulers and visual estimates for accuracy. Participants
sat with elbows and knees at 90°, hand palm up, and feet positioned using a
stencil drawing. One participant desired to reduce the TENS signal strength after
mirroring.

EMG electrodes were attached to the right side of the body, with adjustments
for strong EMG signal, following SENIAM guidelines [105]. Due to limited
space on the muscle bulges, we prioritized the signal strength over adhering
strictly to the guidelines. We monitored EMG physiological signal for correct
amplitude registration placing electrodes according to anatomical landmarks.
Two electrodes were placed at a distance of 0.5 cm on each muscle bulge and

'https://sanitas-online.de/media/download/752-907-0416_sem43_de.pdf

90 5 | Prior Stimulation Feedback to Improve EMG Reaction Times


https://sanitas-online.de/media/download/752-907-0416_sem43_de.pdf

calf

7=, B ES
biceps ]
/ -y / -
triceps
- / - / « ‘.f‘”)' / -
¥ § upper leg h) 2x
randomized

green light/tone
appear after 3s /
5s/7s/9s/11s

no visual vibro- electro-
tactile tactile

I— randomized g
|

+ 15s = 20 s constant duration

Figure 5.3: Up: The illustration shows the trial procedure scheme of all tested
conditions with an example trial framed in blue. The trial procedure started with 2
seconds of resting. A 4 X 4 factorial design, combining four stimulation types (no,
visual, vibrotactile, electrotactile) and four muscle locations (biceps, triceps, upper leg,
calf) resulted in 16 conditions. The presented stimuli of a condition were randomized
and presented for 3 seconds. Then 15 seconds followed in which a 2-second green
light and sound (green light phase), randomly appeared at a certain moment after 3, 5,
7,9, or 11 seconds. Thus, all participants experienced the same experimental trial
length (64 min). Each prior stimulation, muscle location, and duration until the green
light/tone were presented twice and in a fully randomized order.

Down: Participant sitting in the apparatus with the hardware components at-

tached, with the control monitor in the background (left). The four stimuli of the green
light phase as of the presented virtual Panel (right).
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a reference electrode consistently to the elbow joint bone. We stuck vibration
motors with adhesive tape next to the electrode arrangements at the center or a
maximum of 1 cm apart from the center of the muscle on each muscle location.
The setup is detailed in Figure 5.1.

Phase 3: EMG Experiment in VR  Participants were introduced to the functional-
ity of the EMG and VR system, including an orange circle for muscle strength
biofeedback. They were instructed to avoid limb movement and respond quickly
to stimuli. Participants were again free to ask any questions before starting the
reaction time task in VR. We adjusted the value for calf two steps lower for one
participant. The experimenters noted the comments of the participants during the
experiment. We kept track of the upcoming conditions in the console monitor of
Unity3D on one monitor for a general overview. We checked if TENS stimulation
and vibration were working properly during the whole experiment procedure
and also if the correct muscles were appropriately targeted, ensuring participants’
concentration. Post-experiment, participants were debriefed, shared individual
observations, rated muscle tensing ability on a VAS, filled out the raw TLX, the
subjective survey, and we collected their qualitative feedback in a semi-structured

interview.

5.1.7 Participants

Participants were recruited via institutional email lists, social media, and referrals,
excluding those with cardiac issues, metallic implants (e.g., screws), cardiovas-
cular complications, recent infections, or surgeries, by the explicit advisory. Six
interested participants were pre-excluded from the study due to heart problems
(N =4) or metallic implants (N = 2). All participants had the option to withdraw
without penalty.

Twenty-four participants were initially recruited. Student volunteers (N = 14)
from computer science or mechanical engineering were rewarded with credit
points for their study participation. Institutional employees (N = 7) were reim-
bursed for their working hours. External participants (N = 3) were remuner-

ated with !. One participant withdrew, and the data of two were unusable due

'https://github.com/JessicaSehrt/ReactionTest_EMG-V_vT_eT_priorStim
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Figure 5.4: Four randomly selected trial data sets of the 2-second onset periods (A-
D) illustrating the data processing. The absolute value of the raw signal (black line)
was processed using the Teager-Kaiser Energy Operator and signal smoothing (red
line). The individual reaction time of each trial was then determined using a Bisection
Extremum Distance Estimator (BEDE) operator based on the normalized signal (dark
red line). BEDE determines the inflection point at the curve incline (vertical blue line)
and the final reaction time (RT) measurement.

to technical issues. Thus, the final analysis included twenty-one participants
(7 self-identified as female, 14 self-identified as male), mean age was 26.76
(SD = 4.5643), ranging from 18 to 37. The study received ethical clearance
according to our institution’s regulations and hygiene protocols for user studies.

5.1.8 Data Analysis

We recorded the EMG signal as raw data and in a frame-based format, including
the conditions, timestamps, and metadata. In line with previous research on
EMG event detection, a Taeger-Kaiser energy operator (TKEO) [53, 169, 277]
using the seawave package for R! was applied for EMG signal processing and
smoothing with parameters according to biosignalplux. As recommended by
the Vienna test system (VTS), [103], the mean reaction times (RTs) of all trials
and repetitions were aggregated for each subject. The actual RT was calculated
using the Bisection Extremum Distance Estimator (BEDE) method [40, 41] on
the TKEO processed EMG signal during the 2 seconds onset period (green light
phase) provided by the inflection package? for R.

"https://rdrr.io/cran/seewave/man/TKEQ . html
*https://rdrr.io/cran/inflection/
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BEDE is an algorithmic method used for efficiently estimating the extremum
of a function by iteratively bisecting the interval and evaluating distances to
identify the point of extremum. The BEDE method [40, 41] does not require a
functional hypothesis for the data, therefore its utility lies in its ability to provide
a fast and reliable determination of the inflection point, representing the moment
of highest signal increase. This approach eliminates the subjectivity and potential
inaccuracies associated with threshold-based criteria, with no need for an initial
calibration phase that potentially biases the participants’ muscle performance.
Based on the BEDE method we calculated the mean and the fastest (and minimal)
average reaction time in each condition. Examples of data processed are shown
in Figure 5.4.

Additionally, we analyzed the maximum value of the smoothed EMG signal to
pinpoint when the highest amplitude occurred. For this, we employed polynomial
regressions with locally estimated scatterplot smoothing fit (loess) using an auto-
matic parameter selection (auto span) identified by generalized cross-validation
(GCYV). The same method was used to evaluate how the reaction times varied
throughout the experiment. The whole data set included 3,838,041 samples and
is available at GitHub!.

5.2 Results

For statistical analysis, all RTs, with means shown in Figure 5.5, were log-
transformed to remove any skewness from the data and ensure normal distribution.
If Mauchly’s assumption of sphericity was not confirmed, we applied Greenhouse-
Geisser correction for the degrees of freedom on the factor using the rstatix
package? in R.

Normality was confirmed for all conditions (p > .118) except one (biceps-
vibration with p = .042) using Shapiro Wilk’s tests. However, visual inspec-
tion of the QQ plot and histogram showed that the data followed a normal
distribution. A RM-ANOVA revealed a significant effect of PRIOR STIMU-
LATION, F(3,60) = 7.868, p < .001, n; = 0.282, and MUSCLE LOCATION,

"https://github.com/JessicaSehrt/ReactionTest_EMG-V_vT_eT_priorStim
’https://rdrr.io/cran/rstatix/
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F(2.00,39.91) = 8.324, p = .001, 77,% = 0.305, however, there was no interac-
tion effect of PRIOR STIMULATION x MUSCLE LOCATION, F(9,180) = 1.616,
p = .146, ng = 0.075. We performed a pairwise t-test post hoc comparison using
Bonferroni corrected p-values based on the two main effects. Among the modali-
ties, we found a significant difference between electrotactile and no (p = .014,
d = —0.341), vibrotactile and no (p = .002, d = 0.405), and visual and no stimu-
lation (p < .001, d = 0.442). Regarding the muscles, the analysis also revealed a
significant difference between biceps and calf (p < .001, d = 0.622), biceps and
triceps (p = .047, d = 0.297), triceps and calf (p = .002, d = —0.401), as well
as between upper leg and calf (p < .001, d = —0.557). Other combinations were
not significant. The results indicate that the RT depends on MUSCLE LOCATION
and PRIOR STIMULATION. The participants showed the fastest muscle responses
when a prior location stimulation was used. As we had no interaction effect, this

finding is independent of the muscles tested. The fastest power was the calf.

5.2.1 Minimum RT

We were also interested in the fastest possible response of each participant to
learn how the participants could ideally perform during the experiment. Shaprio-
Wilk test was significant in one condition (upper leg and electrotactile, p = .026,
all other conditions p > .060), visual inspection of the QQ plot and histogram,
however, showed that the data follows a normal distribution. A RM-ANOVA
revealed a significant effect of PRIOR STIMULATION, F(3,60) = 3.433, p = .022,
15 = 0.147, MUSCLE LOCATION, F(3,60) = 3.306, p = .026, n> = 0.142, and
there was an interaction effect of PRIOR STIMULATION x MUSCLE LOCATION,
F(9,180) = 1.985, p = .043, 111% = 0.090. Due to the interaction effect, we
performed four univariate ANOVAs on each modality for each muscle. As the tests
for biceps (p = .003) and upper leg (p = .049) were significant, we performed
a post hoc pairwise t-test comparison using Bonferroni corrected p-values and
found regarding the biceps a significant difference between vibrotactile and visual
stimulation (p = .004) and between vibrotactile and no stimulation (p = .043).

No further significant differences were found. Thus, the results showed that at
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Figure 5.5: Mean reaction times of the tested prior stimulation and muscles of the
reaction test. The faster muscle responses were found for all prior stimulations. The
fastest muscle was the Gastrocnemius cap. med. (Calf). The point indicates the mean
RTs with the fastest of each participant. Error bars show 95% confidence intervals.

the biceps, the minimum reaction times were lower using vibrotactile than with
visual stimulation or no stimulation. All means of the minimum RTs are shown

as points in Figure 5.5.

5.2.2 Time of Highest Amplitude

We also determined the inflection points on the saddle of the first EMG signal
bulge to understand when the strongest voluntary muscle contraction occurred.
The log-transformed times’ normality violation test was insignificant, except in
one condition (biceps and electrotactile, p = .002, all other conditions p > .107).
However, visual inspection of the QQ plot and histogram showed that the data
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Figure 5.6: Grid plot of all participants’ aggregated EMG signal curves separated by
muscles and modalities. The plots illustrate the individual characteristics of the raw
data and the loess fit and show the time of the highest amplitude of the EMG signal.

follows a normal distribution. Thus, we performed parametric tests. A RM-
ANOVA revealed a significant effect of PRIOR STIMULATION, F(3,60) = 3.069,
p=.035, 771% =0.133, MUSCLE LOCATION, F(2.31,46.3) = 13.628, p < .001,
ng = 0.405, however, there was no interaction effect of PRIOR STIMULATION X
MUSCLE LOCATION, F(9,180) = 1.661, p = .101, n,% = 0.077. Pairwise post
hoc t-test comparisons using Bonferroni correction showed significant differences
among the modalities between vibrotactile and no (p = .015, d = 0.286), and
visual and no stimulation (p = .006, d = 0.319). Regarding the muscles, the
analysis also revealed significant differences between all comparisons (all with
p < .001), except between biceps and triceps as well as upper leg and calf (both
p = 1). The results generally support the findings of the effects of MUSCLE
LOCATION and PRIOR STIMULATION. The aggregated signals with the times of
the maximal amplitude are shown in Figure 5.6.
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5.2.3 Reaction Time vs Signal Strength

As the experiment lasted the same duration of all participants and all conditions
were performed in fully randomized order, we analyzed how the reaction times
and the amplitude of the EMG signal evolved. We were interested in the in-
crease/decrease of the muscles’ activity and analyzed the reaction times and max.
EMG amplitude as a function of time using a generalized mixed-effect regression
model with EXPERIMENTAL TIME and MUSCLES as predictors. The regressions
for reaction times (R? = 0.083, AIC = 12283.82) and max. EMG amplitude
(R* =0.082, AIC = —3936.437) were significant (both p < .001). The scatter-
plots (not illustrated) of standardized residuals indicated that the data met the
assumptions of homogeneity of variance, linearity, and homoscedasticity for both
regression analyses. All regression equations can be found in Figure 5.7 and fits
of reaction time and EMG amplitude are shown in Figure 5.7. For reaction times,
the slopes for the calf significantly (p = .002) tend towards a negative value,
indicating the reaction times for that muscle decreased over time. No effects were
found for the normalized values of the amplitudes. However, the correlations
between both variables were significant (all with p < .001) and negatively and
weakly correlated for the biceps (p = —0.20), triceps (p = —0.19), upper leg
(p = —0.14), and moderately for calf (p = —0.38). This indicates that the calf
was getting faster during the experiment, however, moderately at the cost of signal
strength.

5.2.4 Subjective Assessments

Support of Stimulation  After the experiment, we asked participants to rate to
which extent they agreed that a stimulation helped them locate a muscle. An
Aligned Rank Transform (ART) RM-ANOVA revealed a significant effect of
PRIOR STIMULATION, F(3,300) = 160.704, p < .001, n,% =0.616, and MUs-
CLE LOCATION, F (3,300) = 2.792, p = .041, n; = 0.027, without an interaction
effect between PRIOR STIMULATION X MUSCLE LOCATION, F(9,300) = 0.537,
p=.847, TT;% =0.016. Post hoc pairwise comparisons using Wilcoxon signed rank
using Bonferroni correction showed significant differences between all modalities

(p < .038). Among the muscles, we found a significant difference between upper
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Figure 5.7: Regression fits of the reaction time and the EMG amplitude in the course of
the experiment. The slope parameter for the calf was significantly decreased during the
experiment. No signal strength trends were observed, but correlation analysis revealed
a potential negative relationship between reaction time and amplitude. Straight solid
lines show the linear trends; the dashed curve is the smoothed loess fit.

leg and triceps (p = .011); however, not between the other pairs (p > .052). The
results (see Figure 5.8) indicate that the participants tend to agree that best loca-
tion accuracy could be achieved using electrotactile stimulation and that all prior
stimulation modalities were preferred over none. Interestingly, the participants
noticed that mainly the upper leg and not the calf, such as in the objective measure,
benefited from stimulation.

Fatigue We also asked the participants which muscle location they felt the most
and less exhausted after the experiment. As most exhausted biceps was mentioned
by nine participants (42.86%), triceps (28.57%) and upper leg (28.57%) were
each mentioned by six participants, and calf by two (9.52%) while also two
(9.52%) stated no muscle was most exhausted. As a less fatigued muscle, eight
participants (38.10%) said that their biceps, six (28.57%) that their calf, three
(14.29%) that their upper leg, and two (9.52%) that their triceps was the least
exhausted at the end of the study, while two (9.52%) felt no muscle was less
exhausted.
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Figure 5.8: Subjective ratings from a 7-point Likert Scale questionnaire on the item
"To which extent do you agree with the statement that [stimulation] helped me to locate
my [muscle]?", evaluating the helpfulness of each prior stimulation and localization
to isometrically tense a muscle. Electrotactile stimulation was perceived as the most
helpful among the prior stimulation modalities. The highest ratings among the muscles
were found for the upper leg and calf. Error bars show 95% confidence intervals.

Task Difficulty VAS ratings of task difficulty were significantly affected by the
experiment with an effect of PRE-POST, F(1,140) =7.863, p =.006, 7712; =0.053,
and MUSCLE LOCATION, F(3,140) = 5.137, p = .002, nl% = 0.099, but without
an interaction effect of PRE-POST x MUSCLE LOCATION, F(3,140) = 0.661,
p=.577, 111% =0.014. Post hoc pairwise comparisons using Wilcoxon signed rank
using Bonferroni correction showed significant differences between biceps and
calf (p = .007), biceps and triceps (p = .011), as well as between biceps and upper
leg (p = .009) indicating that the workload on the biceps (M =2.286, SD =2.361)
was significantly lower compared to calf (M = 3.643, SD = 2.694), triceps (M =
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3.452, SD = 2.530), or upper leg (M = 3.357, SD = 2.685). Perceived difficulty
of tensing was significantly greater after the experiment (M = 3.452, SD = 2.604)
than at its beginning (M = 2.917, SD = 2.589).

NASA-TLX and Subjective Performance The mean score of the NASA-TLX
Score was 53.056 (SD = 17.170), which can be considered a high workload for
the assessment [97] of the task. The majority of the participants (9/21) tend to
agree with the statement that the modalities increased their reaction times (7/21
neutral, 5/21 disagree). This contrasts the finding that the majority (8/21) tend
to agree that it also decreases their reaction times (6/21 neutral, 7/21 disagree).
The majority (14/21) tend to disagree with the statement that the modalities did
not affect their reaction times (3/21 neutral, 4/21 disagree). Thus, the subjective
metrics indicate that most of the participants assumed that their performance
changed in the course of the experiment. This is supported by the non-linear

measures (see Figure 5.6) of, e.g., calf and triceps and the qualitative statements.

5.2.5 Qualitative Results

We used inductive thematic analysis to structure participant feedback from post-
experiment interviews and relate it to experimenter notes [22]. Two researchers
independently coded the statements to identify common categories and patterns,
then merged these into overarching themes, resolving any discrepancies through

discussion.

Prior Stimulation helps in Localization of the Muscle The prior stimulation
modalities were predominantly assessed as supportive for identifying which
muscles had to be activated during the reaction time task in comparison to when
no modality was present; participants found that they “... help to locate my
muscles” (P1, P6, P8, P9, P17) and were “better than no signal” (P10). Participants
noticed they became faster as the prior stimulation modalities “...aid in quicker
reaction time” (P3), “...prepare to flex the muscle within a shorter reaction time,
compared to no indicator of which muscle to flex next.” (P16), and that the muscle
localization was facilitated by “...a kind of guide as to where I am supposed to
tense the muscles.” (P8). Prior stimulation modalities assisted in task preparation,
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as evident in statements like “...a clear indicator of which muscle to contract
next.” (P7), “...to mentally prepare to flex the muscle.” (P16), and “I could better
prepare myself to tense the muscles.” (P21).

In direct comparison, tactile modalities (vibrotactile and electrotactile) were
rated as more helpful for muscle localization than visual, especially in the actual
task of muscle distinction on one’s own body and the control of their responses.
Participants noted that tactile modalities “...help to feel the body part to tense.” (P8,
P19), “...make you feel the muscle.” (P11), were “recognizable” (P4, P10, P19),
and “a clear signal” (P14). The visual modalities were still evaluated as “...let
you recognize the muscle in question more quickly than if it is only named as a
word.” (P18), while feedback focused on its general effectiveness as “...very eye-
catching and therefore sometimes increased attention when I was unfocused.” (P1),
“...muscle groups were shown clearly in the image.” (P2), “...pictures were clear
and easy to understand.” (P7, P8, P20), and “...everything was clearly visualised
what to do.” (P14). The participants noticed a specific distinction between the two
tactile modalities, and participants commented vibrotactile “...also what helped
me to locate my muscles, but less than electrotactile.” (P1), and “...is relatively
detectable.” (P15), opposed to electrotactile as “...easy detectable.” (P15, P19), as
well as [with electrotactile] “...in contrary to vibration you feel the muscle.” (P7,
P18), which is “...better to locate the muscle” (P18). The electrotactile modal-
ities were mentioned to enable muscle localization (P17, P20) and favored for

“activation and location of the muscle” (P17).

Tactile Prior Stimulation supports Cognitive Processing Tactile prior stimula-
tion was found to be more helpful for cognitively processing muscle localization,
offering direct bodily guidance, unlike the more abstract assistance from vi-
sual modalities. The task was described as “monotonous (P3, P5, P16), which
“...affected the concentration.” (P13, P16), “...even with electrotactile and vibra-
tion” (P3), yet “...feeling your muscle groups contract made it easy to concentrate
on them specifically.” (P19). The visual modality was criticized as “...more dif-
ficult to figure out which muscle is next, than the immediate identification with
vibration or electrical stimulation.” (P4), “...difficult to imagine the right muscle
exactly on your own body...” (P10, P18), “...did not assist in activating the specific
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muscle more strongly or more accurately, does not necessarily ensure the correct
response.” (P3), highlighting that the visual cues offered only a schematic repre-
sentation of the targeted muscles, requiring initial interpretation. That this could
even cause a false early reaction, became evident when participants stated “...[with
visual] I had the feeling I would sometimes tense the marked body part before
getting the signal...” (P21). One participant stated that “...picture represented
a clear, understandable and easy to interpret message. (P7), indicating that the
additional process of an interpretation of the seen was necessary, and “...[visual]
added no value for me, could have also been text.” (P6) indicates that participants
first had to invest the cognitive effort to read the visualization.

The vibrotactile “...signal was small or low when compared with electrotac-
tile.” (P7), “...not regarding the whole muscle.” (P9), yet helpful to “feel the
muscle” (P1, P8, P9, P11). Furthermore, electrotactile modalities were noted
as particularly useful for muscle distinction (P8, P15, P17) and “...made feeling
the muscle extremely easy.” (P20). Electrotactile modalities were favored for
assistance as “...makes me alert and focused.” (P3, P13), “...prevents you from
sleeping.” (P3), while visual “...first increased focus, then almost not noticed at all
towards the end of the study.” (P1), and vibrotactile “...sometimes didn’t catch my
attention too much.” (P13), all pointing to cognitive stimulation (focus, attention)
by the modalities.

Tactile Stimulation promotes Body Awareness Participants consistently high-
lighted their bodily processes and changing feelings about using muscle tension
or sensations from tactile modalities, summarized as body awareness. One par-
ticipant expressed enjoyment in “...feel your own body inside” and suggested
using the system “...to get more connected to your own body” (P17). Participants
became aware of their inner sensory body map development in statements like
“It takes time to understand the experiment. But now I get the connection of the
muscles and the interface.” (P17), “...felt my body tensing the wrong muscles
for the targeting quite often at the beginning, but came to grips with it with
time.” (P18), and “...tried to tense the muscles by themselves and feeling they
did not react as they should.” (P21). Interestingly, participants familiar with their
body processes suggested challenging the user with “...catches, e.g., visual or
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electrotactile input but a different prompt, e.g., electrotactile on the lower leg
and prompt saying please tense biceps.” (P20), and “unusual variations” (P5),
both indicating a gamification approach for learning new sensomotoric mappings.
Especially electrotactile provoked the muscle perception as part of the body in
statements like “...clear feeling between [muscle] tension and relaxation.” (P9),
“Awakens the muscle feeling.” (P11), and “It is kind of crazy what happens to the
muscles during electrotactile; it first scared me, then I found it interesting.” (P18).
Electrotactile supported a familiarity with the bodily processes in statements like
“I liked the way my muscle moves without me controlling it.” (P6), and “The con-
traction is not identical with the contraction required.” (P7). The tactile modalities
were occasionally perceived similarly as “...sometimes, I felt like vibration was
the same as electrotactile but with the difference that my muscles weren’t under

much pressure.” (P13).

Higher Comfort and System Tolerance with Visual and Vibrotactile Prior Stimula-
tion The experiment was described as ’long” (P15, P18), and "demanding on
endurance” (P2, P3, P5, P10, P16), with potential “negative impact on reaction
times” (P16). Thereby, modalities enhancing overall comfort were appreciated,

LT

and participants noted that the visual modalities’ ”...[eye-catching color] made the
interpretation in such stressful situations easy.” (P7), they were “’less uncomfort-
able, more tolerable than tactile modalities" (P4, P16, P18), and ”...less "annoying
than feeling the vibration or electrotactile.” (P10), indicating fairly high comfort
and system tolerance for the visual modalities. Vibrotactile and Electrotactile
modalities received a similar count of feedback on comfort, with all comments on
vibrotactile being notably positive as “pleasant” (P3, P10), ”comfortable”” (P4,
P17), ’very mild, but still noticeable enough” (P19), "soft” (P5), ”subtle” (P6),
“very delicate, not unpleasant” (P18), “liked lesser intensity” (P21), and even
... felt fairly relaxing” (P20), pointing towards a high system tolerance using
vibrotactile modalities. Surprisingly, concerning comfort and system tolerance,
the electrotactile modality exclusively received negative comments like “uncom-
fortable” (P4, P10, P19, P16, P17), “unpleasant” (P18), and ’sometimes too
strong” (P3, P5, P13).
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Summary of Qualitative Results The participants appreciated the prior stimu-
lation modalities as support for muscle localization. Interesting findings were
that tactile prior stimulation supported cognitive task processing and body aware-
ness. Notably, some modalities produced potential discomfort. Comments on the
visual prior stimulation mainly highlighted its inability to link cues to muscles.
Vibrotactile prior stimulation was seen as the most comfortable but only helpful
for some. In contrast, the electrotactile prior stimulation received notably lower
ratings for comfort and system tolerance, yet was the most favored for muscle

localization assistance.

5.2.6 EMG Classification

Our analysis revealed distinct EMG signal shapes (Figure 5.6) in the physiological
signals of the muscles. To further highlight the results, we investigated how well
a standard machine-learning algorithm could classify muscle activation, location,
and modality. We performed EMG signal classification in a sliding window
approach (0.5 sec./500 samples). This examination allows us to understand our
EMG data set from the prior stimulation study, determine if the findings can be
incorporated into future applications, and learn the nuances of data differentiation.
As all EMG recordings in our data set were labeled by our software, we were
able to train our models based on ground truth. We used a standard feature extrac-
tion of the 24 most commonly used feature metrics stated by the literature [16,
318]: mean, median, standard deviation, minimum, maximum, root mean square
(RMS), number of slope sign changes (SSC), waveform length (WL), skewness,
kurtosis, Willison Amplitude (WAMP), Absolute Temporal Moment (TM), aver-
age amplitude change (AAC), variance, LOG Detector (LOD), integral absolute
value (IAV), mean frequency (MNF), median density frequency (MDF), my pulse
percentage rate (MPR), signal-to-noise ratio (SNR), and four auto-regressive
coefficients using ARIMA (ARC1-4). The data was divided into 70% of the data
for training the model and 30% used as test sets. To ensure the validity of muscle
classification, we did not use the four input streams from the EMGs in parallel
but only took the signal of the corresponding trial. For classification, we used

a random forest! classifier, which is more robust against overfitting, can handle

'https://rdrr.io/cran/randomForest/
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large feature spaces more effectively, provide importance measures, which can be
helpful for feature selection, and generally faster and more scalable in training
compared to other approaches such as SVMs [95, 158, 240].

Muscle Location Prediction The most fruitful attempt during the performance
analysis of the classifiers was the accuracy of the muscles’ location prediction.
Determining the location of the EMG signal can help to automatically classify the
forces and their movements in a wide range of future applications and wearable
devices. We found an overall accuracy of 80.70%, a sensitivity from 78.83% to
82.59%, and a high specificity from 91.84% to 95.76%. The detection rate among
all muscles ranged from 19.89 to 20.75% (x = 0.742, Mcnemar’s Test p < .001).
The confusion matrix of the result can be found in Figure 5.9.

Muscle Tension Prediction While the overall prediction accuracy (94.56%),
sensitivity (98.79%), and detection rate (88.82%) of the classifier for detecting
muscles were tensing were high, the specificity and ability of the model (k =
0.650, Mcnemar’s Test p < .001) to correctly identify negative cases where there
was no muscle tension were relatively low (56.90%). The visual exploration of
the data (cf. Figure 5.4) suggests that this limitation was primarily due to the
late response times of participants and the time required for them to tense their
muscles.

Prior Stimulation Feedback Modality Prediction The overall accuracy in pre-
dicting the feedback modality (27.06%) used for prior stimulation, the sensitivity
of the model (from 26.15% to 27.82%), and the detection rate (from 6.56% to
7.09%) was very low (x = 0.650, Mcnemar’s Test p < .001). The results indicate
that the EMG signal is not a reliable predictor of the muscle activation modality.
As the classifier could not differentiate between the modalities, we also assume
that the prior stimulation did not significantly interfere with the signals.
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Figure 5.9: Confusion matrix of the EMG muscle location prediction based on 24
features and a 0.5-sec sliding time window (500 samples per entry) for data sampled at
1000 Hz frequency. The matrix was determined by random forest machine learning
classification.

5.3 Discussion

In a VR user study, we compared visual, vibrotactile, and electrotactile prior
stimulation modalities to no prior stimulation at the biceps, triceps, upper leg,
and calf muscles, measuring reaction times with EMG. Our results indicate that
the reaction times depend on both the prior stimulation modality and muscle
location. All proposed prior stimulation modalities (visual, vibrotactile, electro-
tactile) significantly improved muscle response compared to no prior stimulation
modality, with no notable differences among them. Notably, vibrotactile stimula-
tion significantly enhanced reaction times in the biceps, a slower muscle. This
means that vibrotactile feedback could significantly support the participants in

cases where the interaction was particularly "challenging." Surprisingly, the calf
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muscle showed the fastest response, aligning with existing research on its high
information throughput [264]. However, our experimental investigation is the
first one, to our knowledge, to uncover significant differences in calf muscle
performance.

We hypothesize that improvements in reaction times observed across both
visual and tactile modalities are due to a mental representation of the body
schema (c.f. [17]) in the primary somatosensory cortex [216, 267], rather than
just activation of local nerve cells. The calf’s faster response might be due to
lower nerve sensitivity (or density) [182], suggesting multisensory integration
prioritizes less variable stimuli [71]. The low nerve sensitivity in the calf leads to
a more reliable, "noise-free" signal, aiding the somatosensory cortex in effectively
localizing that muscle. This could mean muscles in more sensitive areas are
harder to discriminate, warranting further research.

The main effects and lack of interaction effects in our experiment indicate that
the findings could apply to more body muscles. The calf’s quick response and its
negative correlation with EMG signal strength might relate to its role in postu-
ral control and locomotion, which often requires a fine-tuned balance between
quick responses and adequate force. An effect of the EMG amplitude would be
in line with related work on increased EMG amplitude with prior vibrotactile
stimulation [119]. However, the lack of significant parameter slopes remains
unknown, and it is unclear if this is the case among other muscles. The results
from subjective quantitative assessments revealed a significant preference for
prior stimulation modalities, especially electrotactile over no stimulation. While
the calf showed the fastest reaction time objectively, participants subjectively
rated that the upper leg benefited most from prior stimulation. Both quantitative
and qualitative data indicated that participants found tactile prior stimulation,
particularly electrotactile, useful for muscle localization and favored the electro-
tactile cues. Participants reflected on the relation of our apparatus to their body
awareness in their qualitative comments. This diverse feedback suggests our
apparatus could have a highly versatile utility in assisting both able-bodied and
disabled individuals in physical and cognitive aspects.

These insights are valuable for EMG developers and interaction designers,

suggesting that prior stimulation using visual and tactile modalities can enhance
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interaction accuracy and speed across various muscle locations. This has impli-
cations for EMG-based user interfaces [242] and therapeutic VR applications
requiring isometric muscle control [5, 58, 237]. Systems in VR working with
EMG currently only provide visual and tactile cues in closed-loop feedback
settings simultaneously to the EMG interaction and not before. Our system intro-
duces an additional feedback layer for enhancing communication patterns in VR
systems using EMG.

Enabling precise muscle classification and accurate placement of EMG elec-
trodes is crucial for future assistive devices with integrated electrodes [146]
and automated setup [147]. Our machine learning analysis demonstrates fine-
grained EMG classification from recorded interaction data, enabling devices to
autonomously identify the correct muscle without requiring explicit calibration
procedures. This post-hoc approach lays the foundation for smarter, self-learning
wearables that can automatically adapt to a user’s unique muscle patterns.

Self-calibrating EMG wearables could enhance skill training and rehabilita-
tion by automatically adapting to each user’s muscle signals. In manual fabri-
cation, they could compare muscle activity to expert reference patterns, giving
real-time feedback on effort, grip, and coordination without manual calibration,
accelerating skill transfer from experts to non-experts [18]. For rehabilitation,
those wearables could guide home exercises, adjust to recovery stages, and en-
sure proper muscle engagement, improving technique, adherence, and enabling
remote clinician monitoring [151]. Removing explicit calibration reduces setup
complexity, supports non-expert use, and enables scalable tele-rehabilitation and
remote mentoring through shared muscle activation feedback.

5.3.1 Implications

Our study’s findings indicate that visual and tactile prior stimulation can enhance
muscle reaction times, with tactile prior stimulation modalities being subjectively
favored. Prior stimulation patterns in EMG-based interaction offer a more acces-
sible approach to learning deterministic input commands. On-body cues could
prompt which muscles to activate next, offering EMG-interfaces as an afford-
able, easy way to interact with computing devices beyond traditional hand-based
controllers such as for games [198].
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The approach of using prior stimulation can support on-body notifications
in VR, which are preferred over visual ones [238, 325], offering new possibili-
ties of assistive systems with EMG response-based commands, e.g., to enhance
gamers’ VR experiences [198], or supportive systems using tactile alerts, e.g.,
while driving [8]. Users of prosthetic systems can benefit from shortened train-
ing of functional mapping by prior stimulated on-body feedback [1, 143, 236].
Learning scenarios with goal-oriented tasks and repetitions can be improved by
muscle priming to (re)gain motor control of dedicated muscle sites for researchers,
therapists and their patients in the field of neurophysiology and telemedicine [151,
304], or for (industrial) workers during remote instructions [18].

Electrotactile prior stimulation could enhance supportive driving scenar-
i0s [305] and visual prior stimulation could correct industrial machine use [18]
by assisting faster adjustments and facilitating learning of motor control. Tactile
prior stimulation could enable physical therapists to remotely stimulate patient
muscles, substituting for direct touch. This could facilitate clearer guidance on
which muscle to activate next during (tele-)medicine sessions, enhancing neurore-
habilitation [151] by promoting quicker adaptation to therapy movements. Visual,
vibrotactile or electrotactile prior stimulation could aid patients in regaining bal-
ance in MR-based assisted-training systems that capture the body motion and
provide tilt feedback [35, 304].

Tactile prior stimulation in simulated training environments may enhance
muscle localization and mental body schema integration, potentially speeding up
the adaptation to prosthetic limbs [5, 58, 310] and facilitating quicker movement
response in impaired limbs during mirror therapy for stroke rehabilitation [174,
218, 295]. Systems of EMG dexterous prostheses with precise control systems
are capable of sending and receiving signals to mimic natural sensations [1,
65]. These devices could benefit from additional tactile prior stimulation, which
simulates the sensation of contact against the prosthetic finger to provide feedback
comparable to a natural touch. This would then prompt the muscle responsible
for controlling the prosthesis’ finger movement to adjust its tension, thereby
preventing excessive pressure on grasped objects [33, 236].

As one of the main implications of our study, we recommend using the calf for
EMG input if low reaction times are desired and there is no necessity for a specific
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body location for the EMG acquisition (c.f. [198, 242]). Our research paves the
way for more responsive and accurate EMG-based user interfaces [242] for various
applications, including assistive, therapeutic, and hands-free applications [5, 14,
58, 198, 237].

Limitations Our system is limited to sedentary hands-free interaction scenarios
that require quick responses and are designed with a predetermined pattern,
allowing the system to anticipate which muscle needs to be activated next. This
limits its application to prosthetics with multichannel control mechanisms, where
the system can benefit from direct stimulation of an antagonist muscle that needs
to be activated, e.g., grab with a complex finger pattern movement or in virtual
training scenarios where the system anticipates the next muscle that has to be
to be tensed [1, 143, 236]. The applicability of our system design is limited to
enhancing and speeding up repetitive sequences during remote instructions [18,
305] or telemediated applications [151, 304]. The system cannot be applied to
interactive systems for controlling a user interface with isometric EMG because it
would not be able to determine early enough when the user intends to interact via

isometric EMG input to stimulate the corresponding muscle location in advance.

Future Research Motor learning research demonstrated rapid neuroplastic
changes through activities like juggling or playing musical instruments [62, 86].
We observed that participants often activated incorrect muscles despite knowing
the correct muscle-to-computer mappings, hinting at the possibility of intentional
"mistaken" activations. Related work has suggested the integration of visual
and tactile cues in VR to augment sensory perception, including compensatory
mechanisms for deficits in visual perception, proprioception, and spinal cord
function [283, 284]. Our system, inspired by these studies, aims to speed up
the training of new neuro-muscular pathways, especially from the sensorimo-
tor cortex to the motor cortex, using novel visual and tactile interactions in an
EMG-integrated VR framework. We suggest further research on non-linear pre-
stimulation modalities to improve EMG response times in target muscles and
their relation to cognitive workload [155].
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Future research could explore additional muscle locations, such as the butt,
back, or stomach muscle locations, and extend to isotonic contractions and move-
ments. Given the effectiveness of tactile prior stimulation, we propose compar-
ing mechanical tactile approaches with vibrotactile and electrotactile modalities
as additional mechanotactile modality, including intensity variations. Our re-
search demonstrates that prior stimulation modalities enhance muscle response
in EMG-based reaction tests in VR, subsequently, future studies could explore
threshold-based EMG interactions in VR, examining metrics beyond reaction
time to gain further insights into muscle activation variations across different
locations. The key benefit of using prior and multiple muscle stimulations lies
in these applications and in providing tactile feedback before threshold-based
control. Future research should focus on integrating more advanced machine
learning models, such as deep learning, to enhance classification accuracy and
scalability. Expanding the feature set and incorporating real-time processing
capabilities would further improve the system’s utility in dynamic environments.

5.4 Summary

Chapter 6 investigates the concept of muscle priming with prior stimulation feed-
back modalities and their impact on EMG-based interactions, addressing RQ4
"Does prior stimulation feedback enhance EMG-based interactions in reaction
time tasks?" and RQS5 "Do muscle locations differ in EMG based interactions
with prior stimulation feedback in reaction time tasks?" It focuses on prior stim-
ulation to reduce EMG reaction times and enhance performance by connecting
biofeedback awareness to actionable user interactions. We demonstrated that
prior stimulation significantly enhances reaction times and performance across
various muscle groups.

Our research evaluated visual, vibrotactile, and electrotactile stimulation
modalities compared to no stimulation, showing that all modalities significantly
improved reaction times. Vibrotactile stimulation was particularly effective for
slower muscles like the biceps, while the calf muscle exhibited the fastest reac-
tion times, aligning with its high information throughput [264]. These findings
emphasize the utility of prior stimulation to prime muscles, enabling the so-
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matosensory cortex to efficiently integrate multisensory feedback and enhance
response accuracy. Subjective assessments also revealed a preference for electro-
tactile stimulation, which participants found helpful for muscle localization and
interaction, while having effects on learning and muscle fatigue. We highlight
how prior stimulation not only enhances reaction times but also influences user
perception and body awareness. They connect the mental representation of the
body schema [17, 267] with practical enhancements in VR interaction design,
demonstrating an adaptive system for sedentary hands-free interaction for more

responsive and precise EMG-based systems.

5.4.1 Lessons Learned

From the investigation of muscle priming with prior stimulation feedback and

their impact on EMG interactions, we derive the following insights:

Prior Stimulation Feedback Improves Reaction Times Prior stimulation feed-
back—whether visual, vibrotactile, or electrotactile—proved to be an effective
preparatory mechanism for improving reaction times in a response-based test with
isometric EMG. This demonstrates the potential to enhance EMG-based interac-
tions, particularly in hands-free scenarios where rapid and precise responses are
required, e.g., for prosthesis control [29, 237].

Muscle-Specific Insights The calf muscle emerged as the fastest responder,
highlighting its suitability for scenarios where minimal reaction times are critical.
Conversely, vibrotactile feedback was notably effective for slower muscles like the
biceps. These results guide the design of adaptive EMG-based systems, suggesting
muscle-specific configurations for optimizing interaction performance [198, 242]

with prior stimulation feedback.
Subjective Preferences of Electrotactile Modality Participants favored electro-

tactile stimulation for muscle localization, indicating its potential for training and

rehabilitation applications. Systems could improve muscle response times while
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enhancing user understanding of body dynamics. This dual benefit positions
tactile stimulation as a versatile tool for assistive, therapeutic, and interactive
systems.

Feasibility of EMG Signal Classification Machine learning methods, such as ran-
dom forest classifiers, are effective for classifying muscle activation and location
using EMG physiological signal data. The demonstrated classification frame-
work has the potential to scale across various applications, including assistive

technologies, telemedicine, and remote healthcare.

5.4.2 Data Sets

As an outcome of chapter 6, we provide a comprehensive dataset EMG-based
reaction times testing under different prior stimulation modalities, and the whole
dataset for classification of the EMG-based muscle prediction publicly available
on GitHub https://github.com/JessicaSehrt/ReactionTest _EMG-V_vT_
eT_priorStim By fostering reproducibility, this resource supports the develop-
ment of EMG-based systems for sedentary hands-free interactions, enhanced with

prior stimulation feedback.
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Biofeedback Awareness

The multimodal biofeedback investigations presented in the previous chapters of
this thesis demonstrated that providing users with information about their physio-
logical states can significantly enhance interaction. Visual, narrative biofeedback
mapped from physiological input through EDA contributes to a deeper understand-
ing of multimodal systems. This approach informs users about their physiological
responses, particularly those related to stress and relaxation. It is beneficial in
biofeedback applications and related research in various forms. EDA biofeed-
back is extensively in use for individual well-being and health [7, 56, 138, 167,
323], but also for applications in HCI [67, 96, 226, 241, 314], emotion-adaptive
games [96], skill training [239], and reflected in adaptive environments in VR [67,
226, 241], e.g., for virtual architectural feedback [212]. While EDA-based inter-
action differs from EMG in that it is not directly voluntary, it still actively informs
and influences how users interact with their physiological input. Although the
benefits of biofeedback are well-documented, the influence of user awareness on
its effectiveness remains unexplored. Consciously understanding that physiologi-
cal responses directly influence the system by enhanced awareness of biofeedback
can create more comprehensive and effective interaction mechanisms. Research

suggests that heightened awareness can amplify control over physiological states

115



and increase perceived efficacy [257, 281]. However, its impact on physiological
outcomes, particularly in immersive VR settings, remains unclear. This chapter
explores the role of awareness in influencing user responses during a sedentary
hands-free biofeedback application related to their physiological input from EDA.

Parts of this chapter are based on the following publication:

J. Sehrt, U. Yilmaz, T. Kosch, and V. Schwind. “Closing the Loop: The Effects of Biofeed-
back Awareness on Physiological Stress Response Using Electrodermal Activity in Virtual
Reality.” In: Extended Abstracts of the CHI Conference on Human Factors in Computing
Systems. CHI EA '24. Honolulu, HI, USA: Association for Computing Machinery, 2024.
ISBN: 9798400703317. DOI: 10.1145/3613905.3650830

6.1 Method

Participants’ EDA levels were used to control the virtual environment in a linear
mapping from their physiological signals to the parameters of the VR scene of an
immersive weather simulation as visual biofeedback. Two groups were compared
in a between-subject user study, both groups experienced the same mapping in the
same scene, and both groups could control the weather with their physiological
input. The only difference was that one group was informed about the fact that
they could control the weather by their EDA level, and the other was not.

6.1.1 Study Design

To understand if biofeedback awareness affects the physiological response during
stress management, we conducted a VR user study in which the EDA was used
to control the weather in an immersive environment. Participants were either
informed about their ability to control or not (INFORMED CONTROL), resulting in
a between-subject study in which the participants (and experimenter) were blind
to the conditions. In addition, we were interested in whether the participants felt
control over the weather (CONTROL-AWARE), which was assessed posterior to the
VR experience. As all participants experienced the same amount of time, we used

116 6 | Biofeedback Awareness


https://doi.org/10.1145/3613905.3650830

TIME as a within-subject variable, assuming an interaction effect with INFORMED
CONTROL or CONTROL-AWARE, indicating that the EDA will change during the
biofeedback phase.

6.1.2 Apparatus

The key biofeedback parameter in our study is the EDA. We used a biosignalplux
OpenBan one-channel hub! kit with skin conductance electrodes to measure the
EDA. The electrodes were attached to the index and middle finger of the left hand.
The sampling rate was 1000 Hz with 16-bit resolution.

We used the Unity game engine (2021.3.6f1) and the biosignalplux API for
Unity? to implement the VR application. For the visual representation of the
animated weather in the biofeedback scene, we used the WeatherMaker asset’
by Digital Ruby. The asset provides a realistic and smooth transition between
volumetric cloud profiles with fluid animations. Animation transitions were set
in 10 seconds using linear interpolation. The asset also included suitable sound
effects for the respective weather conditions. By leveraging the minimum and
maximum values of the participant’s EDA, each received value was transformed
into a single weather variable transitioning between different weather profiles.
Thus, the weather variable could take on values ranging from 0% to 100%, where
0% represented a very relaxed state on a sunny day, and 100% indicated a state of
high stress using stormy cloud profiles. This enabled a linear mapping between
the participants’ calibrated EDA and the weather parameters of the VR scene.

The Unity application ran on an XMG Fusion 15 Laptop with Intel Core
17-9750H, GeForce RTX 2070 Max-Q, 16GB RAM, and Windows 10. While
targeting frames per second (FPS) in Unity was set to 90, the application’s average
FPS was around 52 Hz. As VR HMD we used the HTC Vive Pro and SteamVR.
The VR controller in the participant’s right hand was only visible during the mental
arithmetic task. We used the meadow environment from the Dynamic Nature

"https://www.pluxphysiologicalsignals.com/products/solo-kit

’https://github.com/pluxphysiologicalsignals/unity-sample

Shttps://assetstore.unity.com/packages/tools/particles-effects/
weather-maker-volumetric-clouds-and-weather-system-for-unity-60955
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“VR Relaxing Phase VR Mental Arithmetic Task

VR Biofeedback Weather Control Phase

Figure 6.1: Photo of the experimental setup (a) and screenshots of the three phases
in VR: Seven minutes in the Relaxation Phase (b) ensured a decreased EDA level as
a minimum baseline for calibration. Maximal EDA levels were obtained in the Mental
Arithmetic Task (c) based on the Trier Social Stress Test (TSST) paradigm to induce
cognitive stress. In the biofeedback phase (d), the participants were able to control the
weather activity from stormy (100% EDA) to sunny (0% EDA).
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Asset! from the Unity Asset Store for vegetation and animations in the nature
scene during the relaxation and biofeedback phases. The system automatically
calibrated the participant’s skin conductance value during the relaxation and
stress tasks for a (possible) full-range weather transition during the biofeedback
phase. The application ran fully automatic to prevent any intervention from the

experimenter.

6.1.3 Procedure

After signing the informed consent and being briefed on the experimental setup,
each participant was seated in our laboratory. Before launching the Unity appli-
cation, the openBan device was attached to the fingers of the participant’s left
hand, and they were equipped with the HMD. The Unity application automatically
assigned participants to an experimental condition, with the experimenter and
the subject initially unaware of the condition. During the application’s operation,
participants received no further instructions other than those provided. The appli-
cation’s procedure was divided into three phases: Relaxation Phase, Stress Phase,
and Biofeedback Phase (see Figure 5.1.). The entire experimental procedure in
VR lasted 24 minutes for all participants and was planned using the HCI studies
toolkit [255].

Relaxation Phase Participants were instructed to relax using a visual prompt
(the panel was visible for 20 sec). In this scene, a serene environment with natural
sounds was displayed. This phase lasted exactly seven minutes (420 sec) to ensure
full relaxation of the participants. The minimum EDA recorded in this phase was
used to calibrate the weather conditions in the Biofeedback Phase.

Stress Phase In this phase, participants solved a mental arithmetic challenge
within seven minutes, based on the serial subtraction task from the Trier Social
Stress Test (TSST) [144]. They were placed in a stressful office environment with
loud noise and flickering lights. Participants had to continuously subtract thirteen

from 1,039 and enter the result into a numerical field using a VR controller.

'https://assetstore.unity.com/packages/3d/vegetation/
meadow-environment-dynamic-nature-132195
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Correct entries were acknowledged with a rewarding sound and a green cube
lighting up. If time ran out or an incorrect entry was made, a loud horn sounded,
and the number reset to 1,039. The remaining time was reduced by one second
after each successful entry to increase stress. Additionally, at certain checkpoints,
a false attempt was falsely attributed to the participant, resulting in the horn
sounding and progress resetting. The participants’ maximum EDA values were
determined in this phase.

Biofeedback Phase In the experimental phase, participants controlled the weather
as biofeedback using their EDA levels. Through the relaxation and stress phase,

we calibrated the user’s response to map it linearly onto the weather conditions

from stormy (maximal EDA) to sunny (minimal EDA). A task panel in the field-of-
view (FoV) (visible for 20 sec) prompted the participants to relax while only the

informed group additionally received the information that they could control the

weather by their relaxation-related EDA values. An explanatory panel was shown

in the participants’ HUD at the beginning of the biofeedback phase showing either

the instruction to just relax or to relax by controlling the weather of the scene.
High EDA levels were visualized by a fierce storm tossing trees and plants. The

sky was covered with dark thunderclouds, heavy rainfall prevailed, and nature was

shrouded in darker light. The more the participants relaxed and therefore lowered

their EDA values, the less rain fell, the clouds dissipated, the wind animations

calmed down, and the sun illuminated nature again, thus returning to the calm

state of the relaxation phase. The biofeedback phase lasted ten minutes.

6.1.4 Participants

Thirty participants were recruited via our institution’s social networks and mailing
lists. The mean age of the participants was 23.333 (SD = 3.613), ranging from
18 to 34 years (6 female, 24 male). Twenty-one were computer science or
mechanical engineering faculty students, and nine were staff members or in
vocational training. Students were compensated with credit points for their
lectures, and staff members were compensated with working hours. The study
received ethical clearance according to our institution’s guidelines and hygienic
instructions.
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6.1.5 Data Analysis

Raw data were recorded throughout the experiment. We only considered the EDA
for hypothesis testing in the biofeedback phase where participants controlled the
weather (840 - 1440 seconds after application start). To reduce the noise in the

data, we aggregated the raw values within each second using their median.

6.2 Results

Interestingly, the responses from the participants were markedly distinct. Among
the informed participants, 8 out of 15 (53.3%) correctly surmised that they could
control the weather. In contrast, 7 out of the 15 participants (46.6%) who were
not informed also believed that they had control over the weather. Pearson Chi-
squared test of independence was conducted to assess the relationship between
the variables INFORMED CONTROL and CONTROL-AWARE, which was not sig-
nificant, x> =0, p = 1. Therefore, we considered both groups independently and
analyzed them separately using linear mixed model analysis. Linear regressions

are shown in Figure 6.2

6.2.1 Biofeedback Informed

We fitted a linear mixed model using restricted maximum likelihood (REML)
and nloptwrap optimizer of the Ime4 package' for R to predict the EDA (in u.S)
with INFORMED CONTROL and TIME as independent variables (IVs). Since all
participants were in the VR for exactly the same amount of time, the time was
treated as a within-subject variable. The model included the subject as a random
factor. The model showed substantial explanatory power, with a conditional
R? of .91. The contribution from fixed effects alone (marginal R*) is .03. The
intercept of the model, representing the scenario of non-informed and time =
0, is at 9.78 (CI95 = [8.040,11.510]), #(17976) = 11.04, p < .001. The main
effect of being INFORMED CONTROL is positive but statistically non-significant,
B =1.170 (CI95 = [—1.280,3.620]) , Std.p = —0.090 (CI95 = [—1.280,3.620)),
1(17976) = 0.930, p = .350. The effect of TIME is statistically significant and

'https://cran.r-project.org/web/packages/lme4/index.html
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(a) 15 participants were informed that their EDA would control the weather, while the other
15 were not (the info panel disappeared at the dotted vertical line).
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(b) Post-experiment inquiries revealed that 16 participants realized their EDA influenced
the weather (control-aware), whereas 14 participants did not.

Figure 6.2: EDA of 30 participants during the VR Biofeedback Phase, evaluated in
two ways. Linear regression model fit (dashed lines) using REML estimation at the
participant level showed significant interaction effects (p < .001). Informed participants
showed significantly lower EDA measures at the end of the phase than those who were
not informed (a). Participants who were aware that their EDA controls the weather
exhibited elevated measures until the end of the phase (b). Graphs include standard
error bars.
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negative, § = —0.003 (CI95 = [—0.003,—0.003)), Std.f = —0.150 (CI95 =
[—0.150,—0.140]), #(17976) = —45.400, p < .001. However, also the inter-
action effect of INFORMED CONTROL X TIME is statistically significant and
negative, § = —0.001 (CI95 = [-0.002,—0.001]), Std.f = —0.060 (CI95 =
[—0.070,—0.060]), 1(17976) = —14.050, p < .001. Standardized parameters
were derived by fitting the model to a standardized version of the dataset. The
95% CIs and p-values were calculated using a Wald t-distribution approximation.
Thus, that analysis confirmed the assumption that the EDA of participants being
informed at the beginning of the biofeedback phase were significantly lower at
the end of the phase than those who were not informed.

6.2.2 Biofeedback Control-Aware

For CONTROL-AWARE, we fitted a second linear mixed model with the sub-
ject as a random effect factor. The model’s total explanatory power is sub-
stantial (conditional R = 0.91) and the part related to the fixed effects alone
(marginal R?) is 0.03. The model’s intercept, corresponding to not aware and
TIME =0, is at 11.51 (CI95 = [9.710, 13.310]), ¢ (17976) = 12.55, p < .001. The
main effect of CONTROL-AWARE is negative but statistically non-significant,
B =—2.150 (CI95 = [—4.610,0.310)), Std.3 = 0.04 (CI95 = [-0.660,0.730]),
#(17976) = —1.71, p = 0.087. The effect of CONTROL-AWARE is statistically
significant and negative, § = —0.005 (CI95 = [-0.005,—0.0053)), Std.p = —0.23
(CI95 = [—0.240,—0.220]), ¢ (17976) = —69.56, p < .001. The interaction effect
of CONTROL-AWARE X TIME is statistically significant and positive, B = 0.002
(CI95 =10.002,0.002]), Std.p = 0.10 (CI95 = [0.090,0.110]), #(17976) = 21.43,
p < .001. Thus, participants who believed in their ability to control the weather
showed higher EDA values until the end of the biofeedback phase. We also
analyzed the data under one single model and considered the hypothesis if there
is a three-way interaction between INFORMED CONTROL X CONTROL-AWARE
x TIME, which was, however, not significant (p = .914). Due to rank deficiency
from the limited sample size, while the null hypothesis might be rejected, the

reasons for the rejection may not accurately reflect the true underlying patterns,
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increasing the risk of Type III errors. This limits valid conclusions regarding
differences in EDA values for informed and control-aware participants (or other
combinations). The same limitation applies to potential gender effects.

6.2.3 Subjective Feedback and Observations

As already mentioned, only eight participants from the group that was informed
about having biofeedback believed that it was the changes in their physiological
signals, e.g., their biofeedback, that caused the weather change. After the experi-
ment, seven participants believed that the weather had been controlled by their
stress level, even though they were not informed. Consequently, 14 participants,
almost evenly distributed in both groups, were strongly convinced that the weather
was not manipulated by their stress or relaxation obtained from their EDA. While
all of them observed that the weather changed over time, only ten of them reported
on explicit reasons why they had not been convinced that the weather was being
manipulated by them, and did not feel stressed or relaxed at all. However, a
decrease in the EDA data of all participants was noticed.

The participants who believed that their bodies controlled the weather stated
that they felt connected with the environment. "When I breathed in and out, the
weather improved. When I was getting excited, the weather worsened." (P20). Ev-
ery third participant experienced boredom during the relaxation scene. However,
most of them reported positive feelings, including relaxation or a state of serenity
during that first phase. Only two participants were annoyed during the experiment
due to restricted movement caused by the sensor attached. In total, 25 participants
described in their own words that they felt particularly stressed, frustrated, or
angry during the arithmetic task. Three stated that they felt challenged, one felt
competent enough, and only one participant (P8) reported feeling good after the
task. Indeed, his EDA reflected this, as despite a significant increase during the
transition from relaxation to the stress scene, his EDA quickly decreased when he
started the mental arithmetic task. Generally, most participants praised the VR
environment, even though the graphics and resolution were criticized. Generally,
the biofeedback itself was positively received by the participants. The arithmetic

task, however, was mostly negatively recognized as being too stressful.
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We explored the impact of biofeedback awareness on physiological responses
during stress management in VR. Thirty participants were involved in a between-
subject design, where they were either informed or not informed about their ability
to control the weather using EDA. The VR application allowed participants to
control the weather based on their EDA levels, with a range from sunny (low
EDA) to stormy (high EDA) conditions. After the experiment, we surveyed
the participants to assess their perceived control over the weather. Two linear
mixed models revealed significant interaction effects between group and time
during the biofeedback experience, confirming that the biofeedback mechanism
functioned identically for all participants. The EDA of informed participants was
significantly lower at the end of the biofeedback phase than that of participants
who were not informed. This suggests that knowing their stress levels could
influence the environment enhanced relaxation, which aligns with prior research
on biofeedback using EDA [202, 212, 226, 239, 314]. However, higher EDA
values of participants who recognized that they also gained control were probably
higher due to their ability to test and “play around” with their influence on the
weather in the biofeedback phase. Participants who were not able to control it
showed lower values, indicating that they just waited and relaxed until the end of
the experiment. This finding indicates that being informed about the biofeedback
loop does promote relaxation, but not necessarily due to their ability to control the
weather. Glass and Singer’s classic studies showed that even a modest perception
of control, such as believing one could stop loud noise, significantly reduced stress
responses and improved task performance [88] and concluded that perception
of control can buffer stress, even when actual control is limited or illusory Our
findings parallel this effect, suggesting that the biofeedback benefit observed in
our study may partly stem from perceived rather than actual control. Biofeedback
activeness may partly derive from users’ perceived control, not just physiological
feedback loops. This raises the question of whether physiological effects observed
in biofeedback contexts are always attributable to actual functional control or may
also emerge from a placebo-like mechanism based on perceived control. Similar
to findings in other biofeedback research [257], participants’ belief in a functional
system—even when its influence is absent or limited—may itself modulate physi-
ological states. Future studies could explicitly manipulate actual versus perceived
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control, for example, by varying the degree to which biofeedback signals truly
influence the environment, for example by adjusting the responsiveness or sen-
sitivity of the system. Subjective measures of perceived control and relaxation,
complemented with physiological markers such as heart rate (HR), heart rate
variability (HRV), breathing, or cortisol, could further clarify the mechanisms
underlying these effects. Beyond the role of control, the observed variability
in responses highlights the importance of exploring individual differences and
temporal patterns. Time-series analysis and pattern recognition approaches could
help identify predictors of how individuals respond to biofeedback, such as initial
stress levels, personality traits, or engagement with the VR environment. Such
approaches could inform adaptive biofeedback systems that tailor interventions to
individual needs, potentially increasing effectiveness.

Limitations and Future Directions The sample primarily consisted of young,
healthy individuals, limiting the generalizability of our findings. The relatively
short duration of the VR intervention may not capture long-term effects or po-
tential habituation to biofeedback mechanisms. Moreover, our focus on a single
physiological marker (EDA) limits the scope of interpretation, as multimodal
measures could reveal richer insights into stress responses [251]. Future research
should therefore (1) examine varying degrees of actual and perceived control,
for example by adjusting the responsiveness or sensitivity of the biofeedback
system, to disentangle belief-driven from function-driven effects, (2) incorpo-
rate additional physiological markers (HR, HRYV, breathing, cortisol) to better
capture stress and relaxation processes, (3) analyze individual response patterns
using time-series and machine learning approaches, and (4) recruit more diverse
participant groups to improve external validity and to refine these systems further.

6.3 Summary

Chapter 6 investigates the role of awareness in shaping physiological responses
during stress management in VR. Addressing RQ1 "How does awareness of
biofeedback, provided through EDA, influence physiological signal responses?".
This study examined how informing participants about their ability to control
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the environment using EDA impacts the effectiveness of physiological input and
stress levels. In a between-subjects design involving 30 participants, the VR
application allowed participants to influence the weather (e.g., sunny to stormy)
based on their EDA levels. Participants who were informed about their biofeed-
back control exhibited significantly lower EDA levels at the end of the session
compared to those who were not informed, suggesting enhanced relaxation. Inter-
estingly, informed participants who believed they had control also showed higher
EDA levels during the session, possibly due to engagement and experimentation
with the biofeedback mechanism. These findings highlight the importance of
biofeedback awareness in reducing stress and promoting user engagement in
immersive environments, with implications for healthcare, interactive systems,

and game design.

6.3.1 Lessons Learned

From this investigation into biofeedback awareness, the following insights were
derived:

Awareness Promotes Physiological Response Participants informed about their
ability to control the environment using EDA exhibited lower stress levels, as
indicated by reduced EDA at the end of the session. This finding aligns with the
principle of biofeedback and its potential for stress management.

Belief in Control Influences Engagement Participants who believed they had
control over the environment, regardless of being informed, displayed higher
EDA during the session. This indicates that perceived control fosters engagement

and experimentation, even in the absence of explicit instruction.

Complexity of Subjective and Objective Responses A disparity between sub-
jective feedback and physiological responses was observed, suggesting that par-
ticipants may not always accurately assess their stress or relaxation levels. This
highlights the need for a nuanced understanding of cognitive and physiological

factors in biofeedback systems.
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6.3.2 Data Sets

To enable further exploration, the data and source code are publicly available on
GitHub https://github.com/JessicaSehrt/EDA_VR_biofeedback.git This
resource supports reproducibility and encourages further research into EDA-based

biofeedback applications in VR.
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Conclusion and Future Work

This thesis begins by describing physiological sensing as an interaction technique
in HCI, presenting the technical foundations and related research trends, and
introducing challenges and solutions for isometric muscle-based interactions
enhanced by multimodal biofeedback, prior stimulation feedback, and biofeed-
back awareness. Each study provides unique insights into the processes and
implications of utilizing physiological signals for virtual interactions, revealing
shared patterns and complementary findings that advance our understanding of
systems that enable the improvement of interoceptive focus on one’s physiological
signals as an input mechanism in sedentary, hands-free interaction with minimal
movement. The following summarizes the research contributions, answers the
research questions, and concludes with shared insights and an outlook on future

research directions.

7.1 Summary of Research Contributions

This thesis ties together the following investigations to enhance hands-free HCI
systems with physiological input. We report on two studies based on a VR Fitt’s
Law task investigating how muscle-based interactions and multimodal biofeed-
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back with EMG input can be improved, addressing RQ1 and RQ2. The first
study investigates the efficacy of EMG-based interaction from various muscle
locations in VR, pointing towards high flexibility for EMG interaction in inter-
active applications. Building on this, the second study explores the impact of
combining multimodal biofeedback and its impact on enhancing EMG-based
interaction, demonstrating that combining tactile and visual feedback enhances
EMG interaction performance. This multimodal approach not only augments
interaction with isometric

This thesis further investigates the impact of multimodal prior stimulation
modalities on reaction times in EMG-based input, revealing a significant im-
provement of visual, vibrotactile, and electrotactile modalities. Prior stimulation
feedback refers to cues provided before an action to help prepare the users. The
study ‘s investigation, inspired by the assistive technique of muscle priming into
prior stimulation feedback, showed reduced reaction times and enhanced isomet-
ric EMG-based interaction, providing insights into learning and fatigue. This
study enhances the overall contributions of this thesis by demonstrating how prior
stimulation feedback can improve muscle response, adding another dimension to
optimizing interactions with physiological sensing technologies.

This highlights the importance of user awareness and readiness in sedentary
hands-free interactions. Visual, vibrotactile, and electrotactile prior stimulation
feedback modalities were used to prime muscles, all reducing the time needed to
respond. The electrotactile prior stimulation modality was particularly favored in
subjective ratings on the improvement of the localizability of all muscles. The
calf muscle exhibited the fastest reaction times when prior stimulated, aligning
with its high information throughput from the second study of this thesis [264].
The results emphasize that prior stimulation at specific muscle sites improves
reaction times and interaction fidelity with physiological sensing. The results
were further highlighted by the investigation into the potential for accurate muscle
location classification using the acquired EMG data.

Furthering the approach, this thesis investigates the impact of biofeedback
awareness on the user’s physiological response. We present the study’s results
exploring the effects of awareness on the efficacy of biofeedback in stress man-
agement, using EDA as a primary measure and biofeedback control using a VR
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weather control system. This third study revealed that when researchers do not
just take care of informing users of their biofeedback control but also ensure
that users are aware of their biofeedback control, their interaction within the VR
environment becomes significantly more nuanced and effective.

Together, these findings, studies, and investigations culminate in a sophis-
ticated framework for hands-free interaction design with physiological sensing
technologies, offering great potential for applications aiming to transform EMG
and EDA measures as input into biofeedback mechanisms as output, offering in-
novative ways to design adaptive and intuitive interactions that provide innovative
ways to connect humans with computers. Improved human interoception of phys-
iological functions as input mechanisms can be beneficial in various fields. These
include healthcare for rehabilitation, fitness training, accessibility in HCI for
individuals with limited mobility, and gaming, where sedentary hands-free inter-
actions can create novel experiences, with potential to be useful for deterministic
learning in industrial or rehabilitative training scenarios.

In the following, we revisit the research questions addressed in this thesis:

* RQ1: Which muscle locations are optimal for EMG-based real-time inter-

actions considering user performance and perceived workload?

We compared user performance and perceived workload using different
muscle locations for isometric EMG input in a virtual Fitt’s Law Task.
We found similar performance across all tested muscle locations and that
input performance does not significantly differ among isometric-controlled
muscle contractions. While the forearm shows slightly higher throughput,
other muscle locations are equally viable for interaction.

* RQ2: How do different biofeedback modalities (auditory, tactile, visual)

influence the performance and interactions of EMG-based interactions?

We compared how different feedback modalities and their combinations
affect the performance and workload in a virtual Fitt’s Law Task. Re-
sults showed that combining tactile and visual biofeedback significantly
improved performance, while auditory feedback negatively impacted per-
formance. The findings highlight the robustness of EMG-based systems

7.1 | Summary of Research Contributions 131



for target selection, regardless of target size or distance. The qualitative
feedback revealed the importance of addressing challenges such as muscle
fatigue.

* RQ3: Does prior stimulation feedback enhance EMG-based interactions

in reaction time tasks?

We tested the prior stimulation modalities on four key muscles, finding
that prior stimulation in a Virtual Reaction Time Test with visual, vibrotac-
tile, and electrotactile modalities shortened isometric EMG reaction times
in isometric EMG-based interaction with all muscle. The electrotactile

modality was subjectively favored.

* RQ4: Do muscle location responses differ in EMG-based interactions with

prior stimulation feedback in reaction time tasks?

The Gastrocnemius cap. med. muscle in the inner calf responded signif-
icantly faster than the other muscles. The calf muscle had the shortest
reaction times in a Virtual Reaction Time Test during prior stimulation with

isometric EMG-based interaction.

* RQS5: How does awareness of biofeedback, provided through EDA, influ-

ence physiological signal responses?

We showed that biofeedback awareness can impact physiological responses.
Participants with perceived control over their EDA to control the environ-
ment fostered engagement and experimentation, even in the absence of

explicit instruction.

7.2 Implications

Our research advances the understanding of EMG-based systems and biofeedback
by synthesizing insights from multiple studies into a cohesive framework. Across
the studies, we explored isometric muscle contraction, biofeedback modalities,
and prior stimulation mechanisms, emphasizing their implications for improving
user performance and interaction design. A central theme across all studies is the

transformation of physiological signals into actionable biofeedback loops that
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influence user states and system behavior. By focusing on different contexts, the
studies converge on a critical insight into how adaptive systems can enhance user
engagement and performance by aligning multimodal biofeedback mechanisms
with physiological and cognitive processes.

Linking all of this thesis’s insights together, we emphasize how different
feedback modalities and prior stimulation feedback can collectively enhance the
effectiveness and responsiveness of interactions based on physiological sens-
ing. We highlight these systems’ adaptability and enhanced responsiveness and

demonstrate their potential in hardware and software prototypes.

Multimodal Feedback Enhances EMG-Based Interaction Through these inves-
tigations, we identified an innovative way to enhance biofeedback technology
systems with multimodal biofeedback. Simultaneously integrating tactile and
visual biofeedback loops in EMG-based interfaces, we identified that such multi-
modal feedback significantly improves performance. This work showcases the
potential of multimodal biofeedback to address key challenges in EMG-based
interaction systems. We demonstrated that muscle-based inputs using isometric
contractions from various muscle locations are robust for target selection tasks
in VR, independent of target size or distance. However, extensive muscle usage
and user fatigue necessitate future investigation into dynamic and sustainable
designs. We extended these findings by illustrating that combining visual and
tactile biofeedback significantly enhances control over muscle activity.

We introduced the concept of prior stimulation feedback modalities as a
preparatory mechanism to enhance isometric muscle responses. Importantly,
reaction times improved significantly across visual, vibrotactile, and electrotactile
modalities compared to no prior stimulation. Notably, the calf muscle consis-
tently showed the fastest responses, likely due to its relatively high information
throughput [264] and lower nerve sensitivity [182, 216].To our knowledge, this
is the first research to systematically examine the impact of prior stimulation
modalities on response times with isometric EMG from various muscle locations.
Our research paves the way for more responsive and accurate EMG-based user
interfaces [242] for various applications, including assistive, therapeutic, and
hands-free applications [5, 14, 58, 198, 237].
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By integrating visual, vibrotactile, and electrotactile modalities in simul-
taneous and prior stimulation feedback loops, this research offers a scalable
and adaptive approach to EMG-based interactions. These findings collectively
establish a foundation for the future of multimodal biofeedback systems. A hy-
pothetical explanation for the high effectiveness of the tactile modality is that it
leverages the user’s awareness of the apparatus being in direct contact with their
skin, thereby potentially enhancing somatosensory engagement and spatial focus.
This heightened body awareness has been reported by users in our results. Visual
modalities are the dominant sensory input for humans and may have been further
leveraged by spatial and contextual cues amplified within the immersive VR
environment. Together, these modalities not only improve interaction efficiency
but also increase the user’s awareness of their physiological responses, which has
been identified as an important factor for successful EMG-based interactions and

during the EDA-based biofeedback experiment.

User-Oriented Feedback Design Both EDA and EMG studies reveal that the
effectiveness of biofeedback depends on contextual factors, such as task demands
and the user’s cognitive state, making the consideration of individual variability
in feedback design important.

In the EMG experiments, we calibrated each muscle location’s threshold to the
individual capacity, building a multimodal apparatus that could enhance through-
put in interaction and reduce response times. In the EDA study, we calibrated
the individual stress and relaxation baseline values, building an apparatus that
ultimately assisted in enhanced control of users’ physiological states. Together,
these findings underscore the importance of tailoring biofeedback systems to
both user-specific and task-specific factors. This adaptability emerges as a shared
requirement for systems that transform physiological signals into meaningful
control inputs. While multimodal feedback (visual, tactile) can improve inter-
actions and interaction performance, excessive sensory inputs may overwhelm
users. Overloading feedback modalities should be avoided. Designers should
allow customizable feedback settings to prevent cognitive overload, particularly

for sensitive users.
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The versatility of biofeedback systems, from gaming and hands-free interfaces
to prosthetic training, highlights their potential for broader adoption. Systems that
adapt to individual physiological and psychological profiles could provide inclu-
sive, user-centered solutions for diverse populations. Biofeedback systems should
calibrate signal thresholds and feedback intensities based on user preferences and
capabilities to ensure comfort and effectiveness, as well as resistance to stimuli,
e.g., stress resistance. Adapting feedback modalities to individual differences in
physiology and cognitive processing abilities, especially for users with disabilities
or the elderly, improves their accessibility.

A machine learning-based analysis of the EMG physiological signal data
that was acquired during the prior stimulation experiment enabled precise mus-
cle classification, paving the way for adaptive and self-calibrating EMG-based
systems. These insights are particularly valuable for wearable assistive devices,
where accurate placement and feedback are critical for usability and could further

contribute to the personalization of isometric EMG-based applications.

Awareness of Biofeedback Enhances Physiological Responses Our research
identified a significant innovation in biofeedback systems research by demon-
strating the profound effect of user awareness of biofeedback loops on stress
regulation, emphasizing the psychological and behavioral impact of perceived
control in biofeedback systems. Informing users about their control in biofeed-
back systems. Awareness of their ability to influence VR environments (e.g.,
through weather changes via stress levels) experiences caused more pronounced
physiological responses in participants, and cueing them for interaction increased
the speed of their reaction times in their physiological interaction. This suggests
that explicit awareness enhances engagement and efficacy.

Across all studies, the belief in control played a critical role in shaping
user outcomes. This underscores the need for systems that not only respond
to physiological markers but also address psychological dimensions. By inte-
grating multimodal feedback with mechanisms that enhance user awareness and
preparation, systems can bridge the gap between physical signals and subjective

experience.
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Critical Role of Muscle Fatigue Fatigue during muscle-computer interactions,
with a non-linear progression, was characterized by initial improvements from
learning and habituation, followed by declines as fatigue set in. The effects of
fatigue vary across muscles, highlighting the importance of designing systems
that balance the benefits of learning with strategies to mitigate fatigue, ensuring
optimal and sustained interaction performance. To address muscle fatigue in
muscle-computer interactions, tasks should be limited to durations of around
15 minutes or include structured breaks to allow recovery. Redistribution of
interaction tasks to less fatigue-prone muscles, such as the calf, or alternating
between muscle groups, can prevent overuse. Adaptive biofeedback systems
that dynamically adjust intensity and responsiveness based on real-time muscle
activity can reduce cognitive strain. Progressive training protocols can enhance
endurance and efficiency, while real-time monitoring of signal strength can help

detect early fatigue and prompt timely interventions.

7.3 Future Work

The convergence of findings points to an insight that physiological signals like
EMG and EDA are not merely passive markers of user states, but are dynamic
inputs that, when integrated with adaptive feedback mechanisms, enable transfor-
mative interaction paradigms. While EDA is a powerful indicator of stress and
emotional arousal, other physiological sensing offers complementary insights.
Heart rate variability (HRV) and respiratory patterns are frequently used along-
side EDA to provide a holistic view of autonomic nervous system activity [275].
EMG-based systems augmented with prior stimulation modalities offer precise
control for therapeutic and assistive applications. For example, tactile or electro-
tactile feedback could aid in neurorehabilitation by guiding muscle activation,
facilitating quicker motor adaptation [151, 236]. Prior stimulation feedback may
facilitate neuroplastic changes, offering a promising approach for training new
neuromuscular pathways [62]. Future studies could explore the impact of non-
linear prior stimulation modalities and their role of cognitive workload in shaping
EMG responses.
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Toward Unified Adaptive Biofeedback Systems Combining the physiological
input mechanisms from enhanced awareness of stress management through EDA
with enhanced body awareness through EMG prior stimulation could lead to
innovative interactive systems that focus on augmenting users’ interoception
and ability to focus on their physiology. Future research should investigate how
physiological signals that are more indirectly controllable, e.g., EDA (HR, elec-
troencephalography (EEG)), can be integrated into interactive systems with EMG
and how related feedback mechanisms could work next to each other. Addition-
ally, exploring the long-term effects of biofeedback and its role in fostering user
learning and adaptation is critical for advancing these technologies. Biofeedback
loops, with EDA and EMG, can be seen as two systems for sedentary hands-free
interactions for static sedentary hands-free interaction Future work could combine
with different sensing modalities to create a richer, more informative system for
sedentary hands-free interaction.

As we move forward, we envision that user awareness and prior stimulation
feedback are seamlessly integrated into practical applications, advancing the
design of sedentary hands-free applications. Future development could enable
automated calibration and customization for training programs that enhance skill
acquisition through real-time biofeedback interaction, which adapts to users.
Additionally, understanding individual differences in perceptual thresholds, par-
ticularly among diverse populations, remains an important area for investigation.
This holistic approach not only enriches the virtual experiences but also opens new
avenues for interactive and adaptive technologies. Adaptive physiological signal
mapping strategies could further refine the approaches by adjusting parameters
dynamically based on user profiles, e.g., adjusting biofeedback intensities for less
resilient users.

The studies collectively reveal that transforming physiological signals into
biofeedback mechanisms is not just about system responsiveness — it’s about
creating systems that actively shape the interactions. By closing the loop between
user intention, physiological feedback, and system adaptation, these technologies
enable a new generation of interactive systems that are more intuitive, effective,
and accessible.
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Mental Demand How mentally demanding was the task?

Ll bty

Very Low Very High
Physical Demand How physically demanding was the task?

(I | [ .-

Very Low Very High
Temporal Demand How hurried or rushed was the pace of the task?

NEEEEENENE NN

Very Low Very High
Performance How successful were you in accomplishing what

you were asked to do?

Perfect Failure

Effort How hard did you have to work to accomplish
your level of performance?

Very Low Very High

Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Very Low Very High

Raw NASA-TLX questionnaire.
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