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 A B S T R A C T

Medical image analysis has witnessed remarkable advancements, even surpassing human-level performance 
in recent years, driven by the rapid development of advanced deep-learning algorithms. However, when 
the inference dataset slightly differs from what the model has seen during one-time training, the model 
performance is greatly compromised. The situation requires restarting the training process using both the 
old and the new data, which is computationally costly, does not align with the human learning process, 
and imposes storage constraints and privacy concerns. Alternatively, continual learning has emerged as a 
crucial approach for developing unified and sustainable deep models to deal with new classes, tasks, and 
the drifting nature of data in non-stationary environments for various application areas. Continual learning 
techniques enable models to adapt and accumulate knowledge over time, which is essential for maintaining 
performance on evolving datasets and novel tasks. Owing to its popularity and promising performance, it is an 
active and emerging research topic in the medical field and hence demands a survey and taxonomy to clarify 
the current research landscape of continual learning in medical image analysis. This systematic review paper 
provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical 
image analysis. We present an extensive survey of existing research, covering topics including catastrophic 
forgetting, data drifts, stability, and plasticity requirements. Further, an in-depth discussion of key components 
of a continual learning framework, such as continual learning scenarios, techniques, evaluation schemes, 
and metrics, is provided. Continual learning techniques encompass various categories, including rehearsal, 
regularization, architectural, and hybrid strategies. We assess the popularity and applicability of continual 
learning categories in various medical sub-fields like radiology and histopathology. Our exploration considers 
unique challenges in the medical domain, including costly data annotation, temporal drift, and the crucial need 
for benchmarking datasets to ensure consistent model evaluation. The paper also addresses current challenges 
and looks ahead to potential future research directions.
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1. Introduction

In the evolving field of medical image analysis, the dynamic nature 
of healthcare data poses a critical challenge for the generalizability 
of the machine learning/deep learning models to new data/domains
(Miotto et al., 2017; Zhou et al., 2021a). The data-driven approaches 
have challenges due to the limited availability and accessibility of 
sufficiently large and diverse medical data for training (Miotto et al., 
2017; Guan and Liu, 2022; Zhou et al., 2021a; Chauhan and Goyal, 
2020, 2021). Additionally, the source variability due to different scan-
ner manufacturers, staining and imaging protocols, slice thickness, 
different patient cohorts, etc., makes the medical data heterogeneous. 
This introduces bias and discrepancies between the training and test 
datasets if they originate from different data sources, thus leading to 
performance degradation (Oliveira et al., 2023; Zhou et al., 2021a). In 
order to handle the model generalizability issues, domain adaptation 
methods become popular and aim to transfer knowledge from one 
domain to other unseen data sources or domains (Lai et al., 2023a,b; 
Guan and Liu, 2022; Wachinger et al., 2016; Becker et al., 2014; Feng 
et al., 2023). However, domain adaptation poses unique challenges due 
to the sensitive and complex nature of healthcare data (Azad et al., 
2022). The most common associated issues are the limited availability 
of labeled medical data for training, heterogeneity in data sources 
contributing to significant domain shifts, clinical disparities and popu-
lation variances, and inter-rater variabilities. Also, biases present in the 
source domain data can propagate to the target domain, so ensuring 
fair and unbiased predictions across diverse patient populations be-
comes a critical concern. Moreover, medical data encompasses various 
modalities, including imaging, electronic health records, and genomic 
data, making the task of adapting models to handle multimodal data 
and ensuring interoperability exceptionally complex. Further, the ac-
cessibility of source data may be limited to a short period of time or 
may be prohibited altogether due to strict privacy regulations in the 
medical domain (Thandiackal et al., 2024). Thus, domain adaptation 
2 
approaches that require simultaneous availability of source and target 
data may not be feasible.

Another related learning paradigm, transfer learning, has been 
widely adopted in the medical domain to address challenges related 
to limited data availability (Yu et al., 2022; Ghafoorian et al., 2017). 
It transfers knowledge gained from the source task to the target task to 
improve its learning or performance. Unlike domain adaptation, where 
only the data distribution changes, transfer learning covers changes in 
the feature space, label space, as well as in the data distribution of the 
source and target domain (Kouw and Loog, 2018; Zhou et al., 2022; 
Guan and Liu, 2022). In a small-scale medical disease classification 
dataset, it can be beneficial to include knowledge gained from a model 
trained on a large-scale labeled natural image dataset (ImageNet). The 
model performance on the medical disease dataset may be better as 
compared to training the same model solely on the medical disease 
dataset from scratch. However, at the same time the performance on 
the ImageNet dataset cannot be guaranteed by this model (which is also 
not intended in transfer learning). In transfer learning, the focus is on 
leveraging prior knowledge rather than retaining it, hence performance 
on the source data may be compromised. Generally, learning a new 
dataset with shifted distribution results in a sharp decrease in perfor-
mance on the source dataset, also known as ‘‘catastrophic forgetting’’ of 
deep neural networks  (McCloskey and Cohen, 1989; Goodfellow et al., 
2013). A detailed description of catastrophic forgetting is provided in 
Section 2.2.

In the real world, sequential adaptation to more than one target 
domain, without necessitating the availability of source data can be de-
sired. In this direction, Continual learning (CL) - continuous adaptation 
to new information, has emerged as an important dimension in enhanc-
ing the performance and reliability of medical image analysis systems. 
Unlike transfer learning, CL focuses on both the source domain and the 
target domain. A CL approach aims to retain knowledge from previ-
ously seen tasks while adapting to new tasks and avoiding catastrophic 
forgetting issues. CL models are employed for predictive analytics, 
especially in situations where clinical outcomes can be automatically 
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obtained and incorporated into the algorithm  (Lee and Lee, 2020). 
This capability enhances the model’s predictive power by learning from 
real-time patient data. CL methods can also be employed to utilize the 
multi-modality dataset for better interpretability and analysis. In recent 
years, an increasing number of CL methods have been explored and 
proposed in various subareas of computer vision tasks. Fig.  3 presents 
the paper distributions based on different aspects of CL and shows the 
growth in exploration in medical domain through the rising number of 
publications over the years. In this paper, we discuss the various aspects 
of CL, particularly considering its application and implications in the 
medical domain. Here, we aim to contribute to the ongoing discourse 
on adapting and improving machine learning models for sustained 
effectiveness in the dynamic healthcare landscape. By emphasizing CL, 
we recommend models that not only demonstrate robust performance 
initially but also possess the ability to evolve and improve over time. CL 
in medical image analysis represents a powerful approach to developing 
intelligent systems that can evolve, learn, and adapt to the complexities 
of healthcare, ultimately contributing to improved patient outcomes 
and enhanced clinical decision-making. We discuss the limitations and 
challenges of the existing methods and explore the methods/techniques 
that can be utilized for developing a robust algorithm. A thorough 
search of the existing body of literature highlights the uniqueness of 
our work as the first comprehensive survey of CL techniques applied 
to medical image analysis. This scholarly endeavor aims not only to 
contribute novel insights but also to establish a foundational reference 
for researchers, offering a roadmap that can guide future exploration 
and incite scholarly interest in the academic community. The primary 
contributions of our academic pursuit are elucidated below:

∙ Pioneering in its scope, this survey paper provides the first com-
prehensive exploration of CL applications in the field of medical im-
age analysis. Our focus extends to delivering a thorough overview 
encompassing all pertinent papers and elucidating details regarding 
well-known methods in medical image analysis.

∙ We introduce a rigorous categorization of CL models within the 
academic community, presenting a systematic taxonomy that cate-
gorizes research based on different CL strategies. Our classification 
discerns between various CL techniques, such as rehearsal, regulariza-
tion, architectural, and hybrid methods. Additionally, we contextualize 
these techniques within various medical sub-fields, offering a nuanced 
academic perspective.

∙ Beyond application-centric discussions, our exploration delves into 
the scholarly challenges and open issues surrounding CL in medical 
image analysis. By addressing academic intricacies, including data 
annotation costs, temporal drift, and the necessity for benchmarking 
datasets, we contribute to the scholarly discourse. Additionally, we 
identify emerging academic trends that give rise to open questions, 
shaping the trajectory of future academic research in CL applied to 
medical image analysis.

Motivation and uniqueness of this survey

Over the past few decades, CL approaches in computer vision tasks 
have seen substantial progress, leading to numerous survey papers 
exploring deep CL models for computer vision tasks (Qu et al., 2021; 
Wang et al., 2023b; De Lange et al., 2021; Mai et al., 2022). While 
some of these surveys focus on specific applications, such as clas-
sifications (De Lange et al., 2021; Mai et al., 2022) others take a 
more general approach to evaluation policies (Mundt et al., 2021) 
or concepts and practical perspectives (Wang et al., 2023b). Notably, 
none of these surveys specifically addresses the applications of CL 
techniques in medical image analysis, leaving a significant gap in the 
literature. We believe that insights from successful CL models in vision 
can be beneficial for the medical community, guiding the retrospective 
analysis of past and future research directions in CL (Verma et al., 2023; 
Lee and Lee, 2020). CL has proven its potential in developing unified 
and sustainable deep models capable of handling new classes, tasks, 
3 
Table 1
Abbreviations and their expansion. Green rows signify abbreviations 
related to CL (scenarios and techniques), cyan corresponds to imaging 
modalities and techniques, while orange is associated with evaluation 
metrics. 
Acronym Full name
CL Continual Learning
CIS Class Incremental Scenario
DIS Domain Incremental Scenario
TIS Task Incremental Scenario
IIS Instance Incremental Scenario
EWC Elastic Weight Consolidation
DWC Distributed Weight Consolidation
MAS Memory Aware Synapses
SI Synaptic Intelligence
sMRI structural Magnetic Resonance Imaging
CMR Cardiac Magnetic Resonance
CT Computed Tomography
VQA Visual Question-Answering
H&E Hematoxylin and Eosin
sEMG Surface electromyography
WSI Whole Slide Images
wCC weighted Correlation
PCC Pearson Correlation Coefficient
rMSE root Mean Square Error
FLOPS Floating Point Operations Per Second
SRC Spearman’s rank correlation coefficient
KRC Kendall rank correlation coefficient
AUPRC Area Under the Precision-Recall Curve
SSD Symmetric Surface Distance
IoU Intersection over Union
AUC Area Under ROC Curve
MAE Mean Absolute Error
MCR Mean Class Recall
AP Average Precision
DSC Dice Similarity Coefficient
HD95 95% Hausdorff Distance
FROC Free-response Receiver-Operating Characteristic
ROC Receiver-Operating Characteristic
MSD Mean Surface Distance
ASSD Average Symmetric Surface Distance
BWT Backward transfer
FWT Forward transfer
TPR True Positive Rate
SNR Signal-to-Noise Ratio

and the evolving nature of data in non-stationary environments across 
various application areas. Our survey aims to bridge the gap by pro-
viding valuable insights that can assist medical researchers, including 
radiologists, in adopting up-to-date methodologies in their fields. In our 
survey, we analyze various sources of drifts in medical data, defining CL 
scenarios in medical images. We present a multi-perspective view of CL 
by categorizing techniques into rehearsal, regularization, architectural, 
and hybrid strategies-based methods. The discussion extends beyond 
applications, encompassing underlying working principles, challenges, 
and the imaging modality of the proposed methods. We emphasize 
how this additional information can aid researchers in consolidating 
literature across the spectrum. A concise overview of our paper is 
illustrated in Fig.  6.

Search strategy

To conduct a thorough literature search, we followed the same 
strategy presented in Azad et al., Azad et al. (2023b, 2023a) and 
utilized DBLP, Google Scholar, and Arxiv Sanity Preserver, employing 
custom search queries to retrieve scholarly publications related to our 
topic-CL. Our search query was (continual learning | medical 
| sequence of tasks) (segmentation | classification 
| medical | lifelong learning). These platforms allowed us 
to filter results into categories such as peer-reviewed journal papers, 
conference or workshop proceedings, non-peer-reviewed papers, and 
preprints. We filtered our search results through a two-step process: 
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Table 2
Data drift categorization.
 Drift type Detail with example  
 Covariate 
drift

It refers to situations when input distribution 𝑝(𝑥) differs and conditional distribution 𝑝(𝑦|𝑥) remains same 
between source and target data. Example: Change in WSI staining type induces covariate drift. The model 
trained on H&E stained breast cancer data may not perform well on the same tissue with CD8 staining.

 

 Label drift It refers to situations when output distribution 𝑝(𝑦) changes, but the conditional distribution 𝑝(𝑥|𝑦) remains 
same. Example: Inter-annotators difference may induce this kind of drift as some experts may be biased 
toward annotating a particular disease class. Thus, some classes may be undersampled or oversampled in 
target compared to the source data.

 

 Concept drift It refers to situations when input and output distribution remains same but the conditional relation 𝑝(𝑦|𝑋)
differs between source and target data. Example: association of chest X-ray to COVID +ve class changed over 
time with new findings.

 

Fig. 1. A coarse level flowchart for designing a CL pipeline.

first by screening titles and abstracts, and then by reviewing the full 
text based on specific criteria as follows: 1. Relevance to Continual 
Learning: Focus on significant contributions to continual learning or 
related areas such as lifelong learning, incremental learning, and online 
learning. 2. Publication Venue: Preference for papers published in 
reputable journals and conferences known for high-quality research. 
3. Novelty and Contribution: Inclusion of papers presenting novel re-
search, methodologies, or applications. 4. Experimental Rigor: Papers 
must include comprehensive experiments and results validating their 
claims. 5. Theoretical Foundation: Preference for papers with a strong 
theoretical foundation, including formal definitions and analysis.

Paper organization

All the abbreviations used in this manuscript along with their 
expansion are tabulated in Table  1. A background about various sources 
of drift in medical data, the catastrophic forgetting issue, CL, a pipeline 
for CL framework, and CL applications is provided in Section 2. Then a 
thorough description of various kinds of continual learning scenarios 
explored in the medical domain is elaborated in Section 3. Further, 
we cover various categories of continual learning techniques and their 
applicability in the medical domain via Section 4. Section 5 pro-
vides details about the level of supervision required in different kinds 
of proposed frameworks. Section 6 provides comprehensive practical 
information such as the experimental setups, training process, and eval-
uation metrics for measuring the plasticity and stability of continual 
learning frameworks. Section 7 discusses the current challenges in the 
continual learning literature and future directions. Eventually, the last 
section provides the conclusion of the survey.
4 
2. Background

2.1. Medical data drifts

In clinical practices, the data distribution evolves over time, reflect-
ing the dynamic nature of the healthcare environment (Sahiner et al., 
2023a; Lacson et al., 2022; Moreno-Torres et al., 2012). Inconsistencies 
in data collection procedures across different healthcare settings or in-
stitutions contribute to data drift. Also, the introduction of new medical 
imaging devices, diagnostic tools, and data acquisition techniques leads 
to a shift in the technological landscape (Derakhshani et al., 2022; Lac-
son et al., 2022). Moreover, the advancement in medical research and 
the discovery of new diseases/treatment methods raise the understand-
ing of healthcare. This new knowledge can influence the characteristics 
of medical data that cause shifts in the underlying distribution (Lacson 
et al., 2022; Moreno-Torres et al., 2012). Also, data sources can have 
their dynamics and, therefore, are inherently non-constant. For in-
stance, cardiac CT images are captured under time-varying factors such 
as breathing and heart rates. Non-homogeneous data is another chal-
lenge, as individual health differences among patients can vary over 
time due to factors like genetics, age, occupation, and lifestyle (Lac-
son et al., 2022; Sahiner et al., 2023b). Additionally, variations in 
sample preparation or pre-processing methods contribute to distinc-
tions among imaging datasets. In digital histopathology, differences 
in staining policies across labs introduce undesired stain variances 
in whole-slide images (Nakagawa et al., 2023; Madabhushi and Lee, 
2016). The imaging solution may also influence the final digital visu-
alization throughout the entire learning process over time. Nonlinear 
augmentation of computed radiography occurs at various degrees due 
to the differing physical and chemical properties of contrast medi-
ums from different brands. Variables like sensor signal-to-noise ratio 
(SNR), customized parameter settings in imaging software, and storage-
friendly distortions can all impact the quality of the resultant image. 
For instance, in digital histopathology, billion-pixel whole slide images 
(WSI) at a fixed magnification have seen variations in storage size, 
ranging from megabytes to gigabytes per image over the years, con-
sequently enhancing the dataset quality in terms of micron-per-pixel 
(MPP) for continual learning tasks (Nakagawa et al., 2023).

Data drifts can be broadly categorized as the covariate, label, and 
concept shift. We provide their explanation along with examples in 
Table  2. The medical data drifts can have significant implications for 
the performance and reliability of machine learning and deep learning 
models (Sahiner et al., 2023b). Traditional machine learning often 
relies heavily on static data and feature engineering, where human 
experts manually select the relevant features. In the case of data drift, 
these handcrafted features may become less informative, and the model 
may struggle to adapt to new patterns (Bayram et al., 2022). More 
specifically, for both machine learning and deep learning, this issue 
is particularly prevalent in dynamic and non-stationary environments, 
where the statistical properties of the data evolve. Understanding the 
sources of drift, such as inconsistencies in data collection and techno-
logical advancements, is crucial for developing robust models (Sahiner 
et al., 2023b). Proactive strategies, including regular model updates 
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and continuous monitoring, are essential to ensure that machine learn-
ing models remain effective and reliable in navigating the evolving 
healthcare landscape by addressing medical data drift and developing 
machine learning models that can adapt to the ever-changing nature of 
clinical data, ultimately enhancing patient care and outcomes.

2.2. Catastrophic forgetting

Throughout a lifetime, a human brain continuously acquires knowl-
edge, and learning new concepts or tasks has no detrimental effect 
on previously learned ones. Instead, learning several closely related 
concepts even boosts the learning of all associated ones. In contrast, 
artificial neural networks, although inspired by the human brain, often 
suffer from ’catastrophic forgetting’, a tendency to overwrite or forget 
the knowledge acquired in the past upon learning new concepts (Mc-
Closkey and Cohen, 1989; Ratcliff, 1990). This can be attributed to the 
fact that the model entirely optimizes for the given dataset. In other 
words, a model with optimized weights for a task T1, when trained on 
a new task T2, will freely optimize the existing weights to meet the 
objectives in task T2, which may now no longer be optimal for the 
previous task T1. This can be a significant challenge, especially in sce-
narios where an AI system is expected to learn and adapt to a stream of 
tasks or datasets over time. Catastrophic forgetting in neural networks 
is an interesting phenomenon that has attracted lots of attention in 
recent research (Goodfellow et al., 2013; Kumari et al., 2024a). Medical 
data often come from different sources with varying imaging protocols, 
equipment, and patient populations. For example, MRI scans from 
different hospitals may have distinct characteristics, leading to domain 
shifts that can cause a model to forget previously learned features when 
introduced to new data. Also, medical datasets are often limited in size 
and can be highly imbalanced, with some conditions being much more 
common than others. This imbalance can exacerbate catastrophic for-
getting, as the model may overly specialize in newly introduced, more 
frequent classes at the expense of older, less frequent ones. Address-
ing catastrophic forgetting is crucial for the development of reliable 
and effective medical AI systems. By implementing strategies such as 
regularization, rehearsal, generative replay, dynamic architectures, and 
domain adaptation, researchers can enhance the robustness of models 
against forgetting, ensuring consistent and accurate performance in 
medical applications. This is essential for maintaining diagnostic consis-
tency, adapting to new medical knowledge, and providing trustworthy 
clinical decision support.

2.3. Continual learning overview

A naive solution to deal with catastrophic forgetting can be re-
training the model collectively on old and new data from scratch each 
time new data with drifted distribution or classes are encountered (Lee 
and Lee, 2020). This process mostly gives the desired classification 
or segmentation performance; however, it causes an intense burden 
on computing and storage requirements and, hence, is impractical for 
deployment. Additionally, the retraining process requires storing the 
past data and thus causes privacy violations, which can be a major 
bottleneck of such a strategy in healthcare applications.

Alternately, CL, also termed as ‘continuously learning’, ‘incremental 
learning’, ‘sequential learning’ or ‘lifelong learning’, has emerged as 
a promising solution in various fields to deal with the catastrophic 
forgetting issue (De Lange et al., 2021; Mai et al., 2022). It helps 
in efficiently leveraging existing knowledge and incorporating new 
information without the need for extensive retraining. The primary 
goal of CL is to develop techniques and strategies that allow a neural 
network to learn new tasks while retaining knowledge of previous 
tasks. In other words, it aims to enable the network to continually 
adapt to new information without completely erasing or degrading 
its performance on earlier tasks. Overall, CL helps to address the 
issue of catastrophic forgetting and minimizes the need for additional 
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resources to store historical data. CL offers a range of strategies and 
methods, such as regularization (constraining weight update to avoid 
forgetting learned concepts), rehearsal (partially using some form of 
old data to replay with current data), and architectural modifications 
(reserving or partitioning network for different tasks), to help neural 
networks remember and consolidate knowledge from past tasks. These 
strategies help prevent or reduce catastrophic forgetting and improve 
the generalization ability of the model.

2.4. Continual learning pipeline

The design of a CL pipeline is illustrated in Fig.  1 which provides an 
overview of the key components and stages involved in the construction 
of the CL pipeline. Given a problem statement, first, we need to identify 
which CL scenarios it falls under, i.e., whether there is a possibility 
of domain shifts in future data, inclusion of new classes, or the end 
application, i.e., the task itself may change. For example, if we want 
to develop a breast cancer classification model to be able to work on 
the H&E dataset from different centers then the datasets across centers 
may have drift and hence fall into the domain incremental scenario of 
CL. Detailed information about CL scenarios is provided in Section 3. 
Once we have identified the CL scenario, training, and testing, datasets 
need to be prepared to mimic a continual stream of datasets arriving 
one after another. The sequence of datasets is frequently referred to as 
tasks, experiences, or episodes in literature. We also use these terms 
interchangeably in this manuscript. For each episode, separate training 
and testing data is prepared; thus, for a given sequence of four datasets, 
the pipeline requires four train-test pairs to develop and evaluate a 
CL model. Once the datasets are ready, a CL strategy suitable to the 
application at hand is identified and deployed in any off-the-shelf 
deep classification or segmentation model. There are various CL strate-
gies, some offering privacy-preserved learning, while some offer better 
performance but at the cost of more resources, storage, and privacy 
violations as they store some past data. Typically, the model is trained 
on the first training episode and evaluated on testing data from all the 
episodes. After this, the training shifts to the next episode, where the 
inclusion of partial training data from the previous episode is possible. 
Here, updating the model with new training data, the evaluation is 
again done on all the testing data, and the process repeats until the last 
episode. Application-specific performance metrics (e.g., accuracy, dice 
similarity coefficient, etc.) computed on testing data of each episode 
are observed and analyzed over the sequence. Then, we can compute 
various metrics on top of it to quantify forgetting and forward transfer. 
Lastly, the CL framework is evaluated against state-of-the-art works 
and non-CL methods offering upper and lower bounds of performance. 
Joint or cumulative training gives the highest average performance, 
whereas naively finetuning on the current episode gives the lowest 
performance (Kaustaban et al., 2022; Lenga et al., 2020).

2.5. Application of continual learning

CL has numerous applications across various domains due to its 
ability to mitigate catastrophic forgetting. The efficiency and robustness 
of CL in real-time scenarios derive from its ability to adapt, reduce com-
putational overhead, and address the challenges of dynamic data. This 
makes it a valuable approach for applications where time constraints, 
adaptability, and efficiency are of great importance. In the medical 
domain, CL has been widely explored for various segmentation and 
classification applications (Fig.  2) and continuously exhibited its merits 
over static models as reflected by the increasing number of research 
contributions over the year (Fig.  3). CL can improve the diagnosis and 
decision-making ability in a resource-constrained environment. Fur-
ther, it is beneficial in real-time monitoring of patients, telemedicine, 
and maintaining a dynamic knowledge base. This section presents the 
most prominent applications of CL in medical settings in terms of the 
number of publications.
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Fig. 2. Ratio of CL-based research for downstream applications.

Fig. 3. CL-based research contributions over the years. Percentages represent the 
number of CL papers in the medical domain each year, showing the increasing trend 
and growing importance of CL research.

Radiology and imaging: Radiological imaging techniques are con-
tinually advancing, requiring models to adapt to new technologies 
and methodologies. For CT, research has investigated the impact of 
scanners and reconstruction parameters on both machine learning pre-
dictions and human annotations. The findings indicate that the vari-
ability introduced by different scanners has a detrimental effect on 
radiomics (Mackin et al., 2015; Prayer et al., 2021) and other imaging 
features. Therefore, it is imperative to take into account this scanner 
variability when developing machine learning models. CL facilitates 
the dynamic adjustment of models to evolving imaging techniques, 
ensuring accurate interpretations (Li and Hoiem, 2018; Zhang et al., 
2023d). Tables  15 and 16 present the selected works for CL-based 
classification and segmentation in the medical domain.

Disease progression modeling: CL is crucial in tracking the pro-
gression of diseases such as Alzheimer’s Disease (AD). Models must 
adapt to new patient data over time, incorporating the latest diagnostic 
criteria and treatment strategies (Li et al., 2020b). Recent work was 
proposed for modeling AD progression in a CL manner that respects the 
longitudinal data sets coming in sequence and ensures equal prediction 
accuracy for future visits (Zhang and Wang, 2019a).

Drug discovery: CL can accelerate drug discovery by continuously 
integrating newly discovered chemical compounds, pharmacological 
data, and clinical trial results to predict drug interactions and efficacy. 
A recent work presented a CL-based model called Multi-Scale Tem-
poral Convolutional Networks-based AntiBacterial Peptide Prediction 
6 
Fig. 4. Ratio of CL-based works for different incremental scenarios.

(MSTCN-ABPpred). This model is designed for the classification and 
discovery of antibacterial peptides (ABPs). While MSTCN-ABPpred can 
dynamically adapt and retrain based on predicted ABPs and non-ABPs 
within protein sequences, it does have limitations in terms of providing 
information about the identified ABPs’ targets, haemotoxicity, cyto-
toxicity, and minimum inhibitory concentration (MIC) against various 
bacteria (Singh et al., 2023).

3. Continual learning scenarios

Depending upon what kind of change in the sequence of data is 
expected, the existing CL scenarios can be broadly categorized into 
five categories, viz., (a) instance-incremental, (b) class-incremental, (c) 
task-incremental, (d) domain-incremental, and (e) hybrid. Fig.  4 shows 
the percentages of the above-mentioned incremental CL scenarios ex-
ploited in recent years. The statistics reflect that domain-incremental 
is highly explored with a 44.4% ratio out of five major settings, 
followed by the class-incremental settings having 32.1% works and 
instance-incremental being the least challenging and rarely explored 
for different medical image analysis applications.

3.1. Instance incremental scenarios

Instance Incremental Scenario (IIS), also termed as data incremental 
scenario, involves the continuous learning process where the model 
keeps adapting to incoming data streams that come from the same data 
distribution. This scenario does not involve dealing with entirely new 
categories or significant changes in data patterns, making it generally 
the least challenging among all other CL scenarios. In the medical 
domain, especially digital pathology, a common practice is for expert 
pathologists to annotate a dataset in multiple stages or batches (Kausta-
ban et al., 2022). Each of these annotation batches can be thought of 
as representing samples from the same underlying data distribution, 
ensuring some consistency in the data source across different batches. 
Thus, IIS scenarios deal with the condition where the samples of a 
dataset are sequentially made available. Owning to its simplicity, this 
category is not very popular. Only a few classification applications 
are explored in this scenario, as mentioned in Table  3. For example, 
in the breast cancer classification application, Chen and Tang (2022) 
set up IIS on the BreakHis (Spanhol et al., 2015) dataset. More and 
more samples from each of the malignant and benign classes are added 
over the subsequent episodes. Ravishankar et al. (2019) try to exhibit 
a scenario for pneumothorax detection in a hospital where data arrives 
in an incremental fashion. They sequentially fed 2000 samples in 4 
subsequent episodes from an X-ray dataset for Pneumothorax identifi-
cation consisting of a total of 8000 samples. A label drift is also possible 
in real-world IIS settings. However, the majority of previous works 
deliberately curate a similar amount of samples for a particular class 
over episodes, and hence, label drift phenomena are not considered. 
One potential solution to produce the desired number of samples for 
classes affected by label-shift from past episodes would be to use a 
generator model such as GAN (Byun et al., 2023).
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Table 3
List of various instance incremental scenarios in literature.
 Reference (year) Application (# Episodes) Description  
 Ravishankar et al. (2019) Pneumothorax identification from 

X-ray images (2 Ep.)
4 batches each of 2K were created from a subset of ChestXRay (Wang et al., 2017)  

 Kaustaban et al. (2022) Histopathology data-based tumor 
classification (4 Ep.)

Tasks were created in instance incremental fashion from colorectal cancer dataset 
CRC (Kather et al., 2019) having a total of 9 classes, (i.e., all 9 classes are present 
in each episode)

 

 Wei et al. (2023) Brain tumor segmentation (8 Ep.) Starting from 160 samples, authors incrementally add 40 more samples after each 
training session from the LGG Segmentation dataset (Buda et al., 2019)

 

 Bringas et al. (2024) Alzheimer’s disease stage 
identification using motion-sensor 
(2 Ep.,3 Ep.,4 Ep.)

3 experiments were designed with 2, 3, and 4 episodes having per-episode 374, 249, 
and 187 samples, respectively.

 

3.2. Class incremental scenarios

Class Incremental Scenario (CIS) refers to a situation where the 
aim is to adapt the model to accommodate novel classes from new 
data streams. Given that each batch of these unseen classes offers 
knowledge that largely differs from the previous batches, this scenario 
is anticipated to be the most challenging among continual learning 
scenarios. An instance of this challenge is incorporating new types of 
tissues into a tumor classification model or introducing novel cell types 
into a model designed for AI-assisted diagnosis in cell detection. In this 
scenario, there is only one incremental task that gets additions of new 
classes in subsequent episodes. Some works assume mutually exclusive 
classes, whereas some classes are overlapping.

Multi-class datasets with more than 5–6 classes are mainly consid-
ered to create a class incremental scenario. There can be an equal or 
variable number of classes across the episodes. Chen and Tang (2022) 
propose a breast cancer classification model where they iteratively 
include malignant and benign classes with one sub-class from each 
category. This scenario is very popular for segmentation applications 
where the model may be demanded to segment more and more classes 
over time. An exhaustive list of class incremental scenarios explored 
in literature is provided via Table  4. References, along with detailed 
segmentation or classification applications, are tabulated.

3.3. Task incremental scenarios

Task Incremental Scenario (TIS) comes into the picture when we 
have a multi-task problem and a single adaptive model is desired. 
Each task is considered an episode. Thus each episode has disjoint 
label space. However, there is ambiguity in the literature with task 
incremental scenarios as the other scenarios (class and domain) are 
frequently referred to as task incremental scenarios by different re-
search communities. For example, Ravishankar et al. (2019) create the 
first episode having 2 chest X-ray views (2ch vs. PLAX) and then the 
next episode with 2 other views (4ch vs. PSAX) as a task incremental 
scenario, which can also be a class incremental scenario. Further, 
another example in this line can be found in the work by Baweja et al. 
(2018). Here, the authors create a task incremental scenario with 2 
episodes for brain MRI segmentation application where the 1st episode 
was multi-class segmentation of cerebrospinal fluid, grey matter, and 
white matter, and the 2𝑛𝑑 episode was the segmentation of white 
matter lesions. If we have multiple tasks that are very different, then 
it would certainly be the task incremental; however, if the tasks are 
more close then it is merely a design choice whether to treat them as 
class incremental or task incremental. Another work where Kaustaban 
et al. (2022) explore domain incremental scenario as organ shift for 
tumor classification problem where the first episode is a colon cancer 
dataset with nine classes (CRC dataset), and the next episode is a 
breast cancer dataset with 2 classes (PatchCam dataset). Similar is 
the case with Sadafi et al. (2023) where White Blood Cells (WBC) 
classification from 3 datasets, each having a different number of classes, 
is regarded as domain incremental, which can also be regarded as 
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task-incremental. Derakhshani et al. (2022) curate class incremental 
and task incremental scenarios from the same dataset taken from 
MedMNIST (Yang et al., 2023c) where a dataset is divided into non-
overlapping classes leading to 4 episodes. If the model is evaluated 
only on the learned class in the specific episode, then they regard 
it as task incremental; otherwise, if evaluated on cumulative classes 
from all seen episodes, then class incremental scenario. Kaustaban et al. 
(2022) say that any of the scenarios among instance, class, and domain 
incremental can be treated as task incremental, provided that each 
incoming data stream (episode) is treated as a distinct task. For a 
comprehensive overview, we have tabulated all the works along with 
their claimed task incremental scenario in Table  5.

Further, it is essential to consistently provide prior information 
about which specific task (referred to as task identity, i.e., task ID) the 
test data pertains to, and predictions are made accordingly. However, 
if task IDs are not provided, then this category is termed as a task-free 
scenario which is a more challenging one.

3.4. Domain incremental scenarios

Domain Incremental Scenario (DIS) is the most popular and fre-
quently observed category of CL scenarios for medical applications. 
Similar to IIS, here also, the task remains the same over time. However, 
in contrast to IIS, where data arrives from a single domain, here, the 
episodic data originates from a different domain or context. This sce-
nario aligns with the idea of learning in a changing environment where 
the datasets from different domains (e.g., research sites, hospitals, 
imaging modality, image acquisition protocol, etc.) are incrementally 
encountered over time, which thus involve covariance shift-induced 
discrepancies in data.

In clinical applications, this might encompass changes in factors 
like the methods used for tissue processing and staining, the demo-
graphics of the patient population, or the types of scanning instruments 
employed, among other variables. Thus, continuous modifications in 
diagnostic techniques result in alterations in the appearance of medical 
images. Factors such as the brand of the scanning machine, the method 
used to create the images, radiation dosage, and specific settings in the 
scanning process, including the use of contrast agents, can all influence 
how the images look. These changes in image characteristics, which 
occur independently of the actual biological content being scanned lead 
to domain shifts.

Even if we have a single task and a fixed number of classes, these 
shifts can pose a challenge for the static deep model used in clinical 
settings because these shifts can quickly make existing models outdated 
and less effective. Here, a CL model aims to continuously update itself 
by incorporating new data streams that come from distributions that 
have shifted over time.

There have been plenty of attempts to develop CL models and eval-
uate different kinds of domain incremental scenarios. All the domain 
incremental scenarios are not equi-hard; some works consider a simpler 
level of domain shift, whereas some have a severe domain shift. To 
provide a comparative view, we tabulate all the domain incremental 
scenarios considered in literature through Table  6.
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Table 4
List of various class incremental scenarios in literature.
 Reference (year) Application (# Episodes) Description  
 Ozdemir et al. 
(2018)

MRI based humerus and scapula 
segmentation (2 Ep.)

Incrementally adding anatomical structure, private data  

 Ozdemir and 
Goksel (2019)

MRI based knee segmentation (2 
Ep.)

SKI10 MICCAI Grand Challenge (Heimann et al., 2010)  

 Li et al. (2020b) Dermoscopic images based skin 
disease classification (4-20 Ep.)

(a) CIS for Skin8 dataset having total 8 classes on which 2 classes per episode used, (b) CIS for 
Skin40 dataset from ISIC2019 (Tschandl et al., 2018) consists of 40 classes of skin disease images 
collected from the internet, here 2/5/10 classes per episode used in 3 experiments, (c) non-medical 
dataset CIFAR100 with 100 classes, here 5/10/20 classes per episode used in 3 experiments.

 

 Liu et al. (2022) Class incremental segmentation of 
abdomen organs (4 Ep.)

4 episodes were created for incremental segmentation of liver, spleen, pancreas, right kidney, and left 
kidney organs from CT datasets (Anon, a; Simpson et al., 2019), KiTS (Heller et al., 2019) + private

 

 Derakhshani 
et al. (2022)

Disease classification (4 Ep.) TissueMNIST, OrganaMNIST, PathMNIST, and BloodMNIST datasets from MedMNIST repository (Yang 
et al., 2023c) were used in 4 experiments, each with 4 episodes.

 

 Akundi and 
Sivaswamy 
(2022)

Chest X-ray classification in CIS 
(5 Ep.)

5 classes from CheXpert dataset  

 Kaustaban et al. 
(2022)

Histopathology data based tumor 
classification (4 Ep.)

4 episodes were created in CIS from Colorectal cancer dataset CRC (Kather et al., 2019) having a 
total 9 classes

 

 Chen and Tang 
(2022)

Histopathology data-based breast 
cancer classification (4 Ep.)

4 episodes created in CIS from BreakHis dataset  

 Zhang et al. 
(2023c)

(a) CT based abdomen, 
gastrointestinal, and other organ 
segmentation (7, 3, 4 classes in 3 
Ep.), (b) abdomen segmentation 
to liver tumor segmentation task 
(13 classes, 1 class in 2 Ep.)

(a) Abdomen segmentation from JHH (Xia et al., 2022) (private) (b) 13 class abdomen segmentation 
dataset as BTCV (Landman et al., 2015) and liver tumor segmentation data as LiTS (Bilic et al., 2023)

 

 Ji et al. (2023) 3D CT scan based whole-body 
organs segmentation (4 Ep. in 2 
permutations of episodes)

TotalSegmentator (Wasserthal et al., 2023) (103 classes: various organs), 3 private datasets: 
ChestOrgan (31 classes: chest scans), HNOrgan (13 classes: head and neck scans), EsoOrgan (1 class: 
esophageal cancer)

 

 Chee et al. 
(2023)

(a) Cancer classification (3,5 Ep.), 
(b) diabetic retinopathy 
classification (2 Ep.), (c) skin 
lesions classification (3,4 Ep.)

(a) Histopathology data based human colorectal cancer classification: CCH5000 (Kather et al., 2016) 
(total 8 classes, Exp=(4,1,1,1,1) classes, Exp=(4,2,2) classes), (b) diabetic retinopathy (DR) 
classification using retinal images: EyePACS (Anon, b) (total 5 classes: no DR, mild DR, moderate DR, 
severe DR and proliferative DR, Exp=(3,2) classes), (c) pigmented skin lesions classification: 
HAM10000 (Tschandl et al., 2018) (total 7 classes: Exp=(4,1,1,1) classes, Exp=(4,2,1) classes)

 

 Zhang et al. 
(2023b)

Disease classification (4-10 Ep.) (a) skin lesions classification with Skin8 dataset (International Skin Imaging Collaboration (ISIC) 
(Tschandl et al., 2018)) having 8 classes distributed over 4 episodes, (b) Path16, a pathology image 
collection from various public sources: total 16 classes distributed over 7 episodes, (c) CIFAR100: 
non-medical images, 100 classes distributed over 5-10 episodes

 

 (Bai et al., 2023) Surgical visual-question 
localized-answering

EndoVis18, EndoVis17, M2CAI  

 Sadafi et al. 
(2023)

Microscopic images based WBC 
classification (4 Ep.)

With 3 different datasets, 3 separate CIS experiments each having 4 episodes: (a) (3,3,3,4) classes 
from Matek-19 (Matek et al., 2019), (b) (3,3,3,4) classes from INT-20, and (c) (3,2,2,3) classes from 
Acevedo-20 (Acevedo et al., 2020)

 

 Wang et al. 
(2023a)

(a) segmentation for endoscopy 
(2-3 Ep.), (b) surgical instrument 
segmentation (2 Ep.)

Incrementally adding segmentation structure from EDD2020 (Ali et al., 2021, 2020) dataset which 
includes 5 classes as Barrett’s esophagus, cancer, high-grade dysplasia, polyp, and suspicious. Initially, 
3-4 classes are in 1st episode, and then 2 or 1 classes are incrementally added in subsequent 
episodes. (b) EndoVis18 (Allan et al., 2020) and EndoVis17 (Allan et al., 2019) datasets as two 
episodes having some overlapping classes

 

 Hua et al. 
(2023)

sEMG-based gesture classification 
(4 Ep.)

2 experiments were created, each with 4 episodes using Ninapro DB2 sEMG dataset for gesture 
recognition. The first experiment has (8, 11, 14, 17) gesture classes and the second experiment has 
(10, 20, 30, 40) gesture classless.

 

 Huang et al. 
(2023)

Tumor subtype classification at 
WSI-level (4 Ep.)

Incrementally learning tumor classes using 4 datasets (NSCLC, BRCA, RCC, ESCA) from TCGAa 
project. Each dataset has 2 distinct tumor subtypes leading to a total 8 subtypes.

 

 Xiao et al. 
(2023)

Skin disease classification (18 Ep.) Incrementally learning 5 new skin disease classes in each episode  

 Li and Jha 
(2023)

Disease classification on 
physiological signals (2 Ep.)

3 separate experiments were designed, each with 2 episodes. (a) using CovidDeep (Hassantabar et al., 
2021), 1st episode has healthy and symptomatic patients and 2nd episode only asymptomatic 
patients, (b) using DiabDeep (Yin et al., 2019) dataset: 1st episode has healthy and Type-I diabetic 
patients and 2nd episode only Type-II diabetic patients, and (c) using MHDeep (Hassantabar et al., 
2022) dataset: 1st episode has participants with healthy condition and major depressive disorder and 
2nd episode has bipolar depressive disorder patients.

 

 (continued on next page)
3.5. Simulated or hybrid settings

It may not always be the case that the model observes a particular 
kind of incremental scenario, such as a domain incremental condition. 
The CL model developed for handling domain incremental conditions 
8 
may not perform well for a class incremental condition. Thus, there 
are attempts to evaluate the same model on different CL scenarios; 
however, a separate evaluation is followed for each kind of incremental 
CL scenario. In contrast, having a set of episodes with a mix of CL 
scenarios is close to real-life conditions. Thus it becomes important 
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Table 4 (continued).
 Reference (year) Application (# Episodes) Description  
 Sun et al. 
(2023c)

Multi-class classification on 
time-series signals (5 Ep., 10 Ep., 
5 Ep., 4 Ep.)

4 separate experiments were designed as follows: (a) using Mit-BIH dataset (Goldberger et al., 2000) 
4 episodes were created where 1st episode has 4 classes and the 4 new classes are added one by one 
in the next 4 episodes. (b) using FaceAll dataset (Dau et al., 2019), 10 episodes were created where 
1st episode has 5 classes and the next 9 episodes introduce 9 new classes, one by one. (c) using 
Wave dataset (Dau et al., 2019) a total of 5 episodes were created where 1st episode has 12 lasses 
and the next 4 classes introduce new 12 classes, 3 classes each. (d) using Mit-BIH Long-Term ECG 
dataset (Goldberger et al., 2000) 4 episodes were created where 3 classes were in 1st episode and the 
next 3 episodes contained 3 new classes, 1 class in each.

 

 Yang et al. 
(2023a)

Skin disease classification on 
dermoscopic and clinical images: 
(4-20 Ep.)

2 datasets were used separately as follows: (a) Skin7 (Codella et al., 2018) containing a total of 7 
classes is used in CIS where 1 and 2 classes are incrementally added leading to 6 and 4 episodes, 
respectively. (b) Skin40 dataset (Sun et al., 2016) containing a total of 40 classes is used in CIS 
where 2,5, and 10 classes are incrementally added leading to 20, 8, and 4 episodes, respectively.

 

 Verma et al. 
(2023)

Disease classification on (a) 
fundus (3 Ep.), (b) pathology 
images: (3 Ep.)

(a) OCT dataset (Kermany et al., 2018) with total 4 classes used to create 3 episodes: episode-1 has 
two classes (Normal and Choroidal Neovascularization), episode-2 has 1 class (Diabetic Macular 
Edema) and episode-3 contains 1 class (Drusen). (b) PathMNIST dataset (Yang et al., 2023c) from the 
MedMNIST repository offers 9 classes for colon pathology. It is used to create 3 episodes with 3 
classes each.

 

 Ceccon et al. 
(2024a)

Chest X-ray based disease 
classification (5 Ep.)

2 datasets (ChestX-ray14 (Wang et al., 2017) with 14 classes and CheXpert (Irvin et al., 2019) with 
12 classes) used separately to create two experiments, each with 5 episodes.

 

 Bayasi et al. 
(2024b)

(a) Skin lesion classification (2-3 
Ep.), (b) blood cell classification 
(4 Ep.), (c) colon tissue 
classification (4 Ep.)

(a) HAM10000 (Tschandl et al., 2018), Dermofit (Ballerini et al., 2013), and Derm7pt (Kawahara 
et al., 2018) datasets with total 7, 7, and 6 classes used to create 3, 3, and 2 episodes each with 2-3 
non-overlapping skin disease classes, respectively, (b) PBS-HCB (Acevedo et al., 2020) dataset with a 
total of 8 classes used to create 4 episodes each with 2 non-overlapping blood cell classes, (c) 
NCT-CRC-HE (Kather et al., 2019) dataset with a total of 9 classes used to create 4 episodes each 
with 2-3 non-overlapping colon tissue classes.

 

 Qazi et al. 
(2024)

(a) Disease classification in 
histopathology images: (7 Ep.), 
(b) Skin lesion classification: (4 
Ep.)

(a) Using Path16 dataset 7 episodes were created as different sources of dataset with different classes 
from histopathology, (b) using skin8 dataset, a total of 4 episodes were created by adding 2 new 
classes per episode.

 

 Zhu et al. 
(2024a)

Histopathology WSI retrieval: (4 
Ep.)

Authors curate a sequence of 4 WSI datasets (NSCLC, RCC, BRCA and GAST) from TCGA. Each 
episode introduces a new dataset with 2 new classes of cancer, showing a CIS setting.

 

a https://www.cancer.gov/ccg/research/genome-sequencing/tcga
Table 5
List of various task incremental scenarios in literature.
 Reference (year) Application (# Episodes) Description  
 Baweja et al. (2018) MRI-based normal brain 

structures segmentation (2 
Ep.)

UK Biobank (Miller et al., 2016) dataset used to create two tasks: 1st) segmentation of cerebrospinal 
fluid, grey matter, white matter and 2nd) segmentation of white matter lesions.

 

 Ravishankar et al. (2019) Chest X-ray view classification 
(2 Ep.)

Shift from task (4ch vs. PLAX) to task (2ch vs. PSAX)  

 Zhang and Wang (2019b) Longitudinal MRI-based 
Alzheimer’s disease 
progression modeling (7 Ep.)

Tasks are MR images belonging to different time points  

 Kaustaban et al. (2022) Histopathology data-based 
tumor classification (4 Ep.)

4 episodes were created in TIS from Colorectal cancer dataset CRC (Kather et al., 2019) having a 
total of 9 classes

 

 Derakhshani et al. (2022) Disease classification (4 Ep.) 4 episodes were created from each of the datasets in TissueMNIST, OrganaMNIST, PathMNIST, 
BloodMNIST (MedMNIST repository (Yang et al., 2023c))

 

 Bera et al. (2023) MRI-based binary 
segmentation (3 Ep.)

3 episodes were curated as binary segmentation application using MRI data on 3 organs (prostate, 
spleen, hippocampus): Promise12 (Litjens et al., 2014) (prostate) → MSD (Anon, c) (spleen) → Drayd 
(Denovellis et al., 2021) (hippocampus)

 

 Wu et al. (2024) Image super-resolution (4 Ep.) First 3 episodes are curated from IXI (IXI) dataset referring to (PD, T1, and T2) weighted brain MRI, 
and the last episode refers to chest X-ray from Chest X-ray (Wang et al., 2017) dataset.

 

 Li and Jha (2023) Disease classification on 
physiological signals (2-3 Ep.)

A task incremental scenario with 2-3 different disease classification tasks were created using 2-3 
datasets (CovidDeep (Hassantabar et al., 2021), DiabDeep (Yin et al., 2019), and MHDeep 
(Hassantabar et al., 2022))

 

 Verma et al. (2024) Disease classification on (a) 
Fundus (2 Ep.), (b) pathology 
images (3 Ep.)

(a) OCT (Kermany et al., 2018) with total 4 classes used to create 2 episodes, each having 2 classes 
(b) PathMNIST (Yang et al., 2023c) from the MedMNIST repository offers 9 classes for colon 
pathology. It is used to create 3 episodes, each with 3 classes.

 

 Ye et al. (2024) Multi-modality representation 
learning (5 Ep.)

5 different medical data modalities including medical report, MRI, X-ray, CT, and histopathology data 
were learned in 5 episodes for SSL-based representation learning

 

to also test the performance in hybrid settings. Table  7 provides a 
comprehensive overview of works that designed hybrid incremental 
scenarios.

An attempt in direction is made by Sadafi et al. (2023) where 
other than pure domain incremental and class incremental, a hybrid 
incremental scenario is also considered. The authors create a sequence 
9 
of episodes with both class and domain-incremental cases on multi-site 
WBC classification datasets. They create a long sequence of episodes 
with a total of 12 episodes. First, they set up a class incremental 
scenario within the Matek-19 (Matek et al., 2019) dataset by adding 
3–4 classes in each subsequent episode up to a total of 4 episodes. After 
this a new domain, i.e., the INT-20 dataset was considered in the same 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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Table 6
List of various domain shift scenarios in literature.
 Reference (year) Shift source (# Episodes) Description  
 McClure et al. 
(2018)

Cross-site (4 Ep.) sMRI based Axial and sagittal brain segmentation: datasets from 4 sites: HCP (Van Essen et al., 2013), 
NKI (Nooner et al., 2012), Buckner (Biswal et al., 2010), WU120 (Power et al., 2017) in different 
order

 

 Karani et al. 
(2018)

Cross-scanners, hospitals, or 
acquisition protocols (4 Ep.)

MR brain segmentation on various combinations using 5 datasets from different sources: Human 
Connectome Project (Van Essen et al., 2013), Alzheimer’s Disease Neuroimaging Initiative (ADNT), 
Autism Brain Imaging Data Exchange (Di Martino et al., 2014) and Information eXtraction from 
Images (IXI)

 

 van Garderen 
et al. (2019)

Low vs. high-grade (2 Ep.) MR data based glioma segmentation: 2018 BraTS Challenge (low and high-grade), an in-house dataset 
with non-enhancing low-grade

 

 Venkataramani 
et al. (2019)

Varying in disease type, intensity 
patterns (2) & contrast

X-ray lung segmentation: Montgomery (Jaeger et al., 2014) as source, JSRT (Shiraishi et al., 2000) 
and Pneumoconiosis (private) as two target domains

 

 Ravishankar 
et al. (2019)

Inter-subject variability (2 Ep.) (a) Chest X-ray view classification (4ch vs. PLAX) from adult to pediatric as two domains (b) chest 
X-ray view classification (2ch vs. PSAX) from adult to pediatric as two domains

 

 Lenga et al. 
(2020)

Cross-sites (2 Ep.) Chest X-ray classification on datasets from 2 sources: ChestX-ray14 dataset from NIH Clinical Center 
and MIMIC-CXR dataset from the Beth Israel Deaconess Medical Center

 

 Özgün et al. 
(2020)

Different age ranges, MRI field 
strengths & presence of 
pathologies or motion artifacts (4 
Ep.)

Brain MRI segmentation datasets: 4 Ep. were created from 3 datasets: CANDI (Kennedy et al., 2012) 
(1 Ep.), ADNI (Jack Jr. et al., 2008) (1 Ep.), and MALC (Asman and Landman, 2013) (2 Ep. based on 
age)

 

 Hofmanninger 
et al. (2020a)

Different scanner parameters and 
target-shift (3 Ep.)

Chest CT synthetic classification task: the second episode have change in scanner parameter as 
compared to first episode (Hofmanninger et al., 2020b), then target shift is introduced intentionally in 
the third episode by imprinting a synthetic target structure in the form of a cat on random locations, 
rotations and varying scale in 50% of the samples.

 

 Morgado et al. 
(2021)

Appearance and body-parts (2 
Ep.)

Dermatological imaging modality classification (full-body, anatomic, macroscopic, and dermoscopic 
classes): For each of the classes, author considered disjoint images in the two episodes, for example, 
in the second episode, legs and arms images were considered for full-body class, images containing 
hands or feet only considered for anatomic, images containing face region for macroscopic class, and 
pink colored images for dermoscopic class.

 

 Srivastava et al. 
(2021)

Cross-sites (3 Ep.) Chest X-ray classification: NIH Chest-X-rays14, PadChest, and CheXpert  

 Memmel et al. 
(2021)

Multi-scanner (2 Ep.) MRI-based Hippocampal Segmentation: 3 datasets as 2018 Medical Segmentation Decathlon challenge 
(Simpson et al.), Scientific Data (Kulaga-Yoskovitz et al., 2015), and Alzheimer’s Disease 
Neuroimaging Initiative (Boccardi et al., 2015): 2 datasets together in 1st episode and then 3rd 
dataset in 2nd episode, different such combinations were experimented

 

 Perkonigg et al. 
(2021)

Multi-scanners (3 Ep.) Brain age estimation: IXI(IXI) (Philips Gyroscan Intera 1.5T, Philips Intera 3.0T scanner), OASIS3 
(LaMontagne et al., 2019) (Siemens TrioTim 3.0T scanner)

 

 Bayasi et al. 
(2021)

Multi-site (6 Ep.) Skin lesion image classification: HAM10000 (Tschandl et al., 2018), Dermofit (Ballerini et al., 2013), 
Derm7pt (Kawahara et al., 2018), MSK (Codella et al., 2018), PH2 (Mendonça et al., 2013), UDA 
(Codella et al., 2018)

 

 Zhang et al. 
(2021)

Cross-sites (6 Ep.), (4 Ep.) (a) Prostate segmentation: MRI datasets across 6 sites: RUNMC (Bloch et al., 2015), BMC (Bloch 
et al., 2015), HCRUDB (Lemaître et al., 2015), UCL (Litjens et al., 2014), BIDMC (Litjens et al., 
2014), HK (Litjens et al., 2014), (b) optic cup and disc segmentation: public multi-site fundus image 
datasets from 4 sources (Sivaswamy et al., 2015; Fumero et al., 2011; Orlando et al., 2020)

 

 Perkonigg et al. 
(2022)

Multi-scanner (4 Ep.) (a) CMR based Cardiac segmentation (4 Ep.): Cardiac (Campello et al., 2021), (b) CT based Lung 
nodule detection (4 Ep.): LIDC (Setio et al., 2017), + LNDb challenge (Pedrosa et al., 2019), (c) MRI 
based Brain Age Estimation segmentation (4 Ep.): IXI(IXI) + OASIS-3 (LaMontagne et al., 2019)

 

 Derakhshani 
et al. (2022)

Across organs or modality (4 Ep.) Disease classification: 4 episodes using 4 datasets ordered as: BloodMNIST, OrganaMNIST, PathMNIST, 
TissueMNIST (MedMNIST repository)

 

 Karthik et al. 
(2022)

Cross-center (8 Ep.) Sclerosis lesions segmentation from brain MRI datasets described in Kerbrat et al. (Kerbrat et al., 
2020)

 

 González et al. 
(2022)

(a) Cross-domain (5 Ep.), (b) 
manual image contrast change (5 
Ep.)

MRI hippocampus segmentation: (a) HarP (Boccardi et al., 2015), Dryad (Kulaga-Yoskovitz et al., 
2015), Decathlon (Simpson et al., 2019), (b) data transformation applied using TorchIO library on 
Decathlon (Simpson et al., 2019) as intensity rescaling, affine transformations, rotation, translation

 

 Ranem et al. 
(2022)

Cross-site (3 Ep.) MRI based binary hippocampus segmentation: Decathlon (Antonelli et al., 2022), Drayd (Denovellis 
et al., 2021), HarP (Boccardi et al., 2015)

 

 Kaustaban et al. 
(2022)

(a) Multi-organ (2 Ep.), (b) 
scanning protocol (5 Ep.)

(a) Tumor classification: CRC (a colon cancer dataset with 9 classes), PatchCam (a breast cancer 
dataset with 2 classes), (b) Tumor classification: 5 domain shift scenarios were simulated by changing 
H&E composition in CRC dataset

 

 Shu et al. (2022) (a) Imaging protocol (2 Ep.), (b) 
multi-source (3 Ep.)

(a) Low and high-quality fundus images (retinal images) from EyeQ dataset as domain shift condition 
(Fu et al., 2019), (b) fundus disease classification (AMD, DR, glaucoma, myopia, and normal classes) 
across 3 datasets: ODIR (ODIR), R&R (RIADD (RIADD) + REFUGE (REFUGE)), and iSee (Fang et al., 
2020)

 

 Li et al. (2022) Multi-scanner vendors (4 Ep.) CMR based Cardiac segmentation of left ventricle, right ventricle, and left ventricle myocardium: 4 
episodes as 4 scanner vendors (Siemens, Philips, General Electric, Cannon) from M&Ms (Campello 
et al., 2021) dataset

 

 (continued on next page)
10 



P. Kumari et al. Medical Image Analysis 106 (2025) 103730 
Table 6 (continued).
 Reference (year) Shift source (# Episodes) Description  
 Sadafi et al. 
(2023)

Cross-sites (3 Ep.) WBC classification across 3 datasets: Matek-19 (Matek et al., 2019), INT-20, and Acevedo-20 
(Acevedo et al., 2020)

 

 Bera et al. 
(2023)

(a) Cross-center (4 Ep.), (b) 
cross-center (2 Ep.)

(a) Binary prostate segmentation: Prostate158 (Adams et al., 2022) → NCI-ISBI (Anon, c) →
Promise12 (Litjens et al., 2014) → Decathlon (Antonelli et al., 2022), (b) binary hippocampus 
segmentation: Drayd (Denovellis et al., 2021) → HarP (Boccardi et al., 2015))

 

 Zhu et al. (2023) (a) Cross-site (6 Ep.), (b) 
cross-site & cross-modality (2 
Ep.), (c) same-site & 
cross-modality (2 Ep.)

(a) Binary prostate segmentation from T2-weighted MRI scans collected from 6 sites (12–30 
scans/site) (Liu et al., 2020a; Bloch et al., 2015; Lemaître et al., 2015), (b) multi-class (liver, left and 
right kidneys, and spleen) abdominal segmentation between 30 CT and 20 MRI T2-SPIR scans, (c) 
muscle segmentation of 13 lower-leg muscles and bones between 30 MRI T1 and 30 mDixon scans

 

 Bándi et al. 
(2023)

Cross-organ (3 Ep.) Histopathology data based cancer detection from breast (CAMELYON16, CAMELYON17), colon 
(private), and head-neck (private) datasets

 

 Byun et al. 
(2023)

Various demographics, collection 
periods, camera types, and image 
quality (2-3 Ep.)

(a) Diabetic retinopathy severity classification across 2 datasets (Messidor-2, APTOS), (b) dermoscopy 
skin lesion detection across 3 datasets (BCN2000, PAD-UEFS-20, HAM10000)

 

 Sun et al. 
(2023a)

Data distribution shifts in time 
series vital signals (10 time-steps.)

Mortality prediction (COVID-19 (Yan et al., 2020) datasets), (b) Sepsis situation identification (SEPSIS 
(Seymour et al., 2017) dataset)

 

 Li and Jha 
(2023)

Distributional-drift (2 Ep.) Disease classification on physiological signals: for each of the 3 datasets (CovidDeep(Hassantabar 
et al., 2021), DiabDeep(Yin et al., 2019), and MHDeep(Hassantabar et al., 2022)), 2 episodes were 
curated by splitting patient into 2 groups.

 

 Chen et al. 
(2023)

Multi-site, multi-vendor (3 Ep., 3 
Ep., 6 Ep.)

3 separate applications including (a) Optic disc, (b) cardiac, (c) prostate segmentation were 
considered in domain shift condition

 

 Li et al. (2024) Multi-vendor (5 Ep.) MR Cardiac segmentation (LV, RV, MYO) with 2 datasets (ACDC and M&M). Episode-1 is from ACDC 
dataset which is collected from Siemens scanners and the next 4 episodes are from M&M dataset 
which is collected from 4 vendors (Siemens, Philips, General Electric, and Cannon).

 

 Kim et al. 
(2024)

Multi-site (4 Ep.) Arrhythmia detection on ECG datasets: 4 datasets ((Zheng et al., 2020), (Wagner et al., 2020), (Alday 
et al., 2020), (Liu et al., 2018)) used as 4 episodes

 

 Aslam et al. 
(2024)

Data distribution shifts in time 
series vital signals (10 contexts 
with significant change in mean 
and standard deviation)

Disease outbreak detection via time series signal: 3 datasets (Mpox (Mathieu et al., 2022), Influenza 
(Anon, d), Measles (Anon, e))) were used separately to curate 10 episodes.

 

 Bayasi et al. 
(2024b)

Multi-source (4 Ep.) Skin lesion classification: 4 publicly available skin disease classification datasets (HAM10000 
(Tschandl et al., 2018), Dermofit (Ballerini et al., 2013), Derm7pt (Kawahara et al., 2018), MSK 
(Codella et al., 2018)) were used as 4 episodes, all with same 4 classes of skin disease

 

 Zhu et al. 
(2024b)

Multi-acquisition, multi-equipment (a) Prostate segmentation (6 Ep.), (b) Cardiac segmentation (3 Ep.)  

 Thandiackal 
et al. (2024)

Multi-source (3 Ep.) Histopathology tissue classification: 3 different datasets (K-19 (Kather et al., 2016), K-16 (Kather 
et al., 2019), CRC-TP (Javed et al., 2020)) are considered as 3 episodes which contain 7 medically 
relevant patch classes from H&E stained WSIs of colorectal biopsies

 

Table 7
List of various hybrid CL scenarios in literature.
 Reference (year) Application (# 

Episodes)
Description  

 Yang et al. (2023b) MedMNIST (Yang et al., 
2023c) based disease 
classification (4 Ep.)

CIS+DIS: 3 datasets (PathMNIST, DermaMNIST, and OrganAMNIST) as source domain and then 3 more 
datasets (RetinaMNIST, BreastMNIST, BloodMNIST) as domain shift but classes are added in the class 
incremental fashion with 1 class at a time

 

 Liu et al. (2023a) Brain tumor 
segmentation (3 Ep.)

CIS with domain shift conditions: incrementally learn tumor core (BraTS2013 (Menze et al., 2014) 
dataset), the enhancing tumor (TCIA (Clark et al., 2013) dataset), and edema (CBICA (Bakas et al., 2018) 
dataset) structures via three datasets, each following different data distributions

 

 Sadafi et al. (2023) WBC classification (3 
Ep.)

DIS (multi-site) + CIS using 3 WBC classification datasets having different number of classes: CIS on 
Matek-19 (Matek et al., 2019) then shift to INT-20 dataset and use it in CIS manner then shift to 
Acevedo-20 (Acevedo et al., 2020) dataset and use in CIS manner

 

 Ceccon et al. (2024b) Chest X-ray based 
disease classification (7 
Ep.)

Authors curate a novel scenario termed NIC by interleaving new classes and new instances (from a new 
dataset as a new domain) in a sequence. The first episode contains a fixed set of classes from 
ChestX-ray14 (Wang et al., 2017) dataset and then the same classes from CheXpert (Irvin et al., 2019) 
dataset were considered as second episode. Then some new disjoint classes from ChestX-ray14 were 
considered in the third and fourth episodes. Thus, authors interleave between new classes and new 
domains to curate a hybrid scenario containing a total of 7 episodes.

 

 Bayasi et al. (2024b) Skin lesion 
classification (5 Ep.)

CIS+DIS: 5 skin lesion classification datasets ( HAM10000 (Tschandl et al., 2018), Dermofit (Ballerini 
et al., 2013), Derm7pt (Kawahara et al., 2018), MSK (Codella et al., 2018), UDA (Codella et al., 2018), 
BCN (Combalia et al., 2019), PH2 (Mendonça et al., 2013)) with different number of classes (overlapping) 
were sequentially arranged as 5 episodes which exhibit incremental class and domain simultaneously.

 

fashion, contributing 4 more episodes. Finally, a third domain i.e., a 
new dataset Acevedo-20 (Acevedo et al., 2020) was introduced with 4 
episodes in class incremental fashion.
11 
Compared to the natural image domain, novel class appearance 
along with domain shifts is more frequent in medical applications 
owing to inherent heterogeneity in staining agents, protocols, imaging 
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Table 8
List of various rehearsal based works in literature.
 Reference (year) Application & CL scenario CL technique  
 Hofmanninger et al. (2020a) Chest CT classification: DIS (3 Ep.) Experience replay with a dynamic memory size where 

samples are ranked by computing Gram matrix on the 
last activation maps

 

 Srivastava et al. (2021) Chest X-ray classification: DIS(3 Ep.) Latent replay  
 Perkonigg et al. (2021) Brain age estimation: DIS (3 Ep.) Experience replay  
 Perkonigg et al. (2022) 3 separate experiments for 3 applications: (a) cardiac 

segmentation: DIS (4 Ep.), (b) lung nodule detection: DIS 
(4 Ep.), and (c) brain age estimation: DIS (4 Ep.)

Experience replay  

 Karthik et al. (2022) MRI data for brain sclerosis lesions segmentation: DIS (8 
Ep.)

Random samples from each episode kept for experience 
replay

 

 Li et al. (2022) CMR based Cardiac segmentation across 4 scanners: DIS 
(4 Ep.)

Generative replay: style-oriented replay  

 Bera et al. (2023) (a) Binary segmentation of prostate, spleen, and 
hippocampus: TIS, (b) binary hippocampus segmentation 
across 2 datasets: DIS, (c) binary prostate segmentation 
across 4 datasets: DIS

Experience replay based rehearsal strategy: store max K 
exemplars (half of the exemplars based on fraction of 
positive class content inside the image and other half 
based on gradient variation)

 

 Wang et al. (2023a) (a) Segmentation for endoscopy: CIS (2-3 Ep.) (b) surgical 
instrument segmentation (2 Ep.)

Generative replay  

 Byun et al. (2023) (a) Diabetic retinopathy severity classification: DIS (2 
Ep.), (b) dermoscopy skin lesion detection: DIS (3 Ep.)

Generative replay: The generator model is a conditional 
text-to-image diffusion model that is updated with current 
episode data and then used to generate labeled data for 
the current episode and stored in the buffer. Current 
episode data along with labeled data for each episode 
kept in the buffer, is utilized for fine-tuning the classifier.

 

 Huang et al. (2023) Tumor subtype classification at WSI-level: CIS (4 Ep.) Experience replay  
 Sun et al. (2023a) Disease classification in time-series signals: DIS (10 

time-steps)
Experience replay (adaptive importance based replay)  

 Wei et al. (2023) Brain tumor segmentation: IIS (8 Ep.) Experience replay  
 Xiao et al. (2023) Skin disease classification with dermoscopic and clinical 

images: CIS (18 Ep.)
Rehearsal (Memory buffer optimization: extension of GEM 
approach)

 

 Li and Jha (2023) Disease classification on physiological signals: DIS (2 
Ep.), CIS (2 Ep.), TIS (2-3 Ep.)

(a) Experience replay: training loss based sample 
selection for the buffer, (b) generative replay: parametric 
(GMM) or non-parametric (KDE) models as a generator 
for past episodes.

 

 Thandiackal et al. (2024) Histopathology colorectal tissue classification: DIS (3 Ep.) GAN-based generative replay  
 Bringas et al. (2024) Alzheimer’s disease stage identification using 

motion-sensor: IIS (2 Ep.,3 Ep.,4 Ep.)
Rehearsal (A-GEM)  

 Zhu et al. (2024a) Histopathology WSI retrieval: CIS (4 Ep.) Rehearsal (experience replay: memory bank with 
reservoir sampling)

 

techniques, vendors, etc. Therefore, there has been recent interest 
and development of a novel CL scenario that consider new classes 
as well as new domains/instances, also termed as ‘New Instances 
and New Classes’ (NIC) scenario (Ceccon et al., 2024b). The NIC 
scenario is particularly relevant for medical image analysis as it ad-
dresses the simultaneous occurrence of new types of medical conditions 
(new classes) and new patient data (new instances), which is com-
mon in clinical practice. This scenario emphasizes the need for CL 
methods that effectively handle class and domain incremental learn-
ing.  In contrast to traditional class-incremental settings, which often 
do not account for data shift, Liu et al. (2023a) propose a method 
for brain tumor segmentation that incrementally adds structures un-
der varying domain shift conditions, such as distinct sites, scanners, 
or MRI modalities. This approach addresses class-incremental learn-
ing by incorporating domain-specific variations. Bayasi et al. (2024b) 
tackle a hybrid continual learning (CL) scenario using five skin le-
sion datasets from different sources and domains, each containing 
overlapping and varying numbers of classes. By treating these five 
datasets as five sequential episodes, their approach exemplifies the in-
tegration of both class-incremental and domain-incremental challenges. 
Similarly, Ceccon et al. (2024b) addresses a hybrid CL scenario in 
the context of chest X-ray-based disease classification. They interleave 
disease classes and domains by utilizing datasets from two hospitals, 
each containing 18 classes, to curate a total of seven episodes. Each 
12 
episode introduces either new disease classes or a new domain, thus 
combining class-incremental and domain-incremental learning within 
their methodology. Medical applications frequently encounter novel 
classes and domain shifts due to the diversity in staining agents, imag-
ing protocols, and vendor-specific techniques. This has led to the 
development of new CL scenarios or hybrid learning scenarios.

Further, there are some attempts to curate shifts in datasets and 
various incremental scenarios instead of collecting real datasets re-
flecting the situation. For example, Kaustaban et al. (2022) simulated 
domain shift in H&E stain exhibiting distinct appearance caused by 
different staining protocols. This dataset is designed to simulate real-
world scenarios, where data shifts occur due to differences in scanners, 
stainers, reagents, and other factors. They considered 9 classes from 
CRC (Kather et al., 2019) which is a H&E stain-based colorectal cancer 
classification dataset. Each class is divided into 5 disjoint sets for 5 
episodes. The first set, regarded as Domain1 is without any alteration 
and the next 4 sets for each class undergo various changes to create 
domain shift. A short description of 4 domain shifts is as follows:
Domain 2 (increased stain intensity, simulating, for example, con-
centration increase of the eosin and/or hematoxylin solutions, each 
with a different extent of change). Domain 3 (decreased eosin stain 
intensity, simulating, for example, slides prepared from many years 
ago with fading stain). Domain 4 (change of hue, simulating, for 
example, change of reagent manufacturer, scanner or stainer) Domain 
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Table 9
List of various regularization based works in literature.
 Reference (year) Application & CL scenario CL technique  
 Baweja et al. (2018) MRI-based normal brain structures segmentation: TIS (2 Ep.) EWC  
 McClure et al. 
(2018)

Axial and sagittal brain segmentation: DIS (4 Ep.) Distributed Weight Consolidation (DWC)  

 Zhang and Wang 
(2019b)

Longitudinal MRI-based Alzheimer’s disease progression modeling: 
TIS (7 Ep.)

EWC  

 van Garderen et al. 
(2019)

MR data-based glioma segmentation: DIS (2 Ep.) EWC  

 Özgün et al. (2020) Brain MRI segmentation: DIS (4 Ep.) Learning rate regularization built over memory aware 
synapses technique

 

 Chen and Tang 
(2022)

Histopathology-based breast cancer classification: CIS (4 Ep.) Regularization: EWC  

 Zhang et al. (2023a, 
2021)

(a) MRI-based prostate segmentation: DIS, (b) retinal image-based 
optic cup and disc segmentation: DIS

Shape and semantics-based selective regularization to 
penalize changes of parameters with high joint shape and 
semantics-based importance

 

 Zhu et al. (2023) (a) Binary prostate segmentation from T2-weighted MRI scans 
collected from 6 sites: DIS, (b) cross-site and cross-modality 4-class 
abdominal segmentation between CT and MRI scans: DIS,
(c) same-site cross-modality muscle segmentation of muscles and 
bones between MRI and mDixon scans: DIS

Knowledge distillation  

 Liu et al. (2023a) Brain tumor segmentation: CIS with domain shift (3 Ep.) Pseudo label-based knowledge distillation  
 Bai et al. (2023) Surgical question answering: CIS Regularization: knowledge distillation  
 Wu et al. (2024) Image super-resolution: TIS (4 Ep.) Regularization (knowledge distillation and parameter 

importance based gradient update)
 

 Aslam et al. (2024) Disease outbreak detection in time-series signal: DIS (10 Ep.) Regularization (EWC)  
 Zhu et al. (2024b) (a) MRI Prostate segmentation: DIS (b) MRI Cardiac segmentation: 

DIS
Regularization (knowledge distillation)  
Table 10
List of various architecture based works in literature.
 Reference (year) Application & CL scenario CL technique  
 Karani et al. (2018) MR brain segmentation: DIS (4 Ep.) Domain specific batch normalization layer  
 Bayasi et al. (2021) Skin lesion image classification: DIS (6 Ep.) Architecture (fixed but partitioned network: culprit unit pruning 

mechanism)
 

 Memmel et al. (2021) Brain MRI hippocampal segmentation: DIS (2 Ep.) Architecture (feature disentanglement through adversarial training)  
 González et al. (2022) MRI-based Hippocampus Segmentation: DIS (2 Ep.) Architecture based approach based on out-of-distribution detection 

concept: maintain multivariate Gaussians for all past learning 
created on batch normalization layer

 

 Yang et al. (2023a) Skin disease classification on dermoscopic, clinical images: CIS 
(4-20 Ep.)

Pretrained feature extractor + class specific GMMs built on each 
deep feature

 

 Verma et al. (2024) Disease classification on (a) Fundus: TIS (2 Ep.), (b) pathology 
images: TIS (3 Ep.)

Architectural (Task specific model is trained, task id is inferred 
during inference)

 

 Qazi et al. (2024) (a) Disease classification in histopathology images: CIS (7 Ep.), (b) 
Skin lesion classification: CIS (4 Ep.)

Task specific adapter with merging facility to increase 
computational efficiency

 

5 (change of hue and saturation, simulating, for example, change of 
reagent manufacturer, scanner or stainer). Finally, authors used this 
augmented dataset for setting class-incremental, domain-incremental, 
data-incremental, as well as task-incremental scenarios.

Another line of research popularly uses MNIST or similar well-
defined datasets instead of collecting real datasets for the evaluation 
of the CL model. In the medical field, there is a recently released (year 
2021) MNIST-like collection of biomedical images offering dozens of 
datasets, termed MedMNIST (Yang et al., 2023c). Derakhshani et al. 
(2022) consider 4 MedMNIST datasets, including BloodMNIST, Or-
ganaMNIST, PathMNIST, and TissueMNIST as 4 domains and curate 
3 CL scenarios with it. These datasets are multi-class (8–11 classes in 
each) disease classification datasets from different imaging modalities 
and organs. Each dataset was split to have disjoint classes leading 
to a total of 4 episodes in each dataset. Task and class incremental 
scenarios were set up for each dataset separately. In the task incre-
mental scenario, the aim was to evaluate only the classes from the 
current episode whereas in class incremental, the aim was to evaluate 
all seen classes. Thus the class incremental scenario is difficult than 
13 
task incremental. They term the datasets generated from different 
sites/imaging protocols as cross-domain incremental scenario, in-
stead of domain-incremental. Here the evaluation is done across the 4 
datasets (BloodMNIST, OrganaMNIST, PathMNIST, and TissueMNIST), 
i.e., each dataset is treated as an episode. Further authors presented 
domain-agnostic and domain-aware settings in this. Domain-agnostic 
case is more difficult than domain-aware as the domain ID is not 
explicitly provided in domain-agnostic.

4. Continual learning strategy

Owing to frequently encountered domain shifts in medical appli-
cations, CL strategies aim to tackle performance drop due to domain 
shifts and thus might become a necessity in clinical applications (Pi-
anykh et al., 2020; Lee and Lee, 2020). All the available strategies for 
preventing catastrophic forgetting can be broadly categorized into three 
main categories: (a) rehearsal-based approaches where a small memory 
is used to store previous episode data in some form, (b) regularization-
based methods where the aim is to control weight update to minimize 
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Fig. 5. Popularity of different CL strategies for medical image analysis.

forgetting the previous learning, (c) architectural-based methods which 
mainly aim to keep some network parameters isolated for each episode, 
and (d) hybrid category which offers various combination of any of 
these three categories. Fig.  6 presents a taxonomy of CL techniques and 
their adaptation in the medical field by various works. Further, the sub-
technique category for each work is also mentioned in the figure. More 
detail of CL techniques in each work can be found in Table  8,  Table 
9,  Table  10,  Table  11, and  Table  12 for rehearsal, regularization, ar-
chitectural, hybrid, and comparative studies, respectively. Additionally, 
a pie chart showing the ratio of works falling in the above-mentioned 
categories is shown via Fig.  5. It indicates the popularity of using one or 
more strategies together in hybrid settings owing to better classification 
or segmentation performances in sequential learning. Now, we discuss 
each category in detail in the following sections.

4.1. Rehearsal based

This category of methods aims to approximate and recover old data 
distributions to augment with the new task data. Typically, there is 
a memory buffer to store data samples from past tasks, which are 
then used for replaying during the learning of a new task in order to 
retain previously learned knowledge and hence mitigate catastrophic 
forgetting. Here, the samples can be original images (Rebuffi et al., 
2017; Karthik et al., 2022) or deep features (Van de Ven and Tolias, 
2019) or generated pseudo samples (Shin et al., 2017) and can be 
selected via various heuristics and stored in memory buffer.

Based on the content of the memory buffer, the methods in this 
category can be broadly divided into the following sub-categories viz., 
(i) experience replay-based, (ii) generative replay-based, (iii) latent 
replay-based, and (iv) memory buffer optimization.

4.1.1. Experience replay-based
In experience replay, a few past exemplars (images) are stored in a 

small memory buffer. The main challenge here is to design a strategy 
to select important exemplars that will be stored in the limited storage 
to fully exploit the memory buffer.

For natural image classification, Rebuffi et al. (2017) proposed 
a popular experience-based method called incremental Classifier and 
Representation Learning (iCaRL) which is also highly explored for 
various medical applications, e.g., histopathology tumor classifica-
tion (Kaustaban et al., 2022), disease classification (Derakhshani et al., 
2022), etc. The iCaRL strategy has a fixed memory buffer condition 
where a subset of the most representative examples is maintained for 
each class, aiming to carry the most representative information of the 
class in the learned feature space. The distance between data instances 
in the latent feature space is used to update the memory buffer. During 
representation learning, both the stored samples and current task 
samples are utilized for training. During inference, a nearest-mean-of-
exemplars classification strategy is used to assign the label to the class 
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with the most similar prototype. The original iCaRL method requires all 
data from the new task to be trained together. To address this limitation 
and enable the new instances from a single task to come at different 
time steps, Chaudhry et al. (2019) proposed Experience Replay (ER), 
which uses reservoir sampling to randomly sample a certain number of 
data instances from a data stream of unknown length, and store them 
in the memory buffer.

Further exploration has been conducted to select the most repre-
sentative samples for replay in medical applications. Bera et al. (2023) 
propose a simple sample selection technique for binary segmentation 
with a memory bank of 𝐾 samples, equi-distributed over the classes. 
Half of the exemplars are selected based on the occupancy of the pos-
itive class inside the image, i.e., the higher the content of the positive 
class, the higher the chance of being selected; the other half are selected 
based on their contribution to the learning process, i.e., if the gradient 
variation is more for a sample, then it is hard to learn and hence 
important. Hofmanninger et al. (2020a) propose to store samples based 
on their degree of uniqueness inferred using the Gram matrix computed 
on activations from the last convolution layer of the deep model. They 
evaluated the framework on chest CT data with synthetically generated 
domain shifts for classification application. To combat costly anno-
tation in medical segmentation applications, Perkonigg et al. (2021, 
2022) propose to combine rehearsal-based CL and active learning, 
where the model indicates important samples that need to be an-
notated rather than annotating all the samples. They detect domain 
shifts using a memory buffer for outliers, prompting the labeling of 
informative samples for model adaptation. Furthermore, it is important 
to note that storing raw samples in WSI analysis applications is highly 
memory-intensive due to the gigapixel size of each WSI. To address this 
challenge, Huang et al. (2023) propose a Breakup-Reorganize (BuRo) 
strategy, which stores only a subset of regions from a WSI instead 
of the entire image. During replay, a synthetic WSI is generated by 
randomly selecting and stitching stored regions from multiple WSIs. 
This approach not only reduces the memory burden of storing full WSIs 
in the buffer but also introduces data augmentation by creating diverse 
synthetic WSIs on the fly.

4.1.2. Latent replay-based
While experience replay requires storing the past samples in raw 

form, it can cause serious privacy violations in critical medical ap-
plications (Thandiackal et al., 2024; Zhu et al., 2024b; Bayasi et al., 
2024b). Therefore, a less concerning direction, i.e., storing features 
instead of raw images, is also explored. For continual chest X-ray 
classification application in domain shift conditions, Srivastava et al. 
(2021) explore leveraging vector-quantization to store and replay hid-
den representations under memory constraints. Although not directly 
accessible, sharing of latent representations involves possible privacy 
threats through manipulation and reconstruction of actual sensitive 
medical data (Pennisi et al., 2023). Given access to a model and 
its latent space, a malicious entity could reverse-engineer a patient’s 
medical record, violating privacy. Attackers might create adversar-
ial instances to alter latent representations, potentially reconstructing 
crucial information from seemingly benign data. Reconstruction at-
tacks (Newaz et al., 2020), membership inference attacks (Shokri et al., 
2017), model inversion attacks (Fredrikson et al., 2015), etc., can be 
potential challenges associated with sharing of features. Models like 
GAN, auto-encoder, variational auto-encoder, etc, inherently possess 
the capability to regenerate raw data from latent spaces. Appropri-
ate privacy measures like differential privacy (Abadi et al., 2016), 
privacy-preserved neural networks (Jovanovic et al., 2022), adversarial 
training (Yi et al., 2019), encryption and secure multi-party computa-
tion (Spini et al., 2024), etc. need to be considered to protect latent 
features during processing and sharing.
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Fig. 6. The proposed CL taxonomy categorizes various CL models according to their underlying design principles. The abbreviations used are as follows: ER for Experience-replay,
GR for Generative-replay, LR for Latent-replay, PF for Prior-focused, DF for Data-focused, and MBO for Memory Buffer Optimization. 1. Hofmanninger et al. (2020a), 2. Perkonigg 
et al. (2021), 3. Perkonigg et al. (2022), 4. Karthik et al. (2022), 5. Bera et al. (2023), 6. Huang et al. (2023), 7. Wei et al. (2023), 8. Sun et al. (2023a), 9. Zhu et al. (2024a), 
10. Li et al. (2022), 11. Byun et al. (2023) 12. Wang et al. (2023a) 13. Thandiackal et al. (2024) 14. Srivastava et al. (2021) 15. Xiao et al. (2023) 16. Bringas et al. (2024) 
17. Li and Jha (2023) 18. Baweja et al. (2018), 19. McClure et al. (2018), 20. van Garderen et al. (2019), 21. Zhang and Wang (2019b) 22. Özgün et al. (2020), 23. Zhang et al. 
(2021), 24. Zhang et al. (2023a), 25. Chen and Tang (2022), 26. Aslam et al. (2024) 27. Zhu et al. (2023), 28. Liu et al. (2023a), 29. Bai et al. (2023) 30. Zhu et al. (2024b) 
31. Wu et al. (2024) 32. Karani et al. (2018), 33. González et al. (2022), 34. Yang et al. (2023a) 35. Verma et al. (2024) 36. Qazi et al. (2024) 37. Memmel et al. (2021), 
38. Bayasi et al. (2021), 39. Ozdemir et al. (2018), 40. Ozdemir and Goksel (2019), 41. Chee et al. (2023), 42. Li et al. (2020b), 43. Ravishankar et al. (2019), 44. Liu et al. 
(2022), 45. Akundi and Sivaswamy (2022), 46. Zhang et al. (2023c) 47. Ji et al. (2023) 48. Shu et al. (2022) 49. Zhang et al. (2023b), 50. Sadafi et al. (2023), 51. Hua et al. 
(2023) 52. Sun et al. (2023c) 53. Ceccon et al. (2024b) 54. Ye et al. (2024) 55. Yang et al. (2023b), 56. Chee et al. (2023), 57. Li et al. (2024), 58. Bayasi et al. (2024b).
4.1.3. Generative replay-based
This category of approaches emerged as an alternative to expe-

rience replay, which highly violates privacy concerns with storing 
past samples and high memory buffer demands. Here, instead of a 
memory buffer of actual samples, there is a generative model that 
can generate samples, latent representation, both, or other information 
related to past tasks. This category of methods is also related to incre-
mental learning of generative models where their incremental update 
is required. Hence, an additional requirement here is the continuous 
updating of the generative adversarial network. Since actual samples 
are not stored for replay, this category of approaches is also termed 
pseudo-rehearsal-based approaches.

To generate the past data, Li et al. (2022) employ a style-oriented 
replay module, which includes a base generative model trained on the 
first arrived domain and a style bank to record style adjustments for 
successive domains. Then, they incorporate the replayed past data to 
jointly optimize the model with current data to alleviate catastrophic 
forgetting. For continual semantic segmentation of MRI data emerging 
from different institutions, Memmel et al. (2021) train a model by 
15 
using all the simultaneously available datasets. Their method disen-
tangles content from domain information through adversarial training, 
resulting in domain-invariant content representations. Other methods 
follow the sequential arrival of a dataset, i.e., one dataset at a time, 
whereas this work requires at least two datasets to start the feature 
disentanglement learning.

While generative replay has been widely explored in the natu-
ral image domain, medical applications face unique challenges, such 
as severe data scarcity and stringent privacy constraints. To address 
these challenges, recent studies have investigated lightweight gener-
ative models such as Gaussian Mixture Models (GMM) and Kernel 
Density Estimation (KDE) as alternatives to data-demanding GAN-based 
generators. Additionally, instead of directly generating raw images, 
there has been a growing focus on leveraging latent representations, 
which reduces the need to rely on large datasets, enhances general-
ization, and ensures privacy-aware solutions (Kumari et al., 2024b, 
2025).
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4.1.4. Memory buffer optimization
Experience replay-based approaches might overfit the stored sub-

samples and seem to be bounded by joint training. Alternatively, mem-
ory buffer optimization-based approaches following constrained opti-
mization provide solutions that have more scope for both plasticity 
and stability. The core idea is to guide the training of the current 
episode by utilizing the stored buffer samples from the past. Typically, 
the gradients of the current task are projected such that they do not 
negatively impact the gradients computed on the buffer samples. Thus, 
it is ensured that the model performs well on all previous episodes 
while learning a new episode. For example, the Gradient Episodic 
Memory (GEM) (Lopez-Paz and Ranzato, 2017) approach corrects the 
gradient computed on a mini-batch during stochastic gradient descent 
by utilizing an exemplar sample set from past episodes. This prevents 
changes that could degrade the performance of the network on the 
exemplar set. Further, the A-GEM approach (Chaudhry et al., 2018b) 
relaxes the projection in one direction computed by randomly se-
lected samples from the memory buffer where both the buffer and 
sampling size are tunable hyper-parameters. There are some early 
attempts in this area in the medical realm. For example, for the fun-
dus disease diagnosis problem, Shu et al. (2022) presents a gradient 
regularization approach for preventing forgetting and a replay-oriented 
consistency calculation method combined with a subspace weighting 
strategy to promote model adaptability. The authors employ gradi-
ent regularization in conjunction with a replay-oriented technique. 
The replay-oriented technique adaptively improves the update for in-
cremental domains without carefully choosing exemplars for replay, 
whereas gradient regularization preserves information from previous 
ones.

4.2. Regularization-based

Rehearsal methods are quite popular due to their comparative better 
performance than other categories; however, the assumption of the 
availability of past data makes them less suitable for medical applica-
tions. In contrast, regularization-based approaches (Kirkpatrick et al., 
2017; Schwarz et al., 2018; Zenke et al., 2017) avoid storing examples 
and mainly add a regularization term in the loss function or regularize 
the learning rate to penalize model updates that could lead to large 
deviation from an existing model, thus avoiding forgetting of learned 
knowledge.

Regularization-based methods can be categorized into data-focused 
and prior-focused approaches. Data-focused approaches (Silver and 
Mercer, 2002) distill the knowledge of old tasks to enhance the CL 
capabilities of the present model, whereas prior-based approaches such 
as Zenke et al. (2017), Kirkpatrick et al. (2017), Aljundi et al. (2018) 
define importance weights for the network’s parameters. Based on these 
weights, a regularization loss is introduced that penalizes the shift of 
important parameters.

4.2.1. Prior-focused regularization
Prior-focused methods estimate the importance of all neural net-

work parameters, used as prior when learning from new data. During 
the training of subsequent tasks, larger changes to important param-
eters are penalized. Elastic Weight Consolidation (EWC) (Kirkpatrick 
et al., 2017), initially designed for reinforcement learning in Atari 
games emerged as the first to establish the technique. EWC aims to con-
strain parameters of the model that are critical for performing previous 
tasks during the learning of the new tasks. It uses the Fisher information 
matrix to calculate parameter importance for a given domain. These 
parameters are then regularized to prevent catastrophic forgetting.

In the medical domain, Baweja et al. (2018) are the first to explore 
EWC to address the issue of catastrophic forgetting in neural networks 
when sequentially learning two distinct segmentation tasks (normal 
brain structure and white matter lesion). Specifically, the first task 
consists of multi-class segmentation of cerebrospinal fluid, grey matter, 
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and white matter, and the second task consists of segmentation of white 
matter lesions. The study demonstrates that EWC effectively reduces 
catastrophic forgetting in this challenging medical imaging context. 
Further, van Garderen et al. (2019) adopt EWC for glioma segmentation 
on different datasets in domain-shift arising from low and high-grade 
glioma in different datasets. In the context of histopathology breast 
cancer classification task, Chen and Tang (2022) showcase EWC capa-
bilities for class incremental setting. McClure et al. (2018) introduce 
Distributed Weight Consolidation (DWC) as a CL method to consolidate 
weights of separate neural networks trained on independent datasets. 
Further, Zhang et al. (2023a) propose to compute the importance 
matrix jointly based on shape and semantics information in context for 
continual medical segmentation. The shape-based importance measures 
how sensitive a parameter is to shape properties in the images and 
semantics-based importance measures a parameter’s sensitivity to re-
liable semantic predictions, ensuring that noisy or uncertain semantics 
do not influence the learning process. Then, the selective regularization 
scheme is applied to penalize updates to model parameters with high 
joint importance weights. This ensures that critical shape and semantic 
knowledge from previous sites is not overwritten or forgotten.

Another prior-focused strategy is Synaptic Intelligence (SI), which 
alleviates catastrophic forgetting by allowing individual synapses
(i.e., neurons) to estimate their importance for solving a learned 
task. Similarly to EWC, the approach penalizes changes to the most 
relevant synapses so that new tasks can be learned with minimal 
forgetting (Zenke et al., 2017). A disadvantage is the need to distribute 
some extra parameters per weight in addition to their value, but in 
terms of data size, this is far less than providing the exemplars.

Apart from EWC and SI, various other methods have been con-
tributed. Popularly, the Memory Aware Synapses (MAS) approach
(Aljundi et al., 2017) calculates the importance of weights with a 
model of Hebbian learning in the biological system, which relies on 
the sensitivity of the output function and can hence be utilized in an 
unsupervised manner. For medical segmentation, Özgün et al. (2020) 
adapted MAS for brain MRI segmentation by addressing its instability in 
large networks. The surrogate loss in MAS was normalized by the num-
ber of network parameters to improve stability. Additionally, highly 
skewed importance weights caused training instability, which was mit-
igated by detecting and adjusting outliers using the interquartile range 
criterion, followed by normalization between zero and one for better 
interpretability. These modifications enhanced MAS’s applicability to 
medical image segmentation, ensuring robust continual learning across 
domains. Yet another novel emerging direction is Orthogonal Weight 
Modification (OWM) Zeng et al. (2019), where the gradient of the 
current task is projected into the orthogonal direction to the subspace 
spanned by gradients of all previous tasks. Then parameter updates for 
the current task are permitted only in the orthogonal direction of the 
past episodes, thus protecting against interference with already learned 
knowledge.

4.2.2. Data-focused regularization
The data-focused regularization method (Li and Hoiem, 2017) aims 

to distill knowledge from a model trained on the previous tasks to 
the model trained on the new task in order to consolidate previously 
learned knowledge. Typically, the previous model acts as a teacher and 
the current model as a student while adopting knowledge-distillation 
(KD) (Gou et al., 2021) to avoid catastrophic forgetting. Usually, all the 
old data should be available in knowledge-distillation, which is not the 
case with CL; therefore, as an alternative, few old data, current data, or 
the generated old data are explored for the same. The loss function has 
an additional distillation loss for replayed data. Each input is replayed 
with a soft target obtained using the stored model.

Silver and Mercer (2002) first proposed to use previous task model 
outputs given new task input images, mainly for improving new task 
performance. Later, in natural image classification application, Li and 
Hoiem (2017) re-introduced the concept as the LwF technique. A copy 
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Table 11
List of various hybrid CL technique based works in literature.
 Reference (year) Application & CL scenario CL technique  
 Ozdemir et al. 
(2018)

MRI-based Humerus and scapula segmentation: CIS (2 Ep.) Knowledge distillation + experience replay + multi-head  

 Ozdemir and 
Goksel (2019)

MRI based knee segmentation: CIS (2 Ep.) Knowledge distillation + experience replay + multi-head  

 Ravishankar 
et al. (2019)

Chest X-ray view classification: DIS (2 Ep.), TIS (2 Ep.), 
Pneumothorax identification from X-ray: IIS (4 batches, each of 2K)

Latent replay where samples are selected either randomly or 
importance based (farther from cluster centroids) + dynamic 
network (task specific feature transformer layers)

 

 Li et al. (2020b) Dermoscopic images based skin disease classification: CIS (4-20 Ep.) Dual knowledge distillation (from old classifier (previous classes) 
and the fine-tuned classifier (a new FC layer fine-tuned on new 
classes)) + experience replay (fixed subset of data for each class is 
stored), during inference nearest-mean-of-exemplars method used 
for class prediction (Rebuffi et al., 2017) (where the mean is often 
calculated by averaging the feature vectors of the stored or selected 
subset of data in the feature space for each class)

 

 Liu et al. (2022) CT data based segmentation of abdomen organs: CIS (4 Ep.) Rehearsal (latent replay) + regularization (knowledge distillation)  
 Akundi and 
Sivaswamy 
(2022)

Chest X-ray classification: CIS (5 Ep.) Regularization (knowledge distillation) + architecture (task specific 
head)

 

 Shu et al. (2022) Fundus disease classification: DIS (2-4 Ep.) Replay (memory buffer optimization) + regularization (gradient 
regularization)

 

 Chee et al. 
(2023)

3 applications as (a) Cancer classification: CIS, (b) diabetic 
retinopathy classification: CIS, (c) skin lesions classification: CIS

Architecture (separate high-level descriptor for each task) + 
regularization (distillation loss) + replay (data based rehearsal, 
fixed memory per task)

 

 Zhang et al. 
(2023c)

(a) Multi-organ segmentation: CIS, (b) abdomen segmentation to 
liver tumor segmentation: CIS

Architecture: organ specific segmentation head + pseudo labelling 
based knowledge distillation

 

 Ji et al. (2023) Multi-organ segmentation: CIS Architecture: organ specific decoder + pseudo labelling based 
knowledge distillation

 

 Zhang et al. 
(2023b)

Continual disease classification in different image modality settings: 
CIS

Experience replay + Architecture based (keeps task specific adapters 
and classifier heads)

 

 Sadafi et al. 
(2023)

Dermoscopic WBC classification: DIS, CIS, DIS+CIS Experience replay based rehearsal (representativeness of examples 
for each class and model uncertainty) + regularization (binary-cross 
entropy based distillation loss)

 

 Yang et al. 
(2023b)

MedMNIST based disease classification: CIS+DIS (4 Ep.) Generative replay+ data-focused regularization  

 Hua et al. 
(2023)

sEMG-based Gesture Classification: CIS (4 Ep.) Rehearsal (experience replay) and Regularization (KD)  

 Chen et al. 
(2023)

3 separate applications including (a) Optic disc: DIS (3 Ep.), (b) 
cardiac: DIS (3 Ep.), (c) prostate segmentation: DIS (6 Ep.)

Rehearsal (GAN based generative replay) + Regularization (KD from 
past segmentation model)

 

 Sun et al. 
(2023c)

Multi-class classification on time-series signals: CIS (4-10 Ep.) Rehearsal (experience replay)+ Regularization (KD)  

 Li et al. (2024) MR Cardiac segmentation: DIS (5 Ep.) Rehearsal (privacy-aware generative replay with CGAN) + 
Architecture (ConvLSTM based domain-customised expansion block)

 

 Ceccon et al. 
(2024b)

Chest X-ray disease classification: NIC (7 Ep.) Pseudo-Labeling and memory buffer based replay  

 Bayasi et al. 
(2024b)

(a) Skin lesion classification: CIS (3 Ep.), DIS (4 Ep.), CIS+DIS (5 
Ep.), (b) blood cell classification: CIS (4 Ep.), (c) Colon tissue 
classification: CIS (4 Ep.)

Architecture (fixed but partitioned network: culprit unit pruning 
mechanism) + Regularization (knowledge distillation from a 
generalized network to expert network to enhance generalizability)

 

 Ye et al. (2024) Multi-modal (medical report, MRI, X-ray, CT, histopathology) 
Representation learning: TIS (5 Ep.)

Rehearsal (K-means sampling based buffer creation for experience 
replay ) + Regularization (MSE based knowledge distillation)

 

of the previous model parameters is stored before learning the new task, 
and then it is used to get the soft labels for the new task as the target 
from the classifiers of the previous tasks. The available ground truth is 
used as the target for the new task classifier. LwF has been adopted 
in various medical applications like incremental brain MRI segmen-
tation (Ozdemir et al., 2018), chest X-ray classification (Lenga et al., 
2020), disease classification (Derakhshani et al., 2022), histopathology 
tumor classification (Kaustaban et al., 2022), etc.

Other works in the natural image processing domain Jung et al. 
(2016), Zhang et al. (2020) have been introduced with LwF-related 
ideas; however, it has been shown that this strategy is vulnerable to 
domain shift between tasks (Aljundi et al., 2017). It was pointed out 
that LwF would not result in good performance if the data distributions 
between different tasks are quite diverse (Rannen et al., 2017). To 
overcome this, Rannen et al. (2017) facilitate incremental integration 
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of shallow auto-encoders to constrain task features in their corre-
sponding learned low dimensional space. Hence, they further trained 
an autoencoder for each task to learn the most important features 
corresponding to the task and used it to preserve knowledge. Such 
multiple expert-based knowledge-distillation have proven effective in 
domain generalization application too (Niu et al., 2023). Student expert 
modules possess domain-specific information. Each expert also learns 
from all other students by knowledge-distillation technique to facilitate 
domain-invariant features. Also, when more emphasis is attributed 
toward improving unseen classes, i.e., forward transfer, CL based se-
quential learning of domains helps in domain generalization (Li et al., 
2020a). Another adaptation of the LwF strategy in medical application 
was proposed by Sadegheih et al. (2025) for heterogeneous modality 
brain MRI segmentation. To address varying degrees of domain shift 
across tasks, a drift-based dynamic estimation of the regularization 
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Table 12
List of various comparative studies of CL techniques in literature.
 Reference (year)  Application & CL scenario CL technique  
 Lenga et al. (2020) Chest X-ray classification: DIS (2 Ep.) Comparative study: joint training, EWC, LwF  
 Morgado et al. (2021) Dermatological imaging modality classification: 

DIS
Comparative study: Regularization (EWC), rehearsal based (AGEM, 
experience replay)

 

 Derakhshani et al. (2022) Disease classification: TIS, CIS, DIS (4 Ep.) Regularization, memory-replay (comparative: EWC, MAS, LwF, 
iCaRL, EEIL)

 

 Ranem et al. (2022) MRI-based binary hippocampus segmentation: 
DIS (3 Ep.)

Comparative study: transformers with EWC fisher matrix 
(Kirkpatrick et al., 2017), EWC with Riemannian walk (Chaudhry 
et al., 2018a), Modeling the Background (knowledge distillation and 
a modified Cross Entropy Loss) (Cermelli et al., 2020), 
Pseudo-labeling and Local Pod (multi-scale spatial distillation loss 
with pseudo labeling) (Douillard et al., 2021), Pooled Outputs 
Distillation (Douillard et al., 2020)

 

 Kaustaban et al. (2022) Tumor classification: DIS, CIS, TIS, IIL Regularization, replay (comparative study: EWC, LwF, CoPE, iCaRL, 
A-GEM)

 

 Bándi et al. (2023) Cancer detection across organs such as breast, 
colon, and head-neck: DIS

Comparative study of existing approaches: PackNet (architecture), 
EWC (regularization), GEM (rehearsal)

 

 Verma et al. (2023) Disease classification on (a) Fundus: CIS (3 
Ep.), (b) pathology images: CIS (3 Ep.)

Comparative study of existing buffer-free (privacy-aware) 
approaches in three categories: Rehearsal (GR, BIR), Regularization 
(EWC, SI, MAS, MUC-MAS, RWalk, OWM, GPM, LwF, LwM), 
Architecture (EFT)

 

 Kim et al. (2024) Arrhythmia detection on ECG data: DIS (4 Ep.) Comparative study of 3 existing regularization techniques (LwF, 
EWC, MAS)

 

 Ceccon et al. (2024a) Chest X-ray disease classification: CIS (5 Ep.) Comparative study of approaches in regularization (LwF, 
pseudo-label), rehearsal (replay), hybrid (rehearsal+regularization) 
categories for fairness evaluation.

 

factor is introduced at each task, replacing the static regularization 
factor used in LwF.

4.3. Architecture-based

Architecture-based methods, also termed parameter isolation-based 
methods typically assign different parameters in a network to each task. 
This can be achieved by either fixing the architecture or dynamically 
extending the network (Mallya and Lazebnik, 2018; Hung et al., 2019; 
Mallya and Lazebnik, 2018; Fernando et al., 2017; Yoon et al., 2017). 
Fixed architectures are limited by the network’s capacity, whereas 
dynamic architectures need more memory with every new task. Most 
fixed architectures-based methods assign different parts of the network 
for each task, which requires task identity during inference, but this 
identity information is usually unavailable.

In the fixed architecture category, Bayasi et al. (2021) proposes a CL 
strategy where a subset of the network units is assigned to learn each 
domain separately. Their approach introduces a novel pruning criterion 
that allows a fixed network to learn new data domains sequentially over 
time. They identify culprit units associated with wrong classifications in 
each domain and use them to learn the new domain while freezing the 
non-culprit nodes. Further, the authors introduce BiasPruner (Bayasi 
et al., 2024a), which extends their approach to mitigate gender, age, 
and ethnic bias in medical applications including skin lesion classifica-
tion and chest X-ray classification. By pruning biased units, BiasPruner 
constructs de-biased sub-networks, enhancing both fairness and classi-
fication performance. Similarly, Mallya and Lazebnik (2018) propose 
to prune the weights with low magnitude and reuse them for the next 
task, while the remaining weights that are responsible for the previous 
tasks are kept unchanged. In architecture-based approaches, typically 
the old knowledge is not exploited to learn the new, thus preventing 
knowledge transfer from a related task which is an important factor in 
CL.

Some works aim to dynamically extend the feature extractor module 
by learning task-specific branches in it (Yan et al., 2021b). Rusu et al. 
(2016) propose to use a dynamic architecture that blocks any changes 
to the network trained on previous knowledge and expands the archi-
tecture by allocating sub-networks with a fixed capacity to be trained 
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with the new data, and thus it keeps a pool of pre-trained models, 
one for each learned task. In contrast, Aljundi et al. (2017) propose 
a network of experts where each expert is a model trained given a 
specific task and a set of gating autoencoders that learn a representation 
for the task at hand, and, at inference time, automatically forward 
the test sample to the relevant expert. Another dynamic expandable 
model direction given by Yoon et al. (2017) expands the network using 
group sparse regularization to decide how many neurons to add at each 
layer and perform selective retraining. Similarly, Karani et al. (2018) 
propose to use domain/task-specific batch norm layers to adapt to new 
MRI protocols while learning the segmentation of various brain regions. 
Entire batch-normalization layers were dedicated to modeling domain 
differences. However, this causes quadratic increase in parameters 
with new tasks. Moreover, as this approach dedicates specific batch-
normalization parameters to each dataset/domain/task, task labels are 
necessary to determine to which dataset each sample belongs.

In contrast, González et al. (2022) investigate the performance of 
CL methods in a task-agnostic setting, which better simulates dynamic 
clinical environments characterized by gradual population shifts. They 
propose an out-of-distribution detection-based solution that signals 
when to expand the model and select the best parameters during 
inference. Specifically, they learn a multivariate Gaussian on the last 
batch normalization layer of the deep model and store it in the memory. 
When there is out-of-distribution detection or domain shift is alerted 
based on a threshold on Mahalanobis distance from existing Gaussian in 
the memory and the new data, a new Gaussian is added to the memory. 
The closest Gaussian is used for inference and thus eliminates the need 
for domain ID during inference.

Further, to address the high parameter demands of U-Net-based seg-
mentation, Ranem et al. (2024) introduce NCAdapt, a Neural Cellular 
Automata (NCA)-based approach for CL in hippocampus segmentation 
tasks. Their method incorporates domain-specific adaptable convolu-
tional layers into the NCA backbone, allowing a balance between 
plasticity and stability with a lightweight parameter structure. How-
ever, NCA-based methods require higher VRAM and longer training 
times due to the cell-based processing approach in NCA.



P. Kumari et al. Medical Image Analysis 106 (2025) 103730 
4.4. Hybrid techniques

Combining two or more individual CL strategies has recently gained 
interest owing to the enhanced performance gained by harnessing 
the merits of different CL strategies. Ozdemir et al. (2018) mitigate 
catastrophic forgetting for incremental medical segmentation applica-
tions using a distillation loss inspired by LwF (Li and Hoiem, 2017). 
Further, they extend the approach by incorporating memory-replay 
strategies and task-specific segmentation heads. Specifically, represen-
tative images were selected based on abstraction layer response and 
content distance in the last embedding layer. Liu et al. (2022) also use 
knowledge distillation and a memory buffer to store the prototypical 
representation of different organ categories. Akundi and Sivaswamy 
(2022) also keep class-specific classification head along with knowledge 
distillation to avoid forgetting for chest X-ray classification application 
where data arrives in class incremental fashion. A pseudo-rehearsal 
technique was combined with task-specific dense layers for pneumoth-
orax classification (Ravishankar et al., 2019) by Ravishankar et al. 
(2019); however, it suffers from the linear increase of parameters and 
unbounded memory to store features for every domain.

Li et al. (2020b) introduce dual distillation as well as a fixed 
memory-based experience replay to continually learn the effective 
model. Specifically, they maintain an expert classifier, which is nothing 
but the previous model fine-tuned on new classes after replacing the 
old fully-connected layer with a new one. Then, a final classifier is 
distilled using the old classifier and the expert classifier. A fixed amount 
of old samples is also stored and replayed with current data while 
training the updated classifier. Then, the nearest-mean-of-exemplars 
(often calculated by averaging the feature vectors of the stored or 
selected subset of data in the feature space for each class) method is 
used for category prediction at the test time.

Chee et al. (2023) utilize the dynamic expanding network, regu-
larization, as well as data replay for continually learning new classes. 
A low-level feature extractor is shared across tasks, but a high-level 
feature extractor is especially learned for each subsequent task. Further, 
an alternate training procedure so as to learn new classes, i.e., newly 
added high-level feature extractor (by freezing others) and learning the 
old classes (freezing the new task feature extractor) is followed. A fixed 
memory per task is kept to replay samples with current samples.

Sadafi et al. (2023) use experience replay-based rehearsal and 
binary cross-entropy-based regularization terms for mitigating catas-
trophic forgetting. There is fixed memory and each class has an equal 
contribution to it. The sampling strategy for exemplar selection for a 
specific class is twofold: half of the samples are selected based on their 
distance from the mean, i.e., the closest samples to the class mean are 
selected, and another half of the samples for the class are selected 
based on model’s uncertainty for each sample as given in epistemic 
uncertainty estimation (Mukhoti et al., 2021).

Zhang et al. (2023c) exploit knowledge distillation as pseudo-
labeling for old classes along with architecture-based CL strategy. In 
vanilla Swin UNETR architecture, they replace the conventional output 
layer responsible for segmentation with organ-specific light-weight 
segmentation heads, which thus enable independent predictions for any 
new or previously learned classes. Thus, there is a single encoder and 
decoder module and multiple organ-specific heads (few MLP layers) on 
the output of the encoder. In a similar fashion Ji et al. (2023) keep 
organ-specific encoder and apply knowledge distillation. They also ap-
ply network architecture search-based pruning on decoders to maintain 
network complexity. But in comparison to Zhang et al. (2023c) strategy, 
the network complexity of maintaining multiple decoders is very high.

Zhang et al. (2023b) propose a rehearsal and architecture-based 
approach. In order to effectively extract discriminative features from a 
pre-trained feature extractor for different diseases, a learnable
lightweight adapter is added between consecutive convolutional stages 
at each subsequent task. Furthermore, each task-specific classification 
head is also added at each step. Then, in each task, the model aims 
to find optimal parameters in the newly added task-specific adapters 
and classification head using the training data from the new task (new 
disease) and preserve a small subset for each previously learned disease.
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4.5. Comparative studies

There have been multiple comparative studies of different kinds 
of CL approaches on various applications like histopathology-based 
cancer detection (Bándi et al., 2023), histopathology-based tumor de-
tection (Kaustaban et al., 2022), chest X-ray classification (Lenga et al., 
2020), dermatological image modality classification (Morgado et al., 
2021), etc. Lenga et al. (2020) show a comparative study of joint 
training and CL techniques such as EWC, and LwF to improve model 
adaptation to new chest X-ray domains arising from cross-sites while 
mitigating catastrophic forgetting effects. Upon model evaluation on 
two datasets from different sites (ChestX-ray14 and MIMIC-CXR) refer-
ring to domain shifts, the best results are achieved with joint training, 
but EWC and LwF offer practical solutions as the previous samples need 
not be stored with the CL approaches. In the digital pathology research 
field, Kaustaban et al. (2022) systematically evaluate various CL meth-
ods, including regularization-based and rehearsal-based approaches on 
self-augmented domain shift on the H&E dataset. The authors con-
cluded that though regularization-based methods performed well for 
DIS and IIS, only the rehearsal-based method (iCaRL) is effective for CIS 
which is a more challenging scenario. Further, TIS may be even more 
challenging for digital pathology as compared to other image domains.

Further, with simulated datasets, i.e., MedMNIST (MNIST-like col-
lections of biomedical images) various benchmark CL methods in 
rehearsal-based (iCaRL), regularization-based (EWC, MAS, LwF), and 
bias-correction method (EEIL) were evaluated under different CL sce-
narios (Derakhshani et al., 2022). For the majority of the experi-
ments including CIS, TIS, and cross-DIS, the rehearsal-based approach, 
i.e., iCaRL shows the most promising results for disease classification. 
Further authors indicated that the existing CL methods which tend 
to do well in natural image applications (non-medical) may perform 
inadequately in medical disease classification applications due to their 
inherent complexity, such as the spatial locality of diseases. Similarly, 
in the case of a dermatological imaging modality classification prob-
lem under domain-shifted condition, Morgado et al. (2021) showed 
a comparison of EWC, averaged GEM, and experience replay. They 
concluded that MobileNetV2 with experience replay performs best 
among the others. González et al. (2023) also provided open-source 
implementation of five CL strategies including rehearsal, EWC, LwF, 
Riemannian Walk (RW), and Modeling the Background (MiB), on top of 
nnU-Net for various CL based applications like hippocampus, prostate, 
or cardiac segmentation.

5. Level of supervision

Here we provide a discussion on what level of supervision is con-
sidered and explored in literature while developing a CL method.

5.1. Task or domain ID

Most of the approaches specifically require information about
task/domain ID, i.e., which task/domain the current samples belong 
to. This information is then used to select or activate the task-specific 
branch in the model for classification/segmentation/feature extraction. 
If task/domain ID is needed then the approach is regarded as (a) 
task/domain aware else (b) task/domain agnostic. However, a well-
designed CL approach should not rely on a task/domain ID to perform 
prediction (Aljundi et al., 2017; Bayasi et al., 2021). Most of the 
approaches presume a-priori knowledge of domain IDs (Derakhshani 
et al., 2022; Zhang et al., 2023c) while some infer from the data (Zhang 
et al., 2023b; Bayasi et al., 2021; Aljundi et al., 2017). A very few do 
not require this information (Derakhshani et al., 2022; González et al., 
2022; Perkonigg et al., 2022).
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Fig. 7. A demonstration for rigid and non-rigid task/domain boundaries for an example sequence of four domains in a CL pipeline.
5.2. Task boundaries

Typically, a shift is regarded as a change of data source, i.e., datasets 
coming from different sites, acquisition environments, etc. Therefore, 
there are well-separated domain shifts or task boundaries. Thus, the 
necessary measures to adapt to the changed domain are triggered when 
there is a change in task/domain. Most of the works in the literature 
follow the assumption of well-separated task/domain boundaries.

However, in real-life cases, the change in domain/task could be 
interleaved or smooth rather than an abrupt transition. Such set-
tings come under the umbrella of ‘blurred boundary continual learn-
ing’ (Wang et al., 2023b). To better visualize the rigid and non-rigid 
boundary-based sequence of domains, a demonstration is provided via 
Fig.  7. Recently a few works (Hofmanninger et al., 2020a; Srivastava 
et al., 2021; González et al., 2022; Perkonigg et al., 2022) have 
explored such settings. For example, González et al. (2022) considers 
two kinds of non-rigid shifts in hippocampus segmentation datasets. 
In the first kind, termed ‘shifting source’, they create slowly shifting 
distributions with 3 datasets (HarP, Dryad, and Decathlon) by inter-
leaving samples from these datasets for segmentation application. In 
another case termed ‘transformed’, they create shift using TorchIO 
library (Pérez-García et al., 2021) which performs various intensity 
rescaling and affine transform in the Decathlon dataset to create five 
episodes. Another example of a non-rigid boundaries-based CL scenario 
is given by Srivastava et al. (2021) for the chest X-ray classification 
problem. They consider 3 multi-site datasets (NIH Chest-X-rays14, 
PadChest, and CheXpert) as 3 domains; however, they curate a smooth 
transition from one dataset to another at the boundaries.

5.3. Sample annotation

Apart from information regarding the task IDs, annotation for the 
samples in tasks is also a major concern. Almost all the available CL 
strategies in the medical domain require sample annotation for learning 
the classification or segmentation task. It is undeniable that labeling is 
highly costly in the medical domain, especially in the histopathology 
field, and hence may hinder the rapid advancement of the field. In 
other domains, unsupervised CL strategies have been explored; for 
example, Ashfahani and Pratama (2022) use only a few labeled sam-
ples to associate clusters to classes and the learning is completely 
unsupervised.

6. Evaluation strategy and metrics

To evaluate a CL strategy, various aspects can be explored such as 
the performance of the model on past, current, or future episodes, re-
source consumption (Zhang et al., 2023c), memory size (Hofmanninger 
20 
Fig. 8. Train-test performance matrix.

et al., 2020a), model size growth, execution time, etc. CL frameworks 
involving dynamic architecture or memory also report time and mem-
ory analysis. For example, González et al. (2022) maintains model 
history as mean and variance parameters of multivariate Gaussian, 
which dynamically grow in the presence of drift; hence, the authors 
also provide a training time analysis. If the framework does not involve 
a dynamic architecture, primarily performance on data is reported. Fur-
ther, the performance of data mainly involves evaluating and reporting 
the episode performance, stability, and plasticity.

In CL, there is a given sequence of episodes (1,… , 𝑇 ) to learn 
sequentially. Typically, we have well-defined training and test pairs 
(𝑇 𝑟𝑖, 𝑇 𝑒𝑖) for each 𝑖th episode. Upon sequential training, a train-test 
performance matrix 𝑃 ∈ 𝑃 𝑇×𝑇  is generated for the given sequence of 
episodes (1,… , 𝑇 ). An example matrix for 𝑇 = 4 is shown in Fig.  8. The 
cell 𝑃𝑡,𝑖 refers to the performance on test data of the 𝑖th episode when 
the model training up to the 𝑡th episode is complete. Thus, after training 
up to 𝑡th episodes, the performance values 𝑃𝑡,𝑖 for 𝑖 < 𝑡, 𝑖 = 𝑡, and 
𝑖 > 𝑡 correspond to performances on past, current, and future episodes, 
respectively.

The performance metric is chosen depending on the application. For 
example, IoU, Dice score/coefficient, structural similarity, Hausdorff 
distance, average symmetric surface distance, etc., are popular choices 
for segmentation, whereas accuracy, recall, F1-score, and AUC are 
usually computed for classification applications. AUC and F1-score are 
commonly used in medical continual learning due to the prevalence 
of class-imbalanced datasets, ensuring robust evaluation of model per-
formance, especially in detecting rare pathological cases. Once the 
performance metric is chosen, we can compute metrics for measuring 
stability and plasticity on top of it. Various metrics have been proposed 
to quantify stability (Table  13) and plasticity (Table  14); however, all 
the metrics are derived from the same train-test performance matrix 
(Fig.  8) to measure the amount of forgetting or forward transfer.
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Table 13
Metrics for backward transfer. For ease of readability, terms in equations are color-coded to refer to the corresponding cells in the matrix (last column).
 Reference Eq. Equation Pictorial representation  

 Lopez-Paz and Ranzato (2017) Eq.(A) 1
𝑇 − 1

𝑇−1
∑

𝑖=1

(

𝑃𝑇 ,𝑖 − 𝑃𝑖,𝑖
)  

 Derakhshani et al. (2021) Eq.(B) 1
𝑇 − 1

𝑇−1
∑

𝑖=1

𝑇−1
max
𝑗=1

(

𝑃𝑗,𝑖 − 𝑃𝑇 ,𝑖
)  

 Chee et al. (2023) Eq.(C) 1
𝑇 − 1

𝑇
∑

𝑡=2

(

1
𝑡 − 1

𝑡−1
∑

𝑖=1

𝑡−1
max
𝑗=1

(

𝑃𝑗,𝑖 − 𝑃𝑡,𝑖
)

)

 

 Díaz-Rodríguez et al. (2018) Eq.(D) 1
𝑇 − 1

𝑇−1
∑

𝑖=1

⎛

⎜

⎜

⎝

1
|

|

|

{

𝑡𝑗
}

𝑗>𝑖
|

|

|

∑

𝑗>𝑖

(

𝑃𝑗,𝑖 − 𝑃𝑖,𝑖
)

⎞

⎟

⎟

⎠

 

 Özgün et al. (2020) Eq.(E) 2
𝑇 (𝑇 − 1)

𝑇
∑

𝑡=2

𝑡−1
∑

𝑖=1
max

(

𝑃𝑡,𝑖 − 𝑃𝑖,𝑖 , 0
)  
Table 14
Metrics for forward transfer. For ease of readability, terms in equations are color-coded to refer to the corresponding cells in the matrix (last column).
 Reference Eq. Equation Pictorial representation  

 Lopez-Paz and Ranzato (2017) Eq.(F) 1
𝑇 − 1

𝑇
∑

𝑖=2

(

𝑃𝑖−1,𝑖 − 𝑏̄𝑖
)  

 González et al. (2022) Eq.(G) 1
𝑇 − 1

𝑇
∑

𝑖=2

⎛

⎜

⎜

⎝

1
|

|

|

{

𝑡𝑗
}

𝑗≤𝑖
|

|

|

∑

𝑗≤𝑖

(

𝑃𝑗,𝑖 − 𝑃𝑗−1,𝑖
)

⎞

⎟

⎟

⎠

 

 Shu et al. (2022) Eq.(H) 1
𝑇 − 1

𝑇
∑

𝑖=2

(

𝑃𝑖,𝑖 − 𝑃1,𝑖
)  

 Díaz-Rodríguez et al. (2018) Eq.(I) 2
𝑇 (𝑇 − 1)

𝑇−1
∑

𝑡=1

∑

𝑖>𝑡
𝑃𝑡,𝑖  

 Chaudhry et al. (2018a) Eq.(J) 1
(𝑇 − 1)

𝑇
∑

𝑡=2

(

𝑃𝑖,𝑖 − 𝑏𝑖
)  
21 
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6.1. Stability: Backward transfer

Backward transfer (BWT) refers to measuring the catastrophic for-
getting of a model upon learning new episodes. A model is regarded as 
stable if it gives a similar performance for an already learned episode 
over time. However, upon learning the new episode naively, it is pos-
sible to forget the past learning and hence disrupt the performance of 
the previous episode. In contrast, a carefully designed CL strategy will 
cause less forgetting or improvement on past episodes upon learning 
the new episodes. A BWT metric is used to measure the amount of 
forgetting. In other words, it is a way to measure stability, i.e., how well 
the model would retain the previously acquired knowledge to prevent 
catastrophic forgetting.

Lopez-Paz and Ranzato (2017) define BWT as the influence of new 
learning 𝑡𝑖 task on a previous task. When learning a task 𝑡𝑖 increases 
the performance on a previous task, it is +𝑣𝑒 BWT, and if it causes 
deterioration, it results in −𝑣𝑒 BWT. Large −𝑣𝑒 BWT is also termed 
as catastrophic forgetting. The BWT metric given by Lopez-Paz and 
Ranzato (2017) is very frequently adopted (Srivastava et al., 2021; 
Hofmanninger et al., 2020a) and it is computed after finishing all the 
episodes as shown in Eq.(A) in Table  13. Average forgetting (Der-
akhshani et al., 2021) is another popularly used metric (Derakhshani 
et al., 2022; Chen and Tang, 2022). It is computed as the average of the 
difference in highest performance, and the final performance reached 
after training on all episodes is finished (Eq.(B) in Table  13). Chee et al. 
(2023) compute BWT after learning each subsequent task (𝑡th) rather 
than computing it at the last episode (Eq.(B) in Table  13) as shown 
through Eq.(C) in Table  13. Díaz-Rodríguez et al. (2018) compute BWT 
as the change in performance after training with each subsequent task 
averaged over the number of tasks (Eq.(D) in Table  13). Note that BWT 
is not defined for the last task. Another BWT metric contribution is 
by Özgün et al. (2020) as shown via Eq.(E) in Table  13. Ideally, CL 
approaches should result in positive backward transfer, but given the 
complexity of medical tasks, especially segmentation applications, as 
compared to natural domain, achieving a positive BWT is challenging 
in buffer-free CL settings (González et al., 2023). Therefore, in addition 
to measuring positive BWT, stability quantified as Remembering (REM) 
metric 

(

2
𝑇 (𝑇−1)

∑𝑇
𝑡=2

∑𝑡−1
𝑖=1

(

1 − |min
(

𝑃𝑡,𝑖 − 𝑃𝑖,𝑖, 0
)

|

)

)

 is also explored for 
brain MRI segmentation (Özgün et al., 2020).

6.2. Plasticity: Forward transfer

The plasticity of a model is reflected in its capability to accom-
modate more and more knowledge or exploit the knowledge learned 
so far to learn the new. In literature, this is frequently referred to as 
forward transfer (FWT). It is also said that FWT measures the ‘‘zero-
shot’’ learning capability of a model (Lopez-Paz and Ranzato, 2017). 
In contrast to the usage of BWT, not all works report FWT. Certain 
approaches might enforce rigorous regularization on the model to get 
a comparatively reduced level of forgetting (high +𝑣𝑒 BWT); however, 
this results in poor performance on new tasks. Therefore, reporting FWT 
along with BWT is equally important for unbiased evaluation of the CL 
model.

The very popular FWT metric (Srivastava et al., 2021; Hofman-
ninger et al., 2020a) shown via Eq.(F) in Table  14 is proposed by Lopez-
Paz and Ranzato (2017) that quantifies FWT as the impact of learning 
a task 𝑡𝑖 on a future task. It is the average of the difference in the 
performance on 𝑡𝑖 task before learning it and the performance given 
by a model with random weights (𝑏̄𝑖). Note that FWT is not defined 
for the first task. Further, González et al. (2022) computes FWT as the 
change in performance in each stage before and up to 𝑇 𝑟𝑖, averaged 
over the number of tasks (Eq.(G) in Table  14). Another metric for FWT 
was proposed by Shu et al. (2022) as shown via Eq.(H) in Table  14. 
Díaz-Rodríguez et al. (2018) and Özgün et al. (2020) measure FWT 
as average performance of the model on unseen tasks, calculated as 
the mean of the elements above the diagonals in 𝑃  (Eq.(I) in Table 
22 
14). While this metric does not directly assess the CL capabilities, it 
serves as a crucial measure of the model’s ability to generalize to unseen 
tasks. Chaudhry et al. (2018a) define FWT on seen episodes as reported 
via Eq.(J) in Table  14. Here, 𝑏𝑖 is the performance by a standalone 
model only trained on the 𝑖th episode. Özgün et al. (2020) report a 
‘‘transfer-learning metric’’ as the sum of diagonal elements in matrix 𝑃
as measure of plasticity, i.e., the ability to adapt to new tasks.

6.3. Episode performance and others

Average accuracy (Derakhshani et al., 2021) is computed as the 
model performance after training up to 𝑡th episode. At any time 𝑡, 
the average performance is the mean of accuracy values for episodes 
(1,… , 𝑡) as below: 

1
𝑡

𝑡
∑

𝑖=1
𝑃𝑡,𝑖 (1)

Thus, after processing all episodes, we get a total of 𝑇  average ac-
curacy values which can be plotted and visualized for different ap-
proaches (Derakhshani et al., 2022; Kaustaban et al., 2022). Further, 
researchers (Derakhshani et al., 2022) also compute the mean over 
these values ( 1𝑇

∑𝑇
𝑖=1[

1
𝑡
∑𝑡

𝑖=1 𝑃𝑡,𝑖]) to obtain a single scalar value which 
can be used to directly compare with other approaches. Another popu-
lar definition of average accuracy is to compute the above-mentioned 
metric only after finishing all the episodes (Lopez-Paz and Ranzato, 
2017; Chen and Tang, 2022; Kaustaban et al., 2022) as below. 

1
𝑇

𝑇
∑

𝑖=1
𝑃𝑇 ,𝑖 (2)

There have been efforts to combine plasticity and stability measures 
in medical CL, to compare algorithms with a single metric. Given the 
complexity of medical applications (in contrast to the natural image 
domain), improving performance on the current dataset is more rele-
vant than on unseen data. Therefore, researchers measure plasticity as 
transfer-learning metric which signifies how well the model learns the 
current dataset (average of diagonal values in 𝑃 ). The combination of 
this transfer-learning metric with backward transfer (element below the 
diagonal of 𝑃 ) is proposed as incremental-learning (IL) or continual-
learning metric for medical application (Özgün et al., 2020; Li et al., 
2022); for example for segmentation application it is represented as 
IL-DSC or CL-DSC.

7. Discussion: Towards the future

Our exploration of CL methods for medical imaging reveals a multi-
tude of challenges and strategies. The extant literature reflects a strug-
gle with traditional paradigms, notably the need for explicit task/do-
main identification. While some methods require prior knowledge of 
domain IDs, others explore task/domain-agnostic approaches that aim 
to eliminate this dependency (Aljundi et al., 2017; Bayasi et al., 2021). 
The evolving notion of task/domain boundaries adds another layer 
of complexity, with real-world scenarios often defying the assump-
tion of well-separated shifts. Non-rigid transitions and blurred bound-
aries, as explored by González et al. (2022), Wang et al. (2023b), 
pose challenges to existing CL approaches. Sample annotation, a com-
mon requirement for CL in medical imaging, introduces resource chal-
lenges, especially in histopathology. While supervised strategies dom-
inate, Ashfahani and Pratama (2022) showcase the feasibility of un-
supervised CL, using minimal labeled samples. The evaluation of CL 
strategies involves a diverse set of metrics, including stability (back-
ward transfer - BWT) and plasticity (forward transfer - FWT). These 
metrics, encompassing aspects such as average forgetting and incre-
mental learning, facilitate nuanced comparisons. In the classification 
domain, applications such as chest X-rays and skin disease classifica-
tion employ diverse CL strategies. Latent replay mitigates catastrophic 
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Table 15
Literature for CL based classification. (**) indicates non-imaging modality.
 Reference (year) Imaging modality Application CL scenario CL strategy Model Learning type Evaluation 

metric
Dataset  

 
Ravishankar 
et al. (2019)

X-ray, Ultrasound (a) Cardiac view 
classification, (b) 
Pneumothorax 
identification

DIS, TIS, IIS Rehearsal + Architectural CNN Supervised Accuracy, BWT Subset of ChestXRay (Wang et al., 
2017)

 

 Hofmanninger 
et al. (2020a) CT Classification of 

synthetic object in 
chest images

DIS Rehearsal Res-Net50 (He et al., 
2016)

Supervised Accuracy, BWT, 
FWT

Private  

 Lenga et al. 
(2020)

X-ray Chest X-ray 
classification

DIS Comparitive: EWC, LWF DenseNet121 (Huang 
et al., 2017) Supervised AUC, BWT, FWT ChestX-ray14, MIMIC-CXR  

 Li et al. (2020b) Dermoscopic Skin disease 
classification

CIS Regularization + Rehearsal ResNet18, AlexNet, 
VGG19

Supervised Accuracy Skin8, Skin40 from ISIC2019 
(Tschandl et al., 2018), CIFAR100  

 Srivastava et al. 
(2021)

X-ray Chest X-ray 
classification

DIS Rehearsal ResNet101 Supervised AUC, FWT, BWT NIH Chest-X-rays14 (McDermott 
et al., 2020), PadChest (Bustos et al., 
2020), CheXpert (Wang et al., 2017)

 

 Bayasi et al. 
(2021)

Dermoscopic Skin lesion 
classification

DIS Architectural (fixed but 
partitioned network) ResNet-50 Supervised Accuracy HAM10000 (Tschandl et al., 2018), 

Dermofit (Ballerini et al., 2013), 
Derm7pt (Kawahara et al., 2018), 
MSK (Codella et al., 2018), PH2 
(Mendonça et al., 2013), UDA 
(Codella et al., 2018)

 

 Morgado et al. 
(2021)

Dermoscopic Dermatological 
imaging modality 
classification

DIS Regularization, rehearsal VGG-16, 
MobileNetV2

Supervised Accuracy, 
precision, recall, 
F1-score, FWT, 
BWT

Private  

 Shu et al. 
(2022)

Fundus images Eyes disease 
classification

DIS Rehearsal + Regularization Resnet-18, 2-layer 
MLP (Saha et al., 
2021)

Supervised F1-score, BWT, 
FWT

ODIR, RIADD, REFUGE, iSee (Fang 
et al., 2020), EyeQ (Fu et al., 2019), 
PMNIST (Rupesh Kumar et al., 2013)

 

 Akundi and 
Sivaswamy 
(2022)

X-ray Chest X-ray 
classification

CIS Regularization DenseNet121 Supervised AUC, BWT CheXpert  

 Kaustaban et al. 
(2022)

Histopathology Tumor classification 
(breast cancer, 
colorectal cancer)

IIS, DIS, CIS, TIS Regularization, Rehearsal 
(comparative:EWC, LwF, 
AGEM, CoPE, iCaRL)

ResNet-18 Supervised Accuracy, FWT, 
BWT

CRC (Kather et al., 2019), PatchCam 
(Bejnordi et al., 2017)  

 Chen and Tang 
(2022)

Histopathology Breast cancer 
identification

CIS Regularization Alexnet, 
Densenet201, 
Resnet152

Supervised Accuracy, 
forgetting

BreakHis  

 Derakhshani 
et al. (2022) Multiple Multiple disease 

classification
TIS, CIS, 
cross-DIS

Regularization, Rehearsal 
(comparative: EWC, MAS, 
LwF, iCaRL, EEIL)

ResNet18 Supervised Accuracy, 
forgetting

MedMNIST (Yang et al., 2023c)  

 Chee et al. 
(2023)

Histopathology, 
retinal, skin lesions (a) Colorectal cancer 

detection, (b) 
diabetic retinopathy 
classification, (c) skin 
lesion classification

CIS Rehearsal + Architecture + 
Regularization

ResNet18 Supervised Accuracy, 
forgetting

CCH5000 (Kather et al., 2016), 
EyePACS (Anon, b), HAM10000 
(Tschandl et al., 2018)

 

 Zhang et al. 
(2023b)

Multiple Disease classification 
(multiple organ 
source)

CIS Rehearsal + Architectural ResNet18 Supervised MCR Skin8, Path16, CIFAR100  

 Bándi et al. 
(2023)

Histopathology Cancer detection 
cross organs (breast, 
colon, head-neck)

DIS Comparative: (Architecture: 
PackNet) (Regularization: 
EWC, GEM)

DenseNet Supervised FROC, ROC, 
Cohen’s Kappa CAMELYON16, CAMELYON17, private 

for colon and head-neck  

 Bai et al. (2023) VQA Surgical 
visual-question 
localized-answering

CIS Regularization VisualBERT Supervised Accuracy, IoU EndoVis18, EndoVis17, M2CAI  

 Sadafi et al. 
(2023)

Microscopic WBC classification DIS, CIS, DIS + 
CIS

Rehearsal + Regularization ResNeXt-50 Supervised Accuracy Matek-19 (Matek et al., 2019), 
INT-20, and Acevedo-20 (Acevedo 
et al., 2020)

 

 Yang et al. 
(2023b)

Multiple Disease classification DIS+CIS Rehearsal ResNet18 Few-shot Accuracy, 
performance 
dropping rate

MedMNIST (Yang et al., 2023c) 
(PathMNIST, DermaMNIST, 
OrganAMNIST, RetinaMNIST, 
BreastMNIST, BloodMNIST)

 

 Byun et al. 
(2023)

2D fundus, 
dermoscopic

(a) Diabetic 
retinopathy severity 
classification, (b) 
skin lesion 
classification

DIS Rehearsal ViT-B/16 supervised AUC, backward 
transfer

fundus (Messidor-2, APTOS), skin 
lesion (BCN2000, PAD-UEFS-20, 
HAM10000)

 

 (continued on next page)
forgetting but increases resource consumption, while knowledge dis-
tillation balances stability and plasticity (Li et al., 2020b; Srivastava 
et al., 2021). Segmentation tasks, spanning brain sclerosis lesion seg-
mentation to cardiac segmentation, rely on regularization techniques 
such as EWC and knowledge distillation (Karthik et al., 2022; Li et al., 
2022). The simultaneous handling of classification and segmentation 
tasks, evident in studies on dermoscopic image-based skin disease 
classification (Li et al., 2020b) and abdominal organ segmentation (Liu 
et al., 2022), introduces a trade-off between resource efficiency and 
overall model performance. The synthesis of literature and comparative 
analyses unveils the current state of CL in medical imaging. However, 
challenges persist, and future research should explore unsupervised 
CL, address labeling costs, and refine evaluation metrics. As the field 
evolves, understanding the dynamic interplay between medical imaging 
tasks and CL methodologies will be crucial for driving innovation. In 
Tables  15–17, we present the overview of the selected publications 
23 
in the domain of classification, segmentation, and both combined, re-
spectively. We highlight the domain/application, dataset information, 
imaging modalities, CL scenarios, and strategies, including the learning 
process and methodology adopted/proposed by different studies. From 
the last year (2023), we also witness some exploration in non-imaging 
medical applications including disease classification, gesture classifica-
tion, arrhythmia detection, etc. Further, apart from classification and 
segmentation, applications such as super-resolution (Wu et al., 2024), 
WSI retrieval (Zhu et al., 2024a), representation learning (Ye et al., 
2024), etc., also benefit from CL. Based on our critical analysis of 
existing literature, we discuss some of the open challenges and thus 
possible research directions for CL in the medical field.

Non-imaging or other applications Recently, there have also been 
explorations in wearable medical sensor data. For example, Hua et al. 
(2023) explore experience replay (various sample selection strategies 
were explored) and knowledge distillation (on old data) based CL for 
incrementally learning gesture classes with sEMG data. Similarly, Sun 



P. Kumari et al. Medical Image Analysis 106 (2025) 103730 
Table 15 (continued).
 Reference (year) Imaging modality Application CL scenario CL strategy Model Learning type Evaluation 

metric
Dataset  

 Xiao et al. 
(2023)

dermoscopic & 
clinical images Skin disease 

classification
CIS Rehearsal (Memory buffer 

optimization)
ResNet-18 Few-shot accuracy, 

sensitivity, and 
specificity

private curated from various public 
sources (ISIC-2018, ISIC-2019, 
ISIC-2020, SD-198, SD-256, 
PAD-OFED-20, Asan, Hally, etc.)

 

 Yang et al. 
(2023a)

Dermoscopic, 
clinical

Skin disease 
classification

CIS Architectural ResNet101 + GMMs Supervised MCR Skin7 (Codella et al., 2018), Skin40 
(Sun et al., 2016)  

 Verma et al. 
(2023)

(a) Fundus,
(b) pathology Disease classification CIS Comparative (Rehearsal, 

Regularization, Architecture) ResNet50 Supervised MCR (a) OCT (Kermany et al., 2018), (b) 
PathMNIST (Yang et al., 2023c)  

 Huang et al. 
(2023)

WSI Tumor subtype 
classification

CIS Rehearsal ConvNeXt (image 
encoder) + 
transformer 
(classifier)

supervised BWT, AUC, 
Masked AUC, 
Accuracy

4 datasets (NSCLC, BRCA, RCC, 
ESCA) from TCGAa project  

 Hua et al. 
(2023)

sEMG** Gesture classification CIS Rehearsal+ Regularization CNN supervised Accuracy, 
Remember

Ninapro DB2 (Atzori et al., 2014)  
 Sun et al. 
(2023a)

time-series 
signals**

Mortality 
identification, Sepsis 
identification

CIS Rehearsal LSTM online BWT, FWT, 
AUC, Accuracy COVID-19 (Yan et al., 2020) , SEPSIS 

(Seymour et al., 2017)  

 Sun et al. 
(2023c)

time-series 
signals**

Multi-class 
classification

CIS Rehearsal + Regularization 1D-ConvNet few-shot Accuracy, 
relative 
performance 
drop rate

Mit-BIH (Goldberger et al., 2000), 
FaceAll (Dau et al., 2019), UWave 
(Dau et al., 2019), Mit-BIH Long-Term 
ECG (Goldberger et al., 2000)

 

 Li and Jha 
(2023)

Physiological 
signals**

Disease classification DIS, CIS, TIS Rehearsal MLP Supervised Accuracy, F1 
score, BWT CovidDeep(Hassantabar et al., 2021), 

DiabDeep(Yin et al., 2019), 
MHDeep(Hassantabar et al., 2022)

 

 Kim et al. 
(2024)

ECG** Arrhythmia detection DIS Comparative (Regularization: 
LwF, EWC, MAS) 1D-CNN+MLP Supervised AUC (Zheng et al., 2020), (Wagner et al., 

2020), (Alday et al., 2020), (Liu 
et al., 2018)

 

 Aslam et al. 
(2024)

Time series 
signal**

Disease classification DIS Regularization (EWC) LSTM Supervised Accuracy, 
forgetting

Mpox (Mathieu et al., 2022), 
Influenza (Anon, d), and Measles 
(Anon, e)

 

 Ceccon et al. 
(2024b)

X-ray Chest disease 
classification

NCI Rehearsal + Regularization – Supervised AUC, F1 score, 
forgetting

ChestX-ray14(Wang et al., 2017), 
CheXpert(Irvin et al., 2019)  

 Verma et al. 
(2024)

(a) Fundus, (b) 
histopathology

Disease classification TIS Architectural ResNet50 Supervised Accuracy (a) OCT (Kermany et al., 2018), (b) 
PathMNIST (Yang et al., 2023c)  

 Bayasi et al. 
(2024b)

(a) Dermoscopic,
(b) microscopic,
(c) histopathology

(a) Skin lesion 
classification,
(b) blood cell 
classification,
(c) Colon tissue 
classification

CIS, DIS, 
CIS+DIS

Regularization + Architectural ResNet50 Supervised Avg. recall, 
forgetting, 
AUPRC

(a) HAM10000 (Tschandl et al., 
2018), Dermofit (Ballerini et al., 
2013), Derm7pt (Kawahara et al., 
2018), MSK (Codella et al., 2018), 
UDA (Codella et al., 2018), BCN 
(Combalia et al., 2019), PH2 
(Mendonça et al., 2013) (b) PBS-HCB 
(Acevedo et al., 2020), (c) 
NCT-CRC-HE (Kather et al., 2019)

 

 Ceccon et al. 
(2024a)

X-ray Chest disease 
classification

CIS Comparative (Regularization, 
Rehearsal, hybrid) ResNet50 Supervised AUC, TPR gap ChestX-ray14 (Wang et al., 2017), 

CheXpert (Irvin et al., 2019)  
 Thandiackal 
et al. (2024) Histopathology Tissue classification DIS Rehearsal ResNet18 Unsupervised F1 score K-19 (Kather et al., 2016), K-16 

(Kather et al., 2019), CRC-TP (Javed 
et al., 2020)

 

 Qazi et al. 
(2024)

(a) Histopathology, 
(b) dermoscopic Disease classification CIS Architectural ResNet18 Supervised Accuracy, FLOPS Skin8, Path16  

 Bringas et al. 
(2024)

Time-series 
(motion-sensor)**

Alzheimer’s disease 
stage identification IIS (2 Ep.,3 

Ep.,4 Ep.) Rehearsal 1D-CNN Supervised Accuracy, 
F1-score, 
forgetting

private  

a https://www.cancer.gov/ccg/research/genome-sequencing/tcga
et al. (2023a,b) incrementally learn classes from time series signals 
(ECG, categorical data) for applications including time-series health 
monitoring, mortality identification, sepsis identification, gesture clas-
sification, etc. Further, there have been studies to handle domain shifts 
due to multi-site data (Kim et al., 2024), patient-level splits (Li and 
Jha, 2023), data distributional shifts (change in mean and standard 
deviation) (Aslam et al., 2024) in ECG, physiological signal, or other 
time-series data for disease classification and arrhythmia detection.

Largely CL has been explored for mainstream applications such 
as classification and segmentation, but some other application, such 
as image reconstruction, registration, translation, generation, anomaly 
detection, etc., can also benefit from CL techniques. Recently, Wu et al. 
(2024) explored CL for the image super-resolution task across different 
imaging modalities including PD, T1, and T2 weighted MRI, and X-ray 
is learned in a continual manner with a single super-resolution model. 
Notably, to deal with forgetting, authors use the idea of constraining 
gradient updates according to the importance of parameters as well as 
adding a distillation loss as a regularization. 

Availability of benchmark datasets: Contrary to other natural 
imaging fields, there are no standard benchmark datasets for CL in 
the medical field. Therefore, a fair comparison of different research 
advancements made in the field is challenging. MedMNIST is an at-
tempt to provide an MNIST-like dataset for the medical field, however, 
it is limited by its non-complex nature of various sub-datasets and 
not mainly developed for CL. Hence, it does not offer various drift 
24 
conditions that a CL technique could be explored to evaluate and 
quantify.

Intense labor requirements: Most of the CL approaches are super-
vised in nature and thus demand large annotated datasets for sequential 
training. This creates a bottleneck in model development especially 
in the histopathology domain as it is the most expensive in terms of 
annotation. To cope with a limited labeling budget in problems such 
as cardiac segmentation, lung nodule detection, and brain age estima-
tion, Perkonigg et al. (2022, 2021) explored an active learning strategy 
within the CL framework. The model indicates important samples and 
then only those samples are annotated by the experts. On the other 
hand, there are fully unsupervised CL approaches (Ke et al., 2022; 
Pratama et al., 2021; Ashfahani and Pratama, 2022) or self-supervised 
CL approaches (Liu et al., 2023b) in other domains that should be 
explored here to tackle the annotation scarcity problem.

Unexplored distributional changes: In the medical realm, drifts 
arising from covariance shifts are mainly explored that too by incor-
porating datasets from different centers or acquisition protocols for the 
same task. Thus, the type of drift is always ‘‘sudden drift’’ and easier 
to handle. On the other hand, there are many realistic unexplored drift 
settings. For example, drift within the center is close to a realistic sce-
nario as it gives rise to smooth drift scenarios (Perkonigg et al., 2022). 
Further, some drifts occur temporarily; for example, Bichlmayer et al. 
(2022) observe one novel kind of domain shift in kidney-CAM-model 
data (Bichlmayer et al., 2022), even if they follow a fixed acquisition 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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Table 16
Literature for CL based segmentation.
 Reference (year) Imaging modality Application CL scenario CL strategy Model Learning type Evaluation metric Dataset

 Karani et al. (2018) MRI Brain DIS Architecture U-Net Supervised DSC HCP (Van Essen et al., 2013), ADNI 
(ADNT), ABIDE (Di Martino et al., 2014)
and IXI (IXI)

 Baweja et al. (2018) MRI Brain structure segmentation 
(normal, white matter 
lesions)

TIS Regularization:
EWC

DeepMedic 3D 
convnet (Kamnitsas 
et al., 2017)

Supervised DSC coefficient UK Biobank (Miller et al., 2016)

 McClure et al. 
(2018)

SMRI Brain structure segmentation 
(axial and sagittal) DIS Regularization:

DWC
MeshNet (Fedorov 
et al., 2017) 
(CNN-based)

Supervised DSC HCP (Van Essen et al., 2013), NKI 
(Nooner et al., 2012), Buckner (Biswal 
et al., 2010), WU120 (Power et al., 2017

 Ozdemir et al. 
(2018)

MRI Segmentation of humerus
and scapula CIS Regularization (LwF) 

+ rehearsal U-Net Supervised DSC, SSD Private

 Ozdemir and Goksel 
(2019)

MRI Knee segmentation CIS Regularization U-Net Supervised DSC, MSD SKI10 MICCAI Grand Challenge (Heimann
et al., 2010)

 van Garderen et al. 
(2019)

4 MR sequences:
pre- and 
post-contrast T1w, 
T2w, & T2w
FLAIR

Brain tumor segmentation DIS Regularization:
EWC

3D U-Net CNN Supervised Dice score BraTS 2018 (Bakas et al., 2017; Menze 
et al., 2014), private

 Özgün et al. (2020) MRI Brain MRI segmentation DIS Regularization:
MAS

QuickNAT (Roy 
et al., 2019) Supervised CL-DSC, REM, 

BWT+, TL, FWT CANDI (Kennedy et al., 2012), MALC 
(Asman and Landman, 2013), and ADNI 
(Jack Jr. et al., 2008)

 Memmel et al. 
(2021)

MRI Hippocampal segmentation DIS U-Net Supervised IoU, DSC (Simpson et al.), (Kulaga-Yoskovitz et al.,
2015), (Boccardi et al., 2015)

 Perkonigg et al. 
(2021)

MRI Brain MRI segmentation DIS Rehearsal 3D-ModelGenesis 
(Zhou et al., 2021b) Supervised MAE, FWT, BWT IXI (IXI), OASIS3 (LaMontagne et al., 

2019)

 Ranem et al. (2022) MRI Hippocampus segmentation DIS Comparative 
(rehearsal, 
regularization, 
hybrid)

ViT U-Net Supervised DSC, FWT, BWT Decathlon (Antonelli et al., 2022), Drayd 
(Denovellis et al., 2021), HarP (Boccardi 
et al., 2015)

 Liu et al. (2022) CT Organ segmentation (liver, 
spleen, pancreas, right kidney 
left kidney)

CIS Rehearsal + 
regularization

nnUNet Supervised DC, HD95 (Anon, a; Simpson et al., 2019), KiTS 
(Heller et al., 2019) + private

 Karthik et al. (2022)MRI Multiple sclerosis lesions 
(brain) segmentation DIS Rehearsal 3D U-Net Supervised DSC, BWT (Kerbrat et al., 2020)

 González et al. 
(2022)

MRI Hippocampus segmentation DIS Architectural nnUNet (Isensee 
et al., 2021) Supervised DSC, FWT, BWT HarP (Boccardi et al., 2015), Dryad 

(Kulaga-Yoskovitz et al., 2015), Decathlon
(Simpson et al., 2019)

 Li et al. (2022) CMR Cardiac segmentation DIS Rehearsal U-Net Supervised DSC, HD95, BWT, 
FWT

M&Ms (Campello et al., 2021)
 Zhang et al. (2023a, 
2021)

MRI (a) Prostate segmentation,
(b) optic cup and disc 
segmentation

DIS Regularization U-Net Supervised DSC, ASSD RUNMC (Bloch et al., 2015), BMC (Bloch
et al., 2015), HCRUDB (Lemaître et al., 
2015), UCL (Litjens et al., 2014), BIDMC
(Litjens et al., 2014), HK (Litjens et al., 
2014), (Sivaswamy et al., 2015; Fumero 
et al., 2011; Orlando et al., 2020)

 Zhang et al. (2023c) CT (a) Abdomen multi-organ 
segmentation,
(b) abdomen to liver tumor 
segmentation

CIS Architectural Swin UNETR 
(Hatamizadeh et al., 
2021)

Supervised Average DSC BTCV (Landman et al., 2015), LiTS (Bilic
et al., 2023), JHH (Xia et al., 2022) 
(private)

 Ji et al. (2023) 3D CT Whole-body organ 
segmentation

CIS Architectural nnUNet Supervised DSC HD95 TotalSegmentator (Wasserthal et al., 
2023), ChestOrgan, HNOrgan, EsoOrgan 
(3 private)

 Bera et al. (2023) MRI Prostate segmentation, 
hippocampus segmentation, 
spleen segmentation

TIS, DIS Rehearsal Residual UNet Supervised DSC, average 
forgetting, BWT, 
accuracy

(Prostate158 (Adams et al., 2022), 
NCI-ISBI (Anon, c), Promise12 (Litjens 
et al., 2014), Decathlon (Antonelli et al., 
2022)), (Drayd (Denovellis et al., 2021), 
HarP (Boccardi et al., 2015)), (Spleen 
dataset in Decathlon (Anon, c))

 Zhu et al. (2023) CT, MRI (a) Abdomen segmentation,
(b) muscles segmentation,
(c) prostate segmentation

DIS Regularization U-Net Supervised DSC, ASSD Prostate (Liu et al., 2020a; Bloch et al., 
2015; Lemaître et al., 2015), abdomen 
(Anon, a; Kavur et al., 2021), muscles 
(Zhu et al., 2021)

 Liu et al. (2023a) MRI Brain tumor segmentation CIS + domain shift Regularization ResNet-based 2D 
nnU-Net

Supervised DSC, HD95 BraTS2013 (Menze et al., 2014), TCIA 
(Clark et al., 2013), CBICA (Bakas et al.,
2018)

 Wang et al. (2023a) Endoscopic images (a) Endoscopy segmentation, 
(b) surgical instrument 
segmentation

CIS Rehearsal + 
regularization

ResNet101 Supervised mIoU EDD2020 (Ali et al., 2021, 2020), 
EndoVis18 (Allan et al., 2020), EndoVis17
(Allan et al., 2019) Wei et al. (2023) MRI Brain tumor segmentation IIS Rehearsal UNet Supervised DSC LGG Segmentation (Buda et al., 2019)

 Chen et al. (2023) Fundus, MRI (a) Optic disc segmentation,
(b) cardiac segmentation,
(c) prostate segmentation

DIS Rehearsal + 
Regularization (KD) UNet Unsupervised DSC (a) REFUGE (Orlando et al., 2020), IDRiD

(Porwal et al., 2018), RIM-ONE DL 
(Batista et al., 2020), (b) M&Ms challeng
datasets (Campello et al., 2021), (c) 
RUNMC (Liu et al., 2020a), NCI-ISBI13 
(Bloch et al., 2015), I2CVB (Lemaître 
et al., 2015), PROMISE12 (Litjens et al., 
2014)

 Li et al. (2024) MRI Cardiac segmentation DIS Rehearsal + 
Architecture

Res-UNet Supervised DSC, BWT, FWT ACDC (Bernard et al., 2018), M&M 
(Campello et al., 2021)

 Zhu et al. (2024b) MRI (a) Prostate segmentation (b) 
Cardiac segmentation DIS Regularization UNet Supervised HD95, DSC, BWT (a) RUNMC (Bloch et al., 2015), BMC 

(Bloch et al., 2015), I2CVB (Lemaître 
et al., 2015), UCL (Litjens et al., 2014), 
BIDMC (Litjens et al., 2014), HK (Litjens 
et al., 2014), (b) M&M (Campello et al., 
2021)
protocol. The tissue structure in histopathology data of mouse kidneys 
shows degradation over time, which causes the segmentation problem 
to be harder over time. Another very important kind of unexplored drift 
is ‘‘concept shift’’ or ‘‘concept drift’’, which refers to a situation where 
the shift causes a change in the relationship of the input variable with 
25 
its target value (Lu et al., 2018; Kumari and Saini, 2022; Bhatt et al., 
2022; Kumari, 2021). For example, in the context of diabetic patient 
identification, consider a scenario where individuals aged 30–50 are 
deemed likely to be diabetic patients. However, if, for unforeseen rea-
sons or based on lifestyle and food habits, there is a shift in the severity 
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Table 17
CL Literature for classification + segmentation and other application.
 Reference (year) Imaging modality Application CL scenario CL strategy Model Learning type Evaluation matrices Dataset  
 Zhang and Wang 
(2019b)

Longitudinal MRI Alzheimer’s disease 
progression modelling 
(regression)

TIS (7 Ep.) Regularization MLP Supervised wCC, PCC, rMSE ADNI-1 (Jack Jr. et al., 2008),  

 Perkonigg et al. 
(2022)

CMR, CT, MRI Cardiac segmentation, 
lung nodule detection, 
brain age estimation

TIS Rehearsal 2D-UNet, Faster 
R-CNN, ResNet-50 Supervised Dice score, AP, MAE Cardiac (Campello et al., 2021), LIDC 

(Setio et al., 2017) + LNDb challenge 
(Pedrosa et al., 2019), IXI (IXI) + 
OASIS-3 (LaMontagne et al., 2019)

 

 Wu et al. (2024) (PD, T1, T2) 
weighted MRI,
X-ray

Super-resolution TIS Regularization HAN (Niu et al., 
2020)

Supervised SSIM, PSNR, BWT, 
forgetting, Intransigence 
(plasticity)

IXI (IXI), Chest X-ray (Wang et al., 2017) 

 Ye et al. (2024) Multi-modality 
(medical report,
MRI, X-ray, CT, 
histopathology)

Representation
learning

TIS (5 Ep.) Rehearsal + 
Regularization

Transformer Self-supervised DSC, HD95, AUC, 
accuracy, F1-score MIMIC-CXR 2.0.0 (Johnson et al., 2019), 

ADNI-1+ADNI-2+ADNI-GO (Jack Jr. et al., 
2008), DeepLesion (Yan et al., 2018), 
TCGA

 

 Zhu et al. (2024a) Histopathology WSI retrieval CIS (4 Ep.) Rehearsal TransMIL (Shao 
et al., 2021) Supervised KRC, SRC, slide-level 

mean AP TCGA  
level and the age group to 20–50, it would be considered a concept drift 
for diabetic patient identification. This implies a fundamental change 
in the underlying patterns and characteristics associated with diabetic 
patients, thus influencing the performance and reliability of machine 
learning models.

Scalability for large-Scale medical datasets: Scalability emerges 
as a critical challenge in the context of CL for medical imaging, partic-
ularly as datasets continue to grow in size and complexity (Gonzalez 
et al., 2020). Efficient strategies are needed to handle the scale of large 
medical datasets, considering both computational resources and model 
complexity. Research efforts, as explored by Zhang et al. (2023c), 
should focus on optimizing model architectures, memory management, 
and training algorithms to ensure scalability without compromising 
performance.

Interpretable and explainable models: The interpretability and 
explainability of CL models constitute another open challenge in the 
medical imaging domain Rymarczyk et al. (2023). As highlighted in De-
rakhshani et al. (2022), models used in clinical settings should not 
only achieve high performance but also provide meaningful insights 
into decision-making processes. Future research directions should prior-
itize the development of CL methodologies that can offer explanations 
for their predictions, fostering trust and acceptance in the clinical 
community.

Ethical considerations and patient privacy: Ethical considera-
tions and patient privacy concerns are paramount in CL for medical 
imaging. The use of patient data for model training raises ethical 
questions regarding consent, data anonymization, and potential biases. 
Future research, in alignment with ethical guidelines discussed by Chee 
et al. (2023), should prioritize the development of frameworks that 
ensure responsible data usage, privacy preservation, and ethical guide-
lines. Striking a balance between innovation and the protection of 
patient rights is imperative for the sustainable progress of CL in medical 
imaging. Verma et al. (2023) stress over exemplar-free CL approaches 
for colon pathology and retina data-based disease classification. They 
present a comparative study of 12 existing approaches in all three 
major categories offering privacy-aware solutions. Specifically, they use 
LwF (Li and Hoiem, 2018), LwM Dhar et al. (2019), EWC (Kirkpatrick 
et al., 2017), SI (Zenke et al., 2017), MAS (Aljundi et al., 2017), MUC-
MAS (Liu et al., 2020b), RWalk (Chaudhry et al., 2018a), OWM (Zeng 
et al., 2019), and GPM (Saha et al., 2021) in regularization category, 
GR (Shin et al., 2017) and BIR (Van de Ven et al., 2020) in generative 
replay category, and EFT (Verma et al., 2021) in architecture-based 
category.

Limitations with Gigapixel WSIs: The high resolution of whole 
slide images (WSIs), often 50,000 × 50,000 pixels, presents signifi-
cant computational challenges for deep learning model design. The 
variability in WSI imaging technology and staining protocols affects 
model performance on new data, requiring continual adaptation of 
WSI analysis methods (Lai et al., 2024). Directly applying standard CL 
approaches to hierarchical WSI models can lead to severe knowledge 
forgetting of previously seen datasets. Additionally, WSIs are gigapixel 
26 
images with only slide-level labels, making storage and computation for 
rehearsal-based CL impractical due to limited memory. Huang et al. 
(2023) proposed a CL method, ‘‘ConSlide’’, to progressively update 
a hierarchical WSI analysis architecture using sequentially acquired 
heterogeneous WSI datasets. In this approach, a representative set of 
past datasets is stored and periodically reorganized and replayed during 
model updates using an asynchronous updating mechanism. Thandi-
ackal et al. (2024) proposed a rehearsal-based domain incremental 
scenario with unsupervised learning for tissue classification in WSIs 
patches. They utilize the generative feature-driven image replay in 
conjunction with a dual-purpose discriminator. Further, Zhu et al. 
(2024a) enhance reservoir sampling for WSI retrieval by incorporating 
distance consistency-based rehearsal.

Continual learning in diffusion models: The integration of CL 
into diffusion models (Kazerouni et al., 2023) represents a promising 
avenue for advancing the capabilities of these models in dynamic and 
evolving environments. Diffusion models, widely employed in diverse 
fields, including image processing and medical imaging, often face 
challenges when confronted with changing data distributions. CL tech-
niques can play a pivotal role in allowing these models to adapt and 
accumulate knowledge over time, ensuring sustained performance in 
the face of evolving datasets and tasks. By incorporating CL, diffusion 
models can enhance their adaptability and generalizability, making 
them more resilient to variations in data characteristics and distribution 
shifts (Gao and Liu, 2023). This approach can significantly contribute 
to the robustness and effectiveness of diffusion models in real-world 
applications.

Continual learning in implicit neural representations: The ex-
ploration of CL within implicit neural representations (Molaei et al., 
2023) opens up new frontiers in leveraging the power of neural net-
works for dynamic learning scenarios. Implicit neural representations 
refer to a class of models where functions, such as geometric shapes or 
scenes, are represented as continuous signals rather than discrete enti-
ties (Sitzmann et al., 2020). These representations are commonly used 
in generative modeling and function approximation due to their ability 
to capture complex, high-dimensional data in a compact form (Molaei 
et al., 2023). Implicit neural representations can benefit immensely 
from CL techniques to adapt to new data and tasks seamlessly. As the 
data landscape evolves, implicit neural representations face challenges 
related to retaining past knowledge and efficiently incorporating new 
information (Po et al., 2023; Yan et al., 2021a). CL offers a solution 
to these challenges by enabling models to update their representa-
tions while preserving previously acquired knowledge. This not only 
enhances the model’s ability to handle changing data distributions but 
also supports the development of intelligent systems that can learn and 
evolve over time. CL in implicit neural representations is instrumental 
in creating adaptable and intelligent models that can navigate the 
complexities of dynamic environments.
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8. Conclusion

It has been proved and accepted by the research community that tra-
ditional machine learning models are ill-suited to handle the dynamic 
nature of data, and CL offers a promising solution. The systematic 
review in this manuscript provides a comprehensive overview of the 
state-of-the-art research in the field of CL in medical image analysis. 
We have explored various aspects of this evolving topic, including the 
challenges posed by changing data distributions, hardware, imaging 
protocols, data sources, tasks, and concept shifts in clinical practice 
and the need for models to adapt seamlessly. Through a meticulous 
analysis of the existing literature, we have examined the CL scenarios, 
strategies, level of supervision, experimental setup, evaluation schemes, 
and metrics employed to deal with the drifting nature of medical 
image data. Furthermore, diverse applications of CL in medical image 
analysis are discussed, ranging from disease classification and detection 
to intricate tasks of image segmentation. Each application area presents 
unique challenges and opportunities for research and development, and 
our review has shed light on the progress made in these domains. 
Additionally, a thorough collection and analysis of various evaluation 
matrices for forward and backward transfer facilitate robust evaluation 
and benchmarking of approaches.

In conclusion, this systematic review provides valuable insights into 
the current state of CL adaptation in medical image processing tasks, 
unexplored challenges, and promising future research directions. As 
medical image analysis technology continues to advance, the develop-
ment of CL models will be crucial for improving diagnostic accuracy, 
patient care, and overall healthcare outcomes.
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