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Abstract

Background/Objectives: Chronic wounds of the lower extremities, particularly arterial
and venous ulcers, represent a significant and costly challenge in medical care. To assist in
differential diagnosis, we aim to evaluate various advanced deep-learning models for clas-
sifying arterial and venous ulcers and visualize their decision-making processes. Methods:
A retrospective dataset of 607 images (198 arterial and 409 venous ulcers) was used to train
five convolutional neural networks: ResNet50, ResNeXt50, ConvNeXt, EfficientNetB2, and
EfficientNetV2. Model performance was assessed using accuracy, precision, recall, F1-score,
and ROC-AUC. Grad-CAM was applied to visualize image regions contributing to classifi-
cation decisions. Results: The models demonstrated high classification performance, with
accuracy ranging from 72% (ConvNeXt) to 98% (ResNeXt50). Precision and recall values
indicated strong discrimination between arterial and venous ulcers, with EfficientNetV2
achieving the highest precision. Conclusions: Al-assisted classification of venous and
arterial ulcers offers a valuable method for enhancing diagnostic efficiency.

Keywords: deep learning; artificial intelligence; wound classification; arterial ulcers;
venous ulcers; convolutional neural networks

1. Introduction

Chronic wounds, particularly venous and arterial ulcers of the lower extremities,
represent a global problem with a prevalence estimated at between 0.1% and 2% in the
general population [1,2]. As society continues to age and the obesity rate increases, vascular
ulcers are also anticipated to rise because of obesity-associated comorbidities. Timely
diagnosis of this condition is crucial for selecting the appropriate therapy and preventing
further progression of the wound, as well as avoiding amputation of the limb, which is a
not uncommon complication of this wound type [3]. In general, arterial and venous ulcers
have numerous classic features that help with differential diagnosis [4]. The cause of an
arterial ulcer is peripheral arterial disease (PAD), i.e., the arteries supplying the affected
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extremity are either stenosed or completely occluded. Due to this reduced blood flow,
minor traumas heal poorly and thus lead to the classic clinical picture of a well-defined
ulcer with deep (“punched-out”) wound edges. Due to tissue hypoxia, the wounds tend to
be dry and often show black necrotic tissue or exposed tendons, suggesting a non-venous
condition. In contrast, venous ulcers tend to be more irregular in shape and have a rather
moist wound environment. While venous ulcers often occur above or behind the medial
malleolus, arterial ulcers tend to occur on the edge of the tibia, above the lateral malleolus,
or on the feet. The surrounding skin also differs (Table 1).

Table 1. Differential diagnosis between venous and arterial ulcers.

Characteristics Venous Ulcers Arterial Ulcers
Etiology Sustained venous hypertension Arterial insufficiency (ischemia)
Localization Medial/lower leg Toes, feet, lateral ankle, pressure points
Wound edge Gently sloping Punched-out, well-demarcated, deep
Wound bed Red, granulating tissue with slough Pale, dry, necrotic, exposed tendons
Exudate Moderate-to-heavy Minimal
Wound shape Irregular Regular, round
Pedal pulses Present and normal Diminished or absent
Surrounding skin Ederlr}a, hemosiderin sta.mmg, Shiny, cool, hair loss, pallor, cyanosis
ipodermatosclerosis

Clinical signs, patient history, and vascular imaging are recommended to determine
the etiology of the ulcer. The primary tests for diagnosing arterial and venous ulcers
are the ankle-brachial pressure index (ABPI), duplex ultrasonography, and color flow
Doppler imaging (CFDI) [5,6]. Further examinations, such as venography, angiography,
microbiological and/or histological examination of a biopsy, may be necessary in some
cases to clarify the etiology of the ulcer. While this offers essential insights into the etiology
of the wound, it is also time-consuming, subjective, and requires specialized training,
delaying proper therapy beyond local wound care. Furthermore, not all care facilities have
access to comprehensive diagnostic tools like duplex ultrasound. In such settings, Al-based
wound classification could offer a quick and reliable way to determine the cause, supported
by clear visual explanations such as Grad-CAM. This could, for example, enable early
identification of patients likely to have venous ulcers, allowing them to benefit immediately
from compression therapy. Therefore, Al could serve as a practical decision-support
tool that helps clinicians in the diagnostic process and may speed up the initiation of
appropriate treatment.

Artificial intelligence (AI), Machine learning (ML), and Deep learning (DL) have
revolutionized medical image analysis. For example, in dermatology, the diagnosis and risk
assessment of skin changes in preventive care are automated and specific [7]. In radiological
imaging, Al can enhance image quality [8] and help detect and classify anomalies [9,10].
DL, a subfield of ML, employs deep neural networks to identify patterns. Convolutional
neural networks, a prominent area in DL, effectively process two-dimensional input data.

Recent studies increasingly move from single-word outputs toward paragraph-level
report generation, enabled by vision-language models that couple strong visual backbones
with text decoders. These systems highlight clinically aligned evaluation and factuality
and outline clear pathways from robust classifiers to structured findings and auto-drafted
reports [11-13]. In this context, our focus on reliable ulcer classification serves as a practical
building block for future report-level outputs.

Deep convolutional neural networks (DCNNSs) are a variant of convolutional neural
networks (CNNs) that can recognize relevant image details and more complicated patterns
in the analysis of images. In wound assessment, there are various approaches for identifying
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wound boundaries (localization or segmentation) and classifying different wound types
[14,15] and tissue types (e.g., granulation, slough, and eschar) [14] using DL.

So far, however, the classification has been broader between different wound types,
such as surgical wounds, venous leg ulcers, and pressure ulcers [14]. A decision support
system for a detailed distinction between venous and arterial ulcers could contribute to
a faster diagnosis and, thus, earlier targeted therapy. Additionally, employing explain-
able AI (XAI) modeling can facilitate its integration and acceptance within healthcare
systems [16,17].

Our study aims to apply and evaluate various state-of-the-art deep learning models
for the image-based classification of vascular ulcers, specifically distinguishing between
venous and arterial ulcers. Beyond classification performance, our clinical focus lies in
visualizing and interpreting the decision-making process of the model using explainable
Al (XAI) techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM), to
ensure transparency and facilitate clinical trust and integration.

2. Materials and Methods
2.1. Patients

We utilized the hospital database from University Hospital Regensburg (Germany)
to retrospectively filter all patients by the relevant ICD codes (International Statistical
Classification of Diseases and Related Health Problems) for chronic ulcers of the lower
extremities. Next, we manually verified their diagnoses in the patient charts based on
vascular assessments (e.g., Doppler ultrasound, duplex ultrasound, ankle-brachial pressure
index), identifying 72 patients with purely arterial or purely venous ulcers of the lower ex-
tremities. We included only those with standardized photographic wound documentation
in the study (see Table 2).

Table 2. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Patients with a confirmed diagnosis of arterial or

" Mixed arterial-venous ulcers.
purely venous ulcers of the lower extremities

Availability of photographic wound

) . L. I f other etiologies.
documentation under standardized conditions Ulcers of other etiologies

The final dataset included 607 images in .jpg format (198 arterial and 409 venous ulcer
images). The images were of varying sizes, with the average height and average width
being 833 and 742 pixels, respectively. There was a repetition of patients with wound images
taken at various stages of wound healing. However, no wound in its form was repeated
twice. Images from the same patients were taken on different dates. Example images of
unprocessed wound documentation for each ulcer class are shown in Figure 1. The images
were randomly selected and represent the original format without any preprocessing.

2.2. Preprocessing

To enhance the focus on the region of interest (ROI), all images were manually cropped
by delineating the wound and applying a 10% offset on all sides. This process effectively
removed identifiable patient information while retaining a narrow margin of surround-
ing skin to preserve clinically relevant context. By eliminating unnecessary background
information, we ensured that the analysis remained focused on the wound.
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Figure 1. Example images of (A) an arterial ulcer and (B) a venous ulcer of the lower extremities.

Given the color-dependent nature of wound images and their capture under controlled
conditions, we employed a data augmentation process designed to enhance dataset variety
without increasing its size, thereby supporting model robustness. We opted for weak
augmentations to maintain the integrity of the visual data. Each image was resized to
224 x 224 pixels and normalized using a mean of 0.5 and a standard deviation of 0.5.
During training, augmentations such as horizontal flip, vertical flip, and random cropping
were applied with a 10% probability for each transformation. These augmentations were
implemented dynamically at runtime, meaning they were randomly applied each time
an image was accessed, modifying the sample without creating additional entries in the
dataset. It is important to note that these augmentations, except for normalization and
resizing, were not applied to the validation set or during inference.

A stratified train-test split was performed, with 10% of the dataset allocated to the test
set to preserve class distribution. This split was held constant across all model training
pipelines to ensure comparability of results.

2.3. Models

State-of-the-art deep learning models for image classification, namely ResNet50 [16],
ResNeXt50 [18], ConvNeXt [19], EfficientNet B2 [20], and EfficientNet V2 [21], were se-
lected for the task of ulcer classification, specifically to distinguish between venous and
arterial ulcers. These models were chosen due to their proven performance in medical
imaging and their architectural diversity, which allows for a comprehensive evaluation of
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classification performance across different CNN design principles. Each model was trained
independently on the training dataset.

ResNet50 [20] is a deep convolutional neural network with 50 layers, introduced as
part of the ResNet family, which uses residual learning to enable the effective training
of very deep architectures. Its key innovation is the use of skip connections that allow
gradients to flow more easily through the network, alleviating the vanishing gradient
problem common in deep networks. This architecture enables ResNet50 to achieve high
accuracy on image classification tasks while being more efficient and stable to train than
traditional deep CNNs. ResNet50 has been widely used in applications ranging from
transfer learning in general vision tasks [20] to specialized domains such as COVID-19
detection from chest X-rays [22] and skin cancer diagnosis from dermoscopy images [23].

ResNeXt50 [18] is a deep convolutional neural network that builds on the ResNet
architecture by introducing the concept of cardinality, the number of parallel paths within a
residual block, allowing it to capture more diverse feature representations without greatly
increasing complexity. Instead of simply increasing depth or width, ResNeXt uses grouped
convolutions to achieve a better trade-off between computational efficiency and model
capacity. This design makes ResNeXt50 more accurate and flexible than standard ResNet50,
particularly on large-scale image classification tasks like ImageNet. The model has been
successfully applied in various classification problems, including skin lesion analysis and
plant disease detection [24].

ConvNeXt [19] is a modern CNN architecture that updates the classic ResNet back-
bone using design strategies borrowed from Vision Transformers, such as large kernel
sizes, LayerNorm, inverted bottlenecks, GELU activations, and the AdamW optimizer.
These refinements help ConvNeXt achieve state-of-the-art performance on benchmarks
like ImageNet while maintaining the efficiency and inductive bias of convolutional models.
It has demonstrated its performance on a variety of tasks like detecting periapical lesions
in radiographs [25], detecting vascular leukoencephalopathy from CT images [26], and
domain-specific tasks such as rice grain type classification [27]. ConvNeXt variants. Con-
vNeXt is released in multiple capacity levels: Tiny (T), Small (S), Base (B), Large (L), and
X-Large (XL). We use the Tiny (T) variant as our default backbone throughout this work.

EfficientNet-B2 [20] is a mid-sized member of the EfficientNet family introduced by
Google Al, featuring compound scaling of network depth, width, and input resolution to
optimize both accuracy and efficiency. The architecture uses MobileNetV2-style MBConv
blocks [28] and was discovered via neural architecture search, making EfficientNet-B2
particularly efficient in parameter usage and FLOPs while delivering strong classification
performance. EfficientNetB2 is known to outperform comparative models on various tasks
like skin cancer classification and COVID-19 detection from ultrasound images [29].

EfficientNet-V2 [21] extends the original EfficientNet family by introducing several
training- and architecture-level enhancements aimed at improving both convergence speed
and predictive performance. It incorporates Fused-MBConv blocks, which combine depth-
wise and regular convolutions in early stages, and uses progressive learning—gradually
increasing image resolution and regularization strength during training—to accelerate
convergence and improve generalization. These innovations result in significantly faster
training times (5x-11x) and higher accuracy, with EfficientNet-V2 models achieving up to
87.3% top-1 accuracy on ImageNet while maintaining parameter efficiency. EfficientNet-V2
variants have demonstrated superior performance across a range of classification tasks,
including acute lymphoblastic leukemia detection [30], and liver fibrosis staging from
MRI [31].

The architectures of the models were downloaded from Hugging Face in the con-
figurations detailed in Table 3. To ensure a fair comparison and facilitate reproducibility,
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all deep-learning classifiers were trained using a unified protocol summarized in Table 4.
A batch size of 32 and an initial learning rate of 1 x 10~* were used, and models were
trained for 50 epochs. Random weight initialization was carried out. We evaluated their
performance using standard classification metrics, as described below. To explore model
interpretability and better understand the decision-making process, we also applied Grad
CAM to visualize the image regions most influential in each model’s predictions.

Table 3. Selected Convolutional neural network architectures and weight references.

Model Model Version Hugging Face Configuration
ResNet50 [32] Vanilla resnetb0.al_inlk
ResNeXt50 [18] Vanilla resnext50 _32x4d.alh_inlk
ConvNeXt [19] Tiny convnextv2_tiny.fcmae_ft_inlk
EfficientNetB2 [20] Vanilla efficientnet_b2.ra_in1k
EfficientNetV2 [21] Small efficientnetv2_rw_s.ra2_inl

Table 4. Hyper-parameters for training classification models.

Hyper-Parameter Value
Image Size 224 x 224
Batch Size 32

Learning Rate 1x1074
Epochs 50

2.4. Performance Evaluation

In evaluating the performance of our Convolutional Neural Network (CNN) models
for wound image classification, we employed several key metrics to ensure a comprehen-
sive assessment. Accuracy was used as a primary indicator, measuring the proportion
of correctly classified images out of the total number of images. This metric provides a
straightforward measure of overall model performance. However, given the potential
imbalance in wound image datasets, we also calculated Precision, which focuses on the cor-
rectness of positive predictions. Precision is particularly important in medical applications,
as it reflects the model’s ability to minimize false positives, ensuring that when a wound is
identified, it is indeed that wound type.

To further evaluate the model’s effectiveness, we incorporated the F1 Score, which
balances Precision and Recall, the ability to find all relevant instances. The F1 Score is
crucial in scenarios where both false positives and false negatives are costly, providing
a single metric that captures the trade-off between these two aspects. To address class
imbalance, we employed the ROC-AUC metric, which effectively evaluates the ability of the
model to differentiate between classes by considering the trade-off between true positive
and false positive rates. This metric is especially useful for imbalanced datasets, providing
a comprehensive assessment of the model’s performance across all classes. Additionally,
we utilized Gradient weighted Class Activation Mapping, Grad CAM, to enhance the
explainability of our model’s decisions. Grad CAM generates visual explanations that
highlight important regions in the image that contribute to the model’s prediction, offering
insights into how the CNN interprets wound features. This approach not only aids in
understanding model behavior but also builds trust in the model’s outputs, which is
essential for clinical adoption.
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3. Results
3.1. Performance Metrics

In our evaluation of various Convolutional Neural Network (CNN) architectures for
wound image classification, we observed distinct performance metrics across different
models. Results highlighted in Table 4 showcase the effectiveness of advanced CNN
architectures in accurately classifying wound images. While there is room for improvement
with the ConvNeXt model, the models from the EfficientNet family have exhibited superior
performance even though they are relatively lightweight. The deeper models ResNet50
and ResNeXt50 also exhibited performance on par with EfficientNet family models.

Further analysis of precision and recall for all five models confirms strong performance
across classes (Table 5)

Table 5. Classification performance in %.

Precision (%)

CNN Model Macro-Avg Acc. - Macro-Avg F1 ROC-AUC
Venous Arterial
ResNet50 95.70 98.18 92.11 95.51 0.9883
ResNeXt50 97.85 98.25 97.22 97.73 0.9966
ConvNeXt (Tiny) 72.04 69.62 85.71 64.44 0.9381
EfficientNetB2 95.70 98.18 92.11 95.51 0.9744
EfficientNetV2 96.77 95.00 100.00 96.77 0.9810

3.2. Deep Learning Interpretability with Gradient-Weighted Class Activation Mapping
(Grad-CAM), Precision Venous (%) and Precision Arterial (%) Refer to the Accuracy of the Model
in Identifying Venous or Arterial Wounds Among All Its Predictions for Each Category

The heatmaps generated by Grad-CAM are displayed in the figures below. The color
ranges from blue to red and represents the significance value of the region, ranging from
low (blue) to high (red), respectively, for predicting the etiology of the ulcer. Figure 2A
illustrates the results for venous ulcers, and Figure 2B displays the model outputs for
arterial ulcers.

Grad-CAM: ResNet50 Grad-CAM: ResNext50 Grad-CAM: ConvNext Grad-CAM: EfficientNetB2 Grad-CAM: EfficientNetv2

(A)

Original Image Grad-CAM: ResNet50 Grad-CAM: ResNext50 Grad-CAM: ConvNext Grad-CAM: EfficientNetB2 Grad-CAM: EfficientNetv2

(B)
Figure 2. Grad-CAM visualizations for ulcer classification. (A) Venous ulcer; (B) Arterial ulcer: repre-
sentative original images (far left) and Grad-CAM outputs for five different DL models: ResNet50,

ResNeXt50, ConvNeXt, EfficientNetB2, EfficientNetV2 (from left to right). Red and yellow areas
indicate regions highly relevant to the model decision, while blue and purple areas are less relevant.

As can be seen, only the models from the EfficientNet family have demonstrated
dynamic focus, examining different parts of the images rather than fixating on the cen-
ter. This dynamic attention suggests that these models are better equipped to adapt to
variations in wound appearances, potentially contributing to their higher performance
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metrics. The insights gained from GradCAM underscore the importance of interpretabil-
ity in medical image analysis, as understanding model behavior builds trust and aids in
clinical decision-making.

4. Discussion

Our study demonstrates the significant potential of deep learning-based classification
models for the differential diagnosis of arterial and venous ulcers. In particular, the
EfficientNetV2 and ResNeXt50 CNN models exhibited a highly accurate differentiation
between these two wound categories (97% and 98% accuracies). Huang et al. [33] presented
a CNN model that classified five wound types (including arterial and venous ulcer wounds),
achieving 96% and 86% accuracy in the venous and arterial ulcer classification tasks with
an AUC (area under the curve) of 0.924 and 0.897, respectively. Although that impressive
venous ulcer accuracy was based on only 26 venous wound images (with a total dataset of
2149 images), their five-class distinction was a much more complex task than our binary
classification. Interestingly, their model outperformed the medical personnel significantly
in all five wound categories [33]. Other binary classification studies [34,35] for distinct
wound types or wound complications (e.g., maceration [35] using a CNN-based method
similar to ours) can yield high accuracies if domain-appropriate data preprocessing is
combined with modern CNN architectures. Patel et al. [36] used a multi-modal approach,
demonstrating that including location data (exact lower leg region of the wound) can
enhance performance in multi-class scenarios.

To make CNN-based models more transparent to explain Al and visualize relevant
regions for CNN-based decision-making, we used Gradient-weighted Class Activation
Mapping (Grad-CAM) [37]. Explainable Al (XAI) is undoubtedly a key aspect on the
path to implementing Al in clinical routine, as it provides an intuitive insight into the
decision-making process of neural networks. Visualization via Grad-CAM, in particular,
makes it easier to understand why the Al assumes a venous or arterial etiology, for example.
However, we have not conducted a direct comparison with experienced clinicians (e.g.,
dermatologists). In everyday practice, physicians do not make their decisions solely
based on a “heat map.” They consider other clinical factors (e.g., Table 1) and assess the
patient holistically. Pure image-based diagnosis with Grad-CAM analysis seems almost
“limited” compared to this multifactorial clinical routine, but at the same time, it is even
more impressive, as it achieves high levels of accuracy without additional information.
Therefore, when faced with an image classification problem, a natural question arises
about whether the model is genuinely identifying the etiology of the wound. A good
visual explanation should be both class-discriminative (i.e., localizing the relevant regions
necessary for a prediction) and high-resolution (i.e., finding the fine details in an image) [38].
Our analysis of the Grad-CAM results indicated that certain models, such as EfficientNetV2,
dynamically concentrated on the ulcer borders and surrounding tissue, suggesting they
incorporate contextual features like “punched-out” wound borders or skin discoloration in
their decision-making. In contrast, other models, such as ResNeXt50, focused on the central
wound bed, possibly highlighting ulcer depth and tissue composition. While Grad-CAM
and LIME (Locally Interpretable Explanations and Model-Independent) [16] are qualitative
heat-map approaches to highlight regions of the image that strongly influence the final
prediction, Lo et al. found SHAP (SHapley Additive exPlanation) [17,39], the most effective
and more detailed for providing quantitative per-pixel importance scores [14]. Therefore,
the use of qualitative and quantitative XAI techniques to interpret deep learning models is
a crucial part of validating and trusting these models in clinical practice [40].

Because our data was collected from a single-center cohort, future research should
collect larger, multicenter datasets that include diverse imaging conditions (lighting, camera
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angle, background, distance) and patient demographics to improve generalizability and
robustness. Additionally, we only considered the simplest scenario, binary classification of
arterial versus venous ulcers. Real-world wound care involves distinguishing among mixed
arterial-venous ulcers, diabetic foot ulcers, pressure ulcers, and other causes. Therefore,
expanding and balancing the label set will be crucial. Furthermore, our analysis involved
manually cropping images prior to processing, based on the assumption that images
would primarily contain the wound and some immediate background. This approach is
supported by existing literature and algorithms capable of automatic wound detection and
cropping [15,41]. Additionally, we employed EfficientNet in its standard configuration
to establish a robust and reproducible baseline for comparison, focusing on the effects of
dataset quality, preprocessing, and augmentation without introducing architecture-specific
confounders. Although attention modules like Squeeze-and-Excitation (SE) blocks [42]
could improve feature weighting, they also add additional parameters and complexity,
which may lead to overfitting—particularly with our small and unbalanced dataset. Finally,
our models relied solely on wound photographs, excluding additional clinical data such
as lesion localization, vascular imaging, patient characteristics, ankle-brachial index, or
laboratory markers. Incorporating these data streams would provide richer context and
likely enhance diagnostic accuracy. Addressing these limitations will help develop more
accurate, robust, and clinically useful decision-support systems for ulcer assessment.

5. Conclusions

Chronic vascular ulcers impose a significant clinical and economic burden, and timely,
precise differentiation among various etiologies is crucial for selecting effective treatment.
This study aimed to determine whether modern convolutional neural networks can provide
reliable, interpretable image-based support for this decision. We evaluated five CNNs
(ResNet50, ResNeXt50, ConvNeXt, EfficientNetB2, and EfficientNetV2) for image-based
differentiation of venous and arterial ulcers and used Grad-CAM to visualize the reasoning
of the model. ResNeXt50 performed best with a macro-average accuracy of 97.85% and
ROC-AUC of 0.9966, followed by EfficientNetV2 (96.77%) and ResNet50/ EfficientNetB2
(95.70%). ConvNeXt (Tiny) lagged behind at 72.04%. Grad-CAM revealed model-specific
attention patterns consistent with our metrics. The EfficientNet models displayed dynamic,
context-aware focus, shifting between ulcer borders, perilesional skin changes, and the
wound bed, while ResNext50 tended to fixate mainly on the center of the wound bed.
This behavior aligns with the highest precision of EfficientNetV2 and supports the clinical
plausibility of its decisions. These findings indicate that lightweight, explainable classifiers
can support decision-making in the clinical setting. Limitations include a retrospective,
single-center dataset of 607 images and a binary classification task. Future work will expand
to multicenter and multiclass settings, incorporate segmentation, localization, and conduct
prospective external validation.
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