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ABSTRACT
In adaptive clinical trials, the conventional confidence interval (CI) for a treatment effect is prone to undesirable properties such
as undercoverage and potential inconsistency with the final hypothesis testing decision. Accordingly, as is stated in recent reg-
ulatory guidance on adaptive designs, there is the need for caution in the interpretation of CIs constructed during and after an
adaptive clinical trial. However, it may be unclear which of the available CIs in the literature are preferable. This paper is the
second in a two-part series that explores CIs for adaptive trials. Part I provided a methodological review of approaches to construct
CIs for adaptive designs. In this paper (Part II), we present an extended case study based around a two-stage group sequential
trial, including a comprehensive simulation study of the proposed CIs for this setting. This facilitates an expanded description
of considerations around what makes for an effective CI procedure following an adaptive trial. We show that the CIs can have
notably different properties. Finally, we propose a set of guidelines for researchers around the choice of CIs and the reporting of
CIs following an adaptive design.

1 | Introduction

Clinical trials are traditionally run in a fixed manner that does
not allow for interim looks at the data within the trial itself.
In contrast, an adaptive design (AD) allows for pre-planned
modifications to the course of the trial based on interim data
analyses [1, 2]. This added controlled flexibility can lead to
improved trial efficiency (e.g., in terms of sample size, time
and cost) while still maintaining scientific rigor. ADs have
seen increasing use in clinical trials in recent years, and in
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particular master protocols leveraging ADs are becoming increas-
ingly popular [3, 4].

A wide variety of different types of AD have been proposed in the
literature, including the following common broad classes accord-
ing to the trial adaptations considered:

• Early trial stopping: Group sequential designs (GSDs) allow
the trial to stop early at interim looks, for example, for effi-
cacy or futility/lack of benefit.
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• Treatment selection: Multi-arm multi-stage (MAMS) designs
test multiple treatment options in parallel (typically against
a common control arm), allowing the dropping of treatment
arm(s) that are not performing (as) well and/or early stop-
ping of arms for efficacy.

• Population selection: Adaptive enrichment designs allow
the clinical (sub)population of interest to be selected (“en-
riched”) at interim looks, typically using pre-defined patient
subpopulations (e.g., based on biomarker information).

• Changing randomization probabilities: Response-adaptive
randomization (RAR) allows updates of the randomization
probabilities based on patient responses, for example, to
favor treatment arm(s) that are performing well [5].

• Changing trial sample size: Sample size re-estimation allows
the sample size of the trial to be adjusted, for example, based
on interim conditional power calculations or interim blinded
or unblinded estimates of parameters for sample size calcu-
lation.

Further educational material on all of these ADs can be found
in Burnett et al. [6], Pallmann et al. [1], and the PANDA online
resource [7].

Regardless of the type of AD, it remains crucial that the integrity
and validity of the trial are maintained. Appropriate estimation of
treatment effects is a key part of trial validity, which includes not
only point estimates [8, 9] but also quantification of the uncer-
tainty around the estimated treatment effects as given by con-
fidence intervals (CIs). Intuitively, CIs capture this uncertainty
by offering an interval that is expected to typically contain the
unknown parameter of interest.

An important consideration in practice then is whether proposed
methods to construct CIs have desirable properties. Most impor-
tantly, this relates to the CI having the desired coverage proba-
bility (i.e., the long-run probability that the CI contains the true
unknown treatment effect of interest). However, there are numer-
ous other considerations, including the width of the CI (all else
being equal, narrower CIs are preferred as they are more infor-
mative), whether the CI will always contain an associated point
estimate, and whether the CI will always be consistent with the
decision rule (i.e., with an associated hypothesis test). The fun-
damental problem for ADs is that the use of standard CI method-
ology (i.e., CIs constructed using methods that do not account
for the fact an AD has been used) may not necessarily result in
desirable properties.

Recent regulatory guidance highlights these concerns, with the
US Food and Drug Administration (FDA) noting that “confidence
intervals for the primary and secondary endpoints may not have
correct coverage probabilities for the true treatment effects” and
thus “confidence intervals should be presented with appropriate
cautions regarding their interpretation” [10]. The same guidance
also highlights the need to pre-specify methods used to compute
CIs after an AD, see also the Adaptive designs CONSORT Exten-
sion (ACE) guidance [2, 11]. Meanwhile, the European Medicines
Agency (EMA) guidance states that “methods to . . . provide
confidence intervals with pre-specified coverage probability are
required” if an AD is used in a regulated setting [12].

These concerns and regulatory guidance motivate the growing
body of literature proposing “adjusted” CIs that account for trial
adaptations as per a particular trial design. However, in our expe-
rience there is at best limited uptake of adjusted CIs in practice
(with the possible exception of “repeated” CIs (RCIs) in GSDs;
see Part I of the paper series [13] and Section 3.1 of this cur-
rent paper for a definition), with many adaptive trials continuing
to only report the standard CI. Evidence for this in the context
of two-stage single-arm trials can be found in [14], where only
2% of 425 articles reported an adjusted CI. This limited uptake
of adjusted CIs for ADs is due to a number of reasons, includ-
ing the lack of awareness of methods in the literature, available
software/code, and guidance around the choice of adjusted CI in
practice.

This paper is the second in a two-part series that explores the issue
of CIs for ADs. In Part I of the series, we reviewed and compared
methods for constructing CIs for different classes of ADs and crit-
ically discussed different approaches. In the current paper (Part
II), we consider CIs for ADs from a practical perspective and pro-
pose a set of guidelines for researchers around the choice and
reporting of CIs following an AD. We first briefly describe per-
formance measures of CIs in Section 2. We introduce the MUSEC
trial case study in Section 3, which was a two-stage GSD. This was
chosen in order to illustrate the widest range of different types
of adjusted CIs and for continuity with its use as a case study
for the previously published point estimation for ADs guidance
paper [9]. We show how to calculate different types of CIs (with R
code provided). We use the case study as a basis for a simulation
study in Section 4. We conclude with guidance for researchers
and discussion in Sections 5 and 6, respectively.

2 | Performance Measures for CIs

As introduced in Part I of this paper series, different desirable
properties for CIs have been proposed, which we recapitulate
below. To fix ideas, suppose we have a random sample 𝑋 from
a probability distribution with parameter 𝜃, which is the single
parameter of interest in the trial. A CI for 𝜃 with confidence level
1 − 𝛼 is a random interval (𝐿(𝑋), 𝑈 (𝑋)) that has the following
(claimed) property: 𝑃 (𝐿(𝑋) < 𝜃 < 𝑈 (𝑋)) = 1 − 𝛼 for all 𝜃.

The coverage probability (often shortened to just “coverage”) of a
CI (𝐿(𝑋), 𝑈 (𝑋)) is given by 𝑃 (𝐿(𝑋) < 𝜃 < 𝑈 (𝑋)). This is the key
performance measure for a CI, given that the definition itself of a
CI is based around actually having the claimed “nominal” 1 − 𝛼
confidence level.

Alongside coverage, other criteria for CIs (generally, and specif-
ically for ADs) have been proposed in the literature. The main
criteria/performance measures include:

• Correct coverage (arguably essential).

• Width (all other things being equal, a smaller width is desir-
able).

• Consistency/compatibility with the hypothesis test (see
below).

• Contains the point estimate of interest.
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• (Approximate) symmetry around the point estimate of inter-
est.

• Is in fact an interval (i.e., not a union of disjoint intervals, or
the empty set).

• Is computationally feasible/simple to implement.

A CI is consistent/compatible with the hypothesis testing deci-
sion if it excludes the parameter value(s) that are rejected by the
hypothesis test, and conversely includes the parameter value(s)
that are not rejected by the hypothesis test. If a CI is not consis-
tent/compatible with the hypothesis testing decision, then this
can lead to problems with study interpretation and the commu-
nication of results.

3 | Case Study

In this section, we illustrate how different types of adjusted CIs
(as reviewed in Part I of this paper series [13]) can be used
in practice for a GSD. We use the MUSEC (MUltiple Sclero-
sis and Extract of Cannabis) trial [15, 16] as our case study,
which assessed the effect of oral cannabis extract (CE) on mus-
cle stiffness in adults with stable multiple sclerosis compared to
placebo. The primary outcome was binary—whether or not a
patient had “relief from muscle stiffness” after 12 weeks of treat-
ments, based on a dichotomized 11-point category rating scale.
MUSEC utilized a two-stage GSD, with early stopping for supe-
riority only (i.e., no early stopping for futility) assessed using
an O’Brien–Fleming (OBF) boundary. The unblinded interim
analysis was planned after 200 participants (100 per arm) had
completed the 12-week treatment course, with the final analysis
planned after 400 patients (200 per arm) if the interim stopping
rule was not met.

As mentioned in Section 1, we use a GSD as our case study in
order to illustrate the widest range of different classes of adjusted
CIs (both unconditional and conditional). In addition, we use the
MUSEC trial for continuity with the case study accompanying a
previously published review of point estimation for ADs [9].

The clinical context of the MUSEC trial helps justify the use
of a GSD with early stopping for efficacy but not for lack of
benefit (futility). A previous trial had already demonstrated a
(small) significant effect of using cannabinoids on muscle spas-
ticity, but using a single-item semi-objective rating scale. Part of
the motivation of the MUSEC trial was to use a more up-to-date
and patient-oriented measure of efficacy. Given the previous trial
results, it is plausible that stopping early for futility was deemed
unlikely; hence, the focus on stopping early for efficacy in order
to reduce the required time and sample size required under the
envisaged effect size based on the results of the previous trial.
However, as pointed out by an anonymous reviewer, allowing
early termination for efficacy without allowing for a (binding)
futility decision requires more stringent criteria for the efficacy
decision to prevent inflation of the Type I error rate, which in turn
requires a larger maximal sample size to maintain power.

Another feature of the design is the use of OBF boundaries, which
are conservative in the sense that it is more difficult to stop early
at the earlier analyses. Given the standardized test statistics Zk for

group k= 1, . . . , K, the one-sided OBF boundaries and stopping
rules take the following form [17]:

After group k= 1, . . . , K − 1

if 𝑍𝑘 ≥ 𝐶(𝐾, 𝛼)
√
(𝐾∕𝑘) stop, reject 𝐻0

otherwise continue to group 𝑘 + 1

After group K

if 𝑍𝐾 ≥ 𝐶(𝐾, 𝛼) stop, reject 𝐻0

otherwise stop, do not reject 𝐻0

Here, the values of 𝐶(𝐾, 𝛼) are chosen to ensure that the overall
Type I error probability for the K-stage trial is controlled at preset
level 𝛼. These can be calculated using classical group sequential
theory based on independent increments [18] (i.e., the test statis-
tic calculated using the data gathered in a new stage of a trial is
statistically independent of the information gathered in all pre-
vious stages), where the independent increments property holds
because of randomization of patients to treatments and the choice
of endpoint.

In the actual trial, an unblinded sample size re-estimation based
on conditional power considerations [15] was also planned and
carried out at the interim analysis, which reduced the total
planned sample size from 400 to 300. For the purpose of illustrat-
ing the calculation of a larger range of adjusted CIs, we ignore this
sample size re-estimation in what follows. If we were to take this
into account, then the methods for adaptive GSDs would apply
(see Section 4 of Part I of this paper series [13]), but fewer classes
of adjusted CIs are available in that setting. Wassmer and Bran-
nath [19] report the adjusted CIs (RCIs and final unconditional
CIs) available for this trial taking into account the sample size
re-estimation. For more general guidelines around best practice
in this context, see Section 5 of this paper. We note in passing that
the risk of operational bias due to the unblinding of the interim
data was mitigated by having an Independent Data Monitoring
Board.

Ultimately, the trial did continue to its second stage; Table 1 sum-
marizes the study data at the interim and final analyses, as well
as the OBF efficacy stopping boundaries. The parameter of inter-
est is 𝜃 = 𝑝CE − 𝑝P, which is the difference in the response rates
in the CE and placebo arms, with corresponding test of the null
hypothesis 𝐻0 ∶ 𝜃 = 0 versus the alternative 𝐻1 ∶ 𝜃 > 0.

As can be seen, at the interim analysis the standardized test statis-
tic was close to the stopping boundary for early rejection of the
null hypothesis (no difference in the proportion of subjects with
relief from muscle stiffness between treatment arms).

Typically, at the final analysis a 100(1 − 𝛼)%CI will be desired
for the parameter of interest = 𝑝CE − 𝑝P. A common method of
achieving this is to use a standard two-sided interval, for example,
based on Wald’s methodology [20]. For MUSEC, denoting the
final sample sizes in the two arms by 𝑛P = 134 and 𝑛CE = 143, and
the MLEs for the rates by 𝑝P = 21∕𝑛P and 𝑝CE = 42∕𝑛CE, this gives
for 𝛼 = 0.05:
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TABLE 1 | MUSEC trial observed data, by analysis stage.

Interim analysis Final analysis

Placebo
Cannabis

extract Placebo
Cannabis

extract

Number of patients
with relief from
muscle stiffness

12 27 21 42

Total number of
subjects

97 101 134 143

Observed standardized
test statistic

2.540 2.718

O’Brien–Fleming
stopping boundary for
efficacy

2.797 1.977

O’Brien–Fleming
stopping boundary for
futility

−∞ 1.977

Note: The O’Brien–Fleming stopping boundaries are also shown.

(
𝑝CE − 𝑝P

)
± Φ−1(1 − 𝛼∕2)V̂ar

(
𝑝CE − 𝑝P

)
=
(
𝑝CE − 𝑝P

)
± Φ−1(1 − 𝛼∕2)

√
𝑝CE

(
1 − 𝑝CE

)
𝑛CE

+
𝑝P
(
1 − 𝑝P

)
𝑛P

= (0.040, 0.234)

where Φ−1(⋅) denotes the inverse cumulative distribution func-
tion (CDF) of a standard normal random variable.

If the interim analysis was not present, this CI would have a num-
ber of desirable properties (as discussed in Section 2): it would
be guaranteed to be an interval containing the MLE for 𝑝CE − 𝑝P,
would (at least asymptotically) have the desired coverage, would
be consistent with the associated hypothesis test, and would evi-
dently be easily computed.

In this section (as well as the simulation study in Section 4), we
illustrate how different types of CIs (both unconditional and con-
ditional) can be used in practice for a GSD, based on the MUSEC
trial. We use a GSD as our case study in order to illustrate the
widest range of different CIs.

3.1 | Calculation of CIs When Continuing
to Stage 2

Using the observed data from the MUSEC trial, we now show
how to calculate various CIs for the treatment difference, denoted
𝜃 = 𝑝CE − 𝑝P, from both a conditional and unconditional perspec-
tive (see explanation on the difference below) when the trial con-
tinues to Stage 2, as happened for the MUSEC trial. R code to
obtain all CIs below is provided as detailed in the Data Availabil-
ity statement.

As already seen above, the standard/naive CI for the treatment
difference (i.e., the Wald CI) is given by

𝜃 ± Φ−1(1 − 𝛼∕2)V̂ar(𝜃) =
(
𝑝CE − 𝑝P

)
± Φ−1(1 − 𝛼∕2)

×
√
𝑝CE

(
1 − 𝑝CE

)
∕𝑛CE + 𝑝P

(
1 − 𝑝P

)
∕𝑛p

Other methods than Wald are available to calculate stan-
dard/naive CIs for the difference of two proportions [21, 22], but
none of these will be able to account for the AD used.

From an unconditional perspective, we want to estimate 𝜃 regard-
less of the stage that the trial stops, and are interested in the
properties of the CI as averaged over all possible stopping times
(weighted by the respective stage-wise stopping probabilities).
Note that the standard/naive CI above is an unconditional CI.
In contrast, from a conditional perspective, we are interested in
estimation conditional on the stage the trial stops at (so for the
MUSEC trial, conditional on the trial continuing to Stage 2).

In what follows, we let e1, e2 denote the efficacy stopping bound-
aries, 𝐼1, 𝐼2 the (observed) information, at Stages 1 and 2, respec-
tively, and T the stage the trial stopped at (so T = 2 for the MUSEC
trial). The definitions of the information 𝐼1 and 𝐼2 for the MUSEC
trial are given in Appendix 1, which depend on the number of
observed successes.

3.1.1 | Unconditional CIs

The final unconditional CI (also known as the exact uncondi-
tional CI) depends on a choice of the ordering of the sample space
with respect to evidence against the null hypothesis. In what fol-
lows, we use stagewise ordering, which has desirable properties
described by Jennison and Turnbull [17]. This allows the use of
the p-value function 𝑃 (𝜃) to find the lower and upper bounds for
the 95% CI, 𝜃̂𝑙 and 𝜃̂𝑢, which are the solutions to the equations
P(𝜃̂𝑙)= 0.025 and P(𝜃̂𝑢)= 0.975. The formula for the p-value func-
tion for stopping stage T = 2 (with observed second-stage test
statistic𝑍2 = 𝑧2, where𝑍2 = 𝜃

√
𝐼2) is given in Appendix 1. Note

that the associated point estimator of this method, the median
unbiased estimator (MUE), 𝜃MUE, is the solution to the equation
P(𝜃MUE)= 0.5. If the distributional assumptions hold exactly (i.e.,
the joint canonical distribution of test statistics holds exactly),
then the final unconditional CI guarantees consistency with the
test decision. Software for computing this CI in R for general
GSDs can be found in the PANDA resource [7].

The RCI follows a simple form: 𝜃 ± 𝑒𝑇 ∕
√
𝐼𝑇 , see [17]. Note that

there is no explicit associated point estimator with this method
(although one could of course just use the standard MLE 𝜃). Since
𝜃 = 𝑍𝑇 ∕

√
𝐼𝑇 , the RCI guarantees consistency with the test deci-

sion. Software for computing RCIs in R for general GSDs can be
found in the PANDA resource [7].

The adjusted asymptotic CI adjusts the standard CI, giving a CI of
the form

(𝜃 − 𝜇(𝜃)) ± Φ−1(1 − 𝛼∕2)𝜎(𝜃)∕
√
𝐼𝑇

where 𝜇(𝜃) and 𝜎(𝜃) are functions of 𝜃 given in [23] and repro-
duced in Appendix 1. The associated point estimator for this
method is the bias-adjusted estimator 𝜃 − 𝜇(𝜃).

One subtlety with the use of the adjusted asymptotic CI (for trials
that continue to Stage 2) is that it is possible for the information
levels to actually decrease from Stages 1 to 2, that is, 𝐼2 < 𝐼1. This
can happen in trials with a binary outcome when the pooled esti-
mated response rate is very close to zero (or 1) at Stage 1, but
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further away from zero (and 1) at Stage 2. In this situation, it
is not possible to calculate the adjusted asymptotic CI, although
this happens very rarely (i.e., one or two times out of 105 sim-
ulation replicates) for trials with success rates similar to those
observed in the MUSEC trial. It is similarly possible for this to
occur in trials with, for example, normal (if the estimated stan-
dard deviation differs greatly between stages) and time-to-event
data (typically when the number of events that occur between
analyses is smaller), though again is a rare occurrence.

For the parametric bootstrap CI, we use a simple bootstrap
algorithm to generate B bootstrap MLEs 𝜃(𝑏) for b= 1, . . . , B. In
the interests of space, we defer the details to Appendix 1. Note
that the associated point estimator for this method is given by the
mean of 𝜃(1), . . . , 𝜃(𝐵).

Finally, the randomization-based CI follows a different boot-
strap procedure in order to calculate an adjusted p-value, based
on the randomization distribution (this being an example of
randomization-based inference, i.e., a randomization test). The
idea is to reproduce the group sequential analysis for each allow-
able allocation of patients to treatments, but keeping the observed
patient outcomes fixed. The adjusted p-value is then the propor-
tion of these potential results that are as extreme or more extreme
than the actual trial result. Note that at the interim analysis,
exactly the same set of patients is used each time (although with
different treatment allocations). We give more details on the pro-
cedure as detailed in [24] in Appendix 1.

In practice, it is not feasible (except for small sample sizes) to
use the entire set of possible random allocations and we use N
random samples from the set instead. However, a problem arises
when the adjusted p-value is equal to zero, that is, no allocations
are sampled that give results as extreme as or more extreme than
those actually observed. Even when N = 104 this can occur as dis-
cussed later in the simulation study.

3.1.2 | Conditional CIs

The final conditional CI (also known as the exact conditional CI)
uses the conditional density of the MLE, and is defined as:

CIc =
{
𝜃 ∶ 𝛼∕2 < Prob

(
𝜃 ≥ 𝜃obs | 𝑇 = 𝑡, 𝜃

)
< 1 − 𝛼∕2

}
where 𝜃obs is the observed value of the MLE, see [25], and further
details provided in Appendix 1. The associated point estimator is
the conditional MUE, 𝜃CMUE, which is the solution to the follow-
ing equation:

Prob
(
𝜃 ≥ 𝜃obs | 𝑇 = 𝑡, 𝜃

)
= 0.5

Like for the adjusted asymptotic CI, if the information levels
decrease from Stages 1 to 2, that is, 𝐼2 < 𝐼1, then the final condi-
tional CI (and hence the restricted final conditional CI, see below)
cannot be calculated.

The restricted final conditional CI (also known as the restricted
exact conditional CI), as the name suggests, restricts the range

of the final conditional CI. Given the final conditional CI (CIc)
defined above, the restricted final conditional CI is defined to be
𝐼c ∩ 𝐶𝐼r, where:

CIr = {𝜃 ∶ Prob(𝑇 ≤ 𝑡 | 𝜃) > 𝛼∕2 and Prob(𝑇 ≥ 𝑡 | 𝜃) > 𝛼∕2}

See [25]. For a trial continuing to Stage 2 (so 𝑇 = 2), the upper
bound of the restricted final conditional CI is set equal to
min

{
𝜃̂𝑢,

(
𝑒1 − Φ−1(𝛼∕2)

)
∕
√
𝐼1

}
, where 𝜃̂𝑢 is the upper bound of

CIc. Note that if this minimum is less than the upper bound of
CIc, the intersection CIc ∩ CIr is empty and the restricted final
conditional CI is the empty set.

The conditional likelihood CI is based on the conditional MLE,
that is, the maximizer of the conditional log-likelihood. As shown
in [26], the conditional log-likelihood, conditioning on the trial
stopping at stage T = t is given by

𝐿c
(
𝜃, 𝑧𝑡; 𝑡

)
= −1

2

(
𝑧𝑡 − 𝜃

√
𝐼𝑡

)2
− log(Prob(𝑇 = 𝑡 | 𝜃))

Using the results of Fan and DeMets [25], we can show that the
conditional MLE, 𝜃c, is the solution of the following equation
when T = 2:

𝜃c = 𝜃obs −

√
𝐼1 𝜙

(
𝑒1 − 𝜃c

√
𝐼1

)
𝐼2Φ

(
𝑒1 − 𝜃c

√
𝐼1

)
where 𝜙 and Φ are the probability density function (PDF) and
CDF of the standard normal distribution, respectively. The con-
ditional MLE is the associated point estimator for the conditional
likelihood CI. The conditional likelihood CI is calculated using
a conditional bootstrap procedure, with full details provided in
Appendix 1.

The penalized likelihood CI is equal to the conditional likelihood
CI when the trial continues to Stage 2, see Section 3.2 for details
of how it is different when in fact the trial stops at Stage 1.

3.2 | Calculation of CIs When Stopping Early

In this subsection, we detail how the various CIs are calcu-
lated when the stopping stage is T = 1 (rather than T = 2 as in
Section 3.1), which will be needed for the Simulation study in
Section 4. Again, code to calculate all CIs is provided below.

The standard/naive CI for the treatment difference (i.e., the Wald
CI) is given by

𝜃 ± Φ(1 − 𝛼∕2)V̂ar(𝜃) =
(
𝑝1,CE − 𝑝1,P

)
± Φ(1 − 𝛼∕2)

×

√
𝑝1,CE

(
1 − 𝑝1,CE

)
𝑛1,CE

+
𝑝1,P

(
1 − 𝑝1,P

)
𝑛1,P

where 𝑝1,P and 𝑝1,CE are the mean response rates in Stage 1 for
the placebo and CE arms, respectively, while 𝑛1,P and 𝑛1,CE are
the number of patients allocated in Stage 1 to the placebo and
CE, respectively.
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3.2.1 | Unconditional CIs

For the final unconditional CI, we again use the p-value func-
tion 𝑃 (𝜃) (based on stagewise ordering of the sample space) to
find the lower and upper and bounds for the 95% CI, 𝜃̂𝑙 and
𝜃̂𝑢, which are the solutions to the equations P(𝜃̂𝑙)= 0.025 and
P(𝜃̂𝑢)= 0.975. This admits a closed-form expression when T = 1,
with 𝜃̂𝑙 =

Φ−1(𝛼∕2)+𝑍1√
𝐼1

and 𝜃̂𝑢 =
Φ−1(1−𝛼∕2)+𝑍1√

𝐼1
where 𝑍1 = 𝜃

√
𝐼1.

The RCI and adjusted asymptotic CI are given in Section 3.1, since
they are written in terms of a general stopping stage T.

The parametric bootstrap CI procedure is the same as before,
except that now 𝑝CE and 𝑝P represent the Stage 1 response rate
estimates on the CE and placebo arm, respectively.

3.2.2 | Conditional CIs

When T = 1, the final conditional CI has the same definition as
given for CIc in Section 3.1. More explicitly, for a trial stopping
at Stage 1, the lower and upper bounds for the CI, denoted 𝜃̂𝑙

and 𝜃̂𝑢, are the solutions to the equations 𝛼∕2 =
1−Φ

(√
𝐼1
[
𝜃̂obs−𝜃̂𝑙

])
1−Φ

(
𝑒1−

√
𝐼1 𝜃̂𝑙

)
and 1 − 𝛼∕2 =

1−Φ
(√

𝐼1
[
𝜃̂obs−𝜃̂𝑢

])
1−Φ

(
𝑒1−

√
𝐼1 𝜃̂𝑢

) . Note that as the trial stops closer

to the boundary, the final conditional CI has increasingly poor
properties, with the lower bound becoming increasingly nega-
tive. In extreme situations, the lower bound can even go below
−1 which is nonsensical given that 𝑝CE − 𝑝P ∈ [−1, 1]. In such
a case, one option is to truncate the CI to have a lower bound
equal to −1.

Similarly, the restricted final conditional CI has the same
definition CIc ∩ CIr with CIr as given in Section 3.1. For a trial
stopping at Stage 1, the lower bound of the restricted final con-
ditional CI is set equal to max

{
𝜃̂𝑙,

(
𝑒1 − Φ−1(1 − 𝛼∕2)

)
∕
√
𝐼1

}
,

where 𝜃̂𝑙 is the lower bound of CIc. Note that if this maximum
is greater than the upper bound of CIc, the intersection CIc ∩ CIr
is empty and the restricted final conditional CI is the empty set.

The conditional likelihood CI is based on the conditional
log-likelihood as given in Section 3.1. Again using the results of

Fan and DeMets [25], the conditional MLE, 𝜃c, is the solution of
the following equation when T = 1:

𝜃c = 𝜃obs −
𝜙
(
𝑒1 − 𝜃𝑐

√
𝐼1

)
√
𝐼1Φ

(
𝑒1 − 𝜃𝑐

√
𝐼1

)
The conditional likelihood CI is calculated using a conditional
bootstrap procedure, with full details given in Appendix 1. Like
for the final conditional CI, this CI also has increasingly poor
properties as the trial data becomes closer to the boundary, and
the lower bound can also go below −1.

Finally, the penalized likelihood CI is different from the condi-
tional likelihood CI when the trial stops at Stage 1. As described
in [26], the penalized log-likelihood is given by 𝐿𝜆

(
𝜃; 𝑧𝑡, 𝑡

)
=

− 1
2

(
𝑧𝑡 − 𝜃

√
𝐼𝑡

)2
− 𝜆 log Prob(𝑇 = 𝑡 | 𝜃). Hence the MLE and

the conditional MLE correspond to maximizing the penalized
log-likelihood when 𝜆 = 0 and 𝜆 = 1, respectively. For a given
choice of 𝜆 ∈ [0, 1] this gives a penalized likelihood estimate
𝑃
(
𝜆, 𝑧𝑡, 𝑡

)
= argmax𝜃 𝐿𝜆

(
𝜃; 𝑧𝑡, 𝑡

)
. The choice of 𝜆 proposed is

𝜆∗ =
{
𝜆 ∈ [0, 1] ∶ 𝑃

(
𝜆, 𝑒1, 1

)
= 0

}
. With this choice, the penal-

ized MLE is defined as 𝜃̂p = 𝑃 (𝜆∗, 𝑧1, 1). The penalized likelihood
CI is then calculated using the same bootstrap procedure as above
for the conditional likelihood CI, with the bootstrap conditional
MLE 𝜃(𝑏)c replaced by the penalized MLE 𝜃(𝑏)p . Note that by condi-
tioning the bootstrap sampling on early stopping, each bootstrap
replication satisfies 𝜃(𝑏)p > 0, which therefore guarantees that the
associated CI lies above zero, consistent with the decision to stop
the study early for benefit.

3.3 | Results From the MUSEC Trial

Table 2 gives the values of all the CIs described in Section 3.1,
calculated using the observed data and OBF stopping bound-
aries from the MUSEC trial, with Figure A1 in Appendix 2 giv-
ing the graphical representation. When there is an associated
point estimate (as described above in Section 2.1), this is also
shown. For the methods requiring repeated sampling/simulation
(i.e., the unconditional parametric bootstrap CI, unconditional
randomization-based CI and conditional (penalized) likelihood
CI), we use N = 106 trial replicates.

TABLE 2 | Confidence intervals (and associated point estimates) calculated using the observed data and O’Brien–Fleming efficacy stopping bound-
aries from the MUSEC trial.

Type of CI CI method Point estimate 95% two-sided CI CI width

Standard/naive Wald test 0.137 (overall MLE) (0.040, 0.234) 0.194
Unconditional Final 0.134 (MUE) (0.034, 0.234) 0.200

Repeated — (0.037, 0.237) 0.199
Adjusted asymptotic 0.137 (0.039, 0.235) 0.196
Parametric bootstrap 0.143 (0.041, 0.253) 0.212
Randomization based 0.130 (0.033, 0.226) 0.194

Conditional Final 0.185 (conditional MUE) (0.052, 0.358) 0.306
Restricted final 0.185 (conditional MUE) (0.052, 0.269) 0.217

(Penalized) likelihood 0.191 (conditional MLE) (0.034, 0.304) 0.271
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The Wald (standard) CI is (0.040, 0.234) with a width of 0.194,
and is the comparator for all the other CIs in Table 2, since it is
the conventional end-of-trial CI. Starting with the unconditional
CIs, all are similar to the standard CI. In contrast, the condi-
tional CIs all are substantially wider than the standard CI, with an
increase of 58%, 12%, and 40% for the conditional final, restricted
final, and (penalized) likelihood CIs, respectively. This reflects
the loss of information associated with conditioning on the stop-
ping stage T = 2. The conditional point estimators are also sub-
stantially higher than the unconditional point estimators. This
upward correction is intuitive from a conditional perspective:
there is downward “selection pressure” on the MLE calculated
at the end of Stage 1, since if this is large then the trial does not
continue to Stage 2. For the conditional CIs, this is also reflected
in their upper confidence limits being substantially higher com-
pared with the standard CI. Finally, there is asymmetry in the
restricted final CI around its associated point estimate, reflect-
ing how the upper confidence limit of the conditional final CI
is adjusted.

As a sensitivity analysis to further demonstrate the potential dif-
ferences between the adjusted CIs, we follow Emerson et al. [27]
and calculate the adjusted CIs (and associated point estimates) at
the group sequential stopping boundaries, that is, when 𝑍1 ≈ 𝑒1
and the trial stops at Stage 1, and when𝑍2 ≈ 𝑒2 and the trial con-
tinues to Stage 2 (the equalities here are approximate since we
start with assumed values of the underlying binary data). The
tables of results at both stopping boundaries can be found in
Appendix 2.

When 𝑍1 ≈ 𝑒1 and the trial stops at Stage 1, the unconditional
CIs are similar to the standard CI, with the exception of the
RCI which is substantially wider (CI width of 0.391 vs. 0.268).
All of the conditional CIs, with the exception of the penalized
likelihood CI, have very poor properties—the final conditional
CI and conditional likelihood CI have a lower bound substan-
tially lower than −1, while the restricted final conditional CI is
the empty set. This is consistent with the literature [25, 26] that
does not recommend the use of these two methods when a group
sequential trial stops early for efficacy. Intuitively, these results
are due to the observed data being “extreme” conditionally as 𝑍1
is very close to 𝑒1. The penalized likelihood CI is much more sen-
sible with a width of 0.336, which is less than the width of the
RCI, but does have an associated point estimate that is outside
the CI.

When 𝑍2 ≈ 𝑒2, the general pattern of results is similar to those
in Table 2 based on the data actually observed in the MUSEC
trial. The unconditional CIs are similar to the standard CIs, with
the conditional CIs being wider. Reassuringly, all of the CIs have
a lower bound (approximately) equal to 0, reflecting how 𝑍2 is
(approximately) equal to the stopping boundary. This time, the
restricted final CI does not have a marked asymmetry and is equal
to the conditional final CI.

For the MUSEC trial design, the use of different methods can
give noticeably different CIs for the treatment effect, particularly
when considering a conditional versus unconditional perspec-
tive. This could influence the interpretation of the trial results,
and highlights the importance of pre-specifying which CI(s) will
be reported following an AD. The choice of CI(s) will depend

on what the researchers wish to achieve regarding the estimand
[28] in question. There will be pros and cons for the different CI
methods, which we explore further in the simulation study in
Section 4. We also note that there is a strong link between design
and estimation—the CIs above depend on the design of the trial,
and would potentially change with different group sequential
stopping boundaries.

4 | Simulation Study

4.1 | Simulation Set-Up

Since the CIs calculated above are one realization of the trial data
given the trial design, in this section we carry out a simulation
study to investigate the performance of the CIs under different
scenarios. Note that we have not used assumed values for the
underlying treatment effects to calculate the CIs given in Table 2.
As can be seen from the formulae in Section 3.1, these CIs only
depend on the observed data and efficacy stopping boundary.

To demonstrate the properties of the CIs when averaged over
many trial realizations following the two-stage design of the
MUSEC trial, we ran simulations under different values of 𝑝CE,
the assumed true value of the response rate for the CE arm. For
simplicity, we kept the value of 𝑝P, the assumed true value of the
response rate for the placebo arm, equal to the value observed in
the MUSEC trial, that is, 𝑝P = 𝑝p = 21∕134 ≈ 0.157. We also keep
the value of 𝑒1, the efficacy stopping boundary, equal to 2.797 as
used in the MUSEC trial. Note that by keeping the value of 𝑒1
fixed, the efficiency of the trial will increase (i.e., the expected
sample size will decrease) as the effect size 𝑝CE − 𝑝P increases,
since there is a greater chance of early stopping for efficacy.

We used the following procedure for our trial simulations:

1. Given the assumed value for 𝑝CE, denoted 𝑝∗CE, generate N
Stage 1 trial replicates 𝑆 (1)

1,CE, . . . , 𝑆
(𝑁)
1,CE and 𝑆

(1)
1,P, . . . , 𝑆

(𝑁)
1,P ,

where 𝑆 (𝑖)
1,CẼBin

(
𝑛1,CE, 𝑝

∗
CE
)

and 𝑆 (𝑖)
1,P̃Bin

(
𝑛1,P, 𝑝P

)
.

2. For i= 1, . . . , N calculate the standardized Stage 1 test statis-
tic 𝑍 (𝑖)

1 from the bootstrap values 𝑆(𝑖)
1,CE and 𝑆 (𝑖)

1,P.
a. If𝑍 (𝑖)

1 > 𝑒1 then calculate all CIs (conditional and uncon-
ditional) with T = 1.

b. Otherwise, generate a Stage 2 trial replicate 𝑆
(𝑖)
2,CE

and 𝑆
(𝑖)
2,P, where 𝑆

(𝑖)
2,CẼBin

(
𝑛CE − 𝑛1,CE, 𝑝

∗
CE
)

and
𝑆

(𝑖)
2,P̃Bin

(
𝑛p − 𝑛1,P, 𝑝P

)
. Then calculate all CIs (condi-

tional and unconditional) with T = 2.

For each value of 𝑝CE, we simulated N = 105 trial replicates. For
the CI methods requiring a bootstrap procedure, we used B= 104

bootstrap samples. For the randomization-based CI, even with
104 samples we still frequently ran into the issue of 𝑝adjusted = 0.
Hence, we did not consider this CI method further in the simula-
tion study.

For each of the CI methods considered, we evaluated the follow-
ing properties:

1. Coverage.

2. Mean CI width and standard deviation (SD) of CI width.
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3. Consistency.

4. Lower coverage: probability that the lower confidence limit
is above the true value of 𝜃, denoted 𝑃 (𝐿(𝑋) > 𝜃).

5. Upper coverage: probability that the upper confidence limit
is below the true value of 𝜃, denoted 𝑃 (𝑈 (𝑋) < 𝜃).

4.2 | Simulation Results

4.2.1 | Overall (Unconditional) Results

Table 3 shows the overall (unconditional) simulation results with
the true success rates

(
𝑝p, 𝑝CE

)
on the two arms equal to the over-

all observed means in the MUSEC trial, that is, 𝑝p = 21∕134 ≈
0.157 and 𝑝CE = 42∕143 ≈ 0.294. The results are unconditional in
the sense that the properties of the different types of CIs (condi-
tional and unconditional as described in Section 4.1) are averaged
across all trial realizations, regardless of the stage the trial stops.
The probability of stopping early for efficacy in Stage 1 is 0.308.
Note that with N = 105 trial replicates, the Monte Carlo standard
error for the coverage is less than 0.0016.

Starting with the coverage of the CIs, the standard CI has a
very slight undercoverage, which is caused by two factors: (1)
the distributional assumptions underlying the Wald CI are no
longer met due to the stopping rule, and (2) the quality of the
(asymptotic) normal approximation used for binomial outcomes.
As expected, the final unconditional CI attains the nominal cov-
erage of 95% (within Monte Carlo error). In contrast, the RCI has
conservative coverage, which is driven by the trial replicates that
stop early at Stage 1 (see Tables 4 and 5). The adjusted asymp-
totic CI has the same coverage as the standard CI. The para-
metric bootstrap CI has particularly low coverage of < 93% in
this scenario.

Turning to the conditional estimators, both the conditional final
CI and conditional restricted final CI attain the nominal coverage
of 95% (with a very slight overcoverage). This is to be expected
theoretically, since if a CI attains (or exceeds) the nominal
coverage conditional on stopping at Stage 1 and conditional on
continuing to Stage 2, then it will also attain (or exceed) the nom-
inal coverage unconditionally (averaged over the two stopping
possibilities). In contrast, the conditional likelihood and penal-
ized likelihood have a notably conservative coverage, which is

TABLE 3 | Simulation results showing the performance of various CIs with 𝑝p = 21∕134 ≈ 0.157 and 𝑝CE = 42∕143 ≈ 0.294.

Type of CI CI method Coverage
Mean

width (SD) Consistency 𝑷 (𝑳(𝑿) > 𝜽) 𝑷 (𝑼 (𝑿) < 𝜽)

Standard/naive Wald test 0.945 0.203 (0.017) 0.989 0.029 0.026
Unconditional Final 0.952 0.211 (0.019) 0.998 0.022 0.026

Repeated 0.973 0.240 (0.063) 1.000 0.002 0.025
Adjusted asymptotic 0.945 0.205 (0.020) 0.985 0.022 0.034
Parametric bootstrap 0.926 0.210 (0.010) 0.988 0.056 0.018

Conditional Final 0.954 0.584 (1.675) 0.732 0.024 0.022
Restricted final 0.954 0.227 (0.039) 0.984 0.024 0.021

Likelihood 0.988 0.630 (0.675) 0.693 0.002 0.010
Penalized likelihood 0.988 0.271 (0.028) 0.992 0.002 0.010

Note: There were 105 trial replicates. The probability of stopping at Stage 1 is 0.308. Note that if the final conditional and conditional likelihood CIs are constrained to lie in
the interval (−1, 1) then the mean width (SD) becomes 0.390 (0.279) and 0.513 (0.420), respectively.

TABLE 4 | Simulation results showing the performance of various CIs with 𝑝p = 21∕134 ≈ 0.157 and 𝑝CE = 42∕143 ≈ 0.294, conditional on the trial
stopping early at Stage 1.

Type of CI CI method Coverage
Mean

width (SD) Consistency 𝑷 (𝑳(𝑿) > 𝜽) 𝑷 (𝑼 (𝑿) < 𝜽)

Standard/naive Wald test 0.907 0.225 (0.010) 1.000 0.093 0.000
Unconditional Final 0.930 0.234 (0.011) 1.000 0.070 0.000

Repeated 0.995 0.334 (0.015) 1.000 0.005 0.000
Adjusted asymptotic 0.930 0.232 (0.011) 1.000 0.070 0.000
Parametric bootstrap 0.820 0.207 (0.010) 1.000 0.180 0.000

Conditional Final 0.970 1.315 (2.884) 0.179 0.017 0.013
Restricted final 0.970 0.243 (0.050) 0.997 0.017 0.013

Likelihood 0.995 1.462 (0.689) 0.030 0.005 0.000
Penalized likelihood 0.993 0.298 (0.017) 1.000 0.007 0.000

Note: There were 105 trial replicates. The probability of stopping at Stage 1 is 0.308. Note that if the final conditional and conditional likelihood CIs are constrained to lie in
the interval (−1, 1) then the mean width (SD) becomes 0.686 (0.351) and 1.087 (0.307), respectively.
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TABLE 5 | Simulation results showing the performance of various CIs with 𝑝p = 21∕134 ≈ 0.157 and 𝑝CE = 42∕143 ≈ 0.294, conditional on the trial
continuing to Stage 2.

Type of CI CI method Coverage
Mean

width (SD) Consistency 𝑷 (𝑳(𝑿) > 𝜽) 𝑷 (𝑼 (𝑿) < 𝜽)

Standard/naive Wald test 0.962 0.193 (0.008) 0.984 0.000 0.038
Unconditional Final 0.962 0.200 (0.010) 0.998 0.000 0.038

Repeated 0.963 0.198 (0.008) 1.000 0.000 0.036
Adjusted asymptotic 0.951 0.193 (0.008) 0.978 0.000 0.049
Parametric bootstrap 0.973 0.211 (0.009) 0.983 0.000 0.027

Conditional Final 0.947 0.258 (0.040) 0.978 0.027 0.025
Restricted final 0.947 0.220 (0.031) 0.978 0.027 0.025

(Penalized) likelihood 0.985 0.258 (0.023) 0.989 0.000 0.015

Note: There were 105 trial replicates. The probability of continuing to Stage 2 is 0.692.

at least partly due to the choice of the conditional bootstrap pro-
cedure (using the bias-corrected bootstrap, for example, would
give different results but is out of scope of this paper).

Looking at the mean CI width, the CI methods with higher cov-
erage compared with the standard CI also have a higher mean
width. However, even though the parametric bootstrap CI has
a lower coverage than the standard CI, it also has a slightly
higher mean width. The mean widths of the unconditional final,
adjusted asymptotic, and parametric bootstrap CIs are all within
+4% of the mean width of the standard CI. In contrast, the RCI
has a substantial increase of +17%, which is driven by the larger
mean width conditional on stopping at Stage 1 (see Table 4). As
for the conditional CIs, what is striking are the huge increases
in mean width for the conditional final and conditional like-
lihood CIs, of +188% and +197%, respectively. These are also
accompanied by very high standard deviations, reflecting a very
high variability in the confidence limits. This is driven by very
poor properties for these two methods when stopping at Stage
1 (see Table 4), especially when the observed test statistic is
close to the stopping boundary. Such results have previously been
noted in the literature [25, 26, 29]. In contrast, the conditional
restricted final and penalized likelihood CIs have mean widths
much closer to that of the standard CI, although there is still
an increase of +12% and +33%, respectively. Again, this reflects
the loss of information associated with conditioning on the
stopping stage.

In terms of consistency, the standard CI has consistency just
below 99%, with instances of non-consistent CIs being caused by
the same reasons as for the undercoverage. The unconditional
final CI has a coverage just below 100%, with the non-consistency
caused by the quality of the (asymptotic) normal approximation
used for binomial outcomes, see also Lloyd (2021). The RCI is the
only CI method with 100% consistency, as would be expected the-
oretically. Both the adjusted asymptotic and unconditional para-
metric bootstrap CIs have very similar consistency to the standard
CI. For the conditional CIs, again it is striking how low the consis-
tency is for the conditional final and conditional likelihood CIs,
which is driven by how they are so wide (on average) that they
often will include zero even when the null hypothesis of no treat-
ment effect is rejected. In contrast, the conditional restricted final
and penalized likelihood CIs have consistencies much closer to
100%, comparable to the consistency of the standard CI.

Finally, looking at the upper and lower coverages, these are
approximately equal for the standard, unconditional final, con-
ditional final, and conditional restricted final CIs. The upper
coverage is (sometimes substantially) greater than the lower cov-
erage for the RCI, adjusted asymptotic, conditional likelihood,
and penalized likelihood CIs. The unconditional parametric
bootstrap CI is the only method to have the lower coverage
higher than the upper coverage.

In order to show more clearly the differences between the CIs in
repeated realizations of the MUSEC trial, Figure 1 shows the CIs
from the first five simulation replicates of the simulation study.
Note that in Simulation Replicates 2 and 3, the trial stopped early
at Stage 1 (and hence with rejection of the null hypothesis). In
Simulation Replicates 1, 4, and 5, the trial continued to Stage 2,
with rejection of the null hypothesis in Simulation Replicate 1.

Looking first at coverage (i.e., whether the CI contains the true
value of the treatment difference, shown by the red horizontal
line), in Simulation Replicates 1, 2, and 3, all CI methods contain
the true value, whereas in Simulation Replicate 5, all CI methods
do not contain the true value. However, in Simulation Replicate
4, we can see a discrepancy in the coverage, with the standard,
unconditional final, RCI, and adjusted asymptotic CIs not con-
taining the true value, whereas the other CIs do contain the true
value. Similarly, in terms of consistency, in Simulation Replicates
2 and 3, the conditional final and conditional likelihood CIs con-
tain zero, despite the null hypothesis of no treatment effect being
rejected.

Finally, in terms of CI width, in the simulation replicates where
the trial stopped early in Stage 1, it is striking how much wider
both the conditional final and conditional likelihood CIs are com-
pared to any of the others. Indeed, the lower bounds of the condi-
tional likelihood CIs are below −1, which is also the case for the
conditional final CI. In the trial replicates that continue to Stage
2, the CI widths are much more similar, although the conditional
CIs are wider than the unconditional ones (as would be expected).

4.2.2 | Results Conditional on Stopping at Stage 1

Apart from the overall (unconditional) results, it is informative
to also report results conditional on the stopping stage of the
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FIGURE 1 | Confidence intervals from the first five simulation replicates of the simulation study. The horizontal red dashed line shows the true
value of the treatment difference. RCI, repeated confidence interval.

trial. Table 4 shows the simulation results conditional on stopping
early at Stage 1, with the true success rates

(
𝑝p, 𝑝CE

)
on the two

arms again equal to the overall observed means in the MUSEC
trial. With a probability of early stopping of 0.308, these results are
based on 3.08 × 104 simulation replicates, giving a Monte Carlo
standard error of less than 0.0028 for the coverage.

Conditional on stopping at Stage 1, the coverage of the standard
CI is substantially below the nominal, at less than 91%. The cov-
erage of the unconditional final and adjusted asymptotic CIs also
decreases to 93%, while the parametric bootstrap has the largest
drop to only 82%. In contrast, the RCI has a very conservative cov-
erage of 99.5%. These results demonstrate that even if uncondi-
tionally the unconditional CIs may have near nominal coverage,
the conditional coverage properties can be poor. In contrast, all
of the conditional CI methods (as expected) have coverage above
the nominal 95%, with the conditional final and restricted final
CIs having conservative coverage of 97%, and the conditional like-
lihood and penalized likelihood CIs having a very conservative
coverage comparable to the RCI.

In terms of mean CI width, similar patterns are seen as for the
unconditional results. Some noticeable features are that the RCI
has a substantially higher mean width than either the conditional
restricted final or penalized likelihood CIs. The very large mean
widths of the conditional final and conditional likelihood CIs are
even more extreme conditional on stopping at Stage 1. This agrees
with the literature [25, 26] that does not recommend the use of
these two methods when a group sequential trial stops early for
benefit. The very large mean widths also correspond with very

low consistencies of the test decision (which is always to reject the
null). In contrast, all other CI methods have 100% consistency (as
would be expected in theory for the RCI and penalized likelihood
CI) except for the restricted final CIs due to a few replicates hav-
ing these as the empty set. Finally, all CI methods except for the
conditional final and restricted final CIs have an upper coverage
of zero.

4.2.3 | Conditional on Continuing to Stage 2

Table 5 shows the simulation results conditional on continuing
to Stage 2, with the true success rates

(
𝑝p, 𝑝CE

)
on the two arms

again equal to the overall observed means in the MUSEC trial.
With a probability of continuing to Stage 2 of 69.2%, these results
are based on 6.92 × 104 simulation replicates, giving a Monte
Carlo standard error of less than 0.0019 for the coverage.

Conditional on continuing to Stage 2, the standard CI and all
the unconditional CIs now have slightly conservative coverage
of around 96%–97% (with the exception of the adjusted asymp-
totic CI which achieves the nominal 95% coverage). In contrast,
the coverage of conditional final and restricted final CIs is just
below the nominal 95%. The conditional likelihood CI (which
is the same as the penalized likelihood CI in this case) has the
most conservative coverage of 98.5%. What is noticeable is that
the magnitude of the relative increase in the mean widths of the
conditional final and conditional (penalized) likelihood CIs com-
pared to the standard CI is much lower compared to the relative
increase conditional on early stopping at Stage 1.

10 of 21 Statistics in Medicine, 2025
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TABLE 6 | Simulation results showing the performance of various CIs with 𝑝p = 21∕134 ≈ 0.157 and 𝑝CE = 42∕143 + 0.08 ≈ 0.374, conditional on
continuing to Stage 2.

Type of CI CI method Coverage
Mean

width (SD) Consistency 𝑷 (𝑳(𝑿) > 𝜽) 𝑷 (𝑼 (𝑿) < 𝜽)

Standard/naive Wald test 0.897 0.202 (0.007) 0.994 0.000 0.103
Unconditional Final 0.902 0.218 (0.012) 0.997 0.000 0.098

Repeated 0.910 0.209 (0.007) 1.000 0.000 0.090
Adjusted asymptotic 0.895 0.205 (0.007) 0.992 0.000 0.105
Parametric bootstrap 0.959 0.221 (0.008) 0.995 0.000 0.041

Conditional Final 0.945 0.310 (0.043) 0.989 0.031 0.024
Restricted final 0.945 0.203 (0.055) 0.989 0.031 0.024

(Penalized) likelihood 0.987 0.288 (0.019) 0.996 0.000 0.013

Note: There were 105 trial replicates. The probability of continuing to Stage 2 is 0.239.

In terms of consistency, there is a drop of up to around 2% (com-
pared with the 100% consistency conditional on stopping at Stage
1) for the standard CI, conditional restricted final, and all uncon-
ditional CIs, with the exception of the RCI which maintains 100%
consistency (as expected theoretically) and the unconditional
final CI which has almost 100% consistency (with inconsistency
again caused by the normal approximation). Meanwhile, the con-
sistency of the conditional final and conditional likelihood CIs is
around 98%–99%, compared with only 18% and 3% consistency,
respectively, conditional on stopping at Stage 1. Finally, all CI
methods except for the conditional final and restricted final CIs
now have a lower coverage of zero.

If however we run the simulations with a higher true success rates
for 𝑝CE, that is, 𝑝CE = 42∕143 + 0.08 ≈ 0.374 so that the probabil-
ity of continuing to Stage 2 is only 0.239, the coverage results for
the standard and unconditional CIs conditional on continuing
to Stage 2 look rather different. Table 6 shows these simulation
results, with the Monte Carlo standard error for the coverage and
consistency results less than 0.0032.

This time, the standard CI and all the unconditional CIs, includ-
ing the RCI, now have coverage substantially less than the nomi-
nal 95%, ranging from 89% to 91%. The exception is the parametric
bootstrap CI, which has a slightly conservative coverage (96%).
In contrast, the coverage of conditional final and restricted final
CIs remains just below the nominal 95%, while the coverage of
the conditional (penalized) likelihood CI remains rather conser-
vative (almost 99%). Again these results demonstrate that uncon-
ditional CIs can have poor coverage properties conditional on the
stopping stage (regardless of whether the trial is stopped early or
continues). Tables showing the simulation results uncondition-
ally and conditional on early stopping at Stage 1 for this choice
of values for 𝑝p and 𝑝CE can be found in Appendix 3 (Tables A5
and A6).

4.2.4 | Simulation Results Across a Range of Values
for 𝒑CE

The results given in Tables 4–6 are only for a fixed value of 𝑝CE
and so we now explore the performance of the various CI meth-
ods across a range of values of 𝑝CE from 𝑝CE − 0.07 ≈ 0.224 to

𝑝CE + 0.14 ≈ 0.434 (while keeping 𝑝P fixed), which corresponds
to a probability of early stopping ranging from 0.05 to 0.94, as seen
in Figure 2.

For each value of 𝑝CE (22 in total), we ran N = 105 trial replicates
for each of the CI methods, except for the standard CI where
we ran N = 106 trial replicates in order to more accurately assess
whether there was any undercoverage. For the CI methods requir-
ing a bootstrap procedure (unconditional parametric bootstrap,
conditional likelihood and conditional penalized likelihood), we
again used B= 104 bootstrap samples. We also constrained the
final conditional and conditional likelihood CIs to lie in the inter-
val (−1, 1).

Figure 3 shows the coverage of the CI methods and the mean CI
width as a function of 𝑝CE, split into three rows corresponding
to unconditional, conditional on stopping at Stage 1 and condi-
tional on continuing to Stage 2. The shaded areas around the
lines for the CI methods correspond to ±1.96 times the Monte
Carlo standard error. The red dashed line denotes the nominal
95% coverage.

Starting with the unconditional results, the coverage of the
standard CI is (just) below the nominal 95% for most of the
range of 𝑝CE except for 𝑝CE > 0.40 when it goes just above 95%.
In contrast, the unconditional final CI has coverage (just) above
the nominal 95% for the whole range of 𝑝CE, with the coverage
becoming increasingly conservative (up to 96%) as 𝑝CE increases.
The RCI has rather conservative coverage for the whole range of
𝑝CE, with the coverage also becoming increasingly conservative
(> 98%) as 𝑝CE increases. The adjusted asymptotic CI has very
similar undercoverage to the standard CI for 𝑝CE < 0.33 but then
has increasingly conservative coverage as 𝑝CE increases above
0.33. The unconditional parametric bootstrap CI has rather low
coverage (< 93%) for 𝑝CE < 0.32 but quickly switches to having
increasingly conservative coverage for 𝑝CE > 0.34. These results
demonstrate that whether a particular CI method has the correct
coverage can strongly depend on the true (unknown) underlying
parameter values. The conditional CIs all have conservative
coverage, but the conditional final and conditional restricted
final CIs have coverage close to the nominal (95%–96%). In
contrast, the conditional likelihood and penalized likelihood CI
have rather conservative coverage (98%–99%).
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FIGURE 2 | Probability of early stopping at Stage 1 as the value of 𝑝CE varies from 𝑝CE − 0.07 ≈ 0.224 to 𝑝CE + 0.14 ≈ 0.434. The value of 𝑝p =
21∕134 ≈ 0.157.

As for the unconditional mean width, the unconditional final,
adjusted asymptotic and unconditional parametric bootstrap CIs
all have similar mean width as the standard CI (within ±6%). The
conditional restricted final CI has a slightly higher mean width
than the standard CI (between 8% and 13%), with the penalized
likelihood CI having a mean width between 23% and 33% higher
than the standard CI. In contrast, the conditional final and condi-
tional likelihood CI mean widths are dramatically larger than the
standard CI, up to 106% and 203% larger, respectively. Finally, the
RCI has a similar mean width as the standard CI for small values
of 𝑝CE but becomes substantially higher as 𝑝CE increases (up to
43% larger).

Turning now to the coverage conditional on early stopping at
Stage 1, for smaller values of 𝑝CE the coverage of the standard CI,
adjusted asymptotic CI, unconditional final and unconditional
bootstrap CI is very low. The standard CI coverage can even be
less than 50%. Note though that the lowest coverages are also
achieved when there are the lowest probabilities of actually stop-
ping at Stage 1. The coverage of the standard CI does go above
the nominal 95% when 𝑝CE > 0.33. In contrast, all the conditional
CIs and the RCI have conservative coverage throughout the range
of 𝑝CE, with the conditional final and restricted final CIs being
(much) closer to the nominal level of coverage compared to the
RCI, conditional likelihood and penalized likelihood CI.

The mean width of the CIs conditional on stopping at Stage 1
show similar patterns as for the unconditional results, except that
the RCI now has substantially greater mean width than the stan-
dard CI across the range of 𝑝CE values (consistently between 47%

and 52% larger). Also, the extreme widths for the conditional
final and conditional likelihood CIs are even more striking for
smaller values of 𝑝CE. This reflects the results in the literature that
these CIs have poor properties conditional on early stopping, with
much better properties seen with the conditional restricted final
and penalized likelihood CIs.

As for the coverage of the CIs conditional on continuing to Stage
2, the coverage of the standard, adjusted asymptotic, uncondi-
tional final and unconditional bootstrap CI is very low for larger
values of 𝑝CE. The coverage of the standard CI can be below
70%. This time, the RCI is no longer conservative throughout the
whole range of larger values of 𝑝CE, with also a very low coverage
for larger values of 𝑝CE (as low as 73%), which could in part be due
to the positive bias of the MLE conditional on continuing to Stage
2. These lowest coverages are achieved when there are the low-
est probabilities of actually continuing to Stage 2. The coverage
of the standard CI is above the nominal 95% when 𝑝CE < 0.33.
The conditional likelihood CI (which is the same as the penal-
ized likelihood CI) and the RCI again have conservative coverage
throughout the range of 𝑝CE. This time the conditional final and
restricted final CIs essentially match the nominal 95% level of
coverage.

Finally, for the mean width of the CIs conditional on continuing
to Stage 2, both the adjusted asymptotic CI and RCI have a sim-
ilar mean width as the standard CI (within ±2% and up to 4%
greater, respectively). Meanwhile, the unconditional final CI has
an increasingly large mean width compared with the standard CI
as 𝑝CE increases (up to 12% larger). The unconditional bootstrap
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FIGURE 3 | Coverage and CI width as the value of 𝑝CE varies from 𝑝CE − 0.07 ≈ 0.224 to 𝑝CE + 0.14 ≈ 0.434. The value of 𝑝p = 21∕134 ≈ 0.157.
The shaded areas around the lines for the CI methods correspond to ±1.96 times the Monte Carlo standard error. The red dashed line denotes the
nominal 95% coverage. For the unconditional coverage plot, the restricted conditional and conditional final lines are almost completely overlapping.
For the coverage plot conditional on stopping at Stage 1, the unconditional final and adjusted asymptotic lines completely overlap, as do the restricted
conditional and conditional final lines. The conditional likelihood and penalized likelihood lines are also very close together. For the CI width plot
conditional on stopping at Stage 1, the unconditional final and adjusted asymptotic lines are almost completely overlapping. For the coverage plot
conditional on continuing to Stage 2, the conditional final and restricted conditional lines are almost completely overlapping.
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CI has a consistently higher mean width than the standard CI of
between 7% and 9%. The mean width of the conditional restricted
final CI has an interesting pattern, being up to 15% greater than
the standard CI for 𝑝CE < 0.38, but then having a smaller mean
width than the standard CI for 𝑝CE > 0.38, with even up to a 16%
decrease. In contrast, the conditional final and conditional like-
lihood CI mean widths remain much larger than the standard
CI, up to 64% and 46% larger, respectively. This implies that the
penalized likelihood CI also has much larger widths than the
standard CI conditional on continuing to Stage 2 (as it is equal
to the conditional likelihood CI).

4.3 | Discussion of Simulation Results

As noted when introducing the MUSEC trial case study, we use
a GSD to illustrate the widest range of different types of adjusted
CIs. Even though the simulation results are based on the specific
two-stage GSD used in the MUSEC trial, there are some observa-
tions we can make that are expected to hold in general for other
types of ADs, based on generic theoretical considerations. We
caution that these observations would still need to be systemati-
cally assessed for other types of ADs, which we return to in the
Discussion (Section 6).

• There is often (but not always) the following tradeoff in met-
rics: a high(er) coverage implies high(er) mean CI width, and
vice-versa. The tradeoff between coverage and consistency is
much less clear.

• While unconditional CIs can have good performance uncon-
ditionally, the conditional performance (especially in terms
of coverage) may be poor.

• To guarantee conditional performance in terms of coverage,
conditional CIs are a must. However, this can come at the
price of (very) wide CIs.

• The simulations highlight the importance of looking at a
wide(r) region of the parameter space, as some CI methods
may perform well in some parts of the parameter space and
not in others.

We can also make the following observations that are specific to
the MUSEC trial (and other similar GSDs). Note that we have
deliberately not claimed that one method is the “best” overall and
should be used in the MUSEC trial context, as which method is
“best” depends on the trial aims and relative importance of rele-
vant metrics of interest (including coverage, consistency and CI
width), see Section 5.

• The simulation results show that even in this relatively sim-
pler setting of a GSD with two stages, there can be (very)
large differences in the properties of the various adjusted CI
methods.

• For conditional CIs, as has been discussed in the literature,
the restricted conditional final CI is to be preferred to the
conditional final CI, and the penalized likelihood CI is to
be preferred to the conditional likelihood CI (particularly for
trials that stop early at Stage 1).

• Some of the undercoverage and inconsistency is driven by
the quality of the (asymptotic) normal approximation used.
However, this is not unique to ADs, with such issues also
seen for CIs for binary endpoints in fixed trial designs [21].

• The only CI methods that guarantee consistency in all cases
in this trial context are the RCI and the penalized likelihood
CI (when stopping at Stage 1).

• More “extreme” conditional results can be seen as the prob-
ability of stopping at that stage gets closer to zero or one.

5 | Guidance: Best Practice for CIs in ADs

In this Section, we give guidance on the choice and reporting of
CIs for ADs. This builds on the relevant parts of the FDA guidance
for ADs [10] and the ACE guidance [2, 11], and closely follows the
guidance for best practices for point estimation in ADs given by
Robertson et al. [8, 9]. The choice of CIs should be considered
throughout an adaptive trial, from the planning stage to the final
reporting and interpretation of the results. Indeed, the design and
analysis of an adaptive trial are closely linked, and should ideally
go hand-in-hand. In what follows, our main focus is on the con-
firmatory setting where analyses are fully pre-specified, but some
of the principles can also apply to more exploratory settings (e.g.,
the CONSORT Dose-Finding Extension guidelines mention the
reporting of CIs [30]).

5.1 | Planning Stage

The context, aims, and design of an adaptive trial should all
inform the analysis strategy used, including the choice of CIs.
These decisions are not only for trial statisticians but should also
be discussed with other trial stakeholders to ensure consistency
with what they want to achieve. First, it is necessary to decide
on what exactly is to be estimated (i.e., the estimands of interest
[28]). Second, the desired characteristics of potential CIs should
be decided. Some key considerations are as follows:

• Conditional versus unconditional perspective: The choice of
whether to look at the conditional or unconditional prop-
erties of CIs will depend on the trial design. For example,
in a drop-the-losers trial where only a single treatment is
selected for analysis in the final stage, a conditional per-
spective reflects the primary interest being in estimating
the treatment effect of the selected treatment. On the other
hand, for group sequential trials, the unconditional perspec-
tive is recognized as being an important consideration [9].
As seen in the simulation study in Section 4, the conditional
properties of unconditional CIs can be poor, while the con-
ditional CIs can have (much) larger widths than the uncon-
ditional CIs. A general framework of viewing the question
of conditional versus unconditional inference is provided
by Marschner [31]. Rather than advocating for or against
unconditional inference over conditional inference in gen-
eral, the framework allows for the exploration of the extent to
which conditional bias is likely to be present within a given
sample (using meta-analysis techniques).
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• Trade-off in metrics: As highlighted at the end of Section 4,
typically there will be a trade-off between the coverage
and the width of CI methods. In terms of interpretabil-
ity/communication, consistency with the test decision is key.
Depending on the context and aims of the trial, different
relative importance may be given to the other criteria. For
example, in a phase II trial where a precise estimate of the
treatment effect is needed to inform a follow-up confirma-
tory study, the CI width may be of greater concern, whereas
in a definitive Phase III trial more emphasis may be placed
on having the correct coverage to satisfy regulatory concerns.
We are not aware of clear proposals in the literature on how
to combine these different metrics into one overall criterion
(as opposed to, say, the mean squared error [MSE] for point
estimators).

• Link with point estimation: As highlighted in Sections 3 and
4, all of the CI methods (apart from the RCI) have a nat-
ural associated point estimator. Hence, the considerations
and guidance around the choice of point estimators given in
Robertson et al. [8, 9] can also play a role in the choice of the
CI method. Ideally, these choices should go hand-in-hand to
avoid the (rare) situations where the chosen point estimator
lies outside the chosen CI.

In trials with multiple outcomes (e.g., primary and secondary
outcomes), there may be different criteria and hence CIs needed
for different outcomes. As well, in some trial settings such as
multi-arm trials where more than one arm can reach the final
stage, the CI of each arm’s comparison with control could be con-
sidered separately, but there may also be interest in calculating,
for example, the simultaneous coverage across all arms that are
selected. Once the criteria for assessing CIs have been decided,
the next step is to find potential CIs that can be used for the trial
design in question. Part I of this paper series is a starting point to
find the relevant methodological literature.

For certain (more common) types of ADs, such as GSDs, a review
of the literature may be sufficient to compare the different types of
adjusted CIs. Otherwise, we would recommend conducting simu-
lations to explore the properties of potential CIs given the AD. It is
important to assess the CIs across a range of plausible parameter
values and design scenarios, taking into account factors such as
the probability of early stopping. The simulation-based approach
can also be used when there are no proposed alternatives to the
standard CI for the trial design under consideration. Even in this
setting, we would still encourage an exploration of the proper-
ties of the standard CI. If there is undercoverage or inconsisten-
cies with the hypothesis test decision (for example), then this can
impact how the results of the trial are reported (see Section 5.4).
Exploring a bootstrap approach as an alternative to the standard
CI may be an option in such a scenario.

5.2 | Pre-Specification of Analyses

The statistical analysis plan (SAP) and health economic anal-
ysis plan (HEAP) should include a description of the CIs that
are planned to be used when reporting the results of the trial,
and a justification of the choice of CIs based on the investiga-
tions conducted during the planning stage. This reflects FDA

guidance, which states that there should be “prespecification of
the statistical methods that will be used to [ . . . ] estimate treat-
ment effects . . . ” [10]. The trial statistician and health economist
should work together to develop plans that are complementary to
both their analyses.

In settings where multiple adjusted CIs are available and are of
interest, one CI should be designated the “primary” CI for the
final reporting of results, with the others included as sensitivity or
supplementary analyses (depending on the estimand of interest).
This is to aid clarity in the interpretation of the trial results, and
to avoid “cherry-picking” the most favorable CI after observing
the trial results. We have avoided making general recommenda-
tions on which CI method to use in practice because this depends
on the context and goals of the trial, as well as the type of AD
in question. In addition, given that CIs for ADs is an ongoing
research area, there is a risk that any such recommendations may
become outdated.

5.3 | Data Monitoring Committees (DMCs)

When presenting interim results to DMCs, the choice of CIs
should also be considered. For example, for GSDs the RCI has
been suggested as a useful data monitoring tool [32].

5.4 | Reporting Results for a Completed Trial

When reporting results for a completed adaptive trial, there
should be a clear description of the “statistical methods used to
estimate measures of treatment effects” [2]. Hence, it should be
made clear what CI method is used, along with any underlying
assumptions made in their calculation (e.g., being conditional
on the observed stopping time). These discussions would nat-
urally link back to the planning stage literature review and/or
simulations (which could potentially be updated in light of the
trial results and any unplanned adaptations that took place). For
example, if the potential undercoverage of the standard CI is
likely to be negligible, this would be a reassuring statement to
make. On the other hand, in a setting where no adjusted CIs cur-
rently exist in the literature and there is the potential for under-
coverage or any other performance issue of the standard CI, a
statement flagging up this potential concern would allow appro-
priate caution to be taken when using the CI to inform clinical or
policy decisions, future studies or meta-analyses. As discussed in
Section 5.2, it should be specified in advance (i.e., in the SAP for
a confirmatory study) which CI will be used for the primary anal-
ysis and which (if any) CI(s) will be used as a sensitivity analysis.

6 | Discussion

There is a growing body of methodological literature proposing
various adjusted CI methods for a wide variety of ADs, with GSDs
in particular having a large number of different options, as illus-
trated in our case study and simulation results. However, in our
experience, there is at best limited uptake of adjusted CIs in prac-
tice, with many adaptive trials continuing to only report the stan-
dard CI.
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It is our hope that this paper series will encourage the increased
use and reporting of adjusted CIs in practice for ADs wherever
possible. As described in our guidance in Section 5, estimation
issues should be considered in the design stage of an adaptive
trial. The estimation strategy should take the design of the trial
into account, which motivates the use of adjusted CIs. In terms
of trial reporting, statements about the potential undercoverage
(for example) of the reported CIs can indicate where more care
is needed in the interpretation of the results and the use of these
CIs for further research.

For future research, it would be helpful to have stronger guidance
on how to choose CIs in practice for a given AD type, especially
in terms of proposals around how to appropriately combine
different metrics/performance measures of interest. In addition,
the case study and simulation results are based on a specific
two-stage GSD with early stopping for efficacy only. Although
we have drawn some more general conclusions from these results
in Section 4.3, it would be useful to systematically assess the per-
formance of different methods for adjusted CIs for other types
of ADs (and indeed other GSD stopping boundaries). Another
important area of research is to explore how adjusted CIs per-
form when the statistical model used adjusts for randomization
(e.g., stratification or minimization) factors or/and prognostic
factors in line with methodological [33] and regulatory guidance
[34, 35]. Finally, there is also the need for the further devel-
opment of user-friendly software and code for calculation of
adjusted CIs in practice and to aid in simulations.
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Appendix 1

Calculations of CIs—Additional Details

Definition of the Information at Stages 1 and 2

At stage k (k= 1,2), let 𝑝̃𝑘 denote the pooled estimate of the mean over-
all success probability, that is, the total number of observed successes
divided by the total number of subjects. Then the observed information
Ik is given by

𝐼𝑘 =
1

𝑝̃𝑘
(
1 − 𝑝̃𝑘

)(
1∕𝑛0𝑘 + 1∕𝑛CE𝑘

)
where n0k and nCEk are the number of subjects on the placebo and CE
arms, respectively, at stage k.

Final Unconditional CI

The formula for the p-value function for stopping stage T = 2 (with
observed second-stage test statistic 𝑍2 = 𝑧2) is as follows:

𝑃 (𝜃) = ∫
𝑒1

−∞∫
∞

𝑧2

𝑓2

((
𝒙𝟏𝒙𝟐

)
,
(
𝜃
√
𝐼1𝜃

√
𝐼2

)
,

(
1

√
𝐼1∕𝐼2√

𝐼1∕𝐼2 1

))
𝑑𝑥2𝑑𝑥1

where 𝑓2
((
𝒙𝟏𝒙𝟐

)
, 𝜇, 𝛴

)
is the density of a bivariate normal distribution

with mean vector 𝜇 and covariance matrix Σ evaluated at the vector(
𝒙𝟏,𝒙𝟐

)
.

Adjusted Asymptotic CI

The functions 𝜇(𝜃) and 𝜎(𝜃) are as follows:

𝜇(𝜃) = 𝐸(𝜃) − 𝜃 𝐸
(√

𝐼𝑇

)

𝜎(𝜃) = 𝐸
(
𝑍2
𝑇
∕𝐼𝑇

)
− 2𝜃 𝐸

(
𝑍𝑇

)
+ 𝜃2 𝐸

(
𝐼𝑇

)
− 𝜇(𝜃)2

Unconditional Parametric Bootstrap Procedure

1. Given the end-of-trial response rate estimates 𝑝CE and 𝑝P, generate B
bootstrap Stage 1 samples𝑆 (1)

1,CE, . . . , 𝑆
(𝐵)
1,CE and𝑆 (1)

1,P, . . . , 𝑆
(𝐵)
1,P , where

𝑆
(𝑏)
1,CE ∼ Bin

(
𝑛1,CE, 𝑝CE

)
and 𝑆 (𝑏)

1,P ∼ Bin
(
𝑛1,P, 𝑝P

)
represent the boot-

strap number of successes on the CE and placebo arm, respectively,
at the end of Stage 1 for b= 1, . . . , B. Here 𝑛1,CE and 𝑛1,P are the Stage
1 sample sizes for the CE and placebo arm, respectively.

2. For b= 1, . . . , B calculate the bootstrap standardized Stage 1 test
statistic 𝑍(𝑏)

1 from the bootstrap values 𝑆 (𝑏)
1,CE and 𝑆 (𝑏)

1,P.
a. If 𝑍(𝑏)

1 > 𝑒1 then the bootstrap MLE 𝜃(𝑏) is set equal to the Stage
1 MLE, that is,

𝜃(𝑏) = 𝑆
(𝑏)
1,CE∕𝑛1,CE − 𝑆 (𝑏)

1,P∕𝑛1,P

b. Otherwise, generate a bootstrap Stage 2 sample 𝑆
(𝑏)
2,CE

and 𝑆
(𝑏)
2,P, where 𝑆

(𝑏)
2,CE ∼ Bin

(
𝑛CE − 𝑛1,CE, 𝑝CE

)
and 𝑆

(𝑏)
2,P ∼

Bin
(
𝑛p − 𝑛1,P, 𝑝P

)
represent the bootstrap number of successes

on the CE and placebo arm, respectively, for Stage 2 only. Then
the bootstrap MLE 𝜃(𝑏) is set equal to the overall MLE, that is,

𝜃(𝑏) =
(
𝑆

(𝑏)
1,CE + 𝑆 (𝑏)

2,CE

)
∕𝑛CE −

(
𝑆

(𝑏)
1,P + 𝑆 (𝑏)

2,P

)
∕𝑛P

3. The bootstrap CI is then given by
(
𝑞𝛼∕2, 𝑞1−𝛼∕2

)
where 𝑞𝛼∕2 and

𝑞1−𝛼∕2 are the 𝛼∕2 and (1 − 𝛼∕2) quantiles, respectively, of the set
𝜃(1), . . . , 𝜃(𝐵).

Randomization-Based CI

The bootstrap procedure is defined as follows [24]. Suppose a group
sequential trial has been completed, and let X denote the set of all
observed patient outcomes. Let the vector A denote the set of all possible
allocations of patients to treatments (given the randomization procedure
used). Let 𝑎𝑖 denote a potential allocation of patients to treatments and
𝑎∗ denote the actual allocation used in the trial. Then let F(X, 𝑎𝑖) be the
measure of strength of evidence against the null hypothesis. The adjusted
p-value is then

𝑝adjusted =
∑
𝑎𝑖𝜖A

𝐼
{
𝐹
(
X, 𝑎𝑖

) ≥ 𝐹 (X, 𝑎∗)
}

For the measure of strength of evidence against the null hypothesis, we
use stagewise ordering of the sample space (like for the unconditional
final CI). The randomization-based CI is based on the adjusted p-value as
follows:

[
Φ−1(1 − 𝑝adjusted

)
± Φ−1(1 − 𝛼∕2)

] √
𝑝CE

(
1 − 𝑝CE

)
∕𝑛CE + 𝑝P

(
1 − 𝑝P

)
∕𝑛p

The associated point estimator for this CI is then

Φ−1(1 − 𝑝adjusted
)√

𝑝CE
(
1 − 𝑝CE

)
∕𝑛CE + 𝑝P

(
1 − 𝑝P

)
∕𝑛p

Conditional Final CI

For a trial continuing to Stage 2 (so 𝑇 = 2), the lower and upper and
bounds for the CI, 𝜃̂𝑙 and 𝜃̂𝑢, are the solutions to the equations

𝛼∕2 = ∫
∞

𝜃obs

𝑓
(
𝜃|𝜃𝑙, 𝑇 = 2

)
𝑑𝜃 and 1 − 𝛼∕2 = ∫

∞

𝜃obs

𝑓
(
𝜃|𝜃𝑢, 𝑇 = 2

)
𝑑𝜃

where 𝑓 (𝜃 | 𝜃, 𝑇 = 2) is the conditional density of the MLE (conditional
on continuing to Stage 2):

𝑓 (𝜃 | 𝜃, 𝑇 = 2) =
1 − Φ

(
𝑒1∕

√
𝐼1−𝜃

1∕𝐼1−1∕𝐼2

)
1 − Φ

(
𝑒1 − 𝜃

√
𝐼1

) exp
[
− 𝐼2

2
(𝜃 − 𝜃)2

]
√

2𝜋∕𝐼2

The associated point estimator is the conditional MUE, 𝜃CMUE, which is
the solution to the following equation:

0.5 = ∫
∞

𝜃obs

𝑓
(
𝜃|𝜃CMUE, 𝑇 = 2

)
𝑑𝜃

Bootstrap Procedure for the Conditional Likelihood CI
(Conditional on Continuing to Stage 2)

1. Set b= 1.

2. Given the end-of-trial response rate estimates 𝑝CE and 𝑝P, gen-
erate bootstrap Stage 1 sample 𝑆

(𝑏)
1,CE and 𝑆

(𝑏)
1,P, where 𝑆

(𝑏)
1,CE ∼

Bin
(
𝑛1,CE, 𝑝CE

)
and 𝑆 (𝑏)

1,P ∼ Bin
(
𝑛1,P, 𝑝P

)
.

3. Calculate the bootstrap standardized Stage 1 test statistic 𝑍(𝑏)
1 from

the bootstrap values 𝑆 (𝑏)
1,CE and 𝑆 (𝑏)

1,P.
a. If 𝑍(𝑏)

1 > 𝑒1, go back to Step 2.
b. Otherwise, generate a bootstrap Stage 2 sample 𝑆

(𝑏)
2,CE

and 𝑆
(𝑏)
2,P, where 𝑆

(𝑏)
2,CE ∼ Bin

(
𝑛CE − 𝑛1,CE, 𝑝CE

)
and 𝑆

(𝑏)
2,P ∼

Bin
(
𝑛p − 𝑛1,P, 𝑝P

)
. The bootstrap conditional MLE 𝜃

(𝑏)
c is calcu-

lated following the equation above, using the bootstrap values
𝑆

(𝑏)
1,CE, 𝑆

(𝑏)
2,CE, 𝑆

(𝑏)
1,P, and 𝑆 (𝑏)

2,P. Set b= b+ 1 and go to Step 2.
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4. The bootstrap CI is then given by
(
𝑞𝛼∕2, 𝑞1−𝛼∕2

)
where 𝑞𝛼∕2 and

𝑞1−𝛼∕2 are the 𝛼∕2 and (1 − 𝛼∕2) quantiles, respectively, of the set
𝜃
(1)
c , . . . , 𝜃

(𝐵)
c .

Bootstrap Procedure for the Conditional Likelihood CI
(Conditional on Early Stopping at Stage 1)

1. Set b= 1.

2. Given the Stage 1 success probability estimates 𝑝CE and 𝑝P, gen-
erate bootstrap Stage 1 sample 𝑆

(𝑏)
1,CE and 𝑆

(𝑏)
1,P, where 𝑆

(𝑏)
1,CE ∼

Bin
(
𝑛1,CE, 𝑝CE

)
and 𝑆 (𝑏)

1,P ∼ Bin
(
𝑛1,P, 𝑝P

)
.

3. Calculate the bootstrap standardized Stage 1 test statistic 𝑍(𝑏)
1 from

the bootstrap values 𝑆 (𝑏)
1,CE and 𝑆 (𝑏)

1,P.
a. If𝑍(𝑏)

1 > 𝑒1 then the bootstrap conditional MLE 𝜃(𝑏)c is calculated
following the equation above, using the bootstrap values 𝑆 (𝑏)

1,CE
and 𝑆 (𝑏)

1,P. Set b= b+ 1 and go to Step 2.
b. Otherwise, go back to Step 2.

4. The bootstrap CI is then given by
(
𝑞𝛼∕2, 𝑞1−𝛼∕2

)
where 𝑞𝛼∕2 and

𝑞1−𝛼∕2 are the 𝛼∕2 and (1 − 𝛼∕2) quantiles, respectively, of the set
𝜃
(1)
c , . . . , 𝜃

(𝐵)
c .

Appendix 2

Case Study

Figure A1 gives a graphical representation of CIs (and associated point
estimates) calculated using the observed data from the MUSEC trial.

Table A2 gives the values of the adjusted CIs (and associated point
estimates) described in Section 3.1, calculated using the OBF stopping
boundaries from the MUSEC trial and under the assumption that𝑍1 ≈ 𝑒1
and the trial stops at Stage 1. We assume the following Stage 1 data given
in Table A1 to achieve this (where the total number of subjects on placebo
and cannabis extract are the same as those observed in the MUSEC trial):

For the methods requiring repeated sampling/simulation, we use N = 106

trial replicates.

Table A4 gives the values of the adjusted CIs (and associated point
estimates) described in Section 3.1, calculated using the OBF stopping
boundaries from the MUSEC trial and under the assumption that𝑍2 ≈ 𝑒2

TABLE A1 | Assumed trial data with O’Brien–Fleming efficacy stop-
ping boundaries under the assumption that 𝑍1 ≈ 𝑒1 and the trial stops at
Stage 1.

Interim analysis

Placebo
Cannabis

extract

Number of patients with relief
from muscle stiffness

30 51

Total number of subjects 97 101
Observed standardized test statistic 2.799
O’Brien–Fleming stopping
boundary for efficacy

2.797

O’Brien–Fleming stopping
boundary for futility

−∞

Conditional likelihood

Restricted conditional

Conditional final

Randomisation−based

Unconditional bootstrap

Adjusted asymptotic

RCI

Unconditional exact

Wald test (standard)

0.0 0.1 0.2 0.3 0.4
Estimate

C
I m

et
ho

d

FIGURE A1 | Graphical representation of confidence intervals (and associated point estimates) calculated using the observed data from the MUSEC
trial. Dashed lines indicate conditional CIs. RCI, repeated confidence interval.
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TABLE A2 | Confidence intervals (and associated point estimates) calculated using the data given in Table A1 and the O’Brien-Fleming efficacy
stopping boundaries from the MUSEC trial.

Type of CI CI method Point estimate 95% two-sided CI CI width

Standard/naive Wald test 0.196 (overall MLE) (0.062, 0.330) 0.268
Unconditional Final 0.196 (MUE) (0.059, 0.333) 0.274

Repeated — (0.000, 0.391) 0.391
Adjusted asymptotic 0.195 (0.060, 0.329) 0.268
Parametric bootstrap 0.203 (0.082, 0.327) 0.245
Randomization-based 0.202 (0.068, 0.336) 0.268

Conditional Final −16.28 (conditional MUE) (−87.50, −0.398) 87.10
Restricted final −16.28 (conditional MUE) ∅ —

Likelihood −23.58 (conditional MLE) (−3.27, 0.344) 3.610
Penalized likelihood 0.001 (penalized MLE) (0.008, 0.344) 0.336

Note: The symbol ∅ denotes the empty set.

TABLE A3 | Assumed trial data with O’Brien–Fleming efficacy stopping boundaries under the assumption that 𝑍2 ≈ 𝑒2 and the trial continues to
Stage 2.

Interim analysis Final analysis

Placebo
Cannabis

extract Placebo
Cannabis

extract

Number of patients with
relief from muscle stiffness

30 45 48 68

Total number of subjects 97 101 134 143
Observed standardized test
statistic

1.976 1.978

O’Brien–Fleming stopping
boundary for efficacy

2.797 1.977

O’Brien–Fleming stopping
boundary for futility

−∞ 1.977

TABLE A4 | Confidence intervals (and associated point estimates) calculated using the data given in Table A3 and the O’Brien–Fleming efficacy
stopping boundaries from the MUSEC trial.

Type of CI CI method Point estimate 95% two-sided CI CI width

Standard/naive Wald test 0.117 (overall MLE) (0.002, 0.233) 0.231
Unconditional Final 0.117 (MUE) (0.001, 0.233) 0.233

Repeated — (0.000, 0.235) 0.235
Adjusted asymptotic 0.116 (0.003, 0.230) 0.227
Parametric bootstrap 0.121 (0.002, 0.255) 0.253
Randomization-based 0.121 (0.006, 0.236) 0.231

Conditional Final 0.131 (conditional MUE) (0.004, 0.286) 0.282
Restricted final 0.131 (conditional MUE) (0.004, 0.286) 0.282

(Penalized) likelihood 0.135 (conditional MLE) (−0.002, 0.287) 0.289

and the trial continues to Stage 2. We assume the following trial data in
Table A3 to achieve this (where the total number of subjects on placebo
and cannabis extract at each stage are the same as those observed in the
MUSEC trial):

For the methods requiring repeated sampling/simulation, we again use
N = 106 trial replicates.

Appendix 3

Additional Simulation Results

Simulations with the true success rates
(
𝑝p, 𝑝CE

)
given by 𝑝p = 21∕134 ≈

0.157 and 𝑝CE = 42∕143 + 0.08 ≈ 0.374. The probability of stopping early
for efficacy in Stage 1 is 0.761.
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Overall (Unconditional Results)

TABLE A5 | Simulation results showing the performance of various CIs with 𝑝p = 21∕134 ≈ 0.157 and 𝑝CE = 42∕143 + 0.08 ≈ 0.374.

Type of CI CI method Coverage Mean width (SE) Consistency 𝑷 (𝑳(𝑿) > 𝜽) 𝑷 (𝑼 (𝑿) < 𝜽)

Standard/naive Wald test 0.948 0.227 (0.016) 0.999 0.028 0.025
Unconditional Final 0.958 0.240 (0.015) 0.999 0.019 0.023

Repeated 0.977 0.318 (0.062) 1.000 0.001 0.022
Adjusted asymptotic 0.956 0.236 (0.019) 0.998 0.019 0.025
Parametric bootstrap 0.961 0.218 (0.009) 0.999 0.029 0.010

Conditional Final 0.954 0.789 (3.097) 0.587 0.020 0.026
Restricted final 0.954 0.258 (0.054) 0.992 0.020 0.021

Likelihood 0.988 0.856 (0.597) 0.351 0.009 0.003
Penalized likelihood 0.986 0.308 (0.024) 0.999 0.011 0.003

Note: There were 105 trial replicates. The probability of stopping at Stage 1 is 0.761. Note that if the final conditional and conditional likelihood CIs are constrained to lie in
the interval (−1, 1) then the mean width (SD) becomes 0.560 (0.273) and 0.739 (0.420), respectively.

Conditional on Stopping at Stage 1

TABLE A6 | Simulation results showing the performance of various CIs with 𝑝p = 21∕134 ≈ 0.157 and 𝑝CE = 42∕143 + 0.08 ≈ 0.374.

Type of CI CI method Coverage Mean width (SE) Consistency 𝑷 (𝑳(𝑿) > 𝜽) 𝑷 (𝑼 (𝑿) < 𝜽)

Standard/naive Wald test 0.964 0.235 (0.009) 1.000 0.036 0.000
Unconditional Final 0.975 0.246 (0.009) 1.000 0.025 0.000

Repeated 0.998 0.352 (0.013) 1.000 0.002 0.000
Adjusted asymptotic 0.975 0.246 (0.009) 1.000 0.025 0.000
Parametric bootstrap 0.961 0.218 (0.009) 1.000 0.039 0.000

Conditional Final 0.957 0.940 (3.536) 0.461 0.017 0.026
Restricted final 0.957 0.276 (0.039) 0.993 0.017 0.026

Likelihood 0.988 1.033 (0.580) 0.149 0.012 0.000
Penalized likelihood 0.986 0.314 (0.022) 1.000 0.014 0.000

Note: There were 105 trial replicates. The probability of stopping at Stage 1 is 0.761. Note that if the final conditional and conditional likelihood CIs are constrained to lie in
the interval (−1, 1) then the mean width (SD) becomes 0.507 (0.297) and 0.881 (0.383), respectively.
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