
Received: 9 September 2022 Revised: 16 January 2024 Accepted: 15 April 2024

DOI: 10.1002/sim.10090

R E S E A R C H A R T I C L E

Adding experimental treatment arms to multi-arm
multi-stage platform trials in progress

Thomas Burnett1 Franz König2 Thomas Jaki3,4

1Department of Mathematical Sciences,
University of Bath, Bath, UK
2Center for Medical Data Science, Medical
University of Vienna, Vienna, Austria
3MRC Biostatistics Unit, University of
Cambridge, Cambridge, UK
4Faculty of Computer Science and Data
Science, University of Regensburg,
Regensburg, Germany

Correspondence
Franz König, Center for Medical Data
Science, Medical University of Vienna,
Spitalgasse 23, Vienna 1090, Austria.
Email: franz.koenig@meduniwien.ac.at

Funding information
Innovative Medicines Initiative 2 Joint
Undertaking, Grant/Award Number:
853966; National Institute for Health and
Care Research, Grant/Award Number:
NIHR-SRF-2015-08-001; NIHR
Biomedical Research Centre,
Grant/Award Number: BRC-1215-20014;
Medical Research Council, Grant/Award
Numbers: MC_UU_00002/14,
MC_UU_00040/03, MR/V038419/1

Multi-arm multi-stage (MAMS) platform trials efficiently compare several treat-
ments with a common control arm. Crucially MAMS designs allow for adjust-
ment for multiplicity if required. If for example, the active treatment arms in a
clinical trial relate to different dose levels or different routes of administration
of a drug, the strict control of the family-wise error rate (FWER) is paramount.
Suppose a further treatment becomes available, it is desirable to add this to the
trial already in progress; to access both the practical and statistical benefits of the
MAMS design. In any setting where control of the error rate is required, we must
add corresponding hypotheses without compromising the validity of the test-
ing procedure.To strongly control the FWER, MAMS designs use pre-planned
decision rules that determine the recruitment of the next stage of the trial based
on the available data. The addition of a treatment arm presents an unplanned
change to the design that we must account for in the testing procedure. We
demonstrate the use of the conditional error approach to add hypotheses to any
testing procedure that strongly controls the FWER. We use this framework to
add treatments to a MAMS trial in progress. Simulations illustrate the possible
characteristics of such procedures.
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1 INTRODUCTION

It is common to have several competing treatments during the clinical development process. These may be different doses
of the same drug or entirely different treatment regimes. Jaki and Hampson1 note that, given the high failure rate and
cost of Phase III trials, it is key to give careful consideration to which treatments we investigate. Multi-arm multi-stage
trials (MAMS)2-4 compare several experimental treatments with a common control allowing for the efficient selection of
appropriate treatments.5

MAMS trials reduce the expected number of patients by dropping treatments that accruing data suggest are ineffec-
tive or stopping the trial if the data demonstrate efficacy. Given the multiple hypotheses and highly adaptive nature of
the design, MAMS studies require specialist testing methodology to control the error rate of the trial.6 Magirr et al7 intro-
duce the generalised Dunnett family of tests. They define group sequential testing boundaries to account for the multiple
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analyses and the correlation structure introduced by the comparison of several experimental arms to a common control;8
Urach and Posch9 extend this, directly defining all elements of the closed testing procedure.10 Alternatively, fully flex-
ible testing methods11-15 allow decisions about which arms should remain in the study to function separately from the
hypothesis testing. Both group sequential and fully flexible methods require the pre-definition of all study hypotheses,
constructing the overall testing procedure to give strong control of the family-wise error rate (FWER).16 Especially reg-
ulatory guidance documents stress that strict control of the FWER is required for confirmatory (pivotal) trials,17-19 for
example, for adaptive (seamless) designs with data-dependent selection and addition of treatments in (un-)planned
interim analyses.20-22

It is possible that not all experimental treatments are available at the start of the trial, for example, see the STAM-
PEDE trial.23 STAMPEDE started with five comparisons and subsequently added several more to the protocol. For further
examples of trials comparing multiple experimental treatments see sect. 5 of the work of Bauer et al24 or the discus-
sion in the adaptive designs CONSORT extension, Dimairo et al.25 Adding further treatments to the trial in progress
maintains the benefits of a MAMS design, reducing logistical and administrative effort, speeding up the overall develop-
ment process,26 adding efficiency through the multiple comparisons and allowing direct comparisons of the treatments
within the same trial. Though there seem some consensus arising that strong control of FWER is not required in such
platform trials, particularly when the statistical claims are independent.27 The question whether a strict control of the
FWER is needed, depends on the consequences of erroneous rejections.28 Especially in multi-armed trials where the treat-
ment arms correspond to different dose levels, the hypotheses to be tested are not independent and therefore appropriate
multiplicity adjustments such as (group-sequential) Dunnett tests7,8,29 are needed. When adding new dose levels in an
already ongoing trials, the multiple testing strategy and hypotheses to be tested needs to be adapted accordingly to control
the FWER.

When adding treatments to a trial that strongly controls the FWER we must also add the corresponding hypotheses.
If no data have been observed (including a requirement that there have been no interim analyses) we may adjust the
pre-planned testing structure to incorporate the additional hypotheses. Bennett and Mander30 demonstrate how to suit-
ably adjust the sample size for each treatment arm for such additions. However, what if we wish to add treatments (and
corresponding hypotheses) after an interim analysis? Our methods allow modification of the trial design in the presence
of observed data. Furthermore, this modification of the trial design may be done without specifying when and how to add
new treatments. In principle, any internal and external data could be utilised for this decision-making. The only restric-
tion is that the trial has not been stopped before the addition of further experimental treatments, for example, when all
treatments have to be stopped due to binding futility rules.

The conditional error approach31 allows for design modifications during a trial, where these modifications have not
been pre-planned. These modifications may be accounted for in the setting of treatment selection14,32 however, as noted
by Hommel33 adding hypotheses to a testing framework requires further restrictions. We build a general framework using
these principles, which allows the inclusion of additional hypotheses to any testing procedure that strongly controls the
FWER and the use of existing trial information in this testing procedure. Though depending on the conditional error for
some of the intersection procedures, adding a new treatment arm might not be the most efficient strategy compared to
opening a new trial for the new treatment arm. We discuss which type of power can be of interest in this type of designs.
We show how to apply the conditional error principle in the setting of MAMS designs, demonstrating how to construct
an appropriate hypothesis testing structure for the updated trial.

2 ALTERING A TRIAL IN PROGRESS

2.1 A two arm trial

Suppose we plan a two-arm trial with a continuous outcome to compare a new treatment, T1, and a control, T0.
Let 𝜇1 and 𝜇0 be the expected responses for patients on treatments T1 and T0 respectively, and define the treat-
ment effect to be 𝜃1 = 𝜇1 − 𝜇0. We investigate the null hypothesis H01 ∶ 𝜃1 ≤ 0 versus the one sided alternative
H11 ∶ 𝜃1 > 0.

We plan a trial recruiting a total of n patients. These patients are randomised equally between treatment and control.
We collect observations Xi,k ∼ N(𝜇k, 𝜎

2) for i = 1, … ,n∕2 and k = 0, 1. Let 𝜃̂1 denote the estimate of the treatment effect
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corresponding to these observations. Defining 𝜉1 =
𝜃1
√

n
2𝜎

this has corresponding Z-statistic,

Z1 =
𝜃̂1
√

n
2𝜎

∼ N(𝜉1, 1).

We reject H01 at level 𝛼 when Z1 > Φ−1(1 − 𝛼), where Φ is the standard normal CDF.

2.2 Adding a treatment

Suppose for some 𝜏 ∈ (0, 1) after 𝜏n observations we wish to add a second experimental treatment, T2, to the trial. Let
𝜇2 be the expected response for patients receiving this new treatment and define the corresponding treatment effect to
be 𝜃2 = 𝜇2 − 𝜇0. We add the corresponding null hypothesis H02 ∶ 𝜃2 ≤ 0 versus the corresponding one-sided alternative
H12 ∶ 𝜃2 > 0.

While not strictly necessary for what follows, for illustration we maintain the pre-planned elements of the trial con-
cerning treatments T1 and T0, such as the same sample size per treatment. It is useful to consider the trial in two stages,
stage 1 and stage 2 consisting of the patients recruited before and after the treatment is added. From the stage 1 data we
find the Z-statistic

Z(1)1 ∼ N(𝜉1
√
𝜏, 1)

and from the stage 2 data we find the Z-statistic

Z(2)1 ∼ N(𝜉1
√

1 − 𝜏, 1).

The overall Z-statistic (that would be found from the pooled date) may be reconstructed from the stage-wise Z-statistics

Z1 =
√
𝜏Z(1)1 +

√
1 − 𝜏Z(2)1 .

We may choose to recruit to T2 as we please (indeed the choice of how to recruit the remainder of the trial is something
that should be carefully considered in practice). Suppose again for illustration we maintain equal randomisation to each
treatment, recruiting (1 − 𝜏)n∕2 patients to T2 in stage 2. Since T2 is added to the trial for stage 2 the estimate of the
treatment effect 𝜃̂2 must be based only on the stage 2 data (in particular note that this means only control patients recruited
in stage 2 are used). Thus for 𝜉2 =

𝜃2
√

n
2𝜎

we find the corresponding Z-statistics

Z2 ∼ N(𝜉2
√

1 − 𝜏, 1).

Due to the common control and equal randomisation Z(2)1 and Z2 have a known correlation 1∕2. We note that if we were to
adjust the recruitment to each treatment group this correlation would change but still remain known due to the common
control patients.

2.3 Hypothesis testing

In Section 2.1, we construct the hypothesis test to ensure a pre-specified type I error rate. When adding H02 it is natural to
extend this principle of error control and require strong control of the family-wise error rate (FWER). Let R be the event
that that we reject one or more true null hypothesis then we achieve strong control of the FWER at level 𝛼 when

P𝜽(R) ≤ 𝛼 for all 𝜽 = (𝜃1, 𝜃2). (1)

Suppose we add T2 at 𝜏 = 0.5 and we test each null hypotheses at a nominal level 𝛼 = 0.05, the FWER in this case is 0.09
(Figure S1 in the supplementary material shows a similar inflation for all values of 𝜏). Sugitani et al34 propose methods
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3450 BURNETT et al.

that account for the introduction of the additional hypothesis, testing any introduced hypothesis based strictly on the
data collected after their introduction at level 𝛼.33 We build on this approach, adjusting for multiplicity when adding
hypotheses and incorporating existing information where possible.

We construct a closed testing procedure10 accounting for the adaptive nature of the trial within each test.14 We require
level 𝛼 tests of H01, H02 and H0,12 = H01 ∩H02 ∶ 𝜃1 ≤ 0 &𝜃2 ≤ 0 (we shall refer to these as local tests). We reject H01 globally
when the local level 𝛼 tests of H01 and H0,12 are rejected. Similarly we reject H02 globally when the local level 𝛼 tests of
H02 and H0,12 are rejected. Such a procedure ensures strong control of the FWER at leve 𝛼.

We have not considered any change regarding the local test of H01, so we reject H01 locally when Z1 > Φ−1(1 − 𝛼).
However, it is useful to discuss constructing this test using the conditional error principle.31 Given stage 1 observation
z(1)1 we define the conditional error rate,

A(z(1)1 ) = P𝜃1=0(Reject H01|Z(1)1 = z(1)1 ).

The probability of subsequently rejecting H01 must not exceed A(z(1)1 ). Thus in stage 2 we locally reject H01 when Z(2)1 >

Φ−1(1 − A(z(1)1 )). Let f (z(1)1 ) be the probability density function of z(1)1 , under H01 we have that

P𝜃1=0(Reject H01) =
∫z(1)1

f (z(1)1 )A(z
(1)
1 )dz(1)1 = 𝛼. (2)

Thus the local test of H01 is constructed at the pre-specified 𝛼 as required.
There is no existing for H02 and so this test must be constructed at level 𝛼 and based only on stage 2 observations. Thus

we locally reject the test for H02 when Z2 > Φ−1(1 − 𝛼).
While there was no planned test for H0,12, there is pre-existing information for H01 in the form of Z(1)1 . Hommel33 notes

such stage 1 data may be used in the test by considering some initially excluded hypotheses. We apply this concept to the
test of H0,12. Clearly H0,12 implies H01. Under H01 we compute the conditional error rate A(z(1)1 ) as described previously,
where under under H01 z(1)1 is distributed such that Equation (2) holds as before. Thus we may construct the local test of
H0,12 at level A(z(1)1 ) allowing for the incorporation of the stage one data given by Z(1)1 .

To test H0,12 we use a Dunnett test.8 Let

ZD = max(Z(2)1 ,Z2)

and define the distribution
(

X
Y

)

∼ N

((
0
0

)

,

(
1 1∕2

1∕2 1

))

.

We construct the p-value,

PD = P(X > ZD ∪ Y > ZD)

and locally reject H0,12 when PD < A(Z(1)1 ).
The number of patients assigned to each treatment is free to vary provided the local tests of H01 and H0,12 are con-

structed based on the stage 2 data and tested at A(z(1)1 ). Alternatively one could base the test on a combination across stages,
such as the weighted inverse normal.35-37 Critically if the ratio of patients allocated to each treatment differs between
stages 1 and 2 the test may not be based on the pooled data.

2.4 Simulation study

We assess the operating characteristics of the Dunnett-based closed testing procedure proposed in Section 2.3 via simu-
lation. We compare this with a closed testing procedure with a local test for H0,12 based only on evidence for H01, that is
we reject both H01 and H0,12 locally when Z1 > Φ−1(1 − 𝛼). This alternative test is a gate keeping procedure38 written in
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BURNETT et al. 3451

T A B L E 1 Rejection criteria for each of the local tests under the Dunnett-type and gate keeping testing procedures.

Rejection criteria for local hypotheses

Testing procedure H01 H02 H0,12

Dunnett type Z1 > Φ−1(1 − 𝛼) Z2 > Φ−1(1 − 𝛼) max
(

Z(2)1 ,Z2
)
> Φ−1

(
1 − A

(
Z(1)1

))

Gate keeping Z1 > Φ−1(1 − 𝛼) Z2 > Φ−1(1 − 𝛼) Z1 > Φ−1(1 − 𝛼)

T A B L E 2 Rejection probabilities of local and global hypothesis tests under each testing procedure.

Rejection of local tests Rejection of global tests

𝝃1 𝝃2 P(L01) P(L02) P(L0,12) P(G01) P(G02) P(GB) P(GA)

Dunnett procedure for testing the intersection hypothesis

0 0 0.05 0.05 0.05 0.03 0.01 0.01 0.05

𝛿 0 0.90 0.05 0.86 0.81 0.00 0.05 0.86

0 𝛿 0.05 0.66 0.36 0.00 0.29 0.04 0.33

𝛿 𝛿 0.90 0.66 0.92 0.26 0.03 0.62 0.91

Gate keeping procedure for testing the intersection hypothesis

0 0 0.05 0.05 0.05 0.04 NA 0.01 0.05

𝛿 0 0.90 0.05 0.86 0.85 NA 0.05 0.90

0 𝛿 0.05 0.66 0.36 0.01 NA 0.04 0.05

𝛿 𝛿 0.90 0.66 0.90 0.28 NA 0.62 0.90

Note: Error rates highlighted in bold, 𝛿 = Φ−1(0.95) + Φ−1(0.9) such that we have power of 0.9 when testing H01 in the original trial. The events L01, L02 and
L0,12 are the events that we locally reject H01, H02 and H0,12 respectively. Similarly the events G01, G02, GB and GA are the events that we globally reject only H01,
only H02, both or any null hypothesis respectively. Note for the gate keeping procedure it is not possible to test only H02, this is reflected in the table by the NA
for P(G02), though one may interpret this probability as zero.

the form of a closed testing procedure, the test for H0,12 has the correct error rate of 𝛼 since H0,12 implies H01. Further
to this both procedures use the existing data Z(1)1 to test H0,12 also by the argument that H0,12 implies H01. Table 1 shows
the rejection criteria for the local test under each testing procedure, this shows that the difference in the procedures is
entirely driven by the test of the intersection hypothesis.

For combinations (𝜉1, 𝜉2), with 𝜎∕
√

n = 1, 𝛿 = Φ−1(0.95) + Φ−1(0.9) and 𝜏 = 0.5 and strong control of the FWER at
𝛼 = 0.05 we simulate 1,000,000 realisations of Z1 and Z2 assuming equal sample size in each treatment at each stage
in R.39

Table 2 shows the local and global rejection probabilities for the null hypotheses for each testing method. As required
both procedures control error rate of all local tests at 0.05 and thus both strongly control the FWER.

We see that both procedures perform similarly when H01 is false. The most notable difference is the scenario where
H01 is true and H02 is false. Since, by construction, the gate keeping procedure cannot produce a scenario where only
H02 is rejected, we note that all of these values are not shown in Table 2. Thus the gate keeping procedure cannot
reject H02 without making an error by rejecting H01 locally and the Dunnett-based procedure increases the probability
of rejecting H02 by 0.29 (by being able to reject H02 only globally. This motivates our use of Dunnett-type procedures in
Section 4.1.

In Figure 1, we explore the probabilities of rejecting the intersection hypothesis H0,12 for all combinations of H01 and
H02 true and false. When H01 is false the conditional error is likely to be higher than the pre-planned 𝛼, giving a high
chance of rejecting H0,12; when H01 is true and H02 is false there is a small reduction in the probability of rejecting H0,12,
this explains why the gate keeping procedure performs slight better when 𝜉1 = 𝛿 and 𝜉2 = 0. Conversely when H01 is true
the conditional error is likely to be quite low: when both null hypotheses are true this corresponds to a low probabil-
ity of rejecting H0,12 however, when H02 is false we recover some possibility of rejecting H0,12 allowing us to reject H02
globally.
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F I G U R E 1 Conditional error rate, A(z1(1)), against probability of rejecting the intersection hypothesis P(Reject H0,12|z(1)1 ) and
corresponding density of conditional error f

(
z(1)1

)
, 𝛿 = Φ−1(0.95) + Φ−1(0.9) such that we have power of 0.9 when testing H01 in the original

trial.

3 GENERAL RULE FOR ADDING HYPOTHESES

Consider a trial that aims to test m ∈ N null hypotheses of the form H0i ∶ 𝜃i ∈ Θ0,i versus alternative hypotheses of the
form H1i ∶ 𝜃i ∈ Θ1,i where Θ1,i = Θ ⧵ Θ0,i for all i = 1, … ,n. Suppose one wishes to construct a hypothesis testing proce-
dure to strongly control the FWER at level 𝛼. Generalising Equation (1) if R is the event that we reject one or more true
null hypotheses we require

P𝜽(R) ≤ 𝛼 for all 𝜽 = (𝜃1, … , 𝜃m).

To ensure this is achieved we require a closed testing procedure.10 Let E be the set of these hypotheses E = (H01, … ,H0m).
For any e ⊆ E we may construct a level 𝛼 test of the intersection hypothesis given by

He =
⋂

i∈e
H0i. (3)

To reject a null hypothesis H0i globally (ie, to say, the hypotheses may be rejected in total by the testing procedure) in this
testing procedure one must reject level 𝛼 tests of all intersections in which it is involved. That is to globally reject H0i for
any i = (1, … ,m) for all e ⊆ E one must reject all He for which H0i ∈ e.

Suppose we wish to add m′ further hypotheses whilst this trial is in progress having observed some trial data (if we have
not we still have the freedom to redefine the testing procedure and incorporate these hypotheses in a test of the original
form). Let N be the set of additional null hypotheses N = (H0m+1, … ,H0m+m′ ). To update our closed testing procedure
we now require that for any e ⊆ E ∪ N we can construct a level 𝛼 test of the intersection hypothesis given by He defined
as in Equation (3). As in the original procedure, we may globally reject H0i for any i = (1, … ,m) if we reject all He for
which H0i ∈ e having considered all e ⊆ E ∪ N. An updated closed testing procedure incorporating all hypotheses in the
set E ∪ N has three forms of null hypothesis we must consider when constructing these tests.

He: For any e ⊆ E let 𝛼′e be the conditional error rate under the original design for the test of He given the data avail-
able before we modify the trial (ie, before the N hypotheses are added). The local test of He must be constructed at
level 𝛼′e.
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BURNETT et al. 3453

Hn: For any n ⊆ N the local test of Hn must be constructed at level 𝛼 and based only on data collected after the N
hypotheses are added.

He ∩Hn: For any e ⊆ E and n ⊆ N He ∩Hn implies He and hence the data already available for He is distributed such
that computing the corresponding conditional error 𝛼′e will ensure the equivalent of Equation (2) holds. Thus the local
test of He ∩Hn must be constructed at level 𝛼′e with any contribution from Hn being based only on data collected after the
N hypotheses are added.

It is necessary to construct tests of He ∩Hn in this way since we may choose what is added to the trial (and thus which
hypotheses will be tested) and how (eg, choosing how many patients to recruit to each added treatment arm) based on
the already accumulated data. In the case where Hn is tested then the test for He ∩Hn may be based on the data relating
to both He and Hn and is tested at 𝛼′e; while if Hn is not added the test for He ∩Hn is implicitly that of He also tested at 𝛼′e.

The procedure is universally applicable to all testing procedures that strongly control the FWER, since any procedure
that gives strong control of the FWER is a closed testing procedure Burnett and Jennison.40 Thus we may add hypotheses
to any procedure that ensures strong control of the FWER while maintaining the statistical integrity of the trial. The
penalty for doing so compared is the test of hypotheses of the form He ∩Hn, though testing such intersection hypotheses
is always a penalty when adjusting for multiplicity.

4 ALTERATION OF A MULTI-ARM MULTI-STAGE TRIAL IN PROGRESS

4.1 Multi-arm multi-stage trials

Returning to our motivation set out in Section 1 we now discuss how to add additional treatments (and the corresponding
hypotheses) to a multi-arm multi-stage (MAMS) platform trials5,41 in progress. MAMS allow us to compare the treatments
in the same trial, while incorporating pre-planned interim analyses to facilitate early stopping (both for futility and effi-
cacy). This early stopping can be done while formally testing null hypotheses and controlling the FWER (Equation 1),
through the use of generalised Dunnett testing procedures7 though the generalised Dunnett procedure is implicitly a
closed testing procedure we follow the proposal of Urach and Posch,9 directly defining all elements of the closed testing
procedure.

Suppose we have K experimental treatments, T1, … ,TK to compare against a common control. We define the null
hypotheses H0i ∶ 𝜃i ≤ 0 and corresponding alternatives H1i ∶ 𝜃i > 0 for all i = 1, … ,K. We consider a MAMS design that
will simultaneously test these K hypotheses over J analyses.

Let n be the number of patients to be recruited to the control arm in the first stage of the trial. At analysis j = 1, … , J
the trial will have recruited r(j)k n patients to treatment k = 0, 1, … ,K (r(1)0 = 1 by construction). Suppose treatment k ∈
1, … ,K is dropped for futility at analysis j ∗∈ 1, … , J we have r(j)k = r(j∗)k for all j > j ∗. If all T1, … ,TK are dropped for
futility the trial stops recruiting. Alternatively, if treatment/s are selected at an interim analysis (such as when the trial is
stopped due to a treatment-control comparison yielding statistical significance9) the trial is concluded.

From the observations up to stage j = 1, … , J and treatment k = 1, … ,K we construct estimates 𝜃̂(j)k . Then defining


(j)
k =

r(j)k r(j)0 n

𝜎2(r(j)k + r(j)0 )
,

we find the corresponding Z-statistics

Z(j)k = 𝜃̂(j)k

√

(j)
k .

In the testing procedures that follow we require that the ratio of patients assigned to each treatment remains fixed for the
duration of the trial,14 that is for all k = 1, … ,K and j, l = 1, … , J

r(j)0

r(j)k

=
r(l)0

r(l)k

. (4)
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3454 BURNETT et al.

4.2 Group sequential closed testing

Recall from Section 2.3 that when testing multiple hypotheses we desire strong control of the FWER. If R is the event that
we reject one or more true null hypothesis then extending Equation (1) to K null hypothesis strong control requires that

P𝜽(R) ≤ 𝛼 for all 𝜽 = (𝜃1, … , 𝜃K).

Let be the set such for any I ⊆ (1, … ,K)we have that ∩i∈IH0i ∈ . To create a closed testing procedure we require local
tests for each H0m ∈  at level 𝛼. We reject H0k globally when all tests including H0k are rejected at level 𝛼 for k = 1, … ,K.

The generalised Dunnett method7 simultaneously tests all null hypotheses, defining group sequential testing bound-
aries that account for the correlation structure of comparing multiple treatments to control to achieve the desired FWER.
This is equivalent to the test of the global null hypothesis

HG=
K⋂

k=1
H0k.

We follow this construction for each local null hypothesis.
For each H0m ∈  we choose efficacy boundaries um = (u1,m, … ,uJ,m). Where H0,m is rejected at analysis j if Z(j)k >

uj,m. The boundaries um must be chosen such that the local test of each H0m is constructed at level 𝛼. We may also define
futility boundaries l = (l1, … , lJ) where if Z(j)k < lj the corresponding treatment is dropped for futility (note we define
these universally across all treatments for computational convenience but it is theoretically possible to have these differ).
If such futility boundaries are to be binding then we may incorporate this into the choice of each um, noting that futility
is applied globally.

4.3 Adding experimental treatment arms

Suppose at the J′th (J′ ∈ 1, … , J) interim analysis of a MAMS trial in progress we wish to add T ≥ 1 new treatments.
We now have up to K′ = K + 1 + T treatments in total (in the case that all K + 1 original treatment arms are still in the
trial). We had planned recruitment r(j)k n for treatment k = 1, … ,K + T at stage j = 1, … , J where r(j)k = 0 for all k > K.
We modify the recruitment for each remaining stage of the trial j = J′, … , J recruiting r′(j)k n patients for each treatment
k = 1, … ,K + T (we could also use this opportunity to modify the number of stages). Note we fix the planned recruitment
for the remainder of the trial at the point of modifying the trial, subject to the same restriction as Equation (4).

As in Section 2.2 it is computationally useful to split the trial according to patients recruited before and after the J′th
analysis. For j = J′ + 1, … , J and k = 0, 1, … ,K we would recruit r⋆(j)k n further patients, where r⋆(j)k = r(j)k − r(J

′)
k , from

which we compute Z-statistics Z⋆(j)
k . For each k = 1, … ,K and j = J′ + 1, … , J we define weights,

w(j)
1,k =

√√√√√
r(J

′)
k + r(J

′)
0

r(j)k + r(j)0

,

w(j)
2,k =

√
1 − w(j)

1,kw(j)
1,k

and re-construct the Z-statistics for the remainder of the trial as

Z(j)k = w(j)
1,kZ(J

′)
k + w(j)

2,kZ⋆(j)
k .

4.4 Incorporating additional hypotheses

Adding hypotheses for the T new treatments, we now have null hypotheses H0i ∶ 𝜃i ≤ 0 and alternatives H1i ∶ 𝜃i > 0
for all i = 1, … ,K + T. Suppose we still desire strong control of the FWER across all K + T tests, we construct a closed
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BURNETT et al. 3455

testing procedure following the principles of Section 3. Let  be the set of existing null hypotheses H01, … ,H0K and
all intersections,  be the set of added null hypotheses H0K+1, … ,H0K+T and all intersections, and  the set of all
intersections between existing and added null hypotheses.

The conditional error rate of each test for H0m ∈  is maximised under the global null.42 Given the existing estimates,
𝜽̂
(J′) = (𝜃̂(J

′)
1 , … , 𝜃̂

(J′)
k ) and under the original trial described in Sections 4.1 and 4.2 we write the conditional error for each

H0m ∈  under the global null as

Bm(𝜽̂
(J′)) = P0(Reject H0m|𝜽̂

(J′)) ≤ 𝛼.

It is useful to re-write the testing boundaries for each H0m ∈  in terms of only the data collected after stage J′. That is
for j = J′ + 1, … , J and k = 1, … ,K

uj,k,m =
uj,m − w(j)

1,kZ(J
′)

k

w(j)
2,k

H0m is rejected locally at stage j of the trial if Z⋆(j)
k > uj,k,m. Similarly, if futility stopping is being used we write

lk,j =
lj − w(j)

1,kZ(J
′)

k

w(j)
2,k

where if Z⋆(j)
k < lk,j Tk is dropped for futility. This allows computation of the conditional error rate based on the distri-

butions of the data that will be collected subsequent to the addition of the new treatments, Z⋆(j)
k for j = J′ + 1, … , J and

k = 0, 1, … ,K.
For each H0m ∈  the hypothesis test must be constructed at level Bm(𝜽̂

(J′)). For each H0m ∈  the hypothesis test must
be constructed at level 𝛼. For each H0m ∈  the hypothesis test must be constructed at level Bm(𝜽̂

(J′)). Applying the closed
testing procedure we reject H0m globally when all corresponding local hypothesis tests are rejected at the appropriate
level. This ensures strong control of the FWER at level 𝛼. Further to allowing the addition of the additional hypotheses
to the testing procedure this testing structure would also allow other modifications to the design (such as the allocation
ratios to each treatment, provided they remain fixed for the remainder of the trial).

For each hypothesis H0m ∈ K ∪ T ∪ KT we define the testing boundaries for the modified trial at the required error rate
u′m = (u′J′+1,m, … ,u′J,m) and l′m = (l′J′+1,m, … , l′J,m). At stage j = J′ + 1, … , J for treatment k = 0, 1, … ,K the recruitment
is governed by r⋆

′(j)
k = r′(j)k − r(J

′)
k , with corresponding Z-statistics Z⋆

′(j)
k . For each experimental treatment from the first

stage of the trial k = 1, … ,K we define weights for data before and after stage J′, for j = J′ + 1, … , J and k = 1, … ,K

w′(j)
1,k =

√√√√√
r(J

′)
k + r(J

′)
0

r′(j)k + r′(j)0

,

w′(j)
2,k =

√
1 − w′(j)

1,kw′(j)
1,k

and construct the Z-statistics for the hypothesis tests as

Z′(j)k = w′(j)
1,kZ(J

′)
k + w′(j)

2,kZ⋆′(j)
k

allowing us to write the testing boundaries for each H0m ∈  in terms of only the data collected after stage J′. That is for
j = J′ + 1, … , J and k = 1, … ,K

u′j,k,m =
u′j,m − w′(j)

1,kZ(J
′)

k

w′(j)
2,k
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3456 BURNETT et al.

rejecting H0m ∈  at analysis j = J′ + 1, … , J if Z⋆′(j)
k > uj,k,m and

l′k,j =
l′j − w′(j)

1,kZ(J
′)

k

w′(j)
2,k

where if Z⋆′(j)
k < lk,j Tk dropped for futility (note for k > K u′j,m and l′j). With this in place u′m and l′m may be computed as

per the generalised Dunnett test.
Note that we have not discussed how to decide whether the treatment (and hence corresponding hypotheses) should

be added to the trial. As discussed in Section 3 the testing procedure is constructed such that strong control of the FWER
is guaranteed whether the hypotheses are added to the procedure or not. We shall not go into details of how to make such
decisions in this manuscript however the testing procedure will remain valid should the decision be based upon trial data
or based on factors external to the trial.

5 EXAMPLE

5.1 Problem setup

Consider a MAMS trial comparing two experimental treatments with a common control over three stages (ie, with two
interim analyses). Suppose n = 10 patients are recruited to each treatment at each stage of the trial. So for this trial we
have J = 3, K = 2 and rk = (1, 2, 3) for k = 0, 1, 2. Note the sample size here does not reflect the typical sample size one
might expect for a MAMS trial, however, it will provide a useful scale for comparison. The maximum sample size for this
trial is 90 patients while the expected sample sizes remain on a useful scale for ease of interpretation.

Under this design we test the null hypotheses H01 ∶ 𝜃1 ≤ 0 and H02 ∶ 𝜃2 ≤ 0. The testing boundaries are constructed
for a FWER of 𝛼 = 0.05, let 𝛿 = Φ−1(0.75)

√
2 and 𝜎 = 1. At a configuration of 𝜽 = (𝛿, 0)we have a target power of 1 − 𝛽 =

0.9. Defining the triangular testing boundaries43 we first compute the testing boundary for H01 ∩H02 using the mams()
function of the MAMS package in R.44 This sets the futility boundary for all tests with the upper boundaries computed
for testing both H01 and H02 separately.

Suppose after the first analysis J′ = 1 two further experimental treatments become available that we wish to add to
the trial in progress, that is we have T = 2 further arms that we may wish to consider. Making the same comparison to
the common control we shall further test the null hypotheses H03 ∶ 𝜃3 ≤ 0 and H04 ∶ 𝜃4 ≤ 0 (in addition to H01 and H02).
To illustrate how this may operate we compare our proposed method with two alternatives. Under each option, we allow
the addition of a further 10 patients per treatment per stage for the added experimental treatments. This may not be the
optimal choice for each design but ensures we have some common ground between the methods we are comparing, we
shall discuss possible optimisation of such design choices further in Section 5.4.

5.2 Designs for comparison

Design 1, adding to the existing trial: Using the methods outlined in Section 4 one may add the two new treatments
to the design and analysis of the trial already in progress. That is up until the first analysis 10 patients are recruited to
the control arm and experimental treatments 1 and 2. This first stage is conducted using the testing boundaries for the
original three-arm three-stage design. That is the closed testing procedure is built to incorporate H01 and H02.

After the first analysis (if the trial is still ongoing) treatments 3 and 4 are added to the trial with 10 patients being
recruited to each treatment remaining in the trial for the remainder of the trial. In addition, the testing boundaries are
updated following the methods outlined in Section 4. Thus the closed testing procedure now includes H01, H02, H03 and
H04, the testing boundaries for any tests involving H01 or H02 have been modified according to the data observed in the
first stage of the trial following the methods described in Section 4.4.

Design 2, two separate testing procedures: Suppose one wished to incorporate all treatments into the same trial
without modifying the testing procedure of the original design. In this case one may separate the testing procedures
for the original hypotheses (H01 and H02) and the new hypotheses (H03 and H04), strongly controlling the FWER across
each pair. This testing structure will not strongly control the FWER across the set of all four hypotheses. We make some
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BURNETT et al. 3457

attempt to adjust for this by not sharing control patients between the two pairs of tests. This is something that would
require careful consideration in practice as it does not align with the original intent for the trial to strongly control
the FWER.

Thus for H01 and H02 the trial continues beyond the first interim analysis as originally planned, following exactly
the original design. To test H03 and H04 we recruit 10 further patients across the control and treatments 3 and 4 for the
remaining two stages of the trial. The testing structure for this is constructed as for a two-stage three-arm MAMS design,
again using triangular testing boundaries.

Note that functionally this choice is equivalent to allowing the original trial to run to its’ conclusion while simulta-
neously conducting a separate trial for treatments 3 and 4. Incorporating all recruitment into a single protocol would
however avoid problems such as competing recruitment.

Design 3, a new testing procedure: Supposing alternatively that one wished to ensure strong control of the FWER
without using the methods proposed in this work. One cannot modify the ongoing testing procedure once data have
been seen, thus to conduct a trial that tests all four hypotheses H01, H02, H03 and H04 one must discard the existing
data. To allow for a comparison with the other two designs we thus consider a two-stage trial recruiting 10 patients
to the control and each of the four experimental treatments, using triangular boundaries as we had in the original
design.

5.3 Simulation results

We evaluate the performance of these three designs via simulation. For design 1 we estimate the operating characteris-
tics using 10,000 simulations of the whole trial. This is a lower number of simulations than would be ideal, due to the
computationally intensive nature of the simulation. For each iteration, we must simulate the first stage of the trial then
compute the updated testing boundaries allowing us to simulate the remainder of the trial. In practice, we do not expect
this to be used as a pre-planned scheme and hence only one set of updated testing boundaries needs computing, making
longer simulations more viable. An illustration of adding treatments based on interim observations is given in the sup-
plementary material Section 2. We use 1,000,000 simulations to estimate the operating characteristics for both designs 2
and 3 given the relative computational simplicity.

For the original trial (before any design modification): when 𝜽 = (0, 0) the probability of the trial continuing past
the first interim analysis is 0.64, with a probability of 0.34 of stopping for futility; when 𝜽 = (𝛿, 0) the probability of the
trial continuing past the first interim analysis is still 0.64, with a probability of 0.35 of stopping for efficacy; and when
𝜽 = (𝛿, 𝛿) the probability of the trial continuing past the first interim analysis drops to 0.46, with a probability of 0.53 of
stopping for efficacy. Table 3 shows the properties design 1 should the trial continue beyond the first interim analysis. We

T A B L E 3 Design 1, probabilities of rejecting null hypotheses and expected sample size under the corresponding configuration of 𝜽
when the trial continues beyond the first interim analysis.

𝜽 P𝜽(R1) P𝜽(R2) P𝜽(R3) P𝜽(R4) E𝜽(N) P𝜽(M0) P𝜽(M1) P𝜽(M2) P𝜽(M3) P𝜽(M4)

(0, 0, 0, 0) 0.03 0.02 0.01 0.01 78 0.94 0.05 0.01 0.00 0.00

(𝛿, 0, 0, 0) 0.91 0.00 0.01 0.01 71 0.08 0.89 0.02 0.00 0.00

(𝛿, 𝛿, 0, 0) 0.79 0.84 0.02 0.02 77 0.04 0.30 0.62 0.04 0.00

(0, 0, 𝛿, 0) 0.01 0.02 0.71 0.01 78 0.29 0.68 0.03 0.00 0.00

(𝛿, 0, 𝛿, 0) 0.86 0.01 0.64 0.03 71 0.05 0.40 0.52 0.03 0.00

(𝛿, 𝛿, 𝛿, 0) 0.82 0.82 0.61 0.01 75 0.01 0.19 0.35 0.44 0.01

(0, 0, 𝛿, 𝛿) 0.02 0.02 0.63 0.63 79 0.12 0.48 0.37 0.02 0.00

(𝛿, 0, 𝛿, 𝛿) 0.82 0.01 0.60 0.60 70 0.03 0.27 0.35 0.33 0.01

(𝛿, 𝛿, 𝛿, 𝛿) 0.77 0.77 0.61 0.61 76 0.02 0.15 0.21 0.30 0.32

Note: Where Ri is the event that we reject Hoi, N is the total sample size (including the 30 patients included in stage one) and Mj is the event that j null
hypotheses are rejected.
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3458 BURNETT et al.

T A B L E 4 Design 2, probabilities of rejecting null hypotheses and expected sample size under the corresponding configuration of 𝜽
when the trial continues beyond the first interim analysis.

𝜽 P𝜽(R1) P𝜽(R2) E𝜽(N1) P𝜽(R3) P𝜽(R4) E𝜽(N2)

(0, 0, 0, 0) 0.03 0.03 49 0.03 0.03 38

(𝛿, 0, 𝛿, 0) 0.93 0.02 47 0.82 0.04 39

(𝛿, 𝛿, 𝛿, 𝛿) 0.81 0.81 45 0.77 0.77 39

Original analysis (H01 and H02) Additional analysis (H01 and H02)

𝜽 P𝜽(M0) P𝜽(M1) P𝜽(M2) P𝜽(M0) P𝜽(M1) P𝜽(M2)

(0, 0, 0, 0) 0.95 0.04 0.01 0.95 0.04 0.01

(𝛿, 0, 𝛿, 0) 0.07 0.90 0.02 0.18 0.78 0.04

(𝛿, 𝛿, 𝛿, 𝛿) 0.02 0.34 0.64 0.07 0.31 0.62

Note: Where Ri is the event that we reject Hoi, N1 is the total sample size in the original trial, N2 is the total sample size in the additional trial and Mj is the
event that j null hypotheses are rejected.

observe lower probabilities of rejecting H03 or H04 than rejecting H01 or H02, this is due to the already promising results
for treatments 1 and 2 given the trial has proceeded beyond the first interim analysis.

Comparing design 1 with design 2 shown in Table 4, separating the analyses for the pairs of hypotheses produces
similar probabilities of rejecting H01 or H02, this is encouraging that the probability of success for the existing hypotheses
will not be overly influenced by the addition of further treatments. Design 1 is shown to be more sensitive to the values of
𝜃3 and 𝜃4 due to their ability to also conclude the trial early. Design 2 increases the probabilities of rejecting H03 or H04; this
is partially due to the disconnect between the analyses, if one concludes early the other may continue and reject and null
hypothesis. Given this and that patients are recruited to the control in both trials we see that design 1 significantly reduces
the expected sample size, with 70–80 patients including the first stage of the trial for trials that continue beyond the first
stage (for the trial as a whole this expected sample size drops to 50–60 over the scenarios we have examined) whereas
design 2 requires 90–95 patients. Design 2 is of course flawed when considering the original goals of the trial, while this
method incorporates all existing data for H01 and H02 there is no multiplicity adjustment between the existing and added
hypotheses. Furthermore, should this be conducted as two separate trials of two pairs of null hypotheses each with a
FWER of 𝛼, if we wish to select some subset of treatments for further study, there is no guarantee of direct comparability
between each analysis.

Comparing the operating characteristics of design 3 in Table 5 with design 1 in Table 3, we see that, when start-
ing a new analysis, the probabilities of rejecting H01 or H02 are lower while the probabilities of rejecting H03 or H04 are
similar. This leads to a reduction in the probability of rejecting multiple hypotheses in design 3 when compared with
design 1. For example, when 𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 𝛿 the probabilities of rejecting H01,H02, H03 and H04 are 0.77, 0.77,
0.61 and 0.61 respectively under design 1, while they are all 0.64 under design 3 and the probability of rejecting two or
more hypotheses falls by 0.12 compared to design 1. The expected sample size of the trial conducted under design 3 is
reduced versus design 1 by 8–15 patients. However, this does not account for the fact that 30 patients have been recruited
who do not contribute to the result, these patients lead to a significant improvement in the expected sample size for
design 1.

To allow for a direct comparison, Table 6 collates the expected sample size under each design. We see here that using
our proposed method design 1 offers an improvement directly in the expected sample size of the trial. Given the construc-
tion of the example to ensure the same sample for each treatment within each stage of the trial this is the most direct
comparison available and shows the key potential benefit of our proposed method.

5.4 Design choices

The choices we have made in this example have allowed us to explore and illustrate how our proposed method may
operate while adding treatments to a trial. There are many elements of the design we encourage practitioners to consider
when implementing these methods in practice. Indeed we expect one would need to consider an in-depth simulation
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BURNETT et al. 3459

T A B L E 5 Design 3, probabilities of rejecting null hypotheses and expected sample size under the corresponding configuration of 𝜽
when the trial continues beyond the first interim analysis.

𝜽 P𝜽(R1) P𝜽(R2) P𝜽(R3) P𝜽(R4) E𝜽(N) P𝜽(M0) P𝜽(M1) P𝜽(M2) P𝜽(M3) P𝜽(M4)

(0, 0, 0, 0) 0.02 0.02 0.02 0.02 62 (+30) 0.95 0.04 0.01 0.00 0.00

(𝛿, 0, 0, 0) 0.75 0.01 0.01 0.01 63 (+30) 0.24 0.73 0.02 0.00 0.00

(𝛿, 𝛿, 0, 0) 0.67 0.67 0.02 0.02 62 (+30) 0.11 0.43 0.43 0.02 0.01

(0, 0, 𝛿, 0) 0.01 0.01 0.75 0.01 63 (+30) 0.24 0.73 0.02 0.00 0.00

(𝛿, 0, 𝛿, 0) 0.67 0.02 0.67 0.02 62 (+30) 0.11 0.43 0.43 0.02 0.00

(𝛿, 𝛿, 𝛿, 0) 0.64 0.64 0.64 0.03 62 (+30) 0.07 0.31 0.28 0.33 0.03

(0, 0, 𝛿, 𝛿) 0.02 0.02 0.67 0.67 62 (+30) 0.11 0.43 0.43 0.02 0.00

(𝛿, 0, 𝛿, 𝛿) 0.64 0.03 0.64 0.64 62 (+30) 0.07 0.31 0.27 0.33 0.03

(𝛿, 𝛿, 𝛿, 𝛿) 0.64 0.64 0.64 0.64 63 (+30) 0.05 0.24 0.19 0.18 0.35

Note: Where Ri is the event that we reject Hoi and N is the total sample size (note 30 additional patients are recruited but not used in the analysis).

T A B L E 6 Comparing the expected sample size for each design under varying configurations of 𝜽, note for design 3 the additional 30
patients are recruited but not used in the analysis while they are used in the analysis for both designs 1 and 2.

Expected sample size

𝜽 Design 1 Design 2 Design 3

(0, 0, 0, 0) 78 87 62 (+30)

(𝛿, 0, 0, 0) 71 85 63 (+30)

(𝛿, 𝛿, 0, 0) 77 83 62 (+30)

(0, 0, 𝛿, 0) 78 88 63 (+30)

(𝛿, 0, 𝛿, 0) 71 86 62 (+30)

(𝛿, 𝛿, 𝛿, 0) 75 84 62 (+30)

(0, 0, 𝛿, 𝛿) 79 88 62 (+30)

(𝛿, 0, 𝛿, 𝛿) 70 86 62 (+30)

(𝛿, 𝛿, 𝛿, 𝛿) 76 84 63 (+30)

study taking into account the trials’ specific objectives, there is a link to a github repository in Section 7 that contains the
code used to generate the examples and may help with further exploration.

The first and most obvious choice beyond whether to add further experimental treatments is how many patients
should be recruited to each treatment arm of the trial. One may wish to attempt to retain power for the original treatments
in the trial and increase allocation to these arms or one may be concerned about the probability of rejecting at least one
null hypothesis under a given configuration of the treatment effects which would drive an alternative choice. Similarly
one may wish to use the opportunity presented by altering the trial to more carefully consider futility stopping for the
treatments already in the trial, doing so in this way would present a non-binding futility decision which while having a
potentially small impact on power (the impact is expected to be small since one would unlikely stop a well-performing
treatment in such a way) will not inflate the error rate.

In the designs we have presented we have stopped the trial simultaneously for all treatments should one treatment be
found to be effective. This is in keeping with how we envisage the intent of the original MAMS design that we proposed,
where using the group sequential stopping rule is intended to end the trial early and reduce the expected sample size.
However, this is not strictly necessary, with all elements of the closed test well-defined one could continue the trial to its’

 10970258, 2024, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10090 by U
niversitaet R

egensburg, W
iley O

nline L
ibrary on [22/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3460 BURNETT et al.

conclusion (stopping recruitment to arms either when the corresponding null hypothesis is globally rejected or when the
treatment is removed for futility).

6 DISCUSSION

In this paper, we do not discuss whether strict control of the FWER is required or not in multi-armed clinical trials
per-se such as in platform trials. Here we refer to several recent discussions on this topic.27,28,45,46 For example, in COVID
platform trials47 such as RECOVERY or REMAP-CAP only the per-comparison error rate is controlled and no strict FWER
control across treatment arms is required. We note, however, that at the start and in the early protocols of RECOVERY, for
example, strong control of the FWER was required. In this work, we provide a framework for confirmatory multi-armed
trials, where strict control of the FWER is required, for example, for regulatory purposes17-22 and it is desirable to incor-
porate a new treatment in an already ongoing trial while preserving the integrity of the design and avoiding delays to the
overall development process. Our proposed general framework for adding new experimental treatments (and correspond-
ing null hypotheses) to a trial in progress builds upon the work of Hommel,33 allowing the addition of null hypotheses to
any trial that strongly controls the FWER. This testing structure allows other design alterations while utilising all available
data in inference and decision-making.

We have applied this general framework in the setting of MAMS platform trials.48,49 The methods proposed will
achieve strong FWER control for the family of hypotheses of interest. This may include all hypotheses related to the MAMS
trial concerned, but the methods are also applicable only for a subset of hypotheses in a larger platform trial with several
substudies and treatment arms. For example, a platform where in a substudy several doses of a certain treatment shall be
tested and for this family strict FWER control is needed for regulatory purposes. If additional doses shall be added later in
a data-dependent way, for example, due to lack of efficacy of lower doses or safety issues if higher ones, our methods will
ensure the confirmatory characteristics despite adding additional doses in an ongoing study. The examples in Section 5
demonstrate that this does indeed strongly control the FWER as expected.

The examples in Sections 2.4 and 5 show there is a penalty for adding treatments in this way. In the simulation scenar-
ios investigated, there is a small reduction in the probability of rejecting the null hypotheses already in the trial. There is
an impact in these examples from the reduced sample size and probability of early stopping on the probabilities of glob-
ally rejecting the hypotheses for the added treatments, which stay relatively low. In addition, the combination of utilising
the existing data and the efficient use of control patients across the trial yields a reduction in the expected sample size
when compared to alternatives that do not make such use of the existing data. Of course, there is the possibility that some
existing treatments have a small or negative effect then investigators might be incentivised to open a new independent
study as the new treatments are penalised by the existing data. At this point, the investigator must consider the trade-off
between using a shared infrastructure (and potentially starting earlier) compared to starting from scratch (but having the
full 𝛼 for the investigation). However, if such scenarios are of sufficient concern this may be accounted for by the futility
boundaries of the original MAMS trial. By allowing for further adaptations such as increasing the sample sizes for the
newly added treatment and adapting the allocation ratios one could compensate for such lower conditional errors for
some intersection hypotheses.

Our examples aim to illustrate how the method might be applied, the exact circumstances of adding arms will vary
widely in practice. The statistical operating characteristics (specifically with regard to the probabilities of rejecting each
hypothesis globally) were not our primary motivation however, this could be a more important consideration. In princi-
ple, one might consider more carefully the desired operating characteristics of the design for the remainder of the trial,
optimising the proportion of recruitment to each treatment. We have discussed such options in more detail in Section 5.4.
While making such decisions one would need to think more deeply about what the goals for the modified trial would be.
In addition, other practical considerations should be thought about. For example, if sufficiently many patients must be
added to the trial will this extend the timelines of the trial such that population shift becomes a concern? Thus investigators
are encouraged to think carefully about such modifications on a case-by-case basis.

The general framework for adding hypotheses to a trial in progress has a broader application than MAMS designs,
applying to any testing procedure that gives strong control of the FWER. The addition of hypotheses in this way allows the
incorporation of all available data into decisions about how to plan the remainder of the trial. Thus, through consideration
of the existing closed testing procedure and the application of the conditional error principle, this gives a versatile tool
for ad hoc design modification when required. Although, in practice, one must carefully consider the appropriateness of
its use.
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7 SOFTWARE

Code relating to the examples presented here available at https://github.com/Thomas-Burnett/Adding-treatments-to
-clinical-trials-in-progress.git.
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