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Abstract
Motivation: The cellular composition of a solid tissue can be assessed either through the physical dissociation of the tissue followed by single- 
cell analysis techniques or by computational deconvolution of bulk gene expression profiles. However, both approaches are prone to significant 
biases. Tissue dissociation often results in disproportionate cell loss, while deconvolution is hindered by biological and technological inconsis
tencies between the datasets it relies on.
Results: Using calibration datasets that include both experimentally measured and deconvolution-based cell compositions, we present a new 
method, Harp, which reconciles these approaches to produce more reliable deconvolution results in applications where only gene expression 
data is available. Both on simulated and real data, harmonizing cell reference profiles proved advantageous over competing state-of-the-art 
deconvolution tools, overcoming technological and biological batch effects.
Availability and implementation: R package available at https://github.com/spang-lab/harp (archived as 10.5281/zenodo.16851930). Code and 
data for reproducing the results of this paper are available at https://github.com/spang-lab/harplication (archived as 10.5281/zenodo.16851705) 
and https://doi.org/10.5281/zenodo.15650057, respectively.

1 Introduction
Tissues consist of cells of different types. The relative fre
quencies of cells of specific types define the cellular composi
tion of a tissue, which holds crucial information on its 
biology and pathology. It is altered in diseases such as can
cers, chronic inflammations, or infections. While cell types 
can be coarsely distinguished by their shape, molecular data 
allows for a more finely granulated distinction of cells and 
even cell states. The more molecules considered, the better 
cells can be characterized.

Cellular composition can be assessed experimentally using 
single cell technologies such as fluorescence-activated cell 
sorting (FACS; Hu et al. 2016), cytometry by time-of-flight 
(CYTOF; Cheung and Utz 2011), single-cell RNA sequencing 
(scRNA-seq; Wu et al. 2014), or combinations of these meth
ods. However, for solid tissues, a common limitation of these 
approaches is the bias introduced by enzymatic dissociation, 
which tends to disproportionately affect certain cell types, 
leading to their preferential loss during isolation (Wang et al. 
2019, Denisenko et al. 2020, Kim et al. 2023).

An alternative approach is bulk gene expression profiling 
combined with computational deconvolution (Avila Cobos 
et al. 2018). In this method, a bulk expression profile is 

modeled as a weighted sum of reference profiles from individ
ual cell types, where the weights represent the cellular compo
sition of the tissue.

Let X be a g×q matrix representing reference profiles, 
where each column corresponds to a specific cell type and 
each row represents a gene. For the bulk data, let Y be a g×n 
matrix, where each column indicates a bulk profile and each 
row relates to a gene. Finally, for the cellular compositions, 
let C be a q×n matrix where every column is a bulk tissue 
and every row is a cell type. The entry Cij is the relative fre
quency of cell type i in tissue j. The central deconvolution 
equation connecting these data is 

Y ¼ XC: (1) 

Building upon this equation, widely used tissue deconvolution 
tools including DTD (G€ortler et al. 2020), CIBERSORTx 
(Newman et al. 2019), MuSiC (Wang et al. 2019), or ADTD 
(G€ortler et al. 2024) estimate cellular abundances of the bulk 
samples. Furthermore, recent methods designed to estimate cell- 
type-specific gene expression, such as BayesPrism (Chu et al. 
2022) and TissueResolver (Simeth et al. 2024), often provide re
markably accurate cellular composition estimates as a byproduct.
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Deconvolution, comes with its own limitations (Garmire 
et al. 2024). In theory, Equation (1) should hold exactly. In 
reality, however, this equation does not hold, due to both tis
sue specific gene regulation and experimental inconsistencies 
in data generation. We distinguish two scenarios:

Local inconsistencies: Y ¼XC holds approximately for the 
majority of genes, but there is a small number of genes for which 
it is strongly violated. For example, if the references for T cells 
were generated from inactive T cells, while the bulk tissues con
tain activated T cells. In this case Equation (1) might hold for 
most genes, except for T cell activation markers. Experimental 
inconsistencies can also lead to this problem. For example, if a 
certain class of genes was experimentally depleted only in the 
bulk profiles but not the reference profiles. In this case, Equation 
(1) is mathematically infeasible for the depleted genes. Moreover, 
if reference profiles are derived from single-cell sequencing data, 
there can be substantial technological discrepancies compared to 
the bulk sequencing data used for tissues. Single-cell data is typi
cally zero-inflated due to high drop-outs (Haque et al. 2017, 
Zheng et al. 2017), influenced by transcriptional burst (Chubb 
et al. 2006), and until recently, did not commonly include ribo
somal RNA depletion (Shek et al. 2021), unlike bulk 
RNA sequencing.

Global inconsistencies: Y ¼XC does not hold for any of 
the genes, because there are global inconsistencies between 
the bulk and reference data. This situation typically occurs if 
different profiling technologies such as scRNA-seq and 
microarrays were used (Brombacher et al. 2025).

Both local and global systematic differences prevent refer
ence profiles from accurately summing up to bulk profiles. 
For example, Fig. 1 compares bulk RNA-seq data to a 
weighted average of sorted RNA-seq data, with the weights 
determined experimentally using flow cytometry. In the 
UMAP (Healy and Mclnnes, 2024) plot, the measured bulk 
profiles and the reconstructed profiles are clearly separated.

Several approaches to compensate for data inconsistencies 
have been applied and described in the literature. When local 

inconsistencies are known, affected genes can be manually ex
cluded from the deconvolution, as in depletion protocols. If the 
affected genes are not known a priori, such as in tissue-specific 
gene regulation, machine learning-based approaches have been 
proposed to detect these inconsistencies from the data. For exam
ple, Digital Tissue Deconvolution (DTD) (G€ortler et al. 2020) 
assumes that subsets of genes are affected by inconsistencies and 
eliminates those automatically from the deconvolution using a 
loss function learning approach. BayesPrism (Chu et al. 2022) in 
contrast, targets global inconsistencies involving all genes by mar
ginalization of a posterior distribution conditioned on bulk and 
single cell expression data. CIBERSORTx provides two custom 
batch effect removal strategies. The first estimates an explained 
bulk expression matrix and then applies classical batch correction 
(Johnson et al. 2007) to adjust this estimation to the actual bulk 
expression, which is only possible for moderate batch effects. 
The second approach directly adjusts the signature matrix used 
for deconvolution by integrating single-cell information. There, 
artificial bulk mixtures are generated from single-cell data and 
then batch corrected, using again the method in (Johnson et al. 
2007), in order to fit the actual bulk expression. Via non- 
negative least squares regression, taken into account the adjusted 
bulk mixtures and prior estimates of cellular frequencies, the ad
justed signature matrix is then imputed. However, a method that 
systematically harmonizes possibly compromised cellular quanti
fication measurements with transcriptomic data of various plat
forms is still lacking in the literature.

Here, we introduce Harp, a method that harmonizes refer
ence profiles and measured cell compositions to improve the 
consistency and accuracy of computational tissue deconvolu
tion. Harp addresses the limitations of existing approaches 
by explicitly integrating measured cellular compositions dur
ing training and aligning them with bulk expression data. 
This allows the method to correct for inconsistencies across 
transcriptomics platforms and reference sources. We demon
strate that Harp improves deconvolution performance in 
both simulated and real datasets, including challenging cross- 
platform scenarios, and outperforms existing methods in a 
range of evaluation metrics.

2 Materials and methods
2.1 Algorithm
An overview of the Harp framework is provided in Fig. 2. 
Harp operates in two modes: Training and Deconvolution.

Training mode: In this mode, Harp takes as input a matrix 
Y of bulk tissue gene expression profiles, a corresponding ma
trix C of experimentally determined cellular tissue composi
tions, and a matrix of reference profiles X, holding cell 
signatures of these tissues (see also Section A.1, available as 
supplementary data at Bioinformatics online). These inputs 
may exhibit inconsistencies such that Y 6¼XC. The aim of 
Harp is to harmonize these inputs by adjusting both X and C 
to meet the following objectives:

� The adjusted cellular compositions, C0, accurately repre
sent the cellular composition of the tissue. 

� The adjusted reference profiles, X0, reflect the expression 
states of the cell types as they exist in the tissue. 

� The relationship Y �X0C0 is approximately satisfied, 
where X0 and C0 are the harmonized versions of the input 
reference profiles and cellular compositions, respectively. 

Figure 1. Comparison of bulk RNA-seq expression profiles to 
reconstructed bulk gene expression samples. Bulk RNA-seq data from 
(Zimmermann et al. 2016) is represented in orange, while reconstructed 
bulk expression, derived by combining flow cytometry data of the same 
bulk samples with cell type-specific signatures from sorted RNA-seq data 
(Monaco et al. 2019), is shown in navy.
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First, Harp accounts for potential errors in the composition 
matrix C by allowing some flexibility, facilitating data har
monization. In order to correct for these errors, it represents 
the cellular decomposition of the tissue by a parameterized 
matrix C0ðαÞ ¼ diagðαÞC�, where 

C� ¼
C

CUI

 !

is a ðqþ1Þ×n matrix that is identical to C but includes an 
additional row representing a mixture of all cell types that 
could be present in the tissue but are not accounted for in the 
cellular composition matrix (Racle et al. 2017, G€ortler et al. 
2024) (see Section A.2.3, available as supplementary data at 
Bioinformatics online for more details). The diagonal matrix 
diagðαÞ, where α is a ðqþ1Þ-dimensional vector of non- 
negative scaling parameters accounts for cell-type-specific 
losses during the experimental determination of C. Then, 
since cell reference data often contains signatures from more 
cell types than those measured in flow cytometry data, C, we 
introduce an additional column to X, denoted as XUI. This 
column represents the gene-wise average expression across all 
remaining cell types not captured in the flow cytometry data. 
We define this reference matrix as X� ¼ ðX;XUIÞ.

Next, Harp adjusts the reference matrix X� to X0 to meet 
two key criteria:

a) Y �X0C0ðαÞ:
b) The columns of X0 maintain similarity to the original an

chor matrix X�. 

Criterion (b) is crucial to avoid artifacts caused by underde
termination, where Y ¼X0C0ðαÞ may hold perfectly, but the 
adjusted profiles in X0 no longer reflect the true biological ex
pression patterns of the cell types they represent.

More formally, we minimize the following loss function 
with respect to ϕ� and α simultaneously, where ϕ� ¼ ðϕ;ϕUIÞ

with ϕ being a matrix of same dimension as X and ϕUI being 
an additional column accounting for the Unidentified cell 
types in compatibility with the extra row in C�, 

Lðϕ�;αÞ ¼ kY − ϕ�diagðαÞC�k2
2þ λRðX�;ϕ�Þ; (2) 

with k � k2 denoting the Frobenius norm and R being defined as 

RðX�;ϕ�Þ ¼
X

ij

�

ln
�

1þ expððφ − xÞijÞ
�
þ

ln
�

1þ expðð− φþxÞijÞ
��

:

(3) 

Note that the regularization term R constrains the adjusted 
references X0 to remain close to the measured references. It 
anchors X0.

Figure 2. The Harp framework consists of two main modes: Training and Deconvolution. During Training, both bulk expression data and experimentally 
determined cell frequencies are used, whereas Deconvolution relies solely on expression profiles. In the Training step, Harp takes the following inputs: (i) 
a matrix of reference cell profiles derived from experiments on sorted cell populations using either RNA-seq or microarrays, or from single-cell RNA 
sequencing (scRNA-seq); (ii) bulk gene expression profiles obtained from either bulk RNA-seq or microarray technology; and (iii) a corresponding cellular 
composition matrix, generated using methods such as scRNA-seq, flow cytometry, or other techniques. Using these input data, Harp estimates a matrix 
of harmonized cell reference profiles. In the Deconvolution step, Harp takes new bulk gene expression samples, along with the estimated reference 
profiles from the Training step, to infer cellular compositions.
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Starting with diagðαÞ being equal to the identity matrix, the 
optimization process alternates between updates of X0 using 

X0 ¼ argminϕ�Lðϕ
�;αÞ (4) 

followed by the update of α, by minimizing the loss function 

UðαÞ ¼ kdiagðαÞC� − bCk2
2; (5) 

with respect to α, where bC is the estimated cellular composi
tion using X0 as the reference profile, for more details see 
Section A.2.5, available as supplementary data at 
Bioinformatics online. Note that after X0 is updated, its col
umns are normalized to sum up to the number of features 
(genes) it includes; this is necessary to keep both X0 and α 
identifiable.

Additionally, we provided the option for Harp to automat
ically determine the regularization strength from a given 
range of λ values via a cross validation approach in order to 
arrive at an optimal λ0 that balances both criteria (a) and (b), 
see Section A.2.2, available as supplementary data at 
Bioinformatics online.

Deconvolution mode: In this mode, Harp uses the adjusted 
reference profile matrix X0, obtained during training, to 
deconvolve bulk tissue gene expression data sources similar 
to those used in training (e.g. comparable tissues or profiling 
technologies) where no experimentally determined tissue 
composition is available. By default, Harp applies the ad
justed matrix X0 in combination with the DTD algorithm 
(G€ortler et al. 2020) for deconvolution in order to arrive at 
its final cell proportion estimate C0, see also Section A.2.5, 
available as supplementary data at Bioinformatics online. 
However, the harmonized matrix X0 can also serve as a refer
ence profile for use with other deconvolution methods.

2.2 Performance metrics
Here, we introduce several established performance metrics 
to evaluate deconvolution results. They either compare cell 
abundance estimates to ground-truth cell proportions— 
which may either be predefined in simulation scenarios or 
obtained experimentally (e.g. through flow cytometry or 
scRNA-seq)—or predicted bulk gene expression to observed 
bulk expression data. For their mathematical definition we 
refer to Section A.2.4, available as supplementary data at 
Bioinformatics online.

Cell type-specific performance: The first performance met
ric of a deconvolution tool, RcðlÞ, is its ability to accurately 
capture variations in the relative abundance of a given cell 
type l across different samples. For example, this quality met
ric can evaluate how accurately the method predicts that sam
ple 1 contains 10% more T cells than sample 2.

Sample-specific performance: A second performance metric 
is the tool’s ability to accurately estimate the proportions of 
different cell types within an individual sample m, denoted as 
RsðmÞ. For instance, Rs can evaluate how accurately the 
method determines that one sample contains 30% more T 
cells than B cells.

Combined performances: Following (Wang et al. 2019) the 
cell type-specific and sample-specific performance metrics 
can be integrated into a single overall measure denoted as R. 
We furthermore include the absolute quality metrics RMSD 
and mAD into our analyses.

Bulk reconstruction performance: Thus far, our perfor
mance metrics have focused on evaluating the estimated cel
lular compositions C. In addition to accurately recovering 
these compositions, a well-calibrated deconvolution tool 
should also be able to recapitulate the observed bulk expres
sion Y via the model 

Y ¼ XC:

To assess this, we introduce a bulk-centered performance 
measure ρðmÞ, which correlates explained bulk expression of 
sample m to its observed bulk expression.

Statistical testing: We evaluate the significance of perfor
mance improvements using a z-test on the correlation coeffi
cients Rc and Rs, following the approach of (Chu et al. 
2022); see Section A.3.7, available as supplementary data at 
Bioinformatics online for details.

3 Results
3.1 Simulation
To evaluate the performance of Harp and compare it with 
state-of-the-art deconvolution algorithms, we performed ex
tensive benchmarking simulations. In these simulations, we 
followed a well-established approach by generating artificial 
bulk expression profiles as weighted averages of single-cell 
expression profiles (Newman et al. 2019, Wang et al. 2019, 
Chu et al. 2022). Importantly, the simulated profiles allow us 
to control the “cellular composition” through the assignment 
of weights. For instance, in a profile where T cells constitute 
30% of the cellular composition, the cumulative weight of 
the T cell profiles accounts for 30% of the total. In our simu
lations, we used single-cell data from two studies on non- 
Hodgkin lymphomas (nHL) (Roider et al. 2020, Steen et al. 
2021). The study by Steen et al. (2021) comprises profiles 
from 28 416 single cells collected from eight patients, includ
ing four patients with Diffuse Large B-cell Lymphoma 
(DLBCL), three patients with Follicular Lymphoma (FL) and 
one control patient with Tonsilitis (T). The cells have been 
pre-annotated with the following cell type labels: B cells, 
Monocytes, Natural Killer cells, Plasmablasts, CD4 T cells, 
CD8þ T cells, regulatory T cells, T follicular helper cells, and 
a remaining unknown compartment. The second study, con
ducted by Roider et al. (2020), includes 35 284 single-cell 
profiles from 12 nHL cases, including three DLBCL, four FL, 
two Transformed Follicular Lymphoma (tFL) and three con
trol patients exhibiting reactive lymph nodes (rLN). 
Similarly, these cells have been pre-annotated as B cells, mye
loids, CD8þ T cells, regulatory T cells, follicular helper T 
cells, and T helper 1 cells. Notably within this study the B 
cells were further divided into healthy B cells and malignant 
lymphoma cells. For further details see Supplement, Section 
A.3.2, available as supplementary data at Bioinformatics on
line and Fig. 9, available as supplementary data at 
Bioinformatics online.

We observed substantial inconsistencies and batch effects 
between these studies (also see Fig. 7a, available as supple
mentary data at Bioinformatics online), which can be par
tially attributed to differences in laboratory protocols, tissue 
handling, and library preparation, as well as patient heteroge
neity (see Supplementary Material, Section A.3.1, available 
as supplementary data at Bioinformatics online). We used 
these discrepancies to simulate inconsistent datasets. 
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Specifically, the data from the first study defined the reference 
profiles, while the data from the second study were used to 
generate artificial bulk samples. For Harp’s anchor X� we 
used the average cell-type specific expression across single 
cell profiles of (Steen et al. 2021). Concerning (Roider et al. 
2020), we randomly divided the data from 12 patients into 
two independent sets of six patients each. One set was used 
to generate a training set of artificial bulk samples, while the 
other set was used to create an independent test set. For 
deconvolution we focused on only those cell types that were 
defined in both studies, namely B cells, CD8þ T cells, regula
tory T cells and follicular helper T cells. Importantly, the B 
cell compartment contained both malignant and physiologi
cal cells from this B cell malignancy. This implies complete
ness of the reference and thus, X� ¼X.

For each bulk sample, we randomly selected cells stemming 
from a single patient only. More precisely, we determined the 
actual amount of single cells for each cell type within a given 
patient and then perturbed this amount with a normally dis
tributed factor in order to arrive at the quantity of cells to be 
randomly selected from each cell type. This allowed us to 
generate multiple artificial bulk mixtures from a single pa
tient, which contain suitable variation in terms of cellular 
composition (see Section A.3.3, available as supplementary 
data at Bioinformatics online). Following (Chu et al. 2022), 
we introduced additional distortions that further amplify the 
discrepancies observed between the datasets, by locally per
turbing gene expression values in artificial bulk mixtures 
with a gene specific multiplicative noise. More precisely, we 
sampled gene-specific factors from a pre-defined normal dis
tribution and then multiplied this factor to the expression 
value of the considered gene in all artificial bulk mixtures. 
Following this approach, we perturbed 40% of all genes 
while the remaining set of genes was left unchanged (see 
Section A.3.4, available as supplementary data at 
Bioinformatics online). In total, we generated 20 artificial 
training samples and 40 test samples using this protocol (also 
see Supplement, Section A.3.5, available as supplementary 
data at Bioinformatics online). Figure 11, available as supple
mentary data at Bioinformatics online shows the distribution 
of cell proportions in these datasets. Importantly, this simula
tion framework naturally controls the proportions of the var
ious cell compartments in the artificial bulk mixtures, see 
Section A.3.3, available as supplementary data at 
Bioinformatics online for details.

3.1.1 Calibration of regularization
Our first analysis addresses the calibration of the parameter λ 
in Equation (2). Regularization enforces a degree of similarity 
between the adjusted reference matrix X0 and its unadjusted 
counterpart X�. Note that overly strong regularization results 
in minimal adjustment of the reference profiles, potentially 
failing to compensate for technical discrepancies. On the 
other hand, weak or absent regularization can produce refer
ence profiles that diverge from the true expression character
istics of the cells they represent. For example, the column 
corresponding to B cells in X0 might no longer capture the 
typical expression profile of a B cell, indicating that the refer
ence has been “over-adjusted.”

In order to better understand Harp’s dependency on its 
hyperparameter λ, we fitted models on simulated data using 
different λ values in the range ½0;215�. Let X0ðλÞ be the ad
justed reference matrix produced by Harp when using 

regularization strength λ. Figure 3 shows a UMAP (Healy 
and Mclnnes 2024) embedding of (a) the single-cell profiles 
used in the training data and (b) the columns of X0ðλÞ con
taining the adjusted reference profiles for various cell types at 
different values of λ. In the plot, small dots represent single- 
cell expression profiles, with colors indicating their corre
sponding cell types. In contrast, squares denote reference pro
files extracted from X0ðλÞ, where the square size increases 
with larger λ values. Triangles represent the reference profiles 
obtained for the optimal λ0, which are the adjusted references 
used by Harp in Deconvolution mode, see Section 2.1.

We observed that large λ values yield reference profiles lo
cated at the centers of the corresponding single-cell clusters, 
indicating minimal adjustment. As λ decreases, adjustments 
become visible as the reference profiles gradually shift away 
from the cluster centers; however, except for very small λ val
ues, they remain in the vicinity of the clusters they represent. 
Optimal reference profiles tend to lie along this trajectory to
ward the center, reflecting the typical bias-variance trade-off 
observed in machine learning applications.

3.1.2 Benchmarking
We benchmarked Harp’s performance against a set of widely 
used deconvolution tools, including BayesPrism (Chu et al. 
2022), CIBERSORT (Newman et al. 2015), CIBERSORTx 
(Newman et al. 2019), and MuSiC (Wang et al. 2019). Harp 
was trained on the training set of bulk mixtures with known 
ground truth proportions and subsequently evaluated in 
Deconvolution mode on the independent test dataset. Since 
none of the other algorithms incorporate a training phase for 
data harmonization, they were applied directly to the bulk 
samples in the test data, see Section A.3.6, available as sup
plementary data at Bioinformatics online for details. 
Figure 4, Fig. 8, available as supplementary data at 
Bioinformatics online, and Tables 1 and 2, available as sup
plementary data at Bioinformatics online demonstrate that in 
these simulations, Harp significantly outperformed its 

Figure 3. Reference profiles learned by Harp for different regularization 
parameter (λ) values, embedded in the single-cell context using UMAP. 
Each square represents a cell type-specific expression profile in the Harp 
reference for a given λ, with square size encoding the magnitude of λ. 
Triangles indicate the optimal estimated reference profiles selected by 
Harp, and each color corresponds to a specific cell type.

Harp                                                                                                                                                                                                                                                  5 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/9/btaf455/8241958 by U
niversitaet R

egensburg user on 19 Septem
ber 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf455#supplementary-data


competitors across all performance metrics introduced in 
Section 2.2.

One might argue that, in the previous benchmark, Harp 
had an advantage, because it was trained with additional 
data, including ground-truth compositions, and could per
form data harmonization—a capability not available to the 
competing algorithms. To test whether harmonization could 
also improve the performance of these methods, we provided 
the harmonized reference matrix, X0, calculated by Harp to 
competing deconvolution tools, see Sections A.3.6 and A.3.9, 
available as supplementary data at Bioinformatics online for 
details. Figure 8, available as supplementary data at 
Bioinformatics online and Tables 1 and 2, available as sup
plementary data at Bioinformatics online show that using 
Harp’s reference in this hybrid deconvolution scenario is 
highly beneficial when provided to CIBERSORTx, in com
parison to the default use of BayesPrism as well 
as CIBERSORTx.

3.1.3 Uncertain experimental compositions
Previous evaluations assumed that the composition matrix C 
was fixed by simulation design and served as ground truth. In 
real applications, however, C is experimentally determined 
and may suffer from both systematic bias and random noise. 
Harp addresses systematic bias through cell type-specific cor
rection rates α, which are integrated into the loss function 
[see Equation (2)]. We next evaluate the effectiveness of this 
correction mechanism.

To this end, we simulated training and test bulk mixtures 
as before, yielding ground truth proportions CðlÞ by design. 

We then introduced systematic bias by multiplying each cell 
type’s proportion with a fixed, cell type-specific distortion 
factor δðlÞ, simulating effects such as cell loss or consistent 
gating errors. This distortion was constant across all samples 
in the training set (see Section A.3.10, available as supple
mentary data at Bioinformatics online).

To model random noise, we further multiplied the ground 
truth proportions with sample- and cell-type-specific random 
distortions. This step reflects the variability often seen in ex
perimental quantification of cell type proportions.

We then ran Harp in Training mode twice: once using the 
correct cell proportions and once with the distorted propor
tions. Figure 12, available as supplementary data at 
Bioinformatics online and Tables 1 and 2, available as sup
plementary data at Bioinformatics online demonstrate that 
cell type-spcific distortions had minimal impact on Harp’s 
overall performance. Moreover, examining the estimated 
parameters αðlÞ alongside the distortion rates δðlÞ reveals 
that, as expected, αðlÞ � δðlÞ− 1, see Fig. 13, available as sup
plementary data at Bioinformatics online.

3.2 Data harmonization with Harp improved 
deconvolution accuracy in a study combining data 
from two distinct sources
We assessed Harp’s performance by integrating data from 
two sources. The bulk RNA-seq data were obtained from a 
study investigating primary peripheral blood mononuclear 
cells (PBMCs) in healthy individuals following influenza 
vaccination (Zimmermann et al. 2016). We utilized bulk 
RNA-seq expression profiles for 250 cases, with the cellular 

Figure 4. Evaluation of performance metrics in simulated data. (a) shows the overall correlation performance, R, (b) the sample-specific performance, Rs, 
and (c) cell type-specific performance, Rc .
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composition of the PBMCs experimentally determined via 
flow cytometry. However, this study did not include refer
ence profiles for the various PBMC cell types. For the cell ex
pression references we used data from an independent source 
(Monaco et al. 2019), which generated RNA-seq profiles of 
sorted PBMC cell populations. Details on data preprocessing 
can be found in Section A.4.1, available as supplementary 
data at Bioinformatics online.

We randomly split the bulk data into a training set of 150 
cases and a test set of 100 cases. For the training set, we ran 
Harp using the reference data from the second source as the 
anchor X� for regularizing the reference profile. We then ap
plied Harp in Deconvolution mode to the test bulk samples, 
alongside CIBERSORTx and BayesPrism, and compared the 
deconvolution results to the corresponding flow cytometry 
measurements (see details on the configurations of other 

algorithms in Section A.4.2, available as supplementary data
at Bioinformatics online). Figure 5a–c and Table 3, available 
as supplementary data at Bioinformatics online show that 
Harp outperformed its competitors in several, though not all, 
performance metrics. Most notably, it achieved robust over
all performance, as indicated by the metric R (also see RMSD 
and mAD in Fig. 17, available as supplementary data at 
Bioinformatics online and Table 3, available as supplemen
tary data at Bioinformatics online), which was supported by 
excellent sample-specific reconstructions of cell proportions. 
In statistical testing, Harp showed significant improvement in 
terms of sample-specific performance but not in cell type- 
specific correlation, compared to the competing methods (for 
details, refer to Section A.3.8, available as supplementary 
data at Bioinformatics online and Table 4, available as sup
plementary data at Bioinformatics online). In addition to the 

Figure 5. Evaluation of performance metrics in the deconvolution of 100 PBMC RNA-seq test samples with a sorted RNA-seq reference. (a–d) represent 
the benchmark of deconvolution tools [Harp, CIBERSORTx (LM22), and BayesPrism]. (a–c) evaluate performance on the prediction of cell proportions, 
while plot (d) analyses the quality of the reconstructed bulk gene expression profiles. (e) shows box plots of Pearson correlations, ρ, between the 
reconstructed bulk gene expression profiles—generated using the experimental cellular compositions in conjunction with the Harp (green) and sorted 
RNA-seq derived (magenta) references, respectively—and the observed bulk RNA-seq data. (f) is a UMAP of the predicted bulk gene expressions of 100 
PBMC test samples (darker color shades) and 150 PBMC training samples (represented in lighter color shades), using the Harp (green) and sorted RNA- 
seq (magenta) reference, respectively, in conjunction with the cellular compositions derived from experimental data. This plot also includes observed 
bulk RNA-seq expression profiles (orange).
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evaluation of cell proportion reconstruction, we evaluated 
data consistency after harmonization by reconstructing bulk 
expression profiles Y using reference data X and cell compo
sitions C according to the formula Y ¼XC. We performed 
this reconstruction twice: once using the original (anchor) ref
erence X� and once using the harmonized reference X0 esti
mated by Harp. The cell abundances, C, used in both sets of 
reconstructed bulk samples were obtained from flow cytome
try data (also see Section A.4.3, available as supplementary 
data at Bioinformatics online). Figure 5e shows that the bulk 
reconstructions based on Harp’s reference exhibited a higher 
correlation with the observed bulk profiles. This improved 
consistency was even more evident when both observed and 
reconstructed bulk profiles were embedded in a UMAP, 
see Fig. 5f.

We also compared the performance of the methods in terms 
of the reconstruction of bulk samples using each method’s cor
responding reference and estimated cell proportions (see details 
in Sections A.4.2 and A.3.8, available as supplementary data at 
Bioinformatics online). As shown in Fig. 5d and Table 3, avail
able as supplementary data at Bioinformatics online, Harp per
formed better than CIBERSORTx (LM22), while BayesPrism 
achieved the best performance. However, in regard of this qual
ity metric BayesPrism always showed the strongest correlation 
(� 1) independent of the provided dataset. This is likely due to 
an explicit constraint in the method’s optimization approach, 
which forces reconstructed expressions to match the original 
data values (Chu et al. 2022).

Similarly to the simulation experiments, we provided the 
harmonized reference matrix learned by Harp to 
CIBERSORTx and BayesPrism, and compared the perfor
mance of this approach, to that achieved with their respec
tive references.

Figure 17, available as supplementary data at Bioinformatics 
online and Table 3, available as supplementary data at 
Bioinformatics online show clear gains in overall and sample- 
wise performance, as well as bulk reconstruction ability when 
using Harp’s reference compared to a method’s default refer
ence, though cell type-specific performance yielded mixed 
results (see Sections A.4.4 and A.4.2, available as supplementary 
data at Bioinformatics online for additional details and Section 
A.3.8, available as supplementary data at Bioinformatics online 
for the statistical analysis).

So far we used data from different sources but comparable 
technologies, as both the bulk profiles and the anchor reference 
samples were derived using standard RNA-seq protocols. Next, 
we challenged Harp and its competitors further by using 
microarray-derived reference profiles as a starting point (anchor 
X�) for harmonization. Our analysis is identical to that de
scribed above, with the sole difference that CIBERSORTx’s 
LM22 matrix, which is microarray-derived, replaces the referen
ces derived from RNA-seq profiles of sorted cell compartments 
(for details, see Section A.4.2, available as supplementary data
at Bioinformatics online). Figure 6a–c and Table 6, available as 
supplementary data at Bioinformatics online show that, for cell 
proportion predictions, Harp outperformed both methods 
across all performance metrics (also see the results for RMSD 
and mAD in Fig. 18, available as supplementary data at 
Bioinformatics online), except for Rc in the B cell compartment. 
Nonetheless, the performance of all methods with respect to the 
Rc metric was comparable for most cell types. Statistical testing 
also showed that Harp significantly performed better than other 
methods in sample-specific performance but did not present a 

siginigicant improvement in cell type-specific performance (for 
details see Section A.3.8, available as supplementary data at 
Bioinformatics online and Table 7, available as supplementary 
data at Bioinformatics online). Figure 6d shows that both Harp 
and BayesPrism, when using LM22, explained the bulk gene ex
pression samples better than CIBERSORTx.

Moreover, as shown in Fig. 6e, the advantage of using the 
Harp estimated reference over the microarray-based LM22 
reference for bulk reconstruction was pronounced, with the 
average correlation improving from approximately 0.5 to 
about 0.9 (see also Section A.4.3, available as supplementary 
data at Bioinformatics online). Embedding both the observed 
and reconstructed bulk profiles into a UMAP further 
highlighted the improved consistency (Fig. 6f).

Finally, we again examined the effect of using harmonized 
references on the performance of competing tools. Figure 18, 
available as supplementary data at Bioinformatics online and 
Table 6, available as supplementary data at Bioinformatics online 
show that both CIBERSORTx and BayesPrism generally 
benefited from using Harp’s reference. Notably, when 
CIBERSORTx was used with Harp’s reference, no batch correc
tion was performed when applying CIBERSORTx, yet its perfor
mance still improved (see the details in Sections A.4.2 and A.4.5, 
available as supplementary data at Bioinformatics online).

The benchmark comparison of deconvolution tools and hy
brid deconvolution on microarray bulk expression data, where 
technological inconsistency is insignificant, is discussed in 
Section A.5, available as supplementary data at Bioinformatics 
online. Therefore, in this case, harmonization was not particu
larly required. The results indicate that Harp’s performance is 
comparable to its performance discussed earlier.

4 Discussion
We introduced Harp, a novel deconvolution tool designed for 
applications where reference data and bulk data are derived from 
different sources and are therefore not fully compatible. By per
forming data harmonization, Harp overcomes these discrepan
cies, emerging as a cross-platform deconvolution tool that 
enables analyses beyond the confines of a single data source.

Harmonization strongly depends on the technological plat
forms used for tissue processing, measurement of cellular 
composition, and gene expression profiling, as well as on the 
types and states of the tissues. In many cases, suitable training 
data are not publicly available and must be generated prior to 
deconvolution. Based on our experience, a small dataset of 
20 bulk expression profiles with corresponding composition 
measurements provides a practical starting point.

A known challenge in tissue deconvolution is that cell types 
vary in RNA content (Monaco et al. 2019), which can lead to 
underestimation of those with lower RNA abundance. Harp 
addresses this by incorporating experimentally measured cellu
lar compositions during training. When RNA yield differences 
are consistent across tissues, Harp’s scaling factor α [see 
Equation (5)] helps align RNA-based and experimental propor
tions. While α may also reflect technical variation—such as cell 
loss or protocol-specific biases—it provides a flexible mecha
nism to account for such systematic discrepancies.

We emphasize that in our work harmonization is not an 
end in itself; the ultimate goal is to accurately predict the cel
lular composition of a tissue. In its Training mode, Harp uses 
experimentally determined proportions of various cell com
partments, adapting the reference profiles to achieve better 
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overall consistency between these proportions, the reference 
data, and the bulk expression. However, the input cell com
positions may be compromised by cell loss during tissue prep
aration, the omission of cell compartments that were present 
in the tissue, or errors during gating (manual or automated). 
As a result, pushing deconvolution results closer to these po
tentially flawed experimental measurements—as Harp does 
in Training mode—might be counterproductive, even if the 
deconvolution outcomes appear to better match the experi
mental data, as observed in our evaluations.

Moreover, deconvolution tools should not be seen merely 
as a way to replicate flow cytometry analyses. It is possible 
that computational deconvolution, in some cases, could yield 
more accurate estimates than experimental quantifications, 
as it accounts for signals from all cell compartments within 

the tissue—potentially capturing components that might oth
erwise be overlooked.

However, this leaves us with the challenge of determining 
which approach is more accurate, as a definitive ground truth 
does not currently exist (Garmire et al. 2024). We anticipate 
that this will change as both experimental protocols and 
image-based analyses progress rapidly. In the meantime, we 
advocate harmonizing all available information so that ap
parent discrepancies (e.g. those shown in Fig. 1) are 
addressed. Harp is designed to achieve precisely this.
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