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Abstract

Motivation: The cellular composition of a solid tissue can be assessed either through the physical dissociation of the tissue followed by single-
cell analysis techniques or by computational deconvolution of bulk gene expression profiles. However, both approaches are prone to significant
biases. Tissue dissociation often results in disproportionate cell loss, while deconvolution is hindered by biological and technological inconsis-
tencies between the datasets it relies on.

Results: Using calibration datasets that include both experimentally measured and deconvolution-based cell compositions, we present a new
method, Harp, which reconciles these approaches to produce more reliable deconvolution results in applications where only gene expression
data is available. Both on simulated and real data, harmonizing cell reference profiles proved advantageous over competing state-of-the-art
deconvolution tools, overcoming technological and biological batch effects.

Availability and implementation: R package available at https://github.com/spang-lab/harp (archived as 10.5281/zenodo.16851930). Code and
data for reproducing the results of this paper are available at https://github.com/spang-lab/harplication (archived as 10.5281/zenodo.16851705)

and https://doi.org/10.5281/zenodo.156650057, respectively.

1 Introduction

Tissues consist of cells of different types. The relative fre-
quencies of cells of specific types define the cellular composi-
tion of a tissue, which holds crucial information on its
biology and pathology. It is altered in diseases such as can-
cers, chronic inflammations, or infections. While cell types
can be coarsely distinguished by their shape, molecular data
allows for a more finely granulated distinction of cells and
even cell states. The more molecules considered, the better
cells can be characterized.

Cellular composition can be assessed experimentally using
single cell technologies such as fluorescence-activated cell
sorting (FACS; Hu et al. 2016), cytometry by time-of-flight
(CYTOF; Cheung and Utz 2011), single-cell RNA sequencing
(scRNA-seq; Wu et al. 2014), or combinations of these meth-
ods. However, for solid tissues, a common limitation of these
approaches is the bias introduced by enzymatic dissociation,
which tends to disproportionately affect certain cell types,
leading to their preferential loss during isolation (Wang e al.
2019, Denisenko et al. 2020, Kim et al. 2023).

An alternative approach is bulk gene expression profiling
combined with computational deconvolution (Avila Cobos
et al. 2018). In this method, a bulk expression profile is

modeled as a weighted sum of reference profiles from individ-
ual cell types, where the weights represent the cellular compo-
sition of the tissue.

Let X be a gXxg matrix representing reference profiles,
where each column corresponds to a specific cell type and
each row represents a gene. For the bulk data, let Y be a gxn
matrix, where each column indicates a bulk profile and each
row relates to a gene. Finally, for the cellular compositions,
let C be a g xn matrix where every column is a bulk tissue
and every row is a cell type. The entry Cj; is the relative fre-
quency of cell type 7 in tissue j. The central deconvolution
equation connecting these data is

Y = XC. (1)

Building upon this equation, widely used tissue deconvolution
tools including DTD (Gortler et al. 2020), CIBERSORTx
(Newman et al. 2019), MuSiC (Wang et al. 2019), or ADTD
(Gortler et al. 2024) estimate cellular abundances of the bulk
samples. Furthermore, recent methods designed to estimate cell-
type-specific gene expression, such as BayesPrism (Chu et al.
2022) and TissueResolver (Simeth et al. 2024), often provide re-
markably accurate cellular composition estimates as a byproduct.
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Deconvolution, comes with its own limitations (Garmire
et al. 2024). In theory, Equation (1) should hold exactly. In
reality, however, this equation does not hold, due to both tis-
sue specific gene regulation and experimental inconsistencies
in data generation. We distinguish two scenarios:

Local inconsistencies: Y = XC holds approximately for the
majority of genes, but there is a small number of genes for which
it is strongly violated. For example, if the references for T cells
were generated from inactive T cells, while the bulk tissues con-
tain activated T cells. In this case Equation (1) might hold for
most genes, except for T cell activation markers. Experimental
inconsistencies can also lead to this problem. For example, if a
certain class of genes was experimentally depleted only in the
bulk profiles but not the reference profiles. In this case, Equation
(1) is mathematically infeasible for the depleted genes. Moreover,
if reference profiles are derived from single-cell sequencing data,
there can be substantial technological discrepancies compared to
the bulk sequencing data used for tissues. Single-cell data is typi-
cally zero-inflated due to high drop-outs (Haque et al. 2017,
Zheng et al. 2017), influenced by transcriptional burst (Chubb
et al. 2006), and until recently, did not commonly include ribo-
somal RNA depletion (Shek ez al. 2021), unlike bulk
RNA sequencing.

Global inconsistencies: Y = XC does not hold for any of
the genes, because there are global inconsistencies between
the bulk and reference data. This situation typically occurs if
different profiling technologies such as scRNA-seq and
microarrays were used (Brombacher et al. 2025).

Both local and global systematic differences prevent refer-
ence profiles from accurately summing up to bulk profiles.
For example, Fig. 1 compares bulk RNA-seq data to a
weighted average of sorted RNA-seq data, with the weights
determined experimentally using flow cytometry. In the
UMAP (Healy and Mclnnes, 2024) plot, the measured bulk
profiles and the reconstructed profiles are clearly separated.

Several approaches to compensate for data inconsistencies
have been applied and described in the literature. When local
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Figure 1. Comparison of bulk RNA-seq expression profiles to
reconstructed bulk gene expression samples. Bulk RNA-seq data from
(Zimmermann et al. 2016) is represented in orange, while reconstructed
bulk expression, derived by combining flow cytometry data of the same
bulk samples with cell type-specific signatures from sorted RNA-seq data
(Monaco et al. 2019), is shown in navy.

Nozari et al.

inconsistencies are known, affected genes can be manually ex-
cluded from the deconvolution, as in depletion protocols. If the
affected genes are not known a priori, such as in tissue-specific
gene regulation, machine learning-based approaches have been
proposed to detect these inconsistencies from the data. For exam-
ple, Digital Tissue Deconvolution (DTD) (Gortler et al. 2020)
assumes that subsets of genes are affected by inconsistencies and
eliminates those automatically from the deconvolution using a
loss function learning approach. BayesPrism (Chu et al. 2022) in
contrast, targets global inconsistencies involving all genes by mar-
ginalization of a posterior distribution conditioned on bulk and
single cell expression data. CIBERSORTx provides two custom
batch effect removal strategies. The first estimates an explained
bulk expression matrix and then applies classical batch correction
(Johnson et al. 2007) to adjust this estimation to the actual bulk
expression, which is only possible for moderate batch effects.
The second approach directly adjusts the signature matrix used
for deconvolution by integrating single-cell information. There,
artificial bulk mixtures are generated from single-cell data and
then batch corrected, using again the method in (Johnson et al.
2007), in order to fit the actual bulk expression. Via non-
negative least squares regression, taken into account the adjusted
bulk mixtures and prior estimates of cellular frequencies, the ad-
justed signature matrix is then imputed. However, a method that
systematically harmonizes possibly compromised cellular quanti-
fication measurements with transcriptomic data of various plat-
forms is still lacking in the literature.

Here, we introduce Harp, a method that harmonizes refer-
ence profiles and measured cell compositions to improve the
consistency and accuracy of computational tissue deconvolu-
tion. Harp addresses the limitations of existing approaches
by explicitly integrating measured cellular compositions dur-
ing training and aligning them with bulk expression data.
This allows the method to correct for inconsistencies across
transcriptomics platforms and reference sources. We demon-
strate that Harp improves deconvolution performance in
both simulated and real datasets, including challenging cross-
platform scenarios, and outperforms existing methods in a
range of evaluation metrics.

2 Materials and methods
2.1 Algorithm

An overview of the Harp framework is provided in Fig. 2.
Harp operates in two modes: Training and Deconvolution.

Training mode: In this mode, Harp takes as input a matrix
Y of bulk tissue gene expression profiles, a corresponding ma-
trix C of experimentally determined cellular tissue composi-
tions, and a matrix of reference profiles X, holding cell
signatures of these tissues (see also Section A.1, available as
supplementary data at Bioinformatics online). These inputs
may exhibit inconsistencies such that Y # XC. The aim of
Harp is to harmonize these inputs by adjusting both X and C
to meet the following objectives:

* The adjusted cellular compositions, C', accurately repre-
sent the cellular composition of the tissue.

* The adjusted reference profiles, X', reflect the expression
states of the cell types as they exist in the tissue.

e The relationship Y= X'C’ is approximately satisfied,
where X’ and C' are the harmonized versions of the input
reference profiles and cellular compositions, respectively.
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Figure 2. The Harp framework consists of two main modes: Training and Deconvolution. During Training, both bulk expression data and experimentally
determined cell frequencies are used, whereas Deconvolution relies solely on expression profiles. In the Training step, Harp takes the following inputs: (i)
a matrix of reference cell profiles derived from experiments on sorted cell populations using either RNA-seq or microarrays, or from single-cell RNA
sequencing (scRNA-seq); (ii) bulk gene expression profiles obtained from either bulk RNA-seq or microarray technology; and (iii) a corresponding cellular
composition matrix, generated using methods such as scRNA-seq, flow cytometry, or other technigues. Using these input data, Harp estimates a matrix
of harmonized cell reference profiles. In the Deconvolution step, Harp takes new bulk gene expression samples, along with the estimated reference

profiles from the Training step, to infer cellular compositions.

First, Harp accounts for potential errors in the composition
matrix C by allowing some flexibility, facilitating data har-
monization. In order to correct for these errors, it represents
the cellular decomposition of the tissue by a parameterized
matrix C'(a) = diag(a) C*, where

C
Cur

Cr =

is a (g+1) X7 matrix that is identical to C but includes an
additional row representing a mixture of all cell types that
could be present in the tissue but are not accounted for in the
cellular composition matrix (Racle et al. 2017, Gortler et al.
2024) (see Section A.2.3, available as supplementary data at
Bioinformatics online for more details). The diagonal matrix
diag(a), where a is a (g-+1)-dimensional vector of non-
negative scaling parameters accounts for cell-type-specific
losses during the experimental determination of C. Then,
since cell reference data often contains signatures from more
cell types than those measured in flow cytometry data, C, we
introduce an additional column to X, denoted as Xyj. This
column represents the gene-wise average expression across all
remaining cell types not captured in the flow cytometry data.
We define this reference matrix as X* = (X, Xyj).

Next, Harp adjusts the reference matrix X* to X’ to meet
two key criteria:

a) Y=XC(a).
b) The columns of X’ maintain similarity to the original an-
chor matrix X*.

Criterion (b) is crucial to avoid artifacts caused by underde-
termination, where Y = X’C'(a) may hold perfectly, but the
adjusted profiles in X’ no longer reflect the true biological ex-
pression patterns of the cell types they represent.

More formally, we minimize the following loss function
with respect to ¢* and a simultaneously, where ¢* = (¢, dy;)
with ¢ being a matrix of same dimension as X and ¢; being
an additional column accounting for the Unidentified cell
types in compatibility with the extra row in C*,

L(#" &) = |[Y - ¢ diag(@)C" [+ R(X",¢"),  (2)
with || - ||, denoting the Frobenius norm and R being defined as

R(X* %) =) {m(l +exp((p - x)if)) +

! (3)
in(1+exp((=0 +2),) |
Note that the regularization term R constrains the adjusted

references X’ to remain close to the measured references. It
anchors X'.
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Starting with diag(er) being equal to the identity matrix, the
optimization process alternates between updates of X’ using

X = argmin . L(¢", ) (4)
followed by the update of a, by minimizing the loss function
Ula) = |diag(@)C" - C]l3, ()

with respect to a, where C is the estimated cellular composi-
tion using X’ as the reference profile, for more details see
Section A.2.5, available as supplementary data at
Bioinformatics online. Note that after X’ is updated, its col-
umns are normalized to sum up to the number of features
(genes) it includes; this is necessary to keep both X' and a
identifiable.

Additionally, we provided the option for Harp to automat-
ically determine the regularization strength from a given
range of A values via a cross validation approach in order to
arrive at an optimal A’ that balances both criteria (a) and (b),
see Section A.2.2, available as supplementary data at
Bioinformatics online.

Deconvolution mode: In this mode, Harp uses the adjusted
reference profile matrix X', obtained during training, to
deconvolve bulk tissue gene expression data sources similar
to those used in training (e.g. comparable tissues or profiling
technologies) where no experimentally determined tissue
composition is available. By default, Harp applies the ad-
justed matrix X’ in combination with the DTD algorithm
(Gortler et al. 2020) for deconvolution in order to arrive at
its final cell proportion estimate C', see also Section A.2.5,
available as supplementary data at Bioinformatics online.
However, the harmonized matrix X’ can also serve as a refer-
ence profile for use with other deconvolution methods.

2.2 Performance metrics

Here, we introduce several established performance metrics
to evaluate deconvolution results. They either compare cell
abundance estimates to ground-truth cell proportions—
which may either be predefined in simulation scenarios or
obtained experimentally (e.g. through flow cytometry or
scRNA-seq)—or predicted bulk gene expression to observed
bulk expression data. For their mathematical definition we
refer to Section A.2.4, available as supplementary data at
Bioinformatics online.

Cell type-specific performance: The first performance met-
ric of a deconvolution tool, R.(/), is its ability to accurately
capture variations in the relative abundance of a given cell
type [ across different samples. For example, this quality met-
ric can evaluate how accurately the method predicts that sam-
ple 1 contains 10% more T cells than sample 2.

Sample-specific performance: A second performance metric
is the tool’s ability to accurately estimate the proportions of
different cell types within an individual sample 72, denoted as
Rs(m). For instance, R; can evaluate how accurately the
method determines that one sample contains 30% more T
cells than B cells.

Combined performances: Following (Wang et al. 2019) the
cell type-specific and sample-specific performance metrics
can be integrated into a single overall measure denoted as R.
We furthermore include the absolute quality metrics RMSD
and mAD into our analyses.

Nozari et al.

Bulk reconstruction performance: Thus far, our perfor-
mance metrics have focused on evaluating the estimated cel-
lular compositions C. In addition to accurately recovering
these compositions, a well-calibrated deconvolution tool
should also be able to recapitulate the observed bulk expres-
sion Y via the model

Y =XC.

To assess this, we introduce a bulk-centered performance
measure p(m), which correlates explained bulk expression of
sample m to its observed bulk expression.

Statistical testing: We evaluate the significance of perfor-
mance improvements using a z-test on the correlation coeffi-
cients R, and R;, following the approach of (Chu et al.
2022); see Section A.3.7, available as supplementary data at
Bioinformatics online for details.

3 Results
3.1 Simulation

To evaluate the performance of Harp and compare it with
state-of-the-art deconvolution algorithms, we performed ex-
tensive benchmarking simulations. In these simulations, we
followed a well-established approach by generating artificial
bulk expression profiles as weighted averages of single-cell
expression profiles (Newman et al. 2019, Wang et al. 2019,
Chu et al. 2022). Importantly, the simulated profiles allow us
to control the “cellular composition” through the assignment
of weights. For instance, in a profile where T cells constitute
30% of the cellular composition, the cumulative weight of
the T cell profiles accounts for 30% of the total. In our simu-
lations, we used single-cell data from two studies on non-
Hodgkin lymphomas (nHL) (Roider et al. 2020, Steen et al.
2021). The study by Steen ef al. (2021) comprises profiles
from 28 416 single cells collected from eight patients, includ-
ing four patients with Diffuse Large B-cell Lymphoma
(DLBCL), three patients with Follicular Lymphoma (FL) and
one control patient with Tonsilitis (T). The cells have been
pre-annotated with the following cell type labels: B cells,
Monocytes, Natural Killer cells, Plasmablasts, CD4 T cells,
CD8+ T cells, regulatory T cells, T follicular helper cells, and
a remaining unknown compartment. The second study, con-
ducted by Roider ez al. (2020), includes 35 284 single-cell
profiles from 12 nHL cases, including three DLBCL, four FL,
two Transformed Follicular Lymphoma (tFL) and three con-
trol patients exhibiting reactive lymph nodes (rLN).
Similarly, these cells have been pre-annotated as B cells, mye-
loids, CD8+ T cells, regulatory T cells, follicular helper T
cells, and T helper 1 cells. Notably within this study the B
cells were further divided into healthy B cells and malignant
lymphoma cells. For further details see Supplement, Section
A.3.2, available as supplementary data at Bioinformatics on-
line and Fig. 9, available as supplementary data at
Bioinformatics online.

We observed substantial inconsistencies and batch effects
between these studies (also see Fig. 7a, available as supple-
mentary data at Bioinformatics online), which can be par-
tially attributed to differences in laboratory protocols, tissue
handling, and library preparation, as well as patient heteroge-
neity (see Supplementary Material, Section A.3.1, available
as supplementary data at Bioinformatics online). We used
these discrepancies to simulate inconsistent datasets.
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Specifically, the data from the first study defined the reference
profiles, while the data from the second study were used to
generate artificial bulk samples. For Harp’s anchor X* we
used the average cell-type specific expression across single
cell profiles of (Steen et al. 2021). Concerning (Roider et al.
2020), we randomly divided the data from 12 patients into
two independent sets of six patients each. One set was used
to generate a training set of artificial bulk samples, while the
other set was used to create an independent test set. For
deconvolution we focused on only those cell types that were
defined in both studies, namely B cells, CD8+ T cells, regula-
tory T cells and follicular helper T cells. Importantly, the B
cell compartment contained both malignant and physiologi-
cal cells from this B cell malignancy. This implies complete-
ness of the reference and thus, X* = X.

For each bulk sample, we randomly selected cells stemming
from a single patient only. More precisely, we determined the
actual amount of single cells for each cell type within a given
patient and then perturbed this amount with a normally dis-
tributed factor in order to arrive at the quantity of cells to be
randomly selected from each cell type. This allowed us to
generate multiple artificial bulk mixtures from a single pa-
tient, which contain suitable variation in terms of cellular
composition (see Section A.3.3, available as supplementary
data at Bioinformatics online). Following (Chu et al. 2022),
we introduced additional distortions that further amplify the
discrepancies observed between the datasets, by locally per-
turbing gene expression values in artificial bulk mixtures
with a gene specific multiplicative noise. More precisely, we
sampled gene-specific factors from a pre-defined normal dis-
tribution and then multiplied this factor to the expression
value of the considered gene in all artificial bulk mixtures.
Following this approach, we perturbed 40% of all genes
while the remaining set of genes was left unchanged (see
Section A.3.4, available as supplementary data at
Bioinformatics online). In total, we generated 20 artificial
training samples and 40 test samples using this protocol (also
see Supplement, Section A.3.5, available as supplementary
data at Bioinformatics online). Figure 11, available as supple-
mentary data at Bioinformatics online shows the distribution
of cell proportions in these datasets. Importantly, this simula-
tion framework naturally controls the proportions of the var-
ious cell compartments in the artificial bulk mixtures, see
Section A.3.3, available as supplementary data at
Bioinformatics online for details.

3.1.1 Calibration of regularization

Our first analysis addresses the calibration of the parameter 1
in Equation (2). Regularization enforces a degree of similarity
between the adjusted reference matrix X’ and its unadjusted
counterpart X*. Note that overly strong regularization results
in minimal adjustment of the reference profiles, potentially
failing to compensate for technical discrepancies. On the
other hand, weak or absent regularization can produce refer-
ence profiles that diverge from the true expression character-
istics of the cells they represent. For example, the column
corresponding to B cells in X’ might no longer capture the
typical expression profile of a B cell, indicating that the refer-
ence has been “over-adjusted.”

In order to better understand Harp’s dependency on its
hyperparameter 4, we fitted models on simulated data using
different 4 values in the range [0,2"]. Let X'(1) be the ad-
justed reference matrix produced by Harp when using

4 ‘—

| <
@ém = Celétype
oLy TCD8
o A ﬁ Treg
< =y Tih
S | oA
o @it § Regularization value

A Optimal A
O Naive Solution (A =0)

0
UMAP1

Figure 3. Reference profiles learned by Harp for different regularization
parameter (1) values, embedded in the single-cell context using UMAP.
Each square represents a cell type-specific expression profile in the Harp
reference for a given 4, with square size encoding the magnitude of 4.
Triangles indicate the optimal estimated reference profiles selected by
Harp, and each color corresponds to a specific cell type.

regularization strength A. Figure 3 shows a UMAP (Healy
and Mclnnes 2024) embedding of (a) the single-cell profiles
used in the training data and (b) the columns of X'(1) con-
taining the adjusted reference profiles for various cell types at
different values of A. In the plot, small dots represent single-
cell expression profiles, with colors indicating their corre-
sponding cell types. In contrast, squares denote reference pro-
files extracted from X'(4), where the square size increases
with larger 4 values. Triangles represent the reference profiles
obtained for the optimal /', which are the adjusted references
used by Harp in Deconvolution mode, see Section 2.1.

We observed that large 1 values yield reference profiles lo-
cated at the centers of the corresponding single-cell clusters,
indicating minimal adjustment. As A decreases, adjustments
become visible as the reference profiles gradually shift away
from the cluster centers; however, except for very small 1 val-
ues, they remain in the vicinity of the clusters they represent.
Optimal reference profiles tend to lie along this trajectory to-
ward the center, reflecting the typical bias-variance trade-off
observed in machine learning applications.

3.1.2 Benchmarking

We benchmarked Harp’s performance against a set of widely
used deconvolution tools, including BayesPrism (Chu et al.
2022), CIBERSORT (Newman et al. 2015), CIBERSORTx
(Newman et al. 2019), and MuSiC (Wang et al. 2019). Harp
was trained on the training set of bulk mixtures with known
ground truth proportions and subsequently evaluated in
Deconvolution mode on the independent test dataset. Since
none of the other algorithms incorporate a training phase for
data harmonization, they were applied directly to the bulk
samples in the test data, see Section A.3.6, available as sup-
plementary data at Bioinformatics online for details.
Figure 4, Fig. 8, available as supplementary data at
Bioinformatics online, and Tables 1 and 2, available as sup-
plementary data at Bioinformatics online demonstrate that in
these simulations, Harp significantly outperformed its
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Figure 4. Evaluation of performance metrics in simulated data. (a) shows the overall correlation performance, R, (b) the sample-specific performance, Rs,

and (c) cell type-specific performance, A..

competitors across all performance metrics introduced in
Section 2.2.

One might argue that, in the previous benchmark, Harp
had an advantage, because it was trained with additional
data, including ground-truth compositions, and could per-
form data harmonization—a capability not available to the
competing algorithms. To test whether harmonization could
also improve the performance of these methods, we provided
the harmonized reference matrix, X', calculated by Harp to
competing deconvolution tools, see Sections A.3.6 and A.3.9,
available as supplementary data at Bioinformatics online for
details. Figure 8, available as supplementary data at
Bioinformatics online and Tables 1 and 2, available as sup-
plementary data at Bioinformatics online show that using
Harp’s reference in this hybrid deconvolution scenario is
highly beneficial when provided to CIBERSORTX, in com-
parison to the default use of BayesPrism as well
as CIBERSORTx.

3.1.3 Uncertain experimental compositions

Previous evaluations assumed that the composition matrix C
was fixed by simulation design and served as ground truth. In
real applications, however, C is experimentally determined
and may suffer from both systematic bias and random noise.
Harp addresses systematic bias through cell type-specific cor-
rection rates @, which are integrated into the loss function
[see Equation (2)]. We next evaluate the effectiveness of this
correction mechanism.

To this end, we simulated training and test bulk mixtures
as before, yielding ground truth proportions C(/) by design.

We then introduced systematic bias by multiplying each cell
type’s proportion with a fixed, cell type-specific distortion
factor 6(I), simulating effects such as cell loss or consistent
gating errors. This distortion was constant across all samples
in the training set (see Section A.3.10, available as supple-
mentary data at Bioinformatics online).

To model random noise, we further multiplied the ground
truth proportions with sample- and cell-type-specific random
distortions. This step reflects the variability often seen in ex-
perimental quantification of cell type proportions.

We then ran Harp in Training mode twice: once using the
correct cell proportions and once with the distorted propor-
tions. Figure 12, available as supplementary data at
Bioinformatics online and Tables 1 and 2, available as sup-
plementary data at Bioinformatics online demonstrate that
cell type-spcific distortions had minimal impact on Harp’s
overall performance. Moreover, examining the estimated
parameters a(/) alongside the distortion rates &(/) reveals
that, as expected, a(l) ~8(I) ™', see Fig. 13, available as sup-
plementary data at Bioinformatics online.

3.2 Data harmonization with Harp improved
deconvolution accuracy in a study combining data
from two distinct sources

We assessed Harp’s performance by integrating data from
two sources. The bulk RNA-seq data were obtained from a
study investigating primary peripheral blood mononuclear
cells (PBMCs) in healthy individuals following influenza
vaccination (Zimmermann et al. 2016). We utilized bulk
RNA-seq expression profiles for 250 cases, with the cellular
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Harp

composition of the PBMCs experimentally determined via
flow cytometry. However, this study did not include refer-
ence profiles for the various PBMC cell types. For the cell ex-
pression references we used data from an independent source
(Monaco et al. 2019), which generated RNA-seq profiles of
sorted PBMC cell populations. Details on data preprocessing
can be found in Section A.4.1, available as supplementary
data at Bioinformatics online.

We randomly split the bulk data into a training set of 150
cases and a test set of 100 cases. For the training set, we ran
Harp using the reference data from the second source as the
anchor X* for regularizing the reference profile. We then ap-
plied Harp in Deconvolution mode to the test bulk samples,
alongside CIBERSORTx and BayesPrism, and compared the
deconvolution results to the corresponding flow cytometry
measurements (see details on the configurations of other

algorithms in Section A.4.2, available as supplementary data
at Bioinformatics online). Figure Sa—c and Table 3, available
as supplementary data at Bioinformatics online show that
Harp outperformed its competitors in several, though not all,
performance metrics. Most notably, it achieved robust over-
all performance, as indicated by the metric R (also see RMSD
and mAD in Fig. 17, available as supplementary data at
Bioinformatics online and Table 3, available as supplemen-
tary data at Bioinformatics online), which was supported by
excellent sample-specific reconstructions of cell proportions.
In statistical testing, Harp showed significant improvement in
terms of sample-specific performance but not in cell type-
specific correlation, compared to the competing methods (for
details, refer to Section A.3.8, available as supplementary
data at Bioinformatics online and Table 4, available as sup-
plementary data at Bioinformatics online). In addition to the
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Figure 5. Evaluation of performance metrics in the deconvolution of 100 PBMC RNA-seq test samples with a sorted RNA-seq reference. (a—d) represent
the benchmark of deconvolution tools [Harp, CIBERSORTx (LM22), and BayesPrism]. (a—c) evaluate performance on the prediction of cell proportions,
while plot (d) analyses the quality of the reconstructed bulk gene expression profiles. (e) shows box plots of Pearson correlations, p, between the
reconstructed bulk gene expression profiles—generated using the experimental cellular compositions in conjunction with the Harp (green) and sorted
RNA-seq derived (magenta) references, respectively—and the observed bulk RNA-seq data. (f) is a UMAP of the predicted bulk gene expressions of 100
PBMC test samples (darker color shades) and 150 PBMC training samples (represented in lighter color shades), using the Harp (green) and sorted RNA-
seq (magenta) reference, respectively, in conjunction with the cellular compositions derived from experimental data. This plot also includes observed

bulk RNA-seq expression profiles (orange).
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evaluation of cell proportion reconstruction, we evaluated
data consistency after harmonization by reconstructing bulk
expression profiles Y using reference data X and cell compo-
sitions C according to the formula Y = XC. We performed
this reconstruction twice: once using the original (anchor) ref-
erence X* and once using the harmonized reference X' esti-
mated by Harp. The cell abundances, C, used in both sets of
reconstructed bulk samples were obtained from flow cytome-
try data (also see Section A.4.3, available as supplementary
data at Bioinformatics online). Figure Se shows that the bulk
reconstructions based on Harp’s reference exhibited a higher
correlation with the observed bulk profiles. This improved
consistency was even more evident when both observed and
reconstructed bulk profiles were embedded in a UMAP,
see Fig. 5f.

We also compared the performance of the methods in terms
of the reconstruction of bulk samples using each method’s cor-
responding reference and estimated cell proportions (see details
in Sections A.4.2 and A.3.8, available as supplementary data at
Bioinformatics online). As shown in Fig. 5d and Table 3, avail-
able as supplementary data at Bioinformatics online, Harp per-
formed better than CIBERSORTx (LM22), while BayesPrism
achieved the best performance. However, in regard of this qual-
ity metric BayesPrism always showed the strongest correlation
(=~ 1) independent of the provided dataset. This is likely due to
an explicit constraint in the method’s optimization approach,
which forces reconstructed expressions to match the original
data values (Chu et al. 2022).

Similarly to the simulation experiments, we provided the
harmonized reference matrix learned by Harp to
CIBERSORTx and BayesPrism, and compared the perfor-
mance of this approach, to that achieved with their respec-
tive references.

Figure 17, available as supplementary data at Bioinformatics
online and Table 3, available as supplementary data at
Bioinformatics online show clear gains in overall and sample-
wise performance, as well as bulk reconstruction ability when
using Harp’s reference compared to a method’s default refer-
ence, though cell type-specific performance yielded mixed
results (see Sections A.4.4 and A.4.2, available as supplementary
data at Bioinformatics online for additional details and Section
A.3.8, available as supplementary data at Bioinformatics online
for the statistical analysis).

So far we used data from different sources but comparable
technologies, as both the bulk profiles and the anchor reference
samples were derived using standard RNA-seq protocols. Next,
we challenged Harp and its competitors further by using
microarray-derived reference profiles as a starting point (anchor
X*) for harmonization. Our analysis is identical to that de-
scribed above, with the sole difference that CIBERSORTX’s
LM22 matrix, which is microarray-derived, replaces the referen-
ces derived from RNA-seq profiles of sorted cell compartments
(for details, see Section A.4.2, available as supplementary data
at Bioinformatics online). Figure 6a— and Table 6, available as
supplementary data at Bioinformatics online show that, for cell
proportion predictions, Harp outperformed both methods
across all performance metrics (also see the results for RMSD
and mAD in Fig. 18, available as supplementary data at
Bioinformatics online), except for R, in the B cell compartment.
Nonetheless, the performance of all methods with respect to the
R, metric was comparable for most cell types. Statistical testing
also showed that Harp significantly performed better than other
methods in sample-specific performance but did not present a

Nozari et al.

siginigicant improvement in cell type-specific performance (for
details see Section A.3.8, available as supplementary data at
Bioinformatics online and Table 7, available as supplementary
data at Bioinformatics online). Figure 6d shows that both Harp
and BayesPrism, when using LM22, explained the bulk gene ex-
pression samples better than CIBERSORTx.

Moreover, as shown in Fig. 6e, the advantage of using the
Harp estimated reference over the microarray-based LM22
reference for bulk reconstruction was pronounced, with the
average correlation improving from approximately 0.5 to
about 0.9 (see also Section A.4.3, available as supplementary
data at Bioinformatics online). Embedding both the observed
and reconstructed bulk profiles into a UMAP further
highlighted the improved consistency (Fig. 6f).

Finally, we again examined the effect of using harmonized
references on the performance of competing tools. Figure 18,
available as supplementary data at Bioinformatics online and
Table 6, available as supplementary data at Bioinformatics online
show that both CIBERSORTx and BayesPrism generally
benefited from using Harp’s reference. Notably, when
CIBERSORTx was used with Harp’s reference, no batch correc-
tion was performed when applying CIBERSORTZX, vet its perfor-
mance still improved (see the details in Sections A.4.2 and A.4.5,
available as supplementary data at Bioinformatics online).

The benchmark comparison of deconvolution tools and hy-
brid deconvolution on microarray bulk expression data, where
technological inconsistency is insignificant, is discussed in
Section A.5, available as supplementary data at Bioinformatics
online. Therefore, in this case, harmonization was not particu-
larly required. The results indicate that Harp’s performance is
comparable to its performance discussed earlier.

4 Discussion

We introduced Harp, a novel deconvolution tool designed for
applications where reference data and bulk data are derived from
different sources and are therefore not fully compatible. By per-
forming data harmonization, Harp overcomes these discrepan-
cies, emerging as a cross-platform deconvolution tool that
enables analyses beyond the confines of a single data source.

Harmonization strongly depends on the technological plat-
forms used for tissue processing, measurement of cellular
composition, and gene expression profiling, as well as on the
types and states of the tissues. In many cases, suitable training
data are not publicly available and must be generated prior to
deconvolution. Based on our experience, a small dataset of
20 bulk expression profiles with corresponding composition
measurements provides a practical starting point.

A known challenge in tissue deconvolution is that cell types
vary in RNA content (Monaco et al. 2019), which can lead to
underestimation of those with lower RNA abundance. Harp
addresses this by incorporating experimentally measured cellu-
lar compositions during training. When RNA yield differences
are consistent across tissues, Harp’s scaling factor a [see
Equation (5)] helps align RNA-based and experimental propor-
tions. While a may also reflect technical variation—such as cell
loss or protocol-specific biases—it provides a flexible mecha-
nism to account for such systematic discrepancies.

We emphasize that in our work harmonization is not an
end in itself; the ultimate goal is to accurately predict the cel-
lular composition of a tissue. In its Training mode, Harp uses
experimentally determined proportions of various cell com-
partments, adapting the reference profiles to achieve better
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Figure 6. Evaluation of performance metrics in the deconvolution of 100 PBMC RNA-seq test samples with a microarray-based reference (LM22). (a—d)
represent the benchmark of various deconvolution tools [Harp, CIBERSORTx (LM22), BayesPrism]. (a—c) evaluate performance in predicting cell
proportions, while Plot (d) analyses the quality of the reconstructed bulk gene expression profiles. (e) shows box plots of the Pearson correlation, p,
between the reconstructed bulk gene expression profiles, using the flow cytometry-derived cell proportions, together with the Harp (green) and LM22
(magenta) references. (f) is a UMAP of the predicted bulk gene expressions of 100 PBMC test samples (darker color shades) and 150 PBMC training
samples (represented in lighter color shades), using the Harp (green) and a microarray-based (magenta) reference (LM22), respectively, in conjunction
with the cellular compositions derived from experimental data. This plot also includes observed bulk RNA-seq expression profiles (orange).

overall consistency between these proportions, the reference
data, and the bulk expression. However, the input cell com-
positions may be compromised by cell loss during tissue prep-
aration, the omission of cell compartments that were present
in the tissue, or errors during gating (manual or automated).
As a result, pushing deconvolution results closer to these po-
tentially flawed experimental measurements—as Harp does
in Training mode—might be counterproductive, even if the
deconvolution outcomes appear to better match the experi-
mental data, as observed in our evaluations.

Moreover, deconvolution tools should not be seen merely
as a way to replicate flow cytometry analyses. It is possible
that computational deconvolution, in some cases, could yield
more accurate estimates than experimental quantifications,
as it accounts for signals from all cell compartments within

the tissue—potentially capturing components that might oth-
erwise be overlooked.

However, this leaves us with the challenge of determining
which approach is more accurate, as a definitive ground truth
does not currently exist (Garmire et al. 2024). We anticipate
that this will change as both experimental protocols and
image-based analyses progress rapidly. In the meantime, we
advocate harmonizing all available information so that ap-
parent discrepancies (e.g. those shown in Fig. 1) are
addressed. Harp is designed to achieve precisely this.
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