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Abstract
It has been established that, in Bayesian tasks, performance and typical errors in reading 
information from filled visualizations depend both on the type of the provided visualiza-
tion and information format. However, apart from reading visualizations, students should 
also be able to create visualizations on their own and successfully use them as heuristic 
tools in modeling tasks. In this paper, we first want to broaden the view on Bayesian rea-
soning to probabilistic tasks with two binary events in general and embed the whole pro-
cess of solving these tasks using probabilistic visualizations in a modified modeling frame-
work. Thereby, it becomes apparent that most of the steps remained untouched by existing 
research. Second, in the present empirical study, we focused on one part of the largely 
unexplored creation process and examined entering statistical information into empty visu-
alizations as heuristic tools. N = 172 participants had to enter conditional and joint prob-
abilities or the corresponding frequencies into empty visualizations in a paper-and-pen-
cil test. We analyze (a) students’ performance when entering information in visualizations 
and (b) typical errors, both dependent on the information format (probabilities vs. natural 
frequencies), which empty visualization structure (2⨯2 table, double tree, net diagram) was 
provided, and type of information (conditional vs. joint information). The well-known posi-
tive effect of natural frequencies on participants’ performance was evident when entering 
conditional information into 2⨯2 tables and net diagrams. However, with respect to joint 
information, no superior effect of frequencies was observed. Furthermore, the theoretical 
implementation of our research in a modeling cycle allows  us to identify desiderata for 
future research.
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1  Introduction

How likely is it that a person is infected with COVID if they have tested positive on a 
COVID rapid test? Questions like this have repeatedly preoccupied us during the course of 
the pandemic and involve what is known as a “conditional probability.” Conditional prob-
abilities frequently pose challenges for people in our society, a striking example of which is 
Donald Trump’s statement in October 2020 that 85% of people who wore masks neverthe-
less got the coronavirus (Dale, 2020; Enaganti et al., 2022). In this statement, he confused 
two “inverse” proportions. In fact, the Centers for Disease Control and Prevention had 
found in a study of 154 participants that, of those who were ill, a total of 85% said that they 
wore a mask either “always” or “often” over the 2 weeks prior to the beginning of their ill-
ness. Unfortunately, errors like this frequently occur (Shaughnessy, 1992).

Especially difficult in the context of conditional probabilities are Bayesian tasks (i.e., 
probabilistic tasks that can be solved with Bayes’ formula; for an example, see  the well-
known mammography problem in Table 1), which regularly lead to wrong judgments even 
among experts in various fields like law or medicine (Hoffrage et al., 2000; Operskalski & 
Barbey, 2016; Spiegelhalter et al., 2011). In Bayesian reasoning situations, two strategies 
can help one to overcome typical difficulties: (1) replacing percentages by natural frequen-
cies (e.g., saying “80 out of 100 infected people receive a positive test result” instead of 
“80% of the infected people receive a positive test result,” see the two columns of Table 1) 
and (2) visualizing the statistical information, see Fig.  1 (Binder et  al., 2015; Böcherer-
Linder & Eichler, 2019; Gigerenzer & Hoffrage, 1995; Khan et al., 2015; McDowell et al., 
2018). Despite its obvious relevance to mathematics education, research on Bayesian 

Table 1   The well-known mammography problem is a typical Bayesian situation requiring the calculation of 
an “inverse” conditional probability

Probability format Frequency format

Problem The probability of breast cancer (D) is 2% for a woman 
at age forty who participates in routine screening

If a woman has breast cancer, the probability is 80% that 
she will have a positive mammogram result (T +)

If a woman does not have breast cancer, the probability 
is 10% that she will also have a positive mammo-
gram result

What is the probability that a woman in this age group 
who has a positive mammogram result actually has 
breast cancer?

200 out of every 10 000 women 
at age forty who participate in 
a routine screening have breast 
cancer (D)

160 out of every 200 women with 
breast cancer will have a positive 
mammogram result (T +)

980 out of every 9 800 women with-
out breast cancer will also have a 
positive mammogram result

How many women with a positive 
mammogram result actually have 
breast cancer?

Correct 
solution

Possible solution algorithm:
P(D|T+) = P(D∩T+)

P(T+)
=

P(T+|D)⋅P(D)
P(T+|D)⋅P(D)+P

(
T+|D

)
P(D)

=
0.8⋅0.02

0.8⋅0.02+0.1⋅0.98
≈ 14%

160 women who have breast cancer 
also have a positive mammogram 
result. 980 women do not have 
breast cancer but have a positive 
mammogram result. Therefore, 
(160 + 980) = 1 140 women have 
a positive mammogram result; of 
those, 160 women actually have 
breast cancer

160 out of 1 140
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Fig. 1   Visualizations of situations with two binary events (based on the values of Table 1, D: has breast can-
cer, D : does not have breast cancer, T+: positve mammogram result, T–: negative mammogram result). Left: 
probability visualizations (i.e., the numerical values are presented as percentages, decimal numbers, or frac-
tions); right: frequency visualizations. All sixteen elementary probabilities are depicted simultaneously only 
in the probability net. Especially for node-branch-structures, it is possible to illustrate probabilities and fre-
quencies simultaneously in one visualization (e.g., by superimposing the left and the right diagram)
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reasoning has been predominantly conducted by cognitive psychologists (e.g., see Barbey 
& Sloman, 2007; McDowell & Jacobs, 2017), focusing primarily on participants’ (intui-
tive) performance in tasks like those in Table 1.

In this paper, we want to broaden Bayesian reasoning as it is investigated so far by psy-
chologists by implementing the perspective of mathematics education. This will be accom-
plished by three major shifts of focus.

First, the focus of this paper is not limited to the special case of Bayesian reasoning but 
covers probabilistic situations involving two binary events (i.e., health status and medical 
test result) in general. From a mathematical point of view, these situations feature sixteen 
elementary probabilities (four marginal, four joint, and eight conditional probabilities). 
However, most Bayesian reasoning tasks feature only four specific probabilities (three given, 
one asked), yet there are a lot of other probabilities that can be involved in such situations. 
Nevertheless, since previous research has predominantly focused only on Bayesian reason-
ing, this special case will play a major role in the theoretical part of this paper.

Second, in mathematics education, tasks that are related to real-world situations in general 
or applications of probability in particular can be interpreted in a modeling context (Gage, 
2012; Kaiser & Sriraman, 2006) involving several steps that need to be successfully com-
pleted during the solving process. Although in the last 30 years a flurry of research on Bayes-
ian reasoning has investigated the effect of information formats (e.g., probabilities vs. natural 
frequencies) and the power of visualizations (e.g., tree diagrams or 2⨯2 tables, see Fig. 1), 
most of this research has been based on stimuli, where the beneficial elements were already 
implemented by the experimenter (for a few training studies, see Büchter et al., 2022; Feufel 
et al., 2023; Sedlmeier & Gigerenzer, 2001; Steib et al., 2024) and therefore neglect many 
relevant modeling steps. For everyday teaching and learning of probability in school, how-
ever, it is indispensable that students can in the end construct visualizations on their own—
even out of a real situation. Thus, it is important to look at the entire modeling cycle (see, e.g., 
Blum & Leiss, 2007, Fig. 2) and what difficulties learners face in each of the individual steps.

Third, awareness of potential errors in any step of the solving process is a crucial aspect of 
a teacher’s professional knowledge. Thus, the research on common erroneous strategies also 
should be broadened to other steps of the modeling process. In dealing with “conditional infor-
mation” (in the following we understand this term to mean a conditional probability or the 
corresponding natural frequency), first indications of typical errors and how these depend on 
the information format and the type of visualization being used have already been documented 
in studies on Bayesian reasoning. However, little is known about typical errors concerning 
other steps of the modeling cycle or even other inferences (e.g., requiring joint probabilities).

Fig. 2   The modeling cycle by Blum and Leiss (2007).
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Therefore, this article pursues two goals: first, in the theoretical background, the process 
of solving probabilistic tasks with two binary events using a visualization is embedded in a 
modeling cycle. Second, one aspect is examined in more detail in an empirical study: while 
previous studies have mainly focused on problem solving or/and reading from filled visual-
izations, the present study looks at another step of the modeling cycle, focusing on entering 
statistical information into empty visualizations as part of peoples’ ability to use (known) 
visualizations for mathematical modeling (i.e., in the context of probabilistic tasks but not 
limited to Bayesian tasks). Therefore, we examine the influence of information format and 
visualization type on participants’ ability to fill numerical conditional or joint information 
(i.e., probabilities or frequencies) at the correct localizations in empty visualizations.

2 � Theoretical background

In the following, probabilistic situations and corresponding tasks with two binary events 
are interpreted in the modeling framework (2.1) and the relevant conceptual and procedural 
knowledge is outlined (2.2). Next, an overview of the role and functions of visualizations 
in probability concerning situations with two binary events is given (2.3), and expanded 
by a summary of their most important characteristics (2.4). Finally, the last part gives an 
overview of the current state of research concerning the use of visualizations for solving 
probabilistic tasks with two binary events (2.5).

2.1 � The modeling cycle for probabilistic tasks with two binary events

In general, modeling is seen as an important activity in mathematics and has been organized 
into various mathematical (e.g., Blum and Leiss, 2007) and statistical modeling cycles, such 
as the PPDAC cycle (Wild & Pfannkuch, 1999). Because probability models (e.g., modeling 
hypothetical structural relationships) are fundamental to the teaching of statistics and sto-
chastics we specify the well-known modeling cycle by Blum and Leiss (2007), see Fig. 2, 
for the use of visualizations to solve probabilistic tasks with two binary events, see Fig. 3 
(see  also, e.g., Eichler & Vogel, 2015). In order to better illustrate the various stages of 

Fig. 3   The modeling cycle by Blum and Leiss (adapted, 2007), specified for probability problems with two binary 
events that are solved using a visualization. A concrete modeling task here could be that a marginal probability, 
a joint probability, and a conditional probability are given in a real modeling context (in a non-underdetermined 
task), and another marginal probability is to be calculated. Typical Bayesian tasks would also be conceivable here.
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Table 2   The modeling cycle for solving probabilistic tasks involving two binary events based on a visuali-
zation

Step 1
Understanding

In reality, probabilistic situations with two binary events do not occur as 
neatly structured as the example for a Bayesian reasoning task in Table 1 
and usually include unnecessary information, for example, informa-
tion on prevalence in other age groups. Therefore, the first task for the 
problem solver is to construct a situation model, which means to gain a 
structured overview of the situation as a whole

Step 2
Simplifying

In order to transfer the situation model into a real model, the problem is 
structured further by identifying and focusing on its relevant aspects 
(e.g., a situation with the two binary events health status and test result; 
conjecture that there might be a dependency between the two events) and 
omitting any excess information, such as prevalence in other age groups

Step 3a
Mathematizing: Choosing a 

visualization

Tasks with two binary events are often solved with the help of visualiza-
tions and this is also strongly encouraged in the classroom. In the fol-
lowing—also in line with the focus of this article—we look at a typical 
solution algorithm that uses a visualization as a heuristic tool. In this 
case, a suitable visualization is chosen and drawn to represent the situ-
ation. In certain cases (e.g., if the situation involves an event with more 
than two characteristics), the visualization needs to be adapted in order to 
represent the situation adequately. Success in solving (probabilistic) tasks 
depends largely on the type and quality of the used visualization, as well 
as on the students’ strategic knowledge for the construction of adequate 
visualizations (Hembree, 1992; Rellensmann et al., 2017; Zahner & 
Corter, 2010), which can be seen as conceptual knowledge according to 
the distinction of conceptual and procedural knowledge of Hiebert and 
Lefevre (1986)

Step 3b
Mathematizing: Entering 

values

Afterward, the given information needs to be correctly inserted into the 
chosen visualization, which requires procedural knowledge (e.g., how 
to calculate conditional probabilities from joint probabilities) and concep-
tual knowledge (e.g., a sufficient comprehension of subset relations, 
part-whole relationships, and part-part relationships, different types of 
probabilities and their differentiation; Dröse et al., 2022; Post & Prediger, 
2022; Shaughnessy, 1992). Furthermore, knowledge on the visualiza-
tion’s structure and limitations is helpful, since not all probabilities can 
be entered into every visualization (e.g., 2⨯2 tables are rather unsuitable 
for displaying conditional probabilities; tree diagrams do not display joint 
probabilities, see also Sect. 2.4), which can be seen as conceptual knowl-
edge according to the distinction of conceptual and procedural knowledge 
of Hiebert and Lefevre (1986)

Step 4a
Working mathematically: 

Determining missing 
values

If needed, missing values are calculated and added to the visualization. 
This requires knowledge on the visualization as a symbolic representation 
(procedural knowledge type 1, Hiebert & Lefevre, 1986). For example, 
in a tree diagram, percentages on branches coming from the same node 
always add up to 100%. However, appropriate conceptual knowledge can 
also be helpful here to avoid typical errors such as confusing joint and 
conditional probabilities (Dröse et al., 2022) and appropriate procedural 
knowledge type 2, i.e., knowledge of rules and algorithms (Hiebert & 
Lefevre, 1986), is helpful, e.g., to calculate a conditional probability with 
the help of a marginal and a joint probability
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constructing a probabilistic visualization, steps 3 ("mathematizing") and 4 ("working math-
ematically") are split into substeps. A short description of the individual steps can be found 
in Table 2. Please note that this modeling cycle depicts only one out of many possible ways 
to solve a probabilistic task with two binary events using a visualization. Furthermore, the 
steps do not necessarily have to be accomplished in this particular order and the cycle can 
be entered and exited at any point—depending on the complexity of the task at hand. 

2.2 � Conceptual and procedural knowledge for solving probabilistic tasks with two 
binary events

Solving probabilistic problems with two binary events requires conceptual and procedural 
knowledge at various points in the modeling cycle, as already outlined in Table  2 (see  
also Dröse et  al., 2022). In the following, we refer to the distinction between conceptual 
knowledge and two types of procedural knowledge according to Hiebert and Lefevre  
(1986). For understanding probabilistic problems containing two binary events, concep-
tual knowledge is  required to recognize and distinguish marginal, conditional, and joint  
information (Shaughnessy, 1992), which builds on prior mathematical knowledge of the  
different types of probabilities like part-whole  relationships and part-part  relationships  
(Prediger & Schink, 2009). Moreover, in order to understand what, for example, “20%  
out of 40%” means, it is necessary to have developed the relevant basic ideas (also called 
“Grundvorstellungen”) of percentages or fractions. Depending on the situation and the 
exact wording, the phrase can mean “20%⋅ 40% = 8% of the whole” (if it refers to a joint 

Table 2   (continued)

Step 4b
Working Mathematically: 

Finding a solution

After calculating the missing values, one can either simply read the desired 
probability from the visualization, or it needs to be calculated (e.g., a 
conditional probability is calculated as a fraction of two numbers in 
the 2⨯2 table), which again requires procedural knowledge in using the 
formula (procedural knowledge type 2) or visualizations (procedural 
knowledge type 1) adequately, and conceptual knowledge that prevents 
one from confusing different probabilities (e.g., the probability of B given 
A with the probability of A given B)

Step 5
Interpreting

After calculating a mathematical result, it has to be transferred back into 
the real-world scenario and is interpreted as an answer to the original 
question or the real model. This step requires a change of language 
and making sense of the numerical values: Mathematical solutions use 
abstract formulations, while the real-world result uses a wording similar 
to the situation model, for example, “the probability of being infected, 
given a positive test result, is 14%”

Step 6
Validating

The result is then used to validate the utility of the constructed model. For 
typical Bayesian tasks, the calculated results are often substantially lower 
than most people would expect them to be. For example, the positive 
predictive value (i.e., the probability that a woman actually has cancer if 
she has a positive test result) for the mammography problem is frequently 
overestimated (Casscells et al., 1978; Eddy, 1982).

Therefore, it is necessary to check the modeling assumptions once again. 
This includes reviewing the visualization that was used regarding its 
internal coherence and concordance with the situation model

Step 7
Exposing

If the model is considered to be sufficient for solving the task, the results 
can be applied to the real-world situation, for example, by reaching a 
decision. Otherwise, steps 2 to 9 are run through once again with further 
adjustments to the model
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probability: e.g., “20% of the 40% (women) of all persons are ill”) or “20%/40% = 50% of the 
part” (if it refers to a conditional probability: e.g., “20% of the 40% women,” Wiesner et al.,  
in press). This is closely linked to grasping part-part relationships or part-whole relationships 
in a probabilistic situation (Post & Prediger, 2022), that is, correctly identifying the two nested 
subsets of the sample space that make up a probability and their relationship to each other (e.g., 
as numerator and denominator of a fraction or as the two numbers in a natural frequency).

Relevant procedural knowledge type 1 (according to Hiebert & Lefevre, 1986, see also 
Sáenz, 2009) includes knowledge of the symbolic representation (and formal language)  
and therefore the ability to construct and—if necessary—modify appropriate visualizations 
for the given situation. Moreover, procedural knowledge type 2, that means, knowledge of 
rules and algorithms, is necessary in order to determine missing values, for example, the 
rules for calculating with probabilities (e.g., P(A) = 1–P(A) or P(A∩B) = P(A)⋅ P(B|A)). 
Additionally, language skills are crucial to decode the verbal information and interpret it 
mathematically and vice versa.

Visualizations play a special role for the relevant knowledge on probabilistic situations, 
and the conceptual knowledge and also procedural knowledge type 1 are closely related to 
visualizations: on the one hand, commonly used visualizations (e.g., 2⨯2 tables or branch-
ing structures like tree diagrams) and their characteristics can be considered to be part of 
the procedural knowledge type 1: learners need to know what information is displayed in 
which way in different visualizations (see 2.4). On the other hand, visualizations can be 
used to build the above-described conceptual knowledge, for example, by displaying differ-
ent relationships of the several subsets of a sample space in order to foster the differentia-
tion of the marginal, joint, and conditional probabilities. Furthermore, when creating and 
working with visualizations, it becomes clear whether students have already developed suf-
ficient conceptual knowledge and procedural knowledge about the different types of prob-
abilities. Therefore, a visualization is also a carrier of this knowledge. This results in dif-
ferent functions of visualizations, which will be further discussed in the following section.

2.3 � The role and functions of probabilistic visualizations

Similar to the dual cognitive-communicative function of language in mathematics (Maier 
& Schweiger, 1999), probabilistic visualizations serve multiple purposes. First, they are 
considered to be a helpful heuristic tool that can be useful in mathematical problem solv-
ing or modeling, even for experts (Hembree, 1992; Rellensmann, 2019; Uesaka et  al., 
2007). In probability, for example, tree diagrams can be used to organize and enumerate a 
sample space (Nunes et al., 2014) and students have been reported to spontaneously create 
visualizations when solving probabilistic or combinatoric tasks (Zahner & Corter, 2010).

Second, probabilistic visualizations can also be used as a medium for communication. 
Although many visualizations serve only a communicative function (e.g., bar charts or pie 
charts), some predominantly heuristic visualizations can take on both functions (e.g., tree 
diagrams, see Spiegelhalter et al., 2011).

Third, probabilistic visualizations are also used as teaching material to build up con-
ceptual knowledge about probabilistic concepts. They can help learners see connections 
between part-part relationships and conditional probabilities, as well as the connection 
between part-whole relationships and joint or marginal probabilities (Dröse et al., 2022). 
Furthermore, visualizations are also suitable for developing relevant conceptual knowledge 
so that they can enable the differentiation of conditional and joint probabilities and their 
conscious contrasting (Díaz & Batanero, 2009; Shaughnessy, 1992).
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Taking these functions into account, the educational standards adopted by many coun-
tries see fundamental visualizations like 2⨯2  tables or tree diagrams as learning objects 
themselves that are therefore mandatory in coursework (ACARA, 2022; Kultusminis-
terkonferenz, 2022; NCTM, 2023). This suggests that familiarity with common probabil-
istic visualizations itself can be considered to be part of the conceptual knowledge and not 
just a by-product of probability education. However, it is important that these visualiza-
tions are not exclusively treated as fixed structures but can also be adapted and used flex-
ibly if necessary while still remaining their key characteristics.

In the context of probabilistic tasks with two binary events, we want to study visualiza-
tions (see Fig.  1) primarily in their function as heuristic tools that can facilitate certain 
steps of the solving process of these tasks (see Fig. 3). In contrast, most previous studies 
on (intuitive) Bayesian reasoning studied visualizations primarily in their (passive) com-
municative function since visualizations were usually provided completely filled and often 
in place of a text that presented the relevant statistical information for the following task. 
However, the present study does not aim to fully cover the function of heuristic tools and 
all steps of the modeling cycle at once. Nevertheless, it focusses on participants’ ability to 
use their conceptual knowledge of probabilities on known and adapted visualizations.1

The relevant conceptual differences between the visualizations that will be used in the 
empirical part of this paper are outlined in the following section.

2.4 � Visualizations of two binary events

In probability education, students can use various visualizations as heuristic tools to solve 
(modeling) problems involving two binary events. The present study focuses on 2⨯2 tables, 
double  trees, and net diagrams  (see Fig.  1). While 2⨯2  tables are quite common, dou-
ble trees and net diagrams are largely unused in schools.

Probabilistic visualizations differ as to which statistical information is displayed. For two 
binary events, there is a total of sixteen elementary probabilities: four marginal probabilities  
P(D), P(D ), P(T +), P(T–), four joint probabilities P(D ∩ T +), P(D∩ T +), P(D ∩ T–), P(D∩ T–), and  
eight conditional probabilities P(D|T +), P(D|T–), P(D|T +), P(D|T–), P(T +|D), P(T +|D ), P(T–|D),  
and P(T–|D).2 Most visualizations do not explicitly include all of those 16 probabilities. In many 
cases, a visualization focuses on either joint or conditional probabilities and thus neglects the 
other one. Moreover, some visualizations are not symmetric in the sense that a conditional prob-
ability and its reverse (e.g., P(D|T +) and P(T +|D)) are not equally evident (e.g., tree diagrams 
display only one of the two possible hierarchical structures; see Fig. 1).

Table  3 presents the most important features for some visualizations in both formats.  
Remarkably, net diagrams (Binder et al., 2020) display all sixteen elementary probabilities, which  
can be seen as a structural advantage. However, students’ ability to switch between visualizations, 
to draw connections between different visualizations, and to choose appropriate visualizations for  
given tasks (e.g., depending on the information that is given or that has to be calculated) are seen 
as key competencies summarized in the concept of representational flexibility that has been shown  
to be an important part in successful (flexible) mathematical problem solving in general (Acevedo 
Nistal et al., 2009; Novick & Hmelo, 1994; Zahner & Corter, 2010).

1  Double trees and net diagrams are usually not (yet) treated in schools but follow the same rules for enter-
ing probabilities or frequencies as tree diagrams as another well-known node-branch-structure.
2  Besides these sixteen elementary probabilities, there are P(∅ ), P(Ω ), and the probabilities of unions of 
subsets (e.g., P(D∪T +)).
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2.5 � Previous research on the use of visualizations for probabilistic tasks with two 
binary events

Previous research has primarily focused on the special case of Bayesian reasoning but has 
nevertheless generated important insights into the effects of information formats and visuali-
zations on participants’ performance and typical errors in solving probabilistic tasks with two 
binary events in general. First, Bayesian tasks are solved correctly more often if the task is 
presented in natural frequencies instead of probabilities (e.g., “80 out of 100 infected people 
receive a positive test result” instead of “80% of the infected people receive a positive test 
result”, frequency effect, Gigerenzer & Hoffrage, 1995; McDowell & Jacobs, 2017). Second, 
presenting the task using a completely filled visualization instead of or next to a textual rep-
resentation can also facilitate solving Bayesian tasks (Binder et al., 2015; Böcherer-Linder 
& Eichler, 2019; Gigerenzer & Hoffrage, 1995; Khan et al., 2015; McDowell et al., 2018). 
Furthermore, visualizations seem to be of greater benefit if displayed in the frequency format 
rather than in the probability format (see Fig. 1, Binder et al., 2015). Yet, recent studies have 
shown that the frequency effect (for visualizations) does not hold if the task calls for joint 
instead of conditional information (Binder et al., 2020; Stegmüller et al., 2024).

The following section describes typical errors that are known from previous studies. 
These are mainly observable error patterns that may be based on misconceptions. It has to 
be noted that an observed error pattern or a correct answer does not indicate whether or not 
the student has a general misconception (Riccomini, 2005).

2.5.1 � Typical errors in solving tasks including conditional probabilities

Various errors for dealing with conditional information, especially in the context of Bayes-
ian reasoning, will be summarized and explained using the mammography problem (see 
Table 1) in the following. In most of the studies cited below, the visualizations were already 
completely filled and participants’ ability in extracting statistical information adequately 
was examined.

Table 3   Features of the 2⨯2 table, tree diagram, double tree, and net diagram in both formats, which can be 
used as heuristic tools for modeling situations with two binary events

 Visualization  Format Marginal probabilities/
frequencies can be 
displayed directly

Joint probabilities/
frequencies can be 
displayed directly

Conditional probabili-
ties/frequencies can be 
displayed directly

2⨯2 table Probabilities ✓ ✓ no
Frequencies ✓ ✓ ✓

Tree diagram Probabilities Only 2 out of 4 no Only 4 out of 8
Frequencies Only 2 out of 4 ✓ Only 4 out of 8

Double tree Probabilities ✓ no ✓

Frequencies ✓ ✓ ✓

Net diagram Probabilities ✓ ✓ ✓

Frequencies ✓ ✓ ✓
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One of the most frequently observed errors (an overview is given in Table 4) is the so-
called joint occurrence error, where a conditional probability is wrongly interpreted as a joint 
probability (e.g., P(D|T +) is interpreted as P(D∩T +)). This error pattern may be based on 
the following misconception: In terms of part-whole relationships, the part is hereby recog-
nized correctly (i.e., the numerator of the corresponding fraction or the first number in the 
natural frequency is identified correctly as D ∩T +), whereas the whole (i.e., the superset or 
the second number) is erroneously interpreted as the whole sample space Ω instead of the 
subset T+ . A lack of conceptual knowledge in regard to part-whole relationships therefore 
contributes to this error pattern. In the example given in Table 1, the joint occurrence error 
would lead to the answer 1.6% or 160 out of 10 000.

 Another common error is the Fisherian, subsequently called inverse error: A condi-
tional probability is mistaken for its inverse conditional probability, that means, P(D|T +) is 
confused with P(T +|D) (in the mammography problem, this strategy yields 80% instead of 
14%). In this case, the part is again identified correctly, but the corresponding whole is 
chosen wrongly (i.e., D instead of T+ ; Falk, 1986; Gigerenzer & Hoffrage, 1995; Kahne-
man et  al., 1982). This error pattern can be caused by a lack of conceptual knowledge 
regarding the part-whole relationship but can also be facilitated by a lack of knowledge on 
how to verbally formulate different types of probabilities adequately. Erroneously assum-
ing that the two events D and T+ are independent (i.e., P(D|T +) = P(D)) is called the base-
rate-only error. Similarly, the evidence-only error focuses only on the conditional event, 
which means that P(D|T +) is confused with P(T +). Both of these errors result in a wrong 
interpretation of part and whole, leading to the answers 2% or 11.4%, respectively. Finally, 
ignoring the intersecting structure of the two events and therefore misinterpreting the part-
whole relationship leads to the pre-Bayes error, where the probability P(D|T+) is mistak-
enly expressed as |D|/|T+| (or |D| out of |T+|), yielding 200/1140 ≈ 17.5%. This strategy 
uses a correct whole but a false part.

Table 4   Correct solution and typical error patterns  for Bayesian tasks (Binder et  al., 2020; Bruckmaier 
et  al., 2019; Díaz & Batanero, 2009; Eichler & Böcherer-Linder, 2018; Gigerenzer & Hoffrage, 1995; 
Steckelberg et al., 2004; Woike et al., 2023; Zhu & Gigerenzer, 2006)

a Probabilities and cardinalities are labeled according to Fig. 4. We consider Ω to be the set containing all 
individual people of the (imaginary) sample, for example, |Ω|= 10 000 (people). Therefore, the cardinal-
ity of the subsets (e.g., |D|) yields the expected frequency with which the corresponding event is going to 
occur; b “missing base-rate” is similar to the Bayesian formula but missing the so-called base-rate P(D)

Probabilitiesa Frequenciesa

Correct solution (Bayesian) P(D)⋅P(T+|D)
P(D)⋅P(T+|D)+(1−P(D))⋅P(T+|D)

|T+∩ D| out of |T+|

Error patterns
Joint occurrence P(D) ⋅ P(T+|D) |T+∩ D| out of |Ω|
Inverse error P(T+|D) |T+∩ D| out of |D|
Base-rate-only P(D) |D| out of |Ω|
Evidence-only P(D)⋅P(T+|D) + (1 − P(D))⋅P(T+|D) |T+| out of |Ω|
Likelihood-subtraction P(T+|D) − P(T+|D) Not applicable
False-alarm-complement 1 − P(T+|D) |T-∩D | out of | D|
50%-rule 50% Not applicable
Missing base-rateb P(T+|D)

P(T+|D)+P
(
T+|D

) Not applicable
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Further errors are shown in Table 4. Since only the net diagram can display all relevant 
probabilities, it is used (Fig. 4) to explain the letters in Table 4.

2.5.2 � Typical errors in solving tasks that include joint inferences

While typical errors involving conditional probabilities are well-known via research on 
Bayesian reasoning, errors in calculating joint probabilities have been studied less fre-
quently (for an exception, see, e.g., Binder et al., 2020). To illustrate these errors, we con-
sider the visualizations in Fig.  1  together with the question, “What is P(T+∩D)?” as an 
example of a joint inference task. In that case, the correct solution is 1.6%.

In analogy with the joint-occurrence error in Bayesian reasoning, a common mistake 
in handling joint probabilities is to not identify the whole as the entire sampling space Ω 
but as a smaller subset, in that way confusing joint and conditional probabilities, leading 
to an error which we call conditional error, where P(D∩T+) is confused with P(T+|D) or 
P(D|T+), that is, 14% or 80%, respectively, in the example in Fig. 1 (see also Table 5).

Another mistake occasionally seen—the independence error—originates from the erro-
neous use of a well-known formula: If and only if the events D and T + are independent,  
P(D∩T+) = P(D)⋅P(T+) holds true. If insufficient conceptual knowledge of stochastic inde-
pendence has been built up, the formula is sometimes misused when the joint probabilities are  
calculated from two not stochastically independent events. In the example, this strategy yields  
2.0%⋅11.4% ≈ 0.2%.

In general, for both joint and conditional probabilities, one or more negations might 
sometimes be misread from the text, leading to the negation error where, for example,  
P(D|T +) is confused with P(D|T+), or P(D∩T+) is confused with P(D∩T+). Further  
errors are shown in Table 5.

Fig. 4   Schematic net diagram for the two events test result (positive/negative) and health status (has the 
disease/does not have the disease), representing the sixteen elementary probabilities, as used in Table 4. 
Probabilities/frequencies that are given in a typical Bayesian inference task are blue; the probability that has 
to be calculated is red
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2.5.3 � The influence of information format and visualization on typical errors

As briefly discussed earlier, visualizations differ in the way they present probabilistic infor-
mation. As a result, some visualizations are particularly susceptible to typical or unique 
error patterns.

A 2⨯2 table can provoke confusion of probabilities since its inner cells serve multiple 
purposes: On the one hand, each of these cells directly displays one joint probability, while 
on the other hand, each cell can be used to determine two conditional probabilities in com-
bination with a corresponding marginal cell in the same row or column (Batanero et al., 
1996; Roca & Batanero, 2006). This seems especially challenging for the calculation of 
conditional information in the probability format with percentages, possibly because divid-
ing two percentages by each other in order to get yet another percentage is a rather unfamil-
iar operation and requires a thorough understanding of the part-part model (note that the 
calculation of conditional information from 2⨯2  tables is independent of the information 
format, i.e., in both formats, the numbers from the same cells have to be divided).

Despite their straightforward structure, tree diagrams have been reported to be fre-
quently misconstructed and/or misinterpreted, for example, in the solving of combination 
problems (Lamanna et al., 2022) or sequential probabilistic problems (Awuah & Ogbon-
naya, 2020). However, misconstruction can also occur in situations with two binary events, 
especially if conditional probabilities need to be calculated, since tree diagrams focus only 
on one “conditional direction.”

Considering the efforts that are being made in statistics education to foster students’ mod-
eling competencies (Biehler et al., 2017; Pfannkuch et al., 2018; Zapata-Cardona, 2018) and 
their high universal relevance (e.g., in the recent Covid pandemic: “What is the probability that 
I am infected if I have a positive test result?”), it is remarkable that the vast majority of empiri-
cal research for the case of visualizations for probabilistic situations with two binary events has 
focused almost exclusively on step 4b of the modeling cycle (reading completely filled visu-
alizations), in particular concerning Bayesian tasks (see Fig.  5). However, when confronted 
with probabilistic situations in real life or in school book tasks, visualizations are not provided. 
Therefore, constructing a visualization and entering numerical values is a crucial aspect of 

Table 5   Correct solution and typical error patterns for joint inferences (Binder et al., 2020)

a For explanation of the letters, see Fig. 4

Probabilitiesa Frequenciesa

Correct solution P(D)⋅P(T+|D) or P(T+)⋅P(D|T+) |T + and D| out of |Ω|
Error patterns
Conditional error P(T+|D) or P(D|T+) |T + and D| out of |D| or 

|T + and D| out of |T +|
Independence error P(D)⋅P(T+) Not applicable
Negation error e.g., P(T − ∩D) e.g., |T– and D| out of |Ω|
Double joint probability P(D)⋅P(T+|D)+

P(T+) ⋅ P(D|T+)
Not applicable
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solving (but also for understanding/structuring) a probabilistic task. Although there have been 
isolated efforts to cover this area, the few studies focusing on earlier steps in the modeling 
cycle have been rather small and did not further investigate erroneous strategies (Bobek & 
Corter, 2010; Friederichs et al., 2014; Zahner & Corter, 2010). Therefore, the question remains 
open as to whether participants, who, e.g., decide to solve the task of Table 1 with the help of 
a visualization, are able to put numbers such as that given in the problem (Table 1) at the right 
places in visualizations (e.g., the ones displayed in Fig. 1, if they are still empty).

The intention of the present study is to take one step back from the usual focus  (i.e., 
green arrow in Fig. 5) and examine students’ abilities and difficulties when using visualiza-
tions as heuristic tools. The focus of the empirical study is on typical errors made in enter-
ing a given probability or natural frequency into an empty visualization.

3 � Research questions and hypotheses

The current study investigates one specific aspect of students’ ability in using visualiza-
tions as heuristic tools. The focus is on students’ performance and typical error patterns in 
entering conditional or joint probabilities, or corresponding frequencies, into empty visu-
alizations (2⨯2 tables, double trees, and net diagrams). The research questions (RQ), with 
hypotheses (H), are summarized in Table 6.

Fig. 5   The modeling cycle by Blum and Leiss (adapted, 2007), color-coded to display current state of 
research concerning, e.g., Bayesian reasoning
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4 � Methods

4.1 � Design of the study

In order to examine students’ ability to use empty visualizations as heuristic tools and fill them 
correctly, a paper-and-pencil test was carried out using the introductory stories of two typi-
cal Bayesian tasks, the mammography problem and a short version of the economics problem 
(Ajzen, 1977). Participants were asked in each problem to enter one specific given numerical 
information into provided empty visualizations (see Fig. 6). Note that—in contrast to typical 
(Bayesian) reasoning problems—for each task, only one piece of statistical information was 
given that had to be placed into a visualization (i.e., it was not necessary to infer a, e.g., positive 
predictive value).

Table 6   Research questions with hypotheses

Research question Hypotheses

RQ1: Does the format of information (probabilities 
vs. frequencies) and the given empty visualization 
affect participants’ performance in entering condi-
tional and joint information (i.e., conditional and 
joint probabilities, or the corresponding natural 
frequencies)?

H1a: The percentage of correct entries will be 
higher if the information is given in frequencies 
rather than probabilities (both for conditional and 
joint information) because we expect the format 
effect to hold for entering information into visu-
alizations as well (for joint probabilities; however, 
the findings of Binder et al. 2020 suggest that we 
may not find a systematic format effect here)

H1b: Net diagrams and double trees will lead to bet-
ter performance in entering conditional probabilities 
compared to 2⨯2 tables, since conditional probabili-
ties cannot be directly entered in 2⨯2 tables

H1c: Net diagrams and 2⨯2 tables will lead to 
higher performance in entering joint probabilities 
compared to double trees because double trees do 
not directly display joint probabilities

RQ2: Does the format of information (probabilities 
vs. frequencies) and the given empty visualization 
affect typical participants’ error patterns in enter-
ing conditional and joint information (i.e., condi-
tional and joint probabilities or the corresponding 
natural frequencies)?

H2a: In general, we expect to observe analog 
typical error patterns in filling out visualizations 
that are already known from research on solving 
Bayesian reasoning tasks with the help of purely 
textual versions or with the help of completely 
filled visualizations. However, previous empiri-
cal findings suggest that errors in reading from 
visualizations can differ from errors in filling out 
visualizations (Cox, 1997)

H2b: Furthermore, we expect to observe new error 
patterns: (1) filling in the given information in 
multiple places on the visualization (one of them 
correct and the other one incorrect), (2) just fill-
ing in the set or the subset but not both pieces of 
information from the natural frequency into the 
visualization, or (3) errors that are related to the 
formulated negation (e.g., test negative)

H2c: Compared to all visualizations, the joint 
occurrence error will appear most often in 
the entering of conditional probabilities into 
2⨯2 tables, since 2⨯2 tables do not directly display 
conditional but joint probabilities
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The design of the study includes two factors of interest and one factor that is not of 
interest, resulting in a 2 × 3 × 2 design (see also Table 7):

•	 Factor 1: Format of information—probabilities vs. frequencies
•	 Factor 2: Visualization—2⨯2 table vs. double tree vs. net diagram
•	 Factor 3 (not a factor of interest): Context—mammography vs. economics

In total, 24 tasks were implemented (see Table 7), and each participant completed one 
testlet that included four of these tasks in the following way: Tasks 1 and 2 had the same 
format of information, context, and visualization but asked for entering a different type of  
information (e.g., task 1 conditional information and task 2 joint information, or vice versa).  
Tasks 3 and 4 also differed from each other only in the type of information that had to be 

Table 7   Design of the 24 used problem versions

Each participant was given a testlet containing two out of the 12 pairs of tasks, which address one condi-
tional and one joint information (the 12 pairs are represented as 12 rows in the table). The two pairs of tasks 
have a different context, format, and visualization. Each of the (in sum) four individual tasks was presented 
on an individual sheet of paper. Two different contexts were used, in order to allow each participant to 
answer two different pairs of questions instead of just one

Format of information Context Type of information that had to be entered

Conditional information Joint information

Probabilities Mammography problem 2⨯2 table 2⨯2 table
Double tree Double tree
Net diagram Net diagram

Economics problem 2⨯2 table 2⨯2 table
Double tree Double tree
Net diagram Net diagram

Natural frequencies Mammography problem 2⨯2 table 2⨯2 table
Double tree Double tree
Net diagram Net diagram

Economics problem 2⨯2 table 2⨯2 table
Double tree Double tree
Net diagram Net diagram

Fig. 6   Empty visualizations (2⨯2 table, double tree, net diagram) for the mammography context. Visualiza-
tions for the economics context were structurally equivalent but were labeled with “students” instead of 
“women” and E (economics course) and C (career-oriented) instead of B and T +
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entered, but had a different context, format of information, and visualization as the first two 
tasks. If, for instance, the mammography context appeared in the probability format with a 
2⨯2 table in the first two tasks of a particular testlet, the remaining two tasks of the testlet  
featured the economics context in the natural frequency format with a double tree or a net dia-
gram. The order of context, information format, visualization, and type of information were  
varied systematically between the testlets so that every possible combination was covered.

4.2 � Materials

Each task began with an introductory story (see Table 8); after that, one of the three dif-
ferent kinds of empty visualizations, presenting only the labeling of the events (but no 

Table 8   Task formulations

Context Mammography Economics

Introductory story Imagine you are a reporter for a women’s 
magazine and you want to write an 
article about breast cancer. As part of your 
research, you focus on mammography 
as an indicator of breast cancer. You are 
especially interested in the question of 
what it means when a woman has a positive 
result (which indicates breast cancer) in 
such a medical test. A woman can have 
breast cancer (B) or not ( B ). Furthermore, 
she can get a positive (T +) or a negative 
(T–) result. All women in this exercise 
participate in routine screenings

Imagine you are interested in whether career-
oriented students are more likely to attend an 
economics course. The school psychological 
service evaluates the correlations between 
stated goals and choice of courses for you. 
A student can be career-oriented (C) or not 
( C ). Furthermore, a student can choose an 
economics course (E) or not ( E ). All students 
in this exercise participated in the evaluation

Visualization 2⨯2 table, double tree, or net diagram 2⨯2 table, double tree, or net diagram
Information format Natural frequency 

version
Probability version Natural fre-

quency version
Probability version

Instruction Please enter the fol-
lowing two bold 
printed numbers in 
the correct nodes/
fields in the follow-
ing visualization, 
or check [x] that 
the numbers cannot 
be entered because 
there is no fitting 
node/field

Please enter the 
following bold 
printed probability 
in the correct 
branch/field in the 
following visu-
alization, or check 
[x] that the prob-
ability cannot be 
entered because 
there is no fitting 
branch/field

Please enter the 
following two 
bold printed 
numbers in the 
correct nodes/
fields in the 
following visual-
ization, or check 
[x] that the num-
bers cannot be 
entered because 
there is no fitting 
node/field

Please enter the following 
bold printed probability in 
the correct branch/field in 
the following visualization, 
or check [x] that the prob-
ability cannot be entered 
because there is no fitting 
branch/field

Conditional informa-
tion: conditional 
probability or 
corresponding 
natural frequency

Out of 8 860 women 
who participate in 
routine screening 
and get a negative 
result, 40 do have 
breast cancer

The probability that 
a woman who gets 
a negative result 
has breast cancer 
is 0.5%

Out of 387 
students who 
are not career-
oriented, 115 
choose an eco-
nomics course

The probability that a student 
who is not career-oriented 
chooses an economics 
course is 29.7%

Joint information: 
joint probability or 
corresponding nat-
ural frequency

160 out of 10 000 
women have breast 
cancer and get a 
positive result

The probability 
that a woman has 
breast cancer and 
gets a positive 
result is 1.6%

205 out of 1 000 
students are 
career-oriented 
and choose 
an economics 
course

The probability that a student 
is career-oriented and 
chooses an economics 
course is 20.5%
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numerical values) was given (see Fig.  6). The structure was already provided (which is 
important because double trees and net diagrams were new to the students), and the statisti-
cal information had to be entered in the appropriate place. For this purpose, participants 
got one piece of information (a conditional probability or the corresponding two abso-
lute frequencies, or a joint probability or the corresponding two absolute frequencies; see 
Table 8) that they had to enter in the given visualization. They could also check a box that 
it was not possible to enter the given information, which was sometimes the correct answer 
(see also Table 8 for task formulations).

4.3 � Participants

The study was carried out in late 2020 and early 2021 and therefore was affected by 
lockdowns due to COVID-19. In order to obtain a sufficient sample size, N = 172 partic-
ipants were recruited both from a university (N = 52) and secondary-school (six classes 
from a German Gymnasium, N = 120) in Bavaria. The university students were at the 
beginning of their studies in Biology and had not taken any courses in mathematics or 
statistics in university. Out of the 52 university students, 38 were female and 14 male. 
Their ages ranged from 17 to 60, with an average of 20.73 (SD = 6.13). Out of the 120 
secondary-school students, 45 were female and 75 male. They were in Grades 11 and 
12, and their ages ranged from 16 to 19, with an average of 17.09 (SD = 0.89). Since 
conditional as well as joint probabilities are part of the Bavarian curriculum in Grades 
10 and 11, all school students had encountered this topic in their last school year, but 
they had not dealt with it in their current school year. Therefore, all students were famil-
iar with joint and conditional probabilities, as well as with 2⨯2 tables containing prob-
abilities and frequencies and tree diagrams containing probabilities, but not with tree 
diagrams containing absolute frequencies in their nodes, double trees, or net diagrams.

The testlets were distributed randomly to the participants, resulting in similar group 
sizes, as can be seen in Table 9.

Participants were asked to state their gender, age, and math grade in their last school 
report card.

The study was carried out in accordance with the University Research Ethics Standards. 
The students were informed that their participation was voluntary and anonymity was guar-
anteed. The participants provided their written informed consent to participate.

Table 9   Group sizes for the different visualizations, formats, and types of information (across  both con-
texts)

Format Type of information 2⨯2 table Double tree Net diagram Sum

Probabilities Conditional 57 56 59 172
Joint 57 56 59 172

Frequencies Conditional 58 56 58 172
Joint 58 56 58 172
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4.4 � Coding

4.4.1 � Conditional probability

In the probability versions of the task, the response was coded as correct if the probability 
was entered at the correct branch in the double  tree and net diagram or if the participant 
checked the box that the given conditional probability could not be entered in the 2⨯2 table. 
In the frequency versions, the response was classified as correct if both absolute numbers 
were entered at the correct position in the given visualization.

4.4.2 � Joint probability

The entry of the given joint probability was coded as correct if the given probability was 
entered at the correct branch of the net diagram or cell of the 2⨯2 table or if the participant 
checked the box that the probability could not be entered in the double tree. Again, in the 
frequency version, the response was classified as correct if both absolute numbers were 
entered correctly.

4.4.3 � Specific cases

The response was coded as wrong if given probabilities or frequencies were entered mul-
tiple times (exception: the magnitude of the population was entered in both corresponding 
nodes in the frequency double tree, compare Fig. 1). The response was also classified as 
incorrect if the entry of the given conditional probability at the crossing branches of the 
double tree could not be clearly allocated to one of the branches. This occurred only once 
in the study.

4.4.4 � Coding of the error patterns

Coding of the typical error patterns was based on a deductively derived coding scheme, 
based on the well-known error patterns in reading information from diagrams (see theo-
retical background), complemented by inductively derived categories that occurred during 
the coding process (Mayring, 2014). A code manual was developed to outline the typical 
errors that we expected would occur in the study. Two raters coded 20% of all (conditional 
and joint) entries independently according to this code manual (see Online Resources 1 
and 2). Since all of the correct entries were rated in agreement with each other, and the 
typical errors were classified identically in 99.3% of all cases, the remaining entries were 
rated only by one coder.

In order to reduce the number of different error categories and present the results clearly, 
only error patterns that were committed at least five times in any of the six versions were 
accepted to be proper error pattern. Less frequent errors were summarized in a category 
“other uniquely classifiable errors.” Nevertheless, the inverse error is additionally listed 
because this is a well-known error and frequently occurred in solving pure text variants of 
Bayesian tasks.

Sometimes, it was possible for one answer to be assigned to two or more error cat-
egories, for example, confusing joint with conditional probabilities, and also dropping a 
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negation (e.g., P(D∩T+) is confused with P(D|T–)). Some errors could not be assigned to 
any category and were therefore labeled as “error unknown.”

4.5 � Statistical model

In order to statistically compare the effects of information format and type of visualiza-
tion, we estimated generalized linear mixed models (GLMM) with a logit link function to 
predict performance in entering conditional and joint information. Because of the dichoto-
mous dependent variable (0 = incorrect, 1 = correct solution), we refrained from calculat-
ing a linear regression. Furthermore, we decided for a mixed analysis and against a, for 
instance, logistic regression, due to our between-within-subject design since each partici-
pant solved several tasks. To take this aspect into account, we modeled the participants’ 
ID as a random factor. We specified the natural frequency version with a net diagram as 
the reference category and included the possible explanatory factors “probabilities,” 
“2⨯2 table,” and “double tree” via dummy coding. Furthermore, we included the interac-
tion terms (probabilities × 2⨯2 table) and (probabilities × double tree) and implemented the 
mathematics grade from the last school report card into the model. Please note that grades 
in Germany range from 1 to 6, with 1 being the best possible grade.

5 � Results

5.1 � Participants’ performance in entering conditional and joint information

5.1.1 � Conditional information

When students are required to use empty visualizations as a heuristic tool and fill in the 
given statistical information in the appropriate places, participants entered frequencies cor-
rectly more often into 2⨯2  tables and net diagrams than conditional probabilities (Fig. 7). 
For double  trees, however, both formats were entered almost equally often correctly. The 
highest performance rate was found for entering frequencies into the net diagram, and the 
lowest for stating that conditional probabilities cannot be entered into 2⨯2 tables.

As can be seen from Table 10, the (unstandardized) regression coefficient for entering 
probabilities instead of natural frequencies was significant and negative as hypothesized 
(H1a), which means the students were able to enter two absolute frequencies in the net dia-
gram more easily than one conditional probability. Presenting a 2⨯2 table or a double tree 
instead of a net diagram only leads to a descriptive but not a significantly worse perfor-
mance of participants (H1b). Furthermore, there is a significant interaction effect between 
information format and 2⨯2 table, whereas the interaction between information format and 
double tree is not significant. This means that in the 2⨯2 table, the information format has 
an even stronger influence on the participants’ performance than it does in the net diagram. 
Furthermore, a student’s mathematics grade is a significant predictor for correct entry of 
the numbers. Please note that the participants were familiar with 2⨯2 tables but not with 
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double trees and net diagrams. Additionally, participants might prefer to enter a value over 
stating that a value cannot be entered, if they are unsure.

5.1.2 � Joint information

For the double  tree and net diagram, frequencies were entered correctly more often than 
joint probabilities (Fig. 8). However, almost all participants were able to enter joint prob-
abilities correctly into 2⨯2 tables. The lowest performance was found for responding that 
joint probabilities cannot be entered into double trees.

As can be seen from Table 11, the (unstandardized) regression coefficient for probabilities 
was significantly negative, which means that probabilities were entered correctly into the net 

Fig. 7   Percentages of correct entries of conditional information, separated by information format and visu-
alization type (across both contexts)

Table 10   Parameter estimates 
from the generalized linear 
mixed model for participants’ 
performance in entering 
conditional information

R2
marginal = 28.7%, R2

conditional = 30.2%

Covariates Estimate SE z p

Intercept 2.37 0.49 4.84  < 0.001
Probabilities  − 1.18 0.42  − 2.79  < 0.01
2⨯2 table  − 0.26 0.43  − 0.59 0.55
Double tree  − 0.58 0.43  − 1.34 0.18
2⨯2 table × probabilities  − 1.84 0.68  − 2.71  < 0.01
Double tree × probabilities 1.05 0.59 1.80 0.07
Mathematics grade  − 0.42 0.12  − 3.55  < 0.001
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diagram significantly less often than natural frequencies (H1a). Also, presenting a 2⨯2 table 
or a double  tree led to a significant negative regression coefficient, which demonstrates an 
advantage of the frequency net (H1c). There is no significant interaction effect between infor-
mation format and double  trees, which means that the influence of the information format 
within the visualization is comparable in net diagrams and double trees. However, there is a  
significant positive interaction effect between information format and 2⨯2 table, which means  
that if 2⨯2 tables are considered instead of net diagrams, this interaction effect significantly 
counteracts the negative effect of the information format in net diagrams (here, probability 
2⨯2  tables help better than frequency 2⨯2  tables, whereas, in net diagrams, it is the other 
way around, contrary to H1a). This means there is no general “frequency effect” for entering  
joint information, which has been repeatedly observed in studies focusing on conditional 
probabilities (Gigerenzer & Hoffrage, 1995; McDowell & Jacobs, 2017). Furthermore,  

Fig. 8   Percentages of correct entries of joint information, separated by information format and visualization 
type (across both contexts)

Table 11   Parameter estimates 
from the generalized linear 
mixed model for participants’ 
performance in entering joint 
information

R2
marginal = 28.3%, R2

conditional = 34.6%

Covariates Estimate SE z p

Intercept 2.85 0.58 4.91  < 0.001
Probabilities  − 1.61 0.49  − 3.30  < 0.001
2⨯2 table  − 1.11 0.48  − 2.30 0.02
Double tree  − 1.03 0.49  − 2.09 0.04
2⨯2 table × probabilities 3.70 0.81 4.56  < 0.001
Double tree × probabilities 0.33 0.65 0.51 0.61
Mathematics grade  − 0.37 0.13  − 2.81  < 0.01
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the mathematics grade in the last school report card is again a significant predictor of correct 
entry of numbers.

We found no significant effects regarding gender, the order of the task, subgroup (uni-
versity vs. school students), and the context of the task when including them into the mod-
els. Furthermore, implementing these factors did not change the main findings for predict-
ing students’ ability in filling empty diagrams with conditional or joint information found 
by the GLMMs described above.

5.2 � Typical error patterns when entering conditional and joint information

5.2.1 � Conditional information

Table 12 separately lists typical error patterns encountered by information format and visu-
alization. First, typical errors, which are known from research on reading information from 
visualizations, can be observed (confirming H2a), and some new errors occur in the filling in 
of information in the visualizations used as heuristic tools (confirming H2b). Furthermore, 
it is striking that the joint occurrence error was typical for the probability 2⨯2 table (84%) 
but dropped to almost zero in the frequency 2⨯2 table (confirming H2c). Such a large perfor-
mance difference between probability and natural frequency versions when 2⨯2 tables were 

Table 12   Percentages (and frequencies) of typical error patterns in entering conditional probabilities (or 
corresponding frequencies) in the different visualizations

2×2 table double tree net diagram

Probabilities Frequencies Probabilities Frequencies Probabilities Frequencies

Correct 

solution 
12 % (7) 67 % (39) 59 % (33) 61 % (34) 46 % (27) 76 % (44)

Error 
patterns
Joint 

occurrence 
84 % (48) 3 % (2) 0 % (0) 11 % (6) 32 % (19) 3 % (2)

Inverse error 0 % (0) 3 % (2) 5 % (3) 4 % (2) 0 % (0) 0 % (0)

Incomplete 

(set or subset 

missing)

n.a.a 5 % (3) n.a. 9 % (5) n.a. 3 % (2)

Multiple 

answers
0 % (0) 0 % (0) 11 % (6) 0 % (0) 3 % (2) 0 % (0)

Negation error 5 % (3) 9 % (5) 4 % (2) 7 % (4) 2 % (1) 2 % (1)

Mistakenly 

checked “not 

possible”

n.a. 10 % (6) 18 % (10) 9 % (5) 14 % (8) 9 % (5)

Other uniquely 

classifiable 

errors

0 % (0) 2 % (1) 4 % (2) 7 % (4) 0 % (0) 10 % (6)

Error unknown 4 % (2) 2 % (1) 4 % (2) 0 % (0) 3 % (2) 0 % (0)

The column sums may add up to a number above 100% because in some cases two errors occurred at the 
same time (see Sect. 4.4). However, these combinations occurred in an unsystematic way and are therefore 
not reported here but can be seen in Online Resource 3. Errors marked in blue cannot occur when reading 
from visualizations. aNot applicable
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used may be due to the fact that many uncertain participants preferred to enter the given 
probability instead of checking the box that this was not possible. Also, with the probability 
net, where there are branches for the joint probability, 32% of the participants committed 
this error as opposed to 3% of those using the frequency net. In the probability double tree, 
where such a branch is not even presented, this error cannot be made. Instead, participants 
often either entered the probability in several branches on the double tree or stated that the 
conditional probability could not be displayed within this visualization. However, in fre-
quency double  trees, more than a quarter of the participants either committed the joint 
occurrence error, failed to enter a complete frequency pair (incomplete), or stated that the 
information could not be entered (mistakenly checked “not possible”).

5.2.2 � Joint information

Since little is known thus far about error patterns regarding joint probabilities (for an 
exception, see Binder et al., 2020; Stegmüller et al., 2024), this analysis looking for typical 
errors while using the different heuristic tools was rather exploratory.

Table 13 lists the typical error patterns separately by information format and visualiza-
tion. In the probability format, most participants who were not able to provide the correct 

Table 13   Percentages (and frequencies) of typical error patterns in entering joint information in the differ-
ent visualizations

2×2 table double tree net diagram

Probabilities Frequencies Probabilities Frequencies Probabilities Frequencies

Correct 

solution 
93 % (53) 62 % (36) 38 % (21) 66 % (37) 53 % (31) 84 % (49)

Error 
patterns
Conditional 

error 
0 % (0) 7 % (4) 50 % (28) 0 % (0) 22 % (13) 0 % (0)

Marginal 0 % (0) 2 % (1) 2 % (1) 18 % (10) 0 % (0) 3 % (2)

Incomplete 

(set or subset 

missing)

n.a.a 16 % (9) n.a. 4 % (2) n.a. 5 % (3)

Multiple 

answers
0 % (0) 2 % (1) 2% (1) 4 % (2) 0 % (0) 2 % (1)

Negation error 2 % (1) 2 % (1) 2 % (1) 2 % (1) 7 % (4) 2 % (1)

Mistakenly 

checked “not 

possible”

5 % (3) 14 % (8) n.a. 4 % (2) 19 % (11) 2 % (1)

Other uniquely 

classifiable 

errors

0 % (0) 2 % (1) 5 % (3) 2 % (1) 2 % (1) 2 % (1)

Error unknown 0 % (0) 2 % (1) 2 % (1) 2 % (1) 3 % (2) 0 % (0)

The column sums may add up to a number above 100% because in some cases two errors occurred at the 
same time (see Sect. 4.4). However, these combinations occurred in an unsystematic way and are therefore 
not reported here but can be seen in Online Resource 4. Errors marked in blue cannot occur when reading 
from visualizations. aNot applicable
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solution committed the conditional error, which means that participants entered the joint 
information at a position in the visualization that is reserved for conditional information 
(confirming H2a). This is particularly evident with the probability double  tree, where in 
half of the responses, the joint probability (which cannot be entered) was confused with a 
conditional probability. Therefore, the reason for the large performance difference between 
probability double trees and natural frequency double trees could be that many participants 
entered the given joint probability in the wrong place instead of checking whether enter-
ing a joint probability in a double tree was possible. For the frequency 2⨯2 table, the most 
common errors were to state erroneously that joint frequencies could not be entered and/
or to enter only an incomplete set of frequencies. For the frequency double tree, although 
there was no confusion of joint with conditional information, the joint frequencies were 
entered instead as marginal frequencies in 18% of the responses, which is quite remarkable 
in that this marginal error has never been reported for interpreting visualizations.

6 � Discussion

Previous studies on the effect of visualizations in probabilistic situations with two binary 
events on participants’ performance almost exclusively focused on completely filled vis-
ualizations, whereas entering statistical information is also an important step in solving 
probability tasks in school. Therefore, in this study, we theoretically embedded current 
research on conditional probabilities in the modeling cycle and empirically examined one 
step within this modeling cycle: In order to find out how well students use visualizations as 
a heuristic tool in probabilistic tasks with two binary events, we pre-relieved the creation of 
the empty structures and focused instead on students’ ability and typical problems in filling 
in statistical information in different visualizations. In doing so, we also moved away from 
typical Bayesian tasks. Instead, we considered situations with two binary events in general 
and analyzed students’ performance and difficulties with respect to entering conditional 
and joint information.

The following important results emerged: Participants’ performance, as well as typical 
error patterns, in entering conditional or joint information depend on both the informa-
tion format and the given visualization. The famous frequency effect (Gigerenzer & Hof-
frage, 1995; McDowell & Jacobs, 2017), which also holds for determining conditional 
information by using completely filled visualizations (Binder et al., 2015), can furthermore 
be observed by entering frequencies into all empty visualizations except the double  tree. 
Using natural frequencies instead of probabilities drastically reduced the already known 
joint occurrence error (Gigerenzer & Hoffrage, 1995; Woike et al., 2023) for the 2⨯2 table 
and the net diagram. The joint occurrence error that often appears when interpreting prob-
ability 2⨯2 tables and searching for conditional information almost completely disappears 
with frequency 2⨯2  tables. This error also appears when participants enter conditional 
information.

However, the well-known frequency effect cannot be generalized to include entering 
joint information. This is in line with the results of Binder et  al. (2020) and Stegmüller 
et al. (2024) for completely filled visualizations. Thus, similar effects can be observed for 
entering joint information as for interpreting visualizations. Again, the most common error 
was to confuse joint with conditional probabilities, occurring often when only conditional 



	 M. Rößner et al.

probabilities could be entered (double tree) and less often when both probabilities could be 
entered (net diagram). Using natural frequencies made the conditional error disappear for 
the net diagram and the double tree.

Furthermore, in line with Cox (1997), we were also able to discover error patterns that 
had not yet been observed from interpreting visualizations: When students are asked to 
enter natural frequencies, sometimes only one absolute frequency is entered. Conversely, 
sometimes information is entered into visualizations multiple times, which also reflects a 
certain degree of uncertainty on the part of the students in filling in the visualizations. This 
degree of uncertainty is also evident when one considers how many students incorrectly 
checked that it was not possible to enter a particular piece of information even though it 
was entirely possible to do so. A previously unknown error in the frequency double  tree 
was the confusion of joint information with marginal frequencies.

Overall, the results suggest that students lack conceptual knowledge on the different types 
of probabilities and/or procedural knowledge (type 1) on visualizations. This is especially 
apparent in the high proportion of confusions between joint probabilities and conditional 
probabilities in the net diagram that displays both types of probabilities simultaneously. In 
this context, it is also noticeable: While 93% of the students were able to correctly enter the 
joint probability in 2⨯2 tables, 84% of the students also entered the conditional probability 
in exactly the same place. However, the success of entering the information into the respec-
tive visualizations also depends on the given heuristic tool (i.e., the empty visualization) and 
the given information format. Depending on the heuristic tool selected, students with the 
same level of prior knowledge are likely to have varying difficulties, which must be taken 
into account in lessons. So, if students correctly entered a joint probability in a 2⨯2 table, 
this does not necessarily mean that students have sufficient conceptual knowledge to distin-
guish between joint and conditional information (Dröse et al., 2022; Shaughnessy, 1992).

6.1 � Limitations

The task the participants had to solve typically does not appear in the isolated way it was 
examined in this study but rather is a single step in the solving process of a probabilistic task. 
In order to ensure that the participants used the intended visualizations and to rule out any 
potential difficulties in drawing the visualizations, the visualizations were already provided 
in the tasks. Therefore, the results relate more to the participants’ conceptual knowledge 
on probabilities and procedural knowledge type 1 on visualizations and can only be inter-
preted indirectly from the perspective of visualizations as heuristic tools for modeling and 
problem-solving. However, it remains unknown if the errors emerged predominantly due to a 
lack of conceptual knowledge of the different types of probabilities, of the procedural knowl-
edge (type 1) of visualizations (e.g., inserting a correctly decoded probability into the wrong 
place), or on the translation between the verbal and the mathematical representation (e.g., 
correctly entering an incorrectly decoded probability). Additionally, we do not know how 
confident participants were in their answers and if or how often they hesitated to state that 
information cannot be entered and applied some sort of availability heuristic instead (“just 
write the information in the place that looks most like what is being searched for”).

The study was conducted during the pandemic of COVID-19. For this reason, partici-
pants were recruited from a university as well as from schools. Schools, in particular, were 
heavily affected by lockdowns and school closures, so the knowledge and performance in 
mathematics of the participating school students may differ from the regular level. How-
ever, previous studies (and also our data) show that effects of information format and 
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visualization hardly differ for university and school students’ Bayesian reasoning (see 
McDowell & Jacobs, 2017). Due to the sample size of 172 students, the results are only 
meaningful to a limited extent. However, even with this sample size, significant effects are 
already evident. In addition, the sample is a convenience sample and therefore a sample 
bias may have occurred (e.g., students with a particularly high or low level of conceptual 
knowledge in probabilities). Nevertheless, there is no reason to assume that the effects of 
the information format or the visualizations would substantially change with larger sample 
sizes or other samples—but rather that the entries into the visualizations would be better 
or worse in general. Furthermore, participants were only recruited in Bavaria, Germany, so 
a critical examination should be carried out if the results also apply to other countries or 
even other states in Germany since the states have different curricula.

Finally, the comparison of the different visualizations is impaired by the fact that all 
participants were familiar with 2⨯2 tables and tree-diagrams but not with double trees and 
net diagrams. However, double trees and net diagrams are branching structures and there-
fore follow the same rules for reading and entering values as well-known (single) tree dia-
grams. In addition, performance with 2⨯2 tables was not systematically better than with the 
unknown visualizations.

6.2 � Conclusion and further research

Our results show that performance and typical errors when entering conditional and joint 
information depend crucially on the information format and the respective visualization, in 
a similar way to when reading conditional or joint information from visualizations (e.g., 
Binder et al., 2020). These findings can serve as important background knowledge for teach-
ers when they work with those visualizations in class. For example, mathematics teach-
ers can thus—depending on the visualization used—deliberately provoke typical mistakes 
in order to address them constructively in the classroom. Moreover, it became once more 
apparent that students lack conceptual knowledge of probabilities and/or procedural knowl-
edge on visualizations. This suggests that the different functions visualizations serve can-
not be treated separately from each other. Using visualizations as heuristic tools requires 
procedural knowledge of visualizations themselves but also conceptual knowledge on prob-
abilities in general, that, in turn, can be fostered by using visualizations as teaching material.

In this paper, we studied students’ ability to enter given values into empty visualizations 
primarily from the perspective of using visualizations as heuristic tools to solve probabil-
istic tasks. However, the ability to correctly enter numerical values into a visualization can 
be useful in almost every step of the modeling cycle (see Fig. 2). For example, one could 
use a visualization to structure the real problem situation (steps 1 and 2) or to interpret or 
validate the results (steps 5 and 6) that were obtained without the help of visualizations 
(e.g., by only using Bayes’ formula). Moreover, a visualization can be drawn to inform a 
patient comprehensively about the result of a medical test (step 7), which also refers to the 
communicative function of visualizations.

Considering the overarching modeling task, future research could focus on the remain-
ing steps of the solving process in order to discover further sources of error and better 
understand participants’ difficulties in solving probabilistic tasks with two binary events. 
This also includes analyzing whether students are able to select suitable visualizations 
depending on the task (and the given parameters in the task) in terms of flexible use of 
the visualization or making connections between different representations (Acevedo Nistal 
et al., 2009; Novick & Hmelo, 1994; Zahner & Corter, 2010).
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