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Abstract. We study transport length scales in carbon nanotubes and graphene
ribbons under the influence of Anderson disorder. We present generalized
analytical expressions for the density of states, the elastic mean free path and
the localization length in arbitrarily structured quantum wires. These allow
us to analyze the electrical response over the full energy range, including
the regions around van Hove singularities, traditionally difficult to access by
alternative approaches. Comparing with the results of numerical simulations, we
demonstrate that both the diffusive and the localized regime are well represented
by the analytical approximations over a wide range of the energy spectrum.
The approach works well for both metallic and semiconducting nanotubes and
nanoribbons but breaks down near the edge states of zigzag ribbons.
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The exceptionally high electrical conductivity of carbon nanotubes (CNTs) can be attributed to
a combination of various factors. The quasi-one-dimensional (quasi-1D) crystalline structure
allows the preparation of samples with a very low defect density [1]. The rigidity of the
sp2-hybridized carbon lattice minimizes the effects of thermal vibrations [2]. One truly unique
feature of metallic CNTs, however, is their electronic structure [3]: independent of the tube
diameter, there are exactly two massless bands of high velocity crossing at the Fermi energy,
resulting in a very low density of states (DOS) which effectively suppresses scattering even in
the presence of disorder [4] and allows ballistic transport over hundreds of nanometers [5, 6].

Planar, finite-width graphene nanoribbons (GNRs) display many similarities to their rolled-
up counterparts. The band gap of armchair-edge GNRs depends on the width just as it depends
on the circumference in zigzag CNTs. Zigzag-edge GNRs, on the other hand, are always
metallic just as armchair CNTs. A remarkable difference, however, lies in the edge states
generally found at zigzag edges in graphene [7, 8] that are nearly localized by their extremely
low dispersion and exist beside the conducting channels at the band center [9]. Energetically,
these states lie exactly around the Fermi energy, so would be expected to have an important
impact on the low-energy transport properties of GNRs. The low velocity of the edge channels
results in a large DOS, which should by itself lead to strong scattering. However, the local DOS
(LDOS) is strongly concentrated on the edge atoms, protecting the conduction channel from
scattering into the edge states.

The theory of quantum transport in disordered systems has been studied for many
decades [10]. Typically, the underlying model for such studies is that of free electrons or if
a discretization is desired, electrons on a (square) lattice. Quantities such as effective electron
mass, DOS or Fermi velocity are then viewed as free parameters that can be adjusted to fit the
properties of metals [11]. Graphene and CNTs, however, have an electronic structure that is very
different from any effective-mass free-electron approximation. In 2D graphene, the electrons
have a Dirac-like massless dispersion [12, 13], which results in equally massless bands of high
velocity in metallic CNTs [3]. Tuning the Fermi energy away from the charge neutrality point
(CNP) via electronic gating or chemical doping, CNTs of all chiralities go through a sequence of
additional bands that lead to van Hove singularities in the DOS which are typically not covered
by simple models based on a smooth or fixed DOS and number of conductance channels.

In this paper, we will present a generalized expression for the DOS in arbitrarily structured,
Anderson-disordered quantum wires that allows access to the whole energy range including the
regions around the van Hove singularities. Using this representation of the DOS, we then show
that a general expression, originally devised for metallic quantum wires with a fixed number
of channels, still holds true near band edges if used correctly. The various expressions will be
applied to both CNTs and GNRs, including the special case of pure edge disorder in the latter
case.

For 1D systems such as CNTs, it was argued by Mott and Twose [11] that all quantum
states should become localized at arbitrarily low disorder, leading to an exponential suppression
of the conductance at zero-temperature. For truly 1D quantum wires, Thouless demonstrated
that the localization length `loc is identical to the mean free path `el [14]. Later, he derived a
generalized expression for metallic quantum wires of finite diameter [15],

`loc ≈
2Ak2

F

3π2
`el, (1)

where the prefactor consisting of cross section A and Fermi wavevector kF can be identified as
the number of conduction channels Nch in the modern language of quantum transport theory.
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A more accurate expression derived by Beenakker from the random matrix theory reads [16]

`loc ≈ [β (Nch − 1) /2 + 1] `el, (2)

where β = 1 for time-reversal invariant systems and β = 2 otherwise. In either case, however,
`el and Nch are viewed as fixed parameters and it is not at all clear how these relations should
be applied to systems where these quantities vary strongly with the energy and may not even be
well defined near band edges, where Nch is discontinuous. An alternative approach based on a
perturbative expression for the Lyapunov exponents takes into account the true band structure
of a quantum wire, but it still fails to reproduce the correct behavior near band edges [17].

We model CNTs based on an orthogonal first-nearest-neighbor tight-binding approxima-
tion [3] with the hopping parameter γ0 = 2.66 eV, which accurately reproduces the Fermi ve-
locity of armchair CNTs and gives reasonable agreement with the correct band structure for
several low energy bands.

For zigzag GNRs, this approximation is insufficient, as it results in a completely dispersion-
free edge state, while precise calculations show that this state, in fact, has a small but
nonvanishing band width [9, 18]. Likewise, this approximation predicts every third armchair
GNR to be metallic, while precise calculations predict the opening of a small gap [19, 20].
The true electronic structure of a GNR would have to take into account the relaxed electronic
structure at the edges [21]. As it turns out, a third-nearest neighbor parameterization [22] of an
unrelaxed GNR gives a good approximation of the bands near the Fermi energy and will thus
be used here.

Anderson disorder is defined as uncorrelated potential fluctuations [10]:

〈εiε j〉 − 〈εi〉〈ε j〉 = δi jσ
2
εi
, (3)

usually in terms of a uniform random distribution εi − ε0 ∈ [−W/2, W/2], which has a standard
deviation σε = W/

√
12. For perturbatively weak disorder, however, the exact shape of the

distribution is irrelevant. Numerically, we use a Gaussian distribution for practical reasons.
Experimentally measured values of `el are of the order of 10 µm in CNT of 1.5 nm diameter [6],
which translates to an equivalent model disorder of strength σε ∼ 0.05 eV. The values used in
figures 1 and 2 are chosen significantly larger to enhance the visibility of the qualitative effects.

The diffusive transmission through a quantum wire with a disordered section of length L ,
embedded in an otherwise disorder-free, infinite quantum wire, is defined as

Tdiff = Nch

(
1 +

L

`el

)−1

, (4)

with the elastic mean free path `el. For armchair CNTs at the Fermi energy, this length `el was
first derived by White and Torodov [4]. We have previously given a generalized derivation that
is valid for arbitrary energies [23], which can be further generalized to also cover the case of
inequivalent atoms in the unit cell:

Within a statistical ensemble P(W) of the perturbation HamiltonianW , the scattering rate
between two bands s and d at a fixed energy E is given by the Fermi golden rule

τ−1
E,s→d =

2π

h̄
g (E, d)

∫
dWP (W) |〈E, d|W|E, s〉|2 , (5)

which depends on the partial DOS of the destination band d. In the atomic basis |i〉, the disorder
Hamiltonian is diagonal and uncorrelated (equation (3)), allowing for the direct evaluation of
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Figure 1. DOS g(E) and localization length `loc of an armchair (5,5) CNT
under the influence of Anderson disorder. Dashed line: g(E) of the clean system
displaying the van Hove singularities. Solid lines: g(E) from equation (14) and
`loc obtained from it via equations (2) and (9). Data with error bars: values
obtained numerically by averaging over 100 samples of length 1000–5000`uc.

the integral as

τ−1
E,s→d =

2π

h̄
g (E, d) |〈E, d|i〉|2 σ 2

εi
|〈i |E, s〉|2 . (6)

The elastic mean free path `s
el within a band s is related to the scattering rate τ−1

E,s from this band
via its electron velocity which is proportional to the inverse of the DOS as

`s
el = vs/

(∑
d

τ−1
E,s

)
=

(
hg (E, s)

∑
d

τ−1
E,s→d

)−1

. (7)

Based on the definition of `el via the diffusive transmission in equation (4), the elastic mean free
path `el of a multichannel quantum wire is found by inverse averaging

l−1
el =

1

Nch

∑
s

(
`s

el

)−1
. (8)

At this point, the sums over the bands s and d can be reduced, introducing the LDOS on
individual orbitals gi(E) and resulting in the final expression

`el = `uc Nch

(
π 2

uc∑
i

(
σ 2

εi
g2

i (E)
))−1

(9)

with the length of the unit cell `uc and the sum running over all orbitals i within one unit cell. In
this form, the expression can be applied to arbitrary quantum wires, including GNRs, where it
also covers the special case of edge disorder by making σ 2

εi
dependent on the orbital number i .

Neglecting multiple scattering, the elastic mean free path `el and the diffusive transmission
Tdiff are defined in terms of the LDOS gi(E) of the disorder-free system. Likewise, Nch is
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Figure 2. DOS g(E), number of channels Nch, elastic mean free path `el and
localization length `loc of an armchair GNR of width Na = 20 under the influence
of Anderson disorder (σε = 0.2 eV). Dashed lines: g(E) and Nch of the clean
system and lengths obtained from these via equations (2) and (9). Solid lines:
g(E) from equation (11), Nch from equation (13) and lengths obtained from
these. Data with error bars: values obtained numerically by averaging over ∼180
samples of length 2000–20 000`uc.

defined by the leads, where it follows an exact integer step function. Near band edges, this
diffusive transmission is discontinuous, as can be confirmed numerically to arbitrary precision,
computing it as the sample average 〈T 〉 of the transmission of many disorder configurations [23].

The diffusion coefficient, as can be obtained via the time evolution of a wave packet within
a long, disordered quantum wire, also allows the extraction of the elastic mean free path [24].
In this case, however, it does not depend on the DOS of the clean, but of the disordered system.
Near band edges, the DOS depends on the disorder strength nonperturbatively, causing the van
Hove singularities to broaden and to shift [25]. This effect has to be taken into account when
describing diffusion near band edges or around the edge state in GNRs.

The DOS of a quantum wire under the influence of Anderson disorder can be obtained via
an algorithm based on the diagrammatic perturbation theory that takes into account localization
effects by including multiple scattering [25]. Dropping the crossing diagrams within the
noncrossing approximation (NCA) [26], allows the self energy 6(E) to be written to all orders
as a recursive expression, which can then be iterated numerically until self-consistency is
reached. Though the applicability of the NCA is not obvious, it can be justified by comparing
the contribution of various terms at low orders [25].
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The original formulation of this approach is restricted to the special case of CNTs where all
atoms are equivalent through symmetry and the self energy takes the same value for all atoms.
It can, however, be generalized to arbitrarily structured quantum wires using matrix notation.
The self energy 6(E) caused by the disorder is a diagonal matrix obeying the recursive relation

[6(E)]i, j = δi jσ
2
εi

[(
E + i0+

−H0 − 6(E)
)−1
]

i j
. (10)

For a periodic system, the self energy has the same periodicity as the Hamiltonian. The block-
tridiagonal matrix (E + i0+

−H0 − 6 (E)) can therefore be inverted numerically using a highly
convergent renormalization–decimation algorithm [23, 27], allowing us to go beyond the energy
range near the Fermi energy, where the special band structure allows analytic inversion.

Starting with 6 = 0, each numerical iteration of this recursive relation is equivalent to one
additional perturbative order. Typically, convergence is achieved after less then ten iterations,
except for energies near a van Hove singularity, where hundreds of iterations may be necessary.
This clearly indicates that the low-order perturbation theory breaks down near band edges.

The LDOS of each orbital i in the unit cell can now be obtained directly from the imaginary
part of the Green function

gi(E) = −
1

π
Im
[(

E + i0+
−H0 − 6(E)

)−1
]

i,i
. (11)

Figures 1 and 2 show this quantity in direct comparison with the numerically exact value
obtained by sample averaging. The slight deviation visible at the flanks of the van Hove
singularities is caused by the NCA [25]. The elastic mean free path `el based on the DOS of
a disordered system, as it is displayed in figure 2, is no longer a purely perturbative quantity, but
it takes into account the scattering into localized states present at any given energy.

The number of channels Nch in equations (2) and (9) is another quantity that has to
be reconsidered in the vicinity of band edges. In a disorder-free quantum wire, Nch is an
integer valued step function that has discontinuities at band edges. The numerically obtained
localization length, on the other hand, does not display any discontinuities, so the discontinuities
of Nch have to be somehow smoothed out by the disorder.

In any periodic system, the number of channels is equivalent to the transmission through
a cross section. For a Hermitian Hamiltonian, this quantity will always take integer values.
Adding a complex self energy may, however, result in noninteger values and smooth out the
discontinuities of the transmission function. Using the self-energy obtained from equation (10)
thus allows the definition of an equivalent of the number of channels Nch for an Anderson
disordered quantum wire.

The definition of the transmission through a cross section of a quantum wire in the
presence of a complex self-energy requires some care. Unlike a Hermitian periodic wire,
where the transmission through a cross section is equal to that through a finite-length section,
the imaginary part of the self-energy would act as a dissipative term in a conducting region and
make the result dependent on its length. To actually obtain the transmission through a cross
section, we should rather split the periodic quantum wire into only two parts—similar to the
setup of a tunneling junction—writing

H=

(
HL 0
0 HR

)
+
(

0 T
T † 0

)
=H0 +V (12)
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with two semi-infinite parts HL and HR and the hopping matrix T that connects both the
parts. Let us denote the Green functions of the two isolated semi-infinite leads by GL and
GR. The corresponding spectral functions are AL/R = iGr

L/R − iGa
L/R and the Green functions of

the complete system Gr/a
= (E ± i0+

−H)
−1. If V were a small perturbation as in a tunneling

junction its matrix elements 〈l|V|r〉 would directly give the transition amplitude from an
eigenmode HR |r〉 = E |r〉 on the right-hand side to one HL |l〉 = E |l〉 on the left-hand side.
In a periodic system, however, V is of the same magnitude as H0, so we need to consider
the full expansion 〈l|V +VGrV|r〉, generalizing the tunneling-transmission tr (ALVARV) to the
nonperturbative expression [23]:

T = tr
[
AL (V +VGrV)AR (V +VGaV)

]
. (13)

Note that in the case of a finite self-energy 6 all along the periodic wire, this expression differs
substantially from more commonly used approaches that depend on the definition of a finite-
length conductor between two leads. Numerically, we can exploit the finite support of V by
computing only the contacted regions of GL and GR [23, 27].

The localization length `loc of armchair CNTs at EF can be derived analytically directly
from `el and Nch [28]. For general energies, `loc has so far only been accessible by numerical
means [29, 30]. Based on our expressions for the DOS and the number of channels in a
homogeneously disordered quantum wire, it is now possible to obtain an approximate value for
`loc in the whole energy range. As can be seen in figure 1, the analytical value for `loc agrees with
the numerically exact results fairly well. The remaining deviation can be understood in view of
the oversimplified nature of equation (2), which is based on a model with a fixed number of
equivalent channels with a single value `el for all scattering processes.

Armchair-edge GNRs can be understood as unrolled zigzag CNTs and are indeed
physically very comparable. Similar to semi-metallic (3N , 0) nanotubes, which are metallic in
the zone-folding approximation and develop a small gap due to their curvature, ribbons of width
Na = 3M − 1 (counted in rows of carbon dimers) have a tiny gap that is caused by edge effects
only. In figure 2, one can see that the DOS is smoothed out and the van Hove singularities
shifted in the same way as observed in CNTs. Near EF, this leads to a narrowing of the gap
which is well reproduced by the data based on equation (11). The states near the gap exhibit a
short localization length, as expected from the fact that they are caused by the disorder within
the forbidden energy range of the clean system. The analytically obtained localization length
coincides with the numerical value to a precision comparable to the case of CNTs. Again, the
true value is slightly underestimated when several inequivalent channels are present at the same
energy.

Reducing the strength of the disorder to realistic values leads to a significant reduction
of the smoothing effect on van Hove singularities. Besides this effect, the localization lengths
simply scale with 1/σ 2

ε wherever band edges have no influence, as can be seen in figure 3.
Assuming the amount of intrinsic disorder in GNRs to be similar to that measured in CNTs at
σε ∼ 0.05 eV, we find a localization length of `loc ∼ 13 µm in armchair GNRs of 5 nm width
within the plateau of only two transmitting channels at sufficient distance to the gap.

The edges of a GNR must be considered to be especially sensitive to disorder due to the
lower mechanical rigidity and higher chemical activity. We therefore studied the effect of pure
edge disorder as depicted in the right panels of figure 3. As can immediately be seen, the
overall effect of the disorder scales with the square total

∑
i σ 2

εi
over the disorder strength of

all individual atoms. When scaling the disorder strength in this way, the effects of edge disorder
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Figure 3. Analytically obtained quantities for an armchair-edge GNR of width
Nz = 41 with Anderson disorder of various strengths. Dashed lines: DOS g(E)

of the clean system. Solid lines: g(E) and localization length `loc obtained
analytically. Left: homogeneous disorder over all atoms across the GNR. Right:
disorder concentrated on the outermost atoms along both edges. The disorder
strength σεi per atom is scaled such that the square total

∑
i σ 2

εi
is the same for

both types of disorder.

are identical to the case of homogeneous disorder except for the band edges, where the van
Hove singularities are smeared out more strongly in the case of pure edge disorder.

In zigzag-edge GNRs the edge states at the Fermi energy add a considerable complication.
Numerical studies have been done before on these systems using both Anderson-type disorder
of short or long range [31, 32] or edge defects [33]–[35]. We found that the DOS obtained by
equation (11) shows a considerable deviation from the true value obtained numerically. Possibly,
this effect is related to the highly anomalous behavior found in 2D sheets of graphene [36].
Trying to obtain `loc via equation (2) is bound to fail even more seriously as this approach
completely neglects the different mean free paths and the spatial separation between the edge
channels and the bulk channel. In fact, though this approach correctly describes a very short
localization length around the edge states, it fails to reproduce the correct scaling with the ribbon
width.

To conclude, we have demonstrated that our generalized expression for the DOS in
Anderson-disordered quantum wires in combination with a highly convergent numerical
evaluation scheme does reproduce to good precision the true data obtained by performing a
numerical sample-average. The method allows efficient exploration of the full energy range
and can be applied to arbitrary quantum wires, including CNTs and armchair-edge GNRs. We
further demonstrated how to obtain the localization length of those systems from the DOS in the
full energy range, including the vicinity of van Hove singularities which are notoriously hard
to access by analytical means. Again, the resulting data show good agreement with statistically
obtained values. The case of zigzag-edge GNR states has to be excluded due to the extreme
inequivalence of the different channels close to the Fermi energy and remains a problem for the
future.
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