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In commensurate twisted homobilayers, purely radial Rashba spin-orbit fields can emerge. We
employ first-principles calculations to investigate the band structures and the spin-orbit fields close to
the high-symmetry points K and I' of several commensurate twisted transition-metal dichalcogenide
homobilayers: WSez, NbSea, and WTe,. The observed in-plane spin textures are mostly radial, and
the main features are successfully reproduced using a model Hamiltonian based on two effective mass
models including spin-orbit coupling, and a general (spin-conserving) interlayer coupling. Extracting
the model Hamiltonian parameters through fitting of several twisted supercells, we find a twist angle
dependency of the magnitude of the radial Rashba field, which is symmetric not only around the
untwisted cases (6 = 0° and © = 60°), but also around © = 30°. Furthermore, we observe that the
interlayer coupling between the K/K’-points of the two layers decreases with the increase of the size
of the commensurate supercells. Hence, peaks of high interlayer coupling can occur only for twist
angles, where small commensurate supercells are possible. Exploring different lateral displacements
between the layers, we confirm that the relevant symmetry protecting the radial Rashba is an in-
plane 180° rotation axis. We additionally investigate the effects of atomic relaxation and modulation
of the interlayer distance. Our results offer fundamental microscopic insights that are particularly

relevant to engineering spin-charge conversion schemes based on twisted layered materials.
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I. INTRODUCTION

Transition-metal dichalcogenides (TMDCs) are a class
of layered van der Waals materials that have a variety
of applications including valleytronics [IH4], straintron-
ics [BHT], optoelectronics [8, 9] and spintronics [10} [IT].
Especially their 2D forms as mono- or bilayers exhibit
interesting, versatile physics. They often come in a
2H configuration with a hexagonal unit cell, featuring
parabolic bands both at the I'- and the K-point. For
the monolayer, the bands at K are usually split by a
strong spin-orbit coupling (SOC) of the valley-Zeeman
type with strong out-of-plane polarized spins. Never-
theless, when the horizontal mirror symmetry is broken,
Rashba SOC[I2] can also arise in these bands, introduc-
ing an in-plane spin texture. This breaking of symme-
try can occur both externally (through an interface or
an external electric field) or internally (through a lat-
eral shift between the layers or a twisting of the lay-
ers). The in-plane spin texture induced by the Rashba
SOC can be used for spin manipulation and relaxation in
spintronics[10, 11]. One major application, utilizing the
Rashba SOC, is charge-to-spin conversion through the
Rashba Edelstein effect[I3].

The breaking of vertical mirror symmetry that nat-
urally occurs in twisted multilayer systems can intro-
duce a radial component to the (usually purely tan-
gential) in-plane Rashba spin texture. Such ’radial
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Rashba’ spin-orbit fields are interesting to the field of
spintronics as they can enable unconventional charge-
to-spin conversion[I4HI8]. The first density functional
theory (DFT) calculations observing such radial Rashba
were performed on graphene-based heterostructures[19-
23] and usually find only rather small deviations from the
tangential pattern. Further investigations of commen-
surate twisted graphene homobilayers and proximitized
graphene structures [24], however, revealed a purely ra-
dial Rashba spin-orbit field, which arises due to the cou-
pling between the ’hidden Rashba’ spin-orbit fields of the
two layers.

In this paper, we systematically explore the emergence
of the radial Rashba SOC in twisted TMDC homobi-
layers. We perform first principles calculations for sev-
eral homobilayer supercells, exploring different materials
(WSes, NbSey and WTes), shifting configurations, twist
angles, and interlayer distances. Since the commonly
used models of twisted TMDC homobilayers [25] are de-
signed for small twist angles, here we employ an effective
model Hamiltonian, similar to Ref. [24], but replacing
graphene with (an effective mass model of) TMDC. This
model is designed to work for generic twist angles, as
long as the underlying supercell is commensurate, which
is naturally satisfied in first-principles calculations due
to periodic boundary conditions. We extract the spin-
orbit fields around both K and I' and draw conclusions
about the twist angle dependencies of the parameters.
Additionally, we establish that an in-plane 180° rotation
symmetry is crucial for the emergence of the purely radial
Rashba.

The paper is structured in the following way. Secs. [T}
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discuss hexagonal homobilayer structures (WSey and
NbSes). In Sec. [l we explore the different possible com-
mensurate DFT supercells and the three different types
of band backfoldings that can occur. Sec. [[Tl] introduces
the model Hamiltonian we use for describing these cases.
A more detailed look at the spin-orbit fields derived from
DFT as well as the parameters extracted from the model
Hamiltonian fits can be found in Sec. [[V] Finally, Sec.[V]
is dedicated to a discussion of WTey, which — due to its
rectangular supercell and lack of Cs symmetry — can-
not be properly described by our model Hamiltonian. In
App. [A] we discuss how the interlayer coupling can be de-
scribed as continuous function of the twist angle. App.
presents a study on the effects of varying interlayer dis-
tance. Computational details of the DFT calculations
and fitting are giving in App. [C}

II. GLOBAL BAND STRUCTURES AND
BACKFOLDING

In order to calculate the properties of twisted struc-
tures using DFT, we need to construct commensurate
supercells that satisfy in-plane periodic boundary condi-
tions. For homobilayers of materials with hexagonal unit
cells (WSey and NbSes), there are twist angles where this
can easily be done without the introduction of strain for
moderate supercell sizes [26]. A comprehensive scatter
plot showing feasible supercells and some specific struc-
tures used throughout the paper are shown in Fig.
For each supercell there is a partner supercell, which can
be obtained by twisting one of the layers by 60°. The
two partner angles with the smallest corresponding su-
percells are 21.8° and -38.2°. Supercells with negative
twist angles can easily be related to their counterparts
(e.g. -38.2° to 38.2°). They exhibit Rashba fields with
same magnitude, but opposite sign, as they are related
by an in-plane mirror symmetry (z — —z). Additionally
their K- and K’-points are swapped. If not mentioned
otherwise, we twist the layers around a common twist-
ing axis going through the "Hollow’ position (i.e. in the
middle of the hexagon formed by the metal and chalco-
gen atoms) of both layers. We define the supercell size
of a certain supercell as s = as/a, where a is the lattice
constant of the supercell and a is the lattice constant of
the primitive monolayer unit cell.

The band structures and spin textures are calcu-
lated using DFT with the computational details given
in App. [C} In Fig. [2] and Fig. [3] we present the band
structures along high-symmetry lines and spin textures
around K and T of the +38.2° twisted WSea/WSey and
NbSes /NbSes band structures, respectively. At the T'-
point, the bands of the two layers are strongly hybridized
as also observed e.g. in Ref. [27] for MoSe; homobilayer
systems. Naturally, there is no valley-Zeeman splitting
to be observed at I'. The bands show no out-of-plane
spins, the splitting between them is rather caused by the
interaction between the layers. This is illustrated by the
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FIG. 1. (a)-(d) Top view of exemplary investigated commen-
surate supercells. In (e) possible twisted commensurate bi-
layer supercell sizes Nqy: (number of atoms) are indicated for
different twist angles ©. For each supercell data point, we
color-code where the K/K' points of the layers fold back to:
For red downward-pointing triangles, the K points of both
layers fold back to the same point in the supercell’s FBZ
(K «< K). For blue upward-pointing triangles, K of layer
1 and K’ of layer 2 fold on top of each other and vice versa
(K +» K'). For green dots all K- and K'-points of both layers
fold to I'. The last cases are not discussed in this paper and
only listed for completeness.

fact that the splitting scales with the interlayer distance.

The key to understanding the bands at the K-point of
the supercell’s first Brillouin zone (FBZ) is the backfold-
ing of the bands of the two layers. For the commensu-
rate structures we investigate, there are three options|2§],

which we color code for all possible commensurable su-
percells in Fig. [1]d):

1. K + K (red downward triangles): The K-point of
layer 1 folds on top of the K-point of layer 2 (and
the same for K'). In this case the spin-up (and spin-
down) bands of both layers are always at the same
energy. Hence, their out-of-plane spin-polarization
is kept intact.
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FIG. 2. Band structure along high symmetry points and in-
plane spin textures around K and I' of the 38.2° twisted WSe,
homobilayer, which shows a K < K backfolding. Out-of-
plane spin is color coded from blue (spin down) over grey to
red (spin up).

2. K + K’ (blue upward triangles): The K-point
of layer 1 folds on top of the K'-point of layer 2
and vice versa. In this case, the spin-up band of
layer 1 and the spin-down band of layer 2 can easily
interact, which can lead to a suppression of the out-
of-plane spins.

3. T <> T (green dots): The K- and K’-points of both
layers folds to the I'-point. Although this option
is technically possible, it is always a ’supercell of a
supercell’; i.e. there is always a smaller supercell
(which can be categorized in one of the former cat-
egories) at the same twist angle, representing the
same physics. In this case the bands would fold on
top of each other, but only those already connected
in the smaller supercell could interact.

In this paper we are only considering supercells of the
first two cases. As the used supercells are furthermore
the smallest possible supercells at the specific angle, we
can be sure that the backfolded bands are also coupled
to each other via generalized Umklapp processes[28], [29].
For the bands stemming from the I'-point, we do not
need such an argumentation as they are always directly
coupled. Two partner angles will always exhibit opposing
backfolding cases, e.g. 21.8° has K <> K’, while -38.2°
has K + K backfolding.

IIT. MODEL HAMILTONIAN

In all commensurate supercells we employ, we find
nearly parabolic bands (from K or T') of the individual
layers’ FBZs folding back on top of each other and in-
teracting with each other. In order to describe these
interacting parabolic bands we employ a model Hamil-
tonian. It consists of two effective mass models for the
two layers (including SOC terms), which are interacting
by a general (spin-conserving) interlayer coupling. This
might be viewed as a SOC-including version of the moiré
Hamiltonians used in Refs. [25] [B0H32], just without the
Moire potential. However, these models additionally de-
scribe a shift in k-space between the layers’ bands, which
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FIG. 3. Band structures along high symmetry points of ex-
emplary NbSez homobilayers, all of which exhibit a K < K
backfolding. (a) shows the untwisted case with a lateral shift-
ing position, in which a metal atom of one layer resides on
top of a chalcogen atom of the other layer. The split bands
are layer polarized due to the breaking of the in-plane mirror
symmetry. In (b), we additionally show the in-plane spin tex-
tures around K and I for the -38.2° case. (c) and (d) show
the band structures of 27.8° and -46.8° cases. Out-of-plane
spin is color coded from blue (spin down) over grey to red
(spin up).

comes from a small twist between the layers. Our model
Hamiltonian, on the other hand, is aimed to describe
the case where the two layers’ bands are lying directly
on top of each other, as it happens in all commensu-
rate supercells. This is the same as the Hamiltonian in
Ref. [24] does for graphene Dirac cones. Although, in
principle, our model can also describe cases of commen-
surate supercells with small twist angles, in these cases
the supercells will be large and hence the interaction be-
tween the directly overlapping bands will be small (see
App. . Rather, the physics of these small angle cases
will be dominated by the interaction between the slightly
mismatched K-points (mini Brillouin zone).

The model Hamiltonian consist of an orbital part and
two SOC terms:

H(k) = Horb(k)S() + HVZ + HR(k) (1)

Here, sq is the Pauli matrix for the spin degree of free-
dom, which is unity for the orbital part without SOC;
k is measured either from K or from I', depending on
which bands are to be described. The orbital part of the
Hamiltonian

h2(k)2 w
Hopp(k) = ( et hQ(k)2> (2)
w 2meets

includes the parabolic bands (with effective mass meg <0
for valence or meg >0 for conduction bands) of the
two layers in the diagonals. The interlayer coupling is
parametrized by w taken to be real (we checked that
adding a phase does not change any relevant physics).



When adding SOC, two SOC terms need to be con-
sidered: the Rashba and valley-Zeeman type SOC. The
latter one is given as

., 0
Hyz = Hyz kooxk = Avz005: = Avg (SO 5 > (3)
4

or
s, O
Hyvz =Hyzrkor =Avzo:8: =Avz (0 > - (&)
4

depending on the backfolding case. Here, the Pauli ma-
trices s; describe the spin degree of freedom, while o;
describe the layer degree of freedom. Eq. [3| corresponds
to the case K <> K, where the valley-Zeeman splittings
of the two layers have the same sign. Eq. [4] corresponds
to the case where K <« K’', where the valley-Zeeman
splittings of the two layers have the opposite sign.

For a single layer, the Rashba SOC can be described
with the typical semiconductor Rashba Hamiltonian[33].
In order to describe the effect of the hidden Rashba of the
twisted layers we need to implement a twisted spin tex-
ture. To this end the spin texture of each layer is twisted
by ® in opposite directions, where ® is the Rashba an-
gle, similar to the Rashba angle of graphene/TMDC het-
erostructures [I7], [19] 34]:

1P

1P
HR mono(k, ®) = exp<2> [/\R(sykm — sxky)} exp (—2>.

()

A Rashba angle of zero (® = 0) corresponds to the case
of conventional Rashba (with spins tangential to the mo-
mentum), while & = £90° corresponds to an unconven-
tional Rashba with purely radial in-plane spins. The to-
tal Rashba SOC of the system is then described by two
monolayer Hamiltonians with opposite signs and oppo-
site ®:

Hp(k, ®) = (HR’mOI(l)O(k’ (I)) _HR,mor(x)o(k7 _(I))) -0

Note that in Ref. [24] it is assumed that ® can be
expressed via the twist angle as ® = ©/2. Such an as-
sumption is reasonable if the focus is on the qualitative
emergence of a radial spin texture and not on a quanti-
tative evaluation of the magnitude of the radial Rashba.
There are symmetry rules for the mapping between the
twist angle © and the Rashba angle ®, which are similar
to the ones valid for graphene/TMDC heterostructures.

B(O + 120°) = B(O) (7)
®(-0) = -2(0) (8)

As a consequence (0 = 0°) = &(© = 60°) = 0+ nx for
n € Z.

Let us now briefly discuss which spin textures this
model Hamiltonian displays for different ranges of pa-
rameters. Within the model, a system with twisted

4

(© #£ 0,9 # 0), interacting (w # 0) layers, which can
provide Rashba SOC (Ag # 0), the resulting spin tex-
ture is always radial, as the tangential parts of the spin
textures of the two layers cancel out. This is the same
principle as for twisted bilayer graphene structures [24].
The magnitude and sign of this emerging radial in-plane
spin texture, the splittings of the bands, as well as the
spin-z and layer hybridization, are, however, dependent
on the specific case and parameter range. The typical
cases we find are:

1. K + K backfolding with dominant valley-Zeeman
SOC Ay z >> Apg: states of the two layers with
same spin-z fold on top of each other, keeping the
strong spin-z polarization (caused by the strong
Avz) and the layer polarization intact. The two
adjacent bands with same spin form a band pair,
which are split by a uniform splitting of 2w. Within
this band pair, the sign of the radial Rashba
(whether it is pointing inward or outward) is al-
ways uniform. The magnitude of the radial in-plane
structure (i.e the in-plane spin expectation value

(s2)% 4 (s4)?) scales with 2’}\@2 sin(®).

2. K +» K’ backfolding with dominant valley-Zeeman
SOC Ay z >> AR: states of the two layers with op-
posite spin-z fold on top of each other. Hence, the
spin-z and layer polarization are mostly lifted. The
splitting within the band pairs is 2- % -w - sin(P).
Regarding the sign of the radial Rasﬁﬁa, two sub-
regimes arise. For small interlayer couplings (w <<
Ark) or large k radii, the two adjacent bands are
aligned. With rising w one of the bands of each
band pair exhibits linearly decreasing magnitude
of the radial spin texture until it switches sign at
w = sin(®)Agk. After this point (w >> Agk),
the two adjacent bands exhibit opposite signs of

their radial Rashba. The magnitude of the radial
+ ARkAsin(é)
2Avz

in-plane structure scales with 5 )\“‘J/Z

3. Dominant interlayer coupling w > Ark and ab-
sent valley-Zeeman SOC Ay z (describing the bands
at I'): Here, the two band pairs are separated by
the interlayer coupling w rather than the valley-
Zeeman SOC. The splitting within each band pair
is 2A\pk sin(®). The radial Rashba of the two adja-
cent bands of one band pair always show opposite
signs.

We illustrate the three cases in Fig. [4

IV. SPIN-ORBIT FIELDS FROM FIRST
PRINCIPLES

Let us now examine the spin-orbit fields close to the
relevant high-symmetry points. We show these spin-orbit
fields for different supercells (@ = 21.8°, © = —38.2°,
0 = —-322° O = 27.8°, © = —46.8° and © = 13.2°),
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FIG. 4. Schematic depiction of the bands of the twisted model
Hamiltonian for different cases: backfolding of both K-points
of the layers on top of each other (K <« K), backfolding of
K-point of layer 1 on top of K’ of layer 2 (K <+ K') and when
describing the I bands. In the latter case the backfolding is ir-
relevant. We depict for all cases the parabolic (valence) bands
and their color coded spin-z expectation values with analyti-
cal expressions of the splittings (with assumption Avz >> w
for the first two cases and A\vz << w for the third case).
Finally, we also depict the in-plane spin textures of the four
bands ordered by energy.

different lateral shifts, different materials (WSes and
NbSes), different bands (valence and conduction bands)
and around different high-symmetry points (K and I') in
Fig. In most of the cases the observed spin textures
match well with the predictions by the model Hamilto-
nian. Especially the alignment of the spins when moving
from small k radii (w >> Agk) to large ones (w << Ark)
in the K <> K’ case can be observed in the DFT data
(see Fig. | (b)). However, there are also cases where
the model Hamiltonian fails to describe the spin textures
properly. This for example is the case for the conduc-
tion bands of +38.2° twisted WSe; bilayers. Here, the
smaller value of Ay 7 in combination with a perturbation
from nearby bands might be responsible for the deviation
from the model.

For WSes, we performed calculations on multiple shift-
ing configurations, while for NbSe, we utilized supercells
with multiple different twist angles. Hence, we split the
discussion into two parts:

1. Discussion of the shifting degree of freedom and
relevant symmetries using WSes (Fig. 5| (a))

2. Discussion of the twist angle dependency of the ex-
tracted parameters using NbSey (Fig. [5| (b) and

Fig. [6)
Nevertheless, the arguments are general and not re-
stricted to the particular TMDC.

A. Relevance of the in-plane 180° rotational
symmetry

One degree of freedom that has so far not been dis-
cussed is the lateral shifting between the two layers. This
is equivalent to considering different axes around which
the twisting occurs. Examining twisted supercells with
different lateral shiftings (Fig. [5| (a)), we consistently
find that the purely radial Rashba spin textures can only
be maintained in systems with an intact in-plane 180°-
rotation axis. This can be understood in the following
way: The 180°-rotation operation can be considered as
a combination of a vertical mirror operation and a hori-
zontal mirror operation. The former one is the same as
preludes radial Rashba components in untwisted or 30°
twisted graphene/TMDC heterostructures[19, 22] [35].
The latter one switches the sign of the in-plane spin
components. Therefore, the combination of both is for-
bidding the emergence of a tangential (conventional) in-
plane spin texture. If the 180°-rotation symmetry is bro-
ken, both tangential and radial components are allowed.
In the investigated materials, we find that this leads to
mostly tangential spin textures at K and mostly radial
spin textures at I'.

One question that arises is the following: How can the
occurrence of non-radial spin-orbit fields be described by
our model Hamiltonian? This can be done by adding a
layer-dependent potential Hpos = uo,sg. As we do not
assume any external breaking of the symmetry (e.g. by
an electric field) the source of it is the Moire potential
induced by the twist[25]. However, this Moire potential
is explicitly independent of the lateral shifting and also
averages to zero. In supercells with 180°-rotation symme-
try the averaged spin textures we can observe with DFT
therefore show no sign of this Moire potential and can
hence be described with a model Hamiltonian without
the additional H,,,. For supercells without this crucial
symmetry, the asymmetry in the wave functions causes
the Moire potential to not average out and result in a
non-zero average effective potential difference.

B. Twist angle dependency of the extracted
parameters

For the NbSes bilayers, we calculated a total of six dif-
ferent twist angles, in pairs of two, which are always part-
ner angles. From their spin-orbit fields (see Fig. 5] (b))
we extract parameters using the model Hamiltonian from
Eq.[1} The results are listed in Tab.[[Jand shown in Fig.[6]
The relevant parameters to extract are the interlayer cou-
pling w, the Rashba phase angle ® and the magnitude of
the total (hidden) Rashba Ap. However, ® and Ar can-
not easily be extracted separately from each other, but
only together in the form of Agsin(®). Henceforth, we
will call this the magnitude of the radial Rashba, which
is not to be confused with the magnitude of the in-plane
spin texture, although the two mostly overlap. Moreover,
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we cannot reliably extract the sign of Agsin(®), due to
deviations of the DFT data from the model predictions.
Therefore, we refer simply to |Ag sin(®)|.

In Fig. |§| (a) we show the twist angle dependence of
the radial Rashba magnitude |Agsin(®)|. At © = 0°
and © = 60° (untwisted cases) the radial Rashba van-
ishes by symmetry. Within this range 0° < © < 60°
it should show a unique behavior that can be expanded
to the whole range of 360° using the symmetry relations
in Eq. [7] and Eq. 8] However, there appears to be an
additional approximate symmetry around © = 30°, con-
necting the partner angles, e.g. +21.8° and £38.2°. The
I'-bands show a significantly smaller magnitude of the
radial Rashba.

TABLE I. Model Hamiltonian parameters extracted from the
K- and I'~-bands from the DFT calculations on twisted NbSez
bilayers. We list the twist angle ©, backfolding case (relevant
for K-bands), interlayer coupling w and the magnitude of the
radial Rashba |Ag sin(®)|.

NbSez/NbSe2 K bands T’ bands
o[°] case w | AR sin(®)| w [AR sin(®P)]
[’] [meV]  [meVA] [meV] [meVA]
0 K < K| 27.457 0.000 243.250 0.000
21.8| K+« K'| 0.532 0.600 209.972 0.036
-38.2| K+ K| 0.551 0.648 210.038 0.035
-32.2| K < K'| 0.011 0.177 210.148 0.033
278| K+ K| 0.022 0.146 210.086 0.039
-46.8] K < K| 0.007 1.103 210.102 0.043
13.2| K+ K'| 0.006 1.033 210.119 0.042

Now, let us discuss the interlayer coupling w as ex-
tracted from the model Hamiltonian fit. The extracted
w for the I'-bands all have nearly the same value of
w =~ 210 meV. The w extracted from the K-bands can be
found in Fig. |§| (b). Here, we plot w not against the twist
angle ©, but rather against the size of the used super-
cell and find that with increasing size of the supercell the
interaction between the K-bands decays exponentially.
The explanation for this consists of two steps: First, the
condition for finding a small supercell in real space for a
certain twist angle is the same as the condition for finding
a point close to I' in extended k-space, where K/K' of
layer 1 and K/K’ of layer 2 overlap. Second, the closer
this overlapping point is to I', the stronger will be the
interlayer coupling between these two points[29]. The
latter can also be seen as the reason for why the w ex-
tracted from the I'-bands is always a fixed large value
(irrespective of the twist angle or supercell size), as here
the interaction always occurs directly at I'. We stress
that this is not a dependence on the system size per se,
rather it is a dependence on the size of the smallest com-
mensurate supercell that can be built at a certain twist
angle. Hence — considering a continuous change of the
twist angle — the interlayer coupling w will peak at cer-
tain angles, where small commensurate supercells (like
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FIG. 6. Model Hamiltonian parameters extracted from the
K- and I'-bands from the DFT calculations on twisted NbSez
bilayers. (a) Radial Rashba magnitude |\ sin(®)| for K-bands
(red) and I'-bands (blue) as function of the twist angle ©.
The lines are merely a guide to the eyes. The values of the I'-
bands are enhanced by a factor of 10 for better visibility. (b)
Interlayer coupling w as function of supercell size (or Ng¢ of
the supercell). The black line shows a fit, which is described
in more detail in App. [A] Only interlayer interactions drawn
from the K-bands are shown, as the ones from the I'-bands
have a fixed value of w = 210 meV (for a fixed interlayer
distance). (c¢) Twist angle dependency of w in the K-bands
with the two backfolding scenarios color coded in blue (K <>
K’) and red (K <+ K). The inset shows a zoom to show
another small peak at © ~ 18°. The big peaks of interaction
around the untwisted cases © = 0° and © = £60° are omitted
in order to focus on the twisted cases.

the ones we use in DFT) are possible, as shown in Fig@
(c). This argumentation is layed out in more detail in

App.[Al



V. WTe;

In addition to WSes; and NbSe;, we investigate the
properties of bilayers of 1T-WTe;[36H38]. This case re-
quires a separate discussion, as it is different from the
previously discussed ones in two major ways. Firstly, its
monolayer’s unit cell is not hexagonal, but orthorhom-
bic. This complicates the formation of a commensurate
twisted supercell, which requires some uniaxial strain.
Contrary to its hexagonal counterparts, it does not have a
K-point with parabolic bands. Instead, its main features
close to the Fermi level and hence relevant for our discus-
sion are the states directly around I' and the Fermi pock-
ets located further along the k, direction (see Fig.[7] (a))
Furthermore, WTey is generally less symmetric than the
other discussed TMDCs, especially lacking the typical Cs
symmetry.

As the monolayer of 1T-WTe; is inversion-
symmetric[36], we instead use the 1T, phase to
illustrate the monolayer properties (see Fig. [7] (a)-(c)).
Monolayer 1T;-WTey has a vertical mirror plane and
will hence not support a radial in-plane spin texture.
Our calculations show that its spin texture close to
the Fermi level is roughly tangential around I' and
approximately uniform in the nearby pockets (see Fig. El
(©)).

Moving along to the twisted bilayer, we used one su-
percell with a twist angle of ® = 31.14° and a small
strain of € < 0.1% (see Fig.[7] (d)). Our DFT calculations
find multiple bands close to the Fermi level at I'. When
analyzing the spin-orbit fields of these bands, they are
all symmetrical around the kj-axis, which is defined by
the twist angle between the layers (dotted lines in Fig. El
(f)). This is the consequence of the in-plane 180° rota-
tion symmetry. As for the in-plane spin textures, a va-
riety of different forms emerge. Some are approximately
uniform, others are a mixture of uniform and radial spin
textures, and some are a Dresselhaus-like form. Analyti-
cal description of the spin textures is beyond the simple
model that we used for 2H structures.

VI. SUMMARY

We performed first principles calculations on different
twisted TMDC homobilayers, covering different materi-
als (NbSeqa, WSey and WTey), twist angles, lateral shifts
and interlayer distances. Our calculations reveal that
purely radial in-plane spin textures appear both around
the K- and I'-bands. They can be explained using a
model Hamiltonian designed to describe commensurate
supercells at large twist angles. We find the twist angle
dependency of the relevant model parameters interlayer
coupling w and radial Rashba magnitude |Ag sin(®)|, by
fitting the model to the DFT data for different twist
angles. Furthermore, we identify an in-plane 180° ro-
tation symmetry as the crucial symmetry for upholding
the purely radial spin textures. The investigations on
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FIG. 7. Real space structures, band structures and spin-orbit
fields of 1T4-WTey monolayer (a)-(c) and twisted 1T’-WTes
bilayer (d)-(f). (a) Band structure (with color-coded spin-
z expectation values) of 1T4-WTez monolayer with FBZ as
inset. (b) Side view of 1T4-WTez monolayer. (c) Spin-orbit
fields of 1T 43-WTe, monolayer around I'-point hole and nearby
electron pockets. (d) Top view of the twisted 1T’-WTe;y bi-
layer with monolayer unit cells of the two layers shown as
purple and blue rectangles. W-atoms of the two layers are
also shown in different colors (also blue and purple) for bet-
ter distinction. (e) Band structure (with color-coded spin-z
expectation values) around I' of bands (g1 to €12) close to the
Fermi level of the twisted 1T’-WTe; bilayer with FBZ zone as
inset. (f) Spin-orbit fields of some of the bands shown in (e).
Again, spin-z expectation values are color coded. The mirror
symmetry axis is shown as dotted line.

non Cs-symmetric 1T” WTes bilayers reveal novel spin-
orbit fields, which are characterized by a vertical mirror
symmetry, which is the sole symmetry of the system.
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Appendix A: Relation to continuous twist angle

In our DFT calculations, we are restricted to using
commensurate homobilayer supercells. The construction
of such commensurate supercells is only possible for dis-
crete values of the twist angle © (see Fig. [I{e)). We
have demonstrated that the results of these calculations
(in particular the radial in-plane spin textures) can be
fairly described by the model Hamiltonian we introduce
in Sec. [T} Hence, the question arises, if a radial Rashba
spin texture will also arise, when we vary the twist angle
continuously instead of choosing certain special discrete
twist angles. In principle, for every twist angle (except
© = 30°), one can find a commensurate supercell rep-
resenting the twisted homobilayer. However, these su-
percells can be very large and hence might not fulfill the
necessary conditions for the occurrence of radial Rashba.
The two necessary ingredients for the radial Rashba are a
finite radial Rashba magnitude Ag sin(®) and a finite in-
terlayer coupling w between the parabolic bands. While
the former one seems to be ubiquitous for all twisted
structures, the latter one might not be present through-
out a continuous twist angle range. For the I'-bands we
find a stable w &~ 210 meV, more than enough to sustain
a radial Rashba, throughout all twist angles. Hence, ra-
dial Rashba spin textures are expected to arise near I" for
all nonzero twist angles. For the K-bands, however, we
observed a decaying trend of w with supercell size. Let
us analyze this unintuitive relation. The argumentation
consists of two parts:

1. The relation between supercell size and the k-space
distance |k| between I' and the overlapping K/K'-
points

2. The relation between |k| and interlayer coupling w

Firstly, let us discuss the first relation: Commensurate
twisted supercells are generated by twisting two aligned
untwisted layers around a common lattice point, until
(coincidentally) two lattice points of the two layers (other
than the ones at the twisting axis) overlap somewhere.
The edge points of the new twisted supercell are set by
the twisting axis and the overlapping lattice points, defin-
ing the size of the supercell. If we twist the extended k-
spaces of the two layers around the I'-point by the same
twist angle, we will necessarily also find a repeating pat-
tern with the same size as the one in real space. Addition-
ally, an overlap between K/K’-points of the two layers
will occur at a fixed ratio of this repeating pattern. This
is illustrated in Fig. [§] (a)-(d). The distance |k| between
this overlapping K/K’-points and T" therefore is linear to
the supercell size (see Fig. [8] (e)). Concretely, in the case
of TMDC homobilayers (with six atoms in the smallest

untwisted supercell) this means:

2 272 [Ny
Sy T2
3 a3V 6’

2
K== (A1)

as

with supercell size s = and number of atoms N
in the supercell. It should be mentioned here that this
relies on the fact that we always use the smallest possible
supercell; in principle using a 2 x 2 supercell of a twisted
supercell would always yield the same physics and same
value for w, while technically having a larger supercell
size. Therefore, when we refer to a supercell size it means
the smallest supercell size possible at that specific twist
angle.

Now, for the second relation we refer to Ref. [29]. Since
the transfer integral T'(r) between two atoms generally
decays with their distance, it can also be assumed that
its Fourier transform ¢(q) decays in ¢ = |q|. This, ulti-
mately, is the reason why the Umklapp process involving
states far away from I' are very weak and therefore the
interlayer coupling w between these K/K’-points is very
small. We estimate the interlayer coupling to scale expo-
nentially with ¢ = |k| and therefore have

21 2
w = aexp(—blk|) = aexp ( - b—ﬁfs),
a

- (A2)

with fitting parameters a,b € R. In Fig. |8 (f) this func-
tion is fitted using the data points from our calculations.
The data point at N,; = |k| = 0 corresponds to the bands
at I, where interaction takes place at |k| = 0 and where
we consequently find large values of w, rather then a real
supercell.

Combining Fig. [§] (f) and Fig. [Ife), we can present
an estimate of the twist angle dependent interlayer cou-
pling between the K/K’-bands in Fig. [§| (g). The peaks
correspond to the possible commensurate supercells and
decrease with increasing size of the supercell. We as-
sume the peaks for each commensurate supercell to have
a certain width. In reality, the physics around the com-
mensurate case could include a lattice relaxation (favor-
ing commensurate lattices) or flat bands occurring as a
“higher order” magic angle effect. Also, the possible de-
viation from the commensurate case will be dependent
on the Fermi level (so the distance to the K-point) at
which we measure the spins. This plot clearly shows that
the supercells we chose for the DFT calculations (out of
convenience of smaller computational cost) are automat-
ically the ones amongst all possible twisted cells with
the strongest interlayer coupling. Now another question
arises: How small can the peak be, before the radial in-
plane spin texture breaks down? According to our model
Hamiltonian, the radial Rashba appears at arbitrarily
small interaction strength. In reality, however, there will
be a limit at which interactions with other nearby bands
and small perturbations will destroy the radial Rashba.
Ultimately, it is likely that radial Rashba spin textures
can also be found at other twist angles than the ones we
investigate. However, the magnitude and stability of the



effect is by far the strongest for the commensurate cases
shown in our paper.

Appendix B: Interlayer distance study & atomic
relaxation

In order to further the understanding of the twisted
homobilayers, we additionally performed an interlayer
distance study for NbSes bilayers with twist angle © =
—38.2°.  The interlayer distance is varied from d =
2.5A to d = 8A. We show the extracted parameters in
Tab. [[] and plot them in Fig. 0] We find that the in-
terlayer coupling w decays exponentially with d for both
the K- and the I'-bands. Furthermore, the magnitude
of the radial Rashba |Ag sin(®)| decays even faster. The
total energies of the systems seem to indicate that the
equilibrium interlayer distance is at about d = 3.25A.

This is congruent with the relaxation calculations we
performed. Contrary to the other calculations through-
out the main paper, we performed one calculation with
prior atomic relaxation. The extracted parameters align
rather well with the unrelaxed case with a comparable
interlayer distance. The radial form of the Rashba spin
texture remains untouched.

TABLE II. Parameters of supercells with different interlayer
distances d extracted from the band structure calculations
using the model Hamiltonian.

NbSez /NbSes K bands T’ bands

(€] case d w  |Arsin(®)] w | AR sin(®P)]

[°] [A] [meV] [meVA} [meV] [meVA}
-38.2| K < K| 2.5 |15.266 12.819 | 506.730 1.846
-38.2| K <» K| 2.75| 7.766 4.548 410.184 0.703
382K « K| 3 | 3.441 2.439 327.569 0.260
-38.2| K «+» K|[3.25| 1.415 1.263 261.612 0.095
-382| K +» K| 3.5 | 0.551 0.648 210.038 0.035
382K« K| 4 | 0.078 0.167 136.559 0.004
-382| K «+ K| 4.5 | 0.012 0.041 88.967 0.0004
382K+ K| 5 | 0.002 0.010 57.741 0.0
382 K« K 0.001 0.001 23.842 0.0
382K+ K| 8 0.0 0.0 3.220 0.0

Appendix C: Computational Details
1. NbSe;

The electronic structure calculations on the NbSey ho-
mobilayers were performed implementing density func-
tional theory (DFT) [39] using Quantum ESPRESSO [40].
Self-consistent calculations are carried out with a k point
sampling of 30 x 30 (for |©| = 21.8°,38.2°), 9 x 9 (for
|©] = 27.8°,32.2°) or 3 x 3 (for |©| = 46.8°,13.2°). We

10

use charge density cutoffs £, = 350 Ry and wave func-
tion kinetic cutoff Ey¢. = 60 Ry for the fully relativis-
tic pseudopotential with the projector augmented wave
method [41] with the Perdew-Burke-Ernzerhof exchange
correlation functional [42]. Graphene’s d-orbitals are not
included in the calculations. We used Grimme D-2 Van
der Waals corrections [43H45]. The used lattice constant
IS aNbSe, = 3.26A and the used interlayer distance is
d = 3.5A. We added at least 19A of vacuum to avoid in-
teraction between the periodic images and therefore es-
tablish a quasi-2D system.

2. WSQQ

The ab initio calculations of twisted WSes homo-
bilayers for two complementary twist angles are per-
formed using Wien2k[46]. We employ the Perdew-Burke-
Ernzerhof[42] exchange-correlation functional with van
der Waals interactions included via the D3 correction[44].
We used a k-grid of 15 x 15 x 1, and convergence crite-
ria of 1076 e for the charge and 10~ Ry for the energy.
The plane-wave cutoff multiplied by the smallest atomic
radii is set to 8. Spin—orbit coupling was included fully
relativistically for core electrons, while valence electrons
were treated within a second-variational procedure[d7]
with the scalar-relativistic wave functions calculated in
an energy window up to 5 Ry. The lattice parameter for
the monolayer WSe, is 3.282 A and thickness is 3.34 A[7].
The interlayer distance is 3.4 A[48]. The vacuum is 20 A.
To construct the twisted structures, we employed the
Atomic Simulation Environment (ASE) [49], starting
from two WSes monolayers aligned at either 0° or 60° and
subsequently applying the twisting procedure described
in Ref. [26].

3. 1T’-WTe2

The twisted WTes homobilayer structure is set-up with
the atomic simulation environment (ASE) [49] and
the CellMatch code [50], implementing the coincidence
lattice method [51, 52]. The lattice constants of pris-
tine 1T-WTes are a = 3.48 A and b = 6.27 A. Within
the heterostructure, the top (bottom) 1T-WTes layer
has lattice parameters of a = 3.48 A (a = 3.479 A)
and b = 6.27 A (b = 6.271 A). The involved strains
are below 0.1% and the twist angle between the lay-
ers is about 31.14°. In order to simulate quasi-2D sys-
tems, we add a vacuum of about 20 A to avoid inter-
actions between periodic images in our bilayer geome-
try. The twisted 1T°-WTey homobilayer supercell has
lattice vectors |a| = 24.36 A, || = 13.0139 A, and
lc| = 35.515 A and an angle o = 105.51°. The supercell
contains 168 atoms, see Fig. [7{d). The electronic struc-
ture calculations and structural relaxations of the het-
erostructure are performed by DFT [39] with Quantum
ESPRESSO [40]. Self-consistent calculations are carried
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out with a k-point sampling of 2x 2 x 1. We use an energy
cutoff for charge density of 560 Ry and the kinetic energy
cutoff for wavefunctions is 70 Ry for the fully relativis-
tic pseudopotentials with the projector augmented wave
method [41] with the Perdew-Burke-Ernzerhof exchange
correlation functional [42]. For the self-consistent calcu-
lation, we employ a threshold of 1 x 10~7 Ry and Fermi-
Dirac smearing of 5 x 10~* Ry. For the relaxation of the
heterostructures, we add DFT-D2 vdW corrections [43}-
15] and use quasi-Newton algorithm based on trust radius
procedure. To get proper interlayer distances and to cap-
ture possible moiré reconstructions, we allow all atoms to
move freely within the heterostructure geometry during
relaxation. Relaxation is performed until every compo-
nent of each force is reduced below 1x 1072 Ry/ag, where
ap is the Bohr radius.

12
4. Fitting

In the main paper we use a model Hamiltonian (see
Eq. (1)) to extract relevant parameters from the DFT data
by fitting. In Fig. [10] we compare the fit and DFT data
for two examples (K-bands of NbSey 21.8° and -38.2°).
To this end, we plot energies, magnitude of the radial
in-plane spin textures and energy splittings against the
distance k measured from the K-point. We can see that,
while the properties are generally well-reproduced by the
Hamiltonian, there are a few problems. Firstly, both
the radial spin texture’s magnitude as well as the energy
splittings are slightly different for VB1/2 and VB3/4, re-
spectively. Therefore, the parameters we extract present
an average of them. Furthermore, for K ++ K’ backfold-
ing (e.g. © = 21.8° case), although the energy splittings
are linear in k (as predicted by the model), the slope
of the splitting with increasing k is not congruent with
the model predictions. One could focus the fit only on
energies rather than spin expectation values in order to
reproduce the splittings. However, the resulting param-
eters would not be realistic. Hence, in order to repro-
duce the relevant physics (in-plane spins), we neglect the
(1eV) splittings in our fitting procedure for these cases.
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FIG. 10. Comparison between model Hamiltonian fit and
DFT. We compare energies F/, magnitude of the radial in-
plane spin textures (in form of the maximum in-plane spin
expectation values (Sg,ymaz)) and energy splittings FEspit
against the distance k measured from the K-point for two
cases (a) |©| = 21.8° and (b) |©| = 38.2°. The two cases
are representative of the two backfolding scenarios K < K’

and

K < K, respectively. In the band structures the max-

imal energy of the ’valence bands’ Emqe = Er + 632meV is
used as offset. For the spin expectation values, we use the
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splitting for the 21.8° case is below the intended numerical ac-
curacy (meV), so the deviation between the model and DFT
are not relevant.
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