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1.  INTRODUCTION

Action recognition, just like object recognition, requires 
us to extract invariant information from concrete proper-
ties. For example, we are able to recognize that someone 
is breaking into a house, irrespective of variations in the 
kinematics and the tools (e.g., a crowbar or a lockpicking 
set) or objects (e.g., a window or a door) involved. 

Decades of research in the field of action observation 

provided evidence that parietal, premotor, and temporal 

brain areas are involved in action observation, which 

together are referred to as the so-called action observa-

tion network (Bonini et  al., 2022; Gallese & Goldman, 

1998; Keysers & Perrett, 2004; Kilner, 2011; Orban et al., 

2021; Rizzolatti & Craighero, 2004; for a recent review 
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see Lingnau & Downing, 2024). More recently, it has been 
reported that particularly the lateral occipitotemporal cor-
tex (LOTC), that is assumed to be part of the third, lateral 
visual pathway (Pitcher & Ungerleider, 2021; Weiner & 
Gomez, 2021; but see Ritchie et  al., 2024), represents 
observed actions and action features at varying levels of 
abstraction.

Using multivoxel pattern analysis (MVPA) of fMRI 
data, Wurm and Lingnau (2015) revealed that the LOTC 
is sensitive to action goals such as opening and closing 
of containers irrespectively of the underlying kinematics 
(and thus, the specific action, such as screwing or lifting 
a cup), suggesting the presence of rather abstract, 
semantic representations. LOTC has further been shown 
to generalize across different types of objects (Wurm 
et  al., 2016), across static and dynamic action stimuli 
(Hafri et al., 2017), and across visually and verbally pre-
sented actions (Wurm & Caramazza, 2019). Similarly, 
using representational similarity analysis (RSA) of fMRI 
data, Tucciarelli et al. (2019) and Kabulska et al. (2024) 
revealed that the similarity structure of a range of differ-
ent actions, established behaviourally, is captured by 
the similarity structure of neural activation patterns 
across these actions in the LOTC. Moreover, both stud-
ies showed that semantic representations overlap with 
representations of both contextual features (e.g., object 
and scene properties) and body- and movement-related 
action properties. Remarkably, representations of the 
semantic similarity structure in the LOTC remained after 
accounting for similarities between actions with respect 
to body, scene, and object features (Tucciarelli et  al., 
2019). Complementary to this, distinct networks carry-
ing information about body parts involved in an action 
as well as action targets have been identified in lateral 
and ventral occipitotemporal areas and the intraparietal 
sulcus (Tarhan & Konkle, 2020; Tucciarelli et al., 2019; 
Wurm et al., 2016). Even the representation of objects in 
LOTC has been shown to be driven by action-related 
properties (Cortinovis et al., 2025). Given this variety of 
overlapping and non-overlapping representations of 
action-related properties, it has been proposed that 
representations in the LOTC are organized along 
posterior-to-anterior gradients from concrete to abstract 
action features, as well as distinctions between dorsal 
and ventral LOTC in representations based on sociality 
and transitivity respectively (Lingnau & Downing, 2015; 
Wurm et al., 2017; Wurm & Caramazza, 2022; see also 
Papeo et al., 2019).

Unlike their spatial organization, the temporal order 
and causal dependencies of representations of action-
related properties remain largely unexplored. Recent 
behavioral work suggested that shorter exposure dura-
tions are required to recognize simple actions (e.g., 

standing, sitting) than objects and scenes, whereas the 
recognition of goal-directed actions (e.g., ‘doing pottery’) 
required longer exposure durations (Reger et al., 2025). 
Regarding neural processes, observed pointing and 
grasping actions can be decoded from the MEG signal 
while generalizing across effector and reach direction 
within 200 ms (Tucciarelli et al., 2015). Likewise, object-
related actions can be distinguished from non-object 
related actions within 250 ms from the time of stimulus 
presentation (Wamain et al., 2014), and viewpoint invari-
ant representations can be decoded from brain activity 
within 200 ms (Isik et al., 2018). More recently, Dima et al. 
(2022) revealed a temporal hierarchy in the extraction of 
visual, action-related (i.e., action category, activity, transi-
tivity, and effectors) and socio-affective features (i.e., 
valence, arousal, sociality, and number of agents) to EEG 
patterns during the observation of naturalistic videos of 
everyday actions.

In sum, whereas a growing number of studies sug-
gest that the LOTC may represent different action-
related properties in overlapping regions, and while 
several lines of research suggest a temporal gradient 
underlying these representations, the spatiotemporal 
gradient of these representations is currently unknown. 
This is because previous studies either used behavioral 
data, fMRI, or EEG. However, this information is crucial 
if we wish to understand when, where, and how differ-
ent action-related properties are integrated for the rec-
ognition of actions (see also Lingnau & Downing, 2024; 
Ritchie et al., 2024). In the current study, we aim to fill 
this gap by investigating the temporal and spatiotem-
poral dynamics of action-related properties using EEG-
based RSA and EEG-fMRI fusion analyses (Cichy & 
Oliva, 2020). According to a strict hierarchical (feedfor-
ward) model, we expected that (1) the representation of 
action-related properties unfolds in an orderly fashion, 
starting with basic visual features of the visual scene  
(or stimuli), followed by body-, scene-, and object-
properties, and finally action semantics. In addition, we 
hypothesized that (2) temporally specific neural activa-
tions (based on EEG) correspond to spatially specific 
neural activation (based on fMRI data) in a spatiotem-
poral order along the lateral visual pathway (Pitcher & 
Ungerleider, 2021; Weiner & Gomez, 2021; but see 
Ritchie et al., 2024), ranging from lower visual areas (for 
basic visual features) to extrastriate areas (for object-, 
scene-, and body-related features), to the LOTC (for 
action semantics). By contrast, according to a parallel 
(feedforward) model, the representation of different 
action-related properties is assumed to emerge in par-
allel, in overlapping regions along the lateral visual 
pathway. Finally, in contrast to the predictions of serial 
or parallel feedforward models, dynamic changes of 
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representations of action-related properties both at 
shorter and longer latencies would suggest the involve-
ment of recurrent processing (Lamme & Roelfsema, 
2000).

2.  METHODS

2.1.  EEG-based representational similarity analysis

2.1.1.  Participants

A total of 24 female and male participants (19–34 years, 
mean ± sd: 23.9 ± 4.5; sex or gender information was not 
collected given that we did not have any hypothesis per-
taining to sex or gender effects) were recruited using an 
online recruitment platform for research participants at 
the University of Regensburg. All participants were right-
handed without severe neuropsychological disorders 
(self-report) with normal or corrected-to-normal vision. All 
participants received information regarding the experi-
mental procedures and gave their written informed con-
sent to participate in the study. Participants were 
compensated with 10€ per hour or course credit. The 
study was approved by the local ethics committee at the 
University of Regensburg (21-2657-101).

2.1.2.  Stimuli

The stimulus set contained 324 static images spanning 
27 basic-level everyday actions (e.g., riding a bicycle, 
washing dishes, brushing hair). The stimulus set was a 
subset of the stimuli used by Tucciarelli et al. (2019), as 
provided on OSF (https://osf​.io​/cvrb2/). One basic-level 
action (swimming) was removed from the original stimu-
lus set, since the depicted action was performed by dif-
ferent actors. There were 12 different exemplars for 
each action, using different combinations of actors (2), 
locations (2 exemplars each; e.g., two different kitch-
ens), and viewpoints (3), for a total of 324 different 
images.

2.1.3.  Task

A trial consisted of five phases (Fig. 1). At the beginning of 
each trial, a fixation cross was presented for a random 
interval (500–750  ms), followed by the first stimulus (S1) 
shown for 150 ms. Next, an empty screen was presented 
for a variable inter-stimulus interval (ISI) of 500–1333 ms 
[500, 667, 833, 1000, 1167, or 1333 ms], followed by the 
presentation of the second stimulus (S2) for 150 ms. The 
second stimulus was followed by a probe question, indicat-
ing which feature (action, location, or actor) participants 
were asked to match between the first and second stimu-
lus in the current trial. The probe was shown until a response 
was given, but no longer than 3000  ms. Participants 
responded by button press on a keyboard with their left (no 
responses) or right (yes responses) index finger. Each trial 
was followed by a fixed inter-trial-interval (ITI) of 1000 ms.

All stimuli were used twice as S1, resulting in a total of 
648 trials (27 actions x 12 exemplars x 2 repetitions). Probe 
questions were evenly distributed over trials (216 questions 
per feature). Trials were structured such that half of the tri-
als, with respect to the probe question, showed matching 
stimuli, and half non-matching stimuli. S2 in each trial was 
chosen according to probe question and expected answer 
(yes, no), and selected randomly from the remaining possi-
ble stimuli (with an exception for location probes, where S2 
was always selected from the same action as S1). Note 
that brain activation was only analyzed during presentation 
of the first stimulus and the ISI. Hence, the second stimulus 
and the probe were not directly affecting EEG measures.

The experimental task was presented using ASF (A 
Simple Framework; Schwarzbach, 2011) for MATLAB 
(R2021a; The MathWorks Inc., Natick, MA, USA)-based 
Psychtoolbox (3.0.19; Brainard, 1997). Stimuli were pre-
sented on a 120 Hz VIEWPixx /EEG monitor (VPixx Tech-
nologies Inc., Saint-Bruno, QC, Canada) in a shielded 
EEG room. A 60  second rest break was included after 
each set of 58 trials. Prior to the experiment, participants 
completed a practice session with 20 trials. The experi-
ment lasted approximately 40 minutes.

Fig. 1.  Experimental task. Schematic overview of a single trial. Following a fixation cross, two images (S1, S2) depicting 
everyday actions were shown with a variable inter-stimulus interval (ISI). At the end of each trial, a probe was presented, 
indicating the task: to judge whether S1 and S2 (1) correspond to the same basic-level action, (2) are performed by the 
same actor, or (3) take place at the same location. In this example (probe: action), the correct answer is [yes] (both 7 
pictures show a person riding a bicycle). If the probe were location or actor, the correct answer would be [no] in both 
cases, as the actions were performed by different actors, and at different locations.

https://osf.io/cvrb2/
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2.1.4.  Behavioral data processing and analysis

Behavioral responses were analyzed in MATLAB 
(R2021a). Per condition (probe type  x  ISI) trials were 
removed that exceeded two interquartile ranges (IQR) 
from the median (2.60% removed; range: 0–4.95%). The 
remaining responses were evaluated for accuracy, and 
reaction times were computed for correct trials, for each 
combination of probe type (action, location, actor) and ISI 
(500–1333  ms). Accuracies and response times were 
analyzed by two 2-way repeated-measures ANOVAs with 
factors probe type and ISI. One participant was excluded 
from behavioral data analysis due to technical issues, 
such that responses were not collected reliably.

2.1.5.  EEG data acquisition and preprocessing

EEG data were recorded using a BrainAmp EEG system 
(BrainProducts; Gilching, Germany) using 63 gel-based 
passive Ag/AgCl electrodes (BrainCap) and a sampling 
frequency of 500  Hz. The data were referenced to Cz 
during acquisition. EEG data and responses were stored 
for offline analyses in FieldTrip (v20231025; Oostenveld 
et al., 2011) running in MATLAB (R2021a).

Data were bandpass filtered using a two-pass 0.1 Hz 
high-pass filter and 40 Hz low-pass filter (using a 5th-order 
Butterworth filter). Noisy channels were removed based on 
visual selection (on average, 0.8 channels were removed; 
range 0–7). In addition, to remove artifacts from the EEG 
signal, independent component analysis was performed 
on each dataset using the EEGLAB function runica  
(Bell & Sejnowski, 1995), while excluding break periods. 
Components were automatically labeled using IClabel 
(Pion-Tonachini et  al., 2019). Components which were 
labeled as eye movement artifacts (prob > 50%), muscle 
artifacts (prob  >  50%), heart artifacts (prob  >  50%), or 
noise (prob > 50%) were regressed out from the data. On 
average, 10.5 components were removed per participant 
(range: 3–24). The resulting data was epoched in trials 
from -500 to 3000 ms relative to the onset of stimulus S1 
in each trial. Trials with noisy signals were detected and 
removed using visual rejection using the ft_rejectvisual 
function. An average of 9.75 trials were removed per par-
ticipant (range: 1–22). Rejected channels were interpolated 
using the average of neighboring channels, and channels 
were re-referenced to the global average of all channels.

2.1.6.  EEG data analysis

2.1.6.1.  Generation of neural RDMs.  For each partici-
pant, temporally specific neural representational dissim-
ilarity matrices (neural RDMs) pertaining to neural 
representations of basic-level actions were generated 

from whole-brain sensor-level ERP data using time-
resolved multivariate pattern analysis ((MVPA; Haxby 
et al., 2001); see Fig. 2A for an illustration of procedures) 
as implemented in CosmoMVPA (Oosterhof et al., 2016). 
Specifically, neural RDMs were constructed from pair-
wise decoding accuracies for each pair out of the 27 
actions (i.e., collapsing over exemplars and repetitions) 
at each sample, between -500 and 3000 ms relative to 
the onset of S1. Decoding was achieved using a sup-
port vector machine classifier as implemented in the 
LibSVM library (Chang & Lin, 2011) in a take-one-fold 
out cross-validation approach over six chunks using 
balanced partitions, averaging data over 5 samples 
(10 ms) at a time. Data from all EEG channels were con-
sidered features. Pairwise decoding accuracies were 
assigned to the 3rd of the 5 samples used for decoding, 
and stored in neural RDMs for each time point. In these 
RDMs, high decoding accuracies indicate patterns that 
are more different from each other, while low decoding 
accuracies reflect neural patterns that are more similar 
to each other.

2.1.6.2.  Generation of model RDMs.  To characterize 
the temporal unfolding of action-related features underly-
ing the ability to recognize actions, we used several dif-
ferent model RDMs (see Fig.  2B for an illustration of 
procedures). To capture low-level visual information, we 
created a model RDM based on the second layer of Alex-
Net (Krizhevsky et al., 2017), which has been proposed to 
qualitatively correspond to cortical V2 data (Laskar et al., 
2020) (AlexNet model). To capture scene information 
available in the action images, we used the GIST model 
(Oliva & Torralba, 2001; GIST model). These RDMs were 
generated by pairwise comparison of model outputs for 
each action stimulus, averaged over different exemplars 
of each action. To capture the number of actors involved 
in the action, we used an additional binary model (1 vs 2 
People model), created by assigning binary values to 
each action based on the number of actors (1 or 2) in the 
scene. To capture the similarity of actions with respect to 
body parts (i.e., which body parts are used for an action; 
Body model), context (i.e., where the action takes place; 
Context model), movements (Movement model), objects 
(Object model), and semantic similarity (Semantic model), 
we used data by Tucciarelli et al. (2019) resulting from a 
multi-arrangement task (Kriegeskorte & Mur, 2012), where 
a group of N = 20 participants was instructed to arrange 
the same images that were used in the current study (see 
Section 2.1.2 for details) on a circular arena according to 
their perceived similarity, carried out separately for each 
of these action-related properties. All models were trans-
formed into dissimilarity matrices and normalized (mean-
centered and standardized).
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Several model RDMs showed strong correlations (e.g., 
semantic x context: r =  .83, semantic x object: r =  .74, 
body x movement: r = .74; see Supplementary Table S1 
for a full list), and accordingly, high Variance Inflation Fac-
tors (VIF; range: 1.08–4.20). Therefore, we decided to 
reduce the set of model RDMs to the AlexNet model, 
GIST model, 1 vs 2 people model, Body model, and 
Semantic model, such that a VIF below 2 was reached 
(final VIFs: 1.06–1.41). The final set of model RDMs is 

shown in Figure  2B and their pairwise correlations in 
Table 1.

2.1.6.3.  Time-resolved representational similarity 

analysis: Standard RSA.  Standard RSA was performed 
by correlating neural RDMs with normalized model 
RDMs using Spearman rank correlations, sample by 
sample (Fig.  2C). This process was repeated for each 
model RDM, separately for each participant. Next, cor-

Fig. 2.  Illustration of procedures related to EEG-based Representational Similiarity Analysis. (A) First, neural RDMs were 
generated for each sample of the EEG data using pairwise decoding between actions. When a classifier can distinguish 
between two actions based on neural patterns at a given sample, this indicates high dissimilarity. When a classifier is not 
able to distinguish between two actions, dissimilarity is low. (B) Next, model RDMs were generated using the 2nd layer 
of the AlexNet CNN, output of the GIST computational model of the recognition of global scene properties, and data 
resulting from a behavioral multiarrangement task (Tucciarelli et al., 2019), providing a set of model RDMs for low-level 
visual features (AlexNet model), scene information (GIST model), the number of people (1 vs 2 people model; based on 
the number of people depicted in the image), body parts used to perform an action (Body model), and semantic similarity 
(Semantic model). Note that additional models were generated initially, but excluded due to strong correlations (see 
Section 2.1.6). (C) Finally, temporally specific neural RDMs (A) and model RDMs (B) were correlated using two approaches: 
standard RSA based on Spearman rank correlations, and multiple regression RSA, 11 in which the contribution of each 
model RDM to the neural RDM is evaluated while accounting for all other models. Both approaches provide model specific 
time courses of representational similarity between model RDMs and neural RDMs.
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relation values were transformed using the Fisher 
z-transform. The resulting correlation time series were 
analyzed for deviation from zero using one-sample 
suprathreshold cluster tests corrected for multiple com-
parisons across time using non-parametric randomiza-
tion tests (Dima et al., 2022; Nichols & Holmes, 2002). 
First, significant samples were identified using one-
tailed t-tests with an alpha level threshold of .05. Next, 
cluster sums were tested for significance using a Monte 
Carlo approach with 10,000 randomizations, using an 
alpha-level threshold of .05, over the time window 
between stimulus onset and 800  ms post-stimulus 
onset, using 10 ms sliding windows (ft_timelockstatis-
tics; maximum cluster sum statistics). The noise ceiling 
was calculated by averaging the correlations of individ-
ual EEG data (i.e., individual time-resolved RDMs) with 
the average time-resolved RDMs of the remaining par-
ticipants in a leave-one-out approach (lower bound), 
and with the average time-resolved RDMs of all partici-
pants (upper bound; Nili et al., 2014).

2.1.6.4.  Time-resolved representational similarity anal-
ysis: Multiple regression RSA.  Multiple regression RSA 
was conducted using the same data (neural and model 
RDMs) and settings as standard RSA. However, all mod-
els were considered simultaneously when predicting neu-
ral RDMs at each sample using a general linear model, 
including the five model RDMs (AlexNet model, GIST 
model, 1 vs 2 people model, Body model, and Semantic 
model) and a constant term. Regression parameters for 
each model were entered into a randomization test as 
described for standard RSA.

Following Cichy et  al. (2014), 95% confidence inter-
vals for mean onset latencies of the first significant clus-
ter were determined by bootstrapping the participant 
sample (n  =  24). Specifically, we created 1000 boot-
strapped samples by sampling from all participants with 
replacement. For each bootstrap sample, we repeated 
the exact multiple regression RSA as in the original sam-
ple, for each model. The resulting bootstrap estimates of 
onset latencies were used to determine the 95% confi-
dence intervals for onset latencies for each model.

Table 1.  Correlations between model RDMs.

GIST  
model

1 vs 2  
people 
model

Body  
model

Semantic  
model

AlexNet model .36 .14 .16 .21
GIST model -.05 .34 .19
1 vs 2 people model -.01 .15
Body model .47

Pairwise pearson correlation between normalized model RDMs of 
included models.

2.2.  fMRI-EEG fusion

2.2.1.  fMRI data

We performed an fMRI-EEG fusion analysis (Cichy & 
Oliva, 2020), using the EEG data collected in the current 
study (see Section  2.1), and fMRI data obtained from 
Tucciarelli et  al (2019; available via OSF: https://osf​.io​
/cvrb2/). In brief, Tucciarelli et al. (2019) presented partic-
ipants (N = 20) with the same stimuli (except for the action 
‘swimming’; see Section 2.1.2) in a one back task, requir-
ing a button press during rare catch trials in which the 
previous trial showed the same action (but not the same 
exemplar) as the current trial using an event-related fMRI 
design (for a detailed description of the task and data 
preprocessing, see Tucciarelli et al., 2019). Beta weights 
were obtained for each of the 27 actions in MNI space. 
These beta maps were used as input for the current fMRI-
EEG fusion analysis.

2.2.2.  Generation of neural (fMRI) RDMs

Neural fMRI-based RDMs (from here on referred to as 
fMRI-RDMs to avoid confusion with neural EEG-based 
RDMs) were generated for each participant (N = 20) that 
took part in the fMRI study by Tucciarelli et  al. (2019) 
using a whole-brain searchlight approach (see Fig. 3 for 
an illustration of fMRI-EEG fusion procedures). Specifi-
cally, for each voxel (2 mm isotropic voxel size, normal-
ized to the MNI template, unsmoothed data), beta values 
of all voxels within a 6 mm sphere were extracted from 
beta maps corresponding to all 27 actions (Fig.  3B). 
Within each sphere, pairwise correlations between beta 
values corresponding to each action were computed 
using Spearman correlations, transformed into dissimi-
larity scores (1-r), and assigned to the central voxel of the 
sphere. These voxelwise dissimilarity scores were aver-
aged across participants, and resampled to 4 mm isotro-
pic voxel size (due to memory constraints in the 
subsequent cluster-based randomization analysis). The 
resulting voxelwise fMRI-RDMs, thus, capture dissimilar-
ities in multi-voxel neural responses between all action 
pairs.

2.2.3.  fMRI-EEG fusion analysis

For the EEG-fMRI fusion analysis (Fig.  3C), the EEG-
RDMs for each time point (between -100 and 700 ms rel-
ative to the onset of S1 in the EEG task, see Section 2.1) 
were correlated with the group fMRI-RDMs for each voxel 
(see Section  2.2.2) using Spearman rank correlations 
(n.b., the time window was reduced to -100 to 700 ms 
based on the outcomes of the EEG-RSA analysis, in 
order to reduce memory requirements). This resulted in a 

https://osf.io/cvrb2/
https://osf.io/cvrb2/
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time course of correlation values between each of the 
voxel specific fMRI-RDMs and the time-resolved EEG-
RDMs for each participant in the EEG experiment. Cor-
relation values were transformed using the Fisher 
z-transform. Resulting correlation time series were ana-

lyzed for deviation from zero using one-sample suprath-
reshold cluster tests corrected for multiple comparisons 
across time using non-parametric randomization tests 
(Nichols & Holmes, 2002). First, significant voxel x sam-
ple combinations were identified using one-sample 



8

M. Zimmermann and A. Lingnau	 Imaging Neuroscience, Volume 3, 2025

t-tests with an alpha-level threshold of .05 to form clus-
ters over neighboring samples and voxels. Next, the clus-
ter sum scores of these clusters were tested for 
significance using a Monte Carlo approach with 1,000 
randomizations (limited by memory constraints), using an 
alpha-level threshold of .05, over the time window 
between stimulus onset and 700 ms post-stimulus onset 
of S1, using 10 ms sliding windows (ft_timelockstatistics; 
maxsum statistics).

2.2.4.  fMRI-EEG fusion-based RSA

Having identified clusters of voxels showing a significant 
similarity between fMRI- and EEG-based neural RDMs, 
we performed standard RSA using fMRI data from each 
of those clusters and the model RDMs described in Sec-
tion 2.1.6. This analysis was performed in two different 
ways, namely, averaged across time (using each cluster 
in its entirety) and time-resolved (using the sample-by-
sample cluster dimension; see Fig. 3D, for an illustration 
of fusion based RSA).

For the time-averaged fMRI-EEG fusion-based RSA, 
binary masks were generated based on each spatiotem-
poral cluster identified in the fusion analysis, each includ-
ing all voxels that were part of the cluster at any point in 
time. Next, beta values within these clusters were 
extracted from all participants (N = 20) that took part in 
the fMRI experiment by Tucciarelli et al. (2019; see Sec-
tion 2.2.1), and cluster-specific fMRI-RDMs were gener-
ated using 1-r pairwise Spearman rank correlations. 
These fMRI-RDMs were correlated, using Spearman cor-
relations, to each of the model RDMs, transformed using 
the Fisher z-transform, and tested for deviation from zero 

using t-tests. P-values were corrected for multiple com-
parison using FDR correction over models and clusters.

For the time-resolved fMRI-EEG fusion-based RSA, 
masks were generated based on the spatial cluster extent 
at each sample that was included in the cluster. Next, 
beta values corresponding to the cluster at each sample 
within the cluster were extracted from all 20 fMRI partici-
pants (see Section 2.2.1), and cluster x sample specific 
fMRI-RDMs were generated using 1-r pairwise Spearman 
rank correlations, resulting in fMRI-RDM time courses for 
each cluster. These fMRI-RDM time courses were cor-
related, using Spearman correlations, to each of the 
model RDMs, transformed using the Fisher z-transform, 
and tested for deviation from zero using one-sample 
suprathreshold cluster tests corrected for multiple com-
parisons across time using non-parametric randomiza-
tion tests (Nichols & Holmes, 2002) (ft_timelockstatistics; 
Monte-carlo approach, maxsum statistics, 10,000 ran-
domizations, cluster-forming alpha level .05, FDR-
corrected for multiple comparisons over models and 
clusters).

3.  RESULTS

3.1.  Behavioral performance

Participants showed good performance in the task for all 
ISI and probe types (see Fig.  4A). A 2-way repeated-
measures ANOVA for accuracy indicated a main effect of 
probe type (F(2,44) = 159.28, p < .001, ηp2 = .835). There 
was no significant main effect of ISI (F(5,110) = 0.28, p = 
.922, ηp2 = .007), and no significant interaction between 
probe type and ISI (F(10,220) = 0.88, p = .552, eta2 = .039). 

Fig. 3.  Illustration of procedures related to fMRI-EEG fusion and fusion based RSA. (A, B) First, EEG-based and fMRI-
based neural RDMs are obtained for each time point (EEG-based RDMs; A) and each central voxel within a sphere (fMRI-
based RDMs; B). For EEG-based RDM generation, see Figure 2. fMRI-based neural RDMs are obtained for each central 
voxel using a searchlight approach. For each voxel within a sphere, beta values are extracted for each action in each 
participant from a dataset obtained by Tucciarelli et al. (2019), using a similar task design 15 (see Section 2.2.1). fMRI-
based RDMs are generated by pairwise comparison (using Spearman correlations) of beta values between action pairs, 
within each searchlight (see Section 2.2.2 for details). (C) Next, EEG-fMRI-fusion is performed by correlating EEG-based 
RDMs corresponding to each time point and fMRI-based RDMs corresponding to each central voxel within a sphere, 
generating spatiotemporal similarity maps between EEG-based and fMRI-based neural RDMs. Maps are thresholded to 
obtain spatiotemporal fusion-based clusters (dashed box in C). (D) Fusion-based RSA is performed by correlating fMRI-
based RDMs obtained from voxels within the fusion-based clusters and model RDMs corresponding to action features 
(see Fig. 2 for details and generation; Section 2.2.3 for details) in two approaches: time-resolved and timeaveraged. 
For time-resolved fusion-based RSA (D, left panel), beta values from all participants were extracted at each time point 
from the fusion-based cluster, and used to generate temporally specific cluster-RDMs from all voxels within the cluster 
extent at a given time. These cluster-RDMs were compared for similarity to model RDMs (using Spearman correlations), 
providing similarity time courses between each model RDM and fusion-based cluster, spanning the time course of the 
cluster. For time-averaged fusion-based RSA (D, right panel), beta-values were extracted from all voxels that fell within 
the spatiotemporal fusion-based cluster at any point in time. These were used to generate time-averaged cluster-RDMs 
and compared for similarity to model RDMs (using Spearman correlations), providing time-averaged similarity measures 
between each model RDM and fusion-based cluster (see Section 2.2.4 for details).
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Regarding the main effect of probe type, participants 
performed significantly better in judging the match 
between S1 and S2 based on the type of action (91.7 ± 
4.1% correct; MEAN ±  SD) in comparison to the actor 
(74.4 ± 8.8% correct) and the location (63.3 ± 7.3% cor-
rect), with significant differences, based on post-hoc 
t-tests, between all condition pairs (all p < .001).

For response times (Fig.  4B), a 2-way repeated-
measures ANOVA indicated no significant interaction 
between probe type and ISI (F(10,220) = 0.64, p = .778, 
ηp2 = .028), but a significant main effect both for probe 
type (F(2,44)  =  24.20, p  <  .001, ηp2  =  .682) and ISI 
(F(5,110) = 4.31, p = .001, ηp2 = .124). Regarding probe 
type, we observed the same pattern as for accuracies. 
Participants were fastest matching actions (799 ± 154 ms), 
followed by actors (866 ± 170 ms) and locations (908 ± 
185 ms), with significant differences, based on post hoc 
t-tests, between all condition pairs (all p < .05). Response 
times were slower for longer ISI (1000–1333  ms) com-
pared to shorter ISI (500–833 ms; t(22) = 3.33, p = .003).

3.2.  EEG-based representational similarity analysis

3.2.1.  Standard EEG-RSA

Using time-resolved RSA, we examined how representa-
tions of features that are assumed to contribute to action 
recognition unfold in time (see Fig. 2 for an illustration of 
procedures). We correlated EEG-based dissimilarity 
matrices (based on decoding accuracies) with a set of 
five models, corresponding to the dissimilarity between 
basic-level actions in terms of lower-level visual proper-
ties (AlexNet model), mid-level features (GIST model, 1 vs 
2 people model, Body model), and higher-level action 
semantics (Semantic model). As shown by a cluster-
based group-level standard RSA, all five features are rep-
resented in patterns of the EEG signal (Fig. 5). Specifically, 
the model RDMs for the AlexNet model, the GIST model, 

the Body model, and the Semantic model show sus-
tained clusters of correlation with neural RDMs from 
approximately 90  ms until 400–600  ms post-stimulus 
onset. The model RDM for the 1 vs 2 people model shows 
a transient cluster of correlation from approximately 200 
to 250 ms post-stimulus onset. The AlexNet model shows 
another cluster between approximately 520 and 670 ms 
(with a short gap <10 ms). All clusters are significant at 
p <  .05. Full cluster statistics are presented in Supple-
mentary Table S2.

3.2.2.  Multiple regression EEG-RSA

Following up on the standard RSA, we performed 
multiple-regression RSA combined with cluster-based 
randomization analysis to obtain the unique contribution 
of each model to the resulting brain activity. All models 
show unique, significant contributions to the EEG pat-
terns recorded during action observation, albeit at differ-
ent latencies (Fig. 6; see Supplementary Table S3 for full 
cluster statistics). Specifically, the AlexNet model pre-
dicted neural RDMs beginning at 82  ms post-stimulus 
onset (p < .001), followed by the Body model at 118 ms 
(p = .003) and 240 ms (p = .017), the GIST and the 1 vs 2 
people model at 180 and 204 ms respectively (p = .008 
and p = .019), and finally the Semantic model at 282 ms 
post-stimulus onset (p =  .040), as well as 358 ms (p = 
.002) and 500 ms (p = .007). The AlexNet model predicted 
neural RDMs again after 246 and 576 ms post-stimulus 
onset (p = .012 and p = .013, respectively), and the GIST 
model again after 328 ms (p = .008), whereas the other 
models showed single transient (1 vs 2 people model, 
130  ms) or sustained (Semantic and Body model, 292 
and 196 ms, with short [≤ 22 ms] interruptions between 
clusters) effects. For the first significant cluster of each 
model, 95% confidence intervals were determined using 
bootstrapping (n = 24). Comparing bootstrap estimates 
for each model, we found that EEG signals were pre-

Fig. 4.  Behavioral performance. Participants performed action matching trials more accurate (left) and faster (right) 
compared to actor and location trials. Longer ISI slightly increased response times for all trial types. Shaded areas indicate 
standard errors of the mean.
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Fig. 5.  EEG-based standard RSA results. Time courses of all correlations between model RDMs with EEG data 
(mean ± SE, displayed as shaded areas). Each plot shows group-level Spearman correlation time courses between an 
independently established model RDM and neural RDMs based on time-resolved EEG-based decoding accuracies with 
respect to basiclevel actions. Colored horizontal bars indicate time windows where observed correlations deviate from 
zero, based on one-tailed randomization tests with cluster-correction across time; 10,000 randomizations, p < .05. Noise 
ceiling is displayed in shaded gray areas (lower and upper bound; Nili et al., 2014).

dicted by the AlexNet model first (81.6–82.4 ms), followed 
by the Body model (122.3–125.3  ms), the GIST model 
(173.8–177.4  ms), the 1 vs 2 people model (203.7–
206.1  ms), and lastly the Semantic model (286.2–
301.2  ms). Thus, the 95% confidence interval for each 
model did not overlap with the confidence interval of the 
next earlier or later model (Fig. 6).

3.3.  fMRI-EEG fusion

3.3.1.  Whole brain searchlight fMRI-EEG fusion

To identify the neural processes underlying action recogni-
tion simultaneously in space and time, and subsequently 
investigating where and when different action features are 
processed in potentially different brain regions, we carried 
out whole-brain searchlight fMRI-EEG fusion between the 
EEG data collected in the current study and the fMRI data 
obtained by Tucciarelli et al. (2019) using the same stimu-
lus set (see Fig. 3 for an illustration of procedures). This 
approach exploits the advantages of EEG (high temporal 
resolution) and fMRI (high spatial resolution) and is based 
on a representational similarity analysis between data from 
different modalities, here EEG and fMRI (Cichy & Oliva, 

2020). Spatiotemporal cluster randomization tests revealed 
a significant similarity between the representations cap-
tured in the EEG-based and the fMRI-based RDMs based 
on 10 clusters spanning visual, temporal, parietal, and 
frontal areas (Fig.  7A; Table 2). The earliest overlap was 
observed in frontal and insular regions (incl. superior fron-
tal gyrus, middle frontal gyrus (cluster #1), opercular cor-
tex, planum polare (cluster #2), subcallosal cortex, frontal 
orbital cortex (cluster #4)) and posterior parietal and lateral 
occipital regions (incl. superior parietal lobe, lateral occipi-
tal cortex; cluster #3) around 110 ms, visual areas (incl. 
lingual gyrus, occipital fusiform gyrus, intracalcarine cor-
tex, occipital pole; cluster #5) around 190  ms, temporal 
regions (incl. superior and temporal gyrus, planum polare; 
cluster #6) around 200 ms, frontal regions (incl. superior 
frontal gyrus, paracingulate gyrus and frontal pole; cluster 
#7) around 250  ms, temporal regions (incl. middle and 
superior temporal gyrus, angular gyrus and supramarginal 
gyrus, cluster #8), around 290 ms, temporal regions (incl. 
temporal superior and middle temporal gyrus; cluster #9), 
as well as occipital regions (incl. lingual and occipital fusi-
form gyrus; cluster #10) around 310  ms (anatomical 
regions are based on Harvard-Oxford Cortical Structural 
Atlas in FSL, Desikan et al., 2006; Jenkinson et al., 2012).
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3.3.2.  Time-averaged fusion-based RSA

Next, to characterize the nature of the representations 
captured by the fMRI clusters revealed by the fMRI-EEG 
fusion analysis (see Section 3.3.1), we identified the rep-
resentational similarity of these regions with the model 
RDMs, using temporally unspecific cluster extents 
(Fig. 7B, bar plots). Five clusters showed significant cor-
relations with model RDMs. The middle/superior frontal 
cluster (#1) showed a significant positive correlation with 
the AlexNet model (t(19) = 2.72, p(FDR) = .034), but with 
none of the remaining models (all p(FDR) > .05). The pos-
terior parietal cluster (#3) showed a significant correlation 
with the Semantic (t(19) = 2.99, p(FDR) = .023) and GIST 
model (t(19) = 2.83, p(FDR) = .030), but with none of the 
remaining models (all p(FDR) > .05). The occipital clusters 
(#5 and #10) each showed significant positive correla-
tions with the AlexNet model (#5: t(19)  =  6.94, 
p(FDR) < .001; #10: t(19) = 3.78, p(FDR) = .005) and the 
Body model (#5: t(19)  =  4.03, p(FDR)  =  .004; #10: 
t(19) = 4.55, p(FDR) =  .001), but not with the remaining 
models (all p(FDR)  >  .05). The temporal cluster (#8) 
showed significant positive correlations with the Seman-

tic (t(19)  =  4.52, p(FDR)  =  .001), Body (t(19)  =  5.57, 
p < .001), GIST (t(19) = 2.60, p(FDR) = .040) and the Alex-
Net model (t(19) = 3.04, p(FDR) = .023), but not with the 1 
vs 2 people model (p(FDR) > .05). The remaining clusters 
did not show significant correlations with any of the mod-
els (all p(FDR) > .05).

3.3.3.  Time-resolved fusion-based RSA

Finally, we investigated the temporally resolved represen-
tational similarity between fusion-based fMRI clusters 
and model RDMs (Fig.  7B, time series plots), using 
sample-specific cluster extents. The occipital clusters #5 
and #10 correlated with the Body model and the AlexNet 
model for most of the period (all p(FDR)  <=  .001). The 
temporal lobe cluster #8 significantly correlated with the 
Semantic (p(FDR) < .001), Body (p(FDR) < .001) and Alex-
Net model (p(FDR) = .008 and p(FDR) = .010) RDMs for 
most of the period, and the GIST model during the first 
half (p(FDR) = .005). The remaining clusters did not show 
significant correlations with any of the model RDMs (all 
p(FDR) > .05).

Fig. 6.  EEG-based multiple regression RSA results. Time courses of multiple regression analyses between model RDMs 
with EEG data (mean ± SE, displayed as shaded areas). Each plot shows group-level multiple regression parameter 
time courses between an independently established model RDM and neural RDMs based on time-resolved EEG-based 
decoding accuracies with respect to actions, accounting for all other model RDMs. Colored horizontal bars indicate 
time windows where obtained regression parameters are significantly larger than 0, based on one-tailed randomization 
tests with cluster-correction across time; 10,000 randomizations, p < .05). The lower right plot indicates the time of first 
occurrence of each model RDM in the EEG data. The shaded area indicates the 95% confidence interval for mean onset 
latencies, determined by bootstrapping the participant sample.
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4.  DISCUSSION

Using fMRI-based multivariate approaches, previous 
studies have shown that action features at varying hierar-
chical levels are represented in partially overlapping areas 
in the LOTC (Kabulska et al., 2024; Tucciarelli et al., 2019; 
Wurm & Caramazza, 2019; Wurm & Erigüç, 2025; Wurm 
& Lingnau, 2015; Zhuang et al., 2023). Using EEG-based 
RSA to examine the time course of action features 
involved in the recognition of socio-affective actions, 
action features have been reported to be represented 
later than visual features, but before social features (Dima 
et  al., 2022). Using fMRI-EEG fusion, and a thorough 
characterization of the nature of the representations cap-
tured by the spatiotemporal clusters obtained in this 
analysis, the current study supports and extends these 
findings in an important way, showing that low-, mid-, 
and high-level features that contribute to the understand-
ing of a wider range of actions (Kabulska & Lingnau, 
2023; Lingnau & Downing, 2024, 2015; Wurm & 
Caramazza, 2022) are extracted in a hierarchical, tempo-
ral succession along the lateral pathway.

Table 2.  List of fMRI-EEG fusion clusters.

Cluster # Region Hem.

1 Middle and superior frontal gyrus L
2 Opercular cortex, planum polare, insular 

cortex
L

3 Superior parietal lobe, lateral occipital 
cortex

R

4 Subcallosal cortex, frontal orbital cortex L
5 Lingual gyrus, occipital fusiform gyrus, 

intracalcarine cortex, occipital pole
R

6 Planum polare, middle and superior 
temporal gyrus

L

7 Superior frontal gyrus, paracingulate 
gyrus, frontal pole

L/R

8 Superior and middle temporal gyrus, 
supramarginal gyrus, angular gyrus

R

9 Planum polare, middle and superior 
temporal gyrus

L

10 Occipital fusiform gyrus, lingual gyrus R

Anatomical regions are based on the Harvard-Oxford Cortical 
Structural Atlas. Hem. = Hemisphere, L = left, R = right.

4.1.  Unique time courses of neural representations 
corresponding to specific action features

Using EEG-based RSA, we investigated the temporal 
evolution of different types of information during action 
recognition. Using static images of everyday goal-
directed actions and models capturing low-, mid-, and 
high-level features, we revealed the time course of repre-
sentations corresponding to these features. Using stan-
dard RSA, we showed that all five examined features 
correlated with EEG activity starting 90 ms after stimulus 
onset (Fig. 5). Features related to lower-level visual prop-
erties, scene and body part information, and action 
semantics showed sustained correlations up to 400–
600  ms after stimulus onset. Information regarding the 
number of people involved in an action showed transient 
correlations with the EEG signal around 200–250 ms.

More distinguishing findings were obtained using mul-
tiple regression RSA, which identified epochs in which 
each feature uniquely contributed to EEG activity (Fig. 6). 
Information corresponding to low-level visual features 
(captured by the AlexNet model) emerged at about 80 ms 
for the first time. Information corresponding to body parts 
involved in an action (and possibly their movements, as 
these model RDMs showed high correlations), scene 
information and the number of involved people, emerged 
within 100 and 200  ms. Finally, semantic similarities 
between actions contributed to EEG activity from around 
280  ms onward. Interestingly, representations corre-
sponding to visual, body, and scene features re-emerged 
at later times, suggesting recurrent processing (e.g., 
Lamme & Roelfsema, 2000; Motlagh et al., 2024; for an 
extended discussion, see below). Specifically, following 
an early unique contribution of visual features to EEG 
patterns between approximately 80–180 ms, visual fea-
tures again contributed to EEG patterns around 250–
300  ms. Similarly, scene information (captured by the 
GIST model) first contributed to EEG patterns around 
180–240  ms, and again around 330–400  ms. Visual 
inspection of Figure 6 suggests clearly separated periods 
at which these features contribute to neural activity. 
Moreover, visual inspection of the time course corre-
sponding to the body model also suggests the existence 

Fig. 7.  Whole-brain searchlight fMRI-EEG fusion and fusion-based RSA results. (A) Visualization of spatial extent and 
onset times of fusion-based clusters (purple-yellow-red colour range). Numbers indicate temporal order, and link clusters 
with corresponding RSA plots (see B). (B) For each cluster (see A), bar plots indicate time-averaged fusion-based RSA 
results for each of the five models (AlexNet, GIST, 1v2 people, Body, Semantic model), time series plots indicate time-
resolved fusion-based RSA results (see Fig. 3 for details). Asterisks denote significant deviations from zero for time-
averaged RSA results [***p < .001; **p < .01; *p < .05]; thick horizontal lines indicate extent of significant clusters for time-
resolved RSA results. Anatomical cluster labels are based on the Harvard-Oxford cortical structural atlas (see also Table 2 
for more details). Error bars indicate the standard error of the mean.
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of two separate peaks around 150 and 300 ms, respec-
tively. Visual inspection of the time course corresponding 
to the semantic model suggests sustained contribution 
between 280 and 600 ms, despite small gaps between 
subsequent clusters.

These timing characteristics are in line with previous 
work showing that visual and action-related features 
emerge within the first 200 ms (Dima et al., 2022), and 
that abstract action representations can be observed as 
early as 200 ms following their presentation (Tucciarelli 
et  al., 2015). Later processing of information regarding 
the number of actors involved in an action is in line with 
the same work by Dima et al., who showed activity related 
to the number of agents emerging around 160 ms. Impor-
tantly, whereas Dima et  al. applied decoding of neural 
(EEG) patterns at the level of specific action instances in 
combination with crowd-sourced ratings regarding visual, 
action, and social-affective features, we decoded neural 
patterns generalized to basic level actions—by decoding 
over different instances of the same action performed by 
different actors, using different objects, scenes, and kine-
matics. This allows us to generalize our results to basic-
level actions, that is, the level at which category 
information is assumed to be maximized (Rosch et  al., 
1976; Zhuang & Lingnau, 2022; Zhuang et al., 2023).

4.2.  Body, scene, and social information 
represented before action semantics

Our results suggest a clear temporal order in which action 
features are represented in the brain. Following lower-level 
visual features, the brain first represents bodily features of 
actions, followed by scene information and social proper-
ties of the action (i.e., the number of agents involved in the 
action). Semantic information is represented only at a later 
stage. This order suggests that properties of actions, such 
as the effectors and kinematics with which they are per-
formed, and the scene in which they are performed, con-
tribute to the recognition of actions at the level of action 
goals, corresponding to the representation of action 
semantics. As such, the outcomes of this study are in line 
with recent behavioral observations suggesting that the 
recognition of actions at the level of body postures—
corresponding to our level of effects and kinematics—
requires shorter exposure durations than the recognition of 
action-related objects and scenes, and that these features 
may be processed in parallel, whereas the recognition of 
action goals requires longer exposure durations and pos-
sibly depends on the integration of these features (Reger 
et al., 2025). Taken together, these results add to recent 
observations and frameworks suggesting that action rec-
ognition relies on a visual analysis of the observed action, 
including the integration of contextual information, such as 

object and scene information along the lateral visual path-
way (El-Sourani et  al., 2018; Lingnau & Downing, 2024; 
Wurm & Caramazza, 2022; Wurm & Schubotz, 2017). Spe-
cifically, midlevel features such as kinematics, object, and 
scene information may be processed in parallel, before 
being integrated at the level of action semantics. The 
observation of a temporal ordering also adds to seemingly 
conflicting findings in previous studies that reported differ-
ent feature spaces within the same brain areas, in particu-
lar, LOTC (Kabulska et al., 2024; Tarhan & Konkle, 2020; 
Tucciarelli et  al., 2019; Zhuang et  al., 2023; see also 
Lingnau & Downing, 2024).

4.3.  Feedback, re-emerging representations

Using multiple regression RSA, we not only showed a tem-
poral order in which action features are represented in the 
brain, but also observed that representations correspond-
ing to visual, scene, and body features re-emerge following 
an initial early representation (Fig. 6). Specifically, the sec-
ond period at which visual features uniquely contribute to 
EEG patterns falls after the first representation of body and 
scene information (2nd cluster AlexNet model, 250-300 ms); 
the second epoch at which body features contribute to 
EEG patterns falls after the first epoch of scene informa-
tion, and at the same time of the second representation of 
visual features (2nd peak Body model, 250–300 ms); and the 
second period at which scene features contribute to EEG 
patterns falls after the second representation of body fea-
tures (2nd cluster GIST model, 350–400 ms).

Pure feedforward processing, both serial and parallel 
(extracting different action features in parallel), would not 
require re-emerging neural representations; hence these 
observations suggest that action recognition also involves 
recurrent processing. The pattern of results suggests that, 
in particular, processing of body and scene information 
takes places in feedback loops with processing of lower-
level visual features, and possibly, extraction of semantic 
information takes place in feedback loops with processing 
of scene and body information. As such, in contrast to 
accounts relying on feedforward processing of movement-
related information (Gallese et al., 1996), the possible exis-
tence of feedback loops during action recognition is in line 
with predictive coding accounts of action understanding 
(c.f., Cerliani et al., 2022; Kilner, 2011; for a recent discus-
sion, see also Lingnau & Downing, 2024).

Related to the previous point, it can be assumed that 
the restriction to static pictures as stimuli in the current 
study, with no prior information regarding any of the 
action features, contrasts with naturalistic action percep-
tion. In fact, during naturalistic action perception, some 
information, such as the scene where an action takes 
place, or a selection of objects, can usually be perceived 
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and recognized before an action unfolds. Accordingly, 
additional predictive processes might take place, that 
predict higher-level abstract action features before lower-
level concrete features (see de Vries & Wurm, 2023, for a 
demonstration of a cascade of predictive neural repre-
sentations of observed actions from abstract to concrete 
features). However, we would expect the same process-
ing of features and possibly, their interaction, during the 
recognition of dynamic actions as we have observed here 
during the recognition of static actions, in line with stud-
ies showing that action categories can be decoded 
across visual formats in inferior parietal, occipitotempo-
ral, premotor and middle frontal cortex (Hafri et al., 2017).

4.4.  Spatiotemporal dynamics of neural 
representations underlying action recognition

A whole-brain searchlight fMRI-EEG fusion analysis 
revealed representational overlap during early time win-
dows in both frontal and parietal regions, before early and 
higher visual areas, and lastly occipito-temporal regions 
(Fig. 7A; Section 3.3.1). To characterize the functions of 
these regions with respect to action recognition, we 
related fMRI-based RDMs from each region with the five 
different model RDMs. This analysis (Fig.  7B; Sec-
tions 3.3.2 and 3.3.3) revealed that early activated pari-
etal and frontal regions are likely not related to 
representations of action-related features, as indicated 
by a lack of correlation with any of our feature models 
(however, it should be noted that a cluster spanning 
superior parietal and lateral occipital regions correlated 
with the semantic feature model and scene model in a 
time-unspecific, but not a time-specific RSA, and a clus-
ter in the middle/superior frontal gyrus correlated with the 
AlexNet model in a time-unspecific, but not a time-
specific RSA; see Sections 3.3.2 and 3.3.3 for details). 
The analyses further revealed that occipital regions repre-
sent information captured in the Body model and the 
AlexNet model. These regions, therefore, likely code 
lower-level visual information and body- or movement-
related properties. Finally, occipito-temporal regions con-
tain information captured in the AlexNet, GIST, Body, and 
Semantic model. Importantly, the LOTC is shown to rep-
resent, partially in temporal order, visual, scene, body, 
and semantic information, as revealed by the time-
resolved fusion-based RSA (see Section  3.3.3). These 
findings are in line with the idea that the LOTC represents 
and integrates action features across different levels of 
specificity, and crucially, suggest that the representations 
in ventral/lateral stream areas are sufficient to recognize 
observed actions (Dima et al., 2022; Lee Masson & Isik, 
2023; Lee Masson et al., 2024; Lingnau & Downing, 2024; 
Wurm & Caramazza, 2019; Wurm & Lingnau, 2015).

Several identified clusters did not show any correla-
tion with the model RDMs, particularly not during a 
time-resolved analysis. The role of these, in particular 
frontal, regions may be related to the task or general 
attentional processes that take place in both experi-
ments during which the data were collected, that is, the 
delayed matching task that was performed in the pres-
ent study, and the 1-back task performed in the study 
by Tucciarelli et  al (2019). Regions in the inferior and 
superior parietal cortex have been shown to be sensi-
tive to the difference between actions at the basic and 
superordinate level (Abdollahi et al., 2013; Hafri et al., 
2017; Jastorff et al., 2010; Urgen & Orban, 2021; Zhuang 
et al., 2023). While our results are not incompatible with 
these observations, the temporal dynamics of the repre-
sentation of action-related features revealed in the cur-
rent study are in line with the view that the representations 
obtained in parietal regions are of secondary nature to 
action recognition and may serve other purposes, for 
example, the preparation of potential motor responses 
(see e.g., Lingnau & Downing, 2024 for a discussion). 
Together, our findings extend previous ROI-based work 
by Lee Masson et al. (2021, 2023, 2024), showing that 
the posterior superior temporal sulcus (STS) and MTG, 
but not frontoparietal regions, represent social features 
of actions during viewing of social actions in artificial or 
movie scenes.

4.5.  Limitations and future directions

As with most studies investigating representations of goal-
directed, everyday actions, the current work is restricted to 
27 actions, spanning five larger action categories (locomo-
tion, social/communicative, cleaning-related, food-related, 
leisure-related; see Tucciarelli (2019) for details). Other 
studies have started to vastly extend this space (e.g., 
Bockes, Hebart, Lingnau, subm.; Dima et  al., 2023; 
Kabulska & Lingnau, 2023; Kabulska et al., 2024; Thornton 
& Tamir, 2022; Vinton et al., 2024). Here, we decided to use 
a limited number of actions for two reasons. First, we used 
relatively controlled stimuli, with two fixed actors and two 
locations per action, controlled viewpoints and distances; 
studies that use larger action spaces are often based on 
less controlled stimuli (e.g., large collections of images 
available in online databases), and/or real or scrambled 
movies, which have less clear onset times (Dima et  al., 
2022; Lee Masson et al., 2024). Here, we focus on more 
repetitions of the same action using controlled properties 
while extracting information that is general to an action at 
the basic level, in particular by collapsing over different 
instances of the same basic-level action performed by var-
ious actors, in different locations, and using a variety of 
tools and objects. Second, we used a stimulus set that 
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already includes fMRI data from an independent sample of 
20 participants (Tucciarelli et  al., 2019), allowing us not 
only to use behavioral ratings and models from this work, 
but also to combine the fMRI data with our EEG data in an 
EEG-fMRI fusion approach, thereby extending the utility of 
the dataset.

We would like to point out that the stimulus set used in 
the current study was not fully balanced with respect to 
all contextual and body features, which is partly due to 
naturalistic statistics (e.g., some actions are more likely 
to take place indoors or involve particular objects and 
kinematics than others). Consequently, our model RDMs 
were not independent of each other, and some models 
that we initially planned to use had to be excluded to 
allow us to perform multiple regression analyses (see 
Section 2.1.6 for details). This became particularly prob-
lematic for the Body and Movement models, as well as 
for the Semantic, Object, and Context model. We, there-
fore, reduced the model set by dropping the movement 
model, and by dropping both the Object and Context 
(‘where an action usually takes place’) model, and intro-
duced a computational model (Oliva & Torralba, 2001) to 
capture scene information contained in the action images, 
in the GIST model. Therefore, the current data do not 
allow to fully disentangle different properties related to 
the actual movements of an agent (i.e., which part of the 
body is moved, and how is it moved), and semantic rep-
resentations of actions might be affected by similarities 
with respect to the objects used in an action. These prob-
lems will need to be solved in future studies, potentially 
by using a stimulus set that is balanced with respect to 
contextual and body features, and/or that includes move-
ment information obtained from kinematic recordings or 
computational modelling.

Whereas we are confident that our fMRI-EEG fusion 
analysis provided valuable data, the results need to be 
interpreted carefully. Most notably in the light of our inter-
pretation of the findings, the cluster analysis revealed lat-
eralization effects within the lateral visual pathways (i.e., 
cluster 6, 8, and 9; Fig. 7). Whereas most studies report 
action-related effects in bilateral LOTC (e.g., Hafri et al., 
2017; Kabulska et  al., 2024; Wurm & Lingnau, 2015; 
Wurm et  al., 2016; Zhuang et  al., 2023) or left LOTC 
(Tucciarelli et al., 2019), some effects appear stronger in 
the right hemisphere (e.g., Wurm et  al., 2017), and the 
causes for these lateralization effects are not fully under-
stood. In fact, an inspection of sub-threshold clusters 
(p  <  .10) indicated smaller fusion-based clusters of 
shorter duration, at comparable latencies, within the left 
LOTC. Given that the current study was not optimized for 
a fusion analysis, future studies are required to generate 
optimized data, especially by combining EEG and fMRI 
data from the same participants.

Finally, the task in this study was designed to take 
away the focus of specific action features, by withholding 
the probe for the matching task until after the second 
stimulus has been perceived. Hypothetically, if partici-
pants were informed about the focus of a trial (i.e., which 
feature to use for matching two actions) prior to present-
ing the actions, the sensitivity of different brain regions 
would likely have changed. In particular, we would expect 
the processing of action information to be more empha-
sized within the fronto-parietal cortex, where it has been 
shown that explicit processing of actions, in contrast to 
implicit processing, increases decoding accuracy, espe-
cially for concrete, but not abstract, levels of actions—
whereas LOTC showed decoding irrespectively of task 
and action level (Wurm et al., 2016).

5.  CONCLUSION

Using EEG-based RSA during action recognition, we 
characterized temporal dynamics of neural representa-
tions underlying the extraction of semantic action infor-
mation. Our results show that different action features are 
represented in a temporal order—from visual information 
to body and scene information to semantic information, 
and likely involve feedback loops between these stages. 
The results of our fMRI-EEG fusion analysis further sug-
gest that LOTC plays a central role representing action 
features at different hierarchical levels, as well as their 
integration toward semantic representations. As such, 
our results are in line with recent theories suggesting that 
action recognition entails the integration of concrete con-
textual properties in occipital and temporal brain regions. 
These findings support ideas suggesting that the lateral 
visual pathway integrates information from a variety of 
sources, such as movement kinematics, objects, and 
scenes, to form an integrated representation of observed 
actions (c.f., Jung et al., 2025; Lingnau & Downing, 2024; 
McMahon & Isik, 2024; Urgen & Orban, 2021). It will be 
an important goal for future studies to further character-
ize both the spatiotemporal dynamics, the exact features 
that are required to recognize actions, and the causal 
contributions of each of those features to the process of 
action recognition.
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