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&Jstract. Extracorporeal photopheresis (ECP) is a therapeutic procedure that is increasingly recognized for its efficacy
in treating immune-mediated diseases, including transplant rejection. Its main mechanism is ex vivo apoptosis induction in
leukocytes from patients by incubation with 8-methoxypsoralen and irradiation with ultraviolet A light. The process involves
DNA cross-linking, which leads to a cascade of events within the cell and ultimately to apoptosis induction. Although ECP
has been used for almost 40 y, there remain many questions about its immunological mechanisms and therapeutic poten-
tial. Here, we review current knowledge about mechanisms of apoptosis induction in subsets of peripheral blood mono-
nuclear cells and interactions of apoptotic leukocytes with immune cells. We also highlight the challenges of reproducibly
inducing cell death in a clinical manufacturing procedure and propose innovative ways to improve and quality-control ECP

photopheresates.

(Transplantation Direct 2025;11: e1816; doi: 10.1097/TXD.0000000000001816.)
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The relationship between apoptotic cell death and immu-
nosuppression is already well recognized, but the diverse
effects of apoptotic cells in different cell types are still being
investigated. A key step in the therapeutic mechanism of
extracorporeal photopheresis (ECP) is the recognition and
phagocytosis of apoptotic leukocytes by dendritic cells (DCs)
and macrophages, driving them to a tolerogenic state.!3 In
turn, these regulatory myeloid antigen-presenting cells pro-
mote the development of antigen-specific regulatory T-cell
responses.*S ECP-induced apoptotic cells also likely influ-
ence other innate immune cells, including natural killer (NK)
cells and y8 T cells, to change cytokine expression profiles¢
and induce regenerative phenotypes.”® Because control of
innate immunity, immune regulation, and tissue repair are
tightly linked processes, we hypothesize that ECP may have
beneficial clinical effects beyond controlling tissue inflam-
mation.!0-12 In particular, we hypothesize that apoptotic cells
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from photopheresates condition their local environment by
releasing regenerative factors during the early stages of cell
death that stimulate tissue regeneration and repair.!2 Although
not currently approved for this indication, these proresolving
effects of ECP may be useful in treating ischemia/reperfusion
injury (IRI) or alloimmune tissue damage after solid organ
transplantation.!3

A first wave of inflammation after organ transplantation is
triggered by danger associated molecular patterns (DAMPs)
induced by IRL.'* DAMPs activate cells of the innate immune
system and T cells,!s especially interleukin (IL)-17-producing
vd T cells,'é leading to tissue damage through neutrophil
recruitment, inducing parenchymal cell necrosis and second-
ary release of DAMPs.17 We hypothesize that release of anti-
inflammatory factors from apoptotic cells could reduce such
tissue damage by decreasing activation of y& T cells in early
phases after transplantation. However, to our knowledge,
nothing has yet been published regarding the ECP-induced
effects on y8 T cells.

MECHANISM OF APOPTOSIS INDUCTION

During ECP therapy, apoptosis is induced in leucocytes col-
lected by apheresis through ex vivo exposure to ultraviolet
A (UVA) irradiation (A = 315-400nm) in the presence of
8-methoxypsoralen (8-MOP; methoxysoralen; UVADEX).
The drug is a synthetic photoreactive substance belonging
to the psoralen group of compounds. Psoralens are natu-
ral, plant-derived compounds that penetrate phospholipid
cellular membranes to intercalate between the pyrimidine
bases of DNA. In the absence of UV light, they remain
photochemically inert and are removed from cells within
24 h, without affecting most cell types, even at relatively
high concentrations.!8:1°
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Activation of 8-MOP is triggered by UVA light, leading to
photochemical reactions that result in the formation of DNA
adducts. These adducts inhibit replication by interstrand cross-
linking of the DNA.1820 Formation of interstrand cross-linkings
leads to double-strand DNA breaks (DSBs) as a natural DNA
repair mechanism of the cell.2! At high densities, these are lethal
to cells,202223 a5 they are far-reaching genomic lesions leading to
genomic instability.2* Even in small numbers, DSBs constitute
a serious threat to cell survival by activation of DNA damage
signaling,> and their defective repair may lead to major cellular
changes, resulting in cell death.* DSBs are thought to be the
main stimulus for apoptosis induction in psoralen-triggered cell
death?s because unrepaired DSBs initiate a signaling cascade
that eventually leads to apoptosis. The process begins with cell
cycle arrest and restraining the ability of a cell to repair DNA
damage, which leads to the release of proapoptotic molecules
and mitochondrial membrane permeabilization. The Bax pro-
tein is a central effector in this process, causing mitochondrial
damage and triggering the intrinsic pathway of apoptosis.?”

KINETICS OF APOPTOSIS AFTER ECP

ECP treatment affects leucocyte subsets differently; how-
ever, differences in apoptosis induction can also be observed
between cells of the same cell type.28 One of the reasons might
be differences in the sensitivity of cells to 8-MOP/UVA treat-
ment.® After treatment with 8-MOP and exposure to UVA
light, a small fraction of cells become apoptotic very rapidly,
meaning that between the end of leukapheresis collection and
reinfusion, apoptosis can be detected through the presence of
phosphatidylserine at the outer surface of cell membranes.2-32
This early wave of apoptosis is thought to be connected with
mitochondrial membrane rupture. Later, a second wave of
ECP-treated cells goes into cell cycle arrest33-35 and, from 20h
onward, most cells undergo cell death. At this stage, an increase
in the death receptor CD95 (Fas) can be detected.3¢37 Induction
of the CD95 pathway initiates apoptosis by activation of the
caspases, which belong to the family of apoptotic proteases.
Elevated caspase activity has been observed 24-48h after ECP
treatment.” Although many studies have looked at apoptosis
induction by ECP, it remains unclear how exactly the different
mechanisms synergize to initiate apoptosis over time.

CELL TYPE-SPECIFIC SENSITIVITY TO
APOPTOSIS INDUCTION

Lymphocytes are more sensitive to 8-MOP/UVA-induced
apoptosis than monocytes. T cells appear to be most suscep-
tible to apoptosis, particularly when activated.3® Apoptosis of
T cells is important for the immunomodulatory action of ECP
owing to their release of anti-inflammatory factors; notably,
apoptotic T cells suppress activated macrophages through
secretion of transforming growth factor-p and other soluble
mediators.?

Monocytes prove to be more resistant to 8-MOP/UVA-
induced apoptosis than T cells immediately after ECP treat-
ment; however, they also have a high death rate after longer
in vitro culture. Interestingly, preapoptotic monocytes retain
some of their functions, for instance, ECP stimulates their
migratory function, and they remain capable of endocytosis.*0
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It has been suggested that a proportion of ECP-treated mono-
cytes can differentiate into monocyte-derived DCs.4! Some
sources attribute this effect to mechanical forces, flow in an
ECP device, adherence to plastic surfaces, and/or involvement
of platelets.#-5 Such ECP-induced, monocyte-derived DCs
migrate after reperfusion to the lungs, then subsequently to
the liver and secondary lymphoid organs,* where they inter-
act with myeloid antigen-presenting cells. In the spleen, it is
hypothesized that apoptotic monocyte-derived DCs from pho-
topheresates could influence immature DCs. This interaction
leads to suppression of their maturation into stimulatory DCs.
Through uptake of apoptotic cells, DCs convert to a tolero-
genic phenotype, releasing transforming growth factor-p and
inducing FoxP3+ regulatory T cells.114748 Although there is lit-
tle evidence described in the literature about trafficking ECP-
treated leukocytes in the body, new findings suggest the ability
of such cells to migrate selectively to inflammation sites.>

ECP seems to affect NK cells. In vitro studies have shown
that NK cells are one of the first leucocyte subsets to undergo
apoptosis after ECP.4%50 Moreover, 8-MOP/UVA treatment
impairs their cytotoxic function. One of the hallmarks of
NK-cell activation is degranulation—the secretion of lytic
granule components onto the target cell surface, which can
be detected with the CD107a marker. A significant decrease
in this marker was observed in irradiated NK cells after 24 h
of incubation in cell culture.”s! The level of its reduction has
been correlated to the hematocrit (HCT) level in the patient
sample,’! which is strongly correlated to successful apoptosis
induction. Moreover, some studies suggest that ECP supports
the expansion and development of the regulatory subset of
NK cells in response to elevated levels of interleukin-15 result-
ing from apoptotic cell death of alloreactive T cells.”5

Research on the sensitivity of B cells to ECP-induced apop-
tosis is inconsistent and requires further study. However, there
is evidence of apoptosis induction in this type of cell.4%:50

APOPTOSIS AND IMMUNE CELL INTERPLAY

Dynamic clearance of reinfused apoptotic cells by phago-
cytes is one of the first steps of ECP treatment. Apoptotic cells
possess immunomodulatory potential on many different lev-
els, which are supported by different mechanisms; however,
if they are not cleared in the right time frame, they become
secondarily necrotic, which leads to the release of proinflam-
matory molecules.’3

Because numerous processes happen in a cell when apopto-
sis is induced, they can affect many different cell types and the
environment. The most widely described are signals directed
to macrophages, which include “find-me” and “eat-me”
signals. The “find-me” signals in the form of released solu-
ble factors that act as attractants for phagocytes to migrate
toward apoptotic cells, and subsequently prepare them for
engulfing cells by modulating their cytoskeleton, enhancing
the expression of engulfment receptors, and influencing the
phagocytic machinery.’* The “eat-me” signals are exposed on
the surface of a dying cell and are recognized by phagocytic
receptors.sS Efferocytosis of apoptotic cells by macrophages
leads to release of interleukin-10,% one of the most important
factors in resolving inflammation, as well as an inhibitor of
other inflammatory cell recruitment.!%55 By this mechanism,
tolerogenic macrophages are induced in the ECP process.’¢57
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The apoptotic cell death pathway is highly regulated and is
able to induce immunosuppression not only by direct interac-
tions with phagocytes but also by regulated release of metab-
olites. Over 100 metabolites can be released by a cell in a
regulated manner in the early stages of apoptosis.¢ Released
metabolites differ between cell types, but a few key metabo-
lites are common to different cell types and trigger apopto-
sis.’2 It is hypothesized that released metabolites contribute to
a regenerative tissue environment.5.12:55

Another immunomodulatory effect of ECP is the initia-
tion of monocyte-to-dendritic cell differentiation,’®5° and
DC maturation. These aspects are thought to be an impor-
tant step in the therapy. It is necessary to note that here we
describe 2 different mechanisms. One refers to monocytes in
the ECP product, with previously induced apoptosis, and was
described in more detail in the Cell Type-specific Sensitivity
to Apoptosis Induction section. The other mechanism con-
cerns immature DCs residing in secondary lymphoid organs
of the patient. Induction of DC differentiation by ECP1.2.58,59
in apoptotic monocytes provides immunosuppressive prop-
erties that reduce systemic inflammation.’¢ After reperfu-
sion, immature DCs are primed by apoptotic DCs. In this
context, priming involves the capture of apoptotic cells with
self-antigen, which induces maturation of DCs into a tolero-
genic phenotype, that in turn induces regulatory T cells in
ViV0.1’2’60’61

DETERMINANTS OF APOPTOSIS INDUCTION

Ex vivo 8-MOP/UVA-induced apoptosis is influenced by
many factors (Figure 1). The rate and extent of 8-MOP-
induced apoptosis are dependent upon drug doses and incu-
bation time. The dose of 8-MOP must be adjusted to the
volume and cell density of leucapheresates to achieve ~80%
T-cell apoptosis by 48h posttreatment. Nonetheless, even
if the drug is in excess, free 8-MOP is photo-inactivated,
so there are no adverse reactions in patients.6> This natu-
ral inactivation of 8-MOP ensures that there is no risk of
inducing apoptosis in cells other than those that have been
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treated.s? Incubation times differ between ECP providers,
mostly for organizational reasons; however, longer (up to
30 min) incubation results in higher rates of apoptotic cells.*
This effect is due to the diffusion of 8-MOP into the cells,
which takes minutes, although reaching equilibrium might
take up to 30min.®3 Other factors include a dose of irra-
diation and the surface of a set material, which might be
more or less susceptible to adhesion of 8-MOP.¢3 However,
these parameters of ECP are currently well established, giv-
ing medical centers the choice not to jeopardize treatment
success. A more complex problem with regard to apoptosis
induction is the choice of buffer in which the cells are sus-
pended after apheresis and incubated with the drug, where
plasma and buffered saline solutions are commonly used.
Plasma reduces cellular uptake of 8-MOP owing to plasma
proteins binding to the drug; however, nonspecific proteins
also reduce 8-MOP adhering to plastic surfaces. Incubating
leucocytes with the drug in saline solution results in higher
rates of apoptosis induction.é3

It is important to remember that leucocytes collected during
the ECP procedure are not in the form of a pure cell suspen-
sion of immune cells; there is always a contribution of eryth-
rocytes (red blood cells). Therefore, the efficiency of apoptosis
induction is highly dependent on the HCT level. If HCT is
>4%, the ability to induce apoptosis is compromised because
of UVA shading by red blood cells,$3 so irradiation times must
be adjusted to achieve optimal apoptosis rates.

Evaluating the apoptosis rates of photopheresates is
essential for the assessment and potential optimization of
the setup. Apoptosis staining and measurement by flow
cytometry present a time-efficient, low-cost method with sta-
ble results.®* This method is based on staining with Annexin
V—protein binding to phosphatidylserine (PS)—and pro-
pidium iodide or 7-AAD—dyes binding to DNA of cells
with a ruptured membrane. Readout of the staining with
flow cytometry allows us to distinguish alive, apoptotic, and
necrotic cells. For a more insightful analysis of cell types,
lineage markers, such as CD45, CD3, and CD14 antibodies,
should be used.

Apoptosis

~80% at 48h

Working
Temperature buffer
7‘
A Plasma
Saline solution
UVA device
Energy density
applied
Cell density Materials Irradiation

FIGURE 1. Technical aspects of ECP therapy influencing apoptosis induction. ECP, extracorporeal photopheresis.
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DEVELOPMENT PROSPECTS

ECP is widely used, safe, and brings undeniable benefits to
selected subsets of transplant recipients,3265 but there are still
many questions about its immunological mechanisms of act
ion.615.32.56.65-67 Advances in genomics, proteomics, and metab-
olomics of apoptotic cell secretomes could uncover specific
pathways that are activated during ECP, allowing the design
of therapeutic strategies to maximize its clinical impact. We
believe there is great potential in individualizing ECP treat-
ment according to patient factors. We urgently need new bio-
markers to assess the pharmacodynamics of apoptotic cells
after reinfusion in patients, because this would allow us to
monitor whether induced responses are functioning optimally.

There is growing interest in combining ECP with other
immunotherapies or treatments to enhance its therapeutic
effects. Research into how ECP-induced apoptosis inter-
acts with other immune-modulating therapies could open
new avenues for combination treatments in disorders driven
by overactivation of the immune system. In particular, one
promising area is early post-organ transplantation in patients
who receive marginal organs or develop severe IRI. Here, we
hypothesize that ECP could help prevent immune responses
against grafts with prior injury or reduced regenerative
capacity.
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