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1. Einleitung
In den vergangenen Jahrzehnten machte die Entwicklung auf dem Gebiet der
Mikro- und Nanostrukturen enorme Fortschritte. Transistoren und andere Bau-
elemente aus dem Baukasten der Mikroelektronik ermöglichten moderne Endge-
räte wie Computer und Smartphones. Während Computer im Anfangsstadium
unter anderem aufgrund ihrer Größe nur für Forschung und Industrie zugäng-
lich waren, so ist der Computer heute auch im Privathaushalt nicht mehr weg-
zudenken. Dies wurde dadurch ermöglicht, dass zugrundeliegende Elektronik in
den vergangenen Jahren immer kleiner, kompakter und leistungsfähiger wurde,
wodurch Massenproduktion möglich war und die Anschaffungskosten erheblich
gesenkt werden konnten.
Mit zunehmender Digitalisierung gehen aber auch einige Probleme einher. Durch
die zunehmende Datenmenge, die die Systeme verarbeiten müssen, werden schnel-
lere und leistungsfähigere Bauelemente der Mikroelektronik notwendig. Dadurch
steigt wiederum auch der Energieverbrauch. Da die Energiekosten nicht uner-
heblich sind, sollte man gerade auch in Zeiten der Energiewende versuchen, den
Energieverbrauch gering zu halten. Aus diesem Grund sollen neuartige Bauele-
mente nicht nur schneller und leistungsfähiger, sondern auch energieeffizienter
sein.
Aktuell zeigt sich zunehmend, dass moderne Mikrochips immer häufiger an ihre
physikalische Leistungsgrenze stoßen, während die Anforderungen an diese im-
mer höher werden. Von daher ist es notwendig, nach Lösungen zu suchen, die die
steigenden Anforderungen erfüllen können.
Eine vielversprechende Lösung könnte der vermehrte Einsatz von Spintronik sein.
Während bei herkömmlicher Elektronik zur Informationsübertragung lediglich
der Freiheitsgrad der elektrischen Ladung genutzt wird, wird in der Spintronik
auch der Elektronenspin als zusätzlicher Freiheitsgrad genutzt. Gerade für Da-
tenübertragung und Datenspeicherung bringt dies erhebliche Vorteile mit sich.
Beispielsweise verspricht man sich neuartige Speicherchips, die im Betrieb we-
sentlich weniger Strom benötigen, aber gleichzeitig vielfach schnellere Schreib-
und Lesegeschwindigkeiten erlauben. Während man in Form von nichtflüchti-
gen Speichern, dem Magnetoresistive Random Access Memory (MRAM), bereits
Chips mit spintronischer Technik nutzt, so sind andere Bauelemente noch Ge-
genstand aktueller Grundlagenforschung [1]. Die wesentliche Voraussetzung für
viele spintronische Bauelemente ist die Erzeugung und Erhaltung von robusten
und kontrollierbaren Spinströmen. Hierzu wird allerdings ein geeignetes Mate-
rial benötigt, welches diese Anforderungen erfüllen kann. Aufgrund seiner sehr
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großen Spindiffusionslängen und hervorragenden elektronischen Eigenschaften,
wäre Graphen grundsätzlich ein ideales Basismaterial zur Leitung von robusten
Spinströmen [2]. Um aber Spinströme direkt im Graphen erzeugen zu können,
ist eine große Spin-Bahn-Kopplung (engl.: „Spin-Orbit Coupling“(SOC)) im Sys-
tem notwendig, die bei Graphen, aufgrund der relativ niedrigen Atommasse von
Kohlenstoff, aber nur sehr klein ist [3]. Daher begaben sich in den letzten Jahren
viele Forscher auf die Suche nach einer Lösung für dieses Problem.
Bisherige Arbeiten zeigten, dass die Anlagerung von schweren Atomen auf Gra-
phen eine Steigerung der SOC des Graphens mit sich bringt [4]. Die einzelnen
Atome wirken am Graphen jedoch wie Verunreinigungen und haben daher logi-
scherweise einen negativen Einfluss auf die Ladungsträgerbeweglichkeit und damit
auf die Qualität des Graphens.
Man weiß seit einiger Zeit auch, dass die Anlagerung von Wasserstoff auf Gra-
phen die SOC im Graphen erhöht, aber auch hier gibt es je nach Methode noch
einige Hürden zu überwinden [5, 6].
Eine weitere Methode zur Erhöhung der SOC in Graphen ist die Bildung einer He-
terostruktur von Graphen mit Übergangsmetall-Dichalkogeniden (TMDCs). Bei
diesen Kristallen handelt es sich um eine hexagonale Kristallstruktur mit schwe-
ren Übergangsmetallatomen, die bei Bildung einer Heterostruktur eine starke
SOC in das Graphen induziert, aber gleichzeitig hohe Ladungsträgerbeweglich-
keiten gewährleistet. Dies wurde bereits theoretisch in mehreren Arbeiten gezeigt
und später auch in einigen Arbeiten nachgewiesen [7–10]. Auch Spinströme ließen
sich direkt in Graphen erzeugen [11, 12].
Es ist allerdings auch bekannt, dass sich die hohe SOC wiederum negativ auf die
Spindiffusionslängen in Graphen auswirkt [13]. Deshalb wäre es praktisch, wenn
man diese induzierte SOC in Graphen ein- und ausschalten bzw. einstellen könn-
te.
Für zweilagiges Graphen unter Verwendung zweier Gateelektroden wurde dies
bereits in [14–19] gezeigt.
Im Rahmen dieser Arbeit wurden dazu weitere Methoden zur Kontrolle der
proximity-induzierten SOC untersucht. So herrscht schon seit einiger Zeit eine
gewisse Unklarheit darüber, ob die Schichtdicke des TMDCs in einer Heterostruk-
tur mit Monolagen-Graphen (ML-G) auf TDMC einen Einfluss auf die Stärke
der proximity-induzierten SOC hat. Um diesen Sachverhalt zu klären, wurden im
Rahmen dieser Arbeit entsprechende Untersuchungen durchgeführt. Sollte sich
nämlich die Schichtdicke des TDMCs auf die proximity-induzierte SOC auswir-
ken, so wäre es grundsätzlich möglich, die proximity-induzierte SOC durch die
Wahl eines TDMCs mit bestimmter Schichtdicke einzustellen.
Es wurde außerdem in mehreren Arbeiten [20–23] bereits theoretisch gezeigt, dass
der Drehwinkel zwischen einer Graphen und einer TDMC-Schicht einen erheb-
lichen Einfluss auf die proximity-induzierte SOC hat, wodurch eine Einstellung
der SOC durch Variation des Drehwinkels möglich sein sollte. Auch dazu wurden
im Rahmen dieser Arbeit entsprechende Untersuchungen durchgeführt.
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Abschließend wurde noch in Zusammenarbeit mit einer Gruppe um P. Makk
(BME Budapest) untersucht, inwiefern sich mechanischer Druck auf die proximity-
induzierte SOC von Graphen auf WSe2 auswirkt. Hierbei erwartet man, dass sich
die proximity-induzierte SOC durch Variation des mechanischen Drucks verän-
dern lässt. Dies wurde zwar bereits in [24] anhand einer Probe gezeigt, allerdings
wurden diese Messergebnisse bisher von keiner anderen Forschungsgruppe bestä-
tigt. Dies sollte demnach im Rahmen dieser Arbeit geschehen.





2. Wichtige 2D-Materialien und
ihre Eigenschaften

2.1. Graphen
Elementarer Kohlenstoff kann als Verbund vieler Atome unterschiedliche kris-
talline Erscheinungsformen annehmen [25]. Obwohl sich die jeweiligen Allotrope
lediglich durch die kristalline Anordnung ihrer Kohlenstoffatome unterscheiden,
weisen ihre Materialeigenschaften dennoch gravierende Unterschiede auf. Die in
der Natur vorkommenden, dreidimensionalen (3D) Vertreter, Diamant und Gra-
phit, sind bereits seit langer Zeit bekannt. Die eindimensionale (1D) Nanoröh-
re und das nulldimensionale (0D) Buckminster-Fulleren konnten bereits in den
1990er Jahren synthetisiert und erforscht werden [25–27]. Das zweidimensionale
(2D) Graphen sollte nach ursprünglichen Berechnungen von Peierls et al. thermo-
dynamisch instabil sein [25, 28–32]. Daher ist es nicht ungewöhnlich, dass erste
Versuche zur Synthese von Graphen im Wesentlichen scheiterten [25, 33]. Etwas
später, im Jahr 2004, konnte das zweidimensionale Graphen trotzdem von einer
Gruppe um K. Novoselov und A. Geim erstmals in stabiler Form hergestellt und
elektronische Messungen daran durchgeführt werden [25, 34, 35]. Im Fokus dieser
Arbeit steht die Untersuchung von zweidimensionalem Graphen in Heterostruktu-
ren mit Übergangsmetall-Dichalkogeniden. Für die Bildung von Heterostrukturen
spielt der kristalline Aufbau und die davon abhängige Bandstruktur der einzelnen
Komponenten eine große Rolle. Im folgenden Abschnitt wird daher zunächst der
kristalline Aufbau von Graphen genauer betrachtet.

2.1.1. Kristallstruktur von Monolagen-Graphen
Monolagen-Graphen (ML-G) stellt eine zweidimensionale, in z-Richtung atomar
dünne Lage aus Kohlenstoffatomen, die in der x-y-Ebene ein hexagonales Kristall-
gitter bilden, dar [25]. Dieses hexagonale Gitter besteht dabei wiederum aus zwei
trigonalen Untergittern, welche jeweils durch die Basisatome A oder B gebildet
werden [36]. Damit entspricht ML-G einer einzelnen Basalebene eines Graphit-
kristalls [36]. Diese Graphitkristalle wiederum bestehen aus vielen aufeinander-
liegenden Basalebenen [36]. Die Stapelfolge von Graphit folgt dabei gewöhnlich
einem bestimmtem Muster, dem sogenannten bernal stacking, was einer ABA-
Stapelfolge entspricht [36]. Das bedeutet nun konkret, dass die einzelnen Lagen
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2. Wichtige 2D-Materialien und ihre Eigenschaften 12

versetzt aufeinanderliegen, sodass sich immer jeweils ein Teil der Kohlenstoffato-
me des einen Untergitters der unteren Lage unterhalb des Zentrums der Sechsecke
der oberen Lagen befindet (s. Abb. 2.1 a)) [36], während sich der andere Teil der
Kohlenstoffatome des anderen Untergitters der unteren Lage direkt unterhalb
von Atomen der oberen Lage befindet [36]. Die Kohlenstoffatome innerhalb eines
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Abbildung 2.1.: a) Typische ABA-Stapelfolge von Graphit. b) Atomorbitale
der Kohlenstoffatome. In horizontaler Richtung bildet der Überlapp der sp2-
Hybridorbitale (blau) starke kovalente σ-Bindungen. Die pz-Orbitale (grau) da-
gegen bilden π-Bindungen aus. c) Hexagonale Kristallstruktur von ML-G, beste-
hend aus zwei trigonalen Untergittern. Diese beiden Untergitter setzen sich aus
den jeweiligen Basisatomen A (schwarz) und B (grau) zusammen und können mit
Gittervektoren a⃗1 und a⃗2 konstruiert werden. Rot umrahmt ist die primitive Ein-
heitszelle. d) Erste Brillouin-Zone im k-Raum mit den Punkten hoher Symmetrie
(Γ, K, K ′, M) und den beiden reziproken Gittervektoren b⃗1 und b⃗2. Entnommen
aus [36, 37] und grafisch nachbearbeitet.

Kristalls sind nicht frei beweglich, sondern fest gebunden [36]. Die Ursache dafür
ist, dass zwischen den Atomen in der x-y-Ebene sehr starke kovalente Kräfte wir-
ken [38]. In z-Richtung wirken dagegen relativ schwache Van-der-Waals-Kräfte
[36]. Die Ursache dieses Kräftesystems erkennt man bei genauerer Betrachtung
der Atomorbitale der einzelnen Kohlenstoffatome [36]. Das Element Kohlenstoff
besitzt bekanntlich sechs Elektronen. Zwei davon liegen im 1s2-Orbital und be-
teiligen sich nicht an chemischen Bindungen, wodurch dieses Orbital grundsätz-
lich chemisch inert ist [39]. Die anderen vier Elektronen liegen in den 2s2-,2px-
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und 2py-Orbitalen [37, 39]. Diese Orbitale bilden durch Hybridisierung drei so-
genannte sp2-Hybridorbitale in horizontaler Richtung und in vertikaler Richtung
das pz-Orbital [36, 37]. In der x-y-Ebene muss der Winkel zwischen den sp2-
Hybridorbitalen als Folge des Kräftegleichgewichts nun 120◦ betragen (s. Abb.
2.1 b)). Daraus resultiert unmittelbar die hexagonale Kristallstruktur von ML-
G [37]. Innerhalb der x-y-Ebene einer Kohlenstofflage entstehen durch Überlapp
der sp2-Hybridorbitale sogenannte σ-Bindungen, welche zu starken kovalenten
Bindungen führen [36, 37]. In z-Richtung dagegen bilden sich zwischen den pz-
Orbitalen π-Bindungen aus, wodurch in vertikaler Richtung nur relativ schwache
Van-der-Waals-Kräfte wirken können [36]. Dieses System von schwach gebun-
denen aufeinanderliegenden Schichten ermöglicht nun auch, durch mikromecha-
nische Exfoliation, die Herstellung von dünnen Schichten [34]. Diese Schichten
können aus vielen Lagen oder auch nur aus wenigen Lagen von ML-G bestehen
[34]. Für diese Arbeit wurden sowohl einzelne Lagen, also ML-G, als auch zweila-
gige Schichten, also Bilagen-Graphen (BL-G), hergestellt und untersucht [34, 36].
In diesem delokalisierten π-Bindungssystem können sich Elektronen frei bewegen
[36, 40], wodurch man Graphen aufgrund der zweidimensionalen Form nun als
ideales, zweidimensionales Elektronengas (2DEG) bezeichnen kann [41].
ML-G besitzt ein hexagonales Kristallgitter [36]. Dieses hexagonale Kristallgitter
setzt sich, wie bereits erwähnt, aus zwei trigonalen Untergittern zusammen, die
jeweils aus den Basisatomen A oder B gebildet werden [36]. Der interatomare
Abstand zwischen diesen zwei Basisatomen ist gegeben durch aCC = 1,42 Å [36].
Die Gitterkonstante a0 dagegen, also der Abstand zweier nächster Nachbaratome
innerhalb eines Untergitters, kann aus dem Betrag eines Gittervektors berechnet
werden und beträgt a0 =

√
3aCC = 2,46 Å [36]. Mit Hilfe der beiden Gittervek-

toren a⃗1 und a⃗2 (s. Abb. 2.1 c)) kann man die beiden Untergitter und damit das
hexagonale Kristallgitter mathematisch beschreiben [36]. Für a⃗1 und a⃗2 gilt [36]:

a⃗1 = aCC

2

(
3√
3

)
, a⃗2 = aCC

2

(
3

−
√

3

)
. (2.1)

Durch Konstruktion der Wigner-Seitz-Zelle erhält man die erste Brillouin-Zone
des k-Raums (s. Abb. 2.1 d)) [36]. Diese ist wiederum hexagonal und kann durch
die reziproken Gittervektoren b⃗1 und b⃗2, die gegeben sind durch [36]:

b⃗1 = 2π
3aCC

(
1√
3

)
, b⃗2 = 2π

3aCC

(
1

−
√

3

)
, (2.2)

beschrieben werden. Es gibt dort außerdem noch die Punkte hoher Symmetrie.
Dazu gehören die Punkte Γ, K, K ′ und M [36]. Von diesen Punkten sind vor
allem die Punkte K und K ′ an den Ecken der ersten Brillouin-Zone für ML-G von
besonderer Bedeutung. Darauf wird in Abschnitt 2.1.2 noch genauer eingegangen.
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Ausgehend vom Γ-Punkt in Abb. 2.1 d) können den Punkten K und K ′ die
folgenden Vektoren zugeordnet werden [36]:

K⃗ =
 2π

3aCC

2π
3√

aCC

 , K⃗ ′ =
 2π

3aCC

− 2π
3√

aCC

 . (2.3)

Damit kann nun das hexagonale Kristallgitter von ML-G beschrieben werden.
Um auch etwas über die elektronischen Eigenschaften von ML-G zu erfahren, ist
ein Blick auf die Bandstruktur von ML-G erforderlich. Der folgende Abschnitt
beschäftigt sich daher nun mit der Bandstruktur von ML-G.

2.1.2. Bandstruktur von Monolagen-Graphen
Durch Anwendung des Tight-Binding-Modells konnte von P. R. Wallace im Jahr
1947 erstmals die Bandstruktur von ML-G berechnet werden [36, 42]. Da man
elektronische Zustände nahe der Fermi-Energie gut mit einem Modell beschreiben
kann, das lediglich die pz-Orbitale berücksichtigt, lässt sich der Tight-Binding-
Ansatz vereinfachen [43]. Zur Berechnung der Bandstruktur wurde beim Tight-
Binding-Ansatz außerdem lediglich die Wechselwirkung der Kohlenstoffatome mit
ihren nächsten Nachbarn betrachtet, nicht aber die Wechselwirkung mit weiter
entfernten Atomen, wodurch sich das Problem nochmals erheblich vereinfacht
[36, 42]. Unter Berücksichtigung der zweiatomigen Basis von ML-G folgt eine
Entwicklung nach Bloch-Wellen [36, 42, 44]. Mit der nearest neighbor hopping
energy t ergibt sich nun mit dem Tight-Binding-Modell der allgemeine Hamilto-
nian für ML-G zu [36, 42, 43, 45]:

HML−G =
(

0 tS(k⃗)
tS∗(k⃗) 0

)
. (2.4)

Dabei ist S(k⃗) eine Summe über die drei nächsten Nachbaratome δ⃗i [45]. Mit dem
interatomaren Abstand aCC von ML-G ist mit dem zweikomponentigen Wellen-
vektor k⃗ = (kx, ky) der Wellenfunktion die Summenfunktion S(k⃗) gegeben durch
[43, 45]:

S(k⃗) =
∑

i

e(i⃗k·δ⃗i) = 2 e(ikxaCC/2) cos
(
kyaCC

√
3

2

)
+ e(−ikxaCC) . (2.5)

Damit kann man nun die Energiedispersion E(k⃗) bestimmen. Man erhält [36, 42,
43, 45]:

E(k⃗) = ±t|S(k⃗)| = ±t

√√√√3 + 2 cos(
√

3kya0) + 4 cos
(√

3
2 kya0

)
cos

(3
2kxa0

)
.

(2.6)
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In Gleichung (2.6) ergeben sich hinsichtlich der beiden möglichen Vorzeichen zwei
Fälle. Zur Berechnung des oberen π-Bands und damit des Leitungsbands gilt das
positive Vorzeichen [36]. Zur Berechnung des unteren π-Bands und damit des Va-
lenzbandes gilt hingegen das negative Vorzeichen [36]. In Abb. 2.2 kann man nun
den dreidimensionalen Verlauf der Energiedispersion aus (2.6) und damit die drei-
dimensionale Bandstruktur sehen [36]. Bei genauer Betrachtung sieht man, dass

Abbildung 2.2.: Energiedispersion aus (2.6) bzw. Bandstruktur von ML-G in drei-
dimensionaler Form mit den K- und K ′-Punkten. An diesen Punkten nehmen
Valenz- und Leitungsband jeweils die Form eines Kegels an [36].

sich Valenz- und Leitungsband an den nicht-äquivalenten K- und K ′-Punkten
berühren [36]. Deshalb wird ML-G gerne als Halbleiter ohne Bandlücke bezeich-
net. Am absoluten Temperatur-Nullpunkt (T = 0 K) liegt die Fermi-Energie EF

bei undotiertem ML-G exakt an den Berührpunkten der Doppelkegel und damit
genau zwischen dem Valenz- und dem Leitungsband [36, 42].

2.1.3. Relativistische Betrachtung der Bandstruktur
Durch Verwendung der Schrödinger-Gleichung kann man im Allgemeinen die
elektronischen Eigenschaften von Halbleitern beschreiben. Bei diesem Verfah-
ren werden typischerweise massive Ladungsträger mit einer effektiven Masse m∗

betrachtet, die sich im periodischen Potential eines Kristallgitters bewegen. Be-
trachtet man in Abb. 2.2 den Verlauf der Bänder nahe den Berührpunkten, also
an den K- und K ′-Punkten (auch K- ,K ′-Valleys genannt) genauer, so fällt für
E < 1 eV besonders die kegelförmige Form der Bandstruktur auf, welche bei
zweidimensionaler Betrachtung eine lineare Abhängigkeit von |q⃗| = |⃗k− K⃗| zeigt
[36, 46]. Der lineare bzw. kegelförmige Verlauf der Bandstruktur (vgl. 2.2 rechts)
nahe den K- und K ′-Punkten stellt dabei einen Sonderfall für ML-G dar [36, 46].
Durch diese besondere Bandstruktur verhalten sich die Ladungsträger für kleine
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Energien wie relativistische Teilchen ohne Ruhemasse [36, 46]. Deshalb wird die
Anwendung einer Dirac-Gleichung notwendig, um dort Aussagen über elektroni-
sche Eigenschaften des ML-Gs treffen zu können [36, 46]. Die K- und K ′-Punkte
werden deshalb auch als Dirac-Punkte bezeichnet [36, 46]. Das Ergebnis dieser
Vorgehensweise ist, dass man die Ladungsträger als masselose Quasiteilchen mit
einer konstanten Fermi-Geschwindigkeit vF ≈ 106 m/s betrachten kann, weshalb
die Ladungsträger auch als masselose Dirac-Fermionen bezeichnet werden [36,
46]. Für kleine Energien (E < 1 eV) liefert die Dirac-Gleichung den folgenden
Hamiltonian [43, 46, 47]:

H = ℏvF

(
0 κqx − iqy

κqx + iqy 0

)
= ℏvF (κqxσx − qyσy) . (2.7)

Die beiden Komponenten σx und σy sind die bekannten Pauli-Matrizen und ℏ
ist das reduzierte Plancksche Wirkungsquantum [46]. Der Vektor q⃗ ist hier der
Wellenvektor der Dirac-Fermionen und κ = ±1 berücksichtigt als sogenannter
Valley-Index die nicht-äquivalenten K- und K ′-Punkte [43, 46]. Daraus ergibt
sich wiederum für kleine Energien die Näherung einer linearen Energiedispersion
zu [36, 46]:

E(q⃗) = ±ℏvF |q⃗| . (2.8)

2.1.4. Kristallstruktur von Bilagen-Graphen
BL-G besteht aus zwei übereinanderliegenden Schichten aus ML-G. Dabei liegt
eine AB-Stapelfolge vor, wie sie bereits in Abschnitt 2.1.1 beschrieben wurde. Es
gibt in diesem Fall vier nicht-äquivalente Gitterpunkte bzw. Untergitter A1, B1,
A2 und B2, die entweder in der unteren Lage (A1, B1) oder in der oberen Lage
(A2, B2) zu finden sind (vgl. Abb. 2.3) [43, 45].

2.1.5. Bandstruktur von Bilagen-Graphen
Betrachtet man Abb. 2.3 a), so erkennt man, dass alle Gitterpunkte B2 genau
über den Punkten A1 liegen [50]. Dadurch ergibt sich ein dominanter hopping
parameter t⊥ zwischen den beiden Lagen [50]. Analog zum Fall für ML-G erhält
man für BL-G mit Gleichung (2.5) nun einen allgemeinen Hamiltonian folgender
Form [43, 45]:

HBL−G =


0 tS(k⃗) t⊥ 0

tS∗(k⃗) 0 0 0
t⊥ 0 0 tS∗(k⃗)
0 0 tS(k⃗) 0

 . (2.9)
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Abbildung 2.3.: a) Kristallstruktur von BL-G mit den vier nicht-äquivalenten
Gitterpunkten A1, B1, A2 und B2 (nach [48]). b) Bandstruktur von BL-G nahe
dem Dirac-Punkt. Es gibt dabei zwei Bänder (blau) oberhalb der Fermi-Energie
EF und zwei Bänder (orange) unterhalb der Fermi-Energie EF . Die Bandstruktur
auf der linken Seite zeigt den Fall ohne und die Bandstruktur auf der rechten Seite
zeigt den Fall mit angelegtem äußeren elektrischen Feld. Entnommen aus [49] und
grafisch nachbearbeitet.

Damit erhält man wiederum die folgende Dispersionsrelation für BL-G [43]:

E(k⃗) = ±t⊥
2 ±

√
t2⊥
4 + t2|S(k⃗)| . (2.10)

Dabei ist t bereits aus Abschnitt 2.1.2 bekannt. Aus der Beziehung (2.10) folgen
vier Lösungen und damit vier unterschiedliche Energiebänder [43, 48, 49]. Nahe
dem Dirac-Punkt sind diese Bänder in Abb. 2.3 b) auf der linken Seite dargestellt
[49]. Dabei gibt es je zwei Bänder unterhalb der Fermi-Energie EF (orange) und
zwei Bänder oberhalb EF (blau) [49]. Die beiden Bänder (Valenzband (orange)
und Leitungsband (blau)) nahe EF resultieren aus den pz-Zuständen der beiden
schwach gekoppelten Gitterpunkte A2 und B1 [48]. Die anderen beiden Bänder,
die weiter von EF entfernt liegen, resultieren dagegen aus Zuständen der stark
gekoppelten Gitterpunkte A1 und B2 [48]. Da diese Bänder weit von EF entfernt
sind, kann man diese Bänder vernachlässigen, wenn man sich lediglich für Zu-
stände nahe EF interessiert [48]. Es reicht daher aus, lediglich die beiden Bänder
nahe EF zu betrachten [48]. Der Hamiltonian nahe dem Dirac-Punkt ist dann
gegeben durch [48, 51]:

H = ℏvF

(
0 (κqx − iqy)2

(κqx + iqy)2 0

)
. (2.11)
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Daraus folgt abschließend nun die für BL-G typische parabolische Energiedisper-
sion nahe der Fermi-Energie EF [48, 51]:

E(q⃗) = ±ℏ|⃗q|
2

2m∗ , (2.12)

wobei m∗ die effektive Masse ist, die gegeben ist durch m∗ = t⊥/(2v2
F ) ≈ 0,054me

[50]. Dabei ist me die Ruhemasse des Elektrons.
Durch Anlegen eines elektrischen Feldes, senkrecht zur Ebene des Graphens,
kommt es zur Bildung einer Bandlücke der Größe 2∆ [15, 49, 51]. Damit erhält
der Hamiltonian aus Gleichung (2.11) die folgende Form [15, 51]:

H = ℏvF

(
∆ (κqx − iqy)2

(κqx + iqy)2 −∆

)
. (2.13)

In Abb. 2.3 b) ist auf der rechten Seite die Verbiegung der Bänder und eben diese
Bandlücke erkennbar [49].

2.2. Hexagonales Bornitrid
In früheren Arbeiten wurde Graphen häufig direkt auf ein SiO2-Substrat gelegt,
um es anschließend mit verschiedenen Verfahren zu untersuchen. Der direkte Kon-
takt von Graphen mit der SiO2-Oberfläche hat jedoch einen erheblichen Einfluss
auf die Transporteigenschaften des Graphens [52, 53]. Beispielsweise führen die
relativ hohe Oberflächenrauigkeit und optische Phononen bei SiO2-Substraten
dazu, dass die Ladungsträgerbeweglichkeit von Graphen erheblich reduziert wird
[52, 53]. Dadurch kann es schwierig bis unmöglich werden, bestimmte Effekte
in Graphen, die eine hohe Ladungsträgerbeweglichkeit voraussetzen, auf solchen
Substraten zu untersuchen. Das dielektrische, hexagonale Bornitrid (hBN) kann
ebenfalls als Substrat verwendet werden und erlaubt dagegen aufgrund seiner be-
sonderen Materialeigenschaften wesentlich höhere Ladungsträgerbeweglichkeiten
[52, 53]. Unter anderem deshalb wurde auch für diese Arbeit hBN als Substrat
für Heterostrukturen mit Graphen verwendet. Im Anschluss folgt nun eine Ein-
führung in die kristallinen Eigenschaften von hBN.

2.2.1. Kristallstruktur von hBN
Bornitrid kann, ähnlich wie reiner Kohlenstoff, unterschiedliche kristalline Er-
scheinungsformen annehmen [54]. Darunter gibt es Bornitridkristalle in kubischer
Kristallstruktur, vergleichbar mit Diamant, aber auch hexagonales Bornitrid als
Analogon zu Graphit [54]. Für Arbeiten mit Graphen wird prinzipiell hexago-
nales Bornitrid (hBN) verwendet [54]. Ein hBN-Kristall besteht, ähnlich wie ein
Graphitkristall, aus einzelnen in z-Richtung aufeinanderliegenden, atomar dün-
nen Lagen (s. Abb. 2.4 a)) [52, 54]. hBN-Kristalle sind sowohl in Form einer AA’-
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Abbildung 2.4.: a) AA’-Stapelfolge eines hBN-Kristalls. In vertikaler Richtung
liegt eine alternierende Folge von Bor- und Stickstoffatomen vor. Dabei liegen
die einzelnen Sechsecke genau übereinander. b) Hexagonale Kristallstruktur von
hBN. Die Basisatome Bor (A) und Stickstoff (B) bilden mit den Gittervektoren
a⃗1 und a⃗2 die jeweiligen Untergitter A und B. Rot umrahmt ist die primitive
Einheitszelle. Entnommen aus [54–56] und grafisch nachbearbeitet.

Stapelfolge, nach [55] aber auch in einer ABA-Stapelfolge, also im bernal stacking,
stabil. Die AA’-Stapelfolge ist dabei aber die am weitesten verbreitete Variante,
in welcher hBN synthetisiert wird [54–56]. Bei diesen hBN-Kristallen liegen die
einzelnen Sechsecke in z-Richtung direkt übereinander [54]. Dabei fällt besonders
eine alternierende Folge aus übereinanderliegenden Bor- und Stickstoffatomen
auf (s. Abb. 2.4 a)) [54]. In x-y-Ebene bilden die einzelnen Lagen ein hexagonales
Kristallgitter, welches sich wieder in zwei Untergitter A und B zerlegen lässt (s.
Abb. 2.4 b)) [52, 54]. Die zweiatomige Basis wird dabei von einem Bor- (A) und
einem Stickstoffatom (B) gebildet [52]. Mathematisch beschreiben lässt sich das
hexagonale Gitter des hBN-Kristalls analog zu ML-G mit Hilfe der Gittervekto-
ren aus Gleichung (2.1) [57]. Anstelle der atomaren Bindungslänge aCC = 1,42 Å
für ML-G ist hier jedoch aB−N = 1,446 Å für hBN zu verwenden [36, 58]. Daraus
folgt mit ahBN =

√
3aB−N die Gitterkonstante ahBN = 2,5 Å für hBN [36]. Wie

man sieht, weichen die Gitterkonstanten von ML-G und hBN nur geringfügig um
ca. 1,7 % voneinander ab, was in Heterostrukturen mit ML-G nur zu geringen
Gitterverspannungen führt [52]. Zwischen den Bor- und Stickstoffatomen sorgt
die sp2-Hybridisierung innerhalb der x-y-Ebene für starke kovalente σ-Bindungen
[52, 54]. Das wiederum erschwert die Bildung von Oberflächenladungen und un-
gesättigten Bindungen, wodurch anzunehmen ist, dass die Oberfläche von hBN
chemisch nahezu inert ist [52]. Senkrecht zur Schichtebene bilden die pz-Orbitale
π-Bindungen aus [59]. Dadurch wirken in vertikaler Richtung lediglich vergleichs-
weise schwache Van-der-Waals-Kräfte [54, 59]. Als Konsequenz lassen sich auch
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aus hBN-Kristallen durch mikromechanische Exfoliation dünne Lagen aus hBN
herstellen, wodurch auch die Bildung von Heterostrukturen mit Graphen und
anderen 2D-Materialien möglich ist. Die starken kovalenten Bindungen innerhalb
der x-y-Ebene und die schwachen Van-der-Waals-Kräfte zwischen den einzelnen
hBN-Lagen machen es möglich Bornitrid-Flocken mit atomar glatten Oberflächen
und damit geringer Oberflächenrauigkeit herzustellen [52, 53]. In Heterostruktu-
ren mit Graphen auf hBN werden dadurch viel höhere Ladungsträgerbeweglich-
keiten, eine reduzierte Ladungsträgerinhomogenität und eine geringere Dotierung
möglich, als zum Beispiel bei Graphen auf SiO2 [52]. Hinsichtlich der kristallinen
Eigenschaften von hBN eignet sich dieses daher besonders gut zur Herstellung
von Heterostrukturen mit Graphen. Auch die elektronischen Eigenschaften von
hBN sind dafür besonders günstig, wie man anschließend bei Betrachtung der
Bandstruktur genauer sehen wird.

2.2.2. Bandstruktur von hBN
Die Bandstruktur liefert wesentliche Informationen über die elektronischen Ei-
genschaften von hBN und kann beispielsweise wie in [54] berechnet werden. Es
ergibt sich eine Bandstruktur wie in Abb. 2.5 [54]. Demnach ist hBN als Dielektri-
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Abbildung 2.5.: Bandstruktur von hBN. Zwischen Valenzband (blau) und Lei-
tungsband (rot) weist hBN eine direkte Bandlücke am K-Punkt auf. Entnommen
aus [54] und grafisch nachbearbeitet.

kum einzustufen, da es am K-Punkt eine relativ große, direkte Bandlücke besitzt
[54]. Quantitativ werden für die Größe der Bandlücke in verschiedenen Quellen
unterschiedliche Werte berichtet. So wurde in [54] eine Bandlücke von 4,69 eV be-
rechnet, während in [52, 60] eine experimentell ermittelte Bandlücke von 5,97 eV
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angegeben wurde. In beiden Fällen ist die Bandlücke relativ groß, wodurch die
Einstufung von hBN als Dielektrikum in beiden Fällen erhalten bleibt. Die Di-
elektrizitätskonstante ist gegeben durch ϵr,hBN ≈ 3 − 4 (für diese Arbeit wurde
ein Wert von ϵr,hBN = 3 verwendet) [61]. Unter Vernachlässigung von Übergit-
tereffekten dürfte hBN daher aufgrund der großen Bandlücke und der besonders
glatten Oberflächenstruktur den Stromfluss in Graphen kaum beeinflussen.
Aufgrund dieser Eigenschaften eignet sich hBN als Probensubstrat hervorragend
für die Durchführung von Transportmessungen an Heterostrukturen mit Gra-
phen. In der Praxis wird hBN häufig nicht nur als Substrat unterhalb des Gra-
phens verwendet. Oftmals wird das Graphen auch zwischen zwei dünne hBN-
Schichten eingekapselt, was nicht nur die Transporteigenschaften des Graphens
erheblich verbessert, sondern erfahrungsgemäß auch während und nach der Pro-
benherstellung einen gewissen Schutz des Graphens vor äußeren Einflüssen bietet
[62].

2.3. Übergangsmetall-Dichalkogenide
Neben Graphen und hBN bilden Übergangsmetall-Dichalkogenide (engl.: „tran-
sition metal dichalcogenides “(TMDCs)) eine weitere Klasse von 2D-Materialien.
Aufgrund ihrer vielversprechenden Materialeigenschaften sind TMDCs zuneh-
mend Gegenstand in Forschung und Entwicklung, wie sich durch die Vielzahl
an Studien der vergangenen Jahre zeigt. Unter anderem wurde bereits mehr-
fach theoretisch und experimentell gezeigt, dass die Induktion von Spin-Bahn-
Kopplung (SOC) in Graphen mit Hilfe dieser Materialien möglich ist [8–10, 63,
64], was besonders für die Herstellung spintronischer Bauelemente von Bedeutung
ist. Zu diesem Thema wurden auch in dieser Arbeit Untersuchungen durchgeführt,
wofür ein wesentliches Verständnis über die Materialeigenschaften dieser TMD-
Cs erforderlich ist. Deshalb befasst sich dieser Teil der Arbeit nun auch mit den
kristallinen und anschließend mit den elektronischen Eigenschaften von TMDCs.

2.3.1. Kristallstruktur von TMDCs
TMDCs (MX2) sind Materialverbindungen aus Übergangsmetallatomen (M) in
Kombination mit zwei Chalkogenatomen (X2) [54]. Im Periodensystem der Ele-
mente finden sich diese Übergangsmetalle in den Nebengruppen IV, V und VI und
die Chalkogene in der 6. Hauptgruppe [65, 66]. Es ergeben sich damit Gruppe-IV-,
Gruppe-V- und Gruppe-VI-TMDCs [66]. TMDCs bilden damit in ihrer Gesamt-
heit eine große Ansammlung unterschiedlicher Materialverbindungen [66].
Eine einzelne Monolage dieser TMDCs besteht nun aus drei atomaren Schichten
[54, 66]. Sie setzt sich aus zwei Lagen von Chalkogenatomen mit einer dazwi-
schenliegenden Lage aus Übergangsmetallatomen zusammen [54, 66]. Ein einzel-
nes Übergangsmetallatom geht im Kristall mit insgesamt sechs Chalkogenatomen
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Abbildung 2.6.: a) Trigonal prismatische Geometrie. b) Trigonal antiprismatische
bzw. oktaedrische Geometrie. c) Hexagonale Kristallstruktur von ML-TMDC in
der 1H-Phase mit den beiden Gittervektoren a⃗1 und a⃗2 und der primitiven Ein-
heitszelle in rot. d) Hexagonale Kristallstruktur von ML-TMDC in der 1T-Phase
mit den beiden Gittervektoren a⃗1 und a⃗2 und der primitiven Einheitszelle in rot.
Die großen gelben Chalkogen-Atome bilden dabei die obere Chalkogen-Lage. Die
kleinen gelben Chalkogen-Atome bilden die untere Chalkogen-Lage. e) Hexago-
nale Kristallstruktur von TMDCs mit mindestens zwei Lagen in der 2H-Phase
mit den beiden Gittervektoren a⃗1 und a⃗2 und der primitiven Einheitszelle in rot.
f) Seitenansicht der 1H-Phase mit einlagiger Einheitszelle. g) Seitenansicht der
2H-Phase mit zweilagiger Einheitszelle (rot umrahmt). Entnommen aus [54, 57,
66–69] und grafisch nachbearbeitet.

kovalente Bindungen ein, wodurch sich eine trigonal prismatische Geometrie (s.
Abb. 2.6 a)) oder auch eine trigonal antiprismatische bzw. oktaedrische Geometrie
(s. Abb. 2.6 b)) bildet [66]. Dieses System setzt sich innerhalb einer Ebene fort,
wodurch eine TMDC-Monolage entsteht [54, 66]. Abhängig davon, ob eine tri-
gonal prismatische oder oktaedrische Geometrie vorliegt, findet man die gesamte
TMDC-Monolage in der sogenannten 1H-Phase (einlagige Einheitszelle, hexago-
nale Kristallstruktur) oder in der 1T-Phase (einlagige Einheitszelle, tetragonale
Kristallstruktur) vor [66, 68, 69]. Blickt man von oben auf die Kristallstruktur von
1H-Phase TMDCs so erkennt man ein typisches hexagonales Gitter (s. Abb. 2.6
c)), ähnlich dem von hBN oder Graphen, während sich die Struktur von 1T-Phase
TMDCs (s. Abb. 2.6 d)) im Wesentlichen dadurch unterscheidet, dass im Zentrum
der einzelnen Sechsecke immer ein Übergangsmetall- bzw. Chalkogenatom liegt
[54, 66, 68]. Gruppe-VI-TMDCs neigen aus energetischen Gründen (für Details
siehe [66]) dazu, hauptsächlich in hexagonaler Form zu kristallisieren [66]. Deshalb
wird in dieser Arbeit auf TMDCs in der 1T-Phase auch nicht weiter eingegan-
gen. Das hexagonale Kristallgitter dieser 1H-Phase TMDCs kann man nun in zwei
trigonale Untergitter zerlegen [54, 66]. Die trigonal prismatische Kristallstruktur
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wiederum besitzt eine dreiatomige Basis, bestehend aus zwei Chalkogenatomen
und einem Übergangsmetallatom (s. Abb. 2.6 f)) [66]. Mathematisch kann man
dieses hexagonale Kristallgitter wieder durch die beiden Gittervektoren aus Glei-
chung (2.1) beschreiben [57]. Anstelle von aCC wird dagegen der interatomare
Parameter aMX verwendet [57]. Der interatomare Abstand aMX lässt sich bestim-
men mit aMX =

√
7/12aT MDC [70]. Hier ist aT MDC die Gitterkonstante des je-

weiligen TMDCs. Die Gitterkonstanten der beiden Gruppe-VI-TMDCs WS2 und
WSe2 (hier M=̂W, X=̂S,Se) betragen aW S2 = 3,153 Å und aW Se2 = 3,260 Å [70].
Betrachtet man nun mehrlagiges TMDC, so sind bei TMDCs mit trigonal prisma-
tischer Kristallstruktur zwei verschiedene Stapelfolgen möglich [66]. Es gibt zum
einen die für diese Arbeit relevante 2H-Phase (zweilagige Einheitszelle, hexago-
nale Symmetrie) und zum anderen gibt es die 3R-Phase (dreilagige Einheitszelle,
rhomboedrische Symmetrie), auf die hier aber ebenfalls nicht genauer eingegan-
gen wird, da sie für diese Arbeit nicht relevant ist [66, 67]. Bei der 2H-Phase
liegen demnach immer alle Atome aufeinander und nicht innerhalb der Sechse-
cke (s. Abb. 2.6 e) und g)), wodurch die hexagonale Struktur auch über mehrere
Lagen hinweg erhalten bleibt [66, 67]. Zwischen den einzelnen Lagen wirken die
relativ schwachen Van-der-Waals-Kräfte [66]. Es gibt zwischen den Lagen also
eine sogenannte Van-der-Waals-Gap [66]. Dadurch wird die Herstellung dünner
Schichten mit Hilfe der mikromechanischen Exfoliation ermöglicht [71]. TMD-
Cs besitzen außerdem, ähnlich wie hBN, keine dangling bonds und damit eine
sehr niedrige Oberflächenrauigkeit, wodurch in Heterostrukturen mit Graphen
hohe Ladungsträgerbeweglichkeiten im Graphen zu erwarten sind [72, 73]. Die
Tatsache, dass Gruppe-VI-TMDCs wie WS2 oder WSe2 schwere Wolframatome,
d-Orbitale und außerdem eine fehlende Zeitumkehrsymmetrie aufweisen, führt
außerdem zu einer besonders starken SOC in diesen Materialien [74]. Hinsichtlich
spintronischer Bauelemente macht gerade diese Eigenschaft und die besondere
Kristallstruktur die Gruppe-VI-TMDCs besonders attraktiv für die Bildung von
Heterostrukturen mit Graphen [71, 72].

2.3.2. Bandstruktur von TMDCs

Abhängig von der jeweiligen atomaren Zusammensetzung können TMDCs ver-
schiedene elektronische Eigenschaften besitzen [66]. Für diese Arbeit wurden le-
diglich die beiden halbleitenden Gruppe-VI-TMDCs, WSe2 und WS2, verwendet.
Deshalb beschränken sich die folgenden Ausführungen auf diese beiden Materia-
lien. Für TMDCs wie WSe2 und WS2 muss man hinsichtlich der Bandstruktur
grundlegend zwischen Monolagen-TMDC (ML-TMDC) und mehrlagigem TMDC
(Bulk-TMDC) unterscheiden [70]. Während mehrlagiges WSe2 (Bulk-WSe2) und
mehrlagiges WS2 (Bulk-WS2) eine Bandlücke mit indirektem Bandübergang be-
sitzen, so findet man für Monolagen-WSe2 (ML-WSe2) und Monolagen-WS2 (ML-
WS2) eine Bandlücke mit direktem Bandübergang [70]. Die Fermi-Energie EF
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Abbildung 2.7.: Bandstrukturen von ML-WS2, ML-WSe2, Bulk-WS2 und Bulk-
WSe2. Blau eingezeichnet sind die jeweiligen (minimalen) Bandübergänge. Ent-
nommen aus [70] und grafisch nachbearbeitet.

liegt dabei für jeden der vier Fälle aus Abb. 2.7 nahezu in der Mitte der Bandlücke
[70]. Berechnungen zeigen nun, dass die indirekten Bandlücken mit EBulk−W S2 ≈
0,917 eV und EBulk−W Se2 ≈ 0,910 eV für Bulk-WSe2 und Bulk-WS2 (vgl. Abb.
2.7) wesentlich kleiner sind als die Bandlücken für ML-WSe2 und ML-WS2 mit
Werten von EML−W S2 ≈ 1,659 eV und EML−W Se2 ≈ 1,444 eV (vgl. Abb. 2.7) [70].
Damit ist klar, dass man für diese ML-TMDCs mehr Energie aufwenden muss,
um die Fermi-Energie EF vom Valenzband in das Leitungsband schieben zu kön-
nen, als es für die beiden Bulk-TMDCs notwendig ist. In allen vier Fällen zeigt
sich aber der halbleitende Charakter dieser TMDCs, da hier die Bandlücken im
für Halbleiter typischen Bereich liegen [70, 75].



3. Theoretische Grundlagen zum
Quantentransport in Graphen

Dieses Kapitel stellt einen Auszug aus der Theorie des Quantentransports in
Graphen dar. Der Fokus liegt dabei auf messbaren Effekten, die zur Evaluation
und Interpretation der Ergebnisse dieser Arbeit besonders wichtig sind.

3.1. Elektrischer Transport ohne äußerem
Magnetfeld

In diesem Abschnitt werden die theoretischen Grundlagen von wesentlichen Ef-
fekten beschrieben, die beim elektrischen Transport ohne äußerem Magnetfeld
auftreten.

3.1.1. Elektrischer Transport in Graphen
Nach dem klassischen Drude-Modell sind die Ladungsträger in Graphen, die zum
Stromtransport beitragen, frei beweglich und stellen damit ein sogenanntes zwei-
dimensionales Elektronengas (2DEG) dar [41, 65, 76, 77]. Durch Anlegen einer
Spannung Ubias und damit eines elektrischen Feldes ⃗Eext, zwischen zwei Kontak-
ten, z.B. von einer Graphen-Hallbar, wirkt auf die Ladungsträger mit der Ladung
q eine Kraft F⃗el gemäß [65, 76, 77]:

F⃗el = q · ⃗Eext . (3.1)

Als Konsequenz davon bewegen sich die jeweiligen Ladungsträger zwischen den
beiden Kontakten einer Hallbar abhängig vom angelegten elektrischen Feld in die
entsprechende Richtung [65, 76, 77]. Dies hat den Fluss eines gewissen Stroms I
zur Folge.

3.1.2. Der elektrische Feldeffekt in Graphen
Der elektrische Feldeffekt in einer Graphen-Hallbar lässt sich nun herbeiführen,
indem man unter- (Backgate) oder oberhalb (Topgate) dieser Hallbar eine Gate-
elektrode anbringt, welche elektrisch durch einen Isolator von der Hallbar getrennt
ist [78]. Es bildet sich damit prinzipiell ein Plattenkondensator mit Dielektrikum,

25
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bei dem die eine Platte die Graphen-Hallbar darstellt und die andere Platte die
Gateelektrode ist [78]. Mit Hilfe dieser Gateelektrode lässt sich durch Anlegen
einer Gatespannung Ug die Ladungsträgerdichte n im Graphen regulieren [78].
Der Grund dafür ist, dass sich damit die Fermi-Energie EF relativ zu Valenz-
und Leitungsband verschieben lässt, wodurch sich aufgrund der Form (konisch
für ML-G, parabolisch für BL-G) der Bandstruktur die Zahl der freien Ladungs-
träger im Graphen ändert [35, 46, 78]. Diese Ladungsträgerdichte n kann man
nun berechnen mit [78]:

n = Ugϵ0ϵr

ed
= UgCg

e
. (3.2)

Hier ist e = 1,6021764 × 10−19 C die Elementarladung, ϵ0 = 8,8542 × 10−12 F/m
die Vakuumpermittivität, ϵr die relative, materialspezifische Permittivität, d die
Dicke des verwendeten Dielektrikums und Cg die Kapazität [78, 79]. Für den
Fall einer dotierten Probe ist Ug in Gleichung (3.2) durch (Ug −UDP ) zu ersetzen,
wobei UDP dem Wert der Gatespannung entspricht, bei dem die Fermi-Energie am
Dirac-Punkt liegt. Für den Fall, dass mehrere Dielektrika zwischen dem Graphen
und der Gateelektrode liegen, ergibt sich Cg gemäß dem Kondensatormodell aus
[79]:

Cg =
(

N∑
i=1

1
Ci

)−1

=
(

N∑
i=1

di

ϵ0ϵr,i

)−1

mit i, N ∈ N . (3.3)

Hier wird prinzipiell der Kehrwert einer Summe gebildet, deren einzelne Sum-
manden vom jeweiligen Dielektrikum mit dem zugewiesenen Index i abhängig
sind. Die Zahl N gibt dabei die Anzahl der Summanden und damit die Anzahl
der verwendeten Dielektrika zwischen den beiden Platten des Kondensators an.
Legt man nun an dieser Graphen-Hallbar eine Spannung Ubias an, so fließt zwi-

L

W1 4

2 3

6 5

UXX

I

Ubias

x

y

Abbildung 3.1.: Hallbar mit der Breite W und der Länge L zwischen den Kon-
taktabgriffen mit den eingezeichneten Kontakten 1 bis 6.

schen den Kontakten 1 (Source) und 4 (Drain) ein gewisser Strom I (vgl. Abb.
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3.1) [78]. Durch Änderung der Gatespannung Ug und damit der Ladungsträ-
gerdichte n kann man diesen Stromfluss regulieren, da der Stromfluss abhängig
von der Zahl der freien Ladungsträger im Graphen ist [78]. Aus dem Ohmschen
Gesetz R1−4 = Ubias/I folgt, dass sich dann bei konstanter Spannung Ubias der
Zweipunktwiderstand des Graphens R1−4 zwischen den Kontakten 1 und 4 aus
Abb. 3.1 ändern muss [78]. Durch Messung des Stroms I und Messung des Span-
nungsabfalls Uxx kann der gateabhängige Längswiderstand Rxx, auch Vierpunkt-
widerstand genannt, zwischen den Kontakten 2 und 3 (bzw. 5 und 6) aus Abb.
3.1 bestimmt werden. Da in idealem Graphen bei Ug = 0 V und T = 0 K die
Fermi-Energie EF genau zwischen Valenz- und Leitungsband liegt und damit die
Zahl der freien Ladungsträger im Graphen minimal wird, wird dort der Wider-
stand Rxx maximal. Diesen Punkt, an dem in idealem Graphen sowohl die Loch-
als auch die Elektronenleitung minimal wird, bezeichnet man als Ladungsneu-
tralitätspunkt (LNP) oder Dirac-Punkt (DP) [35, 46, 78]. Durch Anlegen einer
positiven bzw. negativen Gatespannung verschiebt sich die Fermi-Energie EF in
das Leitungs- bzw. in das Valenzband [35, 46, 78]. Dadurch wird die Zahl der frei-
en Ladungsträger erhöht, wobei im ersten Fall zunehmend Elektronenleitung und
im zweiten Fall zunehmend Lochleitung stattfindet [35, 46, 78]. Damit kann also
der Ladungsträgertyp abhängig von der Polarität der Gatespannung Ug geschal-
tet werden. Dieser Effekt wird auch als ambipolarer Feldeffekt bezeichnet [35,
46, 78]. Auf diese Weise entsteht ein elektrischer Schalter, den man Feldeffekt-
Transistor (FET) nennt, da man durch Variation der Gatespannung nicht nur
die Polarität, sondern auch den elektrischen Widerstand schalten kann [78]. Die
Messung aus Abb. 3.2 zeigt, dass der Widerstand am LNP nicht unendlich ist.
Dies liegt an den sogenannten electron-hole-puddles, die in realem Graphen vor-
handen sind und für eine nicht verschwindende Leitfähigkeit sorgen [80]. Hierbei
handelt es sich um Bereiche im Graphen, an denen sich Ladungsträger spontan
sammeln können [80]. Dort ist die Zahl der freien Ladungsträger bzw. die La-
dungsträgerdichte lokal ungleich null [80]. Daher ist auch am Dirac-Punkt wei-
terhin ein gewisser Ladungstransport möglich, wodurch der Längswiderstand Rxx

im Graphen endlich werden muss [80]. Berücksichtigt man auch Verunreinigun-
gen, so sind Proben häufig positiv bzw. negativ dotiert, wodurch der LNP relativ
zu Ug = 0 V in den positiven bzw. negativen Spannungsbereich verschoben sein
kann [46]. Auch sind Proben häufig nicht homogen dotiert, was sich an einer
entsprechenden Verbreiterung des LNPs zeigt [80, 81]. Misst man nun den Wi-
derstand Rxx in einer Graphen-Hallbar der Breite W zwischen zwei Kontakten
im Abstand L, so berechnet sich der spezifische Widerstand ρxx aus [82]:

ρxx = Uxx

I

W

L
= Rxx

W

L
(3.4)

und dadurch ergibt sich die spezifische Leitfähigkeit σxx zu [35, 82]:

σxx = 1
ρxx

(3.4)= L

W

1
Rxx

. (3.5)
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Abbildung 3.2.: Ambipolarer Feldeffekt in Graphen. Am Dirac-Punkt, hier nahe
Ug = 0 V, ist der Widerstand maximal. Dieser Widerstand nimmt für höhere bzw.
niedrigere Werte von Ug ab. Die Doppelkegel zeigen dabei die jeweilige Lage von
EF in der Bandstruktur von ML-G am Dirac-Punkt und links bzw. rechts davon.
Abhängig von Ug, dominiert entweder Elektronenleitung oder Lochleitung. Am
Dirac-Punkt selbst liegt ein Gleichgewichtszustand vor. Entnommen aus [46] und
grafisch nachbearbeitet.

Mit Blick auf das Modell eines Kondensators lässt sich die Leitfähigkeit mit der
folgenden Gleichung beschreiben [35, 78, 82]:

σxx = enµ
(3.2)= UgCgµ . (3.6)

Dabei ist µ die Ladungsträgerbeweglichkeit, welche vor allem durch Störstellen
und Verunreinigungen des Graphens, aber auch von der Beschaffenheit der Sub-
stratoberfläche beeinflusst wird [46, 72, 81, 82]. Die Ladungsträgerbeweglichkeit
stellt somit ein Maß für die Probenqualität dar [81, 82]. Zur Ermittlung dieser
Ladungsträgerbeweglichkeit geht man folgendermaßen vor [35]. Die Leitfähigkeit
σxx als Funktion der Gatespannung Ug ist durch Gleichung (3.6) gegeben [35, 78,
82]. Dabei entspricht das Produkt aus der Ladungsträgerbeweglichkeit µ und der
Kapazität Cg, die auch Gate-Kopplungskonstante genannt wird, der Steigung m
dieser Kurve. Aus Gleichung (3.6) folgt deshalb [35, 78, 82]:

σxx = UgCgµ = mUg . (3.7)

Durch Umformung erhält man dann die folgende Geradengleichung mit konstan-
ter Steigung m:

µ = m

Cg

. (3.8)
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Da die Steigung m der 1. Ableitung von σxx nach Ug entspricht, kann man Glei-
chung (3.8) alternativ schreiben als [82]:

µ = ∂σxx

∂Ug

1
Cg

. (3.9)

Damit kann man nun die Ladungsträgerbeweglichkeiten für fast alle Ladungs-
trägerdichten bestimmen. Zu erwähnen ist, dass in der Nähe des Dirac-Punkts
wegen den electron-hole-puddles sowohl Elektronen- als auch Lochleitung statt-
findet [80]. Deshalb macht die Ermittlung der Steigung m zur Bestimmung der
Ladungsträgerbeweglichkeit erst etwas weiter weg vom Dirac-Punkt einen Sinn.
Häufig nimmt dort die Leitfähigkeit σxx in Abhängigkeit von der Gatespannung
Ug einen nahezu linearen Verlauf an. Alternativ kann man die Ladungsträgerbe-
weglichkeit aus den Hall-Messungen und damit die sogenannte Hall-Beweglichkeit
bestimmen. Dazu wird für den jeweiligen Ladungsträgertyp mit der Ladung q die
umgestellte Gleichung (3.25) µ = 1/(nqρxx(Bz = 0 T)), verwendet [83]. Diese
Gleichung wird weiter unten in Abschnitt 3.2.1 noch eingeführt. Mit Hilfe der
bestimmten Ladungsträgerbeweglichkeiten lassen sich nun Aussagen über Pro-
benqualität und unter Einbeziehung der mittleren freien Weglänge auch zum
entsprechenden Transportregime machen [81, 82, 84]. Darauf wird im folgenden
Abschnitt nun genauer eingegangen.

3.1.3. Transportregime in Graphen
Der Transport der Ladungsträger innerhalb einer Probe hängt stark vom Streu-
verhalten der Ladungsträger ab. Die mittlere freie Weglänge (engl.: „mean free
path “(mfp)) lmfp stellt dabei die mittlere Wegstrecke dar, die ein Ladungsträ-
ger in einem Kristall ohne Streuung zurücklegen kann [65, 77, 84]. Mit der Ge-
schwindigkeit der Ladungsträger vF und der Impulsrelaxationszeit τp folgt dann
unmittelbar die Beziehung [77, 81, 84]:

lmfp = τpvF . (3.10)

Durch Bestimmung der Ladungsträgerbeweglichkeit µ und der Ladungsträger-
dichte n mit den Gleichungen (3.3) und (3.8) lässt sich die mittlere freie Weglänge
lmfp für Graphen berechnen mit [81, 84]:

lmfp = ℏµ
√
nπ

e
. (3.11)

Vergleicht man die mittlere freie Weglänge lmfp mit der Länge L und der Breite
W eines leitfähigen Kanals, so kann man den Quantentransport innerhalb die-
ses Kanals einem bestimmten Transportregime zuordnen [85]. Es gibt dazu drei
mögliche Fälle:



3. Theoretische Grundlagen zum Quantentransport in Graphen 30

Ballistischer Transport

Quasi-Ballistischer Transport

Diffusiver Transport

L

W

Abbildung 3.3.: Transportregime: Oben, ballistischer Transport mit lmfp > L >
W ; Mitte, quasi-ballistischer Transport mit lmfp > W ; Unten, diffusiver Trans-
port mit L > W > lmfp. Entnommen aus [85] und grafisch nachbearbeitet.

• Ballistisches Transportregime mit lmfp > L > W :
In diesem Fall können sich Ladungsträger frei von Streuung an Defekten
und Störstellen durch einen leitfähigen Kanal mit den Dimensionen L und
W bewegen (vgl. Abb. 3.3 oben) [85].

• Quasi-Ballistisches Transportregime mit L > lmfp > W :
In diesem Fall findet Streuung an Defekten und Störstellen innerhalb des
Kanals statt, allerdings in geringerem Maße, da hier wegen lmfp > W die
Streuzentren im Mittel weiter auseinander liegen (vgl. Abb. 3.3 mitte) [85].

• Diffusives Transportregime mit L > W > lmfp:
In diesem Fall ist der Quantentransport stark von Streuereignissen an De-
fekten und Störstellen innerhalb des Kanals geprägt (vgl. Abb. 3.3 unten)
[85].

Da sich manche Effekte nur dann gut messen lassen, wenn der Transport in-
nerhalb einer Probe entweder ballistisch, quasi-ballistisch oder diffusiv ist, sollte
man bei der Probenherstellung bereits eine entsprechende Probengeometrie wäh-
len. Auch hinsichtlich der Ladungsträgerbeweglichkeit µ der jeweiligen Probe, die
nach Gleichung (3.11) proportional zu lmfp ist, sollte man bei der Probenherstel-
lung versuchen, die Probe so herzustellen, dass sich diese später im gewünschten
Transportregime befindet.

3.1.4. Der Diffusionskoeffizient
Wie man im Verlauf dieser Arbeit noch sehen wird, spielt der Diffusionskoeffizient
eine große Rolle, wenn es um die Auswertung der Messdaten und Bestimmung
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der induzierten SOC in Graphen geht. Aus den Messungen zum elektrischen Feld-
effekt lässt sich auch der zweidimensionale Diffusionskoeffizient D bestimmen.
Dafür gibt es nun mindestens zwei Möglichkeiten. Die eine Möglichkeit ist die
Bestimmung von D mit lmfp und vF über die Beziehung [77, 86]:

D = v2
F τp

2
(3.10)= vF lmfp

2 . (3.12)

Die andere Möglichkeit besteht darin, D mit Hilfe der sogenannten Einstein-
Relation zu bestimmen, diese lautet [86, 87]:

D = σxx

e2ν(E) . (3.13)

Dabei ist ν(E) die Zustandsdichte für ML-G, die wiederum gegeben ist durch
[86, 87]:

ν(E) = gsgv

2π
|E|
ℏ2v2

F

. (3.14)

Hier sind gs = 2 und gv = 2 die Faktoren für die jeweils zweifache Spin- und Val-
ley-Entartung [86, 87]. Durch Integration von Gleichung (3.13) und Substitution
der Energie E durch EF erhält man die Ladungsträgerdichte n(EF ) und es gilt
[87]:

n(EF ) = gsgvE
2
F

4πℏ2v2
F

. (3.15)

Die Fermi-Energie EF ist für ML-G wiederum gegeben durch [87]:

EF = vFℏ
√
nπ

(3.6)= vFℏ
√
σxxπ

µe
. (3.16)

Mit der Einstein-Gleichung (3.12) und den Gleichungen (3.13), (3.14) und (3.15)
erhält man dann die folgende Relation für den Diffusionskoeffizienten D [87]:

D = σxxℏvF

e2

√
π

gsgv

1
n(EF ) . (3.17)

Nun hat man mit den Gleichungen (3.12) und (3.17) bereits zwei Möglichkeiten
zur Bestimmung von D [87]. In beiden Fällen geht man jedoch davon aus, dass
sowohl die Ladungsträgerdichte als auch die Zustandsdichte am Dirac-Punkt ver-
schwinden [87]. Diese Annahme ist für reale Proben allerdings unrealistisch und
gilt deshalb nur für ideale Proben [87]. Aus diesem Grund ist die Bestimmung von
D durch Anwendung der Gleichungen (3.12) und (3.17) für kleine Ladungsträger-
dichten von |n| < 0,5 · 1012 cm−2 eher ungeeignet [87]. Geht man von nicht ver-
schwindenden Ladungsträgerdichten bzw. von einem endlichen Widerstand am
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Dirac-Punkten aus, so sollte man unter anderem electron-hole-puddles berück-
sichtigen [87]. Um den Diffusionskoeffizienten D nun universell für alle Ladungs-
trägerdichten n bestimmen zu können, ist also eine verbreiterte Zustandsdichte
ν∗(EF ) anstelle von Gleichung (3.14) zu verwenden [87]. Diese ist gegeben durch
[87]:

ν∗(EF ) = gvgs

2πℏ2v2
F

[
2σb√

2π
exp

(
−E2

F

2σ2
b

)
+ EF erf

(
EF

σb

√
2

)]
. (3.18)

Dabei steht erf für die Gaußsche Fehlerfunktion und σb ≈ 75 meV für die Gauß-
sche Verbreiterung [87]. Durch Berechnung von Gleichung (3.18) und Einset-
zen in Gleichung (3.13) lässt sich der Diffusionskoeffizient nun auch für |n| <
0,5 · 1012 cm−2 möglichst genau bestimmen [87].

3.2. Elektrischer Transport mit äußerem
Magnetfeld

In diesem Abschnitt werden die theoretischen Grundlagen von wesentlichen Effek-
ten beschrieben, die auftreten, wenn man zusätzlich zum elektrischen Transport
ein äußeres Magnetfeld Bz senkrecht zur Probenebene anlegt.

3.2.1. Klassischer Magnetotransport und Hall-Effekt
Zur Beschreibung des klassischen Magnetotransports betrachte man zunächst ein
2DEG in diffusivem Regime in Form einer Hallbar-Struktur wie in Abb. 3.4 ge-
zeigt. Legt man zwischen den Kontakten 1 und 4 eine Spannung Ubias und damit

L

W1 4

2 3

6 5

UXX

I

Ubias

Bz

x

y

Abbildung 3.4.: Hallbar mit der Breite W und der Länge L zwischen den Kon-
takten 1 bis 6.
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ein äußeres elektrisches Feld E⃗ext = (Ex, 0, 0) an, so fließt ein gewisser Strom I von
Kontakt 1 nach Kontakt 4 [65, 76, 77, 88]. Durch Anlegen eines äußeren Magnet-
feldes B⃗ext = (0, 0, Bz) senkrecht zum 2DEG wirkt auf die Ladungsträger mit der
Ladung q = ±e einerseits die Lorentz-Kraft F⃗L = qv⃗ × B⃗ext und andererseits die
Kraft des elektrischen Feldes F⃗el = qE⃗ext [65, 76, 77, 88]. Die gesamte Kraft, die
dann auf einen Ladungsträger wirkt, ist gegeben durch [65, 76, 77, 88]:

F⃗ = F⃗el + F⃗L = q(E⃗ext + v⃗ × B⃗ext) . (3.19)

Mit Hilfe der Newtonschen Bewegungsgleichung [65, 76, 77, 88]:

F⃗ = m∗
(
dv⃗

dt
+ v⃗

τ

)
(3.20)

lässt sich nun die Bewegung der Ladungsträger zwischen zwei Streuereignissen
beschreiben [65, 76, 77, 88]. Hierbei zwingt die Lorentzkraft die Ladungsträger
auf kreisförmige Trajektorien mit dem zugehörigen Zyklotronradius Rc, den man
bestimmen kann aus [65, 76, 77, 88]:

Rc = | v⃗ |
ωc

, (3.21)

wobei die Wiederholungsrate dieser kreisförmigen Bewegung durch die Zyklotron-
frequenz ωc gegeben ist [65, 76, 77, 88]. Die Zyklotronfrequenz lässt sich wiederum
über die Beziehung [65, 76, 77, 88]:

ωc = qBz

m∗ (3.22)

berechnen. Aus der Lösung der Bewegungsgleichung (3.20) folgt, dass sich diese
Kreisbewegung nun mit einer Driftbewegung vd der Ladungsträger in y-Richtung,
überlagert [65, 76, 77, 88]. Die Driftbewegung ist dabei gegeben durch [65, 76,
77, 88]:

v⃗ = E⃗ext × B⃗ext

B2
z

. (3.23)

Aufgrund der Lorentz-Kraft lagern sich deshalb Ladungsträger in y-Richtung
und damit senkrecht zur Strom- und Magnetfeldrichtung an [65, 76, 77, 88].
Dadurch bildet sich ein elektrisches Feld in y-Richtung, wodurch der Vektor des
elektrischen Feldes E⃗ = (Ex, Ey, 0) eine weitere Komponente ungleich null erhält
[65, 76, 77, 88]. Die Komponente Ey wirkt der Lorentz-Kraft entgegen und es
stellt sich nach einer gewissen Zeit ein Gleichgewichtszustand ein [65, 76, 77, 88].
Mit der Stromdichte j⃗ = (jx, 0, 0), die gegeben ist durch [65, 76, 77, 88]:

j⃗ = qnv⃗ , (3.24)
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erhält man den longitudinalen spezifischen Widerstand ρxx, der für den jeweiligen
Ladungsträgertyp mit der Ladung q etwas weiter weg vom Dirac-Punkt gegeben
ist durch [65, 76, 77, 88]:

ρxx = 1
qnµ

(3.25)

und damit unabhängig vom äußeren Magnetfeld B⃗ext = (0, 0, Bz) ist [65, 76, 77,
88]. Der transversale Widerstand ρxy, den man weiter weg vom Dirac-Punkte für
den jeweiligen Ladungsträgertyp mit der Ladung q mit Hilfe von [65, 76, 77, 88]:

ρxy = Bz

nq
(3.26)

berechnen kann, ist dagegen direkt proportional zum äußeren Magnetfeld B⃗ext =
(0, 0, Bz) [65, 76, 77, 88]. Trägt man also ρxy gegen Bz auf, so erhält man aufgrund
der linearen Abhängigkeit der beiden Größen eine typische Hall-Gerade [65, 76,
77, 88]. Man misst somit den klassischen Hall-Effekt [65, 76, 77, 88]. Dieser tritt
allgemein auch in gewöhnlichen Leitern und Halbleitern auf und dominiert übli-
cherweise das Verhalten des transversalen Widerstands bei kleinen Magnetfeldern
oder hohen Temperaturen [65, 76, 77, 88].

3.2.2. Quanten-Hall-Effekt in gewöhnlichen Halbleitern
Klaus von Klitzing erhielt im Jahr 1985 für die Entdeckung des Quanten-Hall-
Effekts (QHE) den Nobelpreis, nachdem er zusammen mit M. Pepper und G.
Dorda den Hall-Effekt in 2DEGs untersuchte [89]. Ein solches 2DEG wurde in
Form eines Si-MOSFETs mit Hallbar-Geometrie hergestellt, womit schließlich
gezeigt werden konnte, dass der Hall-Widerstand RH in einem 2DEG bei tiefen
Temperaturen T und hohen äußeren Magnetfeldern Bz senkrecht zur Probene-
bene regelmäßig quantisierte Werte annimmt [89]. Es gibt somit Bereiche in der
Hall-Gerade, an denen die Steigung des Hall-Widerstands gleich null wird, wes-
halb man diese Bereiche auch als sogenannte Hall-Plateaus bezeichnet (vgl. Abb.
3.5) [65, 77, 88, 89]. Grundsätzlich ist der Hall-Widerstand RH bereits aus Glei-
chung (3.26) bekannt, denn es gilt [65, 90]:

RH = ρxy = Bz

nq
. (3.27)

Die Lage dieser Hall-Plateaus folgt nun einer festen Gesetzmäßigkeit [65, 90]. Die
Hall-Plateaus erscheinen nämlich immer genau dann, wenn die Bedingung [65,
90]:

RH = RK

ν
mit ν ∈ N (3.28)
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erfüllt ist, wobei die sogenannte von-Klitzing-Konstante RK als Naturkonstante
gegeben ist durch [65, 90]:

RK = h

e2 ≈ 25812, 81 Ω . (3.29)

Mit Blick auf Gleichung (3.28) erkennt man unmittelbar, dass die Widerstands-
werte dieser Hall-Plateaus quantisiert sind und außerdem nicht von bestimm-
ten Probeneigenschaften abhängen [65, 77, 90]. Bei Betrachtung des Längswider-
stands ρxx gegen ein zunehmendes äußeres Magnetfeld Bz, beobachtet man, dass
der Längswiderstand oszilliert, wobei die Amplitude des Längswiderstands mit
steigendem Magnetfeld zunimmt (vgl. Abb. 3.5) [65, 77, 90]. Diese Oszillationen
werden auch Shubnikov-de-Haas-Oszillationen (SdH-Oszillationen) genannt [65,
77, 90]. Man beobachtet außerdem, dass ρxx immer dann ein Minimum besitzt,
wenn RH ein Plateau aufweist (vgl. Abb. 3.5) [65, 77, 90]. Sobald RH nach einem
Plateau eine Stufe bildet, wächst ρxx zu einem Maximum an, welches erreicht
wird, sobald RH die Stufe auf halber Höhe erreicht hat (vgl. Abb. 3.5) [65, 77,
90]. Steigt RH weiter an, so fällt ρxx wieder bis zum Minimalwert ab (vgl. Abb.
3.5) [65, 77, 90]. Die Ursache für dieses Wechselspiel ist die Bildung von diskreten

Abbildung 3.5.: Messung von Längs- ρxx und Querwiderstand ρxy bei einem senk-
recht zur Probenebene geschalteten, ansteigenden äußeren Magnetfeld an einem
Si-MOSFET. Zu sehen sind SdH-Oszillationen und Quanten-Hall-Effekt. [90]

Energieniveaus, den sogenannten Landau-Niveaus, mit zunehmenden Werten von
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Bz [65, 77, 90]. Auf diesen Landau-Niveaus konzentrieren sich nun die Ladungs-
träger [65, 77, 90]. Der energetische Abstand ℏωc zwischen diesen Landau-Niveaus
wird mit steigendem Magnetfeld Bz größer, wodurch sich die energetische Lage
dieser Niveaus relativ zueinander, aber auch relativ zur Fermi-Energie EF än-
dert [65, 77, 90]. Geht man von der Situation aus, dass EF genau zwischen zwei
Landau-Niveaus liegt, so sind alle Landau-Niveaus unterhalb EF voll gefüllt. Bei
kleinen Magnetfeldern, bei denen die nicht deltaförmigen Landau-Niveaus auf-
grund von Defekten und Verunreinigungen usw. noch überlappen, führt dies le-
diglich zu weniger Streuung und dadurch zu Minima im Längswiderstand und
zu Plateaus im Hall-Widerstand. Bei größeren Magnetfeldern ist dann prinzipiell
gar keine Leitung mehr möglich ist, da zwischen den diskreten Landau-Niveaus
keine freien Zustände mehr vorhanden sind, in welche die Ladungsträger streuen
können [65, 77, 90]. Man erwartet daher einen verschwindenden Längswiderstand
und ein Plateau im Hall-Widerstand [65, 77, 90]. In diesem Fall kann lediglich an
den Probenrändern ein Ladungstransport stattfinden, was mit Hilfe des Rand-
kanalmodells erklärt werden kann [65, 77]. Darauf wird an dieser Stelle jedoch
nicht genauer eingegangen. Mehr dazu findet man in [65, 76, 77, 88]. Liegt EF nun
stattdessen auf einem Landau-Niveau, so ist Leitung innerhalb der Hallbar mög-
lich, da es freie Zustände gibt, in die gestreut werden kann [65, 77]. Man erwartet
beispielsweise bei einem halb gefülltem obersten Landau-Niveau ein Maximum
im Längswiderstand und im Hall-Widerstand einen stufenförmigen Übergang von
einem Plateau zum nächsten [65, 77]. Die Energien der diskreten Landau-Niveaus
können dabei berechnet werden durch [65, 77]:

EN =
(
N + 1

2

)
ℏωc mit N ∈ N0 . (3.30)

In jedem Landau-Niveau finden sich pro Einheitsfläche außerdem NL Zustände
[65, 77]. NL ist dabei gegeben durch [65, 77]:

NL = 2eB
h

. (3.31)

Die Zahl der besetzten Landau-Niveaus berechnet sich anschließend aus [65, 77]:

ν = n/NL . (3.32)

Dieser Wert wird auch als Füllfaktor bezeichnet [65, 77]. In Abbildung 3.6 ist
schematisch dargestellt wie die parabolische Dispersion bzw. wie die Zustands-
dichte D(E) diskrete Landau-Niveaus bildet.



37 3.2. Elektrischer Transport mit äußerem Magnetfeld

Abbildung 3.6.: Links: Ursprünglich parabolische Verteilung der Zustände im k-
Raum formt sich zu äquidistanten Landau-Niveaus um. Mitte: Landau-Niveaus
bilden im zweidimensionalen k-Raum konzentrische Kreise. Rechts: Zustands-
dichte bildet eine Reihe von äquidistanten Peaks entlang der Energieachse. [65]

3.2.3. Quanten-Hall-Effekt in Graphen
Da Graphen prinzipiell ein 2DEG darstellt, kann man den QHE auch in Graphen
messen [46, 91]. Der QHE für Graphen stellt jedoch einen Sonderfall dar [46]. Des
Weiteren muss dabei auch zwischen ML-G und BL-G unterschieden werden [46,
48, 92, 93].

QHE in ML-G

Im Falle von ML-G muss man für den QHE die lineare Dispersion nahe dem Dirac-
Punkt berücksichtigen [46, 91]. Für die Energien der einzelnen Landau-Niveaus
gilt anstelle von Gleichung (3.30) nun [46, 91, 93]:

EN = ±
√

2eℏv2
F |N |Bz mit N ∈ N0 . (3.33)

Das bedeutet, dass die Aufspaltung der Landau-Niveaus nicht mehr äquidistant
ist, sondern von einer Wurzel abhängig ist [46, 91, 93]. Außerdem muss man hier
hinsichtlich der Art der Ladungsträger unterscheiden, was in Gleichung (3.33)
durch die beiden unterschiedlichen Vorzeichen berücksichtigt wird [46, 91, 93].
Für den Fall, dass N = 0 gilt, sieht man an Gleichung (3.33) sofort, dass ein
Landau-Niveau am energetischen Nullpunkt existieren muss [46, 92]. Unter Be-
rücksichtigung der Spin- gs und Valley-Entartung gv ergibt sich für ML-G mit
dem Chiralitätsgrad J = 1 (für eine Kohlenstofflage) außerdem der Füllfaktor zu
[46, 92, 93]:

νML−G = gsgv

(
N + J

2

)
mit N ∈ N0 . (3.34)

Solange die Entartung nicht aufgehoben wird, folgen die Füllfaktoren für ML-
G damit einer Sequenz νML−G = ±2,±6,±10,±14, ... [46, 92, 93]. Bei diesen
Füllfaktoren zeigen sich Hall-Plateaus im Hall-Widerstand RH bzw. Minima im
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Längswiderstand ρxx [46, 92, 93]. Im Hall-Widerstand RH treten Hall-Plateaus
immer dann auf, wenn die Bedingung:

RH = RK

νML−G

= 1
νML−G

h

e2 (3.35)

erfüllt ist [46, 90, 92]. Durch Umrechnung von RH in σxy folgt, dass zwischen den
einzelnen Hall-Plateaus immer ein äquidistanter Abstand ∆σxy = 4e2/h vorliegt
[48, 93].

QHE in BL-G

Bei BL-G gilt für die Energien der Landau-Niveaus nun [46, 48]:

EN = ±ℏωc

√
N(N − 1) mit N ∈ N0 . (3.36)

Dabei ist ωc mit der effektiven Masse m∗ ≈ 0, 05me bereits aus Gleichung (3.22)
bekannt [46, 48]. Aus Gleichung (3.36) folgt nun, dass E0 = 0 ℏωc und E1 = 0 ℏωc

[46, 48, 94]. Das bedeutet, dass die Zustände bei E = 0 achtfach entartet sind
[46, 48, 93]. Für N >> 1 wird die Aufspaltung mit Abständen von ungefähr
ℏωc zwischen den einzelnen Landau-Niveaus nahezu äquidistant [46, 48, 93]. Die
beiden Vorzeichen in Gleichung (3.36) stehen hier wieder für die unterschiedlichen
Ladungsträgertypen [46, 48, 93]. Unter Berücksichtigung der Spin-Entartung gs

und Valley-Entartung gv ergibt sich für BL-G mit dem Chiralitätsgrad J = 2
(zwei Kohlenstofflagen) für den Füllfaktor [48, 92]:

νBL−G = gsgv

(
N + J

2

)
. (3.37)

Solange die Entartung nicht aufgehoben wird, folgen die Füllfaktoren für BL-G
einer Sequenz νBL−G = ±4, ±8, ±12, ±16 ... [46, 92, 93]. Bei diesen Füllfaktoren
zeigen sich also Hall-Plateaus im Hall-Widerstand RH bzw. Minima im Längs-
widerstand ρxx [46, 92, 93]. Im Hall-Widerstand RH treten Hall-Plateaus immer
dann auf, wenn die Bedingung:

RH = RK

νBL−G

= 1
νBL−G

h

e2 (3.38)

erfüllt ist [46, 90, 92]. Durch Umrechnung von RH in σxy folgt auch für BL-
G, dass zwischen den einzelnen Hall-Plateaus immer ein äquidistanter Abstand
∆σxy = 4e2/h vorliegt [48, 93].

3.3. Interferenzeffekte
Gemäß dem Welle-Teilchen-Dualismus, der vor ungefähr einhundert Jahren von
Louis de Broglie postuliert wurde, haben auch Teilchen wie Elektronen einen Wel-
lencharakter [65]. Da Wellen bekanntlich miteinander interferieren können, gilt
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dies somit auch für Elektronenwellen (gilt analog auch für Wellen der Elektro-
nenlöcher) [65]. In leitfähigen Materialien wie z.B. Graphen treten aufgrund der
Interferenz von Ladungsträgern besondere Effekte auf. Im Fokus dieser Arbeit ste-
hen dabei schwache Lokalisierung und schwache Antilokalisierung. Aber auch auf
die universalen Leitwertfluktuationen (engl.: „universal conductance fluctuations
“(UCF)) wird genauer eingegangen, da man mit deren Hilfe wichtige Informa-
tionen über die Phasenkohärenz einer Probe erhalten kann [95]. Durch Messung
dieser Effekte kann man im Allgemeinen das Verhalten der Ladungsträger in-
nerhalb einer Probe untersuchen, wodurch man anschließend auch wesentliche
Informationen über die Probeneigenschaften gewinnen kann [95–97]. Insbeson-
dere liefern diese Effekte für diese Arbeit besonders wichtige Parameter, die zur
Bestimmung und Beurteilung von induzierter SOC notwendig sind [8, 10, 97].
Deshalb behandelt der folgende Abschnitt nun die wesentlichen theoretischen
Grundlagen der Interferenz von Ladungsträgern.

3.3.1. Interferenz von Ladungsträgern
Betrachtet man einen leitfähigen Kanal mit einzelnen Punktdefekten, so können
sich Ladungsträger ausgehend von einem Startpunkt A mit Hilfe von Streuung
von einem Defekt zum nächsten entlang der Wege lα und lβ hin zum Endpunkt
B bewegen (vgl. Abb. 3.7) [77, 88]. Für diese Elektronen gilt dann die klassische

la

lb

A B

Abbildung 3.7.: Leitfähiger Kanal mit den Wegen lα (rot) und lβ (blau) zwischen
den Punkten A und B. Dabei sind die schwarzen Punkte Defekte, an denen die
Ladungsträger streuen können. [77, 88]

Gesamttransmissionswahrscheinlichkeit [77, 88]:

TA−B = |tα + tβ|2 = |tα|2 + |tβ|2 . (3.39)

Aus den beiden Wahrscheinlichkeitsamplituden tα und tβ erhält man die Wahr-
scheinlichkeiten, mit der ein Ladungsträger den jeweiligen Weg lα oder lβ zurück-
legt [77, 88]. Quantenmechanisch betrachtet, muss zu Gleichung (3.39) jedoch
noch ein weiterer Term hinzugefügt werden, da hier im klassischem Drude-Bild
noch die Welleneigenschaft der Ladungsträger berücksichtigt werden muss [77,
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88]. Dieser Term berücksichtigt zusätzlich die Phasenverschiebung zwischen den
beiden Wellen tα und tβ [77, 88]. Es folgt daher mit Gleichung (3.39) für ein
quantenmechanisches System [77, 88]:

TA−B = |tα + tβ|2 = |tα|2 + |tβ|2 + 2|tα||tβ| cos (ϕ1 − ϕ2) . (3.40)

Abhängig von der Phasenverschiebung ∆ϕ = (ϕ1 − ϕ2) folgt nun entweder de-
struktive oder konstruktive Elektroneninterferenz [77, 88].

3.3.2. Phasenkohärenz
Für das Auftreten von Interferenzeffekten müssen die beteiligten Wellen eine fes-
te Phasenbeziehung aufweisen, also phasenkohärent sein [77, 88]. Als räumliches
Maß für die Phasenkohärenz zweier Wellen dient die Phasenkohärenzlänge lϕ [77,
88]. Damit nun zwei Wellen als phasenkohärent gelten und somit miteinander in-
terferieren können, muss lϕ größer als die Differenz der zurückgelegten Weglängen
der einzelnen Wellen sein [77, 88]. Für Interferenz muss deshalb lϕ > |lα − lβ| er-
füllt sein [77, 88]. Die Phasenkohärenzlänge lϕ ist mit der Phasenstreuzeit τϕ und
dem bereits aus Abschnitt 3.1.4 bekannten Diffusionskoeffizienten D verknüpft
und es gilt [77, 88]:

lϕ =
√
Dτϕ . (3.41)

Es gibt nun wesentliche Faktoren, die die Phasenkohärenz der Ladungsträgerwel-
len beeinflussen können. Diese werden nun genauer betrachtet.
Die Phasenkohärenz hängt im Allgemeinen stark von der Art der auftretenden
Streuung im Festkörper ab [77, 88]. Während elastische Streuung im Allgemei-
nen keinen wesentlichen Einfluss auf die Phasenkohärenz hat, wird die Pha-
senkohärenzlänge stark durch inelastische Streuung verkürzt [77, 88]. Da Elek-
tronen nach jedem inelastischem Streuereignis kinetische Energie verlieren, än-
dert sich auch deren Wellenlänge [77, 88]. Dadurch ändert sich wiederum auch
die Phasenbeziehung zwischen den einzelnen Ladungsträgerwellen [77, 88]. Folg-
lich wird die Phasenkohärenz zerstört, wodurch keine Interferenz der Ladungs-
träger mehr auftreten kann [77, 88]. Zu den inelastischen Streuprozessen ge-
hört vor allem die Elektron-Phonon-Wechselwirkung und die Elektron-Elektron-
Wechselwirkung, wobei bei tiefen Temperaturen aufgrund fehlender Gitterschwin-
gungen, die Elektron-Elektron-Wechselwirkung dominiert [77, 88].
Bei Temperaturen um T = 0 K tragen nur Ladungsträger mit Energien nahe EF

zum Stromfluss bei [77, 88]. Bei höheren Temperaturen beteiligen sich gemäß der
Fermi-Dirac-Verteilung jedoch auch Ladungsträger mit Energien E = EF ±kBT ,
wobei kB die Boltzmann-Konstante ist, am Stromfluss [77, 88]. Aufgrund dieser
unterschiedlichen Energien haben die einzelnen Ladungsträgerwellen auch un-
terschiedliche Wellenlängen, was wiederum zur Zerstörung der Phasenkohärenz
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führt [77, 88]. Eine ansteigende Temperatur führt damit zunehmend zur Zerstö-
rung der Phasenkohärenz, weshalb es bei hohen Temperaturen immer schwieriger
wird Interferenzeffekte nachzuweisen [77, 88]. Bei tiefen Temperaturen und ho-
her Phasenkohärenz ist es jedoch grundsätzlich möglich Interferenzeffekte wie die
schwache Lokalisierung zu messen [77, 88]. Grundsätzlich gilt τϕ ∝ 1/T für die
Beziehung zwischen der Phasenstreuzeit τϕ und der Temperatur T [98, 99]. Der
folgende Abschnitt beschäftigt sich nun genauer mit der schwachen Lokalisierung.

3.3.3. Schwache Lokalisierung
Unter der Voraussetzung, dass die Phasenkohärenzlänge lϕ in einem System groß
genug ist, die Probe groß genug ist damit die UCF durch Mittelung weitge-
hend verschwinden, genügend Störstellen im System vorhanden sind und die
SOC im System vernachlässigbar klein ist, kann die schwache Lokalisierung in
Magnetotransport-Messungen auftreten [77, 88, 96]. Um den Effekt der schwa-
chen Lokalisierung besser zu verstehen, betrachtet man zunächst einen elektrisch
leitfähigen Kanal (vgl. Abb. 3.8). Dort können, durch Anlegen einer Spannung
Uxx, Ladungsträger zwischen den Punkten A und B fließen [77, 88]. Besitzt dieser
Kanal eine gewisse Menge an Störstellen, so findet Streuung der Ladungsträger
an diesen Störstellen statt [77, 88]. Es gibt eine gewisse Wahrscheinlichkeit RA−>A

dafür, dass Ladungsträger, die sich entlang eines Pfads lα zwischen den Punk-
ten A und B bewegen, in Form einer schleifenförmigen Bewegung rückstreuen
und damit sozusagen im System reflektiert werden [77, 88]. Daraus folgt, dass
die Leitfähigkeit σxx zwischen den Punkten A und B proportional zur Transmis-
sionswahrscheinlichkeit TA−>B ist [77, 88]. Es gilt für einen einzelnen Pfad [77,
88]:

TA−>B = |tA−>B|2 = |tα|2 = 1 −RA−>A . (3.42)

Berücksichtigt man für die Transmissionswahrscheinlichkeit sowohl alle klassisch
erlaubten Pfade als auch alle quantenmechanisch möglichen Pfade (lα und lβ), so
gilt [77, 88]:

TA−>B =
∣∣∣∣∣∑

α

tα

∣∣∣∣∣
2

=
∑

α

|tα|2 +
∑
α ̸=β

tα · t∗β . (3.43)

Für die RückstreuwahrscheinlichkeitRA−>A gilt mit der Rückstreuamplitude tα(A)
dann analog [77, 88]:

RA−>A =
∣∣∣∣∣∑

α

tα(A)
∣∣∣∣∣
2

=
∑

α

|tα(A)|2 +
∑
α ̸=β

tα(A) · t∗β(A) . (3.44)

Durch Mittelung über alle möglichen Pfade verschwindet in ausreichend großen
Proben der rein quantenmechanische, zweite Term in Gleichung (3.44) aufgrund
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unterschiedlicher Phasenlängen der einzelnen Pfade [77, 88]. Lediglich der zeit-
umgekehrte Pfad lα̃ von lα bleibt übrig, da beide Wege über die gleiche Phasen-
verschiebung verfügen [77, 88].

la

A B

la~

Abbildung 3.8.: Leitfähiger Kanal mit zufällig verteilten Punktdefekten zwischen
den Punkten A und B. Ladungsträger bewegen sich entlang der zueinander zeit-
umgekehrten Pfade lα und lα̃ und ermöglichen durch Interferenz das Auftreten
der schwachen Lokalisierung. [77, 88]

Es folgt damit aus Gleichung (3.44) [77, 88]:

RA−>A =
∑

α

|tα(A)|2 +
∑
α ̸=α̃

tα(A) · t∗α̃(A) = 2 ·
∑

α

|tα(A)|2 . (3.45)

Das bedeutet nun, dass die Rückstreuwahrscheinlichkeit unter Berücksichtigung
des quantenmechanischen Terms, aufgrund konstruktiver Interferenz der beiden
zeitumgekehrten Pfade, dem Doppelten der klassischen Rückstreuwahrscheinlich-
keit entspricht [77, 88]. Dieser quantenmechanische Effekt, der im klassischen
Drude-Bild nicht berücksichtigt wird, hat daher eine Reduktion (Erhöhung) der
(des) klassisch zu erwartenden Leitfähigkeit (Widerstands) zur Folge [77, 88].
Aufgrund der schleifenförmigen Bewegung der Ladungsträger, spricht man da-
von, dass die Ladungsträger lokalisiert sind, weshalb man den Effekt schließlich
als schwache Lokalisierung bezeichnet [77, 88]. Legt man nun vertikal zur Probe-
nebene ein magnetisches Feld Bz an, so kommt es aufgrund des Aharonov-Bohm-
Effekts zu einer zusätzlichen Phasenverschiebung der interferierenden Wellen [77,
88]. Diese Phasenverschiebung ist grundsätzlich abhängig von der Größe der Flä-
che, die von den beiden Pfaden eingeschlossen wird [77, 88]. Außerdem wird die
Phasenverschiebung umso größer, je höher das äußere Magnetfeld Bz ist [77, 88].
Dadurch zerstört die Phasenverschiebung mit zunehmendem äußeren Magnetfeld
Bz die Phasenkohärenz und damit auch die Zeitumkehrsymmetrie der Pfade [77,
88]. Der Effekt der schwachen Lokalisierung ist daher bei Bz = 0 T maximal und
nimmt mit zunehmendem Magnetfeld Bz ab [77, 88].
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3.3.4. Schwache Lokalisierung und Antilokalisierung in ML-G

Interferenzeffekte wie die schwache Lokalisierung können auch in Messungen an
ML-G auftreten. Anhand dieser Messungen lassen sich nun Informationen über
das Streuverhalten der Ladungsträger in ML-G gewinnen. Grundsätzlich gilt dies
auch für BL-G, allerdings waren derartige Messungen an BL-G für diese Arbeit
nicht relevant. Von daher wird hier auf Interferenzphänomene in BL-G nicht
genauer eingegangen. Im Gegensatz zu herkömmlichen Halbleitern mit parabo-
lischer Bandstruktur muss für ML-G die Chiralität der Ladungsträger berück-
sichtigt werden, wodurch die schwache Lokalisierung für ML-G einen Sonderfall
darstellt. Darauf wird in den nächsten Abschnitten nun genauer eingegangen.

Einfluss elastischer Streuprozesse auf Elektroneninterferenz in ML-G

Anhand theoretischer Arbeiten zum Effekt der schwachen Lokalisierung in ML-G
zeigte sich, dass hier die schwache Lokalisierung nicht nur von inelastischen, pha-
senbrechenden Streuprozessen abhängig ist, sondern auch von elastischen Streu-
prozessen beeinflusst wird [100–102]. Die Ursache dafür ist die Chiralität der
Ladungsträger in ML-G [100, 103]. Aufgrund der Chiralität der Ladungsträger
erhalten diese mit dem Pseudospin eine weitere Quantenzahl [100, 103]. Es ist nun
so, dass elastische Streuung nicht nur die Chiralität brechen kann, sondern auch
die Interferenz innerhalb der jeweiligen K- und K ′-Valleys zerstören kann [100,
102]. Diese sogenannte Intravalley-Streuung kann in Form von Streuung an Fal-
ten, Gitterversetzungen und atomar scharfen Defekten auftreten und wird durch
die Streuzeit τs beschrieben [100, 102]. Des Weiteren kann innerhalb der jeweili-
gen K- und K ′-Valleys sogenanntes trigonal warping auftreten [100–102]. Dieser
Effekt tritt bei höheren Energien weiter entfernt vom Dirac-Punkt auf und führt
zu Anisotropie in der Dispersionsrelation, wodurch die Zeitumkehrsymmetrie und
damit die schwache Lokalisierung innerhalb einer Valley zerstört wird [100–102].
Dieses trigonal warping wird durch die Streuzeit τw beschrieben [100–102]. Die
gesamte Intravalley-Streuung kann dann durch die Streurate τ−1

intra = τ−1
s + τ−1

w

charakterisiert werden [100]. Nun gibt es jedoch auch andere elastische Streu-
prozesse, die der Unterdrückung der Interferenz entgegenwirken [100]. Hierbei
handelt es sich um die sogenannte Intervalley-Streuung, welche an Defekten von
der Größe der Gitterkonstante auftritt und durch die Streuzeit τiv beschrieben
wird [100]. Da die beiden K- und K ′-Valleys gegensätzliche Chiralität und war-
ping aufweisen, wird erwartet, dass Intervalley-Streuung den Bruch der Chiralität
und den Effekt des trigonal warpings aufgrund Interferenz von Ladungsträgern
aus unterschiedlichen Valleys aufhebt [100]. Da Intervalley-Streuung und Intra-
valley-Streuung quasi miteinander konkurrieren, wird das Auftreten von schwa-
cher Lokalisierung in ML-G damit auch wesentlich von der Art der elastischen
Streukörper in Graphen beeinflusst.
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Berry-Phase

Weiterhin muss für ML-G das Auftreten einer sogenannten Berry-Phase berück-
sichtigt werden [104]. In ML-G sind die Ladungsträger aufgrund der linearen
Bandstruktur bekanntlich chiral [100, 103]. Mit dem Helizitätsoperator ĥ =
1/2 · σ⃗p⃗/|p⃗| und den Eigenwerten ±1 folgt nun, dass die Ausrichtung des Pseu-
dospinvektors σ⃗ relativ zum Impulsvektor p⃗ entweder parallel oder antiparallel
sein muss [36]. Bewegen sich Ladungsträger nun entlang einer schleifenförmigen
Trajektorie zu ihrem Ausgangspunkt zurück, so führt diese effektive Rückstreu-
ung im k-Raum zu einem Vorzeichenwechsel des Impulsvektors von k⃗ zu −k⃗ [103,
105]. Damit geht nun wegen der Chiralität der Ladungsträger auch eine Rotation
des Pseudospinvektors σ⃗ einher [103, 105]. Konkret bedeutet das nun, dass für die
Wellenbewegung eine sogenannte geometrische Phase ∆ϕ = ±π/2 berücksichtigt
werden muss, wobei hier das Vorzeichen für die jeweilige Ausbreitungsrichtung
steht [103, 105]. Für zwei zueinander zeitumgekehrte Pfade folgt hiermit eine
Phasendifferenz von ∆ϕ = π [103, 105]. Die Folge dieser sogenannten Berry-
Phase ist, dass es nun anstelle von konstruktiver zu destruktiver Interferenz der
Ladungsträgerwellen kommt [103, 105, 106]. Dadurch würde man nun für ML-
G grundsätzlich schwache Antilokalisierung anstelle von schwacher Lokalisierung
erwarten [101, 102, 107]. Dies ist jedoch nur dann der Fall, wenn Streuereignisse
nicht den Valley-Index der Ladungsträger ändern [101, 102, 107]. Da die Chira-
lität unterschiedlich für die jeweiligen Valleys ist, hängt die geometrische Phase
nämlich auch vom Valley-Index ab [101, 102, 106, 107]. Demnach kann durch
Auftreten von Intervalley-Streuung die Berry-Phase wieder verschwinden [101,
102, 106, 107]. Aufgrund starker Intervalley-Streuung kann es deshalb wieder zu
konstruktiver Interferenz kommen, wodurch die schwache Lokalisierung wieder-
hergestellt werden kann [101, 102, 106, 107]. Grundsätzlich kann man nun sagen,
dass das Auftreten der schwachen Lokalisierung bzw. der schwachen Antiloka-
lisierung wesentlich durch das Zusammenspiel der einzelnen Streuparameter τϕ,
τ∗, τív charakterisiert wird [100–102, 104, 106, 107]. Um zu sehen inwieweit sich
die einzelnen Parameter nun auf den Kurvenverlauf auswirken, ist es sinnvoll
den Kurvenverlauf der schwachen Lokalisierung und schwachen Antilokalisierung
mathematisch anhand einer Formel beschreiben zu können.

Mathematische Beschreibung von schwacher Lokalisierung und schwacher
Antilokalisierung

Mathematisch kann die schwache Lokalisierung und die schwache Antilokalisie-
rung in ML-G mit Hilfe der folgenden Formel beschrieben werden [101]:

∆σxx(Bz) = e2

πh

(
F

(
τ−1

Bz

τ−1
ϕ

)
− F

(
τ−1

Bz

τ−1
ϕ + 2τ−1

iv

)
− 2F

(
τ−1

Bz

τ−1
ϕ + τ−1

iv + τ−1
intra

))
(3.46)
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Dabei gilt τ−1
Bz

= 4eDBz/ℏ und F (z) = ln(z) + ψ(0.5 + z−1), wobei ψ die so-
genannte Digammafunktion ist [101]. In der Formel treten nun auch die drei
wesentlichen Streuparameter auf τϕ, τiv und τintra auf [101]. Betrachtet man nun
Gleichung (3.46), so gibt es grundsätzlich zwei wesentliche Fälle [104]:

• Im ersten Fall, wenn relativ viel Streuung stattfindet und die Streuzeiten
τiv und τintra dadurch vergleichsweise klein sind, dominiert der erste Term
in Gleichung (3.46), da der zweite und der dritte Term hier aufgrund der
kleinen Streuzeiten τiv und τintra unterdrückt wird [104]. In diesem Fall ist
die Korrektur der Magnetoleitfähigkeit ∆σxx(Bz) positiv. Das heißt, dass
die Leitfähigkeit mit zunehmendem Magnetfeld Bz zunimmt, bei Bz = 0 T
minimal ist und schwache Lokalisierung auftritt [104].

• Im zweiten Fall ist die Korrektur der Magnetoleitfähigkeit ∆σxx(Bz) aus
Gleichung (3.46) negativ. Das heißt, dass die Leitfähigkeit mit zunehmen-
dem Magnetfeld Bz abnimmt, bei Bz = 0 T maximal ist und schwache
Antilokalisierung auftritt [104]. Dieser Fall tritt genau dann ein, wenn der
zweite und dritte Term in Gleichung (3.46) dominierend sind, also wenn τiv

und τintra relativ groß sind und die Probe wenig Defekte aufweist [104]. In
idealem defektfreien ML-G, wenn τiv, τintra → ∞ sehr groß werden, domi-
niert grundsätzlich der dritte Term und man erwartet ebenfalls schwache
Antilokalisierung [104].

Messung von schwacher Lokalisierung und Antilokalisierung

Der Effekt der schwachen Lokalisierung kann mit Hilfe von Magnetotransport-
Messungen an ML-G untersucht werden [100, 104]. Zur Messung der schwachen
Lokalisierung wird ein variables äußeres Magnetfeld Bz senkrecht zur Probene-
bene angelegt und bei fester Ladungsträgerdichte n (bzw. Gatespannung Ug) die
Längsspannung Uxx gemessen [100, 104]. Da sich der Effekt der schwachen Lo-
kalisierung in vergleichsweise kleinen Proben mit den dichteabhängigen UCF,
auf die später noch genauer eingegangen wird, überlagern kann, führt man die
Magnetotransport-Messungen mehrmals für unterschiedliche Ladungsträgerdich-
ten durch und bildet anschließend den Mittelwert dieser Kurven, wodurch sich die
UCF weitgehend herausfiltern lassen, wenn über ein genügend großes Intervall ∆n
(∆Ug) gemittelt wurde [100, 104]. Anschließend kann man mit Gleichung (3.4)
und (3.5) die Leitfähigkeit σxx der Probe in Abhängigkeit des Magnetfelds Bz

bestimmen und graphisch darstellen [100, 104]. Man erhält vergleichbare Kurven
wie in Abb. 3.9 [100, 104]. Gemäß Gleichung (3.46) gibt es zwei wesentliche Fälle
[100, 104]. Beim ersten Fall dominiert der erste Term in Gleichung (3.46) und
man erwartet schwache Lokalisierung [100, 104]. In diesem Fall findet viel Streu-
ung von Ladungsträgern im System statt und die beiden Streuzeiten τiv und τintra

werden deshalb in Bezug auf die Phasenstreuzeit τϕ als relativ klein angenommen
[100, 104]. Mögliche Kurven für eine derartige Situation werden in Abb. 3.9 a)
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Abbildung 3.9.: a) Simulierte Kurven für schwache Lokalisierung mit relativ klei-
nen Streuparametern τiv = 5 ps und τintra = 0, 1 ps für verschiedene Phasenstreu-
zeiten τϕ. b) Simulierte Kurven, die den Übergang von schwacher Lokalisierung
zu schwacher Antilokalisierung zeigen. Dabei sind die Streuparameter τiv = 15 ps
und τintra = 5 ps, im Vergleich zu den unterschiedlichen Phasenstreuzeiten τϕ der
einzelnen Kurven, relativ groß. In beiden Fällen wurde für den Diffusionskoeffi-
zienten D = 0, 03 m2s−1 gewählt.

gezeigt [100, 104]. Die einzelnen Kurven unterscheiden sich durch die Größe der
Phasenstreuzeit τϕ. Man sieht unmittelbar, dass die Korrektur der Leitfähigkeit
∆σxx(Bz) abnimmt, wenn die Phasenstreuzeit τϕ kleiner wird [100, 104]. Dies
ist z.B. dann der Fall, wenn die Temperatur T des Systems erhöht wird [100,
104]. Auch ist klar erkennbar, dass die Korrektur der Leitfähigkeit ∆σxx(Bz) mit
zunehmendem Magnetfeld Bz erwartungsgemäß abnimmt [100, 104]. Im zweiten
Fall dominiert der zweite und dritte Term von Gleichung (3.46) und man erwar-
tet schwache Antilokalisierung [100, 104]. In diesem Fall sind die Streuzeiten τiv

und τintra im Vergleich zur Phasenstreuzeit τϕ relativ groß und es gilt die Annah-
me, dass relativ wenig Streuung der Ladungsträger im System stattfindet [100,
104]. Dies kann z.B. in breiteren Proben, bei denen die Streuung am Probenrand
weniger ins Gewicht fällt, oder in sehr sauberen Proben der Fall sein. In die-
sem Fall erhält man Kurven wie in Abb. 3.9 b) gezeigt [100, 104]. Man erkennt
hier, dass die Kurve für große Phasenstreuzeiten τϕ zuerst noch schwache Loka-
lisierung zeigt und dann für kleiner werdende Phasenstreuzeiten τϕ in schwache
Antilokalisierung übergeht [100, 104]. Die Korrektur der Leitfähigkeit ∆σxx(Bz)
geht hier von negativen Werten in positive Werte über [100, 104]. Auffällig ist
zudem, dass die schwache Lokalisierung mit sinkender Phasenstreuzeit τϕ wesent-
lich schneller verschwindet als die schwache Antilokalisierung [100, 104]. Damit
die schwache Antilokalisierung verschwindet, muss die Phasenstreuzeit nämlich
viel weiter abfallen, als es für die schwache Lokalisierung notwendig ist [100, 104].
Das bedeutet nun, dass diese schwache Antilokalisierung im Allgemeinen weniger
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stark mit steigender Temperatur T abfällt [100, 104].

3.3.5. Universale Leitwertfluktuationen und
Autokorrelationsfunktion in Graphen

Misst man die elektrische Leitfähigkeit σxx(Bz) von Graphen in Abhängigkeit ei-
nes externen Magnetfeldes Bz, so können bei tiefen Temperaturen Fluktuationen
in der Leitfähigkeit, die sogenannten Leitwertfluktuationen, auftreten [77]. Solche
Leitwertfluktuationen können sowohl im ballistischen (engl.: „ballistic conductan-
ce fluctuations “(BCF)) als auch im diffusiven (UCF) Regime auftreten [77]. Für
diese Arbeit sind vor allem die UCF relevant, daher wird auf die BCF hier nicht
genauer eingegangen. Die UCF, die gewöhnlich bei Messungen zur schwachen Lo-
kalisierung und Antilokalisierung auftreten, sind bei solchen Messungen meistens
eher unerwünscht, da sie sich mit diesen Effekten überlagern und dadurch die
Auswertung dieser Messungen erschweren [77, 96]. Man kann sich allerdings die
UCF zunutze machen und durch Anwendung einer Autokorrelationsfunktion die
Phasenstreuzeit τϕ des Systems ermitteln [95]. Dies erweist sich während der Kur-
venanpassung von schwacher Lokalisierung und Antilokalisierung als vorteilhaft,
da sich dadurch die Zahl der zu ermittelnden unbekannten Fit-Parameter in For-
mel (3.46) von drei auf zwei unbekannte Parameter reduzieren lässt [10, 95, 108].
Dieses Verfahren wird später noch genauer erklärt. Zum besseren Verständnis
wird an dieser Stelle jedoch zuerst auf die UCF genauer eingegangen.

Universale Leitwertfluktuationen

Im diffusivem Regime wird die Bewegung der Ladungsträger stark durch elasti-
sche Streuprozesse beeinflusst [77]. Bei tiefen Temperaturen führt der kohärente
Quantentransport in Graphen bekanntlich zu Quanteninterferenzkorrekturen der
Leitfähigkeit [77, 96]. Elektronenwellen können sich, aufgrund von Streuereignis-
sen, entlang vieler unterschiedlicher Wege im Graphen ausbreiten, wobei manche
dieser Wellen zufällig miteinander interferieren können [77, 96]. Wegen dieser
zufälligen Interferenz, kommt es nun zu quantenmechanischen Korrekturen der
elektrischen Leitfähigkeit [77]. Die Amplituden dieser Korrekturen liegen grund-
sätzlich im Bereich von δG = e2/h und sind unabhängig von der Probengröße und
von der Unordnung innerhalb der Probe solange lϕ(T ) >> W gilt [77]. Deshalb
gelten diese Leitwertfluktuationen als universal [77]. Trägt man nun die gemes-
sene Leitfähigkeit σxx(Bz) in Abhängigkeit zum äußeren Magnetfeld Bz auf, so
erhält man eine Kurve, die von periodischem Rauschen, den UCF, überlagert
wird [77, 95, 108]. Die UCF sind abhängig vom Magnetfeld Bz, da das äuße-
re Magnetfeld die Zyklotronbewegung der Ladungsträger beeinflusst und damit
auch die Pfade der Ladungsträger und so die Quanteninterferenz ändert [77, 95,
108]. Die UCF hängen neben dem Magnetfeld Bz auch von der Gatespannung
Ug und damit von der Ladungsträgerdichte n des Systems ab [96]. Trägt man
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also für viele verschiedene Ladungsträgerdichten n die Leitfähigkeit σxx(Bz) ge-
gen das äußere Magnetfeld Bz auf, so kann man die UCF, durch Mitteln der
einzelnen Messkurven, herausfiltern [96]. Da die Phasenkohärenz und somit die
Elektroneninterferenz temperaturabhängig sind, müssen auch die UCF von der
Temperatur T abhängig sein [77]. Es ist daher zu erwarten, dass die Amplitude
δG der UCF mit steigender Temperatur T abnimmt und bei hohen Temperaturen
T verschwinden [77]. Abschließend wird beschrieben, wie man Informationen zur
Phasenkohärenz des Systems aus den UCF gewinnen kann.

Autokorrelationsfunktion und Bestimmung der Phasenkohärenz

Wie bereits erwähnt, gibt es ein Verfahren, mit dem man die Phasenstreuzeit τϕ

aus den UCF extrahieren kann, um Informationen über die Phasenkohärenz des
Systems zu erhalten [10, 95, 108]. Dazu wird die Leitfähigkeit σxx(Bz) bei einem
variablen Magnetfeld Bz für eine bestimmte Gatespannung Ug (bzw. Ladungsträ-
gerdichte n) gemessen [95]. Diese Messungen werden für weitere Gatespannungen
Ug wiederholt, wobei alle Gatespannungen Ug innerhalb eines schmalen Bereichs
∆Ug liegen sollen [95]. Im nächsten Schritt, werden diese Messkurven gemittelt,
wodurch man eine Kurve ähnlich der Kurve aus Abb. 3.10 a) erhalten sollte
[95]. Durch das Mitteln der Messkurven lediglich über einen schmalen Bereich
∆Ug erhält man viele Fluktuationen und damit viel Information zu den UCF im
Messsignal, ohne jedoch die UCF komplett aus dem Messsignal herauszumitteln.
Die Kurve aus Abb. 3.10 a) zeigt nun die typischen UCF [95]. Durch Anwen-
dung der sogenannten Autokorrelationsfunktion auf diese Messkurve erhält man
eine Kurve wie in Abb. 3.10 b) (durchgehende Linie). Im Allgemeinen ist die
Autokorrelationsfunktion eine Funktion, die die Korrelation mit sich selbst zu
einem früherem Zeitpunkt beschreibt [95]. In Abb. 3.10 b) sieht man nun zwei
Kurven. Die obere Kurve stellt die Autokorrelationsfunktion f(δBz) in Abhän-
gigkeit vom Magnetfeld δBz dar [95]. Wobei hier das Magnetfeld δBz ein Maß
für die Verzögerung der Signale darstellt [109]. Die untere Kurve stellt die diffe-
renzierte Autokorrelationsfunktion dar [95]. Diese Kurve weist ein Minimum am
sogenannten inflection point (IP) nahe δBz = 0 mT auf [95]. Man ermittelt nun
den Magnetfeldwert BIP an diesem Minimum und durch Einsetzen von BIP in
[95]:

τUCF ≈ 3ℏ
2eDBIP

(3.47)

kann man mit dem bereits bekannten Diffusionskoeffizienten D und den beiden
Naturkonstanten e und ℏ die Streuzeit τUCF berechnen [95]. Wegen τUCF ≈ τϕ

erhält man damit auch die gesuchte Phasenstreuzeit τϕ [95].
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Abbildung 3.10.: In a) wird die Kurve der Magnetoleitfähigkeit σxx(Bz) als Funk-
tion des senkrechten Magnetfelds Bz gezeigt. Die einzelnen Schwingungen kann
man dabei im Wesentlichen den UCF zuordnen. Die Messungen wurden bei einer
Temperatur von T = 310 mK und einem verschwindenden horizontalen Magnet-
feld Bx = By = 0 mT durchgeführt. Die Kurve stellt dabei einen Mittelwert meh-
rerer Messkurven, die in einem Bereich um Ug = 0 V gemessen wurden, dar. In
b) ist sowohl die Autokorrelationsfunktion der Kurve aus a) dargestellt (durch-
gehende Linie), als auch die differenzierte Kurve der Autokorrelationsfunktion
(gepunktete Kurve). Der Wert des Magnetfelds BIP am inflection point (IP), an
dem die differenzierte Kurve ein Minimum besitzt, wird benutzt, um die Phasen-
streuzeit zu berechnen. Entnommen aus [95] und grafisch nachbearbeitet.





4. Spin-Bahn-Kopplung
Betrachtet man ein Wasserstoffatom mit einem einfach positiv geladenen Atom-
kern im Ruhesystem eines Elektrons, so erzeugt der Atomkern als bewegte La-
dung (mit Bahndrehimpuls) ein magnetisches Feld, welches auf das Elektron wirkt
und dessen Eigendrehimpuls (Elektronenspin) beeinflusst. Dadurch entsteht ei-
ne Kopplung zwischen Bahndrehimpuls und Elektronenspin, was man als Spin-
Bahn-Kopplung (SOC) bezeichnet. Die klassische Schrödinger-Gleichung muss
daher allgemein um den folgenden relativistischen Hamiltonian von der Form
[110]:

Hso = ℏ
4m2c2

(
∇⃗V × p⃗

)
· s⃗ (4.1)

erweitert werden. Wie man im Folgenden sehen wird, kommen für Systeme mit
Graphen aufgrund der SOC bestimmte Korrekturen zum klassischen Hamiltonian
hinzu. Auf diese wird nun genauer eingegangen.

4.1. Spin-Bahn-Kopplung in Monolagen-Graphen
Hamiltonian von ML-G mit SOC

Die elektronische Bandstruktur von reinem ML-G ohne SOC kann nahe den K-
bzw. K ′-Punkten grundsätzlich durch Gleichung (2.7) beschrieben werden [7].
Schreibt man Gleichung (2.7) etwas um, so erhält man für intrinsisches ML-G
ohne SOC den Hamiltonian [7]:

H0 = ℏvF (κσxkx + σyky) . (4.2)

Hier ist vF die Fermi-Geschwindigkeit, kx und ky sind die Komponenten des Elek-
tronenwellenvektors bzgl. K (K ′), κ = 1(−1) der Parameter für den jeweiligen K-
bzw. K ′-Punkt, σx und σy sind die Pauli-Spin-Matrizen, die auf den sogenann-
ten Raum des Pseudospins wirken, der von den zwei dreieckigen Untergittern des
ML-Gs geformt wird [7]. Der Hamiltonian H0 beschreibt die lückenlosen Zustände
der konischen Bandstruktur des ML-Gs [7]. Zu diesem Term muss nun der Term
für die intrinsische SOC des ML-Gs addiert werden [7]. Diese wird beschrieben
durch den effektiven Hamiltonian HI und ist gegeben durch [7]:

HI = λIκσzsz . (4.3)

51



4. Spin-Bahn-Kopplung 52

Hier ist sz die Spin-Pauli-Matrix [7]. Die Folge dieser SOC ist nun, dass die ko-
nische Bandstruktur von ML-G eine kleine Bandlücke von 2|λI | erhält, wobei
λI = 12µeV beträgt [7]. Die Spinentartung, die durch die Rauminversions- und
Zeitumkehrsymmetrie gewährleistet wird, bleibt jedoch erhalten [7]. Genauer be-
trachtet, ist es also nicht richtig, ML-G als Halbleiter ohne Bandlücke zu bezeich-
nen, da intrinsisches ML-G tatsächlich eine kleine Bandlücke besitzt, allerdings ist
diese Bandlücke vergleichsweise klein, wodurch diese bei vielen Experimenten ver-
nachlässigt werden kann. Man kann nun durch Anlegen eines äußeren elektrischen
Feldes, senkrecht zur Graphen-Ebene, die z/-z-Symmetrie zerstören, wodurch ein
extrinsischer Hamiltonian HR vom Rashba-Typ im Gesamt-Hamiltonian berück-
sichtigt werden muss [7]. Dieser Term ist gegeben durch [7]:

HR = λR(κσxsy − σysx) . (4.4)

Dabei ist λR der sogenannte Rashba-Parameter [7]. Aufgrund der gebrochenen z/-
z-Symmetrie muss neben dem Rashba-SOC-Term noch ein weiterer SOC-Term,
der Pseudospin-Inversions-Asymmetrie-Term (PIA-Term), berücksichtigt werden
[63, 97]. HP IA ist gegeben durch [97]:

HP IA = λP IAσz(kxsy − kysx)a0 . (4.5)

wobei a0 die bereits bekannte Gitterkonstante von ML-G ist. Damit folgt nach [7]
für intrinsisches ML-G mit externem elektrischem Feld (senkrecht zur Graphen-
Ebene) der Gesamt-Hamiltonian:

H = H0 + HR + HI + HP IA . (4.6)

Bandstruktur von ML-G mit SOC

Die Berücksichtigung der Rashba-SOC hat auch für die Bandstruktur von ML-G
eine wesentliche Änderung zu Folge [7]. So wird in der Bandstruktur die zweifache
Spinentartung der Bänder aufgehoben [7]. In Abb. 4.1 sind dazu die einzelnen
Fälle dargestellt [7]. Im ersten Fall (siehe Abb. 4.1 (a)), wenn λR = 0 eV ist, sind
Valenz- und Leitungsband entartet und die Bandstruktur weist wegen HI nur eine
Bandlücke von 2λI auf [7]. Sobald λR ansteigt und λR < λI gilt, liegt zwar noch
eine Bandlücke vor, allerdings schließt diese sich mit zunehmendem λR [7]. Die
Spinpolarisation nimmt jedoch vor allem für die Lochbänder zu, wodurch dort die
Spinentartung aufgehoben wird [7]. Sobald λR = λI gilt, formen die beiden Spin-
Up-Bänder einen typischen Doppelkegel für masselose Dirac-Fermionen, während
die beiden Spin-Down-Bänder eine Bandlücke aufweisen, parabolisch sind und
damit massiv bleiben [7]. Für λR > λI sind alle Bänder wieder parabolisch und
weisen Bandlücken zwischen den jeweiligen Spin-Up- und Spin-Down-Bändern auf
[7]. Es kommt jedoch bei |⃗k| = 0 Å−1 zu einer Entartung von einem Elektronen-
und einem Lochband mit unterschiedlicher Spinpolarisation [7]. Somit hängt die
Bandstruktur bei intrinsischem ML-G stark von der Stärke der Rashba-SOC ab.
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Abbildung 4.1.: Änderung der Bandstruktur von ML-G nahe |⃗k| = 0 Å−1 auf-
grund transversaler äußerer elektrischer Felder. a) Zeigt die Bandstruktur ohne
äußerem elektrischen Feld. Die schwarzen Bänder sind dabei spinentartet b) Elek-
trisches Feld bei E = 1, 0 V/nm mit λR < λI . c) E = 2.44 V/nm mit λR = λI und
E = 4, 0 V/nm mit λR > λI . In allen Plots ist die Fermi-Energie bei E = 0 eV. In
b)-d) resultieren die roten Kurven außerdem aus Spin-Up-Zuständen, während
die blauen Kurven den Spin-Down-Zuständen zuzuordnen sind. [7]

4.2. Spin-Bahn-Kopplung in Graphen auf TMDCs
Im vorherigen Abschnitt wurde die SOC von intrinsischem ML-G mit und oh-
ne äußerem elektrischen Feld betrachtet. Dieser Abschnitt behandelt nun die
proximity-induzierte SOC von Graphen in Heterostrukturen mit TMDCs wie
WSe2 und WS2.

4.2.1. Monolagen-Graphen auf TMDCs
Hamiltonian von ML-G auf TMDCs

Durch den Kontakt von ML-G mit TDMCs kommt eine sogenannte Proximity-
Kopplung zustande [3]. Aufgrund dieser Kopplung wirken auf die Kohlenstoffa-
tome des ML-Gs gewisse Potentiale der TMDC-Schicht [3]. Da die beiden Ma-
terialien nun unterschiedliche Gitterkonstanten aufweisen, spüren die einzelnen
Atome der Untergitter A und B des ML-Gs unterschiedliche Potentiale [3]. Im
Gesamt-Hamiltonian muss also ein weiterer Term Hst berücksichtigt werden, der
aus diesem sogenannten staggered potential folgt [3]. Der Hamiltonian Hst ist
gegeben durch [3]:

Hst = ∆stσzs0 . (4.7)

Dabei ist σz die Pseudospin-Matrix und s0 die Spin-Einheitsmatrix [3]. In der
Bandstruktur führt diese Proximity-Kopplung unmittelbar zu einer Bandlücke
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von der Größe ∆st [3].
Eine weitere Folge dieser Proximity-Kopplung ist, dass die Rauminversionssym-
metrie (z/-z-Symmetrie) gebrochen wird [3]. Außerdem vermischen sich die pz-
Orbitale des ML-Gs mit den d-Orbitalen der Wolframatome [3]. Dadurch ist eine
starke Erhöhung der SOC im ML-G zu erwarten, wodurch die Bänder stark spin-
aufgespalten sind [3]. Diese Aufspaltung liegt nun im Bereich mehrerer Millielek-
tronenvolt und ist im Vergleich zur intrinsischen SOC von ML-G (≈ 24µeV) sehr
viel größer [3]. Da nun wegen der gebrochenen Pseudospin-Symmetrie λA

I ̸= λB
I

gilt, wird HI aus Gleichung (4.3) nun zu [3]:

HA/B
I = λA

I + λB
I . (4.8)

Damit geht mit der gebrochenen Pseudospin-Symmetrie auch eine Änderung von
HP IA hin zu HA/B

P IA einher [3]. Der Hamiltonian HA/B
P IA ist nun gegeben durch [3]:

HA/B
P IA = λA

P IA + λB
P IA . (4.9)

Auf den Rashba-Term wirkt sich die Proximity-Kopplung nur insofern aus, dass
der Rashba-Parameter λR durch den Bruch der räumlichen Spiegelsymmetrie grö-
ßer wird [3]. Da die Rashba-SOC jedoch keine sogenannte next-nearest-neighbor-
hopping wie die beiden anderen Terme aus (4.8) und (4.9) darstellt, sondern
ein nearest-neighbor spin-flip hopping ist, trägt der Rashba-Term erheblich zur
Spinaufspaltung bei [3]. Es muss hier jedoch nicht zwischen den beiden Untergit-
tern A und B unterschieden werden [3]. Von daher bleibt der Rashba-Term aus
(4.4) unverändert [3]. Unter Berücksichtigung aller Terme, erhält man nun den
Gesamt-Hamiltonian [3]:

H = H0 + Hst + HR + HA/B
I + HA/B

P IA . (4.10)

Cummings et al. liefern in [97] eine alternative, analytische Schreibweise. Diese
ist gegeben durch [97]:

H = H0 + Hst + HI + HV Z + HR + HP IA + H∆P IA . (4.11)

Die Terme H0, Hst und HR sind dabei bereits bekannt. Die anderen Terme HI ,
HV Z , HP IA und H∆P IA sind gegeben durch die folgenden Formeln [97]:

HI = λA
I + λB

I

2 κσzsz = λIκσzsz , (4.12)

HV Z = λA
I − λB

I

2 κsz = λV Zκsz , (4.13)

HP IA = a0
λA

P IA + λB
P IA

2 σz(kxsy − kysx) = a0λP IAσz(kxsy − kysx) , (4.14)



55 4.2. Spin-Bahn-Kopplung in Graphen auf TMDCs

H∆P IA = a0
λA

P IA − λB
P IA

2 σ0(kxsy − kysx) = a0∆P IAσ0(kxsy − kysx) . (4.15)

Der Term HV Z steht hier für die Valley-Zeeman-SOC [10, 97]. Dieser Term kop-
pelt die K- und K ′-Valleys mit dem Elektronenspin [10, 97]. Der Term führt
zu einer Zeeman-Aufspaltung, welche für die beiden Valleys ein unterschiedliches
Vorzeichen besitzt [10, 97]. Dies führt zu sogenannten out-of-plane Spins, die für
die beiden Valleys gegeneinander polarisiert sind [10, 97]. Erst für größere Energi-
en der Ladungsträger gewinnen die beiden PIA-Terme zunehmend an Bedeutung,
da diese Terme vom Impuls der Ladungsträger abhängig sind [3, 97]. Der Term
HP IA führt zur Renormalisierung der Fermi-Geschwindigkeit, während H∆P IA

für |⃗k| ≠ 0 Å−1 auch zu einer Spinaufspaltung führen kann [97, 111].

Bandstruktur von ML-G auf TMDCs

Dieser Abschnitt widmet sich nun der Bandstruktur von ML-G auf TMDCs (hier
WS2 und WSe2). Betrachtet man hierzu Abbildung 4.2 a) und b) [63]), so ist
Folgendes zu erkennen.
Wenn die Energie E nahe der Fermi-Energie EF liegt, nimmt die Bandstruktur
die Form eines Doppelkegels an, was grundsätzlich auf die konische Bandstruktur
von ML-G zurückzuführen ist [63]. Dieser Teil der Bandstruktur liegt innerhalb
der Bandlücke der TMDCs [63]. Unter- und oberhalb dieser konischen Band-
struktur liegen daher die Valenz- und Leitungsbänder von WS2 (vgl. Abb. 4.2 a))
bzw. WSe2 (vgl. Abb. 4.2 b)) [63]. Für niedrige Temperaturen und relativ kleine
Ladungsträgerdichten ist zu erwarten, dass in den TMDCs nur ein sehr geringer
Ladungstransport möglich ist und der Ladungstransport stattdessen ausschließ-
lich im ML-G stattfindet [63]. Es fällt außerdem auf, dass der Teil der konischen
Bandstruktur und damit EF für WS2 näher am Leitungsband und für WSe2 dage-
gen näher am Valenzband liegt. Deshalb ist es von der Wahl des TMDCs abhän-
gig, welche Form des Ladungstransports (Loch- oder Elektronenleitung) durch
Änderung der Fermi-Energie EF in den TMDCs bevorzugt auftreten würde [63].
Im Rahmen dieser Arbeit sollte jedoch vermieden werden, dass die TMDCs in
den leitfähigen Zustand übergehen, da lediglich der Ladungstransport in ML-G
untersucht werden sollte. Während der Experimente kann dieser Zustand erhal-
ten bleiben, indem man die Ladungsträgerdichten n des Systems durch die Wahl
von relativ kleinen Gatespannungen Ug klein hält.
Vergrößert man nun den Bereich nahe der konischen Bandstruktur der jeweiligen
Heterostruktur, so erhält man die beiden Abbildungen 4.2 c) und d) [63]. In c)
sieht man vier Bänder. Zwei blaue Bänder für Spin-Down-Zustände und zwei rote
Bänder für Spin-Up-Zustände [63]. Damit sind die Bänder spinpolarisiert, wobei
hier die Spinpolarisation mit wenigen Millielektronenvolt im Vergleich zu der von
intrinsischem ML-G sehr groß ist [63]. Die Bänder mit E > EF entsprechen hier
nun dem Leitungsband von ML-G [63]. Die Bänder mit E < EF entsprechen da-
gegen dem Valenzband von ML-G [63]. Man erkennt nun, dass zwischen den Bän-
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Abbildung 4.2.: Die beiden Grafiken a) und b) zeigen die Bandstruktur von ML-
G auf WS2 bzw. WSe2. Bei E − EF = 0 eV erkennt man klar die typische koni-
sche Bandstruktur von ML-G. Die Bänder ober- und unterhalb davon zeigen die
Leitungs- und Valenzbänder von WS2 bzw. WSe2. Vergrößert man nun die beiden
grün umrahmten Bereiche in a) und b) an den K-Punkten bei E−EF = 0 eV, so
erhält man die Grafiken c) und d). Hier sieht man dann die spinaufgespaltenen
Spin-Up- (rot) und Spin-Down-Bänder (blau). In d) erkennt man außerdem, dass
die beiden Bänder nahe E − EF = 0 eV invertiert sind.[63]

dern mit gleicher Spinpolarisation eine Bandlücke im Bereich weniger Millielek-
tronenvolt vorliegt [63]. Während diese Bandlücke lediglich durch die Proximity-
Kopplung zustande kommt, wird die Spinpolarisation durch die starke SOC des
TMDCs hervorgerufen [63]. In d) ist zu erkennen, dass für WSe2 ein ähnliches
Verhalten auftritt [63]. Allerdings tritt hier nahe E−EF = 0 eV ein Sonderfall auf
[63]. Hier zeigen die Berechnungen eine invertierte Bandstruktur [63]. Das heißt,
dass nahe |⃗k| = 0 Å−1 die Spin-Up-Zustände im Leitungsband energetisch niedri-
ger liegen als die Spin-Down-Zustände des Valenzbandes [63]. Demnach gilt, dass
für sehr kleine Ladungsträgerdichten n sowohl Loch- als auch Elektronenleitung
stattfindet, wobei die Lochleitung lediglich von Spin-Down-Zuständen und die
Elektronenleitung nur von Spin-Up-Zuständen ermöglicht wird [63]. Auf die Mes-
sergebnisse dieser Arbeit sollte dieser Umstand aber keinen erheblichen Einfluss
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haben, da die Messungen bei relativ großen Ladungsträgerdichten durchgeführt
wurden.

4.2.2. Bilagen-Graphen auf TMDCs
Im vorherigen Abschnitt wurde bereits erklärt, welchen Einfluss die Kopplung
von TMDCs auf ML-G hat. In diesem Abschnitt soll erläutert werden, inwiefern
sich diese Kopplung auf BL-G auswirkt. Konkret wird hier eine Heterostruktur,
mit BL-G auf WSe2 liegend, betrachtet, da es für diesen Fall bereits konkrete
theoretische Vorhersagen gibt [16]. In diesem Fall liegen die Gitterpunkte A1 und
B1 aus Abb. 2.3 damit direkt auf dem WSe2, die Gitterpunkte A2 und B2 haben
dagegen keinen unmittelbaren Kontakt mit dem WSe2 und liegen oberhalb der
ersten Graphen-Lage [16].
In Abschnitt 2.1.5 wurde bereits die Bandstruktur von intrinsischem BL-G ge-
nauer erklärt. Wie dort bereits erwähnt wurde, resultieren die niederenergetischen
Bänder nahe den Dirac-Punkten aus den pz-Zuständen, die sich auf den Gitter-
plätzen A2 (blau) und B1 (rot) befinden [16]. Es handelt sich daher genau um die-
se Punkte, die nicht direkt durch interlayer hopping miteinander verbunden sind
(vgl. Abb. 2.3) [16]. Die beiden Graphen-Lagen in einer solchen Heterostruktur
spüren nun eine unterschiedliche Potentialumgebung, da die eine Lage direkt mit
dem WSe2 in Kontakt ist, die andere Lage dagegen nicht [16]. Aus diesem Grund
wirkt auch auf die Atome an den Gitterplätzen A2 und B1 eine unterschiedli-
che Potentialumgebung [16]. Konkret bedeutet das, dass dieser Unterschied der
potentiellen Energie zwischen den beiden Schichten zu einem internen, transver-
salen elektrischen Feld von der Größe |E⃗int| ≈ 0, 27 V/nm führt [16]. Der Vektor
des elektrischen Feldes E⃗int zeigt dabei für positive Feldstärken von der WSe2-
Schicht zur BL-G-Schicht [16]. Dieses interne elektrische Feld E⃗int führt nun zu
unterschiedlichen Ladungsträgerpopulationen in den beiden Graphen-Schichten
[16]. In diesem Fall werden die B1-Zustände energetisch nach unten verschoben,
wodurch diese das Valenzband bilden [16]. Die A2-Zustände werden dagegen ener-
getisch nach oben verschoben und bilden damit das Leitungsband [16]. Es kommt
außerdem zu einer Bandlücke zwischen Valenz- und Leitungsband. Diesen Um-
stand erkennt man, wenn man sich Abb. 4.3 d) ansieht [16]. Dabei sind die roten
Kurven den B1-Zuständen und die blauen Kurven den A2-Zuständen zuzuordnen
[16].
In Abb. 4.3 d) kann man nun erkennen, dass das Valenzband in der Nähe des
K-Punktes in zwei Bänder aufgespalten ist, während dies beim Leitungsband
nicht zu erkennen ist. Das zeigt nun, dass die Spinaufspaltung (∆E ≈ 2, 2 meV)
für die B1-Zustände wesentlich größer sein muss, als es für die A2-Zustände des
Leitungsbands der Fall ist [16]. Dies entspricht auch den Erwartungen, da auf die
B1-Zustände, aufgrund der Nähe zur WSe2-Schicht, eine sehr starke SOC wirken
muss. Auf die A2-Zustände kann dagegen aufgrund der größeren Entfernung zur
WSe2-Schicht nur eine vielfach kleinere SOC (∆E ≈ 24µeV) wirken [16].
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Abbildung 4.3.: In a)-e) sind die berechneten Bandstrukturen für BL-G bei ver-
schiedenen elektrischen Feldern abgebildet. Die blauen Linien stehen dabei für
Zustände der A2-Gitterplätze. Die roten Linien stehen dagegen für Zustände der
B1-Gitterplätze. d) zeigt den Fall, ohne äußeres elektrisches Feld. Hier ist das
Valenzband aufgrund starker SOC spinaufgespalten. Das Leitungsband dagegen
nicht. In e) erkennt man, dass das Anlegen eines positiven äußeren elektrischen
Feldes die Bandlücke vergrößert und die Spinaufspaltung im Valenzband leicht
verkleinert. c) zeigt, dass sich durch Anlegen eines negativen elektrischen Feldes
die Bandlücke stark verkleinert und die Ladungsträger der B1- und A2-Atome
sich nun sowohl im Valenz- als auch im Leitungsband befinden können. In b) wird
gezeigt, dass sich durch weitere Verstärkung des negativen äußeren elektrischen
Feldes nun erneut eine Bandlücke bildet, das Leitungsband spinaufgespalten ist
und die Ladungsträger der A2-Gitterplätze nun die Zustände im Valenzband und
die der B1-Gitterplätze die Zustände des Leitungsbandes bevölkern. Verstärkt
man das negative äußere elektrische Feld nochmal, so ergibt sich eine Bandstruk-
tur wie in a). Hier stellt a) prinzipiell den umgekehrten Fall von d) dar. [16]

Legt man nun ein äußeres elektrisches Feld E⃗ext an, so wirkt dieses Feld dem
inneren elektrischen Feld E⃗int entweder entgegen oder verstärkt dieses [16]. Ist
|E⃗ext| > 0 Vm−1 und damit positiv, so wird das elektrische Gesamtfeld E⃗tot ver-
stärkt und es gilt E⃗tot = E⃗int + E⃗ext [16]. Wie in Abb. 4.3 e) gezeigt, vergrößert sich
dadurch die Bandlücke, wie man es auch für intrinsisches BL-G erwarten würde
[16].
Legt man nun ein negatives externes elektrisches Feld |E⃗ext| < 0 Vm−1 an, so ver-
kleinert sich die Bandlücke solange noch |E⃗tot| > 0 Vm−1 erfüllt ist [16]. Sobald
|E⃗tot| = 0 Vm−1 gilt, wird das innere elektrische Feld E⃗int kompensiert und die
Ladungsträger der B1- und A2-Atome können sich sowohl im Leitungs- als auch
im Valenzband befinden [16]. Die Bandlücke ist in diesem Zustand grundsätzlich
minimal und für das A2-Gitter sogar ganz geschlossen (vgl. Abb. 4.3 c)) [16].
Ist |E⃗ext| groß und negativ so gilt |E⃗tot| < 0 Vm−1 und die Bandlücke wird wie-
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der größer [16]. In Abb. 4.3 a) und b) beobachtet man außerdem, dass die B1-
Zustände energetisch nach oben und die A2-Zustände energetisch nach unten
verschoben werden [16]. Die wesentliche Spinaufspaltung aufgrund starker SOC
findet sich nun nicht mehr im Valenzband, sondern im Leitungsband [16].
Zusammenfassend kann man sagen, dass bei fester Fermi-Energie EF die Wahl
des äußeren elektrischen Feldes E⃗ext darüber entscheidet, ob die wesentliche Spin-
aufspaltung im Valenz- oder im Leitungsband stattfindet [16]. Sofern man kein
äußeres elektrisches Feld (|E⃗ext| = 0 Vm−1) anlegt, ist die wesentliche Spinaufspal-
tung im Valenzband zu erwarten [16]. Durch geeignete Wahl der Fermi-Energie
kann dann die Spinaufspaltung im Valenzband untersucht werden, um Aussagen
über die Stärke der induzierten SOC machen zu können. Grundsätzlich wäre es
einleuchtend, dass sich ein System mit BL-G auf WS2 anstelle von WSe2 ähnlich
verhalten würde. Es fehlen dazu aber scheinbar noch konkrete theoretische Vor-
hersagen, wodurch eine Übertragung des Sachverhalts auf ein System von BL-G
auf WS2 nur bedingt erlaubt ist.

4.3. Nachweis von Spin-Bahn-Kopplung
Grundsätzlich sind für den Nachweis von induzierter SOC in Graphen mehrere
unterschiedliche Verfahren bekannt. Im Rahmen dieser Arbeit sollte die Existenz
von induzierter SOC mit Hilfe von Magnetotransport-Messungen an Hallbar-
Strukturen geprüft werden. Deshalb kamen zur Untersuchung von induzierter
SOC grundsätzlich zwei bekannte Methoden in Frage. Zum einen wird erwartet,
dass für BL-G bei Messungen der Shubnikov-de-Haas-Oszillationen aufgrund der
Spinaufspaltung, hervorgerufen durch eine starke SOC, eine Schwebung auftritt
[8, 112–114]. Zum anderen sollte für ML-G bei Messungen zur schwachen Lo-
kalisierung im Längswiderstand Rxx eine zusätzliche schwache Antilokalisierung
nahe Bz = 0 T auftreten, die durch die starke SOC hervorgerufen wird. Neben
der schwachen Lokalisierung und der schwachen Antilokalisierung (Berry-Phase),
im Folgenden WAL-Berry genannt, wird also zusätzlich eine weitere Form der
schwachen Antilokalisierung, die schwache Antilokalisierung (SOC), im Folgen-
den WAL-SOC genannt, erwartet. Wie die folgenden beiden Abschnitte zeigen
werden, sollen sich die beiden Methoden nicht nur zum qualitativen Nachweis
von induzierter SOC eignen, sondern grundsätzlich auch zur quantitativen Be-
stimmung der Stärke dieser SOC.

4.3.1. Schwebung in den Shubnikov-de-Haas-Oszillationen
Wie bereits in den vorherigen Abschnitten erwähnt, führt die induzierte SOC in
Graphen zu einer relativ starken energetischen Spinaufspaltung. Mit Blick auf die
Bandstruktur in Abb. 4.2 bzw. Abb. 4.3 einer Graphen/WS2-Heterostruktur ist
die energetische Aufspaltung von Spin-Up- und Spin-Down-Zuständen sowohl im
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Leitungsband als auch im Valenzband gut erkennbar. Die Folge davon ist nun,
dass der Ladungstransport innerhalb der Heterostruktur von Ladungsträgern mit
eben diesen Spin-Up- und Spin-Down-Energien dominiert wird. Misst man nun
die Shubnikov-de-Haas-Oszillationen einer solchen Heterostruktur, so setzt sich
das Messsignal im Wesentlichen aus einer Überlagerung dieser beiden energetisch
unterschiedlichen Spin-Up- und Spin-Down-Signale zusammen.
Über elektromagnetische Wellen ist bekannt, dass die Überlagerung von mindes-
tens zwei Wellen mit leicht unterschiedlichen Frequenzen und ähnlicher Ampli-
tude zu einer Schwebung in ihrer Summenwelle führen kann [115]. Daher kann
die Überlagerung der beiden dominierenden und energetisch unterschiedlichen
Spin-Up- und Spin-Down-Signale zu einer Schwebung in den Shubnikov-de-Haas-
Oszillationen führen [8, 115].
Abb. 4.4 a) zeigt nun Schwebungen in den Shubnikov-de-Haas-Oszillationen, die
von [8] in BL-G/WSe2-Heterostrukturen gemessen wurden. In Abb. 4.4 a) ist
erkennbar, dass die Schwebung von der angelegten Gatespannung Ug und damit
von der Ladungsträgerdichte n abhängig ist und sich hin zu größeren Magnetfeld-
werten verschiebt. Damit korreliert die Lage der Schwebung auch mit der Lage
der Fermi-Energie EF [116]. Will man nun ermitteln, welche Frequenzen in den
Shubnikov-de-Haas-Oszillationen dominieren, so empfiehlt es sich eine schnelle
Fourier-Transformation (engl.: „Fast Fourier Transformation“(FFT)) durchzu-
führen [8]. Damit erhält man ein Frequenzspektrum wie in Abb. 4.4 b) gezeigt.
Wirft man einen Blick auf dieses Frequenzspektrum, so erkennt man, dass es ein
relativ schmales Frequenzband gibt, welches sich wiederum in zwei noch schmälere
Subbänder mit jeweils einer dominierenden Hauptfrequenz f1 und f2 aufspaltet.
Diese beiden Frequenzen können unter der Voraussetzung, dass eine starke SOC
im System vorhanden ist, nun den Spin-Up- und Spin-Down-Bändern zugeordnet
werden [8, 112–114]. Es gibt damit zwei dominierende Frequenzen f1 und f2. Mit
Hilfe der folgenden Formel [116]:

fi = 2πℏ
e
nfi

mit i = 1, 2 (4.16)

kann man diesen beiden Frequenzen nun jeweils eine bestimmte Ladungsträger-
dichte nf1 und nf2 zuordnen. Für die Differenz ∆f gilt demnach [116]:

∆f = (f2 − f1) = 2πℏ
e

(nf2 − nf1) . (4.17)

Mit [116]:

Efi
= 2πℏ2

m∗ nfi
mit i = 1, 2 (4.18)

kann man, sofern die effektive Masse m∗ bekannt ist, nun auch die Energieauf-
spaltung ∆E berechnen [116]:

∆E = (Ef2 − Ef1) = 2πℏ2

m∗ (nf2 − nf1) = eℏ
m∗ (f2 − f1) . (4.19)
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Abbildung 4.4.: In a) werden drei Kurven (schwarz, rot, blau) bei unterschiedli-
chen Gatespannungen gezeigt. Dabei handelt es sich konkret um die Shubnikov-
de-Haas-Oszillationen, die mit einer BL-G/WSe2-Heterostruktur gemessen wur-
den. Dabei zeigt sie eine Schwebung. Die Lage der Knotenpunkte (schwarze Pfeile)
ist dabei von der Gatespannung abhängig und nimmt hier mit kleiner werdender
Ladungsträgerdichte n kleinere Magnetfeldwerte an. In b) sieht man die Amplitu-
den, die aus einer FFT-Analyse resultieren. Man sieht hier für jede Gatespannung
ein aufgespaltenes Frequenzband. Diese Frequenzbänder implizieren grundsätz-
lich ein Hauptfrequenzband, das in die Shubnikov-de-Haas-Oszillationen mit ein-
fließt. Die Aufspaltung dieser Frequenzbänder in zwei Subbänder soll hier auf die
induzierte SOC zurückzuführen sein. Genau wie bei den Schwebungen, wandert
auch das jeweilige Frequenzband für kleiner werdende Ladungsträgerdichten n
nach links hin zu kleineren Frequenzen. [8]

Diese Energiedifferenz entspricht nun der energetischen Spinaufspaltung in Spin-
Up- und Spin-Down-Bänder, die durch die induzierte SOC verursacht wird [8,
112–114, 116]. Damit kann man nun eine Aussage über die Stärke der induzier-
ten SOC machen. Zur Bestimmung dieser Energieaufspaltung muss man jedoch
zuerst noch den Wert der effektiven Masse m∗ bestimmen. Dazu sind Messungen
der Shubnikov-de-Haas-Oszillationen bei gleicher Ladungsträgerdichte n, aber bei
unterschiedlichen Temperaturen T nötig [117]. In Abb. 4.5 a) sind solche Mes-
sungen dargestellt [117]. Das Verhältnis ∆ρxx/ρ(Bz = 0) T der Amplitude des
Schichtwiderstands ∆ρxx zum Widerstand ρ(Bz = 0 T) dieser sinusförmigen Os-
zillationen ist durch die Lifshitz-Kosevich-Beziehung [117]:

∆ρxx

ρ(Bz = 0) ∝ 4γthexp
(

− π

ωcτp

)
mit γth = 2π2kBT/ℏωc

sinh(2π2kBT/ℏωc)
(4.20)
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gegeben. Dabei entspricht ωc = eBz/m
∗ der Zyklotronfrequenz, τp der Impulsre-

laxationszeit und γth dem thermischen Faktor [117]. Mit Hilfe dieser Beziehung
kann man nun durch Anpassung mit den beiden Fit-Parametern τp und m∗ die
effektive Masse für die jeweilige Ladungsträgerdichte n bestimmen [117]. Dabei
gilt, dass sich die Messkurve für gleiche Ladungsträgerdichten n, aber bei un-
terschiedlichen Werten der Temperatur T und Magnetfeld Bz immer nur für ein
einzelnes Wertepaar von τp und m∗ anpassen lässt, wodurch eine eindeutige Lö-
sung für die effektive Masse m∗ gegeben ist [117]. In Abb. 4.5 b) ist eine solche
Anpassung zusammen mit der jeweiligen Messkurve zu sehen. Durch den Erhalt
der effektiven Masse kann man abschließend mit Hilfe von Gleichung (4.19) die
Energieaufspaltung berechnen, um die Stärke der induzierten SOC zu bestimmen.
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Abbildung 4.5.: a) Schichtwiderstand ρxx und Shubnikov-de-Haas-Oszillationen
für verschiedene Temperaturen T bei fester Ladungsträgerdichte n. b) Schichtwi-
derstand ρxx und Shubnikov-de-Haas-Oszillationen für zwei verschiedene Tempe-
raturen T = 10 K und T = 40 K bei fester Ladungsträgerdichte n (durchgehende
Linien). Außerdem sind die Fit-Kurven für bestimmte Werte von τp und m∗ zu
sehen (gestrichelte Linien). Entnommen aus [117] und grafisch nachbearbeitet.
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4.3.2. Schwache Antilokalisierung (SOC)
Wie bereits in einigen Arbeiten gezeigt wurde, kann man die proximity-induzierte
SOC mit Hilfe von Messungen der WAL-SOC nachweisen und deren Stärke be-
stimmen [8–10]. Wie die Messungen in Abschnitt 3.3.4, werden auch diese Mes-
sungen an Proben mit relativ kleinen Ladungsträgerbeweglichkeiten, in der Regel
im diffusiven Regime, durchgeführt, da für das Auftreten dieses Interferenzef-
fekts Streukörper notwendig sind [8–10]. Damit überlagern sich die Messungen
der WAL-SOC mit den Messungen von schwacher Lokalisierung und WAL-Berry
aus Abschnitt 3.3.4. Es liegt dadurch eine Überlagerung von drei unterschied-
lichen Interferenzeffekten vor, wobei es zwei verschiedene Arten von schwacher
Antilokalisierung gibt, die jeweils unterschiedliche Ursachen haben. Während die
bereits beschriebene WAL-Berry aus Abschnitt 3.3.4 aufgrund der Berry-Phase
(∆ϕ = π) von ML-G als relativ breiter Peak am Nullpunkt des magnetischen
out-of-plane Feldes Bz auftritt, tritt die andere Form, die WAL-SOC, aufgrund
der induzierten SOC als relativ schmaler Peak am Nullpunkt des magnetischen
out-of-plane Feldes Bz auf [8–10]. Die Ursache für das Auftreten einer WAL-SOC
liegt darin, dass der Elektronenspin in einer Schleifenbewegung bei jedem Streuer-
eignis aufgrund der SOC eine gewisse Rotationsbewegung erfährt [77]. Dadurch
kann die schwache Lokalisierung in WAL-SOC umgekehrt werden, weil der Kor-
rekturterm in der Leitfähigkeit einen Vorzeichenwechsel erfährt [77, 118]. Auf die
mathematische Beschreibung der WAL-SOC wird nun genauer eingegangen.

Mathematische Beschreibung von schwacher Lokalisierung und schwacher
Antilokalisierung

Grundsätzlich gibt es zwei Formeln, um die Überlagerung dieser drei Interferenz-
effekte zu beschreiben. Für den allgemeinen Fall ist die Korrektur der Leitfähig-
keit ∆σ(Bz) durch die folgende Beziehung gegeben [10, 64]:

∆σ(Bz) = − e2

2πh

[
F
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τ−1

Bz
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)
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sym
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(4.21)

Dabei gilt τ−1
Bz

= 4eDBz/ℏ und F (z) = ln(z) + ψ(0.5 + z−1), wobei ψ wieder die
sogenannte Digammafunktion ist [10, 64]. Weitere wesentliche Parameter sind die
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Streuzeiten τϕ (Phasenstreuzeit), τiv (Intervalley-Streuzeit), τ−1
∗ = τ−1

iv + τ−1
intra

(mit der Intravalley-Streuzeit τintra), τasy (asymmetrische Spin-Bahn-Streuzeit)
und τsym (symmetrische Spin-Bahn-Streuzeit) [10, 64]. Falls τiv genügend klein
ist, kann man Gleichung (4.21) vereinfachen [8, 10, 64]. In diesem Fall erhält man
die folgende Beziehung [8, 10, 64]:

∆σ(Bz) = − e2

2πh

[
F

(
τ−1

Bz

τ−1
ϕ

)
− F

(
τ−1

Bz

τ−1
ϕ + 2τ−1

asy

)
− 2F

(
τ−1

Bz

τ−1
ϕ + τ−1

asy + τ−1
sym

)]
(4.22)

Mit Hilfe dieser beiden Formeln kann man das Zusammenspiel dieser drei Effekte
und den entsprechenden Kurvenverlauf beschreiben.

Messung und Simulation von WAL-SOC

Führt man nun Magnetotransport-Messungen durch, um die WAL-SOC zu mes-
sen, so kommt ein komplexer Kurvenverlauf zustande. In der Regel überlagern
sich dabei vier Effekte. Darunter die schwache Lokalisierung, die beiden Typen
der schwachen Antilokalisierung (WAL-Berry und WAL-SOC) und die aus Ab-
schnitt 3.3.5 bekannten UCF. Wie in 3.3.5 bereits beschrieben, lassen sich die
UCF weitgehend herausmitteln, indem man einen Mittelwert über mehrere Mess-
kurven bildet. Im Idealfall würde sich dann das Restsignal aus den drei anderen
Effekten zusammensetzen. Um den Kurvenverlauf des Restsignals zu veranschau-
lichen, wurde eine Simulation mit Hilfe von Formel (4.21) durchgeführt (vgl. Abb.
4.6 und 4.7).
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Abbildung 4.6.: a) zeigt simulierte Kurven für verschiedene Werte von τϕ. b)
zeigt simulierte Kurven für verschiedene Werte von τiv und τintra. Die weiteren
fest gewählten Parameter können für die jeweilige Abbildung aus Tabelle 4.1
entnommen werden.
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Abb. τϕ [ps] τiv [ps] τintra [ps] τasy [ps] τsym [ps] D [m2s−1]
4.6 a) var 3, 0 0, 2 5, 0 5, 0 0, 05
4.6 b) 10, 0 var var 5, 0 5, 0 0, 05
4.7 a) 10, 0 3, 0 0, 2 var 10, 0 0, 05
4.7 b) 10, 0 3, 0 0, 2 10, 0 var 0, 05

Tabelle 4.1.: Fit-Parameter für Abb. 4.6 a) und b) und für Abb. 4.7 a) und
b). Dabei stehen die Variablen var für die variierten Werte aus der jeweiligen
Abbildung.

In Abb. 4.6 a) sind simulierte Kurven für verschiedene Phasenstreuzeiten τϕ zu
sehen. Alle anderen Parameter sind dabei fest und können aus Tabelle 4.1 ent-
nommen werden. Für große Werte von τϕ sind alle drei Effekte, WAL-Berry,
WAL-SOC und die schwache Lokalisierung, sichtbar. Mit abnehmender Phasen-
streuzeit τϕ verschwindet als erstes der Peak der schwachen Antilokalisierung,
der durch die SOC verursacht wird (WAL-SOC). Als nächstes verschwindet die
schwache Lokalisierung und zuletzt die WAL-Berry. Damit steht fest, dass die
drei Effekte unterschiedlich stark von der Phasenkohärenz τϕ und damit auch
von der Temperatur T des Systems abhängen.
In Abb. 4.6 b) sind Kurven für unterschiedliche Werte von τiv und τintra darge-
stellt, wobei auch hier die anderen Parameter fest gewählt wurden und in Tabelle
4.1 enthalten sind. Man erkennt nun, dass sich der Peak für die WAL-SOC nahe
dem Nullpunkt des Magnetfeldes Bz nicht wesentlich verändert. Dagegen zeigt
sich, dass die schwache Lokalisierung nahe dem Nullpunkt des Magnetfeldes Bz

mit steigenden Werten von τiv und τintra in die WAL-Berry übergeht (vgl. Ab-
schnitt 3.3.4). Das zeigt zum einen, dass die Form des Peaks von der WAL-SOC
nicht von τiv und τintra abhängt. Zum anderen zeigt dies, dass das Auftreten
von schwacher Lokalisierung und WAL-Berry von den beiden Streuparametern
τiv und τintra abhängig ist. Das bedeutet nun, dass die Reinheit der Probe, aber
auch der Probenrand und damit vor allem die Breite der Hallbar einen erheb-
lichen Einfluss darauf haben kann, wie stark die schwache Lokalisierung bzw.
WAL-Berry in den Messungen ausgeprägt ist [104].
Bei Betrachtung von Abb. 4.6 a) und b) fällt außerdem auf, dass für feste Werte
von τasy und τsym lediglich die Phasenstreuzeit τϕ einen wesentlichen Einfluss auf
die Form des Peaks nahe Bz = 0 T hat. Damit lässt sich sagen, dass man τϕ bei
Durchführung einer Kurvenanpassung für feste Werte von τasy und τsym zuver-
lässig bestimmen kann.
In Abb. 4.7 a) und b) ist die Abhängigkeit des Kurvenverlaufs von der Streuzeit
der asymmetrischen SOC-Terme τasy und von der Streuzeit der symmetrischen
SOC-Terme τsym dargestellt. Auch hier sind die jeweils anderen Parameter fest
gewählt und für die jeweilige Abbildung in Tabelle 4.1 aufgeführt. Es zeigt sich,
dass der Peak der WAL-SOC nahe dem Nullpunkt des magnetischen Feldes Bz
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Abbildung 4.7.: a) zeigt simulierte Kurven für unterschiedliche Werte von τasy.
b) zeigt simulierte Kurven für unterschiedliche Werte von τsym. Die weiteren fest
gewählten Parameter können für die jeweilige Abbildung aus Tabelle 4.1 entnom-
men werden.

mit fallenden Werten von τasy bzw. τsym stark ansteigt. Dabei wird auch die
schwache Lokalisierung nach und nach zerstört, während der Kurvenverlauf für
größere Magnetfelder Bz und damit die WAL-Berry nur wenig seine Form ver-
ändert. Es fällt außerdem auf, dass sich die Größe des Peaks stärker mit τasy als
mit τsym ändert. Daher kann man sagen, dass der Hauptbeitrag zu diesem Peak
wesentlich von τasy verursacht wird.
Für die Bestimmung von τϕ lässt sich anhand 4.7 a) und b) Folgendes sagen:
Sowohl die beiden Parameter τasy und τsym als auch τϕ haben einen Einfluss auf
die Form des Peaks nahe Bz = 0 T. Bei genauerer Betrachtung erkennt man
jedoch, dass τasy und τsym vor allem die Höhe der Peaks beeinflussen und nur
wenig die Breite des Peaks. Die Breite des Peaks ändert sich dagegen hauptsäch-
lich bei Änderung von τϕ, wie man in 4.6 a) sehen kann. Damit lässt sich sagen,
dass der Wert von τϕ die Breite des Peaks nahe Bz = 0 T wesentlich vorgibt.
Dadurch lässt sich τϕ bei einer Kurvenanpassung bereits recht genau bestimmen.
Ein Abgleich von τϕ mit den Werten für τUCF aus einer Analyse von UCF und
Autokorrelationsfunktion nach Abschnitt 3.3.5 erlaubt eine weitgehend zuverläs-
sige Bestimmung von τϕ. Für die anderen Parameter ergeben sich im Rahmen
einer Kurvenanpassung mehrere mögliche Parameterkombinationen, sodass diese
Parameter am Ende nur mit einem gewissen Fehler angegeben werden können.

Spin-Bahn-Parameter und Streumechanismen

Den beiden Streuzeiten τasy und τsym werden bestimmte Streumechanismen und
Ursachen zugeschrieben [97]. Der Streuparameter τasy wird vor allem durch die
Rashba-SOC des Systems beeinflusst und die Dyakonov-Perel (DP) Spinrelaxa-
tion wird τasy als wesentlicher Streumechanismus zugeschrieben [97]. Dagegen
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unterliegt τsym vor allem der Elliot-Yafet (EY) Spinrelaxation, welche vor allem
durch die intrinsische SOC und die Valley-Zeeman-SOC verursacht wird, wobei
angenommen wird, dass die Valley-Zeeman-SOC stark dominiert [97]. Aus dem
Verhältnis τasy/τsym lässt sich außerdem der sogenannte Anisotropiefaktor der
Spinrelaxation bestimmen, der für Anwendungen zum Spintransport eine wichti-
ge Größe darstellt [97]. Hat man nun die Streuparameter bestimmt, so kann man
mit der Impulsrelaxationszeit τp und den Formeln [97]:

λR = ℏ
√4 · τasy · τp

(4.23)

und

λV Z = ℏ
√4 · τsym · τiv

(4.24)

die beiden wesentlichen SOC-Parameter λR (Rashba-SOC) und λV Z (Valley-
Zeeman-SOC) bestimmen und damit die SOC charakterisieren [97].

4.4. Die Stärke der Spin-Bahn-Wechselwirkung
Diese Arbeit beschäftigt sich mit der Frage, ob und wie man die proximity-
induzierte SOC in Graphen/TMDC-Heterostrukturen tunen kann. In bisherigen
Arbeiten wurde die induzierte SOC zwar nachgewiesen und deren Stärke be-
stimmt, aber ein Vergleich dieser Ergebnisse zeigt jedoch, dass die Stärke der
SOC von Probe zu Probe stark abweichen kann. Die Frage ist nun, welche Ein-
flussfaktoren auf die proximity-induzierte SOC es gibt und wie man diese nutzen
kann, um die Stärke der proximity-induzierten SOC zu kontrollieren.

4.4.1. Die Wahl des TMDCs
TMDCs weisen wegen ihrer relativ schweren Übergangsmetallatome eine star-
ke SOC auf, welche man durch proximity-Kopplung zu einem gewissen Teil in
Graphen induzieren kann [8, 63, 119]. Durch die Wahl von TMDCs mit z.B.
schwereren bzw. leichteren Übergangsmetallatomen sollte es grundsätzlich mög-
lich sein, die proximity-induzierte SOC in gewissem Maße zu tunen [8, 63, 119].
Auch die Art der Chalkogenatome scheint dabei eine wesentliche Rolle zu spielen
[8, 63, 119]. Berechnungen und Experimente aus [8, 63, 119] deuten darauf hin,
dass man durch die Wahl des TMDC-Materials die proximity-induzierte SOC
in Graphen/TMDC-Heterostrukturen maßgeblich beeinflussen kann. Die SOC
lediglich durch die Wahl eines bestimmten TMDCs zu tunen ist aber nicht un-
bedingt die einfachste und eleganteste Lösung, da mit verschiedenen Materialien
auch anderweitige Materialeigenschaften einhergehen, die für Heterostrukturen
mit Graphen zu berücksichtigen sind (z.B. Änderung der Bandstruktur) [63]. Die
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Abhängigkeit der SOC von der Wahl des TMDCs wurde in dieser Arbeit nicht
weiter untersucht. Es wurden stattdessen Materialien verwendet, von denen aus
bisherigen Arbeiten bereits bekannt war, dass damit eine relativ starke SOC in
Graphen induziert werden kann [8–10, 119].

4.4.2. Dicke des TMDCs

Die proximity-induzierte SOC hängt stark von der Hybridisierung der π-Orbitale
des Graphens mit den äußeren Orbitalen des TMDCs ab. Daher ist die Aus-
prägung dieser Hybridisierung entscheidend für die Stärke der induzierten SOC.
Nun stellt sich die Frage, ob die Dicke der TMDC-Schicht einen Einfluss auf die
proximity-induzierte SOC hat. Betrachtet man eine mehrlagige TMDC-Schicht
auf einer Graphen-Schicht liegend, so ist anzunehmen, dass lediglich die π-Orbitale
des Graphens mit den äußeren Orbitalen der ersten TMDC-Lage überlappen [3,
24]. Die Orbitale der anderen TMDC-Schichten dürften dabei keinen Einfluss
mehr auf die Kopplung haben, wodurch diese die proximity-induzierte SOC in
Graphen nicht weiter verstärken dürfte. Es ist daher anzunehmen, dass die SOC
mit zunehmender Lagenanzahl des TMDCs jedenfalls nicht ansteigen sollte.
In [119] zeigt ein Vergleich von ML-G auf ML-TMDC mit ML-G auf Bulk-TMDC,
dass die proximity-induzierte SOC für ML-G auf ML-TMDC höher ist, als für
ML-G auf Bulk-TMDC [119]. Als Grund dafür wurde die unterschiedliche Fle-
xibilität von ML-TMDC und Bulk-TMDC genannt [119]. Während Bulk-TMDC
relativ steif ist, ist ML-TMDC sehr flexibel, wodurch sich letzteres besser an die
Oberflächenstruktur des Graphens anpassen kann und damit im Mittel näher
am Graphen liegen dürfte als Bulk-TMDC [119]. Dadurch wäre für ML-G auf
ML-TMDC eine höhere proximity-induzierte SOC zu erwarten als für ML-G auf
Bulk-TMDC [119].
Unabhängig von den Ergebnissen aus [119] stellt sich die Frage, ob dieser Ver-
gleich aus [119] verlässlich ist, da man für die Experimente die jeweiligen Hete-
rostrukturen aus einzelnen TMDC-Flocken gebildet hat, die möglicherweise auf
unterschiedliche Art und Weise hergestellt wurden [119]. Es kann also durchaus
sein, dass die Qualität der verwendeten TMDCs in dieser Arbeit nicht einheit-
lich ist, wodurch die Auswertung der Messergebnisse eben diese unterschiedli-
chen Resultate lieferte. Es ist außerdem unklar, ob in dieser Arbeit noch andere
Einflussfaktoren wie z.B. die Winkelorientierung berücksichtigt wurden. Aktu-
ell scheint daher noch nicht ganz klar zu sein, ob die Schichtdicke des TMDCs
tatsächlich einen entscheidenden Einfluss auf die proximity-induzierte SOC in
Graphen hat. Sollte sich die Dicke des TMDCs tatsächlich, wie in [119] beschrie-
ben, auf die proximity-induzierte SOC auswirken, so wäre es prinzipiell möglich,
die SOC durch gezielte Wahl der Lagenanzahl des TMDCs zu tunen. Wie man
weiter unten in Abschnitt 6.2 noch sehen wird, wurde dieser Sachverhalt anhand
einer Probe weiter untersucht.
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4.4.3. Drehwinkel zwischen Graphen und TMDCs
In diesem Abschnitt wird nun genauer betrachtet, inwieweit die Winkelorientie-
rung zwischen den beiden Materialien einer ML-G/TMDC-Heterostruktur einen
Einfluss auf die proximity-induzierte SOC hat. Diese Winkelorientierung wurde in
bisherigen experimentellen Arbeiten in Zusammenhang mit proximity-induzierter
SOC in ML-G/TMDC-Heterostrukturen meist nicht beachtet. Die Winkelorien-
tierung kann in Heterostrukturen aus 2D-Materialien aber bekanntlich einen er-
heblichen Einfluss auf die Materialeigenschaften haben, wie beispielsweise bereits
an Graphen/hBN Moiré-Übergittern gezeigt wurde [120]. Aus diesem Grund stellt
sich nun die Frage, ob bzw. wie stark sich der relative Drehwinkel zwischen einer
ML-G- und einer TMDC-Schicht auf die induzierte SOC auswirkt?
Zu diesem Sachverhalt gibt es nun bereits umfangreiche Berechnungen [20–22].
Dabei unterscheiden sich die Arbeiten in ihrer Vorgehensweise zur Berechnung
der Drehwinkelabhängigkeit der SOC [20–23]. Die Berechnungen von [20, 22]
basieren dabei auf dem Tight-Binding-Modell. Im Gegensatz dazu wurden die
Berechnungen in [21, 23] mit Hilfe der Dichtefunktionaltheorie (DFT) durch-
geführt, wobei ebenfalls eine Drehwinkelabhängigkeit der proximity-induzierten
SOC gezeigt werden konnte [21, 23]. Genauere Informationen zu den jeweiligen
Berechnungsmethoden finden sich in [20–23]. Im Folgenden wird lediglich genauer
auf die Ergebnisse der jeweiligen Berechnungen von [22], [21] und [23] eingegan-
gen, da in diesen drei Arbeiten die Berechnungen speziell für die hier verwendeten
Materialien WS2 und WSe2 durchgeführt wurden.

Ergebnisse von Y. Li et al. [22]

Die wesentlichen Ergebnisse aus [22] werden in Abb. 4.8 a) und b) gezeigt. Dort
ist der energetische Verlauf der jeweiligen SOC-Parameter am Beispiel von ML-G
auf ML-WSe2 bzw. auf ML-WS2 in Abhängigkeit vom Drehwinkel α dargestellt
[22].
Man erkennt, dass λR, der Parameter für die Rashba-SOC, bei einem Winkel
nahe 15◦ für WS2 bzw. bei einem Winkel nahe 19◦ für WSe2 maximal wird und
in beiden Fällen hin zu 0◦ bzw. 30◦ stark abfällt [22]. Betrachtet man nun den
Verlauf von λV Z , so erkennt man, dass λV Z sowohl für WS2 als auch für WSe2
nahe 17◦ ein Maximum besitzt und ebenfalls hin zu 0◦ bzw. 30◦ stark abfällt [22].
Bei 0◦ nimmt λV Z in beiden Fällen einen Energiewert an, der grob der Hälfte des
jeweiligen Maximalwerts von λV Z entspricht [22]. Bei einem Winkel von 30◦ geht
λV Z in beiden Fällen dagegen gegen null, wodurch hier der Beitrag von λV Z zur
Energieaufspaltung verschwindet [22]. Es besteht damit die Möglichkeit, durch ge-
zieltes Einstellen des Drehwinkels auf 30◦, den Beitrag der Valley-Zeeman-SOC
zur Gesamt-SOC auf null zu reduzieren [22]. Die beiden Parameter λR und λV Z

heben bekanntlich die Spinentartung von Valenz- und Leitungsband in der Band-
struktur von ML-G auf [22]. Es entsteht daher eine Energieaufspaltung Esplit, die
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Abbildung 4.8.: a) und b) zeigen den energetischen Verlauf der SOC-Parameter
λR (orange) und λV Z (blau) für WS2 und WSe2 in Abhängigkeit vom Drehwinkel
α zwischen ML-G und dem jeweiligen TMDC. Außerdem ist der Verlauf der
Spinaufspaltung Esplit (rot) und der Bandlücke Egap (grün) für WS2 und WSe2
in Abhängigkeit vom Drehwinkel α zwischen ML-G und dem jeweiligen TMDC
dargestellt. Entnommen aus [22] und grafisch nachbearbeitet.

sowohl von λR als auch von λV Z abhängig ist [22]. Diese Energieaufspaltung lässt
sich berechnen mit [22]:

Esplit = (λ2
V Z + λ2

R)1/2 (4.25)

und ist äquivalent zur Energieaufspaltung ∆E aus Gleichung (4.19).
Durch die proximity-induzierte SOC entsteht neben der Energieaufspaltung auch
eine Bandlücke in der Bandstruktur zwischen dem Valenz- und Leitungsband des
ML-Gs [22]. Dazu tragen ebenfalls die beiden Parameter λR und λV Z bei [22].
Die Bandlücke Egap kann man demnach berechnen mit [22]:

Egap = |λV ZλR|/(λ2
V Z + λ2

R)1/2 (4.26)

Zusammenfassend zeigt die Theorie, dass die Parameter λR und λV Z und damit
auch die Parameter Egap und Esplit stark vom Drehwinkel abhängen, wodurch im
Allgemeinen eine starke Drehwinkelabhängigkeit der proximity-induzierten SOC
gegeben ist [22].
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Ergebnisse von T. Naimer et al. [21]

In Abb. 4.9 a) und b) werden die wesentlichen Ergebnisse nach den Berechnungen
aus [21] gezeigt.
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Abbildung 4.9.: a) und b) zeigen den energetischen Verlauf der SOC-Parameter
λR (rot) und λV Z (blau) für WS2 und WSe2 in Abhängigkeit zum Drehwinkel α
zwischen ML-G und dem jeweiligen TMDC. Entnommen aus [21] und grafisch
nachbearbeitet.

Für die Rashba-SOC lässt sich sagen, dass die SOC für a) von 0◦ hin zu ca. 27◦

ansteigt und danach hin zu 30◦ stark abfällt [21]. In b) steigt die Rashba-SOC bis
zu einem Maximum bei ca. 19◦ an und fällt dann bis ca. 28◦ leicht ab. Danach fällt
die Rashba-SOC hin zu 30◦ wiederum stark ab [21]. Für die Valley-Zeeman-SOC
sieht es in beiden Fällen a) und b) so aus, dass die Kurven bei 0◦ ein Maximum
und bei 30◦ ein Minimum nahe dem energetischen Nullpunkt besitzen [21]. Der
Kurvenverlauf zwischen 0◦ und 30◦ fällt in beiden Fällen a) und b) grundsätzlich
von 0◦ hin zu 30◦ ab, allerdings gibt es je einen signifikanten, stark abfallenden
Ausreißer bei ca. 13◦ bis 14◦ für WS2 und einen bei ca. 7◦ für WSe2 [21].

Ergebnisse von K. Zollner et al. [23]

Für die Arbeit von K. Zollner et al. [23] wurde wie in der Arbeit von T. Naimer
et al. [21] die Dichtefunktionaltheorie angewandt, um Aussagen über die Stär-
ke der SOC-Parameter in Abhängigkeit des Drehwinkels machen zu können. Die
Ergebnisse dieser beiden Arbeiten unterscheiden sich zum Teil, da für die Berech-
nungen unterschiedliche Annahmen gemacht wurden, wodurch sich dann auch die
verwendeten Parameter unterschieden. Beispielsweise wurde in [23] ein viel kleine-
rer Wert für die Verspannung des ML-Gs in einer ML-G/TMDC-Heterostruktur
angenommen, als es in der Arbeit von T. Naimer et al. [21] der Fall war. Somit
ergaben sich mit [23] weitere mögliche Ergebnisse für die SOC-Parameter in Ab-
hängigkeit zum Drehwinkel α. Diese sind in Abb. 4.10 a) und b) dargestellt.
Betrachtet man nun die Kurven der Rashba-SOC aus 4.10 a) so fällt Folgendes
auf. Für WSe2 steigen die Werte für 0◦ bis ungefähr 13◦ nur leicht von etwa
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Abbildung 4.10.: a) zeigt den energetischen Verlauf von λR und b) zeigt den ener-
getischen Verlauf von λV Z für die beiden Materialien WSe2 (schwarz) und WS2
(grün) in Abhängigkeit zum Drehwinkel α zwischen ML-G und dem jeweiligen
TMDC. Entnommen aus [23] und grafisch nachbearbeitet.

0, 5 meV bis etwa 0, 6 meV an. Zwischen 14◦ bis ungefähr 19◦ zeigt sich ein Maxi-
mum bei etwa 0, 8 meV. Für Winkel ab 19◦ bis 25◦ fallen die Werte wieder auf ca.
0, 5 meV ab. Hin zu 30◦ zeigt sich noch ein leichter Anstieg auf etwa 0, 6 meV. Für
WS2 zeigt sich von 0◦ bis 22.5◦ ein ähnliches Bild. Dabei liegt λR bei ungefähr
0◦ bei ca. 0, 2 meV und steigt auf einen maximalen Wert von ungefähr 0, 4 meV
an, um danach wieder auf ca. 0, 2 meV abzufallen. Von 22.5◦ bis 30◦ scheint λR

dann mehr oder weniger konstant zu bleiben. Betrachtet man nun die Kurven
der Valley-Zeeman-SOC aus 4.10 b) so erkennt man, dass die λV Z sowohl für
WSe2 als auch für WS2 über den gesamten Bereich von 0◦ bis 30◦ trotz mehrerer
Ausreißer von etwa 1, 1 meV auf 0 meV abfällt.
Vergleicht man nun die Ergebnisse von [22] mit denen aus [21] und [23], so gibt
es teilweise größere Unterschiede, aber auch gewisse Gemeinsamkeiten. Betrach-
tet man die Rashba-SOC bei 0◦, so nimmt diese sowohl in [22] als auch in [21]
und [23] für beide TMDCs relativ kleine Werte an. Auch die Energiewerte dieser
Punkte liegen hier bei 0◦ nahe beieinander. Vergleicht man die Ergebnisse der
Rashba-SOC bei 30◦, so passen diese für WS2 für [22] und [21] sehr gut zusam-
men, bei WSe2 gibt es dagegen einen deutlichen Unterschied zwischen allen drei
Ergebnissen. Sieht man sich nun den Kurvenverlauf zwischen 0◦ und 30◦ an, so
ist für WSe2 in allen Fällen ein Maximum im Bereich von etwa 15◦ bis 20◦ zu
finden, allerdings gehen hier die berechneten Energiewerte vor allem im Bezug
auf [22] in ihrer Größe relativ weit auseinander. Für WS2 zeigt sich ein gänz-
lich anderer Kurvenverlauf. Während in [22] bei ca. 15◦ ein Maximum erwartet
wird, zeigt sich ein solches Maximum in [21] dagegen nicht, in [23] jedoch schon,
wobei auch hier ein recht großer quantitativer Unterschied vorliegt. In [21] tritt
stattdessen bei ca. 28◦ ein Maximum auf. Vergleicht man nun die Berechnungen
der Valley-Zeeman-SOC, so zeigen die Kurven von [21] und [23] zwar ein ähnli-
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ches Verhalten, im Vergleich mit [22] zeigt sich jedoch sowohl qualitativ als auch
quantitativ ein ganz anderer Kurvenverlauf für die beiden Materialien WS2 und
WSe2 [21–23]. Lediglich bei 30◦ zeigt sich in allen drei Fällen für beide TDMCs,
dass die Valley-Zeeman-SOC gegen null geht und damit verschwindet [21–23].
Die teilweise stark voneinander abweichenden Ergebnisse zeigen hier eine gewisse
Komplexität des gesamten Sachverhalts. Allerdings legen alle genannten Arbeiten
[20–23] nahe, dass die proximity-induzierte SOC einer starken Winkelabhängig-
keit unterliegen muss. Dadurch sollte die induzierte SOC durch die Wahl eines
bestimmten Drehwinkels einstellbar sein. Im Rahmen dieser Arbeit wurde dieser
Sachverhalt experimentell genauer untersucht (vgl. Abschnitt 6.3).

4.4.4. Zwischenlagenabstand von TMDCs auf ML-G
Grundsätzlich kann die Wechselwirkung zwischen zwei Atomen, die nicht durch
chemische Kräfte aneinander gebunden sind, mit dem Lennard-Jones-Potential
(LJ-Potential) beschrieben werden (vgl. Abb. 4.11) [65, 121]. Dabei wirken für
größere zwischenatomare Abstände (r > rGG) attraktive Van-der-Waals-Kräfte.
Bei kleineren Abständen (r < rGG) kommt es zur sogenannten Pauli-Repulsion
[65, 121]. Diese repulsiven Kräfte kommen dadurch zustande, dass durch grö-
ßeren Überlapp der Atomorbitale die Elektronen höhere Atomorbitale besiedeln
müssen, weil aufgrund des Pauli-Prinzips keine Zustände in den bereits besetzten
unteren Orbitalen mehrfach besetzt sein dürfen [65, 121]. Um jedoch höhere Ato-

rGG

V(r)

0
r

s

Pauli-
Repulsion

Attraktive Krafte

Abbildung 4.11.: Die rote Kurve zeigt den Verlauf des LJ-Potentials. Dabei wirkt
für kleinere interatomare Abstände (r < rGG) die Pauli-Repulsion und für größere
interatomare Abstände (r > rGG) wirken attraktive Kräfte zwischen den Atomen.
ϵ beschreibt außerdem die Tiefe des Potenzialtopfs an der Stelle rGG, bei der das
Kräftegleichgewicht eintritt. σ stellt den Abstand r dar, bei dem das LJ-Potential
eine Nullstelle besitzt. Entnommen aus [65, 121] und grafisch nachbearbeitet.

morbitale mit Elektronen besetzen zu können, benötigt das System Energie, die
dem System zugeführt werden muss [65, 121]. Am Verlauf des LJ-Potentials kann
man sehen, dass die Pauli-Repulsion bei kleiner werdenden Abständen schnell an-
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steigt, wodurch immer mehr Energie aufgebracht werden muss, um noch einen
spürbaren Effekt auf den interatomaren Abstand r zu haben.
Betrachtet man nun nicht mehr nur einzelne Atome, sondern die Atomlagen
einer Heterostruktur, so muss man nach [122, 123] anstelle des LJ-Potentials
das Kolmogorov-Crespi-Potential (KC-Potential) zur Beschreibung des Potenti-
als verwenden, da beim LJ-Potential beispielsweise keine unterschiedlichen Git-
terkonstanten und nur ideale AA-Stapelfolgen berücksichtigt werden können [122,
123]. Auch beim KC-Potential wirken abhängig vom Zwischenlagenabstand rL at-
traktive oder repulsive Kräfte. Daher wirken beide Potentiale prinzipiell ähnlich
auf die Veränderung des Zwischenlagenabstands bzw. interatomaren Abstands r.
Auf das KC-Potential wird hier aus diesem Grund nicht genauer eingegangen.
Für genauere Informationen zum KC-Potential siehe z.B. [122, 123].
Bekanntlich hängt die proximity-induzierte SOC stark von der Hybridisierung der
π-Orbitale des Graphens mit den äußeren Orbitalen des TMDCs ab [3, 24]. Die
Stärke SOC hängt daher wesentlich vom Überlapp der an der Kopplung betei-
ligten Atomorbitale ab [3, 24]. Wird der Zwischenlagenabstand rL zwischen den
beiden proximity-gekoppelten Lagen reduziert bzw. vergrößert, so wird der Über-
lapp der Orbitale größer bzw. kleiner [3]. Damit kann die proximity-induzierte
SOC durch Änderung des Zwischenlagenabstands rL sowohl gesteigert als auch
verringert werden [3, 24].
In der Praxis kann man durch Anlegen von hohem mechanischem Druck den
Zwischenlagenabstand rL verkleinern, wodurch zu erwarten ist, dass die Stärke
der proximity-induzierten SOC erhöht wird [3, 24]. Gemäß dem LJ- bzw. KC-
Potentials werden jedoch für immer kleinere Zwischenlagenabstände rL immer
höhere Drücke notwendig, um die SOC zu steigern. Da aber sowohl Probe als
auch Versuchsaufbau nur gewissen Drücken standhalten kann, ohne zerstört zu
werden, ist auch die Steigerung der proximity-induzierten SOC in gewissem Maße
begrenzt. In [24] schon eine gewisse Druckabhängigkeit der proximity-induzierten
SOC in ML-G/WSe2-Heterostrukturen gezeigt. Hier sollte das mit Hilfe einer wei-
teren Probe weiter untersucht und bestätigt werden (vgl. Abschnitt 6.4).



5. Probenherstellung
Dieses Kapitel widmet sich der Probenherstellung. Für die Untersuchungen die-
ser Arbeit wurden unterschiedliche Probentypen hergestellt. Im Folgenden sollen
die einzelnen, für die Probenherstellung notwendigen, Prozessschritte beschrie-
ben werden. Eine genauere Prozessdokumentation mit weiteren detaillierteren
Informationen findet sich als Beiwerk in Anhang Kapitel A.

5.1. Vorbereitung der Probensubstrate
Zu Beginn der Probenherstellung wurden ca. 1 × 1 cm2 große Si/SiO2-Substrate
hergestellt (vgl. A.1). Die untere Schicht dieser Substrate bestand dabei aus stark
positiv dotiertem Silizium (p++-Si), während die obere Schicht aus 90 oder 285 nm
SiO2 bestand. Im nächsten Schritt wurden diese Substrate gereinigt. Dazu wur-
den die Chips in Bechergläser mit Aceton gegeben und in ein Ultraschallbad
gestellt. Nachdem die Chips kurz nacheinander in ein Becherglas mit Isopropa-
nol getaucht und anschließend mit Stickstoff trocken geblasen wurden, konnten
die Chips anschließend in einen Plasmaverascher gegeben werden, um dadurch
vor allem die restlichen organischen Rückstände zu lösen (vgl. A.2). Nach diesem
Prozess waren die Substrate bereit für weitere Schritte.

5.2. Herstellung der Flocken
Für die Herstellung der verwendeten Flocken mussten verschiedene Verfahren
angewandt werden. Diese waren sowohl abhängig vom Material als auch von der
gewünschten Schichtdicke. Abbildung 5.1 zeigt Beispiele der erhaltenen Flocken.
Im Folgenden wird deren Herstellung beschrieben.

5.2.1. Herstellung von Monolagen- und Bilagen-Graphen
Im Rahmen dieser Arbeit wurde einerseits ML-G zur Messung von WAL-SOC be-
nutzt. Andererseits wurde aber auch BL-G zur Messung einer Schwebung in den
Shubnikov-de-Haas-Oszillationen verwendet. Die Herstellungsmethode von Gra-
phen unterschiedlicher Schichtdicke unterscheidet sich hier nicht. Für die Herstel-
lung der Flocken wurde ein Graphitkristall mit Hilfe eines Klebebandes exfoliert.
Das Klebeband mit den so erhaltenen dünnen Graphitschichten wurde danach

75
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Abbildung 5.1.: Die Abbildung zeigt Flocken unterschiedlicher Materialien und
Schichtdicken. Der Fokus liegt dabei auf den gelb umrandeten Bereichen. In a) ist
ML-G zu sehen. In b) ist dagegen BL-G zu erkennen. c) zeigt eine mehrschichtige
hBN-Flocke. In d) ist eine mehrschichtige WS2-Flocke zu sehen. In e) ist eine
exfolierte ML-WSe2-Flocke zu sehen, während in f) eine im CVD-Ofen gewachsene
ML-WSe2-Flocke dargestellt ist.

auf eines der vorbereiteten Probensubstrate gedrückt (vgl. A.3.1 Methode 1 und
2). Damit war es möglich, passende Graphen-Flocken auf das Probensubstrat zu
übertragen. So erhielt man die gewünschten Graphen-Flocken auf diesem Pro-
bensubstrat. Im Anschluss konnte man die erhaltenen Flocken mit Hilfe eines
optischen Mikroskops auf dem Substrat lokalisieren und deren Schichtdicke über
eine optische Kontrastanalyse bestimmen. Auf diese Weise wurde sowohl ML-G
als auch BL-G hergestellt (vgl. Abb 5.1 a) und b)).

5.2.2. Herstellung dünner hBN-Flocken
Die Herstellung dünner hBN-Flocken entspricht der Vorgehensweise der zuvor
beschriebenen Methode zur Herstellung von Graphen-Flocken (vgl. A.3.2). Hierzu
wurden qualitativ hochwertige Bornitridkristalle verwendet, die von T. Taniguchi
und K. Watanabe (National Institute for Materials Science, Tsukuba, Japan)
zur Verfügung gestellt wurden. Die hBN-Flocken, die für diese Arbeit verwendet
wurden, hatten Schichtdicken von ca. 10−100 nm. Eine dieser Flocken ist in Abb.
5.1 c) abgebildet.

5.2.3. Herstellung dünner TMDC-Flocken
Bei der Herstellung von dünnen TMDC-Flocken stellte sich heraus, dass die an-
zuwendende Herstellungsmethode nicht vom verwendeten TMDC-Material (hier
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WS2 und WSe2) abhängig ist. Allerdings war es in Bezug auf die angestrebte
Schichtdicke sinnvoll, unterschiedliche Verfahren anzuwenden.

Herstellung mehrschichtiger TMDC-Flocken

Die gezielte Herstellung von mehrschichtigen TMDC-Flocken wurde genauso rea-
lisiert wie es für hBN und Graphen der Fall war (vgl. A.3.3), da diese Methode
relativ leicht anzuwenden ist und auch qualitativ gute Resultate liefert. Dazu
wurden kommerziell erhältliche TMDC-Kristalle verwendet, die von der Firma
HQ Graphene bezogen wurden. In Abb. 5.1 d) ist eine mehrlagige WS2-Flocke
dargestellt.

Herstellung von Monolagen-TMDC

Für die Herstellung von Monolagen-TMDC (ML-TMDC) wurden anfangs diesel-
ben kommerziell erhältlichen Kristalle verwendet wie für die Herstellung mehrla-
giger TMDC-Flocken. Es stellte sich aber heraus, dass die Herstellung von ML-
TMDC im Vergleich zur Herstellung von mehrlagigen TMDC-Flocken wesentlich
aufwändiger ist. Das Problem war, dass sich ML-TMDC nicht direkt in brauchba-
rer Größe auf ein Probensubstrat mit SiO2-Oberfläche exfolieren ließ. Aus diesem
Grund wurde das Material später nicht mehr direkt auf das Probensubstrat,
sondern stattdessen, wie in [124] beschrieben, auf einen dünnen PDMS-Film ex-
foliert. Dadurch erhielt man dann nutzbares ML-TMDC, welches man mit Hilfe
eines optischen Mikroskops lokalisieren konnte. Anschließend mussten die Flo-
cken von diesem PDMS-Film, wie in [124] beschrieben, auf ein Probensubstrat
transferiert werden (vgl. A.3.3).
Grundsätzlich eignet sich diese Methode zur Herstellung von ML-TMDC. Al-
lerdings ist diese Methode recht aufwändig und es gestaltet sich auch als sehr
schwierig, die PDMS-Rückstände von der Oberseite der TMDC-Flocke zu besei-
tigen. Deshalb konnte später bei der Bildung der Heterostruktur nur die nicht-
kontaminierte Unterseite des ML-TMDCs in Kontakt mit dem ML-G gebracht
werden, da andernfalls sehr wahrscheinlich keine saubere Proximity-Kopplung
vorhanden gewesen wäre.
Ein weiteres Problem bei dieser Methode war die geringe Ausbeute, denn oft er-
hielt man nur wenige Flocken, die auch relativ klein waren. Aus diesem Grund
wurde später im Rahmen einer Bachelorarbeit von K. Baumgartner [125] eine
andere Methode nach [126] zur Herstellung großer Flocken aus ML-TMDC er-
probt. Obwohl die Ausbeute mit Hilfe dieser Methode beträchtlich ist, fand diese
Methode jedoch für diese Arbeit keine Anwendung mehr. Stattdessen konnte spä-
ter gewachsenes ML-TMDC verwendet werden, welches von einer Gruppe um A.
Turchanin (Friedrich-Schiller-Universität Jena, Jena, Deutschland) bezogen wur-
den. Dieses ML-TMDC wurde zuvor in einem CVD-Ofen auf ein Si/SiO2-Substrat
gewachsen. Da dieses ML-TMDC nun auch schon auf einem Si/SiO2-Substrat lag
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und auch während den späteren Transportmessungen keine qualitativen Mängel
erkennbar waren, konnte man durch den Erhalt dieses Materials auf die relativ
aufwändige Herstellung von exfoliertem ML-TMDC verzichten. Abbildung 5.1 e)
und f) zeigt jeweils exfoliertes und gewachsenes ML-WSe2.

5.3. Bildung von Heterostrukturen
Nach der Herstellung der einzelnen Flocken konnte man zur Bildung der He-
terostrukturen übergehen. Dafür wurde eine Hot-Pickup-Transfermethode nach
[127–130] benutzt.

5.3.1. Aufbau und Vorbereitung
Für die Durchführung dieser Hot-Pickup-Transfermethode waren eine spezielle
Transfervorrichtung und anderweitige Vorbereitungen notwendig (vgl. A.4.1). Um
später die Flocken vom Substrat aufnehmen zu können, wurde ein Objektträger,
auf dem ein tropfenförmiger Polydimethylsiloxan-Stempel (PDMS-Stempel) an-
gebracht worden ist, mit einem Film aus Polycarbonat (PC) überzogen. Mit Hilfe
dieses PDMS/PC-Stempels sollte man später einzelne Flocken von den Substra-
ten aufheben können. Der Objektträger mit dem Stempel wurde dazu nach dessen
Herstellung in eine rotierbare Transferscheibe eingebaut. Diese Scheibe diente zur
Fixierung des Objektträgers. Anschließend wurde diese Transferscheibe, mit dem
Objektträger darin, in den Tisch eines optischen Mikroskops eingebaut. Im Kon-
densorhalter des Mikroskops wurde ein kleiner heizbarer Probentisch montiert,
auf dem das Substrat mit den zu transferierenden Flocken befestigt werden konn-
te. Nachdem alle Vorbereitungen getroffen wurden, konnte man zum Transfer der
Flocken übergehen.

5.3.2. Transfer
Der Transferaufbau ermöglichte es, unter dem optischem Mikroskop den PDMS/
PC-Stempel mit den Flocken auf dem Substrat in Kontakt zu bringen. Die not-
wendige Kontrolle war dabei durch die Triebe des Mikroskops gegeben. Wurde
nun der Heiztisch nach dem Kontakt zwischen dem Substrat und dem PDMS/PC-
Stempel erhitzt, so war es möglich, exfolierte Flocken mit Hilfe dieses PDMS/PC-
Stempels aufzuheben (vgl. A.4.2). Hat man nun die erste Flocke aufgehoben, so
kann man damit auch weitere Flocken aufheben. Dabei machte man sich den
sogenannten Van-der-Waals-Pickup zunutze. Treffen nämlich die zweidimensio-
nalen Materialien, die hier verwendet werden, mit ihren horizontalen Flächen
aufeinander, so wirken zwischen diesen Materialien Van-der-Waals-Kräfte [131].
Dadurch haften die Flocken nach der Herstellung des Kontakts anschließend an-
einander und es bildet sich eine Heterostruktur. Auf diese Weise konnte man
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durch mehrmalige Wiederholung dieses Transfers Heterostrukturen unterschied-
licher Zusammensetzung herstellen.
Hat man nun die gewünschte Heterostruktur auf diesem PDMS/PC-Stempel
liegen, so musste diese Heterostruktur auf ein neues Probensubstrat transfe-
riert werden, welches für die späteren Messungen geeignet war. Dazu wurde der
PDMS/PC-Stempel mit der Heterostruktur auf ein gereinigtes Si/SiO2-Substrat
mit stark positiv dotiertem Si und 285 nm SiO2 gedrückt, um bei hohen Tempe-
raturen den PC-Film zusammen mit der Heterostruktur auf dem Substrat festzu-
schmelzen (vgl. A.4.4). Mit Hilfe von Chloroform (CHCl3) konnte danach das PC
vom abgekühlten Chip gelöst werden. Dabei verblieb jedoch die Heterostruktur
auf dem Probensubstrat, wodurch diese nun für weitere Prozessschritte bereit
war. Grundsätzlich wurden auf diese Weise die Heterostrukturen dieser Arbeit
hergestellt. Im Folgenden wird auf die Besonderheiten der einzelnen Heterostruk-
turen noch etwas genauer eingegangen.

hBN/BL-G/WS2-Heterostrukturen

SiO2

p++-Si

BL-G

WS2

hBN

Abbildung 5.2.: Heterostruktur
aus hBN, BL-G und WS2 auf
Si/SiO2-Substrat.

Für die Proben zur Messung der Schwe-
bung in den Shubnikov-de-Haas-Oszillationen
wurde mit dem PDMS/PC-Stempel der
Reihe nach WS2, BL-G und hBN auf-
gehoben, sodass am Ende eine hBN/BL-
G/WS2-Heterostruktur entstand und auf dem
Si/SiO2-Substrat abgelegt werden konnte
(vgl. Abb. 5.2). Auf diese Weise wurde das
BL-G eingekapselt, was eine hohe Ladungs-
trägerbeweglichkeit µ ermöglichen sollte. Es
ist außerdem sinnvoll, dass sich das dielektrische hBN auf der gleichen Seite wie
die Gateelektrode relativ zum BL-G befindet, da Halbleiter wie WS2 möglicher-
weise das elektrische Feld der Gateelektrode abschirmen können, sobald diese
unter bestimmten Voraussetzungen in den leitfähigen Zustand übergehen.

ML-G/ML-WSe2/hBN-Heterostrukturen mit exfoliertem WSe2

SiO2

p++-Si

ML-WSe2

ML-G

hBN

Abbildung 5.3.: Heterostruktur
aus hBN, ML-WSe2 und ML-G
auf Si/SiO2-Substrat.

Für die Proben zur Messung von WAL-SOC
wurde zuerst eine hBN-Flocke, anschließend
das ML-WSe2 und zuletzt das ML-G aufge-
hoben und auf dem Si/SiO2-Substrat abge-
legt (vgl. Abb 5.3). Dadurch lag das ML-G di-
rekt auf der SiO2-Oberfläche. Auf diese Weise
konnte erreicht werden, dass die notwendigen
Defekte zur Messung von WAL-SOC vorhan-
den waren. Prinzipiell bräuchte man die hBN-
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Schicht für diese Heterostrukturen nicht, da sie nicht oder nicht wesentlich zu den
elektronischen Eigenschaften beitragen dürfte. Allerdings stellte sich heraus, dass
die ML-WSe2-Flocken sehr empfindlich sind und dadurch während der Proben-
herstellung häufig zerstört wurden. Dies konnte durch Positionierung einer hBN-
Flocke an der Oberseite der Heterostruktur vermieden werden. In Abb. 5.4 b)-d)
sind solche Flocken und eine daraus entstandene Heterostruktur dargestellt.

ML-G/ML-WSe2/hBN-Heterostrukturen mit gewachsenem WSe2

Die Herstellung von ML-G/ML-WSe2/hBN-Heterostrukturen mit gewachsenem
WSe2 war grundsätzlich ähnlich der Herstellung derselben Heterostrukturen mit
exfoliertem WSe2 (vgl. A.4.3). Hier ist jedoch zu beachten, dass das hBN an der
Oberseite grundsätzlich erforderlich war, weil man die gewachsenen Flocken nur
mit Hilfe anderer 2D-Materialien (Van-der-Waals-Pickup) aufheben konnte. Das
direkte Aufheben von auf SiO2 gewachsenen TMDC-Flocken lediglich durch Kon-
takt mit einem PC-Film funktionierte hier nicht. Beim Van-der-Waals-Pickup sei
noch erwähnt, dass nur der mit der oberen Flocke überlappende Bereich der Ziel-
Flocke aufgehoben wird, d.h. in diesem Fall wird auch nur der Teil der TMDC-
Flocke aufgehoben, bei dem die hBN-Flocke mit der TMDC-Flocke überlappt.
Der andere Teil der TMDC-Flocke verbleibt auf dem ursprünglichen Substrat.
Beim Aufheben der ML-G-Flocke war dieser Umstand für einen Teil der herge-
stellten Proben erwünscht. Das heißt, hier wollte man nur einen Teil der Flocke
aufheben, der andere Teil sollte auf dem Substrat verbleiben. Den verbliebenen
Teil benötigte man später für die Bestimmung der Kristallorientierung der ML-
G-Flocke, wie später noch genauer beschrieben wird.

5.3.3. Einstellung und Bestimmung der Kristallorientierung
In dieser Arbeit wurde die Abhängigkeit der induzierten SOC in Bezug auf die
Kristallorientierung zwischen ML-G und ML-WSe2-Flocken untersucht. Zur Be-
stimmung und Einstellung dieser Kristallorientierung wurden zwei unterschiedli-
che Verfahren angewandt.

ML-G/ML-WSe2/hBN-Heterostrukturen mit exfoliertem WSe2

Um die Methoden zur Drehwinkelwinkelbestimmung für ML-G/TMDC-Hetero-
strukturen zu verstehen wird im Folgenden zuerst auf die Besonderheiten der
Symmetrien solcher Systeme eingegangen.
Grundsätzlich entsteht bei zwei zueinander verdrehten hexagonalen Kristallgit-
tern ein Moiré-Muster, sodass die gesamte Heterostruktur eine C3 (120◦)-Symmetrie
aufweist [22]. Die Drehwinkel, die eindeutige Werte für die proximity-induzierte
SOC liefern, liegen dabei in einem Bereich von α = 0◦...30◦ [22]. Es reicht deshalb
aus, wenn man sich auf diesen Winkelbereich konzentriert [21–23].
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Über hexagonale Materialien wie hBN, ML-G und ML-WSe2 ist bekannt, dass
diese mit einer sehr hohen Wahrscheinlichkeit so brechen, dass deren Ränder ent-
weder eine zigzag- oder eine armchair-Struktur aufweisen, wobei insbesondere
TMDCs bevorzugt zigzag-Kanten bilden [132].
Da man die Kantenart für ML-G während optischer Mikroskopie jedoch nicht
erkennen kann, lässt sich die Orientierung der Flocke während dem Stapeln nicht
eindeutig bestimmen. Das bedeutet nun, dass entsprechende Kanten sowohl zig-
zag- als auch armchair-Ränder haben können. Daher kann ein gemessener Winkel
α = β mit β = 0◦...30◦ auch einem Winkel α = 30◦ − β entsprechen. Der einzige
eindeutige Fall, bei dem α = β = 30◦ − β gilt, tritt bei β = 15◦ auf. Für alle
anderen beobachteten Winkel gibt es daher zwei mögliche Lösungen.
Nun stellt sich die Frage, ob ein Nachweis einer winkelabhängigen SOC mit dieser
Methode überhaupt gelingen kann. Grundsätzlich gibt es für jeden gemessenen
Winkel von α ̸= 15◦ bekanntlich immer zwei unterschiedliche tatsächliche Werte
die α annehmen kann. Bestimmt man nun die SOC-Parameter für beide Fäl-
le, so kann ein Abgleich mit den SOC-Parametern aus theoretischen Arbeiten
eine gewisse Eindeutigkeit liefern. Damit ist klar, dass sich diese Methode nur
zusammen mit theoretischen Berechnungen als eindeutige Nachweismethode der
winkelabhängigen SOC eignet. Für diese Arbeit wurden daher nur Proben aus ex-
foliertem ML-WSe2 hergestellt, bei denen der eingestellte Winkel zwischen ML-G
und ML-WSe2 15◦ und 0◦ bzw. 30◦ betrug, da für diese Winkel die theoretischen
bestimmten SOC-Parameter auch eine gewisse Eindeutigkeit aufweisen.
Zur Einstellung der Winkelorientierung zwischen ML-G und exfoliertem ML-
WSe2 wurde während dem Stapelprozess folgendermaßen vorgegangen. Zuerst
wurden die Kanten der hBN-, ML-G- und ML-WSe2-Flocken (vgl. Abb. 5.4 b)
und c)) betrachtet und die einzelnen Winkel zwischen den spezifischen Kanten
der jeweiligen Flocke gemessen. Dazu wurde die Software der Mikroskopkamera
und eine Software mit Winkelmessfunktion benutzt.
Im nächsten Schritt wurde dann zuerst das hBN mit einem PDMS/PC-Stempel
aufgehoben. Mit diesem hBN wurde danach die ML-WSe2-Flocke aus Gründen
der Reproduzierbarkeit so aufgehoben, dass die spezifischen Kanten einen Winkel
von 15◦ zueinander hatten.
Anschließend wiederholte man diesen Prozess, indem man mit dem hBN/ML-
WSe2-Stapel das ML-G aufhob. Dabei wurde zuerst der gewünschte Winkel zwi-
schen den jeweiligen Kanten der ML-WSe2-Flocke und der ML-G-Flocke ein-
gestellt und anschließend die ML-G-Flocke aufgehoben (vgl. Abb. 5.4 a)). Der
Stapel konnte dann auf einen neuen Si/SiO2-Chip abgelegt werden und weiter
prozessiert werden. Ein fertiger Stapel dieser Art ist in Abb. 5.4 d) zu sehen.
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ML-WSe2

ML-G

hBN/ML-WSe/ML-G2

α
ML-WSe2
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Abbildung 5.4.: a) zeigt ein Modell, in dem eine ML-WSe2-Flocke (blau) auf
einer ML-G-Flocke (grau) positioniert wurde. Der Winkel α ist der Drehwin-
kel zwischen den beiden Flocken. b) Graphit-Flocke, mit einem Teil ML-G. Die
zwei parallelen weißen Linien markieren dabei spezifische Kanten, welche mit
hoher Wahrscheinlichkeit zigzag- oder armchair-Ränder haben. In c) wird eine
WSe2-Flocke gezeigt, von der ein Teil aus ML-WSe2 besteht. Die orangen Li-
nien markieren hier ebenfalls wieder spezifische Kanten mit einem Winkel von
α = 60◦ zueinander. In d) kann man die fertig gebildete Heterostruktur sehen.
Dabei wurden die ML-G- und ML-WSe2-Flocken so übereinander gelegt, sodass
die spezifischen Kanten einen Winkel von 0◦ einschließen. Da man jedoch die
Struktur der Ränder (zigzag oder armchair) nicht genau kennt, muss man hier
zwei mögliche Drehwinkel, 0◦ und 30◦, annehmen.

ML-G/ML-WSe2/hBN-Heterostrukturen mit gewachsenem WSe2

Um die Winkelorientierung zwischen einer ML-WSe2-Flocke und ML-G-Flocke
exakt bestimmen zu können, war eine andere Methode notwendig. Dazu wur-
de nun auch, im CVD-Ofen gewachsenes, ML-WSe2 verwendet. Grundsätzlich
kristallisieren diese gewachsenen ML-WSe2-Flocken in bestimmten geometrischen
Formen. Sehr häufig sind es Formen, die sich aus gleichseitigen Dreiecken zusam-
mensetzen lassen. Die Winkel dieser Dreiecke betragen demnach 60◦, wodurch
die zusammengesetzten Formen dann nur Winkel aufweisen können, die ein Viel-
faches von 60◦ entsprechen. Nun ist außerdem bekannt, dass diese gewachsenen
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Abbildung 5.5.: Die Aufnahmen a)-c) zeigen die Flocken, die für Bildung einer
Heterostruktur verwendet wurden. Insbesondere zeigt a) eine hBN-Flocke, b) ei-
ne ML-WSe2-Flocke und c) eine ML-G-Flocke. Die Aufnahmen d) und e) zeigen
die beteiligten Flocken beim Hot-Pickup-Prozess während der Bildung der Hete-
rostruktur. In f) ist die fertige Heterostruktur zu sehen, bei der die drei Flocken
aus a),b) und c) aufeinanderliegen.

Flocken mit einer sehr hohen Wahrscheinlichkeit nur zigzag-Ränder aufweisen, da
es für die Flocken energetisch günstiger ist zigzag-Ränder anstelle von armchair-
Rändern auszubilden [133, 134]. Dadurch ist die Kristallorientierung von dieser
ML-WSe2-Flocke bekannt. Abb. 5.6 b) zeigt eine dieser ML-WSe2-Flocken.
Exfoliert man nun ML-G, so bricht die Flocke beim exfolieren häufig so, dass die
Flocken geradlinige Kanten aufweisen, welche wiederum häufig Winkel von Viel-
fachen von 30◦ zueinander einschließen. Man kann hier jedoch bekanntlich nicht
zwischen zigzag- und armchair-Kanten unterscheiden. Ermittelt man jedoch z.B.
durch anisotropes Ätzen die Kristallorientierung der Flocke, so kann man diesen
Kanten nun eine zigzag- oder armchair-Struktur zuordnen [135, 136].
Die Bestimmung der Kristallorientierung läuft folgendermaßen ab. Zuerst nimmt
man ein Bild dieser Graphen-Flocke auf, sodass man später einen photographi-
schen Abgleich durchführen kann (vgl. Abb. 5.5 c) bzw. 5.6 a)). Danach kann
man während dem Transferprozess, durch unvollständigen Überlapp der Flocken,
einen Teil der Graphen-Flocke mit dem hBN/ML-WSe2-Stapel (vgl. Abb. 5.5 d)
und e)) aufheben. Dabei reißt man vom Graphen den Teil ab, der mit dem Sta-
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pel in Kontakt gekommen ist (vgl. Abb. 5.5 e)). Der eine abgerissene Teil wird
anschließend für die Herstellung der Heterostruktur verwendet (vgl. Abb. 5.6 f)),
der andere Teil, der noch auf dem Substrat lag, wurde benutzt, um die Kristall-
orientierung des ML-Gs zu bestimmen (vgl. Abb. 5.6 b)). Dazu wurden mit Hilfe
einer harten, mit diamantähnlichem Kohlenstoff beschichteten, AFM-Spitze, Lö-
cher in diesen Teil der Flocke gestanzt (vgl. A.14.1). Anschließend wird diese

(c) (d)

20mm 20mm

(a) (b)

m6 m0 m1 m3

Abbildung 5.6.: Diese Abbildung zeigt verschiedene Stadien einer ML-G-Flocke,
die den Prozess des anisotropen Ätzens durchlaufen hat. In a) sieht man die ML-
G-Flocke in ihrer ursprünglichen Form nach der Exfoliation. In b) sieht man die
übriggebliebenen Teile der Flocke, nachdem der andere Teil für die Bildung der
Heterostruktur aufgehoben wurde (vgl. auch Abb. 5.5 e)). In c) sieht man die
z-Topographie der Flocke nach dem anisotropen Ätzen, aufgenommen mit einem
AFM im tapping-mode. Der blaue Rahmen in a) und b) entspricht dabei etwa
der Bildregion von c). Der weiße Rahmen in c) zeigt eine Region in welche zuvor
Löcher mit dem AFM gestanzt wurden. Bild d) entspricht dem Bereich innerhalb
des weißen Rahmens von c). Man sieht die zuvor gestanzten und dann anisotrop
geätzten Löcher. Außerdem erkennt man auch die Kristallorientierung an den
Kanten dieser Löcher.

Flocke in einen CVD-Ofen gegeben und dort anisotrop geätzt (vgl. A.14.2). Im
Idealfall nehmen diese Löcher dann die Form von gleichmäßigen Sechsecken an
(vgl. 5.6 c)-d)). Die Kanten dieser Sechsecke haben aus energetischen Gründen
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wiederum zigzag-Struktur [135, 136]. Legt man nun die einzelnen Bilder aus Abb.
5.6 a)-d) übereinander, so kann man grundsätzlich die Kristallorientierung und
Struktur der Kanten des ML-G ermitteln. Schaut man sich nun anhand Abb.
5.5 und Abb. 5.6 an, wie das ML-G relativ zum ML-WSe2 in die Heterostruktur
integriert wurde, so kann man den Rotationswinkel zwischen der ML-G- und der
ML-WSe2-Flocke ziemlich genau bestimmen.

5.4. Behandlung von Heterostrukturen mit AFM im
Kontaktmodus

In den Arbeiten von [137, 138] wurde gezeigt, dass es möglich ist, die Zwischen-
räume zwischen den unterschiedlichen Grenzflächen einer Heterostruktur zu reini-
gen. Dafür lässt man ein AFM im Kontaktmodus über die Heterostruktur fahren
(vgl. A.5). Dabei können nicht nur Verunreinigungen auf der Oberfläche der He-
terostruktur beseitigt werden, sondern auch eingeschlossene Verunreinigungen in
den Zwischenräumen der einzelnen Lagen der Heterostruktur. Dieses Verfahren
wurde innerhalb der Forschungsgruppe im Rahmen einer Bachelorarbeit von J.
Steidl [139] erprobt und danach auch auf die Proben in dieser Arbeit angewandt.
Der Nutzen dieser Methode für diese Arbeit bestand im Wesentlichen darin, dass
man möglicherweise unerwünschte Einschlüsse von Luft, Wasser oder sonstigen
Verunreinigungen zwischen der ML-G- und der TMDC-Schicht beseitigen kann,
um dadurch den Proximity-Kontakt zwischen den beiden Materialien zu verbes-
sern. Dies sollte sich positiv auf die Messungen von WAL-SOC und damit der
Bestimmung der proximity-induzierten SOC auswirken.

5.5. Herstellung von Hallbar-Strukturen
Hat man nun eine fertige Heterostruktur auf einem Probensubstrat, so kann man
mit der Strukturierung dieser Heterostruktur beginnen. In dieser Arbeit wurden
ausschließlich Hallbar-Strukturen verwendet. Dadurch wurde die spätere Auswer-
tung aufgrund der geometrischen Form von Hallbar-Strukturen erheblich verein-
facht. Um diese Hallbar-Strukturen herzustellen, wurden folgende Prozessschritte
durchgeführt, die grundsätzlich als etablierte Standardprozesse angesehen werden
können. Daher werden die einzelnen Prozesse hier nur grob beschrieben. Als ers-
tes wurde eine Elektronenstrahllithographie durchgeführt. Dafür wurde die Pro-
be zuvor mit einem Polymethylmethacrylat/Anisol-Lackgemisch (PMMA-Anisol-
Lackgemisch) lackiert und nach dem Aushärten in einem Rasterelektronenmikro-
skop (REM) mit Elektronenstrahlen belichtet (vgl. A.6.1 und A.6.2). Nach diesem
Vorgang wurde die Probe in einem Methylisobutylketon/Isopropanol-Gemisch
(MIBK-Propanol-Gemisch) entwickelt (vgl. A.6.3). Dadurch entstand über der
Heterostruktur eine Maske aus PMMA, die die Teile der Heterostruktur schützt,
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welche später nicht geätzt werden sollen. Alle ungeschützten Bereiche werden
im nächsten Prozess, dem reaktiven Ionenätzen, geätzt (vgl. A.7). Bei diesem
chemisch-physikalischem Verfahren wurde sogenanntes Fluoroform (CHF3-Gas)
verwendet [140], um die überflüssigen Bereiche der Heterostruktur zu ätzen und
damit zu entfernen. Nach dem Ätzprozess wurde die verbliebene PMMA-Maske
mit Aceton vom Chip gelöst, wodurch eine freiliegende Heterostruktur in Form
einer Hallbar auf dem Substrat übrig blieb.

5.6. Bildung der elektrischen Kontakte

SiO2

p++-Si

ML-G
ML-WSe2

hBN

Cr/Au Cr/Au

Abbildung 5.7.: Heterostruktur
mit Randkontakten aus Chrom
(Cr) und Gold (Au).

Um die Heterostrukturen später mit den
Messinstrumenten elektrisch verbinden zu
können, waren elektrische Kontakte notwen-
dig. Für die Proben dieser Arbeit wurden
dafür sogenannte Randkontakte nach [140]
verwendet (vgl. Abb. 5.7). Hierbei besteht
der Kontakt lediglich in horizontaler Rich-
tung mit der Graphen-Schicht. Zur Herstel-
lung solcher Kontakte wurde erneut eine Elek-
tronenstrahllithographie durchgeführt, um ei-
ne PMMA-Maske für die Kontakte und Lei-
terbahnen zu erstellen (vgl. A.8.1-A.8.3). Be-
vor die Kontakte aufgedampft wurden, musste sichergestellt werden, dass die
Ränder der Hallbar-Struktur, an denen später die Kontakte liegen sollen, weit-
gehend frei von schlecht leitenden PMMA-Rückständen waren. Dafür wurde die
Probe erneut für kurze Zeit zum reaktiven Ionenätzen gegeben (A.9). Idealerwei-
se entfernt dabei das verwendete Sauerstoffplasma die PMMA-Rückstände von
den Rändern der Hallbar. Nun sind die Proben bereit, um mit Hilfe von phy-
sikalischer Gasphasenabscheidung (PVD) die Kontakte, bestehend aus ca. 5 nm
Chrom (wurde hier vor allem als Haftvermittler benutzt) und 100 nm Gold, aufzu-
dampfen (vgl. A.10.1 und A.10.2). Um anschließend das überschüssige Gold und
die PMMA-Maske darunter zu entfernen, wurde der sogenannte Lift-Off durch-
geführt (vgl. A.11). Nach dem Lift-Off lag nun eine Hallbar mit elektrischen
Kontakten auf dem Substrat vor.

5.7. Fertigstellung der Probe
Um die Probe nun für die Messungen verwenden zu können, musste das Proben-
substrat vorher noch in einen sogenannten Chipträger eingeklebt werden (vgl.
A.12). Dieser Chipträger stellt später mit Hilfe seiner elektrischen Kontakte die
Verbindung zwischen Probensubstrat und Messaufbau her. Zum Einkleben des
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Chips in diesen Chipträger wurde ein leitfähiger Kleber benutzt, mit welchem
auch die Backgateelektrode des Substrats mit einem Kontakt des Chipträgers
verbunden wurde. Nach dem Aushärten des Klebers wurden die einzelnen Leiter-
bahnen der Hallbar mit Hilfe eines Ultraschall-Drahtbonders mit den Kontakten
des Chipträgers verbunden (vgl. A.13). Damit war die Probe fertiggestellt und
man konnte im Anschluss zur Messung dieser Probe übergehen.





6. Experimentelle Ergebnisse
In diesem Kapitel werden die experimentellen Ergebnisse dieser Arbeit darge-
stellt, interpretiert und diskutiert. Es wird unter anderem gezeigt, wie sich die
proximity-induzierte SOC nachweisen lässt. Dazu wurde sowohl das Auftreten
einer Schwebung in den Shubnikov-de-Haas-Oszillationen, als auch das Auftreten
von WAL-SOC genauer untersucht. Es wurde zudem anhand einer Probe gezeigt,
wie sich die proximity-induzierte SOC in Abhängigkeit von der Schichtdicke von
WSe2 verhält. Des Weiteren wird gezeigt, wie die proximity-induzierte SOC vom
Drehwinkel zwischen WSe2 und ML-G abhängt. Dabei werden Ergebnisse für un-
terschiedliche Methoden der Winkelbestimmung betrachtet. Abschließend wird
noch gezeigt, dass die proximity-induzierte SOC vom Zwischenlagenabstand der
Heterostruktur abhängig ist und mit Hilfe von mechanischem Druck verändert
werden kann.

6.1. Schwebung in Shubnikov-de-Haas-Oszillationen
Dieser Abschnitt befasst sich nun mit dem Nachweis und der Bestimmung von
proximity-induzierter SOC anhand einer Schwebung in den Shubnikov-de-Haas-
Oszillationen.
Zur Detektion dieser Schwebung sind qualitativ hochwertige Messungen der Shub-
nikov-de-Haas-Oszillationen notwendig. Die Proben sollten daher nur wenig De-
fekte und Verunreinigungen beherbergen, da diese sehr häufig für Rauschen oder
andere unerwünschte Hintergrundsignale verantwortlich sind. Aus diesem Grund
empfiehlt es sich, möglichst reine Proben herzustellen, was in der Regel mit ho-
hen Ladungsträgerbeweglichkeiten µ einhergeht. Somit stellt die Ladungsträger-
beweglichkeit µ auch ein gewisses Maß für die Probenqualität dieser Proben dar.
Für die Realisierung solcher Proben wurde BL-G zwischen WS2 und hBN ein-
gekapselt, sodass eine hBN/BL-G/WS2-Heterostruktur entstand (vgl. Abschnitt
5.3.2). Es ist dabei wichtig zu erwähnen, dass für diese Heterostrukturen BL-
G und nicht ML-G verwendet wurde, da schon in [8] angenommen wurde, dass
die gesuchte Schwebung für Heterostrukturen mit ML-G nur sehr schwer nach-
weisbar sein sollte [8]. Mit Blick auf Bandstrukturen und Zustandsdichten (DOS)
von ML-G und BL-G wird nämlich ersichtlich, dass ML-G nahe dem Dirac-Punkt
aufgrund der linearen Verläufe von Bandstruktur und DOS eine höhere Energie-
unschärfe aufweisen muss, als es für BL-G mit parabolischen Verläufen der Fall
ist. Aufgrund dieser erhöhten Energieunschärfe wäre dann auch die Energieauf-
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spaltung, verursacht durch die proximity-induzierte SOC, vermutlich nicht klar
genug ausgeprägt, um in Form einer Schwebung nachweisbar zu sein. Aus diesem
Grund wurde zur Untersuchung der gesuchten Schwebung BL-G anstelle von ML-
G verwendet.
Im Anschluss wird nun genauer auf die verwendete Hallbar-Struktur und auf den
Messvorgang eingegangen.

6.1.1. Hallbar-Struktur und Messvorgang

Zur Messung der Probe wurde ein Messsystem verwendet, wie es in Anhang B.1
beschrieben ist. Die hier gemessene Hallbar-Struktur hatte zwölf Kontakte, wo-
von zehn Kontakte grundsätzlich funktionsfähig waren (vgl. Abb. 6.1 a) und b)).

L W 15

1110764

161718201

2

(a)

x

y

25mm

(b)

Abbildung 6.1.: a) Modell der Hallbar-Struktur mit den jeweiligen nummerier-
ten Kontakten. b) Bild der verwendeten Hallbar-Struktur mit den zugehörigen
Leiterbahnen, aufgenommen mit der Kamera eines optischen Mikroskops.

Während der Abstand zwischen den einzelnen Kontakten an den langen Seiten
der Hallbar L = 3µm betrug, wies die Hallbar eine Kanalbreite von W = 2µm
auf.
An den Enden der Hallbar (Kontakte 2 und 15) wurde eine Wechselspannung
Ubias = 1 V mit einer Frequenz fLockIN = 13 Hz angelegt. Bei einem Vorwider-
stand von Rv = 10 MΩ war dann ein Wechselstrom von I ≈ 100 nA messbar.
Die Vierpunktmessungen, zur Bestimmung der einzelnen Spannungsabfälle Uxx

zwischen den verschiedenen Kontakten an den langen Seiten der Hallbar, wur-
den mit Lock-In-Verstärkern durchgeführt. Dadurch konnte mögliches Rauschen
erheblich herausgefiltert werden.
Auf diese Weise war es nun möglich, sowohl die Messungen zum elektrischen
Feldeffekt, als auch zu den Shubnikov-de-Haas-Oszillationen durchzuführen.
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6.1.2. Messungen zum elektrischen Feldeffekt
Um Informationen zu wesentlichen Transporteigenschaften der Probe zu erhalten,
wurden zunächst Messungen zum elektrischen Feldeffekt durchgeführt. Dazu wur-
den Vierpunktmessungen an den jeweiligen Kontaktpaaren an den langen Seiten
der Hallbar durchgeführt, während dabei die Gatespannung Ug variiert wurde. So
konnten die Spannungsabfälle Uxx zwischen den jeweiligen Kontakten der Hallbar
gemessen werden, um anschließend mit dem gemessenen Strom I den elektrischen
Widerstand Rxx bzw. die Leitfähigkeit σxx innerhalb dieser Probenabschnitte in
Abhängigkeit von der Gatespannung Ug bestimmen zu können.
Durch Auftragen von Widerstand Rxx bzw. Leitfähigkeit σxx gegen die Gatespan-
nung Ug ergaben sich bei einer Temperatur T ≈ 1, 6 K für die Bereiche zwischen
den einzelnen Kontaktpaaren (4-6, 6-7, 7-10 und 10-11) die jeweiligen Kurven
von Abb. 6.2 a) und b).

-18 -16 -14 -12 -10 -8 -6
0

4

8

12

16

20

24

R
x
x 
(k
U

)

Ug (V)

 R4-6

 R6-7

 R7-10

 R10-11

(a)

0
-18 -16 -14 -12 -10 -8 -6

Ug (V)

2

4

6

8

10

12

14

s x
x (

m
S

)

 s4-6

 s6-7

 s7-10

 s10-11

(b)

Abbildung 6.2.: a) WiderstandRxx in Abhängigkeit von Ug nahe dem Dirac-Punkt
zwischen den jeweiligen Kontaktpaaren (4-6, 6-7, 7-10 und 10-11). b) Leitfähig-
keit σxx in Abhängigkeit von Ug nahe dem Dirac-Punkt zwischen den jeweiligen
Kontaktpaaren (4-6, 6-7, 7-10 und 10-11).

Die einzelnen Kurven in Abb. 6.2 a) und b) weisen eigentlich keine Besonderheiten
auf. Vergleicht man die Kurven jedoch miteinander, so fällt auf, dass die Dotie-
rung und auch die Form der Dirac-Punkte für die einzelnen Probenabschnitte
etwas unterschiedlich ausfällt. Dies weist bereits darauf hin, dass die Probe hin-
sichtlich der Verteilung von Defekten bzw. Verunreinigungen inhomogen ist. Ob
und wie sich die Inhomogenität der Probe auf die Untersuchung der Schwebung in
den Shubnikov-de-Haas-Oszillationen auswirkt, darauf wird später noch genauer
eingegangen.
Mit Hilfe dieser Messdaten aus Abb. 6.2 a) und b) konnte man anschließend, wie
in Abschnitt 3.1.2 beschrieben, die Ladungsträgerbeweglichkeiten µ berechnen.
Dazu wurde zuerst durch Anwendung von Gleichung (3.3) die Gatekopplungskon-
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stante Cg berechnet. Mit der relativen Permittivität für SiO2 ϵr,SiO2 = 3, 9 [141],
der relativen Permittivität für hBN ϵr,hBN = 3, 0 [142, 143], der Permittivität
des Vakuums ϵ0 = 8, 8541... × 10−12 AsV−1m−1 [79] und den Schichtdicken für
SiO2 dSiO2 ≈ 285 nm und für hBN dhBN ≈ 35 nm ergab sich eine Kapazität des
Schichtsystems von Cg ≈ 1.04 × 10−4 AsV−1m−2. Durch Anwendung von Glei-
chung (3.9) erhielt man anschließend die Ladungsträgerbeweglichkeiten µ für die
unterschiedlichen Bereiche der Hallbar in Abhängigkeit der Gatespannung Ug. Es
ergaben sich die Kurven aus Abb. 6.3 a).
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Abbildung 6.3.: a) Zeigt den Verlauf der Ladungsträgerbeweglichkeiten µ zwi-
schen den Kontaktpaaren 4-6, 6-7, 7-10 und 10-11 in Abhängigkeit von der Gate-
spannung Ug. b) zeigt den Verlauf der mittleren freien Weglängen lmfp zwischen
den Kontaktpaaren 4-6, 6-7, 7-10 und 10-11 in Abhängigkeit von der Ladungs-
trägerdichte n.

Bei Betrachtung der Ladungsträgerbeweglichkeiten µ fällt sofort auf, dass diese
für die jeweiligen Bereiche der Hallbar unterschiedlich hoch sind. Vor allem der
Bereich zwischen den Kontakten 4 und 6 wies sehr viel kleinere Ladungsträger-
beweglichkeiten µ auf, als die anderen Bereiche. Warum diese hier so klein sind,
ist unklar. Die unterschiedlichen Ladungsträgerbeweglichkeiten µ sind jedenfalls
ein Zeichen dafür, dass innerhalb der Probe Defekte und Verunreinigungen inho-
mogen verteilt sind.
Die Ladungsträgerdichte n wurde hier entweder mit Gleichung (3.6) bestimmt
oder aus den Shubnikov-de-Haas-Oszillationen ermittelt. Bei letzterer Methode
wurden die Gleichungen (3.31) und (3.32) benutzt und umgeformt. Es ergab sich
dann:

n = νN = ν
2Bze

h
. (6.1)

Da die Ladungsträgerdichte n im System konstant bleibt, gilt außerdem:

∆
( 1
Bz

)
= 1
Bz,ν+1

− 1
Bz,ν

= 2e
nh

= m , (6.2)
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wobei

m = 2e/nh (6.3)

der Steigung einer Geraden entspricht. Trägt man also die Magnetfeldwerte Bz,ν

von den Minima der Shubnikov-de-Haas-Oszillationen gegen die zugehörigen Füll-
faktoren ν auf und ermittelt anschließend die Steigung m der resultierenden Ge-
raden, so kann man mit umgestellter Gleichung (6.3) die Ladungsträgerdichte n
bestimmen.
Die mittleren freien Weglängen lmfp der einzelnen Bereiche wurden durch Ver-
wendung von Gleichung (3.11) bestimmt und sind in Abb. 6.3 b) in Abhängigkeit
der Ladungsträgerdichte n dargestellt. Auch hier fällt auf, dass die Elektronenbe-
wegung im Bereich zwischen den Kontakten 4 und 6 besonders stark von Streuer-
eignissen beeinflusst wird.
Dadurch ging man ursprünglich für diesen Teil der Probe von einer eher geringen
Probenqualität aus und es wurden unschärfere Messungen erwartet. Trotzdem
wies dieser Probenbereich aber eine ausreichend gute Qualität auf, sodass auch
hier die Messungen der Shubnikov-de-Haas-Oszillationen vielversprechende Er-
gebnisse zeigten. Auf diese Messungen wird nun genauer eingegangen.

6.1.3. Messung der Shubnikov-de-Haas-Oszillationen
Messungen zwischen den Kontaktpaaren 4-6, 6-7, 7-10 und 10-11

Wie in den Abschnitten 4.3.1 und 4.2.2 beschrieben, erwartet man aufgrund von
proximity-induzierter SOC eine Schwebung in den Shubnikov-de-Haas-
Oszillationen.
Zur Detektion dieser Schwebung wurden erneut Vierpunktmessungen an den Kon-
takten (4-6, 6-7, 7-10 und 10-11) bei tiefen Temperaturen T ≈ 1, 6 K durchge-
führt. Dabei wurde während den Messungen ein senkrecht zur Probenebene ge-
richtetes Magnetfeld Bz angelegt und variiert. Die Gatespannung Ug und damit
die Ladungsträgerdichte n war dabei während den einzelnen Messdurchgängen
fest. Durch Berechnung der Widerstände Rxx für die einzelnen Bereiche (4-6, 6-7,
7-10 und 10-11) aus dem Strom I und den jeweiligen Spannungsabfällen Uxx und
Auftragen dieser Widerstände gegen das äußere Magnetfeld Bz, ergaben sich für
unterschiedliche negative Gatespannungen Ug bzw. Ladungsträgerdichten n die
Kurven mit den Shubnikov-de-Haas-Oszillationen aus Abb. 6.4 a)-d).
Nach Abschnitt 4.3.1 und 4.2.2 würde man hier unter der Annahme eines ver-
schwindenden externen elektrischen Feldes aufgrund der proximity-induzierten
SOC eine Schwebung in den Shubnikov-de-Haas-Oszillationen erwarten. In Abb.
6.4 a)-d) ist jedoch keine Schwebung erkennbar. Auch für positive Gatespannun-
gen Ug bzw. Ladungsträgerdichten n ist in den Messungen von Abb. C.1 a)-d)
aus Anhang C.1 kein Hinweis auf eine Schwebung erkennbar.
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Abbildung 6.4.: Die einzelnen Kurven in den Graphen a)-d) zeigen die Shubnikov-
de-Haas-Oszillationen bei verschiedenen negativen Gatespannungen Ug und La-
dungsträgerdichten n für die Bereiche zwischen den Kontaktpaaren 4-6, 6-7, 7-10
und 10-11. Die gesuchte Schwebung tritt hier nicht auf.

Um nun genau sagen zu können, ob in diesen Messungen tatsächlich keine Schwe-
bung vorhanden ist, war es notwendig, eine FFT durchzuführen, um die jeweiligen
im Gesamtsignal enthaltenen Frequenzen in einem Frequenzspektrum sichtbar zu
machen.
Für die Messungen aus Abb. 6.4 a)-d) wurde daher für jede Kurve eine FFT
durchgeführt, wodurch sich nach Glättung (mit gleitendem Durchschnitt) die
Graphen aus Abb. 6.5 a)-d) ergaben.
In Abb. 6.5 a)-d) erkennt man in den Kurven für die jeweiligen negativen Ga-
tespannungen Ug bzw. Ladungsträgerdichten n einen einzelnen dominierenden
Peak. Dieser Peak stellt ein relativ schmales Frequenzband dar, welchem eine do-
minierende Hauptfrequenz zugrunde liegt. In den Messungen zwischen den Kon-
taktpaaren (4-6, 6-7, 7-10 und 10-11) findet sich damit keine Schwebung, denn
andernfalls wären die einzelnen dominierenden Peaks in den Frequenzspektren
in jeweils zwei dominierende Peaks aufgespalten. Dasselbe gilt auch für positive
Gatespannungen Ug und Ladungsträgerdichten n, wie man an den Kurven von
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Abbildung 6.5.: Die Kurven in den Graphen a)-d) zeigen die einzelnen Frequenz-
spektren mit den dominanten Peaks (markiert durch rote Pfeile) bei unterschiedli-
chen negativen Gatespannungen Ug bzw. Ladungsträgerdichten n für die Bereiche
zwischen den Kontakten 4-6, 6-7, 7-10 und 10-11.

Abb. C.1 und C.2 sehen kann. Damit kann die Existenz einer Schwebung in den
Shubnikov-de-Haas-Oszillationen für die einzelnen Bereiche zwischen den Kon-
taktpaaren (4-6, 6-7, 7-10 und 10-11) ausgeschlossen werden.
Grundsätzlich ist an dieser Stelle noch Folgendes zu erwähnen. Jeder einzelnen
Frequenz f in den Frequenzspektren aus Abb. 6.5 a)-d) kann mit Gleichung (4.16)
eine Ladungsträgerdichte nf zugeordnet werden. Die Ladungsträgerdichten nf der
dominanten Peaks entsprechen dabei nicht unbedingt den Ladungsträgerdichten
n, welche mit Gleichung (3.6) oder (6.1) berechnet und in den Legenden von Abb.
6.4 a)-d) und Abb. 6.5 a)-d) (bzw. von Abb. C.1 und C.2) angegeben wurden. Die
Ladungsträgerdichten n stellen stattdessen einen Mittelwert über alle Ladungs-
trägerdichten nf dar.
Wie in Abschnitt 4.3.1 kann man auch hier erkennen, dass die dominanten Peaks
bei höheren Frequenzen auftreten je weiter sich Ug bzw. n vom Dirac-Punkt ent-
fernt. Insofern korreliert die Lage der Peaks mit der Lage der Fermi-Energie EF .
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Legt man nun die Kurven aus Abb. 6.5 (bzw. aus Abb. C.2) übereinander und
vergleicht die Lage der Frequenzpeaks für die verschiedenen Regionen miteinan-
der, so fällt auf, dass diese leicht zueinander verschoben sind (vgl. Abb. 6.6 bzw.
Abb. C.3). Es zeigt sich damit auch hier, dass die Regionen der Probe inhomogen
dotiert sind.
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Abbildung 6.6.: Frequenzspektrum mit übereinandergelegten Kurven aus Abb.
6.5 a)-d) mit den dominanten Peaks (markiert durch rote Pfeile) bei unterschied-
lichen negativen Gatespannungen Ug bzw. Ladungsträgerdichten n.

Messungen zwischen den Kontaktpaaren 4-7, 6-10 und 7-11

Für weitere Untersuchungen wurden auch Vierpunktmessungen über größere Pro-
benbereiche zwischen den Kontaktpaaren (4-7, 6-10 und 7-11) durchgeführt. Die
Messungen zeigen hier nun im Vergleich zu den vorherigen Messungen aus Abb.
6.5 a)-d) ein etwas anderes Bild, wie man an den Messungen in Abb. 6.7 a)-c)
erkennen kann. Hier sind bei negativen Ladungsträgerdichten n bzw. Gatespan-
nungen Ug in manchen Kurven die gesuchten Schwebungen in den Shubnikov-de-
Haas-Oszillationen deutlich zu sehen. In Anhang Abb. C.4 a)-c) zeigt sich das
ebenfalls für positive Ladungsträgerdichten n bzw. Gatespannungen Ug.
Um genauere Aussagen über die Schwebungen und die daran beteiligten Frequen-
zen treffen zu können, wurde auch hier für jede Messkurve aus Abb. 6.7 a)-c) und
Abb. C.4 a)-c) eine FFT durchgeführt. Es ergaben sich nach Glättung (mit glei-
tendem Durchschnitt) die Frequenzspektren aus Abb. 6.8. a)-c) und Abb. C.5
a)-c).
In fast allen Frequenzspektren von Abb. 6.8 a)-c) und Abb. C.5 a)-c) kann man
eine klare Aufspaltung des Hauptfrequenzpeaks in je zwei dominierende Peaks
erkennen. Es ergeben sich damit zwei dominierende Frequenzbänder mit jeweils
einer dominanten Hauptfrequenz, die im Frequenzspektrum nahe beieinander lie-
gen.
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Abbildung 6.7.: Die einzelnen Kurven in den Graphen a)-c) zeigen die Shubnikov-
de-Haas-Oszillationen bei verschiedenen negativen Gatespannungen Ug und La-
dungsträgerdichten n für die Bereiche zwischen den Kontakten 4-7, 6-10 und
7-11. Die gesuchte Schwebung tritt hier auf und ist mit dem Auge vor allem in
den Graphen a) und b) erkennbar.

Mit Hilfe der Daten aus Abb. 6.8 a)-c) konnte man die dominierenden Frequen-
zen f1 und f2 der Frequenzspektren bestimmen. Ermittelt man noch die effektive
Masse m∗ nach der Beschreibung aus Abschnitt 4.3.1 so hätte man anschließend
mit Gleichung (4.19) die energetische Spinaufspaltung der Energiebänder und da-
mit möglicherweise die Stärke der proximity-induzierten SOC bestimmen können.
Die Bestimmung der effektiven Masse m∗ aus den Messdaten war jedoch nicht
möglich, da die Probe aufgrund eines Gatedurchbruchs zerstört wurde, wodurch
keine weiteren Messungen bei höheren Temperaturen durchgeführt werden konn-
ten. Daher war eine exakte quantitative Bestimmung der proximity-induzierten
SOC hier nicht realisierbar.
Man konnte sich jedoch an einer Näherung versuchen. Dafür werden zuerst will-
kürliche Werte für die energetische Spinaufspaltung ∆E in einem Bereich von
0 meV bis 80 meV gewählt. Anschließend wird der minimale (∆f = 0, 6 T) und
der maximale (∆f = 2, 6 T) Wert der Frequenzaufspaltung ∆f von den auf-
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Abbildung 6.8.: Die Kurven in den Graphen a)-c) zeigen die einzelnen Frequenz-
spektren mit den aufgespaltenen dominanten Peaks bei unterschiedlichen negati-
ven Gatespannungen Ug bzw. Ladungsträgerdichten n für die Bereiche zwischen
den Kontakten 4-7, 6-10 und 7-11. Die roten Pfeile markieren dabei die Peaks,
die aus der Energieaufspaltung resultieren.

gespaltenen Peaks aus Abb. 6.8 a)-c) abgelesen. Der Fall für ∆f = 0 T wurde
hierbei nicht berücksichtigt. Mit umgestellter Gleichung (4.19) können dann die
effektiven Massen m∗ bestimmt und in einem Diagramm in Abhängigkeit der
Energieaufspaltung ∆E auftragen werden (vgl. Abb. 6.9 a) und b)). Für realisti-
sche Werte der effektiven Massen m∗ von BL-G aus der Literatur [117, 144] kann
man danach im Diagramm die zugehörigen berechneten Energieaufspaltungen
∆E abgelesen. Abschließend wird noch überprüft, ob die ermittelten Werte der
Energieaufspaltung ∆E ungefähr mit bereits bekannten bzw. prognostizierten
Werten aus der Literatur [21, 22, 63, 97] übereinstimmen, um die proximity-
induzierte SOC als Ursache der auftretenden Schwebungen in Betracht ziehen zu
können.
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Abbildung 6.9.: Die Diagramme a) und b) gingen aus einem Diagramm hervor.
Aus Gründen der besseren Übersichtlichkeit wurde das ursprüngliche Diagramm
jedoch in die zwei vorliegenden Diagramme unterteilt und entsprechend skaliert.
Die Kurven in b) beginnen dort, wo die Kurven in a) enden. In den Diagrammen
a) und b) ist jeweils eine grüne und eine schwarze Kurve enthalten. Die schwarze
Kurve stellt alle mathematisch möglichen Wertepaare von ∆E und m∗ für eine
minimale Frequenzaufspaltung von ∆f = 0, 6 T dar. Dasselbe gilt für die grüne
Kurve allerdings für eine maximale Frequenzaufspaltung von ∆f = 2, 6 T. Die
schwarze und die grüne Linie stellen dabei eine untere und eine obere Schranke
aller erlaubten Wertepaare von ∆E und m∗ dar. Es sind damit all diese Wertpaare
von ∆E und m∗ mathematisch erlaubt, die zwischen oder auf der schwarzen und
grünen Linie liegen.

Betrachtet man nun Abb. 6.9 a) und b), so stellt die schwarze Kurve eine untere
und die grüne Linie eine ober Schranke dar, wodurch für vorhandene Frequenz-
aufspaltungen ∆f nur Punkte erlaubt sind, die zwischen oder auf diesen beiden
Schranken liegen. In Abb. 6.9 a) zeigt sich, dass die Werte für die effektive Masse
m∗ für eine realistische Energieaufspaltung von ∆E = 0 meV bis ∆E = 10 meV
ungewöhnlich hoch ausfallen, wenn man diese Werte mit typischen Werten für
BL-G aus der Literatur [117, 144] vergleicht. Daher ist anzunehmen, dass die
Energieaufspaltung ∆E größer als 10 meV ausfallen müsste. Diesen Fall veran-
schaulicht Abb. 6.9 b). Betrachtet man hier die beiden Kurven, so stellt man fest,
dass für bekannte Werte der effektiven Masse (m∗ = 0, 020me bis m∗ = 0, 045me

[117, 144]) die Energieaufspaltung ∆E besonders für die grüne Kurve ungewöhn-
lich hoch ausfällt.
Grundsätzlich müssen aber beide Kurven (schwarz und grün) Punkte mit sinn-
vollen Werten sowohl für die Energieaufspaltung ∆E als auch für die effektive
Masse m∗ beherbergen. Da dies hier jedoch nicht der Fall ist, kann man davon
ausgehen, dass hier die proximity-induzierte SOC höchstwahrscheinlich nicht für
die Spinaufspaltung und damit auch nicht für das Auftreten der beobachteten
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Schwebungen in den Shubnikov-de-Haas-Oszillationen zwischen den Kontakten
4-7, 6-10 und 7-11 der Hallbar verantwortlich ist.

Inhomogenität der Probe

Da die Schwebung in den Shubnikov-de-Haas-Oszillationen für die betrachteten
Bereiche zwischen den Kontaktpaaren 4-6, 6-7, 7-10 und 10-11 nicht auftritt und
die Energieaufspaltung bei der angenommenen effektiven Masse m∗ für die Be-
reiche zwischen den Kontaktpaaren 4-7, 6-10 und 7-11 eher unrealistisch groß
ausfallen müsste, ist die Ursache der hier auftretenden Schwebung nach wie vor
ungeklärt.
Daher wurden alle bisherigen Messungen nochmal genauer betrachtet. Dabei fiel
Folgendes auf. Die Schwebung tritt in den Bereichen zwischen den Kontaktpaaren
4-7, 6-10 und 7-11 auf. In den Bereichen zwischen den Kontaktpaaren 4-6, 6-7,
7-10 und 10-11 der Hallbar tritt die Schwebung jedoch nicht auf, obwohl man
sie auch dort erwarten würde, sofern als Ursache der Schwebung die proximity-
induzierte SOC angenommen wird. Grundsätzlich deutet dieser Umstand viel-
mehr darauf hin, dass die wesentliche Ursache der Schwebung eher nicht die
proximity-induzierte SOC ist.
Betrachtet man nun auch die Messungen zum elektrischen Feldeffekt (vgl. Abb.
6.2), so fällt auf, dass die Dirac-Punkte der einzelnen Probenbereiche zwischen
den Kontaktpaaren 4-6, 6-7, 7-10 und 10-11 relativ zueinander verschoben sind.
Ebenso sind die Peaks der dominanten Frequenzen im Frequenzspektrum zuein-
ander verschoben (vgl. Abb. 6.6 bzw. Abb. C.3). Das heißt, dass die Probe über
diese Probenbereiche inhomogen dotiert ist.
Misst man nun über zwei Probenabschnitte, also z.B. den Bereich zwischen Kon-
takt 4 und Kontakt 7, so enthält das Messsignal sowohl Informationen des Be-
reichs zwischen dem Kontaktpaar 4-6 als auch des Bereichs zwischen Kontaktpaar
6-7. Misst man also bei einer festgelegten Gatespannung Ug die Shubnikov-de-
Haas-Oszillationen, so tragen die beiden Messbereiche 4-6 und 6-7 mit unter-
schiedlichen dominierenden Ladungsträgerdichten nf1 und nf2 zum Gesamtmess-
signal bei.
Da die Frequenz der Shubnikov-de-Haas-Oszillationen von der Ladungsträger-
dichte n abhängig ist, ergeben sich für die beiden unterschiedlichen Ladungsträ-
gerdichten nf1 und nf2 auch die unterschiedlichen Frequenzen f1 und f2. Weichen
diese Frequenzen f1 und f2 nur gering voneinander ab, so kommt es zu einer
Schwebung in den Shubnikov-de-Haas-Oszillationen.
Um zu prüfen, ob die Schwebung in den Shubnikov-de-Haas-Oszillationen auf die
Inhomogenität der Probe zurückzuführen ist, wurden die Frequenzspektren für
zwei aneinandergrenzende Probenbereiche bei gleicher Gatespannung Ug überein-
andergelegt und dann mit dem gesamten Frequenzspektrum über beide Bereiche
verglichen. In Abb. 6.10 wird dies anhand der Probenbereiche 6-7, 7-10 und 6-10
gezeigt.
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Abbildung 6.10.: Frequenzspektrum der Probenbereiche 6-7, 7-10 (gestrichelte
Linie) und 6-10 (durchgezogene Linie) für zwei verschiedene Gatespannungen Ug

(schwarze und grüne Linien).

Dort ist erkennbar, dass die Position der Peaks in den Spektren der Bereiche 6-7
und 7-10 ziemlich genau dort ist, wo sich die zwei Peaks im Spektrum des Be-
reichs 6-10 befinden. Insofern stellt das Frequenzspektrum von des Bereichs 6-10
eine Überlagerung der beiden Spektren der Bereiche 6-7 und 7-10 dar.
Im Anhang Abb. C.6 sind die Graphen für die anderen Probenbereiche und auch
für positive Gatespannungen Ug dargestellt. Außer für C.6 a) und d) zeigt sich
dort ein ähnliches Verhalten wie in Abb. 6.10. Warum C.6 a) und d) ein etwas
anderes Verhalten zeigen, konnte nicht geklärt werden. Grundsätzlich verhält sich
aber die Mehrheit der Frequenzspektren genau nach demselben Schema wie in
Abb. 6.10.
Es ist daher recht wahrscheinlich, dass die Frequenzaufspaltung und damit die
Schwebung in den Shubnikov-de-Haas-Oszillationen aus einer Überlagerung von
Signalen aus Probenbereichen mit unterschiedlichen Ladungsträgerdichten (In-
homogenität der Probe) resultiert und hier nicht oder nur sehr wenig durch die
proximity-induzierte SOC.
Als mögliche Ursache für die Inhomogenität der Probe könnten grundsätzlich grö-
ßere Defekte oder Verunreinigungen in der Heterostruktur, die nur vereinzelt an
bestimmten Stellen in der Probe auftreten und nicht über die ganze Probe verteilt
sind, in Frage kommen. Bei der Herstellung solcher Proben, ist es durchaus üblich,
dass Blasen innerhalb der Heterostruktur mit eingeschlossen werden. Bei der Her-
stellung der Heterostruktur konnte man auch vereinzelt solche Blasen innerhalb
der Hallbar erkennen. Diese Blasen stellen grundsätzlich Verunreinigungen dar
und könnten aufgrund ihrer Größe und Zusammensetzung möglicherweise auch
zu einer unterschiedlich starken Wirkung des Backgates auf das ML-G und damit
zu einer Inhomogenität der Ladungsträgerdichten n innerhalb der Probe führen.
Ob diese Blasen tatsächlich für die Inhomogenität der Probe verantwortlich wa-
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ren, konnte jedoch nicht bewiesen werden und ist daher lediglich eine Vermutung.

Schwebung bei hBN/BL-G/hBN-Heterostruktur

Ein weiteres Indiz dafür, dass das Auftreten einer Schwebung in den Shubnikov-
de-Haas-Oszillationen nicht unbedingt auf induzierte SOC zurückzuführen sein
muss, liefern Messungen an BL-G, welches zwischen zwei hBN-Flocken einge-
kapselt wurde. Diese Messungen wurden im Rahmen einer Masterarbeit [145]
zusammen mit S. Peterhans durchgeführt. Obwohl für diese Proben aufgrund
der gewählten Materialien keine hohe SOC zu erwarten war, zeigte sich trotzdem
in den Shubnikov-de-Haas-Oszillationen eine Schwebung (vgl. Abb. 6.11 a)). Die
zugehörige Frequenzaufspaltung wird ebenfalls im Frequenzspektrum von Abb.
6.11 b) sichtbar.
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Abbildung 6.11.: In a) sind die Shubnikov-de-Haas-Oszillationen für verschiede-
ne Ladungsträgerdichten dargestellt, die von S. Peterhans an einer hBN/BL-
G/hBN-Heterostruktur gemessen wurden. Auffällig sind hier die Schwebungen in
den einzelnen Kurven. In b) ist ein Frequenzspektrum mit den FFT-Kurven für
verschiedene Ladungsträgerdichten zu sehen. Man erkennt klar, dass es für jede
Ladungsträgerdichte im Spektrum einen dominanten Frequenzpeak gibt, der in
zwei dominierende Peaks aufgespalten ist (rote Pfeile). Utg steht hier außerdem
für eine Topgatespannung, da bei dieser Probe mit einem Topgate anstelle eines
Backgates gearbeitet wurde.

Die damit einhergehende Energieaufspaltung ∆E wurde anschließend berechnet.
Es ergaben sich mit einer effektiven Masse m∗ = 0, 020me bzw. m∗ = 0, 045me

[117, 144] die Energien ∆E ≈ 4 meV bzw. ∆E ≈ 10 meV. Eine Energieauf-
spaltung in dieser Größenordnung würde man sogar im Falle von proximity-
induzierter SOC in Heterostrukturen mit Graphen auf TMDCs erwarten.
Diese Energieaufspaltung kann hier jedoch nicht von proximity-induzierter SOC
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verursacht werden, weil in der hier vorliegenden Heterostruktur hBN anstelle ei-
nes TMDC’s verwendet wurde. Ohne hier genauer auf die Ursache der Schwebung
einzugehen, kann man sagen, dass die Energieaufspaltung hier eine andere Ursa-
che als die proximity-induzierte SOC haben muss.
Dies ist nun ein wesentliches Indiz dafür, dass nicht unbedingt die proximity-
induzierte SOC die Ursache für das Auftreten einer Schwebung in den Shubnikov-
de-Haas-Oszillationen sein muss.

6.1.4. Zusammenfassung
Zusammenfassend lässt sich sagen, dass die Messungen an dieser Probe zwar
die gesuchte Schwebung in den Shubnikov-de-Haas-Oszillationen zeigen, aber
die Schwebung mangels Eindeutigkeit ihrer Ursache als Nachweismethode von
proximity-induzierter SOC eher ungeeignet ist. Außerdem sprechen die Messer-
gebnisse hier dafür, dass die Schwebung nicht aus der Existenz von proximity-
induzierter SOC resultiert. Aufgrund der möglichen Uneindeutigkeit, sollte man
zum Nachweis von proximity-induzierter SOC eine andere Nachweismethode wäh-
len. Stattdessen sollte man versuchen die proximity-induzierte SOC mit Messun-
gen von WAL-SOC nachzuweisen.
Da diese Messungen aber nur in Anwesenheit von Defekten möglich sind, ist
zu erwarten, dass die WAL-SOC nur in Proben mit relativ niedrigen Ladungs-
trägerbeweglichkeiten µ messbar ist. Aus diesem Grund dürfte sich aktuell die
eindeutige Bestimmung von proximity-induzierter SOC für Hallbar-Strukturen
mit hohen Ladungsträgerbeweglichkeiten µ mit Hilfe von Magnetotransportmes-
sungen als besonders schwierig gestalten. Im weiteren Verlauf dieser Arbeit wurde
daher versucht die proximity-induzierte SOC mit Hilfe von Messungen von WAL-
SOC mit Proben im diffusivem Regime nachzuweisen, um damit Aussagen über
die proximity-induzierte SOC machen zu können.
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6.2. Induzierte SOC in Abhängigkeit von der
Schichtdicke des TMDCs

In Abschnitt 4.4.2 wurde bereits darauf verwiesen, dass bisher noch nicht vollkom-
men geklärt ist, ob die Schichtdicke des TDMCs tatsächlich einen nennenswer-
ten Einfluss auf die proximity-induzierte SOC in ML-G/TMDC-Heterostrukturen
hat. Im Rahmen dieser Arbeit hat es sich angeboten, auch diesen Sachverhalt ge-
nauer zu untersuchen, da die Schritte bei der Probenherstellung im Grunde diesel-
ben waren, wie bei den Proben, mit welchen die Drehwinkelabhängigkeit bzw. die
Druckabhängigkeit der SOC untersucht wurde. Die hier verwendete Probe ent-
spricht daher auch Probe 2 aus Abschnitt 6.3.1 und der Probe aus Anhang C.2.
In diesem Abschnitt werden nun die experimentellen Ergebnisse von zwei ML-
G/WSe2/hBN-Heterostrukturen mit unterschiedlich dickem, exfoliertem WSe2
gezeigt und verglichen.

6.2.1. Hallbar-Struktur und Messvorgang

Für die Untersuchung dieses Sachverhalts wurden zwei Hallbars hergestellt. Die
beiden untersuchten Hallbars gingen dabei aus einer einzigen Heterostruktur her-
vor, die Bereiche mit unterschiedlich dickem WSe2 aufwies (vgl. Abb. 6.12 a)
und b)). Aus dieser einen Heterostruktur konnten durch geschickte Durchfüh-
rung der Lithographie- und Ätzprozesse zwei Hallbars mit unterschiedlich dickem
WSe2 hergestellt werden. In diesem Fall bestanden beide Hallbars aus einer ML-
G/WSe2/hBN-Heterostruktur, wobei für die eine Hallbar ML-WSe2 und für die
andere Hallbar mehrlagiges WSe2 verwendet wurde. Diese Vorgehensweise hat
den Vorteil, dass eine bestmögliche Vergleichbarkeit der Ergebnisse ermöglicht
wird, da die beiden Hallbars (vgl. Abb. 6.12 d)) aus den gleichen Kristallen mit
praktisch gleicher Qualität und Winkelorientierung hervorgingen.
Die beiden Hallbars hatten die gleiche geometrische Form. Ein Modell davon ist
in Abb. 6.12 c) dargestellt. Die Hallbars hatten jeweils sechs Kontakte, von denen
je zwei Kontakte an den langen Seiten vorhanden waren (vgl. Abb. 6.12 c)). Der
Abstand zwischen den Kontakten der langen Seiten betrug L = 4µm. Die Breite
der Hallbar war gegeben durch W = 4µm.
Das Messsystem (vgl. B.1) war für diese Proben grundsätzlich identisch zu dem
aus Abschnitt 6.1. Lediglich Ubias = 0, 3 V war hier etwas kleiner, wodurch auch
eine kleinerer Strom I ≈ 30 nA durch die Probe floss.
Die Messungen mussten hier unbedingt bei sehr niedrigen Temperaturen (T ≈
1, 3 − 1, 7 K) durchgeführt werden, da andernfalls die gesuchten Effekte nicht de-
tektierbar gewesen wären.
So konnten alle notwendigen Messungen durchgeführt werden. Im Folgenden wird
nun auf die Messungen zum elektrischen Feldeffekt genauer eingegangen.
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Abbildung 6.12.: In a) ist ein Modell einer Heterostruktur dargestellt, das Be-
reiche mit unterschiedlich dickem WSe2 aufweist. Dargestellt ist hier ML-WSe2
und mehrlagiges WSe2. b) zeigt ein Bild dieser Heterostruktur, welches mit der
Kamera eines optischen Mikroskops aufgenommen wurde. Außerdem sind hier
die Bereiche (rot umrahmt) abgebildet, aus denen später die Hallbars hergestellt
wurden. Hallbar 1 bestand aus ML-WSe2, Hallbar 2 bestand dagegen aus mehr-
lagigem WSe2. In c) ist ein Modell der untersuchten Hallbars mit den Kontakten
1 bis 6 und den Dimensionen L und W dargestellt. d) zeigt die beiden fertig-
gestellten Hallbars 1 und 2 mit den zugehörigen Leiterbahnen an den einzelnen
Kontakten.

6.2.2. Messungen zum elektrischen Feldeffekt

Die Messungen zum elektrischen Feldeffekt lieferten wichtige Probenparameter,
die zur Charakterisierung und später für die Auswertung der Messungen von
WAL-SOC notwendig waren.
Die Messdurchführung unterschied sich hier ebenfalls nicht zu der aus Abschnitt
6.1. Es wurde auch hier zunächst wieder der gateabhängige Längswiderstand Rxx

und die gateabhängige Leitfähigkeit σxx bestimmt. Es ergaben sich die Kurven
aus Abb. 6.13 a) und b).
Hier zeigen sich relativ breite Dirac-Peaks, was bereits auf recht kleine Ladungs-
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Abbildung 6.13.: Die beiden Graphen a) und b) zeigen die Messungen zum elek-
trischen Feldeffekt für die beiden Heterostrukturen, a) mit ML-WSe2 und b) mit
mehrlagigem WSe2. Dargestellt ist in beiden Fällen die Abhängigkeit des Wider-
stands Rxx und der Leitfähigkeit σxx von der Gatespannung Ug.

trägerbeweglichkeiten µ der beiden Hallbars hinweist.
Es zeigt sich hier außerdem nur eine sehr geringe Dotierung, wie man an der
leichten Verschiebung der Dirac-Peaks relativ zu Ug = 0 V erkennen kann. Im
Allgemeinen hat die Dotierung jedoch keinen Einfluss auf die noch zu ermitteln-
den Parameter.
Die Kurven zeigen hier ansonsten keine Besonderheiten und haben den üblichen
Kurvenverlauf, den man für Proben dieser Bauart erwarten würde.
Mit der Gatekapazität Cg ≈ 1, 20 × 10−4 AsV−1m−2 war es nun möglich die La-
dungsträgerbeweglichkeit µ zu bestimmen und gegen die Gatespannung Ug auf-
zutragen. Dadurch erhielt man für die beiden Hallbars die Kurven aus Abb. 6.14,
wobei für eine bessere Vergleichbarkeit dieser Kurven die Dotierung abgezogen
wurde.
In Abb. 6.14 kann man nun erkennen, dass die Ladungsträgerbeweglichkeiten µ
bei beiden Proben relativ klein sind und sich voneinander unterscheiden.
Das zeigt, dass beide Proben in Bezug auf Verunreinigungen und Defekte von
ähnlicher aber nicht gleicher Qualität sind.
Unter der Annahme, dass kaum Verunreinigungen zwischen den ML-G- und
WSe2-Schichten liegen, ging man hier davon aus, dass sich die etwas unterschied-
lichen Ladungsträgerbeweglichkeiten µ nicht auf die noch zu ermittelnden SOC-
Parameter auswirken. Wodurch ein Vergleich der Proben nach wie vor sinnvoll
blieb.
Mit der Ladungsträgerdichte n wurden anschließend die weiteren Transportpara-
meter lmfp und τp bestimmt (vgl. Abb. 6.15 a) und b)).
Anhand Abb. 6.15 a) und b) erkennt man, dass die jeweiligen Kurven von lmfp

und τp in Bezug auf die Dicke der WSe2-Schicht auch hier etwas voneinander
abweichen, was mit den unterschiedlichen Ladungsträgerbeweglichkeiten µ
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Abbildung 6.14.: Die Abbildung zeigt den Verlauf der Ladungsträgerbeweglichkei-
ten µ in Abhängigkeit der Gatespannung Ug für ML-WSe2 (schwarz) und mehr-
lagiges WSe2 (blau). Dabei zeigt sich, dass die schwarze Kurve für ML-WSe2
für größere Gatespannungen Ug eine etwas kleinere Ladungsträgerbeweglichkeit
µ aufweist als die blaue Kurve für mehrlagiges WSe2.
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Abbildung 6.15.: a) zeigt den Verlauf der mittleren freien Weglänge lmfp und b)
den Verlauf der Impulsrelaxationszeit τp abhängig von der Ladungsträgerdichte
n für die beiden Heterostrukturen mit ML-WSe2 bzw. mit mehrlagigem WSe2.

einhergeht. Beide Proben sind wegen lmfp < W außerdem im diffusiven Regime
und eignen sich von daher grundsätzlich für die Messungen zur WAL-SOC.
Im letzten Schritt wurde durch Anwendung von Gleichung (3.16) die Fermi-
Energie EF bestimmt, wodurch man mit Gleichung (3.13) oder alternativ mit
Gleichung (3.12) dann auch unmittelbar den Diffusionskoeffizient D bestimmen
konnte (vgl. Abb. 6.16). Diesen wichtigen Parameter benötigte man später bei
den Messungen von WAL-SOC für die Kurvenanpassungen.
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Abbildung 6.16.: Diese Abbildung zeigt den Verlauf des Diffusionskoeffizienten
D abhängig von der Ladungsträgerdichte n für die beiden Heterostrukturen mit
ML-WSe2 bzw. mit mehrlagigem WSe2.

Nach Ermittlung dieser wesentlichen Transportparameter konnte man nun zur
Auswertung der Messungen von WAL-SOC übergehen.

6.2.3. Messung und Evaluation von WAL-SOC und
Bestimmung der SOC

Zur Bestimmung der proximity-induzierten SOC wurde nun versucht die WAL-
SOC nachzuweisen, um daraus die wesentlichen Streuzeiten zu ermitteln und
schließlich die SOC-Parameter zu bestimmen.
Zur Messung der WAL-SOC wurde eine Vierpunktmessung durchgeführt. Da-
bei wurde ein äußeres Magnetfeld Bz senkrecht zur Probenebene angelegt und
während der Messung von Uxx variiert. Die Gatespannung Ug und damit die La-
dungsträgerdichte n blieb dabei für jede Messung fest. Durch Mittelung mehrerer
solcher Messungen über ein bestimmtes Intervall der Gatespannung Ug bzw. La-
dungsträgerdichte n konnten die UCF weitgehend herausgefiltert werden, sodass
die Messkurven für die anschließende Kurvenanpassung zur Ermittlung der ge-
suchten Streuparameter geeignet waren.
Für ausgewählte Ladungsträgerdichten n ergaben sich für die beiden Proben die
gemittelten Kurven aus Abb. 6.17 a) und b). Die roten Kurven stellen dabei
immer die Fit-Kurven dar, die man durch eine Kurvenanpassung mit Gleichung
(4.21) unter Verwendung der bereits bekannten Transportparameter aus 6.2.2 er-
hielt.
In Abb. 6.17 a) und b) sieht man klar, dass die Leitfähigkeit ∆σxx hin zum
Nullpunkt des Magnetfeldes Bz ansteigt. Für größere Magnetfelder ist dafür die
WAL-Berry verantwortlich. Der kleine Peak nahe dem Nullpunkt des Magnetfel-
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Abbildung 6.17.: In a) und b) sind jeweils Messungen zur Leitfähigkeit ∆σxx

in Abhängigkeit eines äußeren Magnetfelds Bz für die zwei Hallbars dargestellt.
In allen Kurven ist erkennbar wie die WAL-Berry in die WAL-SOC übergeht.
Die roten Kurven stellen dabei mögliche Fitkurven dar. Es fehlen zudem manche
Kurven für bestimmte Ladungsträgerdichten n, da in diesen Fällen keine passende
Fit-Kurve erstellt werden konnte.

des Bz wird dagegen von WAL-SOC verursacht. Eine schwache Lokalisierung ist
hier aufgrund der starken Dominanz von WAL-Berry nicht zu erkennen.
Aus der Kurvenanpassung von Abb. 6.17 a) und b) konnten nun die wesentlichen
Fit-Parameter τϕ, τasy, τsym, τiv und τintra ermittelt werden.
τϕ konnte sowohl aus der Kurvenanpassung als auch aus den UCF über die Au-
tokorrelationsfunktion ermittelt werden. Der Verlauf der Phasenstreuzeit τϕ in
Abhängigkeit zur Ladungsträgerdichte n ist für die beiden Proben in Abb. 6.18
a) zu sehen. Die Phasenstreuzeit τϕ weicht dabei für die beiden Proben nur wenig
voneinander ab und nimmt wie erwartet mit steigender Ladungsträgerdichte n
zu. Die Größenordnung von τϕ ist typisch für diesen Probentyp.
Daneben sind in Abb. 6.18 b) die Kurven für die Streurate τ−1

soc = τ−1
asy + τ−1

sym zu
sehen. Diese Streurate wurde aus τasy und τsym ermittelt und soll nach [97] gegen
τp aufgetragen einen linearen Verlauf annehmen. Das heißt, es waren nur Werte
für τasy und τsym erlaubt, mit denen τ−1

soc einen linearen Verlauf annehmen konnte.
Dies reduzierte die Menge an möglichen Parametern für τasy und τsym weiter und
erleichterte dadurch die Auswertung. Es fällt zudem auf, dass die Steigung von
τ−1

soc scheinbar unabhängig vom Ladungsträgertyp ist.
In Abb. 6.19 a) und b) sind die Kurven der beiden Streuzeiten τasy und τsym

in Abhängigkeit zur Ladungsträgerdichte n abgebildet. Beide Parameter weisen
einen gewissen Fehlerbreich auf. Der Fehler reduzierte sich nochmals erheblich,
wenn man wegen [64] schon bei der Kurvenanpassung nur solche Werte erlaubt,
bei denen der Parameter für die Rashba-SOC λR und der Parameter für die
Valley-Zeeman-SOC λV Z später einen Verlauf zeigen, der unabhängig von der
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Abbildung 6.18.: In a) wird der Kurvenverlauf der Phasenstreuzeit τϕ in Abhän-
gigkeit der Ladungsträgerdichte n für die beiden Hallbars dargestellt. Die Pha-
senstreuzeit τϕ steigt dabei mit der Ladungsträgerdichte n an. Die Kurven der
beiden Hallbars unterschieden sich hier etwas. In b) ist τ−1

SOC gegen τp aufgetragen
und bei beiden Proben nehmen die Kurven einen linearen Verlauf an. Die Stei-
gung der Geraden scheint dabei weitgehend unabhängig vom Ladungsträgertyp
(Elektronen oder Löcher) zu sein.
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Abbildung 6.19.: In a) ist die Streuzeit τasy und in b) die Streuzeit τsym in Ab-
hängigkeit der Ladungsträgerdichte n für die beiden Hallbars dargestellt. Es fällt
auf, dass τasy zwar von der Ladungsträgerdichte n, aber wenig bis gar nicht von
der Dicke des WSe2-Materials abhängig ist. Für τsym zeigt sich dagegen keine
klare Abhängigkeit von der Ladungsträgerdichte n. Auch eine Abhängigkeit von
der Schichtdicke ist hier nicht erkennbar.
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Ladungsträgerdichte n ist. Die Kurven von τasy und τsym unterscheiden sich hier
in Bezug auf die Dicke der WSe2-Schicht nur wenig voneinander. Aus der Kur-
venanpassung gingen auch die beiden Parameter τiv und τintra hervor, welche in
Abb. 6.21 a) und b) in Abhängigkeit zur Ladungsträgerdichte dargestellt sind. Im
Allgemeinen nehmen beide Werte von τiv vergleichsweise große Werte an, was vor
allem an der recht breiten aber kurzen Geometrie der Probe liegen dürfte. Auch
hier sind bei der Kurvenanpassung nur solche Werte erlaubt, die wegen [64] später
nur einen dichteunabhängigen Verlauf der Valley-Zeeman-SOC λV Z ermöglichen.
Dadurch lässt sich auch hier der Fehlerbereich bereits durch geschickte Kurven-
anpassung verkleinern. Eine Abhängigkeit dieser Parameter von der Schichtdicke
ist hier nicht klar erkennbar und würde auch nicht erwartet werden. Für τintra

zeigte sich lediglich eine gewisse Abhängigkeit von der Ladungsträgerdichte n.
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Abbildung 6.20.: In a) ist die Intervalley-Streuzeit τiv und in b) die Intravalley-
Streuzeit τintra in Abhängigkeit der Ladungsträgerdichte n für die beiden Hallbars
dargestellt. Eine Abhängigkeit von der Dicke des WSe2-Materials zeigt sich hier
weder für τiv noch für τintra. Während τiv keine Abhängigkeit von der Ladungs-
trägerdichte n zeigt, liegt im Falle von τintra dagegen eine klare Abhängigkeit von
der Ladungsträgerdichte n vor

Mit Hilfe der Gleichungen (4.23) und (4.24) konnte man anhand der ermittelten
Streuzeiten nun auch die SOC-Parameter λR und λV Z bestimmen. Es ergaben
sich die Kurven aus Abb. 6.21 a) und b).
Alle Kurven aus Abb. 6.21 a) und b) weisen einen gewissen Fehlerbereich auf,
in dem die erlaubten Werte für λR und λV Z liegen können. Man kann klar er-
kennen, dass die Kurven der jeweiligen Parameter sehr nahe beieinander liegen.
Es ist dadurch eher keine Abhängigkeit der SOC-Parameter λR und λV Z von der
Dicke der WSe2-Schicht erkennbar.
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Abbildung 6.21.: In a) ist der SOC-Parameter λR und in b) der SOC-Parameter
λV Z gegen die Ladungsträgerdichte n für die beiden Hallbars aufgetragen. In a)
und b) zeigt sich weder für λR noch für λV Z eine Abhängigkeit von der Dicke des
WSe2-Materials. λR und λV Z sind außerdem unabhängig von der Ladungsträger-
dichte n.

6.2.4. Zusammenfassung
Zusammenfassend kann man sagen, dass allein durch die Änderung der Dicke
des WSe2-Materials keine unmittelbare Änderung der proximity-induzierten SOC
folgt, wodurch auch eine Einstellung der proximity-induzierten SOC durch die
Wahl von unterschiedlich dicken WSe2-Schichten nicht möglich zu sein scheint.
Weiterhin konnte festgestellt werden, dass die Transportparameter etwas unter-
schiedlich waren, obwohl die beiden Hallbars aus einer einzigen Heterostruktur
hervorgingen. Die SOC-Parameter λR und λV Z sind jedoch nahezu identisch. Dies
zeigt, dass unterschiedliche Transportparameter nicht zu unterschiedlichen SOC-
Parametern führen müssen.
Hinsichtlich der Erkenntnisse aus [119] sollte der Vergleich in dieser Arbeit auch
besser sein, da hier für die beiden verglichenen Proben das gleiche Ausgangsma-
terial verwendet wurde. Lediglich die Dicke der WSe2-Schichten war hier unter-
schiedlich. In vergleichbaren Heterostrukturen sollte daher die Schichtdicke des
WSe2-Materials keinen Einfluss auf die proximity-induzierte SOC haben.
Was jedoch an dieser Stelle nicht ausgeschlossen werden kann, ist, dass mög-
licherweise nicht-eingekapseltes ML-WSe2 auf ML-G und damit ohne hBN an
der Oberseite, eine höhere SOC induziert, da sich eine einzelne ML-WSe2-Flocke
in einer ML-G/ML-WSe2-Heterostruktur möglicherweise aufgrund ihrer höheren
Flexibilität besser an das ML-G annähern kann, als das in einer vergleichsweise
steifen ML-G/ML-WSe2/hBN-Heterostruktur möglich ist. Dies höhere Flexibili-
tät von Monolagen wurde auch in [119] bereits als Ursache für die höhere SOC
in Betracht gezogen. Hier könnte deshalb das relativ dicke hBN an der Oberseite
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einen entscheidenden Einfluss haben. Dieser Umstand müsste aber im Rahmen
weiterer Untersuchungen geprüft werden.

6.3. Einstellung von induzierter SOC durch
Variation des Drehwinkels

Wie in Abschnitt 4.4.3 gezeigt wurde, gibt es bereits Berechnungen, die zeigen,
dass die induzierte SOC in ML-G/TMDC-Heterostrukturen vom Drehwinkel zwi-
schen der ML-G und der TMDC-Schicht abhängig sein soll (vgl. [21–23]). Gegen-
stand dieser Arbeit war es, diesen Sachverhalt zu untersuchen und den experi-
mentellen Nachweis dafür zu erbringen, dass die Stärke der proximity-induzierten
SOC durch die Wahl von bestimmten Drehwinkeln vorab eingestellt werden kann.
Dafür mussten einige Proben mit unterschiedlicher Winkelorientierung hergestellt
werden, wobei besonders auf die Reproduzierbarkeit der Proben geachtet werden
sollte. Nur dann ist nämlich ein sinnvoller Vergleich der einzelnen Proben zu er-
warten.
Obwohl die Ergebnisse aus Abschnitt 6.2 darauf hindeuten, dass die Schichtdicke
von WSe2 höchstwahrscheinlich keinen wesentlichen Einfluss auf die induzierte
SOC hat, wurde hier trotzdem für die Probenherstellung ausschließlich ML-WSe2
anstelle von mehrlagigem WSe2 verwendet. Zudem wurde für die Proben eine ähn-
liche Probengeometrie gewählt. Dadurch sollte eine bestmögliche Vergleichbarkeit
der Proben gegeben sein.
Grundsätzlich wurden zum Nachweis dieser Winkelabhängigkeit zwei Arten von
Proben untersucht. So wurden einmal drei ML-G/ML-WSe2/hBN-Heterostrukt-
uren mit exfoliertem ML-WSe2 und einmal drei ML-G/ML-WSe2/hBN-Hetero-
strukturen mit CVD-gewachsenem ML-WSe2 hergestellt, deren Winkelorientie-
rung bestimmt und die proximity-induzierte SOC ermittelt.
Der Grund dafür, dass Heterostrukturen mit zwei unterschiedlichen Arten von
ML-WSe2 verwendet wurden, liegt vor allem an der recht aufwändigen Herstel-
lung von exfoliertem ML-WSe2. Hier war es wesentlich einfacher gewachsenes
ML-WSe2 zu verwenden.
Da prinzipiell zwei verschiedene Arten von Heterostrukturen, bei denen auch
unterschiedliche Verfahren zur Drehwinkelbestimmung zur Anwendung kamen,
untersucht wurden, werden die Ergebnisse der Proben mit exfoliertem und ge-
wachsenen ML-WSe2 zunächst getrennt betrachtet. Später werden die Ergebnisse
beider Probentypen noch miteinander verglichen, sodass sich eine globale Aussage
hinsichtlich der Winkelabhängigkeit der proximity-induzierten SOC machen lässt.
Die Durchführung von Messung und Auswertung dieser Proben unterschied sich
kaum von der Probe aus Abschnitt 6.2. Insofern wird im Folgenden nicht mehr
so detailliert darauf eingegangen.
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6.3.1. Proben mit exfoliertem ML-WSe2

In diesem Abschnitt werden nun die experimentellen Ergebnisse von ML-G/ML-
WSe2/hBN-Heterostrukturen mit exfoliertem ML-WSe2 behandelt. Bei diesen
Proben wurde der Drehwinkel zwischen dem ML-WSe2 und dem ML-G lediglich
anhand der Bruchkanten der Flocken bestimmt, sodass der Drehwinkel nur bei
α ≈ 15◦ eindeutig ermittelt werden konnte. Bei allen anderen Winkelkonstellatio-
nen gibt es zwei nicht-äquivalente Möglichkeiten. Um hier dennoch Aussagen über
die Winkelabhängigkeit der SOC machen zu können, wurden zwei Proben her-
gestellt, bei denen die Winkel nach theoretischen Vorhersagen [21–23] besonders
signifikante Werte der SOC aufweisen sollten. Nämlich bei α ≈ 0◦ und α ≈ 30◦.
Hier sollte nämlich die Valley-Zeeman-SOC bei α ≈ 30◦ verschwinden (vgl. [21–
23]). Bei α ≈ 0◦ wird dies dagegen nicht erwartet. Dadurch kann man anhand
der SOC-Werte und den theoretischen Vorhersagen dann auch Rückschlüsse auf
die eingestellten Winkel ziehen.

Hallbar-Struktur und Messvorgang

Es wurden nun drei Hallbars untersucht, wovon zwei Hallbars jeweils sechs Kon-
takte hatten. Davon waren jeweils zwei Kontakte an den langen Seiten der Hallbar
(siehe Abb. 6.22 a) ohne gestrichelte Bereiche und die Bilder b) und c) von Probe
1 und 2). Der Abstand der seitlichen Kontakte zueinander betrug L = 4µm, wäh-
rend die Hallbar eine Breite W = 4µm aufwies. Die dritte Probe hatte auf jeder
langen Seite jeweils zwei Kontakte mehr (siehe Abb. 6.22 a) mit gestricheltem
Bereich und Bild d) von Probe 3). Für Probe 3 beträgt der Abstand zwischen
zwei nächsten Kontakten an den langen Seiten L/2 = 2µm. Die Breite beträgt
auch hier W = 4µm. Damit unterscheidet sich Probe 3 von den anderen beiden
Proben nur durch die Anzahl der Kontakte und durch die Länge der gesamten
Hallbar. Misst man für alle Proben über die gleiche Länge L = 4µm, dann soll-
te sich die unterschiedliche Anzahl der Kontakte jedoch nicht wesentlich auf die
Transportparameter auswirken, sodass die Proben vergleichbar sein dürften.
Gemessen wurden alle drei Proben genauso wie bereits in Abschnitt 6.2 beschrie-
ben. Probe 2 war sogar bereits Teil der Untersuchungen in Abschnitt 6.2.
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Abbildung 6.22.: a) Modell der Hallbar-Struktur von Probe 1 und 2 (ohne ge-
strichelte Bereiche) und Probe 3 (mit gestrichelten Bereichen) mit den jeweiligen
nummerierten Kontakten. b), c) und d) sind Bilder der verwendeten Hallbar-
Strukturen (rot umrahmt) mit den zugehörigen Leiterbahnen, aufgenommen mit
der Kamera eines optischen Mikroskops.
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Messungen zum elektrischen Feldeffekt

Zur Bestimmung der wesentlichen Transportparameter wurde auch hier der ga-
teabhängige Längswiderstand Rxx die gateabhängige Leitfähigkeit σxx bestimmt.
Es ergaben sich die Kurven aus Abb. 6.23 a)-c). Grundsätzlich weisen diese Kur-
ven hier keine Besonderheiten auf und haben den üblichen Kurvenverlauf, den
man für Proben dieser Bauart erwartet.
Mit Hilfe der Transportmessungen aus Abb. 6.23 konnten nun auch die wesentli-
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Abbildung 6.23.: Die Graphen a)-c) zeigen die Messungen zum elektrischen Feld-
effekt für die drei untersuchten Proben. Dargestellt ist in allen Fällen die Ab-
hängigkeit des Widerstands Rxx und der Leitfähigkeit σxx von der Gatespannung
Ug. d) Verlauf der Ladungsträgerbeweglichkeiten in Abhängigkeit zur Gatespan-
nung Ug für die einzelnen Proben, wobei hier für einen besseren Vergleich von der
Gatespannung Ug die Dotierung UDirac abgezogen wurde.

chen Transportparameter µ, lmfp, τp und D bestimmt werden. Die Vorgehensweise
dabei identisch zu der in Abschnitt 6.2.
Zuerst wurden die Ladungsträgerbeweglichkeiten µ bestimmt. Diese sind für die
einzelnen Proben in Abb. 6.23 d) dargestellt. Über die Ladungsträgerbeweglich-
keiten µ lässt sich allgemein sagen, dass diese hier für alle Proben relativ klein und
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von Probe zu Probe durchaus unterschiedlich sind. Ein Einfluss auf die proximity-
induzierte SOC ist durch die unterschiedlichen Ladungsträgerbeweglichkeiten µ
jedoch nicht unmittelbar zu erwarten.
Abb. 6.24 a) und b) zeigt für ausgewählte Ladungsträgerdichten n die mittlere
freie Weglänge lmfp und die Impulsrelaxationszeit τp.
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Abbildung 6.24.: a) zeigt den Verlauf der mittleren freien Weglänge lmfp und b)
den Verlauf der Impulsrelaxationszeit τp abhängig von der Ladungsträgerdichte
n für die drei Proben.

Die beiden Parameter lmfp und τp unterscheiden sich auch hier zu einem gewis-
sem Grad, was auch mit den unterschiedlichen Ladungsträgerbeweglichkeiten µ
einhergeht. Trotzdem liegen die Parameter für alle drei Proben in einem Bereich,
der für Proben dieser Bauart üblich ist. Da hier auch W > lmfp gilt, liegen hier-
mit auch alle Proben im diffusivem Regime, was zur Messung von WAL-SOC
förderlich ist.
Abschließend wurde noch der Diffusionskoeffizient D in Abhängigkeit der La-
dungsträgerdichte n bestimmt. Für D ergaben sich die Kurven aus Abb. 6.25.
Nach Ermittlung dieser Transportparameter konnte man sich nun wieder der
Messung und Auswertung von WAL-SOC zuwenden.
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Abbildung 6.25.: Die Abbildung zeigt den Verlauf des Diffusionskoeffizienten D
abhängig von der Ladungsträgerdichte n für die drei Proben.

Messung und Evaluation von WAL-SOC und Bestimmung der SOC

Die Messdurchführung und Auswertung der WAL-SOC war hier ebenfalls iden-
tisch zum vorherigen Abschnitt 6.2.
Für die jeweiligen Ladungsträgerdichten n ergaben sich für die drei Proben die
Kurven in Abb. 6.26 a), b) und c). Hier sieht man vor allem bei 6.26 a) und
b) klar, wie die WAL-Berry bei sehr kleinen Magnetfeldern Bz in die WAL-SOC
übergeht.
Aus den Messungen der WAL-SOC gingen auch wieder die Fit-Parameter τϕ, τasy,
τsym, τiv und τintra hervor.
Der Verlauf der Phasenstreuzeit τϕ in Abhängigkeit zur Ladungsträgerdichte n ist
in Abb. 6.27 a) zu sehen. Die Phasenstreuzeit τϕ ist hier von Probe zu Probe un-
terschiedlich. Gründe dafür gibt es mehrere. Zum einen waren die Temperaturen
der Proben, bei denen die Messungen durchgeführt wurden, zwar ähnlich aber
eben nicht genau gleich. Dies wirkt sich jedoch direkt auf die Phasenstreuzeit τϕ

aus. Zudem nimmt die Phasenstreuzeit τϕ bekanntlich ab, wenn mehr inelastische
Streuereignisse stattfinden, was häufig mit einer niedrigeren Ladungsträgerbeweg-
lichkeit µ einhergeht. Ein Einfluss der Winkelorientierung auf die Phasenstreuzeit
τϕ war hier jedoch nicht zu erwarten.
Daneben sind in Abb. 6.27 b) wieder die Kurven für die Streurate τ−1

soc in Abhän-
gigkeit von τp zu sehen. Diese Streurate sollte auch hier wieder nach [97] in allen
Fällen unabhängig vom Typ der Ladungsträger (Elektronen und Löcher) einen
linearen Verlauf annehmen. Auffällig ist außerdem, dass die Steigungen der Kur-
ven aus Abb. 6.27 b) je Probe für Elektronen und Löcher sogar nahezu identisch
sind.
In Abb. 6.28 a) und b) sind die Kurven der beiden Streuzeiten τasy und τsym in
Abhängigkeit zur Ladungsträgerdichte n abgebildet. τasy zeigt nicht nur eine Ab-
hängigkeit von der Ladungsträgerdichte n, sondern auch wie erwartet eine klare
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Abbildung 6.26.: In a), b) und c) sind jeweils Messungen zur Leitfähigkeit ∆σxx

in Abhängigkeit eines äußeren Magnetfelds Bz für die drei Proben dargestellt.
In allen Kurven ist erkennbar wie die WAL-Berry in die WAL-SOC übergeht.
Die roten Kurven stellen dabei mögliche Fitkurven dar. Es fehlen zudem manche
Kurven für bestimmte Ladungsträgerdichten n, da in diesen Fällen keine passende
Fit-Kurve erstellt werden konnte.

Drehwinkelabhängigkeit. Bei τsym ist zwar keine Abhängigkeit von der Ladungs-
trägerdichte n, aber ebenfalls wieder wie erwartet eine klare Drehwinkelabhän-
gigkeit erkennbar.
Aus der Kurvenanpassung gingen auch wieder die beiden Parameter τiv und τintra

hervor, welche in Abb. 6.29 a) und b) in Abhängigkeit von der Ladungsträger-
dichte n dargestellt sind. Im Allgemeinen nehmen beide Streuzeiten wieder relativ
große Werte innerhalb eines gewissen Fehlerbereichs an. Die relativ großen Werte
dürften dabei vor allem an der vergleichsweise breiten, aber kurzen Geometrie
der Probe liegen. Eine Winkelabhängigkeit dieser Parameter könnte hier zwar
vorliegen, wird jedoch eher nicht erwartet. Dagegen ist vor allem wieder für τintra

eine Abhängigkeit von der Ladungsträgerdichte n erkennbar.
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Abbildung 6.27.: In a) wird der Kurvenverlauf der Phasenstreuzeit τϕ in Abhän-
gigkeit der Ladungsträgerdichte n für die drei Proben dargestellt. Die Phasen-
streuzeit τϕ steigt dabei mit der Ladungsträgerdichte n an, eine klare Winkelab-
hängigkeit zeigt sich jedoch nicht. In b) ist τ−1

SOC gegen τp aufgetragen und bei
allen Proben nehmen die Kurven einen linearen Verlauf an. Die Steigung der Ge-
raden scheint dabei unabhängig vom Ladungsträgertyp (Elektronen oder Löcher)
zu sein.
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Abbildung 6.28.: In a) ist die Streuzeit τasy und in b) die Streuzeit τsym in Ab-
hängigkeit der Ladungsträgerdichte n für die drei Proben dargestellt. Es fällt
auf, dass τasy sowohl von der Ladungsträgerdichte n als auch vom Drehwinkel
α abhängig ist. Für τsym zeigt sich dagegen keine klare Abhängigkeit von der
Ladungsträgerdichte n. Stattdessen ist auch für τsym eine klare Drehwinkelab-
hängigkeit erkennbar.
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Abbildung 6.29.: In a) ist die Intervalley-Streuzeit τiv und in b) die Intravalley-
Streuzeit τintra in Abhängigkeit der Ladungsträgerdichte n für die drei Proben
dargestellt. Eine Winkelabhängigkeit wird hier für τiv und τintra nicht erwartet.
Während τiv keine Abhängigkeit von der Ladungsträgerdichte n zeigt, liegt im
Falle von τintra dagegen eine klare Abhängigkeit von der Ladungsträgerdichte n
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Abbildung 6.30.: In a) ist der SOC-Parameter λR und in b) der SOC-Parameter
λV Z gegen die Ladungsträgerdichte n für die drei Proben aufgetragen. In a) und
b) zeigt sich wie erwartet in beiden Fällen, dass weder λR noch λV Z von der
Ladungsträgerdichte n abhängig ist. Dagegen zeigt sich eine ausgeprägte Win-
kelabhängigkeit von λR und λV Z , wobei man anhand der Werte davon ausgehen
kann, dass bei Probe 1 und Probe 3 derselbe oder ein sehr ähnlicher Drehwinkel
α vorliegt.
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Am Ende konnten dann wieder die SOC-Parameter für die Rashba-SOC (λR)
und für die Valley-Zeeman-SOC (λV Z) bestimmt werden. Es ergaben sich die
Kurven aus Abb. 6.30 a) und b). Man erkennt sofort, dass sich sowohl die Werte
von λR als auch von λV Z für Probe 2 mit α ≈ 15◦ erheblich von den Werten
der anderen beiden Proben unterscheiden. Dies deckt sich mit den theoretischen
Vorhersagen, die für die hier eingestellten Winkel völlig unterschiedliche SOC-
Parameter prognostiziert haben.
Die Werte für λR und λV Z von Probe 1 und 3 (α ≈ 0◦ oder α ≈ 30◦) liegen hier
außerdem sehr nahe beieinander. Dies würde man erwarten, wenn beide Proben
den gleichen Drehwinkel haben. Da hier tatsächlich identische Drehwinkel einge-
stellt wurden, ist es sehr wahrscheinlich, dass Probe 1 und 3 auch einen nahezu
gleichen Drehwinkel haben.

Zusammenfassung

Zusammenfassend lässt sich in Bezug auf die Drehwinkelabhängigkeit anhand
dieser Proben bereits sagen, dass unterschiedlich eingestellte Drehwinkel zu un-
terschiedlichen SOC-Parametern führten. Probe 2 (α ≈ 15◦) wies hier wie erwar-
tet (vgl. [21–23]) nämlich deutlich höhere SOC-Parameter auf als Probe 1 und 3
(α ≈ 0◦ oder α ≈ 30◦).
Dagegen hatten gleich eingestellte Drehwinkel (Probe 1 und 3) nahezu gleiche
SOC-Parameter zur Folge. Deshalb kann man anhand von Probe 1 und 3 außer-
dem von einer gewissen Reproduzierbarkeit von Probe und Experiment ausgehen.
Man kann somit mit einer gewissen Sicherheit sagen, dass ein identischer Dreh-
winkel auch sehr ähnliche SOC-Parameter liefern wird, sofern die Proben den
gleichen Herstellungsbedingungen unterliegen.
Ein direkter Vergleich der theoretisch prognostizierten SOC-Parameter aus [21–
23] mit den SOC-Parametern aus diesem Experiment wird später noch in Ab-
schnitt 6.3.3 durchgeführt.
Im folgenden Abschnitt wurde die Drehwinkelabhängigkeit der SOC noch anhand
eines weiteren Probentyps, bei dem die Winkelorientierung sehr genau bekannt
war, untersucht.
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6.3.2. Proben mit gewachsenem ML-WSe2

In diesem Abschnitt werden nun die experimentellen Ergebnisse von ML-G/ML-
WSe2/hBN-Heterostrukturen mit gewachsenem ML-WSe2 betrachtet. Bei diesen
Proben konnte der Drehwinkel zwischen dem WSe2 und dem ML-G, aufgrund
einer anderen Methode der Winkelbestimmung, mit hoher Genauigkeit bestimmt
werden.

Hallbar-Struktur und Messvorgang

Es wurden auch hier wieder drei Hallbars untersucht. Diese Hallbars hatten im-
mer acht Kontakte, wovon auf den langen Seiten jeweils drei Kontakte waren (vgl.
Abb. 6.31 a)-d)).
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Abbildung 6.31.: a) Modell der Hallbar-Struktur von Probe 1, 2 und 3 mit den
jeweiligen nummerierten Kontakten. b), c) und d) sind Bilder der verwendeten
Hallbar-Strukturen (rot umrahmt) mit den zugehörigen Leiterbahnen, aufgenom-
men mit der Kamera eines optischen Mikroskops.

Der Abstand zwischen den Kontakten an den langen Seiten betrug L = 4µm,
während die Hallbar eine Breite W = 1, 5µm aufwies. Die Hallbars wurden hier
etwas schmaler strukturiert. Dadurch erhoffte man sich, dass die Streuzeiten τiv
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und τintra aufgrund zunehmender Streuung am Probenrand kleiner werden. Dies
hätte dann zur Folge, dass die Auswertung der Messungen von WAL-SOC etwas
erleichtert werden, da hier dann die unerwünschte WAL-Berry kleiner ausfallen
müsste und leichter von WAL-SOC zu unterscheiden wäre.
Sowohl Messsystem (vgl. B.1) und zugehörige Messparameter als auch die Vor-
gehensweise zur Durchführung der Messungen war hier identisch im Vergleich zu
den vorherigen Abschnitten 6.2 und 6.3.1.

Messungen zum elektrischen Feldeffekt

Zur Bestimmung der wesentlichen Transportparameter wurde wieder der gateab-
hängige Längswiderstand Rxx und die gateabhängige Leitfähigkeit σxx bestimmt.
Es ergaben sich die Kurven aus Abb. 6.32 a), b) und c).
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Abbildung 6.32.: Die Abbildung a)-c) zeigen die Messungen zum elektrischen
Feldeffekt für die drei untersuchten Proben. Dargestellt ist in allen Fällen die Ab-
hängigkeit des Widerstands Rxx und der Leitfähigkeit σxx von der Gatespannung
Ug. d) Verlauf der Ladungsträgerbeweglichkeiten in Abhängigkeit zur Gatespan-
nung Ug für die einzelnen Proben, wobei hier für einen besseren Vergleich von der
Gatespannung Ug die Dotierung UDirac abgezogen wurde.
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Grundsätzlich weisen diese Kurven hier keine Besonderheiten auf und haben den
üblichen Kurvenverlauf, den man für Proben dieser Bauart erwartet. Anschlie-
ßend wurden wie in den Abschnitten 6.2 und 6.3.1 die weiteren Transportpara-
meter µ, lmfp, τp und D bestimmt.
In Abb. 6.32 d) sind die Ladungsträgerbeweglichkeiten µ für die einzelnen Proben
dargestellt. Für die Ladungsträgerbeweglichkeiten µ lässt sich sagen, dass diese
wieder für alle Proben relativ klein sind und sich wieder von Probe zu Probe
unterscheiden.
Abb. 6.33 a) und b) zeigt nun die mittlere freie Weglänge lmfp und die Impulsre-
laxationszeit τp für die einzelnen Proben.
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Abbildung 6.33.: a) zeigt den Verlauf der mittleren freien Weglänge lmfp und b)
den Verlauf der Impulsrelaxationszeit τp abhängig von der Ladungsträgerdichte
n für die drei Proben.

Die beiden Parameter lmfp und τp unterscheiden sich auch hier zu einem gewis-
sem Grad, was auch mit den unterschiedlichen Ladungsträgerbeweglichkeiten µ
einhergeht. Trotzdem liegen die Parameter für alle drei Proben in einem Bereich,
der für Proben dieser Bauart üblich ist. Zudem liegen auch hier alle Proben we-
gen W > lmfp im diffusivem Regime, was wieder zur Messung von WAL-SOC
förderlich ist.
In Abb. 6.34 ist der Verlauf der dichteabhängigen Diffusionskoeffizienten D der
einzelnen Proben dargestellt. Auch hier zeigen die Kurven das übliche Verhalten.
Nach Ermittlung dieser Transportparameter konnte man sich der Messung und
Auswertung von WAL-SOC zuwenden.
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Abbildung 6.34.: Die Abbildung zeigt den Verlauf des Diffusionskoeffizienten D
abhängig von der Ladungsträgerdichte n für die drei Proben.

Messung und Evaluation von WAL-SOC und Bestimmung der SOC

Auch die Vorgehensweise zur Messung und Auswertung der WAL-SOC war hier
identisch im Vergleich zu den Abschnitten 6.2 und 6.3.1.
Für die jeweiligen Ladungsträgerdichten n ergaben sich für die drei Proben die
Kurven in Abb. 6.35 a), b) und c). Man sieht in Abb. 6.35 b) und c) klar, dass
die WAL-Berry bei sehr kleinen Magnetfeldern Bz in die WAL-SOC übergeht. In
Abb. 6.35 a) sieht man dagegen wie WAL-Berry zuerst in die schwache Lokali-
sierung und diese dann in die WAL-SOC übergeht, was auf kleinere Werte von
τiv und τintra hinweist.
Aus der Kurvenanpassung folgten nun wieder die wesentlichen Fit-Parameter τϕ,
τasy, τsym, τiv und τintra.
Der Verlauf der Phasenstreuzeit τϕ in Abhängigkeit zur Ladungsträgerdichte n
ist in Abb. 6.36 a) zu sehen. Die Phasenstreuzeiten sind auch hier von Probe zu
Probe unterschiedlich und steigen mit zunehmender Ladungsträgerdichte n an.
Daneben sind in Abb. 6.36 b) die Kurven für die Streurate τ−1

soc in Abhängigkeit
von τp zu sehen. Diese Streurate τ−1

soc zeigt auch hier wieder für beide Ladungsträ-
gertypen (Elektronen und Löcher) einen linearen Verlauf, wie man in Abb. 6.36
b) erkennen kann. Auch die Steigungen der Kurven aus Abb. 6.36 b) sind bei
jeder Probe wieder unabhängig vom Ladungsträgertyp.
In Abb. 6.37 a) und b) sind die Kurven der beiden Streuzeiten τasy und τsym

in Abhängigkeit zur Ladungsträgerdichte n abgebildet. Beide Parameter weisen
wieder einen gewissen Fehlerbreich auf. Auch weist τasy neben einer Abhängig-
keit von der Ladungsträgerdichte n auf eine Drehwinkelabhängigkeit hin. Bei τsym

scheint ebenfalls eine Drehwinkelabhängigkeit vorzuliegen.
Aus der Kurvenanpassung gingen auch wieder die beiden Parameter τiv und τintra

hervor, welche in Abb. 6.38 a) und b) in Abhängigkeit von der Ladungsträger-
dichte n dargestellt sind.
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Abbildung 6.35.: In a), b) und c) sind jeweils Messungen zur Leitfähigkeit ∆σxx

in Abhängigkeit eines äußeren Magnetfelds Bz für die drei Proben dargestellt. In
manchen Kurven ist erkennbar wie die WAL-Berry in die WAL-SOC übergeht.
Bei anderen Kurven wiederum ist ein Übergang von schwacher Lokalisierung in
WAL-SOC erkennbar. Die roten Kurven stellen dabei mögliche Fitkurven dar.
Es fehlen zudem manche Kurven für bestimmte Ladungsträgerdichten n, da in
diesen Fällen keine passende Fit-Kurve erstellt werden konnte.

Beide Streuzeiten nehmen auch hier wieder relativ große Werte innerhalb eines
gewissen Fehlerbereichs an.
Eine Winkelabhängigkeit dieser Parameter wird hier nicht erwartet. Vor allem
für τintra ist stattdessen wieder eine Abhängigkeit von der Ladungsträgerdichte
n erkennbar.
Im Anschluss konnten damit nun wieder die SOC-Parameter λR und λV Z be-
stimmt werden. Es ergaben sich die Kurven aus Abb. 6.39 a) und b).
In Abb. 6.39 a) und b) kann man klar erkennen, dass unterschiedliche Drehwinkel
wie erwartet auch zu unterschiedlichen SOC-Parametern führten.
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Abbildung 6.36.: In a) wird der Kurvenverlauf der Phasenstreuzeit τϕ in Abhän-
gigkeit der Ladungsträgerdichte n für die drei Proben dargestellt. Die Phasen-
streuzeit τϕ steigt mit der Ladungsträgerdichte n an, eine klare Winkelabhängig-
keit zeigt sich jedoch nicht. In b) ist τ−1

SOC gegen τp aufgetragen. Bei allen Proben
nehmen die Kurven einen linearen Verlauf an. Die Steigung der Kurven scheint
unabhängig vom Ladungsträgertyp (Elektronen oder Löcher) zu sein.
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Abbildung 6.37.: In a) und b) sind die Streuzeiten τasy und τsym in Abhängigkeit
der Ladungsträgerdichte n für die drei Proben dargestellt. τasy scheint sowohl
von der Ladungsträgerdichte n als auch vom Drehwinkel α abhängig zu sein. Für
τsym zeigt sich dagegen keine klare Abhängigkeit von der Ladungsträgerdichte n,
jedoch ist eine klare Drehwinkelabhängigkeit erkennbar.
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Abbildung 6.38.: In a) ist die Intervalley-Streuzeit τiv und in b) die Intravalley-
Streuzeit τintra in Abhängigkeit der Ladungsträgerdichte n für die drei Proben
dargestellt. Eine Winkelabhängigkeit wird hier für τiv und τintra nicht erwartet.
Während τiv keine Abhängigkeit von der Ladungsträgerdichte n zeigt, liegt im
Falle von τintra dagegen eine klare Abhängigkeit von der Ladungsträgerdichte n
vor.
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Abbildung 6.39.: In a) ist der SOC-Parameter λR und in b) der SOC-Parameter
λV Z gegen die Ladungsträgerdichte n für die drei Proben aufgetragen. In a) und
b) zeigt sich wie erwartet in beiden Fällen, dass weder λR noch λV Z von der
Ladungsträgerdichte n abhängig ist. Dagegen zeigt sich eine ausgeprägte Winkel-
abhängigkeit von λR und λV Z
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Ein Vergleich der SOC-Parameter von Probe 6 mit denen von Probe 2 aus
dem vorherigen Abschnitt zeigt außerdem, dass beide Proben sehr ähnliche SOC-
Parameter aufweisen.
Dies würde man auch so erwarten, da für beide Proben ein Drehwinkel von
α ≈ 15◦ eingestellt wurde.
Im Anschluss werden nun die Erkenntnisse aus diesem Abschnitt nochmal kurz
zusammengefasst ehe in Abschnitt 6.3.3 ein umfassender Vergleich mit der Theo-
rie durchgeführt wird.

Zusammenfassung

Zusammenfassend lässt sich zur Drehwinkelabhängigkeit anhand dieser Proben
sagen, dass unterschiedliche Drehwinkel auch unmittelbar zu unterschiedlichen
Werten für λR und λV Z führten. Allein dieser Aspekt ist jedoch noch kein ein-
deutiger Beweis für das Vorliegen einer Winkelabhängigkeit der SOC. Vielmehr
deutet aber der Vergleich mit den Ergebnissen aus dem vorherigen Abschnitt dar-
auf hin, dass auch hier eine Drehwinkelabhängigkeit vorliegen muss. Betrachtet
man nämlich Probe 6 mit einem Winkel von α ≈ 15◦ und vergleicht die Ergeb-
nisse für λR und λV Z mit denen von Probe 2 aus dem vorherigen Abschnitt, so
erhält man auch hier nahezu dieselben Ergebnisse. Insofern kann hier von einer
Winkelabhängigkeit der SOC ausgehen und es war auch hier eine gewisse Repro-
duzierbarkeit der Proben gegeben, obwohl sich hier manche Prozessschritte und
auch Herstellung und Herkunft des verwendeten WSe2-Materials unterschieden.
Es gilt daher auch in diesem Fall die Aussage, dass Proben mit gleich eingestell-
tem Winkel nahezu identische SOC-Parameter liefern. Ändert man jedoch den
Winkel beispielsweise auf α ≈ 11◦ oder α ≈ 22◦, so ändern sich dann auch un-
mittelbar die SOC-Parameter, wie man in Abb. 6.39 a) und b) erkennen kann.
Dieser Umstand wird auch in den theoretischen Vorhersagen so erwartet. Aus
diesem Grund kann man hier von einer Drehwinkelabhängigkeit des proximity-
induzierten SOC ausgehen.
Ein ausführlicher Vergleich der theoretischen Vorhersagen mit den experimentel-
len Ergebnissen wird anschließend durchgeführt.

6.3.3. Interpretation und Schlussfolgerungen
In den Abschnitten 6.3.1 und 6.3.2 zeigte sich bereits, dass die proximity-induzierte
SOC vom Drehwinkel α abhängig ist. An dieser Stelle soll nun gezeigt werden,
wie Ergebnisse vor allem in Bezug auf die Theorie [21–23] zu interpretieren sind.
Dazu wurden die prognostizierten SOC-Parameter aus [21–23] zusammen mit
den SOC-Parametern aus den Abschnitten 6.3.1 und 6.3.2 in Abb. 6.40 a) und
b) gegen den Drehwinkel α aufgetragen.
Vergleicht man nun zuerst die Kurven der einzelnen Theorien [21–23] in 6.40 a)
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Abbildung 6.40.: In a) ist der SOC-Parameter λR und in b) der SOC-Parameter
λV Z gegen den Winkel α für die einzelnen Proben 1-6 und für die jeweiligen Be-
rechnungen von Li et al. [22], Naimer et al. [21] und Zollner et al. [23] aufgetragen.

und b) miteinander, so erkennt man, dass der Trend der Kurven qualitativ ähn-
lich ist. Es gibt allerdings zum Teil auch erhebliche quantitative Unterschiede
zwischen den einzelnen Theorien.
Betrachtet man nun die experimentellen Ergebnisse, so kann man folgendes sagen.
Für Probe 1 und 3 kann man hier einen Drehwinkel von α ≈ 30◦ annehmen, da
ein alternativer Drehwinkel von α ≈ 0◦ hier vor allem für λV Z mit überhaupt kei-
ner theoretischen Vorhersage aus [21–23] übereinstimmen würde. Dagegen passt
hier λV Z bei einem Drehwinkel von α ≈ 30◦ mit allen theoretischen Vorhersagen
aus [21–23] sehr gut zusammen, da dort λV Z = 0 meV prognostiziert wurde und
auch hier im Experiment λV Z nahezu verschwindet. Insofern kann auch bestätigt
werden, dass man durch die Wahl eines Drehwinkels von α ≈ 30◦ die Valley-
Zeeman-SOC ausschalten kann.
Im Fall von λR in Abb. 6.40 a) erkennt man im Allgemeinen sowohl eine gute
qualitative als auch quantitative Übereinstimmung zwischen Theorie und Experi-
ment. Dabei passen die Ergebnisse für Probe 2, 5 und 6 gut mit den Berechnungen
aus [22] zusammen. Die Ergebnisse von Probe 1, 3 und 4 passen dagegen besser
mit den Vorhersagen aus [21, 23] zusammen.
Mit Blick auf λV Z in Abb. 6.40 b) fällt auf, dass es außer für die Proben 1 und
3 keine quantitative Übereinstimmung zwischen Theorie und Experiment gibt.
Lediglich Probe 2 und Probe 6 kommen noch in die Nähe der Berechnungen von
[23].
Zusammenfassend zeigen die experimentellen Ergebnisse eine klare Abhängigkeit
der proximity-induzierten SOC vom Drehwinkel. Es konnte anhand der Proben
1 und 3 bzw. 2 und 6 nachgewiesen werden, dass die proximity-induzierte SOC
reproduzierbar ist, wenn der Drehwinkel für die Proben auf denselben Wert ein-
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gestellt wird.
Es konnte darüber hinaus bestätigt werden, dass die Valley-Zeeman-SOC durch
Einstellung des Drehwinkels auf α ≈ 30◦ eliminiert werden kann.
Es bestehen jedoch noch Diskrepanzen zwischen Theorie und Experiment. Ein
Grund dafür liegt möglicherweise in der vorhandenen Gitterverspannung. Jeder
Drehwinkel geht nämlich mit einer bestimmten Gitterverspannung einher, die zu
einer entsprechenden Stärke der proximity-induzierten SOC führt [20, 22, 23]. In
der Praxis kann die Gitterverspannung jedoch auch andere Ursachen haben (z. B.
Defekte, Verunreinigungen ...), die nichts mit dem Drehwinkel zu tun haben. Dies
kann beim Vergleich zwischen Theorie und Experiment zu gewissen Abweichun-
gen in der Stärke der proximity-induzierten SOC führen.
Kürzlich wurde eine neue Theorie zu schwacher Lokalisierung und WAL-SOC in
Graphen vorgestellt [40], die Abweichungen von der Theorie von McCann und
Fal’ko [24] vorhersagt, wenn τasy in derselben Größenordnung wie τϕ liegt. Für
die meisten der aufgeführten Proben ist dies aber ohnehin nicht der Fall, so-
dass man davon ausgehen kann, dass die experimentellen Ergebnisse von dieser
Interpretation nicht beeinflusst werden.
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6.4. Induzierte SOC in Abhängigkeit von
mechanischem Druck

Im Rahmen dieser Arbeit sollte bestätigt werden, dass die proximity-induzierte
SOC einer Heterostruktur mit WSe2 auf ML-G vom Zwischenlagenabstand und
damit von mechanischem Druck auf die Heterostruktur abhängig ist. Für die Un-
tersuchungen wurde eine hBN/ML-WSe2/ML-G-Heterostruktur verwendet. Um
dafür diese Heterostruktur in einer sogenannten Druckzelle untersuchen zu kön-
nen, musste der Probenchip nach vorhergehenden Messungen in Regensburg aus
dem ursprünglichen Chipträger gelöst (vgl. A.15) und später in Budapest in einen
anderen, für die Druckzelle passenden, Chipträger eingeklebt werden. Die Mes-
sungen wurden in Budapest anschließend von B. Szentpèteri (Arbeitsgruppe P.
Makk - BME Budapest) durchgeführt. Danach wurden die Messergebnisse dem
Autor dieser Arbeit für die Evaluation zur Verfügung gestellt.

6.4.1. Hallbar-Struktur und Messvorgang
Die untersuchte Hallbar hatte sechs Kontakte und davon jeweils zwei an den
langen Seiten der Hallbar (vgl. Abb. 6.41 a) und b)). Der Abstand der seitli-
chen Kontakte zueinander betrug L = 4µm, während die Hallbar eine Breite
W = 4µm aufwies. Die hier verwendete Probe entspricht der Probe 1 aus 6.3.1,
welche bereits für die Untersuchungen der Winkelabhängigkeit der SOC verwen-
det wurde.

(a)

L

W1 4

2 3

6 5

x

y

(b)

25mm

Abbildung 6.41.: a) Modell der Hallbar-Struktur mit den jeweiligen nummerierten
Kontakten. b) Abbildung der verwendeten Hallbar-Struktur (rot umrahmt) mit
den zugehörigen Leiterbahnen.

Das Messsystem zur Durchführung der Messungen war dem aus B.1 ähnlich. Die
angelegte Wechselspannung Ubias betrug hier jedoch nur Ubias = 100µV und hat-
te eine Frequenz f = 1137 Hz anstelle der für diese Arbeit üblichen Werte von
Ubias = 0, 3 V und f = 13 Hz. Da hier Ubias schon recht klein war, konnte hier auf
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den üblichen Vorwiderstand verzichtet werden. Der Strom I, der durch die Hall-
bar floss, betrug hier I ≈ 10−50 nA. Die unterschiedlichen Messparameter sollten
aber keinen nennenswerten Unterschied bei der Messung der gesuchten Effekte
machen. Der wesentliche Unterschied beim Messaufbau war hier vor allem der
Probenstab mit der daran angebrachten Druckzelle. Für die Durchführung der
Messungen wurde die Probe in diese Druckzelle, deren Aufbau und Funktions-
weise in B.2 grob und in [146] genauer beschrieben ist, eingebaut. Danach wurde
diese Druckzelle mit (unpolarem) Kerosin befüllt. Um den mechanischen Druck
auf die Probe zu erhöhen, wurde das Kerosin in der Druckzelle auf die Probenebe-
ne und damit senkrecht auf die Heterostruktur gedrückt. Dadurch sollte das WSe2
näher an das ML-G gepresst werden, wodurch man einen Anstieg der proximity-
induzierten SOC erwartete. Grundsätzlich wurden alle Messungen zuerst ohne
eingestellten Druck bei p = 0 GPa und ohne Kerosin durchgeführt. Danach wur-
den dieselben Messungen bei einem eingestellten Druck von p = 1, 9 GPa und
mit Kerosin erneut durchgeführt. Im Allgemeinen fanden die Messungen auch
hier wieder bei tiefen Temperaturen (T ≈ 1, 5 K) statt. Im Folgenden werden
nun die Messergebnisse zum elektrischen Feldeffekt und deren Auswertung ge-
zeigt. Dabei werden die Ergebnisse bei p = 0 GPa immer den Ergebnissen bei
p = 1, 9 GPa vergleichend gegenübergestellt.

6.4.2. Messungen zum elektrischen Feldeffekt
Zur Ermittlung der wesentlichen Transportparameter wurde wieder wie bei den
vorherigen Abschnitten der gateabhängige Längswiderstand Rxx und die gateab-
hängige Leitfähigkeit σxx bestimmt. Man erhielt dabei die Kurven aus Abb. 6.42
a) für den Fall im Vakuum und ohne Druck (p = 0 GPa) und die Kurven aus
Abb. 6.42 b) für den Fall mit Kerosin und mechanischem Druck (p = 1, 9 GPa).
Betrachtet man nun die Kurven aus Abb. 6.42 a) und b), so erkennt man vor
allem bei den Messungen mit angelegtem Druck eine gewisse Dotierung. Diese
Dotierung ist vermutlich auf eine unkontrollierte elektrostatische Aufladung in-
nerhalb der Druckzelle zurückzuführen, da es aufgrund der Beschaffenheit der
Heterostruktur eher fraglich ist, ob das ML-G dermaßen durch Verunreinigungen
dotiert werden kann. Vielmehr steht hier das Kerosin im Verdacht. Das Kerosin
ist zwar unpolar und sollte sich dadurch nicht elektrostatisch aufladen können,
allerdings kann auch das Kerosin verunreinigt werden, wodurch möglicherweise
doch eine Polarität zustande kommt und eine Dotierung hervorruft. Beispiels-
weise könnten sich Verunreinigungen von der Probenoberfläche lösen und so das
Kerosin verunreinigen. Dies ist jedoch nur eine Vermutung. Die genaue Ursache
dieser Dotierung ist nicht bekannt. Ein ähnliches Verhalten der Dotierung wurde
außerdem auch in [146] beobachtet. Auf die weiteren Experimente und Messungen
hat diese Dotierung jedoch keinen besonderen Effekt und kann damit vernach-
lässigt werden.
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Abbildung 6.42.: Die Abbildung zeigt die Messungen zum elektrischen Feldef-
fekt für den Fall a) ohne Druck (p = 0 GPa) und für den Fall b) mit Druck
(p = 1, 9 GPa). Dargestellt ist in beiden Fällen die Abhängigkeit des Widerstands
Rxx und der Leitfähigkeit σxx von der Gatespannung Ug. Man sieht außerdem,
dass sich der Dirac-Punkt durch Anlegen des Drucks in den positiven Bereich
verschoben hat.

Anhand der Transportmessungen aus Abb. 6.42 war es nun möglich die wesent-
lichen Transportparameter nacheinander zu bestimmen.
Zuerst wurden wieder die Ladungsträgerbeweglichkeiten µ für die beiden Fälle
(p = 0 GPa und p = 1, 9 GPa) bestimmt. Es ergaben sich die Ladungsträgerbe-
weglichkeiten µ aus Abb. 6.43 für p = 0 GPa und p = 1, 9 GPa in Abhängigkeit
von der Gatespannung Ug. Es zeigte sich, dass nach Erhöhung des Drucks die La-
dungsträgerbeweglichkeit µ ungefähr 15 − 20 % kleiner wurde. Die Änderung der
Ladungsträgerbeweglichkeit µ deckt sich auch mit der bisherigen Beobachtung
aus [24].
Für ausgewählte Ladungsträgerdichten n, wurden anschließend die weiteren Trans-
portparameter lmfp und τp für die beiden Fälle (p = 0 GPa und p = 1, 9 GPa)
ermittelt (vgl. Abb. 6.44 a) und b)). Hier erkennt man, dass sowohl lmfp als auch
τp mit Zunahme des Drucks kleiner wurde. Es muss damit auch zu mehr Streuer-
eignissen an bestimmten Störpotenzialen im ML-G gekommen sein, was auch mit
der reduzierten Ladungsträgerbeweglichkeit µ einhergeht.
Als Nächstes wurde noch der Diffusionskoeffizient D bestimmt (vgl. Abb. 6.45).
Nach Ermittlung dieser wesentlichen Transportparameter konnte man sich der
Evaluation von Messungen zur WAL-SOC zuwenden.
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Abbildung 6.43.: Verlauf der Ladungsträgerbeweglichkeiten in Abhängigkeit der
Gatespannung Ug, wobei hier für einen besseren Vergleich von der Gatespannung
Ug die Dotierung UDirac abgezogen wurde. Dabei zeigt sich, dass die schwarze
Kurve für den Fall p = 0 GPa eine höhere Ladungsträgerbeweglichkeit aufweist
als die blaue Kurve für den Fall p = 1, 9 GPa.
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Abbildung 6.44.: In a) ist der Verlauf von lmfp und in b) der Verlauf von τp für
die beiden Fälle (p = 0 GPa und p = 1, 9 GPa) in Abhängigkeit der Ladungsträ-
gerdichte n dargestellt. Auffällig ist, dass die Werte sowohl für lmfp als auch für
τp kleiner werden, sobald ein Druck (p = 1, 9 GPa) angelegt wurde.
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Abbildung 6.45.: Verlauf des Diffusionskoeffizienten D in Abhängigkeit zur La-
dungsträgerdichte n dargestellt. Es zeigt sich, dass der Diffusionskoeffizient D für
den Fall mit Druck (p = 1, 9 GPa) kleinere Werte annimmt als für den Fall ohne
Druck (p = 0 GPa).

6.4.3. Messung und Evaluation von WAL-SOC und
Bestimmung der SOC

Bei den Messungen von WAL-SOC ergaben sich für die beiden Fälle (p = 0 GPa
und p = 1, 9 GPa) bei den entsprechenden Ladungsträgerdichten n die Kurven in
Abb. 6.46 a) und b). Hier sieht man klar, dass die WAL-Berry bei sehr kleinen
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Abbildung 6.46.: In a) und b) sind jeweils Messungen der Leitfähigkeit σxx in
Abhängigkeit eines äußeren Magnetfelds Bz für die beiden Fälle (p = 0 GPa
und p = 1, 9 GPa) dargestellt. In allen Kurven ist erkennbar wie die WAL-Berry
nahe Bz = 0 T in die WAL-SOC übergeht. Die roten Kurven stellen dabei die
Fit-Kurven dar. In b) fehlen außerdem die Kurven für die Ladungsträgerdichten
n = ±0, 5 × 1016 m−2, da hierzu keine Transportparameter vorhanden waren.
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Magnetfeldern Bz in die WAL-SOC übergeht.
Aus der Kurvenanpassung ergaben sich nun wieder die wesentlichen Fit-Parameter
τϕ, τasy, τsym, τiv und τintra.
Der Verlauf der Phasenstreuzeit τϕ in Abhängigkeit zur Ladungsträgerdichte n ist
in Abb. 6.47 a) zu sehen. Die Phasenstreuzeiten τϕ weichen dabei für die beiden
Fälle (p = 0 GPa und p = 1, 9 GPa) voneinander ab, wobei τϕ für den Fall mit
Druck kleinere Werte annimmt. Dieser Umstand deckt sich auch mit den Ergeb-
nissen aus [24].
Daneben sind in Abb. 6.47 b) die Kurven für die Streurate τ−1

soc zu sehen. Diese
Streurate wurde hier wieder aus τasy und τsym ermittelt und soll nach [97] in
beiden Fällen einen linearen Verlauf annehmen. Dies trifft auch hier für beide
Ladungsträgertypen (Elektronen und Löcher) zu, wie man in Abb. 6.47 b) erken-
nen kann. Auffällig ist außerdem, dass die Steigung aller Kurven aus Abb. 6.47
b) nahezu identisch ist.
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Abbildung 6.47.: In a) wird der Kurvenverlauf der Phasenstreuzeit τϕ in Ab-
hängigkeit der Ladungsträgerdichte n für die beiden Fälle mit unterschiedlichem
Druck dargestellt. Dabei fällt auf, dass die blaue Kurve (p = 1, 9 GPa) etwas
kleinere Werte annimmt als die schwarze Kurve (p = 0 GPa). In b) ist τ−1

soc in
Abhängigkeit von τp dargestellt und es ist in beiden Fällen (p = 0 GPa und
p = 1, 9 GPa) ein linearer Verlauf der einzelnen Kurven erkennbar.

In Abb. 6.48 a) und b) sind die Kurven der beiden SOC-Parameter τasy und τsym

in Abhängigkeit zur Ladungsträgerdichte n abgebildet. Auffällig ist hier, dass τasy

ähnlich wie in [24] eine Druckabhängigkeit zeigt. Bei τsym ist hier aufgrund der
großen Fehlerbalken eher keine klare Druckabhängigkeit erkennbar.
Aus der Kurvenanpassung gingen auch die beiden Parameter τiv und τintra hervor,
welche in Abb. 6.49 a) und b) in Abhängigkeit von der Ladungsträgerdichte n
dargestellt sind. Im Allgemeinen nehmen beide Streuzeiten wieder relativ große
Werte an, was vor allem an der relativ breiten, aber kurzen Geometrie der Pro-
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Abbildung 6.48.: In a) ist die Streuzeit τasy und in b) die Streuzeit τsym in
Abhängigkeit der Ladungsträgerdichte n für die beiden Fälle (p = 0 GPa und
p = 1, 9 GPa) dargestellt. Es fällt auf, dass τasy sowohl von der Ladungsträ-
gerdichte n als auch vom Druck p abhängig ist. Für τsym zeigt sich keine klare
Abhängigkeit in Bezug auf Ladungsträgerdichte n und Druck p.
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Abbildung 6.49.: In a) ist die Intervalley-Streuzeit τiv und in b) die Intravalley-
Streuzeit τintra in Abhängigkeit der Ladungsträgerdichte n für die beiden Fälle
(p = 0 GPa und p = 1, 9 GPa) dargestellt. Es zeigt sich hier weder in a) noch in
b) einen Druckabhängigkeit der Kurven. Eine Abhängigkeit von der Ladungsträ-
gerdichte n kann man hier nun in b) erkennen.

be liegen dürfte. Eine Druckabhängigkeit dieser Parameter ist hier nicht klar
ersichtlich. Dagegen ist vor allem für τintra eine Abhängigkeit von der Ladungs-
trägerdichte n erkennbar.
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Abbildung 6.50.: In a) ist der SOC-Parameter λR und b) der SOC-Parameter
λV Z gegen die Ladungsträgerdichte n aufgetragen dargestellt. In a) und b) zeigt
sich wie erwartet in beiden Fällen (p = 0 GPa und p = 1, 9 GPa), dass weder
λR noch λV Z von der Ladungsträgerdichte n abhängig ist. Dagegen zeigt sich
eine ausgeprägte Druckabhängigkeit von λR, während für λV Z eher keine klare
Druckabhängigkeit erkennbar ist.

Nun wurden auch hier wieder die SOC-Parameter für die Rashba-SOC (λR) und
für die Valley-Zeeman-SOC (λV Z) bestimmt. Es ergaben sich die Kurven aus
Abb. 6.50 a) und b). Hierzu lässt sich sagen, dass λR durch die Erhöhung des
Drucks von p = 0 GPa auf p = 1, 9 GPa deutlich ansteigt. Da λR wegen Glei-
chung (4.23) sowohl von τp als auch von τasy abhängig ist, tragen auch beide
Streuzeiten zu λR bei. Hier ist es so, dass für den Fall mit Druck sowohl τasy als
auch τp kleiner geworden ist, wodurch insgesamt auch eine größere Rashba-SOC
λR vorhanden sein musste. Betrachtet man nun λV Z , so erkennt man, dass hier
keine klare Druckabhängigkeit erkennbar ist. Nach Gleichung (4.24) fließen in die
Berechnung von λV Z die beiden Streuzeiten τiv und τsym ein. Beide Streuzeiten
zeigen einzeln betrachtet ebenfalls keine eindeutige Druckabhängigkeit, wodurch
auch λV Z keine eindeutige Druckabhängigkeit zeigen kann. Dass hier die Werte
von λV Z so klein ausfallen, liegt sehr wahrscheinlich am Drehwinkel zwischen dem
ML-G und dem ML-WSe2. Dieser sollte für diese Probe (Probe 1 aus Abschnitt
6.3.1) etwa α ≈ 30◦ betragen, wodurch λV Z sehr klein werden muss.

6.4.4. Zusammenfassung
Zusammenfassend lässt sich sagen, dass sich durch Anlegen eines äußeren mecha-
nischen Drucks auf die Probe der SOC-Parameter λR und damit die Rashba-SOC
um etwa 20-35% erhöhen ließ. Für den SOC-Parameter λV Z und damit der Valley-
Zeeman-SOC ist es aufgrund des relativ großen Fehlerbereichs von τsym auf den
ersten Blick schwer zu sagen, ob hier nun eine Druckabhängigkeit vorliegt oder
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nicht. In [24] zeigt sich keine Druckabhängigkeit für τsym. Dieser Fall ist auch
hier innerhalb des Fehlers von τsym möglich, sodass τsym auch hier unabhängig
vom Druck sein kann. Unter der Annahme, dass τsym nicht druckabhängig ist
und dem Umstand, dass hier auch τiv keine Druckabhängigkeit zeigt, darf somit
angenommen werden, dass λV Z höchstwahrscheinlich nicht vom Druck abhängig
ist. Im Allgemeinen stimmen die Ergebnisse dieser Arbeit mit den Erwartungen
und Beobachtungen aus [24] überein. Damit können die Ergebnisse aus [24] weit-
gehend bestätigt werden. Es gab zudem noch eine weitere Probe, die ähnliche
Ergebnisse lieferte (vgl. C.2). Auf diese Probe wird hier aber nicht mehr genauer
eingegangen.





7. Fazit
Am Ende dieser Forschungsarbeit kann man sagen, dass einige wichtige Erkennt-
nisse hinsichtlich der Stärke von proximity-induzierter SOC und wie man diese
vorab einstellen kann, erlangt werden konnten. Um an diese Forschungsergebnisse
heranzukommen, mussten jedoch einige Hürden überwunden werden.
In der Anfangsphase dieser Arbeit war noch nicht ganz klar, welche Nachweis-
methode für die proximity-induzierte SOC die geeignetere ist. Die Messung von
WAL-SOC liefert zwar mehr Informationen über die Probe, der Nachweis einer
Schwebung in den Shubnikov-de-Haas-Oszillationen wäre jedoch grundsätzlich
die etwas einfachere und weniger aufwändige Methode. Nachdem aber im Rah-
men dieser Arbeit gezeigt werden konnte, dass die Herkunft einer Schwebung in
den Shubnikov-de-Haas-Oszillationen nicht eindeutig ist, wurde diese Nachweis-
methode verworfen.
Im Anschluss wurde dann versucht die WAL-SOC nachzuweisen. Dabei gab es
anfänglich vor allem Probleme mit dem verwendeten TMDC-Material. Ursprüng-
lich wurde nämlich WS2 anstatt WSe2 benutzt. Trotz aller Erwartungen zeigte
sich in Proben mit WS2 nach sehr vielen Versuchen jedoch nur einziges Mal die
proximity-induzierte SOC in Form von WAL-SOC. Der Grund dafür ist zwar bis-
her nicht bekannt, eine mögliche Erklärung wäre jedoch, dass die SOC bei WS2
für viele Winkel recht klein ausfällt, wodurch sich die SOC nur sehr schwer und
nur bei großen Phasenstreuzeiten nachweisen ließe. Dies würde sich auch mit den
Arbeiten von K. Zollner et al. [23] und T. Naimer et al. [21] decken, die erst zum
Ende dieser experimentellen Arbeit publiziert wurden. Da sich WS2 als eher un-
geeignet herausstellte, um die Ziele dieser Arbeit zu erreichen, wurde stattdessen
WSe2 verwendet, mit dem die proximity-induzierte SOC problemlos nachweisbar
war.
Eine weiteres erhebliches Problem stellte anschließend die mathematische Kur-
venanpassung der Messungen zur WAL-SOC dar. Die Kurvenpassung mit der
vereinfachten Fit-Formel (4.22) war nicht möglich und wegen den relativ großen
Werten für τiv auch nicht erlaubt. Dadurch musste die allgemeine und wesent-
lich kompliziertere Formel (4.21) verwendet werden. In diesem Fall gab es nun
aber fünf unbekannte Streuparameter, die bestimmt werden mussten. Das führte
zu erheblichem Mehraufwand, lieferte am Ende jedoch mehr Informationen und
auch plausible Ergebnisse.
Trotz dieser Schwierigkeiten konnten am Ende einige wichtige Erkenntnisse er-
langt und die wesentlichen Ziele der Arbeit erreicht werden. Darauf wird an dieser
Stelle nochmal zusammenfassend eingegangen.

143
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Es wurde unter anderem gezeigt, dass der Nachweis und die Bestimmung der
Stärke der proximity-induzierten SOC durch Analyse einer Schwebung in den
Shubnikov-de-Haas-Oszillationen nicht sinnvoll ist, da das Auftreten der Schwe-
bung nicht eindeutig auf die proximity-induzierte SOC zurückzuführen ist, son-
dern auch andere Ursachen in Betracht kommen. Somit lässt sich mit Hilfe dieser
Methode die proximity-induzierte SOC nicht eindeutig nachweisen und damit
auch deren Stärke nicht bestimmen. Damit ist diese Methode eher nicht geeig-
net, um die proximity-induzierte SOC nachzuweisen. Man sollte stattdessen auf
andere Nachweismethoden ausweichen.
Es konnte zudem gezeigt werden, dass eine Änderung der Schichtdicke des ver-
wendeten WSe2-Materials (hier Vergleich zwischen ML-WSe2 und mehrlagigem
WSe2) in einer hBN/WSe2/ML-G-Heterostruktur nicht zu einer unmittelbaren
Änderung der proximity-induzierten SOC führt. In Bezug auf [119] scheint daher
eher nicht die Schichtdicke selbst, sondern vielmehr die Flexibilität und Quali-
tät des TMDCs und möglicherweise auch die Winkelorientierung zwischen dem
TMDC und Graphen eine bedeutende Rolle hinsichtlich der unterschiedlich star-
ken SOC zu spielen. Wenn man also nicht auf die besonderen Eigenschaften
der Bandstruktur von ML-TMDCs angewiesen ist, dann erleichtert diese Er-
kenntnis die Probenherstellung erheblich, da man für manche Proben dann nicht
zwangsweise Heterostrukturen mit ML-TMDC herstellen muss, sondern stattdes-
sen mehrlagiges TMDC verwenden kann. Heterostrukturen mit ML-TMDC waren
bisher nämlich viel schwieriger herzustellen als Heterostrukturen mit mehrlagi-
gem TMDC.
Weiterhin konnte bestätigt werden, dass die proximity-induzierte SOC stark von
der Winkelorientierung zwischen den beiden gekoppelten ML-G- und ML-WSe2-
Schichten abhängig ist. Dazu wurden unterschiedliche Verfahren für die Bestim-
mung der Winkelorientierung entwickelt und angewandt und außerdem WSe2-
Kristalle aus verschiedenen Bezugsquellen benutzt. Die Erkenntnis und der Nach-
weis dafür, dass die Winkelorientierung einen starken Einfluss auf die proximity-
induzierte SOC hat, ist besonders wichtig, da damit eine gewisse Kontrolle über
die Stärke und Art der proximity-induzierten SOC möglich ist. So lässt sich damit
z.B. bei einem Winkel von α = 30◦ die Valley-Zeeman-SOC quasi ausschalten.
Im letzten Teil der Arbeit wurde noch gezeigt, dass die proximity-induzierte SOC
stark abhängig von äußerem mechanischem Druck auf die Heterostruktur und
damit vom Zwischenlagenabstand ist. Diese Erkenntnis ist zwar nicht neu und
wurde bereits in [24] gezeigt. Allerdings wurden diese Ergebnisse zuvor noch nicht
durch weitere Experimente mit weiteren Proben reproduziert. Die Ergebnisse aus
[24], die zeigen, dass sich die Stärke der proximity-induzierten SOC mit Hilfe von
mechanischem Druck verändern lässt, konnten nun im Rahmen dieser Arbeit be-
stätigt werden.
Mit Hilfe dieser Erkenntnisse, ist es nun möglich, Heterostrukturen herzustellen,
von denen die Stärke der proximity-induzierten SOC zu einem gewissem Maß
kontrolliert bzw. vorab festgelegt werden kann. Dies kann beispielsweise nützlich
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sein, wenn eine sehr hohe SOC erwünscht ist, um z.B. Spinströme in spintroni-
schen Bauelementen zu erzeugen.
Zusammenfassend stellt diese Arbeit damit einen wesentlichen Baustein dar, auf
den zukünftige Arbeiten aus dem Bereich der Spintronik aufbauen können.
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A. Prozessdokumentation

A.1. Herstellung von Si/SiO2-Substraten
Verwendetes Verbrauchsmaterial:

• Si/SiO2-Wafer bestehend aus einer 90nm dicken SiO2-Schicht auf einer
stark p-dotierten Siliziumschicht

• Lösung aus 5 % Polymethylmethacrylat (PMMA) und 95 % Anisol (PMMA-
Lackgemisch)

Verwendete Geräte:

• Diamantritzer

• Rotationsbeschichter von der Firma SÜSS MicroTec SE

• Heizplatte

Prozessablauf:

• Prozessparameter (aus Tabelle A.1) für den Rotationsbeschichter eingege-
ben:

Schritt Zeit Drehzahl Beschleunigung
1 5 s 1500 min−1 1500 min−1s−1

2 60 s 1500 min−1 1500 min−1s−1

Tabelle A.1.: Rezept für Rotationsbeschichter.

• Si/SiO2-Wafer im Rotationsbeschichter positionieren.

• Wafer mit PMMA-Lackgemisch vollständig benetzen.

• Prozess starten.

• Wafer anschließend für acht Minuten auf eine Heizplatte legen und PMMA-
Lackgemisch bei 150◦ C aushärten lassen.

• Wafer von der Heizplatte nehmen und abkühlen lassen.
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• Wafer in Diamantritzer einbauen und in beliebig große Rechtecke ritzen
(hier ca. 1 × 1 cm2).

• Wafer an geritzten Stellen in einzelne Chips auseinanderbrechen.

A.2. Reinigung von Si/SiO2-Substraten
Verwendetes Vebrauchsmaterial:

• Aceton

• Isopropanol

• Sauerstoff

• Stickstoff

• Transferchip: 1 × 1 cm2 große Si/SiO2-Substrate aus 90nm SiO2 auf stark
positiv dortiertem Silizium aus A.1

• Markerchip: 0, 5 × 0, 5 cm2 große Si/SiO2-Substrate aus 285nm SiO2 auf
stark positiv dotiertem Silizium mit Goldmarker (waren bereits vorgefer-
tigt)

Verwendete Geräte:

• 4x Becherglas

• Ultraschallbad

• Druckluftpistole für Stickstoff

• Plasmaverascher

Prozessablauf:

• Drei Bechergläser mit Aceton und ein Becherglas mit Isopropanol füllen.

• Ein bis zwei Chips (Transferchips und/oder Markerchips) in das erste Be-
cherglas geben und diese für ca. zwei Minuten in das Ultraschallbad stellen.

• Becherglas aus dem Ultraschallbad nehmen, Chips in das zweite Acetonbad
geben und erneut für ca. zwei Minuten in das Ultraschallbad stellen.

• Becherglas aus dem Ultraschallbad nehmen, die Chips in das dritte Ace-
tonbad geben und ca. 30 Sekunden warten.

• Chips nun für ca. zehn Sekunden in das Becherglas mit Isopropanol geben,
um Acetonrückstände zu vermeiden.
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• Chips herausnehmen und mit Druckluftpistole (Stickstoff) abblasen.

• Prozessschritte für gewünschte Anzahl an Chips wiederholen.

• Chips in Plasmaverascher deponieren, um restliche organische Rückstände
durch Sauerstoffplasma zu entfernen.

• Prozessparameter einstellen:

Zeit Leistung Druck
5min 52% 1 − 2mbar

Tabelle A.2.: Prozessparameter für Plasmaverascher.

• Prozess starten.

• Chips nach Ablauf der Zeit ausbauen.

A.3. Exfoliation der verwendeten 2D-Materialien
Für diese Arbeit wurden verschiedene 2D-Materialien unterschiedlicher Dicke her-
gestellt. Im Folgenden werden die jeweiligen Herstellungsmethoden kurz beschrie-
ben.

A.3.1. Exfoliation von Monolagen- und Bilagen-Graphen
Methode 1: Herstellung von Graphen-Flocken (Standard)

Mit dieser Methode lassen sich in der Regel Graphen-Flocken im Bereich von
mehreren 10µm Durchmesser herstellen. Flocken in der Größe von über 100µm
sind allerdings extrem selten.
Verwendetes Verbrauchsmaterial:

• Gereinigte Transferchips aus Schritt A.1 und A.2

• Blaues Tape: BT-150 E-CM Tape von der Firma Nitto Denko Corp.

• Graphitkristall: Flaggy Flakes von der Firma NGS Trading & Consulting
GmbH

Prozessablauf:

• Teil eines Graphitkristalls auf ein Stück des blauen Tapes legen und fest-
drücken.
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• Oberen Teil des Kristalls vom Tape herunternehmen, wodurch der Kristall
gespalten wird und nahe der Oberfläche des Tapes ein gewisser Teil der
Kristalls auf dem Tape kleben bleibt.

• Zwei- bis dreimal ein weiteres Stück blaues Tape auf diese Stelle kleben und
abziehen, wodurch das Graphit auf dem ersten Tape immer dünner werden
sollte.

• Ist das Graphit nun dünn genug (Augenmaß), dann das erste Tape mit
dem Graphit für ca. 30 Sekunden fest auf ein Si/SiO2-Substrat drücken.
Idealerweise ein Si/SiO2-Substrat (Transferchip), das nach Prozess A.2 un-
mittelbar aus dem Plasmaverascher kam, verwenden.

• Nach 30 Sekunden, das Tape langsam (innerhalb von drei bis vier Sekunden)
vom Si/SiO2-Substrat abziehen.

• Abschließend den Chip mit einem optischen Mikroskop auf Graphen-Flocken
hin untersuchen.

Methode 2: Herstellung von größeren Graphen-Flocken

Mit dieser Methode lassen sich Graphen-Flocken im Bereich von über 100µm
Durchmesser herstellen.
Verwendetes Verbrauchsmaterial:

• Gereinigte Transferchips aus Schritt A.1 und A.2

• Blaues Tape: BT-150 E-CM Tape von der Firma Nitto Denko Corp.

• Scotch Tape: Scotch Magic Tape von der Firma 3M Company Corp.

• Graphitkristall: Flaggy Flakes von der Firma NGS Trading & Consulting
GmbH

Prozessablauf:

• Den Graphitkristall auf ein Stück Scotch Tape drücken.

• Oberen Teil des Kristalls sehr vorsichtig vom Scotch Tape abgespalten,
sodass idealerweise ein dünnes Abbild des Graphitkristalls auf dem Scotch
Tape kleben bleibt.

• Das blaue Tape nehmen und auf das Scotch Tape kleben, sodass der Kristall
zwischen den beiden Tapes eingeschlossen ist. Wichtig: Hier nicht zu stark
andrücken, da das Graphit sonst auf dem Tape in kleinere Teile zerbricht,
was wiederum die Flockengröße einschränken würde.
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• Das blaue Tape sehr schnell (innerhalb einer Sekunde) vom Scotch Tape
abziehen, da sonst nur wenig Graphit auf dem blauen Tape kleben bleibt.

• Ein- bis zweimal mit blauem Tape an dieser Stelle exfolieren, wodurch das
Graphit auf dem Tape immer dünner werden sollte. Dabei ist wieder zu
beachten, dass man nicht zu stark auf das Graphit drückt. Idealerweise
streift man nur leicht darüber.

• Ist das Graphit nun dünn genug (Augenmaß), dann das Tape mit dem
Kristall für ca. 30 Sekunden fest auf ein Si/SiO2-Substrat (Transferchip)
drücken. Idealerweise verwendet man ein Si/SiO2-Substrat (Transferchip),
das nach A.2 unmittelbar aus dem Plasmaverascher kam.

• Nach 30 Sekunden das Tape langsam (innerhalb von zwei bis drei Sekunden)
vom Si/SiO2-Substrat (Transferchip) abziehen.

• Chip mit einem optischen Mikroskop auf Graphen-Flocken hin untersuchen.
Idealerweise findet man Monolagen- oder Bilagen-Graphen mit Größen von
100µm - 300µm.

A.3.2. Exfoliation von vielschichtigem hBN
Verwendetes Verbrauchsmaterial:

• Gereinigte Transferchips aus Schritt A.1 und A.2

• Blaues Tape: BT-150 E-CM Tape von der Firma Nitto Denko Corp.

• hBN-Kristalle von T. Taniguchi und K. Watanabe (National Institute for
Materials Science, Tsukuba, Japan)

Prozessablauf:
Die Herstellung von vielschichtigem hBN entspricht der Methode 1 zur Herstel-
lung von Graphen-Flocken wie oben bereits beschrieben.

A.3.3. Exfoliation von TMDCs (WSe2 und WS2)
Exfoliation von mehrlagigem TMDC

Verwendetes Verbrauchsmaterial:
• Gereinigte Transferchips aus Schritt A.1 und A.2

• Blaues Tape: BT-150 E-CM Tape von der Firma Nitto Denko Corp.

• WS2- und WSe2-Kristalle von der Firma HQ Graphene Systems B.V.
Prozessablauf:
Die Herstellung von mehrlagigem TMDC entspricht im Wesentlichen Methode 1
(A.3.1) zur Herstellung von Graphen-Flocken wie oben bereits beschrieben.



A. Prozessdokumentation 166

Exfoliation von Monolagen-TMDCs

Zur Herstellung von ML-TMDCs genügen die bereits genannten Methoden nicht,
da ML-TMDCs, aufgrund der geringen Bruchfestigkeit der Kristalle, bisher nur
sehr schwer und damit sehr selten direkt auf Si/SiO2-Substraten (Transferchips)
exfoliert werden konnten. Daher wurde eine Methode verwendet, die sich stark
an der Arbeit aus [124] orientiert.
Verwendetes Verbrauchsmaterial:

• Gereinigte Transferchips aus Schritt A.1 und A.2

• Blaues Tape: BT-150 E-CM Tape von der Firma Nitto Denko Corp.

• Scotch Tape: Scotch Magic Tape von der Firma 3M Company Corp.

• WS2- und WSe2-Kristalle von der Firma HQ Graphene Systems B.V.

• PDMS: Blattförmiges PDMS auf Objektträger liegend von der Firma Gel
Pak LLC

Verwendete Geräte:

• Mikroskop mit Transfervorrichtung

Prozessablauf:

• TMDC-Kristall auf Scotch Tape drücken.

• Oberen Teil des Kristalls sehr vorsichtig vom Scotch Tape abgespalten,
sodass idealerweise ein dünnes Abbild des TMDC-Kristalls auf dem Scotch
Tape kleben bleibt.

• Das blaue Tape nehmen und auf das Scotch Tape kleben, sodass der Kristall
zwischen den beiden Tapes eingeschlossen ist. Wichtig: Hier nicht zu stark
andrücken, da sonst das TMDC auf dem Tape in kleinere Teile zerbricht.

• Das blaue Tape sehr schnell (innerhalb einer Sekunde) vom Scotch Tape
abziehen, da sonst nur wenig TMDC-Material auf dem blauen Tape kleben
bleibt.

• Maximal ein- bis zweimal ein weiteres blaues Tape auf diese Stelle des ersten
blauen Tapes kleben und abziehen, wodurch das TMDC auf dem ersten
blauen Tape immer dünner werden sollte. Dabei ist wieder zu beachten,
dass man nicht zu stark auf das TMDC drückt. Idealerweise streift man
nur leicht darüber.

• Ist das TMDC nun dünn genug (Augenmaß), dann das blaue Tape mit dem
TMDC-Kristall leicht auf ein Stück PDMS drücken.
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• Zwei- bis dreimal leicht über das Tape streifen, sodass die Kristalle in Kon-
takt mit dem PDMS kommen, aber idealerweise nicht brechen.

• Jetzt zieht man das blaue Tape schnell vom PDMS herunter, sodass Berei-
che mit TMDC-Kristallen auf dem PDMS liegen bleiben.

• Mit dem optischen Mikroskop kann man nun nach TMDC-Flocken (hier
Monolagen) suchen.

• Gewünschte Flocke muss noch auf ein Si/SiO2-Substrat (Transferchip) trans-
feriert werden. Dazu muss man das PDMS und das Substrat in eine Trans-
fervorrichtung einbauen.

• Unter dem optischen Mikroskop die Stelle mit der Flocke suchen und zentral
im Bild positionieren.

• Das PDMS auf das Si/SiO2-Substrat (Transferchip) drücken.

• Sobald Kontakt zwischen Flocke und Si/SiO2-Substrat (Transferchip) her-
gestellt wurde, ca. zehn Sekunden warten.

• Nach der Wartezeit SiO2-Substrat (Transferchip) und PDMS sehr langsam
voneinander trennen, sodass die Kontaktlinie, sich nur sehr langsam bewegt.
Prozess kann einige Minuten dauern. Bei zu schneller Durchführung kann
die Flocke zerstört werden oder diese verbleibt auf dem PDMS.

• Nach dem Prozess das SiO2-Substrat (Transferchip) mit der Flocke aus
der Transfervorrichtung ausbauen und später für die Herstellung von Hete-
rostrukturen verwenden.

A.4. Hot-Pickup-Transfermethode
A.4.1. Vorbereitung
Herstellung Objektträger mit PDMS-Stempel

Verwendetes Verbrauchsmmaterial:

• (1): Sylgard 184 Silicone Elastomer Base von der Firma Sigma-Aldrich
Company Ltd.

• (2): Sylgard 184 Silicone Elastomer Curing Agent von der Firma Sigma-
Aldrich Company Ltd.

• Objektträger

• 3x Pipette
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Verwendete Geräte:

• Ultraschallbad

• Heizplatte

• Becherglas

Prozessablauf:

• Zehn Teile (hier 5 ml) von (1) mit einer Pipette in ein Becherglas geben.

• Einen Teil (hier 0, 5 ml) von (2) mit einer weiteren Pipette in das gleiche
Becherglas geben und die beiden Flüssigkeiten miteinander gut vermischen.

• Entstandene Blasen in dieser zähen Flüssigkeit entfernen. Dazu das Becher-
glas für ca. 15 Minuten in ein Ultraschallbad stellen.

• In der Zwischenzeit die Objektträger vorbereiten. Diese zuerst mit Propanol
säubern.

• Objektträger auf eine Heizplatte bei 150◦ C legen.

• Nach 15 Minuten Wartezeit, das Becherglas mit der Flüssigkeit aus dem
Ultraschallbad nehmen.

• Wenn in der Flüssigkeit keine Blasen mehr erkennbar sind, dann Pipette
mit etwas Flüssigkeit füllen und damit zentral auf den Objektträger tropfen.

• Nach ca. fünf Minuten, sobald das PDMS gehärtet ist, den Objektträger
von der Heizplatte nehmen und abkühlen lassen.

• Objektträger mit dem PDMS-Stempel kann nun zur Herstellung von Hete-
rostrukturen verwendet werden.

Herstellung von PC-Lösung 5% und PC-Folie

Verwendetes Verbrauchsmaterial:

• Poly(Bisphenol A-Carbonat) Granulat (PC) von der Firma Sigma-Aldrich
Company Ltd.

• Chloroform

• Isopropanol

• Verschließbares Glasfläschchen (ideales Volumen ca. 250 ml)

• Glaspipette



169 A.4. Hot-Pickup-Transfermethode

• Objektträger

• Tesafilm

Verwendete Geräte:

• Heizplatte

• Grammwaage

Prozessablauf:

Herstellung von PC-Lösung 5%:

• Unter Verwendung einer Grammwaage, fünf Gramm PC-Granulat in das
Glasfläschchen geben.

• Unter Verwendung einer Grammwaage, 95 Gramm Chloroform mit Glaspi-
pette in dieses Glasfläschchen geben.

• Zum besseren Auflösen des PC-Granulats, das Glasfläschchen verschließen
und in ein Ultraschallbad stellen.

• Nach ein paar Stunden sollte sich das PC-Granulat aufgelöst haben und
das Fläschchen mit der Lösung kann aus dem Ultraschallbad genommen
und verwendet werden.

Herstellung der PC-Folie:

• Zwei Objektträger mit Isopropanol säubern.

• PC-Lösung nehmen und einen dieser Objektträger damit vollständig benet-
zen.

• Zweiten Objektträger nehmen und auf die benetzte Seite des ersten Ob-
jektträgers legen.

• Unmittelbar danach den zweiten Objektträger vom ersten Objektträger her-
unterschieben.

• Den ersten Objektträger nun für ca. 20 Sekunden auf eine 80◦ C warme
Heizplatte legen.

• Objektträger wieder von der Heizplatte nehmen und abkühlen lassen. Es
findet sich nun eine dünne PC-Folie auf dem Objektträger.

• Diese PC-Folie kann man im Anschluss mit Hilfe von Tesafilm über einen
Objektträger mit PDMS-Stempel spannen und für die Transfermethode ver-
wenden.
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A.4.2. Durchführung des Transfers von exfolierten Flocken
Verwendetes Verbrauchsmaterial:

• Objektträger mit PDMS-Stempel und PC-Film.

• Si/SiO2-Substrat (Transferchip) mit exfolierten Flocken aus A.3

Verwendete Geräte:

• Transfervorrichtung mit Mikroskop

Prozessablauf:

• Si/SiO2-Substrat (Transferchip) mit der jeweiligen Flocke auf einem Heiz-
tisch der Transfervorrichtung positionieren und zwar so, dass die Flocke im
Zentrum des Bildes des optischen Mikroskops liegt.

• Heiztisch, der im Kondensorhalter befestigt ist, nach unten fahren.

• Oberhalb des Heiztisches den Objektträger mit PDMS-Stempel und PC-
Film in den Mikroskoptisch einbauen und geeignet positionieren, sodass
man mit dem Mikroskop durch den transparenten Stempel sehen kann.

• Heiztisch auf eine Temperatur von 120◦ C aufheizen.

• Sobald die Temperatur erreicht wurde, den Heiztisch langsam an den Ob-
jektträger annähern, bis man die Flocke im Bild des Mikroskops sehen kann,
ohne aber Kontakt herzustellen.

• Wenn eine geeignete und saubere Stelle gefunden wurde, dann zwischen
PC-Folie und Si/SiO2-Substrat (Transferchip) Kontakt herstellen.

• Nach ca 30 Sekunden den Stempel wieder vom Si/SiO2-Substrat (Transfer-
chip) trennen, wodurch die Flocke nun auf der PC-Folie liegen müsste.

• Man kann anschließend beliebig viele weitere Flocken aufheben oder den
Stapel auf einem Si/SiO2-Substrat (Transferchip) ablegen.

A.4.3. Durchführung des Transfers von gewachsenen Flocken
Verwendetes Verbrauchsmaterial:

• Objektträger mit PDMS-Stempel und PC-Film

• SiO2-Substrat (Transferchip) mit hBN-Flocke aus A.3.2

• SiO2-Substrat mit gewachsenen TMDC-Flocken von A. Turchanin und A.
George (Friedrich-Schiller-Universität Jena, Jena, Deutschland)
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Verwendete Geräte:

• Transfervorrichtung mit Mikroskop.

Prozessablauf:

• Mit vorherigem Prozess A.4.2 für exfolierte Flocken eine exfolierte hBN-
Flocke aufheben.

• Vorherigen Prozess prinzipiell wiederholen, aber in diesem Fall die hBN-
Flocke nutzen, um die gewachsene TMDC-Flocke aufzuheben. Zu beachten
ist, dass in der Regel nur der Bereich, der von der hBN-Flocke vollständig
bedeckt wurde, aufgehoben wird (Van-der-Waals-Pickup).

• Man kann anschließend beliebig viele weitere Flocken aufheben oder den
Stapel auf einem Si/SiO2-Substrat (Markerchip) ablegen.

A.4.4. Ablegen von Heterostrukturen auf Si/SiO2-Substrat
(Markerchip)

Verwendetes Verbrauchsmaterial:

• Objektträger mit PDMS-Stempel, PC-Film und Heterostruktur

• Chloroform

• Isopropanol

• Si/SiO2-Substrat (Markerchip)

• Stickstoff

Verwendete Geräte:

• 2x Becherglas

• Transfervorrichtung mit Mikroskop

• Druckluftpistole für Stickstoff

Prozessablauf:

• Markerchip auf den Heiztisch positionieren und zwar so, dass der gewünsch-
te Ablageort der Heterostruktur in der Bildmitte ist.

• Objektträger mit Stempel und Heterostruktur in Tranfervorrichtung ein-
bauen und so positionieren, dass der gewünschte Ablageort der Heterostruk-
tur in der Bildmitte ist.
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• Heiztisch mit dem Chip auf 180◦ C aufheizen.

• Den Chip langsam an die Heterostruktur annähern, bis man sowohl Oberflä-
che des Markerchips als auch Heterostruktur im Mikroskop erkennen kann.

• Passen die Positionen, dann den Chip weiter annähern und den Chip mit
Stempel und damit mit der Heterostruktur in Kontakt bringen.

• Ungefähr zwei Minuten warten.

• Nach der Wartezeit, den Chip wieder vom Stempel entfernen, wodurch der
geschmolzene PC-Film an den Rändern abreißt und der Teil mit der Hete-
rostruktur auf dem Chip bleibt.

• Chip mit der Heterostruktur abkühlen lassen.

• Nach dem Abkühlen, Chip in ein Bad mit Chloroform geben, um den PC-
Film zu lösen.

• Nach ca. fünf Minuten Wartezeit, Chip aus dem Chloroform nehmen und in
ein Bad mit Isopropanol geben, um mögliche Rückstände des Chloroforms
zu vermeiden.

• Chip aus Propanolbad entnehmen und mit Stickstoff trocken blasen.

A.5. Behandlung von Heterostrukturen mit AFM
im Kontaktmodus

Verwendetes Verbrauchsmaterial:

• Cantilever vom Typ PPP-NCHR 10 Mesh (Federkonstante k = 42 Nm−1)
von der Firma Park Systems Corp.

• Markerchip mit Heterostruktur

Verwendete Geräte:

• AFM XE7 von der Firma Park Systems Corp.

Prozessablauf:

• AFM-Software starten.

• Probe in das AFM einbauen.

• Gegebenenfalls Cantilever einbauen und Laser einstellen.
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• Resonanzfrequenz finden (Tune).

• Zur gewünschten Stelle navigieren.

• Spitze annähern (Engage).

• Großflächiges Bild von der jeweiligen Stelle im non contact mode (NCM)
aufnehmen.

• Spitze wieder von der Probe entfernen (Disengage).

• Auf contact mode umstellen.

• Kraftparameter abhängig von Probe einstellen (hier ca. 750 nN). Alle ande-
ren Parameter wie im non contact mode (NCM) oder in Standardeinstellung
beibehalten.

• Spitze wieder annähern (Engage).

• Bild der gewünschten Stelle im contact mode aufnehmen. Eventuell mehr-
mals abfahren.

• Spitze wieder von Probe entfernen (Disengage).

• AFM in non contact mode umstellen.

• Spitze wieder annähern (Engage).

• Zum Vergleich nochmal großflächiges Bild von der jeweiligen Stelle im non
contact mode (NCM) aufnehmen.

• Behandelte Probe ausbauen.

Eine detaillierte Beschreibung zur Bedienung des AFMs kann man der Bedie-
nungsanleitung des Herstellers entnehmen. Weitere Details zur Anwendung die-
ses Prozesses auf 2D-Materialien und ihre Heterostrukturen findet man in der
Bachelorarbeit von J. Steidl [139] und in den Arbeiten von [137, 138]

A.6. Elektronenstrahllithographie: Erster
Durchgang

A.6.1. Probe mit PMMA beschichten
Verwendetes Verbrauchsmaterial:

• Probe aus A.5
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• Lackgemisch aus 5% PMMA (Polymethylmethacrylat) 950 k gelöst in 95%
Anisol

• Pipette

Verwendete Geräte:

• Rotationsbeschichter von der Firma SÜSS MicroTec SE

• Heizplatte

Prozessablauf:

• Probe in Rotationsbeschichter positionieren.

• Rezept (PMMA-Standard) einstellen:

Schritt Zeit Drehzahl Beschleunigung
1 5 s 3000 min−1 2000 min−1s−1

2 30 s 6000 min−1 4000 min−1s−1

Tabelle A.3.: Rezept für Rotationsbeschichter.

• Prozess starten und dabei Probe mit PMMA-Lackgemisch beschichten.

• Nach Ablauf der Zeit, Probe herausnehmen, auf Heizplatte legen und bei
150◦ C für acht Minuten den Lack aushärten lassen.

• Probe von Heizplatte nehmen und abkühlen lassen.

A.6.2. Belichtung mit Rasterelektronenmikroskop (REM)
Verwendetes Verbrauchsmaterial:

• Beschichtete Probe aus A.6.1

Verwendete Geräte:

• LEO REM von der Firma Carl Zeiss AG

Prozessablauf:

• Probe in REM einbauen und übliche Startprozedur durchführen.

• Belichtung mit REM bei folgenden Prozessparametern durchführen:
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Bereich Beschleunigungsspannung Apertur Flächendosis
Feine Strukturen 30 kV 20µm 260µC/cm2

Grobe Strukturen 30 kV 120µm (350 − 400)µC/cm2

Tabelle A.4.: Prozessparameter für Elektronenstrahllithographie.

• Probe aus REM ausbauen.

A.6.3. Entwicklung der Probe
Verwendetes Material:

• Belichtete Probe aus A.6.2

• Methylisobutylketon (MIBK)

• Isopropanol

• Stickstoff

Verwendete Geräte:

• 2x Becherglas

• Druckluftpistole für Stickstoff

Prozessablauf:

• Ein Becherglas mit Gemisch, bestehend aus MIBK und Isopropanol (Mi-
schungsverhältnis 3:1), füllen.

• Ein Becherglas mit Isopropanol füllen.

• Probe für 60 Sekunden in MIBK/Isopropanol-Lösung entwickeln.

• Probe zum neutralisieren für 30 Sekunden in Becherglas mit Isopropanol
geben.

• Abschließend Probe mit Stickstoff aus Druckluftpistole abblasen.

A.7. Reaktives Ionenätzen (RIE): Erster Durchgang
Verwendetes Verbrauchsmaterial:

• Entwickelte Probe aus A.6.3

• Sauerstoff
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• Trifluormethan (CHF3)

Verwendete Geräte:

• Plasmalab80 von der Firma Oxford Instruments PLC

Prozessablauf:

• Geräte gemäß Betriebsanleitung starten.

• Parameter für Schritt 1 aus Tabelle A.5 einstellen.

• Prozess starten (Kammer reinigen).

• Parameter für Schritt 2 aus Tabelle A.5 einstellen.

• Prozess starten (Kammer konditionieren).

• Kammer belüften, Probe einbauen, Kammer abpumpen.

• Parameter für Schritt 3 aus Tabelle A.5 einstellen (Ätzzeit abhängig von
Material und Materialdicke wählen).

• Prozess starten (Probe ätzen).

• Kammer belüften und Probe ausbauen.

Schritt Gasgemisch Gasfluß Kammerdruck Leistung Ätzzeit
1 O2 100 sccm 100 mTorr 200 W 300 s
2 CHF3 : O2 (40 : 6) sccm 55 mTorr 35 W 60 s
3 CHF3 : O2 (40 : 6) sccm 55 mTorr 35 W individuell

Tabelle A.5.: Prozessparameter für reaktives Ionenätzen.

A.8. Elektronenstrahllithographie: Zweiter
Durchgang

A.8.1. Probe mit PMMA beschichten
Verwendetes Verbrauchsmaterial:

• Probe aus A.7

• (1) Lackgemisch aus 9% PMMA (Polymethylmethacrylat) 200 k gelöst in
95% Anisol
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• (2) Lackgemisch aus 5% PMMA (Polymethylmethacrylat) 950 k gelöst in
95% Anisol

• Pipette

Verwendete Geräte:

• Rotationsbeschichter von der Firma SÜSS MicroTec SE

• Heizplatte

Prozessablauf:

• Prozess A.6.1 mit Lackgemisch (1) durchführen.

• Prozess A.6.1 mit Lackgemisch (2) durchführen.

A.8.2. Belichtung mit Rasterelektronenmikroskop (REM)
Verwendetes Verbrauchsmaterial:

• Beschichtete Probe aus A.8.1

Verwendete Geräte:

• LEO REM von der Firma Firma Carl Zeiss AG

Prozessablauf:

• Probe in REM einbauen und übliche Startprozedur durchführen.

• Belichtung mit REM bei folgenden Prozessparametern durchführen:

Bereich Beschleunigungsspannung Apertur Flächendosis
Feine Strukturen 30 kV 20µm 260µC/cm2

Grobe Strukturen 30 kV 120µm (350 − 400)µC/cm2

Tabelle A.6.: Prozessparameter für Elektronenstrahllithographie.

• Probe aus REM ausbauen.



A. Prozessdokumentation 178

A.8.3. Entwicklung der Probe
Verwendetes Verbrauchsmaterial:

• Belichtete Probe aus A.8.2

• Methylisobutylketon (MIBK)

• Isopropanol

• Stickstoff

Verwendete Geräte:

• 2x Becherglas

• Druckluftpistole für Stickstoff

Prozessablauf:

• Wie in A.6.3.

A.9. Reaktives Ionenätzen (RIE): Zweiter
Durchgang

Verwendetes Material:

• Entwickelte Probe aus A.8.3

• Sauerstoff

Verwendete Geräte:

• Plasmalab80 von der Firma Oxford Instruments PLC

Prozessablauf:

• Geräte gemäß Betriebsanleitung starten.

• Parameter für Schritt 1 aus Tabelle A.7 einstellen.

• Prozess starten (Kammer reinigen).

• Parameter für Schritt 2 aus Tabelle A.7 einstellen.

• Prozess starten (Kammer konditionieren).

• Kammer belüften, Probe einbauen, Kammer abpumpen.



179 A.10. Physikalische Gasphasenabscheidung (PVD)

Schritt Gasgemisch Gasfluß Kammerdruck Leistung Ätzzeit
1 O2 100 sccm 100 mTorr 200 W 300 s
2 O2 20 sccm 30 mTorr 20 W 20 s
3 O2 20 sccm 30 mTorr 20 W 20 s

Tabelle A.7.: Prozessparameter für reaktives Ionenätzen.

• Parameter für Schritt 3 aus Tabelle A.7 einstellen (Ätzzeit abhängig von
materialabhängiger Ätzrate und Materialdicke wählen).

• Prozess starten (Probe ätzen).

• Kammer belüften und Probe ausbauen.

Prozessparameter:

A.10. Physikalische Gasphasenabscheidung (PVD)

A.10.1. Thermisches Bedampfen
Verwendetes Verbrauchsmaterial:

• Probe aus Prozess A.9

• Gold (Au)

• Chrom (Cr)

Verwendete Geräte:

• UNIVEX 450 (Univex A) von der Firma Leybold GmbH

Prozessablauf:
Prozess wird gemäß Betriebsanleitung durchgeführt. Dazu sind folgende Parame-
ter relevant:

Schritt Material Schichtdicke Rate
1 Chrom 5 nm 0, 2 − 0, 5 Å/s
2 Gold 100 nm 1 − 2 Å/s

Tabelle A.8.: Prozessparameter für thermisches Bedampfen.
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A.10.2. Elektronenstrahlbedampfen
Verwendetes Verbrauchsmaterial:

• Probe aus Prozess A.9

• Gold (Au)

• Chrom (Cr)

Verwendete Geräte:

• UNIVEX 450 B (Univex B) von der Firma Leybold GmbH

Prozessablauf:
Prozess wird gemäß Betriebsanleitung durchgeführt. Dazu sind folgende Parame-
ter relevant:

Schritt Material Schichtdicke Rate
1 Chrom 5 nm 0, 05 − 0, 10 Å/s
2 Gold 100 nm 1, 5 − 2, 0 Å/s

Tabelle A.9.: Prozessparameter für Elektronenstrahlbedampfen.

A.11. Lift-Off
Verwendetes Verbrauchsmaterial:

• Probe aus A.10

• Aceton

• Isopropanol

• Stickstoff

Verwendete Geräte:

• Medizinische Spritze

• Petrischale

• Becherglas

• Verschließbares Becherglas

• Heizplatte
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• Druchluftpistole

Prozessablauf:

• Verschließbares Becherglas mit Aceton füllen.

• Probe in das Becherglas geben.

• Becherglas verschließen und auf eine Heizplatte mit einer Temperatur von
60◦ C stellen und mindestens eine Stunde warten.

• Petrischale mit Aceton füllen.

• Becherglas von Heizplatte nehmen, Probe aus dem Becherglas nehmen und
zügig in Petrischale legen.

• Spritze mit Aceton füllen und überschüssiges Gold vom Chip abspritzen,
sodass nur die Leiterbahnen und Bondpads auf dem Chip übrig bleiben.

• Chip in Becherglas mit Isopropanol geben und ca 30 Sekunden warten.

• Chip aus Becherglas nehmen und mit Stickstoff abblasen und trocken.

A.12. Probe in Chipträger einkleben
Verwendetes Verbrauchsmaterial:

• Probe aus A.11

• Chipträger von der Firma Kyocera Corp.

• Zweikomponentiger, leitfähiger Kleber vom Typ H20E von der Firma Epoxy
Technology Europe GmbH

• Zahnstocher

Verwendete Geräte:

• Heizplatte

• Metallnadel

Prozessablauf:

• SiO2-Ränder des Markerchips mit Metallnadel einritzen und abbrechen, so-
dass das positiv dotierte Silizium an den Seiten des Markerchips freiliegt.
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• Komponenten des Klebers mit Zahnstocher aus Gefäß nehmen und im Ver-
hältnis 1:1 mischen.

• Einen Kontakt des Chipträgers mit der leitfähigen Innenfläche des Chip-
trägers kontaktieren.

• Chip in den Chipträger einkleben, sodass Ränder des Chips mit Kleber
umgeben sind.

• Ganze Probe auf die Heizplatte legen und bei 100◦ C für eine Stunde den
Kleber aushärten lassen

• Probe von Heizplatte nehmen und abkühlen lassen.

• Probe kann nun gebondet werden

A.13. Ultraschall-Drahtbonden
Verwendetes Verbrauchsmaterial:

• Probe aus Prozess A.11

• Aluminiumdraht mit Durchmesser von 25µm
Verwendete Geräte:

• Wire Bonder Model 4500B von der Firma Westbond Inc.
Prozessablauf:
Bondprozess wird gemäß Betriebsanleitung durchgeführt. Dabei werden die unten
aufgeführten Parameter eingestellt und verwendet. Hier steht Bond 1 für das
Bonden auf dem Chipträger und Bond 2 für das Bonden auf dem Bondpad.

Bond Ultraschallleistung Kraft Zeit
1 180 arb. u. 13 cN 100 ms
2 120 arb. u. 13 cN 100 ms

Tabelle A.10.: Parameter für das Ultraschalldrahtbonden.

A.14. Erzeugung von hexagonalen Löchern zur
Bestimmung der Kristallorientierung in
Graphen

A.14.1. Erzeugung von Löchern in Graphen mit einem AFM
Verwendetes Verbrauchsmaterial:
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A.14. Erzeugung von hexagonalen Löchern zur Bestimmung der

Kristallorientierung in Graphen

• Si/SiO2-Substrat mit Graphen-Flocke

• AFM-Spitze: Tap300DLC , f = 300 kHz, k = 40 N/m von der Firma Bud-
getSensors Innovative Solutions Bulgaria Ltd.

Verwendete Geräte:

• Bruker-Veeco icon-AFM von der Firma Bruker Nano GmbH

Prozessablauf:

• Im Betriebshandbuch des AFMs und in der Arbeit von F. Schupp [147]
finden sich die wesentlichen Informationen und Prozessparameter zur Er-
zeugung von Löchern in Graphen mit Hilfe des Nanomanipulationsmodus.

A.14.2. Kristallographisches anisotropes Ätzen im CVD-Ofen
Dieses Rezept orientiert sich an den Arbeiten aus der von F. Oberhuber [135]
und P. Nemes-Incze [136].
Verwendetes Verbrauchsmaterial:

• Isopropanol

• Argon (Ar 6.0)

• Sauerstoff

Verwendete Geräte:

• CVD-Ofen mit Quarzrohr

• Objektträger aus Quarzglas

Prozessablauf:
Vorkonditionierung:

• Edelstahlgitter zuschneiden (Maße ca. 10 × 5 cm2), einrollen und so in das
Quarzrohr des CVD-Ofens schieben, dass das Gas später das Gitter durch-
dringen muss, um durch die Röhre zu gelangen. Das Gitter sollte ca. 5 cm
hinter dem Temperatursensor in der Röhre liegen.

• Proben auf Objektträger aus Quarzglas legen und in die Röhre an die Stelle
des Temperatursensors schieben. (Wichtig: Keine Standard-Objektträger
nehmen, da diese die hohen Temperaturen nicht aushalten!)

• Enden des Quarzrohrs jeweils mit Dichtungsringen und Rohrschellen an
Gasschläuche anschließen. Man sollte die Dichtungsringe gelegentlich vor
dem Prozess noch mit Isopropanol reinigen.



A. Prozessdokumentation 184

• Um die Raumluft aus dem Quarzrohr zu entfernen, kann man das Rohr
entweder mehrmals abpumpen und mit Argon (Ar 6.0) spülen (vgl. [135])
oder, wenn man keine Pumpe hat, dann kann man den Spülvorgang mit
Argon auch über längere Zeit durchführen. Dazu wird der Druckflussregler
von Argon auf 14 (1, 5l/min) gestellt und die Röhre ca. fünf Minuten lang
gespült.

• Sobald die Raumluft aus der Röhre entfernt wurde, stellt man den CVD-
Ofen auf eine Temperatur von 850◦ C und schließt diesen anschließend.
Nun müsste die Temperatur am CVD-Ofen steigen. Der Argonfluss von
14 (1, 5l/min) wird beibehalten.

• Sobald das Thermometer 850◦ C anzeigt, sollte man zwei Stunden warten
bis man den Prozess beenden kann. Der Argonfluss von 14 (1, 5l/min) wird
beibehalten.

• Nachdem zwei Stunden vergangen sind, kann man den CVD-Ofen öffnen
und das System auf 80◦ C bis 100◦ C abkühlen lassen. Der Argonfluss von
14 (1, 5l/min) wird beibehalten.

• Ist das System abgekühlt, so kann der Argonfluss gestoppt werden, um
Gas zu sparen. Anschließend kann man die Probe und das Edelstahlgitter
ausbauen.

Ätzen in Argon/Sauerstoff-Atmosphäre:

• Probe in Quarzrohr möglichst nahe am Temperatursensor positionieren.

• Enden des Quarzrohrs jeweils mit Dichtungsringen und Rohrschellen an
Gasschläuche anschließen. Man sollte die Dichtungsringe gelegentlich vor
dem Prozess noch mit Isopropanol reinigen.

• Um die Raumluft aus dem Quarzrohr zu entfernen, kann man das Rohr
entweder mehrmals abpumpen und mit Argon (Ar 6.0) spülen (vgl. [135])
oder, wenn man keine Pumpe hat, dann kann man den Spülvorgang mit
Argon auch über längere Zeit durchführen. Dazu wird der Druckflussregler
von Argon auf 14 (1, 5l/min) gestellt und die Röhre ca. fünf Minuten lang
gespült.

• Sobald die Raumluft aus der Röhre entfernt wurde, stellt man den CVD-
Ofen auf eine Temperatur von 750◦ C und schließt diesen anschließend.
Nun müsste die Temperatur am CVD-Ofen steigen. Der Argonfluss von
14 (1, 5l/min) wird beibehalten.
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• Während dem Hochheizen kann man bereits die Sauerstoffflasche und Ven-
tile für das Argon/Sauerstoff-Gemisch öffnen, lediglich der Mass Flow Con-
troller (MFC) bleibt noch geschlossen. Software für MFC am PC starten,
Regler allerdings bei 0 % lassen.

• Bei Erreichen der Temperatur umgehend die Flussrate für das Argon auf
7 (0, 5l/min) stellen. Die Flussrate für das Argon/Sauerstoff-Gemisch auf
100 % stellen. Anschließend die gewünschte Ätzdauer abwarten. Ätzdauer
ist abhängig vom gewünschten Resultat (hier 3 h).

• Sobald die Ätzdauer erreicht wurde, die Flussrate für das Argon/Sauerstoff-
Gemisch auf 0 % stellen, Argonfluss auf 14 (1, 5l/min) stellen, Sauerstoff-
flasche und -Ventile schließen, CVD-Ofen öffnen und auf 80◦ C bis 100◦ C
abkühlen lassen.

• Ist das System abgekühlt, so sollte man den Argonfluss stoppen, um Gas
zu sparen. Anschließend kann man die Probe ausbauen.

Abschließend kann man die erzeugten Löcher mit dem AFM betrachten. Falls
der Prozess nicht funktioniert hat, so kann man diesen in der Regel problemlos
erneut durchführen.

A.15. Lösen eines Probensubstrats aus einem
Chipträger

Verwendetes Verbrauchsmaterial:

• In Chipträger eingeklebte Probe

• Chloroform

• Isopropanol

• Stickstoff

• Antistatisches Armband

Verwendete Geräte:

• Verschließbares Becherglas

• Becherglas

• Heizplatte

• Druckluftpistole für Stickstoff
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Prozessablauf:

• Antistatisches Armband anlegen und im geerdeten Zustand Bonds lösen.

• Verschließbares Becherglas mit Chloroform füllen.

• Probe in Becherglas geben.

• Verschlossenes Becherglas mit Probe auf Heizplatte stellen und bei 60◦ C
für ca. 12 − 24 Stunden stehen lassen.

• Probe aus Becherglas nehmen.

• Si/SiO2-Chip mit Pinzette aus Chipträger nehmen.

• Kleberreste von Chip entfernen.

• Probe für ein bis zwei Minuten in Becherglas mit Isopropanol geben.

• Probe entnehmen und mit Stickstoff aus Druckluftpistole trocken blasen.



B. Experimenteller Aufbau
Der experimentelle Aufbau zur Messung der Proben dieser Arbeit bestand immer
aus einem Messsystem, einem Probenstab und einem Kryostaten.

B.1. Messsystem
Das Messsystem setzt sich aus einer Ansammlung verschiedener elektronischer
Geräte zusammen, die zur Messung der gesuchten Effekte notwendig waren. Ein
Schema dieses Systems ist in Abb. B.1 dargestellt. Zu diesem Messsystem gehörte

AC-SpannungsquelleOptokoppler

DC-Spannungsquelle
für Gate

Lock-In Verstärker 2

Lock-In Verstärker 3

Lock-In Verstärker 1

Probenstab
mit Probe

PC

RV

IN

OUT

IN

OUT

IN

OUT

IN

OUT

Abbildung B.1.: Schema des Messsystems.

eine AC-Spannungsquelle. Damit wurde eine Wechselspannung Ubias vorgegeben,
deren Amplitude von der jeweiligen Anwendung abhängig war. Für die Messun-
gen von Interferenzeffekten wie schwacher Lokalisierung und schwacher Antilo-
kalisierung wurde eine Spannung von Ubias = 0, 3 V eingestellt. Für die Messun-
gen zu den Shubnikov-de-Haas-Oszillationen wurde Ubias = 1, 0 V eingestellt. Die
Gründe für die unterschiedlich hohe Spannung und damit verbundenen Strömen
hängen mit der Wärmedissipation der Probe und mit der Robustheit des Mess-
signals zusammen. Die Wechselspannung, deren Frequenz stets fLockIn = 13Hz
betrug, wurde an der zu messenden Hallbar angelegt, wodurch ein gewisser Strom
I durch die Hallbar fließen konnte (vgl. B.1 grüne Linie). Zwischen Probe und
Spannungsquelle wurde außerdem ein Vorwiderstand Rv = 10 MΩ dazwischen
geschaltet. Dieser Vorwiderstand diente im Wesentlichen zur Stabilisierung des
Stromflusses. Zur Spannungsmessung an der Probe wurden Lock-In Verstärker

187
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benutzt (vgl. B.1 hellblaue Linien). Diese wurden über einen Optokoppler mit der
AC-Spannungsquelle verbunden (vgl. B.1 schwarze Linien), wodurch diese gleich-
zeitig auch als Bandpassfilter fungierten. Dadurch sollten Signale mit einer ande-
ren Frequenz als fLockIn = 13 Hz aus der Messung eliminiert werden. Als nächstes
Element wurde eine DC-Spannungsquelle verwendet, um gewisse Spannungen Ug

an die Gateelektrode der Probe anlegen zu können (vgl. B.1 dunkelblaue Linie).
Alle wesentlichen Parameter konnten über ein GPIB-Bussystem (vgl. B.1 rote
Linien) vom PC ausgelesen und anschließend entsprechend ausgewertet werden.

B.2. Druckzelle
Für die druckabhängigen Messungen dieser Arbeit wurde eine Druckzelle, wie in
[146] beschrieben, verwendet. Die Druckzelle hatte die Abmessungen H = 62 mm,
D = 25 mm und d = 6, 5 mm. In Abb. B.2 ist der Aufbau der Druckzelle und
der zugehörigen Komponenten dargestellt. An dieser Stelle werden die num-

Abbildung B.2.: a) Schematische Seitenansicht der Druckzelle mit den einzelnen
Komponenten. b) Vergrößerte Ansicht des Probenhalters innerhalb der Druckzel-
le. c) Foto eines Probenchips auf einem speziellen Chipträger. d) Modellansicht
des Chipträgers. Auf die nummerierten Komponenten wird im Fließtext genauer
eingegangen.[146]

merierten Bestandteile nun kurz beschrieben. 1 Doppelschichtige Zellwand aus
NiCrAl/CuBe. 2 CuBe-Aufsatz. 3 WC-Sicherung. 4 CuBe-Schraube unten. 5
Elektrische Durchführung innerhalb des grauen Kanals. 6 Hochdruckkammer ge-
füllt mit Druckmedium. 7 Teflonbecher. 8 WC-Kolben. 9 WC-Kolbensicherung.
10 WC-Stößelstange. 11 Obere CuBE-Schraube. 12 Epoxidbettung. 13 PCB-
Kernschicht. 14 Obere Cu-Lage der Leiterplatte mit Ni/Au. 15 PCB-Lötstopp-
schicht. 16 Bonddrähte, die das PCB-Bondpad der Chipträgers mit den Kontakt-
pads des Chips verbinden. 17 Probenchip. 18 Nichtleitende Löcher (non-plated
through-holes (NPTHs)) und gelötete elektrische Durchgangsleitungen. 19 Nutz-
barer Leiterplattendurchmesser von 5, 1 mm. 20 Zentraler Bereich (ca. 3, 5 mm ×
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3, 5 mm), in dem der Chip platziert wird. 21 Leiterbahnen auf der Leiterplatte,
die die gelöteten Durchgangsleitungen mit den Bondpads verbinden. 22 Bond-
pads auf Chipträger. 23 Mit Gold beschichteter Bereich zum Kontaktieren von
Backgates. Für diese Arbeit wurde die Hochdruckkammer (6) mit Kerosin be-
füllt, welches beim der Betrieb der Druckzelle mit einem Druck p auf die Probe
gedrückt wurde. Die Druckzelle war außerdem so positioniert, dass das äußere
magnetische Feld senkrecht zum Probenchip gerichtet war. Weitere Informatio-
nen zur Druckzelle können der Literatur [146] entnommen werden.





C. Weitere experimentelle
Ergebnisse

C.1. Weitere Messungen zur Schwebung

0

200

400

600

800

1000

1200

1400

R
4
-6

(U
) 

+
 O

ff
s
e
t

(a)
 Ug=10V, n=2,49x1016m-2

 Ug=15V, n=2,90x10 16m-2

 Ug=20V, n=3,29x10 16m-2

 Ug=25V, n=3,91x10 16m-2

 Ug=30V, n=4,58x10 16m-2

 Ug=35V, n=5,06x10 16m-2

0 1 2 3
Bz(T)

R
6
-7

(U
) 

+
 O

ff
s
e
t

(b)

0

200

400

600

800

1000

1200
 Ug=10V, n 2,40x1016m-2

 Ug=15V, n=2,77x10 16m-2

 Ug=20V, n=3,16x10 16m-2

 Ug=25V, n=3,75x10 16m-2

 Ug=30V, n=4,30x10 16m-2

 Ug=35V, n=4,92x10 16m-2

=

0 1 2 3
Bz(T)

R
7
-1
0
(U

) 
+

 O
ff

s
e
t

(c)

0

200

400

600

800

1000

1200  Ug=10V, n 2,50x1016m-2

 Ug=15V, n=2,93x10 16m-2

 Ug=20V, n=3,40x10 16m-2

 Ug=25V, n=4,00x10 16m-2

 Ug=30V, n=4,61x10 16m-2

 Ug=35V, n=5,31x10 16m-2

=

0 1 2 3
Bz(T)

R
1
0
-1
1
(U

) 
+

 O
ff

s
e

t

(d)

0

200

400

600

800

1000

1200  Ug=10V, n 2,54x1016m-2

 Ug=15V, n=2,99x10 16m-2

 Ug=20V, n=3,50x10 16m-2

 Ug=25V, n=4,11x10 16m-2

 Ug=30V, n=4,79x10 16m-2

 Ug=35V, n=5,27x10 16m-2

=

0 1 2 3
Bz(T)

Abbildung C.1.: Die einzelnen Kurven in den Graphen a)-d) zeigen die Shubnikov-
de-Haas-Oszillationen bei verschiedenen positiven Gatespannungen Ug und La-
dungsträgerdichten n für die Bereiche zwischen den Kontakten 4-6, 6-7, 7-10 und
10-11. Die gesuchte Schwebung tritt hier außerdem nicht auf.
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Abbildung C.2.: Die Kurven in den Graphen a)-d) zeigen die einzelnen Frequenz-
spektren mit den dominanten Peaks (markiert durch rote Pfeile) bei unterschiedli-
chen positiven Gatespannungen Ug bzw. Ladungsträgerdichten n für die Bereiche
zwischen den Kontakten 4-6, 6-7, 7-10 und 10-11.
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Abbildung C.3.: Frequenzspektrum mit übereinandergelegten Kurven aus Abb.
C.2 mit den dominanten Peaks (markiert durch rote Pfeile) bei unterschiedlichen
positiven Gatespannungen Ug bzw. Ladungsträgerdichten n.
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Abbildung C.4.: Die einzelnen Kurven in den Graphen a)-c) zeigen die Shubnikov-
de-Haas-Oszillationen bei verschiedenen positiven Gatespannungen Ug und La-
dungsträgerdichten n für die Bereiche zwischen den Kontakten 4-7, 6-10 und
7-11. Die gesuchte Schwebung tritt hier auf und ist mit dem Auge vor allem in
den Graphen a) und b) erkennbar.
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Abbildung C.5.: Die Kurven in den Graphen a)-c) zeigen die einzelnen Frequenz-
spektren mit den aufgespaltenen dominanten Peaks bei unterschiedlichen positi-
ven Gatespannungen Ug bzw. Ladungsträgerdichten n für die Bereiche zwischen
den Kontakten 4-7, 6-10 und 7-11. Die roten Pfeile markieren dabei die Peaks,
die aus der Energieaufspaltung resultieren.
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Abbildung C.6.: Frequenzspektren der verschiedenen Probenbereiche für zwei ver-
schiedene Gatespannungen Ug (schwarze und grüne Linien). Die durchgezogenen
Linien stellen dabei immer die großen Probenbereiche und die gestrichelten Linien
stellen die kleinen Probenbereiche dar.
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C.2. Druckabhängigkeit der SOC bei weiterer Probe
Es wurde noch eine weitere Probe (Probe 2 aus Abschnitt 6.3.1) auf Druckabhän-
gigkeit der SOC untersucht. Dazu wurde ebenfalls eine Spannung Ubias = 100µV
bei einer Frequenz f = 1107, 29 Hz angelegt. Auch hier war kein Vorwiderstand
notwendig. Dadurch ergab sich ein Strom I ≈ 10 − 50 nA. Im Abb. C.7 a) und
b) ist der Verlauf der SOC-Parameter in Abhängigkeit der Ladungsträgerdichte
n dargestellt. Dabei wird zwischen den Fällen, ohne Druck und ohne Kerosin,
ohne Druck aber mit Kerosin und mit Druck (p = 1, 65 GPa) und mit Kerosin
unterschieden. Es zeigt sich auch hier eine klare Druckabhängigkeit.
Zudem fällt auf, dass die Rashba-SOC λR für den Fall ohne Druck aber mit Kero-
sin größer ist als für den Fall ohne Druck und ohne Kerosin. Auf den ersten Blick
sieht es daher so aus, dass hier das Kerosin eine Erhöhung der SOC zur Folge hat.
Man muss allerdings die Reihenfolge der Messungen berücksichtigen. So wurde
zuerst ohne Druck und ohne Kerosin gemessen. Danach wurde mit Druck und
mit Kerosin gemessen und zum Schluss ohne Druck und mit Kerosin. Es ist da-
her möglich, dass die Heterostruktur, nachdem einmal starker Druck angewandt
wurde, nicht mehr in ihre ursprüngliche Ausgangslage zurückkehrte, sodass die
Flocken dann auch ohne äußeren Druck und mit Kerosin einen geringeren Zwi-
schenlagenabstand hatten als es ursprünglich ohne Kerosin der Fall war.
Die Valley-Zeeman-SOC λV Z zeigt hier keine klare Abhängigkeit vom mechani-
schen Druck.
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Abbildung C.7.: a) zeigt den Verlauf der Rashba-SOC und b) den Verlauf der
Valley-Zeeman-SOC in Abhängigkeit der Ladungsträgerdichte n. Dabei gibt es
drei verschiedene Konstellationen. Die schwarze Kurve zeigt die SOC für den
Fall ohne Druck und ohne Kerosin. Die grüne Kurve zeigt die SOC für den Fall
ohne Druck aber mit Kerosin. Die blaue Kurve zeigt den Fall mit Druck und mit
Kerosin.



Weitere Arbeiten
Im Verlauf dieser Arbeit sind weitere Arbeiten unter Mitwirkung des Authors
dieser Arbeit entstanden:

Bachlorarbeiten:

• Schneider K., „Optimierung von Prozessparametern für das Wire-Bonden“,
Universität Regensburg, 2020.

• Steidl J., „Anwendung von „Contact-Mode“-Rasterkraftmikroskopie zur qua-
litativen Verbesserung von Van-der-Waals Heterostrukturen“, Universität
Regensburg, 2020.

• Baumgartner M. K., „Exfoliation großer Monolagen von TMDC-Kristallen
auf Gold“, Universität Regensburg, 2022.

Masterarbeiten:

• Peterhans S., „Mikro-Hall-Magnetometrie mit Graphen-Hall-Sonden an 2D-
Magnetmaterialien“, Universität Regensburg, 2020.

• Wagner S., „Transportuntersuchungen an Twisted Bilayer-Graphen nahe
dem „Magic Angle“ “, Universität Regensburg, 2021.

• Franke S., „Magnetotransport-Messungen an gegeneinander verdrehten
Graphen-Monolagen“, Universität Regensburg, 2022.

Publikationen:

• S. Candussio, L. E. Golub, S. Bernreuter, T. Jötten, T. Rockinger, K.
Watanabe, T. Taniguchi, J. Eroms, D. Weiss, S. D. Ganichev, „Nonli-
near intensity dependence of edge photocurrents in graphene induced by
terahertz radiation “, Physical Review B, 104(15), S. 155404, 2021. DOI:
https://doi.org/10.1103/PhysRevB.104.155404

• J. Amann, T. Völkl, T. Rockinger, D. Kochan, K. Watanabe, T. Tani-
guchi, J. Fabian, D. Weiss, J. Eroms, „Counterintuitive gate dependence
of weak antilocalization in bilayer graphene heterostructures“, Physical
Review B, 105(11), S. 115425, 2022. DOI: https://doi.org/10.1103/
PhysRevB.105.115425

197

https://doi.org/10.1103/PhysRevB.104.155404
https://doi.org/10.1103/PhysRevB.105.115425
https://doi.org/10.1103/PhysRevB.105.115425


C. Weitere experimentelle Ergebnisse 198

• S. Candussio, S. Bernreuter, T. Rockinger, K. Watanabe, T. Taniguchi,
J. Eroms, I. A. Dmitriev, D. Weiss, S. D. Ganichev, „Terahertz radiation
induced circular Hall effect in graphene “, Physical Review B, 105(15), S.
155416, 2022. DOI: https://doi.org/10.1103/PhysRevB.105.155416

• T. Rockinger, B. Szentpéteri, M. Marocko, J. Amann, A. George, A.
Turchanin, K. Watanabe, T. Taniguchi, D. Weiss, P. Makk and J. Eroms,
„Tuning proximity-induced spin-orbit coupling in graphene/WSe2 heterostruc-
tures “ - Veröffentlichung steht noch aus

https://doi.org/10.1103/PhysRevB.105.155416


Danksagung
Am Ende dieser Arbeit möchte ich mich noch bei den Personen bedanken, die
mich bei der Verfassung dieser Arbeit maßgeblich unterstützt haben. Ich möchte
mich besonders bedanken bei:

• PD Dr. Jonathan Eroms für die vielen Diskussionen, Hilfestellungen und
insgesamt hervorragende Betreuung der Arbeit.

• Prof. Dr. Dieter Weiss für die Möglichkeit, diese Arbeit an seinem Lehrstuhl
durchzuführen, aber auch besonders für die vielen Tipps zur Verbesserung
meiner Präsentationen.

• Marina Marocko, Dr. Robin Huber und Dr. Hubert Maier für das Korrek-
turlesen der Arbeit.

• Konstantin Schneider, Juliane Steidl, Korbinian Baumgartner, Sofia Franke,
Simon Wagner, Stefan Peterhans und Dr. Elisabeth Richter, die mich als
Kollegen sowohl fachlich inspiriert als auch sonst motiviert haben.

• Elke Haushalter und Claudia Moser für ihre Hilfe bei organisatorischen
Angelegenheiten.

• Daniel Pahl, Uli Gürster, Michael Weigl, Cornelia Linz und Thomas Haller
für ihre Unterstützung bei technischen Angelegenheiten.

• Thomas Solleder und Christian Haimerl für das Bereitstellen der flüssigen
Gase.

• Allen anderen Mitgliedern der Fakultät für Physik der Uni Regensburg für
die angenehme Zusammenarbeit.

• Meinen Eltern und meinen beiden Schwestern für die jahrelange Unterstüt-
zung.

199


	Einleitung
	Wichtige 2D-Materialien und ihre Eigenschaften
	Graphen
	Kristallstruktur von Monolagen-Graphen
	Bandstruktur von Monolagen-Graphen
	Relativistische Betrachtung der Bandstruktur
	Kristallstruktur von Bilagen-Graphen
	Bandstruktur von Bilagen-Graphen

	Hexagonales Bornitrid
	Kristallstruktur von hBN
	Bandstruktur von hBN

	Übergangsmetall-Dichalkogenide
	Kristallstruktur von TMDCs
	Bandstruktur von TMDCs


	Theoretische Grundlagen zum Quantentransport in Graphen
	Elektrischer Transport ohne äußerem Magnetfeld
	Elektrischer Transport in Graphen
	Der elektrische Feldeffekt in Graphen
	Transportregime in Graphen
	Der Diffusionskoeffizient

	Elektrischer Transport mit äußerem Magnetfeld
	Klassischer Magnetotransport und Hall-Effekt
	Quanten-Hall-Effekt in gewöhnlichen Halbleitern
	Quanten-Hall-Effekt in Graphen

	Interferenzeffekte
	Interferenz von Ladungsträgern
	Phasenkohärenz
	Schwache Lokalisierung
	Schwache Lokalisierung und Antilokalisierung in ML-G
	Universale Leitwertfluktuationen und Autokorrelationsfunktion in Graphen


	Spin-Bahn-Kopplung
	Spin-Bahn-Kopplung in Monolagen-Graphen
	Spin-Bahn-Kopplung in Graphen auf TMDCs
	Monolagen-Graphen auf TMDCs
	Bilagen-Graphen auf TMDCs

	Nachweis von Spin-Bahn-Kopplung
	Schwebung in den Shubnikov-de-Haas-Oszillationen
	Schwache Antilokalisierung (SOC)

	Die Stärke der Spin-Bahn-Wechselwirkung
	Die Wahl des TMDCs
	Dicke des TMDCs
	Drehwinkel zwischen Graphen und TMDCs
	Zwischenlagenabstand von TMDCs auf ML-G


	Probenherstellung
	Vorbereitung der Probensubstrate
	Herstellung der Flocken
	Herstellung von Monolagen- und Bilagen-Graphen
	Herstellung dünner hBN-Flocken
	Herstellung dünner TMDC-Flocken

	Bildung von Heterostrukturen
	Aufbau und Vorbereitung
	Transfer
	Einstellung und Bestimmung der Kristallorientierung

	Behandlung von Heterostrukturen mit AFM im Kontaktmodus
	Herstellung von Hallbar-Strukturen
	Bildung der elektrischen Kontakte
	Fertigstellung der Probe

	Experimentelle Ergebnisse
	Schwebung in Shubnikov-de-Haas-Oszillationen
	Hallbar-Struktur und Messvorgang
	Messungen zum elektrischen Feldeffekt
	Messung der Shubnikov-de-Haas-Oszillationen
	Zusammenfassung

	Induzierte SOC in Abhängigkeit von der Schichtdicke des TMDCs
	Hallbar-Struktur und Messvorgang
	Messungen zum elektrischen Feldeffekt
	Messung und Evaluation von WAL-SOC und Bestimmung der SOC
	Zusammenfassung

	Einstellung von induzierter SOC durch Variation des Drehwinkels
	Proben mit exfoliertem ML-WSe2
	Proben mit gewachsenem ML-WSe2
	Interpretation und Schlussfolgerungen

	Induzierte SOC in Abhängigkeit von mechanischem Druck
	Hallbar-Struktur und Messvorgang
	Messungen zum elektrischen Feldeffekt
	Messung und Evaluation von WAL-SOC und Bestimmung der SOC
	Zusammenfassung


	Fazit
	Literatur
	Prozessdokumentation
	Herstellung von Si/SiO2-Substraten
	Reinigung von Si/SiO2-Substraten
	Exfoliation der verwendeten 2D-Materialien
	Exfoliation von Monolagen- und Bilagen-Graphen
	Exfoliation von vielschichtigem hBN
	Exfoliation von TMDCs (WSe2 und WS2)

	Hot-Pickup-Transfermethode
	Vorbereitung
	Durchführung des Transfers von exfolierten Flocken
	Durchführung des Transfers von gewachsenen Flocken
	Ablegen von Heterostrukturen auf Si/SiO2-Substrat (Markerchip)

	Behandlung von Heterostrukturen mit AFM im Kontaktmodus
	Elektronenstrahllithographie: Erster Durchgang
	Probe mit PMMA beschichten
	Belichtung mit Rasterelektronenmikroskop (REM)
	Entwicklung der Probe

	Reaktives Ionenätzen (RIE): Erster Durchgang
	Elektronenstrahllithographie: Zweiter Durchgang
	Probe mit PMMA beschichten
	Belichtung mit Rasterelektronenmikroskop (REM)
	Entwicklung der Probe

	Reaktives Ionenätzen (RIE): Zweiter Durchgang
	Physikalische Gasphasenabscheidung (PVD)
	Thermisches Bedampfen
	Elektronenstrahlbedampfen

	Lift-Off
	Probe in Chipträger einkleben
	Ultraschall-Drahtbonden
	Erzeugung von hexagonalen Löchern zur Bestimmung der Kristallorientierung in Graphen
	Erzeugung von Löchern in Graphen mit einem AFM
	Kristallographisches anisotropes Ätzen im CVD-Ofen

	Lösen eines Probensubstrats aus einem Chipträger

	Experimenteller Aufbau
	Messsystem
	Druckzelle

	Weitere experimentelle Ergebnisse
	Weitere Messungen zur Schwebung
	Druckabhängigkeit der SOC bei weiterer Probe


