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A derivation of the fluctuation-dissipation theorem for the microcanonical ensemble is presented using linear
response theory. The theorem is stated as a relation between the frequency spectra of the symmetric correlation
and response functions. When the system is not in the thermodynamic limit, this result can be viewed as an
extension of the fluctuation-dissipation relations to a situation where dynamical fluctuations determine the
response. Therefore, the relation presented here between equilibrium fluctuations and response can have a very
different physical nature from the usual one in the canonical ensemble. These considerations imply that the
fluctuation-dissipation theorem is not restricted to the context of the canonical ensemble, where it is usually
derived. Dispersion relations and sum rules are also obtained and discussed in the present case. Although
analogous to the Kramers-Kronig relations, they are not related to the frequency spectrum but to the energy
dependence of the response function.
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I. INTRODUCTION

The relation between the fluctuations occurring in a sys-
tem at equilibrium and dissipation effects dates back to Ein-
stein �1� and his theory on Brownian motion. After that, Ny-
quist �2� derived a relation between the electrical resistance
and voltage fluctuations in linear electrical systems. It was
realized then by Callen and Welton �3� that such a relation
could be proven for general linear dissipative systems using
quantum mechanics. At that moment, the intuition of the
authors, as described in the last paragraph of their Introduc-
tion, was that the relationship between equilibrium fluctua-
tions and irreversibility would provide a method for a gen-
eral approach to a theory of irreversibility and, indeed, this
was the way pursued by Kubo �4� to achieve the theory of
linear response. It is well established now that linear re-
sponse theory gives a general proof of the fluctuation-
dissipation theorem �FDT� which states that the linear re-
sponse of a given system to an external perturbation is
expressed in terms of the fluctuation properties of the system
in thermal equilibrium.

Because of this deep relation between the FDT and linear
response theory, it is worth noting that the response, as for-
mulated by that theory, is given for any equilibrium en-
semble. In other words, the response function can, in prin-
ciple, be known not only when the system is initially in
thermal equilibrium but also in another equilibrium state
such as, for example, the microcanonical one. Therefore, the
theory is quite general in the sense that the linear response of
a system and its equilibrium fluctuations could be related to
each other for any kind of equilibrium conditions. Indeed,
fluctuation-response relations have been derived even in the
context of stochastic systems �5,6� and non-Hamiltonian de-
terministic systems �7� using linear theory. Perhaps the very
first work concerning different equilibrium conditions from
the thermal one in Hamiltonian systems is Ref. �8�, where
the author shows that Kubo’s formula can also be derived in

the classical microcanonical ensemble as long as the thermo-
dynamic limit is considered. However, for many and differ-
ent reasons, much more attention was given for the statistical
mechanics in the canonical ensemble than in the microca-
nonical one and the generality of linear response theory con-
cerning different equilibrium conditions was not much ex-
plored. Of course, one could argue that the equivalence of
the ensembles in the thermodynamic limit would be a reason
for focusing just on the canonical ensemble, but recent de-
velopments have shown that there are indeed strong motiva-
tions to consider different equilibrium situations. For ex-
ample, a path integral representation for the quantum
microcanonical ensemble �9� presented a few years ago was
motivated by situations where the microcanonical approach
may be more appropriate, as for the description of systems at
low temperatures or with a finite number of particles. The
microcanonical ensemble has also been considered in rela-
tions between fluctuation and response in systems far from
equilibrium like the Crooks relation, where its microcanoni-
cal version helps to understand the connection between vari-
ous of those fluctuation theorems �10�. In Ref. �11�, a deri-
vation of a microcanonical quantum fluctuation theorem was
presented. Considering the work performed by a classical
force on a quantum system when it is initially prepared in the
microcanonical state, the authors provide a relation that
could be accessible experimentally to measure entropies. In
the context of nanosystems, where the number of degrees of
freedom constituting the environment is not always large
enough to be considered in the thermodynamic limit, the
microcanonical ensemble has also been considered. In Ref.
�12�, a quantum master equation was derived describing the
dynamics of a subsystem weakly coupled to an environment
of finite heat capacity and initially described by a microca-
nonical distribution. Finally, an analysis in the microcanoni-
cal state has also contributed to the recent debate about the
foundations of the canonical formalism �13�.

The microcanonical ensemble implies a description of an
isolated system. Therefore, one might ask how a relation
between fluctuations and dissipation can be possible in a
situation where no energy can be dissipated. In the present
work, our goal is to explore the relation between fluctuations*marcus.bonanca@physik.uni-regensburg.de
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and response in microcanonical equilibrium conditions
through the framework of linear response theory. As will be
explained later, mainly after the development of linear re-
sponse theory, the name fluctuation-dissipation theorem was
associated with some relations which are analogs of the re-
sults presented here in the context of the microcanonical en-
semble. That is the reason we took the freedom to call them
also a FDT even in a situation where there is no physical
mechanism for dissipation. The paper is organized as fol-
lows. In Sec. II the derivation of a FDT using linear response
theory is presented and its validity is verified in a simple
example. In Sec. III different dispersion relations and sum
rules are derived in analogy with the usual Kramers-Kronig
ones and their meaning is discussed. They are different be-
cause they are not derived in the frequency space, as are the
usual ones. Conclusions are presented finally in Sec. IV.

II. DERIVATION OF THE FLUCTUATION-DISSIPATION
THEOREM

We start by considering a system whose dynamics is

given by a Hamiltonian Ĥ. An external force K�t� is applied

to this system such that Ĥ is now perturbed by an external

potential given by −ÂK�t�. Following �4�, the response func-
tion of the system due to the external force measured through

an observable B̂ is given, in linear response, by

�BA��,t − t�� = Tr��̂e���
1

i�
�Â�0�,B̂�t − t����

= Tr��̂e���
1

i�
�Â�t��,B̂�t��� , �1�

where � , � is the commutator and �̂e��� is the equilibrium
density operator as a function of a macroscopic parameter �.
One can also define the following correlation function be-

tween Â and B̂:

CBA��,t − t�� = Tr��̂e���
1

2
�Â�0�,B̂�t − t����

= Tr��̂e���
1

2
�Â�t��,B̂�t��� , �2�

where � , � is the anticommutator. This function gives the
spectrum of equilibrium fluctuations when the system is un-
perturbed. For the canonical ensemble, �̂e���= �̂e���
=e−�Ĥ /Z���, where �= �kBT�−1, and the FDT establishes a
relation between the spectra of �BA and CBA. That means a
relation between an equilibrium and a nonequilibrium quan-
tity.

Our goal here is to show that there is also a relation be-
tween �BA and CBA in the microcanonical ensemble. First of
all, let us start with the expression for the microcanonical
density operator �̂e��=E�. Following �9�, we take it as

�̂e�E� =
��E − Ĥ�

Z�E�
, �3�

where Z�E�=Tr��E− Ĥ�.

To derive the FDT, it is necessary to introduce an appro-

priate representation of ��E− Ĥ� like, for example �9�,

��E − Ĥ� =
1

2�i
	

	−i


	+i


dz exp��E − Ĥ�z� . �4�

Expressions �1� and �2� can be written now in the following
way:

�BA�E,t − t�� =
1

Z�E�
Tr� 1

2�i
	

	−i


	+i


dz e�E−Ĥ�z �Â�t��,B̂�t��
i�

� ,

�5�

CBA�E,t − t�� =
1

Z�E�
Tr� 1

2�i
	

	−i


	+i


dz e�E−Ĥ�z �Â�t��,B̂�t��
2

� .

�6�

It is important to note that, since the integrals in the complex
plane are always convergent, the trace and integral signs can
be interchanged. Doing that, it is convenient to define the
following new quantities: �BA�E , t− t��=Z�E��BA�E , t− t��
and CBA�E , t− t��=Z�E�CBA�E , t− t�� to obtain

�BA�E,t − t�� =
1

2�i
	

	−i


	+i


dz eEz�BA�z,t − t�� , �7�

CBA�E,t − t�� =
1

2�i
	

	−i


	+i


dz eEzFBA�z,t − t�� , �8�

where

�BA�z,t − t�� = Tr�e−Ĥz �Â�t��,B̂�t��
i�

� , �9�

FBA�z,t − t�� = Tr�e−Ĥz �Â�t��,B̂�t��
2

� . �10�

Since �BA and CBA are given as inverse Laplace transforms of
�BA and FBA, they also satisfy the following relations:

�BA�z,
� = 	
0




dE e−Ez�BA�E,
� , �11�

FBA�z,
� = 	
0




dE e−EzCBA�E,
� , �12�

where 
= t− t�. We introduce now the Fourier transform of
�BA and FBA,

�̃BA�z,�� =
1

2�
	

−





d
 e−i�
�BA�z,
� , �13�

F̃BA�z,�� =
1

2�
	

−





d
 e−i�
FBA�z,
� , �14�

and also the auxiliary function

SAB�z,
� = Tr�e−ĤzÂ�t��B̂�t�� . �15�
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Noticing that e−ĤzÂ�t��= Â�t�+ iz��e−Ĥz and using the cy-
clic property of the trace, we obtain

Tr�e−ĤzB̂�t�Â�t� + iz��� = Tr�e−ĤzÂ�t��B̂�t�� . �16�

Using

1

2�
	

−





d
 e−i�
Tr�e−ĤzB̂�t�Â�t� + iz���

=
1

2�
	

−





d
� e−i�
�Tr�e−ĤzB̂�t�Â�t���ez��, �17�

where t�= t�+ iz� and 
�= t− t�, one obtains from �15� and
�16�

S̃AB�z,�� = S̃BA�z,��ez��, �18�

where

S̃BA�z,�� =
1

2�
	

−





d
� e−i�
�Tr�e−ĤzB̂�t�Â�t��� . �19�

Using �18� in the Fourier transforms of �13� and �14� yields

�̃BA�z,�� =
1

i�
�S̃AB�z,�� − S̃BA�z,��� = S̃BA�z,��

�ez�� − 1�
i�

,

�20�

F̃BA�z,�� =
1

2
�S̃AB�z,�� + S̃BA�z,��� = S̃BA�z,��

�ez�� + 1�
2

.

�21�

Finally, from �20� and �21�, we obtain

F̃BA�z,�� = i
�

2
coth� z��

2
��̃BA�z,�� , �22�

which is our quantum FDT. In the classical limit �→0, we
obtain

F̃BA�z,�� =
i

z�
�̃BA�z,�� , �23�

which is our classical FDT. One easily realizes from �22� and
�23� that the replacement of z by � in those equations leads
precisely to the quantum and classical versions of the FDT in
the canonical ensemble. However, the physical nature of �22�
and �23� can be quite different from that in the canonical
case. Let us consider, for example, in the classical regime an
ergodic and small system, small in the sense that it is not in
the thermodynamic limit. Then the microcanonical ensemble
averages in �1� and �2� can be replaced by time averages
whose behaviors are given by the dynamics of the system.
Therefore, the fluctuations in this case happen due to the
dynamics of the concerned system itself and not due to the
coupling to a thermostat as in the canonical ensemble. From
this point of view, it is surprising that there is a simple rela-
tion between the FDT in the canonical and microcanonical
ensembles. Indeed, if one wants to compare both cases, the
inverse Laplace transform in z should be performed on �22�
and �23� since the canonical FDT consists of a relation be-

tween �̃BA�� ,�� and C̃BA�� ,��, keeping the original macro-
scopic parameter �. For the classical case, this can be easily
done using �23�, leading to

C̃BA�E,�� =
i

�
	

0

E

dE��̃BA�E�,�� . �24�

For the quantum regime, the inverse Laplace transform
should be performed on �22�. It is not hard to imagine how
different the result will also be from the canonical case.

In addition to the pure meaning of the relation between
response and fluctuations, one may wonder whether �22� and
�23� can be useful or not. We would say they can be useful in
situations where the microcanonical ensemble can be applied
and the thermodynamic limit is not satisfied. However, what
we mean by usefulness is the possibility of applying the FDT
in a context very different from the ones considered so far, to
obtain response functions from correlation functions, and
vice versa. If by useful one meant to go further and speak
about, e.g., transport coefficients, then one would have to
discuss more carefully the linear response theory in the mi-
crocanonical ensemble, especially because van Kampen’s
objections �14� can be trickier in this case. The first objec-
tion, concerning the validity of the linearization, could still
be answered as usual, we believe, by the argument of the
stability of the distribution functions �7,15�. The second ob-
jection, concerning the origin of the decay of correlation
functions which lead to finite transport coefficients, cannot
be answered as is done sometimes in the context of the ca-
nonical ensemble by coupling to an environment �16,17�.
The reason is simple: to use the microcanonical ensemble
one assumes an isolated system. A possible answer in this
case would be the instability of the dynamics �18,19�. How-
ever, the question of what “dissipation” would mean in the
present context of the microcanonical ensemble would re-
main. This is because, originally, the name fluctuation-
dissipation theorem comes from the fact that part of the Fou-
rier transform of the response function is related to the power
dissipated by the system when a time-periodic perturbation is
applied to it. But for an isolated system there will be no
dissipated power. On the other hand, the fluctuation-
dissipation theorem, mainly after linear response theory was
developed, has been associated with an equation relating the
frequency spectra of the response function and of the corre-
sponding symmetric correlation function. In this sense, �22�
and �23� are analogous to Eq. �6.16� of Ref. �4� for the mi-
crocanonical ensemble and therefore we took the freedom of
calling them fluctuation-dissipation theorems as well. Al-
though beyond the scope of the present work, a general and
deep discussion of the subtle points mentioned above as well
as of the linear response theory for the microcanonical en-
semble would be of great interest and value.

Example: The harmonic oscillator

As an example, we would like to check �22� and �23� for
a simple system whose response and correlation functions
are known directly. In order to do that, we choose a simple

harmonic oscillator. We consider the case Â= B̂= X̂, where X̂
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is the position operator. To perform first the calculation in the
classical regime, we define the classical analogs of �5� and
�6� as

��E,t − t�� =	 dx0dp0�„E − H�x0,p0�…�x�t��,x�t��0,

�25�

C�E,t − t�� =	 dx0dp0�„E − H�x0,p0�…x�t�x�t�� , �26�

where � , �0 is the Poisson bracket with respect to the initial
conditions �x0 , p0� and x�t� is the solution of the classical
equations of motion for the position. The averages above can
be easily performed, leading to

��E,
� =
2�

m�0
2 sin��0
� , �27�

C�E,
� =
2�E

m�0
3 cos��0
� . �28�

We can now calculate

�̃�z,�� =
1

2�
	

−





d
 e−i�
	
0




dE e−Ez��E,
� , �29�

F̃�z,�� =
1

2�
	

−





d
 e−i�
	
0




dE e−EzC�E,
� . �30�

The results are

�̃�z,�� = − i�z
2�

m�0
3 g̃���	

0




dE e−EzE , �31�

F̃�z,�� =
2�

m�0
3 g̃���	

0




dE e−EzE , �32�

where g̃���= �1 /2��
−


 d
 e−i�
 cos��0
�. Therefore,

F̃�z,�� =
i

z�
�̃�z,�� , �33�

which agrees with �23�.
Quantum mechanically, we can calculate directly �9� and

�10� for the harmonic oscillator using the energy eigenbasis

��z,
� = �
n

e−Enzsin��
�
m�0

, �34�

F�z,
� = �
n

e−EnzEn
cos��
�

m�0
2 , �35�

where En are the energy eigenvalues. Therefore, for the Fou-
rier transform �̃�z ,�� we obtain

�̃�z,�� = �
n

e−Enz i

2m�0
����0 + �� − ���0 − ��� . �36�

Using �22� and �36�, we obtain an expression for F̃�z ,��.
Inverting the Fourier transform, we get

F�z,
� = �
n

e−Enz�

2
coth� z��0

2
� cos��0
�

m�0
. �37�

Since

�
n

e−EnzEn =
��0

2
coth� z��0

2
� 1

2 sinh�z��0/2�
. �38�

Equation �37� can be written as

F�z,
� = �
n

e−EnzEn
cos��0
�

m�0
2 , �39�

which agrees with �35�. This verification of �22� for the
quantum harmonic oscillator is the same as in the canonical
ensemble case if z is replaced by �. However, here �22� still
has to be transformed back to energy.

III. DISPERSION RELATIONS AND SUM RULES

In the canonical ensemble, it is possible to derive relations
between the real and imaginary parts of the Fourier trans-
form of the response function �15,20�. Those are the so-
called Kramers-Kronig relations and mainly they express a
causality property contained in the response function. In the
present case, dispersion relations also hold in the z space
because �BA and CBA are defined for positive values of en-
ergy. Equations �11� and �12� imply that �BA�z ,
� and
FBA�z ,
� are analytic functions in the half plane Re�z��	,
where 	 is positive. Therefore, in this region

�BA�z0,
� =
1

2�i
� dz

�BA�z,
�
z − z0

. �40�

Since lim
z
→
 
�BA�z ,
� 
 =0, we can close the integration
contour with a semicircle in the half plane where �BA�z ,
� is
analytic and a line along Re�z�=	 and send the radius to
infinity to obtain from �40� the relation

�BA�y0,
� =
1

�i
P	

−





dy
�BA�y,
�

y − y0
, �41�

where the choices z=	+ iy and z0=	+ iy0 were made. The
right-hand side denotes the principal value of the integral.
Writing �BA in terms of its real and imaginary parts, �BA
=�BA� + i�BA� , Eq. �41� leads to the following dispersion rela-
tions:

�BA� �y0,
� =
1

�
P	

−





dy
�BA� �y,
�

y − y0
, �42�

�BA� �y0,
� = −
1

�
P	

−





dy
�BA� �y,
�

y − y0
. �43�

As it is usually done �20�, from the two relations above, it is
possible to derive the moment sum rules, which, in this case,
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are related to the energy dependence instead of the frequency
spectrum. The derivation of such sum rules is sketched in the
Appendix. The results for the first three moments are shown
below, where the subscript BA was dropped for convenience:

��0,
� =
1

�
	

−





dy ���y,
� , �44�

��1��0,
� = −
1

�
	

−





dy y����y,
� +
��0,
�

y
� , �45�

��2��0,
� = −
1

�
	

−





dy y2����y,
� +
��1��0,
�

y
� , �46�

where

��n��0,
� = �� �n

�En��E,
���
E=0

. �47�

The moment sum rules above are related to the asymptotic
expansion of �BA with respect to z �which means low-energy
behavior�. For small values of z �i.e., high-energy behavior�,
one obtains the following sum rules:

��−1��0,
� = −
1

�
	

−





dy
���0,
�

y
, �48�

��−2��0,
� =
1

�
	

−





dy
1

y2 ����0,
� + ��−1��0,
�� , �49�

��−3��0,
� =
1

�
	

−





dy
1

y3 ����0,
� + y��−2��0,
�� , �50�

where

��−n��0,
� = 	
0




dE1	
E1




dE2 ¯ 	
En−1




dEn��E,
� . �51�

The procedure shown in the Appendix can be repeated as
long as the derivatives ��n� and the integrals ��−n� exist to
derive higher-order moment sum rules.

As for the sum rules in the frequency space, those above
can be used to correct phenomenological expressions for
��E ,
�. For example, if one assumes a functional form for
the response function with some free parameters with respect
to the energy dependence, one could determine them by im-
posing the sum rules for high- or low-energy behavior. The
way to do that in the frequency space is shown, for example,
in �15,20�. Since the relations above are valid for any value
of 
, one could also have dropped the 
 dependence by set-
ting 
=0. Then, it is easier to understand the meaning and
the importance of the sum rules: the z spectrum of � is given
in terms of static quantities like ��n��0,
=0� and
��−n��0,
=0�, which could be calculated quantum mechani-

cally in terms of the commutation relations between Â and B̂
�see, for example, �4��.

IV. CONCLUSIONS

Using linear response theory, we presented a derivation of
the fluctuation-dissipation theorem in the microcanonical en-
semble in both quantum and classical regimes. The theorem
is stated as a relation between the Laplace-Fourier transforms
of the response and symmetric correlation functions. Al-
though this relation is very similar to the one derived in the
canonical ensemble context, it is valid, for example, in a
situation where the fluctuations are very different from ther-
mal ones, namely, fluctuations of an isolated system that is
not in the thermodynamic limit. Therefore, the fluctuation-
dissipation theorem can be considered as a much more gen-
eral relation and not constrained just to the context of the
canonical ensemble. We believe this result can be very useful
to calculate correlation functions from response functions
�and vice versa� for systems in the microcanonical ensemble
when they are not in the thermodynamic limit. In this sense,
as mentioned in �9,12� �see also the references in �12��, the
present work can be considered as an additional effort to
apply statistical physics to small systems. Moment sum rules
were also presented for the energy dependence and they
could be useful to correct phenomenological expressions for
the response functions.
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APPENDIX: DERIVATION OF THE SUM RULES

In this appendix we give a brief sketch of how to derive
the sum rules presented in Sec. III. For a careful derivation
and deeper discussion about the subject, we refer to �20�. Our
starting point is the function f�z� defined by

f�z� = 	
0




dE e−Ez��E� , �A1�

where z=	+ iy is complex with its real part positive and
��E� is real. Therefore, f�z� is analytic in the half plane
Re�z��	 and it satisfies the following dispersion relations:

f��y0� =
1

�
P	

−





dy
f��y�
y − y0

, �A2�

f��y0� = −
1

�
P	

−





dy
f��y�
y − y0

, �A3�

where f��y0� and f��y0� are the real and imaginary parts of
f�y0�, respectively. From �A2�, we can write

f��0� =
1

�
P	

−





dy
f��y�

y
�A4�

and from �A3� multiplied by y0 we obtain
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lim
y0→


y0f��y0� =
1

�
	

−





dy f��y� . �A5�

To calculate the left-hand side of �A5�, we go back to �A1�
and integrate by parts to obtain

f�z� =
��0�

z
+

1

z
	

0




dE e−Ez��1��E� , �A6�

where

��n��0� = �� dn

dEn��E���
E=0

. �A7�

Therefore,

lim

z
→


zf�z� = ��0� , �A8�

and, from �A5� and �A8�

��0� =
1

�
	

−





dy f��y� , �A9�

which is the first sum rule. To derive the next one, we define
a new function

g�z� = 	
0




dE e−Ez��1��E� , �A10�

which is analytic again for Re�z��	. Therefore, g�z� obeys
the same dispersion relations as f�z�. Integrating �A10� by
parts yields

g�z� =
��1��0�

z
+

1

z
	

0




dE e−Ez��2��E� , �A11�

from which we obtain lim
z
→
 zg�z�=��1��0�. By the same
procedure as before,

��1��0� =
1

�
	

−





dy g��y� . �A12�

Since, from �A6� and �A10�,

g�z� = 	
0




dE e−Ez��1��E� = zf�z� − ��0� �A13�

and

g��y� = − yf��y� − ��0� , �A14�

we obtain, from �A12� and �A14�, the second sum rule

��1��0� = −
1

�
	

−





dy y� f��y� +
��0�

y
� . �A15�

Repeating the same procedure again, we obtain

��2��0� = −
1

�
	

−





dy y2� f��y� +
��1��0�

y2 � , �A16�

and so on, as long as the ��n��0� exist.
A similar procedure can be applied to generate a different

kind of sum rule �20�. Starting again with �A1�, we integrate
by parts in a different way now:

f�z� = − ��−1��0� + z	
0




dE e−Ez��−1��E� , �A17�

where

��−n��0� = 	
0




dE1	
E1




dE2 ¯ 	
En−1




dEn��E� . �A18�

From �A2�,

f��0� =
1

�
	

−





dy
f��y�

y
, �A19�

and from �A18�, f��0�=−��−1��0�, so

��−1��0� = −
1

�
	

−





dy
f��y�

y
. �A20�

We again repeat the procedure, as before, defining from
�A20� a new function g�z�,

g�z� = 	
0




dE e−Ez��−1��E� = − ��−2��0�

+ z	
0




dE e−Ez��−2��E� =
f�z�
z

+
��−1��0�

z
.

�A21�

Since g�z� satisfies the same dispersion relations as f�z�, we
obtain

g��0� = − ��−2��0� =
1

�
	

−





dy
g��y�

y
. �A22�

Inserting the imaginary part of the second line of �A21� in
�A22� leads to

��−2��0� =
1

�
	

−





dy
1

y2 �f��y� + ��−1��0�� . �A23�

Repeating the same procedure again, we obtain

��−3��0� =
1

�
	

−





dy
1

y3 �f��y� + y��−2��0�� , �A24�

and so on, as long as the ��−n��0� exist.
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