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We investigate the existence of the pure spin ratchet affectlissipative quasi-one-dimensional system with
Rashba spin-orbit interaction. The system is additionglfced into a transverse uniform stationary in-plane
magnetic field. It is shown that the effect exists at low terapees and pure spin currents can be generated by
applying an unbiased ac driving to the system. alalytical expression for the ratchet spin current is derived.
From this expression it follows that the spin ratchet eftggpears as a result of the simultaneous presence of
the spin-orbit interaction, coupling between the orbiggictes of freedom and spatial asymmetry. In this paper
we consider the case of a broken spatial symmetry by virtesyfnmetric periodic potentials. It turns out that
an external magnetic field does not have any impact on théeexis of the spin ratchet effect, but it influences
its efficiency enhancing or reducing the magnitude of tha spirent.

PACS numbers: 72.25.Dc, 03.65.Yz, 73.23.-b, 05.60.Gg

I. INTRODUCTION a particle instead of only the charge one. One essenti&rdiff
ence between spin and charge is that a particle can have more
than one spin state while it has only one charge state. In the
pntext of transport it is important that the spin state odip

cle can strongly depend on the transport conditions, inquart

It is well known that a directed stationary flow of particles
in a system can be created by unbiased external forces.

general this possibility arises when the system is not iamar e \ ;
lar on the transport direction, as it happens for examplgsn s

under reflections in real space. This fact is mainly indepen X . I k :
dent of the mechanics which underpins the particle motiont€ms with spin-orbit interaction. This fact has founded & ne

classical or quantum. However, the microscopic origin & th areéna for different spin devices used to store, transforeh an
effect, conventionally called the ratchet effect, is diéfet in transfer miscellaneous information. The possibility amsfer

the classical and quantum case. One principle source of thit€ SPin separately from charge plays an important roles Thi
difference is quantum mechanical tunnelling which does nofan Pe implemented by so-called pure spin currents, that is
have analogs in the classical mechanics. Correspondingy, spin currents Whlc_h are not accompanied by charge curre_nts.
usually distinguishes between classical and quantumeatch | "US the generation of such currents has been extensively
effects. In this paper we concentrate on the latter one is-a di diScussed. Among different mechanisms of spin-orbit inter

sipative system. Such dissipative ratchet systems actag-Br 2ction Rashba spin-orbit interaction (RSOplays a distin-
nian motor&? turning Brownian into directed motion. The 9uished role because it provides an opportunity to conftel t
existence of the ratchet effect in a quantum dissipative oneSPin-orbit coupling strength by an external electric fieltie
dimensional (1D) system which lacks the spatial symmetry?1ange€ in the band structure spawned by the spin-orbitinter
has been first theoretically predicted in Ref. 3. Later, imitn ~2ction leads to one of the most remarkable effects in spiatro
tight-binding model where the lowest bands are narrow,st ha'®S: tI;e intrinsic spin-Hall effect, first predicted by Mueani
been disclosed that a ratchet state of the particle transpor €t @l for hole-doped semiconductors with the spin-orbit in-
only be achieved when at least the two lowest Bloch band&raction of thelgffec“"? Luttinger model for holes andat
contribute to transpatt To obtain the ratchet effect in sys- 2Y Sinovaet al=in a high-mobility two-dimensional elec-
tems with weak periodic potentials at least two harmonics offon 9as (2DEG) with RSOI. The spin current which results
the potential should enter the dynamical equafioRectifica-  rom the intrinsic spin-Hall effect is pure and its experital
tion can also take place in a single-band tight-binding odedetection was discusseelg, by Wunderlichet al= Another
where the spatial asymmetry is concealed from the electroind Of spin-Hall effect, the extrinsic spin-Hall effecs, a re-

dynamics. One way to achieve this is to use unbiased externd}!t Of the spin-orbit interaction as well. The spin curgent
forces with harmonic mixingy related to the extrinsic spin-Hall effect are also pure. Buc

Coherent charge ratchets based on molecular wires with ure spin currents were experimentally detected through op

asymmetric level structure of the orbital energies were pro t'ffslsr:neﬁggr;%giﬁrlgﬁtrmhsgrggcigg:l:t'i(:]r_lﬁ ;}leﬁﬁgges °
posed in Rel.l7. In this case weak dissipation originates o ples 9 P P o

. t . .
weak coupling between the wire edges and leads which repr%qszeglé‘r)i'zégﬁthh?r ggf;?grzs tloe ?rrlenaéﬁcpeur:ﬁoss'%ﬁéﬁg‘;‘fﬂt
sent fermionic reservoirs. In contrast to the systems deesttr b gnt. P Y

above in this system there is no dissipation in the wire. Thé:OndUCtorS one-photon absorption of linearly polarizedi

ratchet effect is a result of the dissipative coupling ofitlie mdgces pure spin currents Th.e pure spin current response
to fermionic baths. to linearly and circularly polarized light irradiation, @kng

| diff b h of d q lectrons from valence bands into the conduction bands, was
n a difierent branch of condensed matter a new researcly | jiaq by Liet al*’ and by Zhouet al*® for 2DEGs with

field has emgrged during the last deca_lde, hamely spinttonicg s, “An alternative technique of getting pure spin cusent
where one tries to make use of the spin degree of freedom o
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is quantum spin pumping. The idea of quantum spin pumpingvhere H is the Hamiltonian of the isolated periodic system,
comes from the general idea of electron pumpinglectron cht(t) describes an external driving ahbh,n represents the
pumping assumes that in a given system any voltage bias i&rm responsible for dissipative processes.

absent and the particle flow is a result of a cyclic variatibn o The isolated quasi-1D periodic system is formed in a 2DEG
at least two parameters of this system. When the electron spiz — > plane) with RSOI using a periodic potential along the

is involved due to some mechanisms, various quantum spiaxis and a harmonic confinement along thaxis. The whole
pumps emerge. For example spin pumps based on electrondgstem is in a uniform stationary magnetic field along the
interaction€®, magnetic barriefd, carbon nanotubéshave  axis:
been discussed. A spin pump based on a quantum dot was

vt : s . o B2k mw?i? Rk . o L -
perimentally implemented by Watsehal=> The pure spin H = + — (gwkz — azkm)+
current generation using the spin ratchet effect in cohiemsh 2m 2 m )
dissipative systems with RSOl was investigated in Refs. 24 U@ 1+ 2_2 —auni H

and 25, respectively. The spin ratchet effect in the presenc Tz ) TIkBeEHo,

a non-uniform static magnetic field without spin-orbit inte here - is the z-component of the maanetic fiell, —
action, the Zeeman ratchet effect, was studied in [Ref. 26 fofé 0.H ;J and W’Z havepused the gauge I% which theocgm o-
coherent quantum wires formed in a 2DEG. However, the spi ne’nt7s 0% fhe vector potential ark, 9 %{ Y A A 0 P

. . . . . . = - 0 y y = z =
ratchet effect in a dissipative system in an external magnet (Landau gauge). Additionally, we have taken into accouat th

field has not been considered up to now. hat h t is related
In this paper we extend the results of Ref. 25 to include dactthatina 2DEG = 0. In Eq. (2) the operatdk is relate

transverse in-plane uniform stationary magnetic field.c8pe ~ t0 the momentum operatgrasp = 7k, w is the harmonic
cally, we consider non-interacting electrons in a quanture w  confinement strength, the spin-orbit interaction strength,
formed by a harmonic transverse confinementin a 2DEG witfy the strength of the coupling between the orbital degrees of
RSOI. The electrons are also subject to a 1D periodic poterf{€€domz andz, g the electron spiry-factor, up the Bohr

tial along the wire direction and the in-plane magnetic fieldMagneton, and/(i) denotes the periodic potential with pe-

perpendicular to the wire. An orbital coupling between this"od L,

originally isolated system and an external environmenseau Uz + L) = U(x). ©)
dissipative processes affecting indirectly the spin dyicam
through RSOI. In the following we assume that the periodic structure is

An external ac driving originates in our work from an ap- subject to an external homogeneous time-dependent electri
plied ac electric field. We show that for such a driving the netfield. Only thez-component of the electric field vector is non-
stationary charge current is strongly suppressed if thestra 2ero, that is the electric field is parallel or anti-paratethe
port is governed only by electrons of the Bloch sub-bands rez-axis. Experimentally this can be implemented using for ex-
lated to the same Bloch band which would result from theample linearly polarized light. The external force thusples
corresponding truly 1D problem without RSOI. However, atonly to thez-component of the electron coordinate operator:
the same time and under the same conditions a net stationary o — _F(Di 4
spin current turns out to be activated in a spatially asymmet ext = (t), )
ric situation and for finite values of the spin-orbit couglin where the forceF(t) is unbiased. In this work we use the
strength and the coupling strength between the orbitak#sgr time-dependence
of freedom. The magnetic field does not destroy this picture,
but it can partly reduce or on the contrary enhance the ratche F(t) = Feos(Q(t = to))- ®)

effect. _ . _ The term "unbiased external force” should not be confused
The paper is organized as follows. In Secfidn Il we describeyith voltage bias. An external force is called unbiased if it
a model within which a ratchet like behavior of the Spin trans is periodic in time and its mean Va'ue’ that is its average ove
port can be achieved and present a master equation in terms@he period, is equal to zero. It is obviously our case as one
populations and transition rates between the basis staéeb U ¢an see from EqL15).
to calculate the charge and spin currents. These basis state The system is also coupled to an external bath. In the
are then thoroughly discussed in Secfion Ill. A tight-biigli  present work we assume the transverse confinement to be
model is formulated in Sectidn1V. In Sectibf V we presentstrong enough so that the probabilities of direct bathiexci
the transition rates and their properties. Finally, in 8ect transitions between the transverse modes are negligitajt.sm
Vllwe deriveanalytical expressions for the charge and spin | other words, the wire is truly 1D from the point of view
currents and explore the spin ratchet effect in the system.  of the bath which directly changes only the dynamics along
the wire. Thus in our model the external environment cou-
ples to the electronic degrees of freedom only throtigfihe

Il. FORMULATION OF THE PROBLEM bath itself as well as its interaction with the quantum wire a
described within the Caldeira-Leggett modef,
The full Hamiltonian of our problem is No

2 1 ﬁQ 2( » Ca 2
. . . . Hpath = = {—a + Mawy, (,Ta — x) . (6)
Hyai(t) = H + Hexi(t) + Hpagn, (1) 2 ; Ma Mmawy
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The bath is fully characterized by its spectral density @gfin that is when the system turns into an insulator, the spin cur-

as rent given by Eq.[(T]1) goes to zero. Below we will calculate
N only the spin current polarized along theaxis and denote
TR A2 this current asls, i.e, Js(t) = JZ(t). The components of
J(w)= = O(w — wq). @) . .
2 = mawa the spin current polarized along theandy axes are zero as

shown in AppendixB. The discussion of the difference be-

It is important to emphasize that, due to the spin-orbitrate  tween the conventional definition of the spin current and the

tion and orbit-orbit coupling, the direct dissipative irgetion  spin current definition used in our work can also be found in

between the longitudinal dynamics in the wire and the exterAppendiXB.

nal environment has an indirect impact on the transitioagrat It is convenient to calculate the traces fin (9) and (11) us-

between different transverse modes. The transverse dgaamiing the basis which diagonalizes batrandé ., because this

in the wire indirectly feels the presence of the externahbat requires to determine only the diagonal elements of the re-

through the spin-orbit interaction and orbit-orbit comgli duced density matrix. In a quasi-1D periodic system with
The dynamical quantities of interest are the charge and spiRSOI the energy spectrum can be related to the one of the

currents. Specifically, the longitudinal charge currgptt) ~ corresponding truly 1D problem without RS®I This links

is given (see for example Ref. 4) as a statistical average ¢he Bloch bands of that truly 1D problem to the Bloch sub-

the longitudinal charge current operatﬁf(t), i.e. the prod- bands of the quasi-1D problem. The general structure of the

uct of the velocity operatar(t) and the elementary electronic results obtained in Ref. B4 is retained in the presence of the
charge—e, orbit-orbit coupling and a uniform stationary magneticdiel

along thez-axis. A slight change of the theory is given in
Jo(t) = —ed(t), (8) AppendixC. We shall consider electron transport under such
conditions when only a finite number of the Bloch sub-bands
is involved. The basis which diagonalizésands, becomes
Jo(t) = —eiTr[a?p(t)], (9)  inthis case discrete. The total number of the Bloch sub-band
dt is equal to the product of the numbé#g, of the Bloch bands

. A . - from the corresponding truly 1D problem without magnetic
wherep(t) = Trpan W (2) is the reduced statistical Operator fig|q anq without spin-orbit coupling, the numbe¥,, of the

of the system, that is the full orl& () with the bath degrees ransverse modes and the number of the spin states. In this

of freedom traced out. ‘work we shall use the model withy = 1, N; = 2. Since
_For the longitudinal spin current operator we use the defiyhere are only two spin states, the total number of the Bloch
nition suggested by Skt al*?, sub-bands in our problem is equal to four. The represemtatio
N d in terms of the eigen-states of the coordinate operator for a
J§(t) = E(fri:&), (10)  model with discreter-values is called discrete variable rep-

resentation (DVRP. Let us callo-DVR the representation
which was further developed and applied to a two-in which both the coordinate and spin operators are diagonal
dimensional hole gas by Zhaweg al3° The advantage of this Denoting ther-DVR basis states &3a) } and eigen-values of
definition over the conventional oné( = ;%) is that using & andé. in a state|) throughz, ando., respectively, the

the corresponding spin current, charge and spin currentd (9) adl(11) are rewritten as
d
: d 5P t) = — —P,(t
i) = = Tr(@:ap(t)), (11) Jo(t) = =€) Ta Pa(t),
’ (12)
the cqntinuity equation for the_spin density can ofteq bd-wri Js(t) = Z Uaxadipa (),
ten without a source term, which means that the spin current - t

defined in this way is conserved. This conserved spin current o . . .
can be uniquely related to the spin accumulation at a sampl thterePa(ttt)_ = t<o‘|p(t)|o‘> is the population of the-DVR
boundary. The out-of-plane polarized spin accumulatian caSté ela) at timet.

experimentally be measured with Kerr rotation microséépy 7 We arg J_lnterested n dthe '0%9'2'“‘.‘9 limit c.)égh_e 2cur£r2ents
or the Faraday rotation technigide The in-plane spin polar- c(t) and Js(t) averaged over the driving peridd = 2/

ization is not directly measured by Kerr rotation microsgop W'th the:ume averagetifTa time dependent f‘%”th‘fﬂ) de-
but it can still be scanned by a magneto-optic Kerr microscopfined asf(t) = (1/T) ;" dt' f(t'). From [12) it follows
using,e.g, the cleaved edge technology as discussed by Ko- - d .
tisseket al2® Even when the continuity equation contains a Jo(t) = —era—Pa(t),
source term, there is still one advantage of the spin current « dt
operator definition[(70). This definition leads to a very rea- - d -
sonable physical result: the corresponding spin curre@ip Js(t) = Z C’axa@Pa (t)-
vanishes in insulators. In Secti@n]VI we will return to this *

point and analytically prove that when the periodic potnti  The advantage of working in the-DVR basis is that real-
gets stronger and as a result the energy bands get narrowéme path integral techniques can be used to exactly trace ou

(13)
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the bath degrees of freedé®3’. Moreover, at driving fre- for example, the system is divided into the elementary cells
guencies larger than the ones characterizing the integral din such a way that the origin of coordinates is at the center
namics of the quasi-1D system coupled to the bath, the avenf an elementary cell, thenL/2 < d,.c; < L/2. In Eq.
aged population®, (¢) can be found from the master equa- (I8) we have taken into account that the periodic potential
tion, U,,;(x), introduced in AppendikIC, depends grandj, and

d thus the eigen-values distributed within one elementally ce

—P,(t) = TosPs(t) — TpaPa(t), 14 also acquire a dependencepandj.

dt ) ZB: sF5() XB: paFalt) B9 From [16) and[(18) it follows that one can label the eigen-

(B#a) (B#a) states ofi with the quantum numberg, m, j, o, that is

valid at long times. In Eq.[{14) s is an averaged transi- asggérgi’gézg{gteinﬁal\?ettT]i{]l(l)’rfﬁ:’]’ 9).0} representation
tion rate from the statgs) to the statda). In order to obtain

concrete expressions for the averaged currents#¥R ba- ik, g5 o' [Com, G005 = (19)
sis must be found explicitly. This is the subject of the next =0;1,j00 0 ~,; kB, J,0l(,m, ,0),5.
section.

The corresponding eigen-values are¢ . jo = Zvic,m,j-
From the eigen-value equation

lll. DIAGONALIZATION OF 4. AND i: THE ¢-DVR B¢, 3, 0) 5 = Tyicm g |Comy G, o)y (20)
BASIS . . . .
written in the{|l, kg, j, 0)-,; } representation through the use
of ,
The eigen-states of the, operator were found in Ref. 34 19
(see Eq. (12) therein) for a model without coupling be- D ik + ok |2 Ky + 0ko)y,j X
tween the orbital degrees of freedom and magnetic field. The vkl
changes necessary to include those two effects are distusse o K,y aCymy G, o) s = (21)
in AppendiX Q. The eigen-value equation for theoperator VI B S S T )
is = Tv;¢,m,j ’y.,j<laka]aU|<ama]70>’y,jv
51k . 0) 0 k. d.0) (15) it follows that
Oz|b, yJy O j = 0|, 3 ), O j . .
B R B R ’y,j<lakB7JaU:1|C7m7]70-:1>’)’aj:
In Eq. (IB)/, kg, j, o stand for the Bloch band index, quasi- = il kp + kso|C,m) 4,
momentum, transverse mode index angrojection of the (22)

'lakv.aa':_l ,m,',O':—l J
spin, respectively. Since in the presence of the orbittadi- vall ke, J 6m.J i

pling the periodic potentidl, ;(x) (see Appendik C) depends = 5.3l kB = kso| ¢, m)+ 5.
on+y andj, we have labeled the ket-symbol with the subscript = Since |¢, m, j,0),,; is also the eigen-state &, corre-
7, . In the ensuing analysis we follow the same rule and lasponding to the eigen-valug: ,,, ;» = o, we infer that the
bel all the bra- and ket-symbols with the subscfipf, thatis  +-DVR basis stateg) from the previous section are just the
S land] )y 5. ¢, m, j,0),.; States, thati§|a)} = {|¢,m.j.0), 1.

Itis convenient to start the diagonalization of the cooatkn
operator writing its matrix in th¢|l, kg, j, o), ; } representa-
tion: IV. o-DVR REPRESENTATION AND ITS TIGHT-BINDING

MODEL
’Y,j’<l17k{35jlvolljllakBajaU>%j = (16)
=0j1,j00t 0 7 {l's kg + Ohisol E[L, kg + 0kiso )5 Let us represent the Hamiltoniafi in the o-DVR basis

obtained in the previous section in order to derive an affect

The diagonal blocks, tight-binding model.

Sl kg0 = 1@|l kg, j,0 = 1), = Using the{|(,m, j,0),,; } basis the Hamiltonia®/ can be
‘ R T written as

= ;U kG + ksol|Z|l, kB + kso)yir V7, 17) X o .

il Ky G0 = ~1]a|L kg j.o = 1) ; = H= 3 5p{¢m' o [H|Cm, o),

= iU Ky = keolZ|l b — kso)nyis V3, e (23)
are unitary equivalent for a given value of the indeand thus x|¢sm' ' o)y (G ms gy al,
the eigen-values af do not depend onr. with the matrix

As it is shown in AppendikA, the eigen-values of the ma- e e _
trix ’Yaj<ll7 kélill, kB>y,j are ’Y-,j’<< ym, 7,0 |H|<7m7]a 0'>%j = Z E'y;l.,n(kB)X
l,ks,m
Toyi¢m,g = ML A dyc g, (18) X i (C |l kg + 0" kso )y, i X (24)

wherem = 0,+1,+2..., ¢ = 1,2,..., Ng and the eigen- % 7.{l,kB + 0kso|C, )55 Orit s (57, 07)

valuesd,¢ ; are distributed within one elementary cell. If, x 67, , . (j,0).



The tight-binding approximation of (23) is obtained if one we finally have

assumes that the matrix elements (24) vith —
negligibly small.

m| > 1are

We consider temperatures low enough and assume that

electrons populate only the lowest Bloch sub-bands invithl

(i.e.,Ng = 1). Under this condition the periodic potential can

be of arbitrary shape and the only limitation on it is the dali
ity of the tight-binding approximation.

Below we thoroughly study the case where the four low-

est Bloch sub-bands are the ones witk- 1, n = 1,2,3,4

and the only ones which are populated with electrons. For

simplicity we consider weak orbit-orbit coupling and calcu
late the corresponding eigen-energigs ,,(kg) and eigen-
spinorsé.,.; ks (4, 0) retaining only the first two transverse

modes, that ig = 0, 1. In this casef has the form

o= Z {Z Exigyar | Js )y j 4,5 (M J, 0|+

m - j,0

ZAlvnygr,a g.o(m)m, j,o ") v (ms 4, |+

J,0'#o

+ ZAm,tyriLo o )lmaj/a0/>%j/ ’Y,j<maj70|+ (25)
J'#j0’ 0

b . .
+Z <Aiyn§cra JG’ )|mvjlval>%j’ 77j<m+1,j,0|+
j'sg,0’ 50
f . .
+ Aivngcra iJ, Sm)m+1,5",0") 5 i~ 5(m, ], U|)} 7
where
|m7jaa>%j = |< = 17mvjaa>v,j7 (26)

and we have defined the on-site energigs , and hop-

i i intra inter,b
ping matrix elementsAte . (m), AZS" 0. (m) and

if;.tj?fl;f/;j’a (m) as follows
Evijo = %j<m7j, G|ﬁ|m,j, Cr>’77j7
Alntraa . (m = v (m, '/70_/ I’?[ m, .70_ .
Y37 3T ( )( );ﬁ(] )%J < J | | J >'Ya] (27)
inter,b _
A'y,_] ,0'34,0 (m): <m.] U|H|m+1]’ >’Yj’
inter,f _
AT e (m) = i(m+1,5,0'|Hm,j,0).
Note that
[Ai'yn;gs?a";j,a'( )] Aiyngr;,] o’ (m) (28)
(A ()] = AL (). (29)
Introducing the notations
{& ={0. o)}
£=14(0,1),{ =2+ (0,-1), (30)
E=3<(1,1),é=4< (1,-1),

4
7 = Z[Z Evie|m, E) g v, (M €+

=1
+ Z Alvntg/a m)|m, &)y e 5. e(m, &+

é;éf' 1 (31)
s (A:“;fb Y€ e (m 4 1, €1+

£,§'=1
Alvnt;r f( Nm 41,85 ¢ 5.e(m, §|>} .

Equation[(31L) represents a tight-binding model which cam no
be used to perform actual calculations of quantum trangport
a dissipative system.

To conclude this section, we would like to note that because
of the simultaneous presence of the harmonic confinementand
RSOI the system splits into two subsystems. The first sub-
system is characterized gy = 1,4 and the second one by
¢ = 2,3. These subsystems are totally decoupled: there is no
electron exchange between them. Such a state of affairs per-
sists if one considers more than two transverse modes.dn thi
work, for simplicity, we only consider one subsystem, namel
the one with¢ = 1, 4. Such uncoupled subsystems also appear
within the hard wall model of the transverse confinerdfent

V. TRANSITION RATES

The tight-binding model introduced in Sectibn]IV relies
upon the fact that the hopping matrix elemehtd (27) are small
In this case the second-order approximation for the average
transition rates in Eq[{14) can be used givif

2
N
76 T h2

" / dre— @ et MR+l o) /HIT 5 (32)

Ty &) sin (&)}
2 )

Wherex%mg = Tyit=1m,é = mL + d,},;g with d.y;g = d,},;l_’j,
A;”.;’,”z = e (m,&'|H|m,£), ¢ the hopping matrix element
between the statds/, &'), ¢ and|m, §)~ ¢, Jo(z) the zero-
order Bessel function an@(7) the twice integrated bath cor-

relation functiod”:
Q(7) = l /OO w [coth(m—ﬁ) X
T Jo 2

x [1 — cos(wT)] + isin(wr)] ,

2F (%ym,e —
hQ

XJO|:

J(w)

(33)

whereJ(w) is given by Eq.[(I7) and is the inverse tempera-
ture.

The transition rates are functions of the orbit-orbit cou-
pling strengthy because the Bloch amplitudes as well as



the differenceAd, = d..1 0 — d,.1,1 depend ony. Within Ai,;?féb(m) and A;“;gfr’f(m) only through a phase factor as
the context of the tight-binding model the eigen-valdgs o itis shownin AppendigﬂD. Froni(29) and (36) it follows that
andd,;1 tend to zero and fulfind, /I, < 1, wherel, =

min[L, \/h/mwo, B/ F,...]. Consequently, the transition [inter,b _ pinter,f (38)

rates depend on predominantly through the Bloch ampli- e s

tudes, and in this work we pay no regard to terms of order

O(Ad,/l,). Thisis also consistent with our model taking into [inter binter,b _ pinter,f pinter,f (39)
account only the first two transverse modes. Keeping terms YiEHE T viEE T T wighE T gE

of order O(Ad,, /1) would mean that the strength of the ) N
orbit-orbit coupling is large enough so that one would needt  To calculate the charge and spin currents we additionally
consider more than just the first two transverse modes becaug€ed the transition rates
in this case the non-diagonal elements would be comparable B U,
with the diagonal ones. Preeo =T o 0o+ (40)
Using the notations,
- B As pointed out at the end of Sectipn]1V, the system is split
FZ?%’,’?E = F‘;‘;g’iz, &+, into two subsystems isolated from each other. Since electro

—m,m+1 _ minter,b exchange between the subsystems is absent one can write
Doee =Ty, (34)
f\m-l—l,m _ f\inter,f T _ 1:\ _ 1:\ _ 1:\ _
viELE T el e v;L2 = ;1,3 = L5210 = L ys2,4 =
Ty = Foga = Fonn = T (1)
from (32) one obtains TRl T AT Sy 2 T S i3
pintra _ () (35) The last equalities are very useful because they allow us to
7ee ’ significantly simplify the expressions for the charge anid sp
and currents which are derived in the next section.
Dl = [ANSE )P Jye .
e ot 1o (36) VI. CHARGE AND SPIN CURRENTS
ee =185 (M) Jyee,
where The expressions for the stationary averaged charge and spin
- currents,
Jyere = i/ dre~ 5 QU Fillere—e, e /HIT _ _ _ _
R S A J& = lim Je(t), J$° = lim Js(t), (42)
X Jo| —= sin = . .
1129 2 can be found from the averaged master equafioh (14) which

B B we rewrite here using the-DVR indices and tight-binding
Note that F"Tt‘ff’b and F‘f?f&f do not depend onn due approximation introduced in SectiénllV and utilizing the-no
to the Bloch theorem whch leads to am-dependence of tations of SectiohV for the transition rates:

4

4
d - ~inter,f pm—1 Pintra D ~inter,b pm-+1 ~inter,b Hintre ~inter,f] 5
) =D TR0 Pl () + T Pl () + TRSE P (0] = 3 [T + T + T | Pre(t)+
&'=1 &'=1 (43)
(&'#8) (€'#¢€)
~inter,f pm—1 minter,b pm-+1 minter,b ~inter,f1 pm
+ [Fv;&ﬁ Pv;f (t)+Fv;£,£ Pv;ﬁ (tﬂ_[rv;f,f +F7;£,£] 'Y%E(t)’
[
4
From and[(43) one finds 7 Sinter,f | winter,b
(12) and({43) I = [(dyeoe — dyeroe) (T + TR+
ce=1 (45)
Hinter, rinter,b
+LU§(F7;£75/ - Fv;f,f’ )}pﬁf”

where we have used Eq_{18). To derive E[g.] (45) we have

4
J&E = —eL Z [f‘vngeg,f - f;ﬂéﬁgyb}p:&,’ (44)  additionally made use of EJ.(B5). In EGI4B) = o¢—1,m.¢
cE=1 ando; = o3 = 1, 02 = 04 = —1 as it follows from Eq.[(3D).
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The quantitiepSs, are defined as coupling to an external environment. To get Hq.] (53) we have
eliminated fromJg® the equilibrium spin current arising due
_ = pm o0 — , to the non-compensatiéhof the spin currents from different

Prie(t) ; Frie®, pe tliglopv’f(t)’ (46) bands of the Rashba-Bloch spectrum of the isolated system. |
turns out that this effect is strong enough to indenture iisa d
and they satisfy the constraint sipative system. Below we only consider the non-equilitoriu

spin currentJ° _ ¢, and not the full oneJse.
Pyia(t) + pyi2(t) + pya(t) + pyu(t) =1, Vi (47) Let us at this point also mention the dependence of the

: o o ! )
As already mentioned at the end of Secfion 1V, we only con>PIn currenty;=. s on the magnetic fieldf,. Since the mag

. ce . netic field is applied along the-axis, it couples to the system
;'(;jne;rth:vsel:gsgztﬁgnvsw@rt_ d(1)7 ﬁ(‘)t-gge ep;?jpfr:tilﬁi?iglfgggn;f?- through thes, operator and thus the hopping matrix elements
y 9 P P inter.l. (m) do not depend ofy. It then follows that the

We choose the following ones: 7;1(4),4(1) o .

spin current depends on the magnetic field only through its
pyp1(t=0)=1, pya(t=0)=0. (48)  dissipative prefaptor. The_ dependence{ﬁncomes into play

through the on-site energies,; 4). The difference .4 —¢,;1

Because of the constraifiL{47)2(t = 0) = py;3(t = 0) =0 which enters the integrals,.; 4) 41, and.J'%) , , . can be

and since there is no electron exchange between the SUbSWFitten as: T 7i1(4),4(1)

tems, the states of the subsystem vtk 2, 3 remain empty '

at any time,p,.2(t) = p,3(t) = 0, Vt. This leads to 1 0) 0)

P = p2% = 0. Then from the master equatidi{43) with 74~ =%l =y D [N (k) — 0 (k)] + 54

the initial conditions[(418) and using (40, {41) one obtains ko

+ hwo + 2gpB Ho,

co f‘v;lﬁl oo __ 1:‘"y;ﬁl,l (49)
Pyi1 = [N U Pya = CoatToun whereN is the number of the elementary cells aqi%;;l(kg)

are the eigen-values of the truly 1D Hamiltonian

Using Eqgs.[(3b)[(38)-(40) and (49) it follows fromn {44)
. h2k2 h 1
T D __ x A .
JF =0, (50) Hy = +U(2) {1 Aty <J + 5)} (55)

2m

that is the absence of the stationary averaged charge @ansp  Therefore, in the presence of a transverse in-plane uniform
However, using Eqs[ (85]. (B8]. (40) afd|(49) we get from Edstationary magnetic field the existence of the spin current i

@3) possible under the same conditions which were discussed in
B 91, B B B B Ref.[25. For completeness we list these conditions below.
JE=—— (TN TR =T T, (51) From [53) one finds, as mentioned in Secfidn I1, that when
Pyia+ T4 the electronic states become localized, the stationanagee

pin current vanishes. Indeed, in this insulating limitfimec-

lon F.,.;; &, does not depend on the quasi-mometiaand
ki and Eq. [(5B) gives zero.

When the spin-orbit interaction is absent, thakds = 0,

Jyaadyan y we get from[(5B)
Jy1,a + Jya (52)

x (JATS (m) 2 — |ARET (m)[?).

The last expression can be rewritten in terms of the hoppin
matrix elements{y;’f;réf(m). Making use of Egs.[(29)[(35),
(38) and [4D) we derive the stationary averaged spin current

J$° =2L

I?ic,S ks(,:O: 0. (56)
Further, if the orbital degrees of freedamand z are not

Using Egs. [(5R) and (D2) the non-equilibrium stationary av-coupled, that isy = 0, it follows from Egs. [5B) and{D6) that
eraged spin current can be written as

I es|._g=0. (57)
0 0 n—e,S|y=0
Foo - _9 Jyi1,adv40 J§;1),4J§;i71 . . - o .
nmeS T\ g+ e g@ 4 0 Finally, if the periodic potential is symmetric, the Bloch
4s v v vild T Tyl (53) amplitudes are real and we find from Eds.1(53) (D4)
Lﬁ kSO(.UQ . ’ B
X m Z sinf(kp — kp) L] Im[Fy e 1 ], JiZes =0, for symmetric periodic potentials. (58)

ke, ki
Summarizing the results of this section we conclude that in

whereJﬁ)g,_E is given by Eq. [(37) with?” = 0 and the func- order to generate a finite stationary averaged spin cumesx t

tion F%,CB'J;13 is defined by Eq.[{D3). Note the structure of Eq. conditions must simultaneously be fulfilled: 1) presenddef

(53). Itis the product of two factors of different physical-o  spin-orbit interaction in the isolated system; 2) finite pling

gin. The factor in the second line describes the isolatei#sys between the orbital degrees of freedsrandz; 3) absence of

and the factor in the first line is purely due to the dissigativ the real space inversion center in the isolated system.



Among these three conditions the second condition is per- I ‘ ‘ L -]
haps less transparent and a simplified physical interpoatat __ e
is necessary. We propose the following physical explanatio R
The orbit-orbit coupling leads to the situation in which the
strength of the periodic potential varies across the qlBsi-
wire. The periodic potential is equal t@(x) in the center of
the wire and gets stronger closer to its edges. Thus the ele
tron group velocity is larger in the central region of the evir
and decreases closer to the edges. At the same time the ele
tron distribution across the channel depends on the trasesve
modej. Itis given by the Hermite polynomials. Fgr= 0 the
electrons populate the center of the wire while fot 1 they
are distributed in regions closer to the edges. Hence, & el
trons withj = 0 are faster than those with= 1. Because of
the mixing between the confinement and RSOI different trans- 0
verse modes carry different spin states. Therefore, we con-
clude that different spin states have different group gl

along the wire. This difference results in a finite longinali ~ FIG. 1: (Color online) Non-equilibrium spin currenf;° . 5, as a
spin current. function of the amplitudeF’, of the driving force for different val-

Finally, one observes that a transverse in-plane unifoam st ues of thez-projection of the magnetic fielfl,. Further parameters:
’ rl;]emperaturek:Boltz_T = 0.5, spin-orbit coupling strengtks, with

tionary magngtlc flel.d 6?'0”.9 is not enough to produge f[he Sp'ksoL = m/2, orbit-orbit coupling strengthy = 0.08, driving fre-
current in a driven dissipative system. The magnetic fiefd ca I : - N

X . quencyf2 = 0.2, viscosity coefficient) = 0.08.
only affect the magnitude of the spin current when the prop-
erties of the isolated system meet the three conditiongeteri
above.

Lw

fs [10

Spin curr@ntJ,

1 2 3
Amplitude of the driving forcef[ AL ]

0.5

Ei
<10
VIl. RESULTS o
=
In this section we show some results obtained numericallys ﬁ -0.5
for the theoretical model developed in the previous sestion "=
As an example we consider an InGaAs/InP quantum wire §
structure. The values of the corresponding parameters usecg -1
to get the results are similar to the ones from the work of ¢
Schaperset al#! In particular, iwy = 0.225 meV, a = e
B2kso/m = 9.94x 10712 eV.-m (which givesk,, = 4.82x10° 15
m~1), m = 0.037Tmg (mg is the free-electron mass). The s ‘ | ‘ |
value,g = 7.5, of the electron spiny-factor (in our nota- 0 1 2
tionsg = —g*/2, whereg* is the effective gyroscopic factor Spin-orbit coupling strengtik_ L/t

measured experimentally) is taken from Rel. 42. From these
parameters and for example for the period of the supecdatti FIG. 2: (Color online) Non-equilibrium spin curreni®. g, as a
L = 2.5 /h/mwy = 0.24 um, which is easily achievable function of the spin-orbit coupling strength,, for different values

technologically at preseft it follows thatk,, L ~ 0.368. of the z-projection of the magnetic fielé. The driving amplitude
The asymmetric periodic potential is is F' = 1.0 hwo /L. The other parameters are as in Fig. 1.

U(r) = hwo{2-6 [1 - cos<27TT:C — 1.9>] + To present the results we use in all the figures the units of
(59) Twg andwy for energies and frequencies, respectively. The

+1.9 COS(‘“T_CC) } viscosity coefficient is taken in units afwg.
Let us discuss possible values of the driving parameters. In

a dissipationless system (or in a system with weak dissipati
The bath is assumed to be Ohmic with exponential cutoff: of size I one should restrict possible values of the driving
amplitude and frequency,< F'L < hwyand0 < Q < wp, in
J(w) = wexp <_i> (60)  Ordertosstay within the validity of the model with the firstaw
we )’ transverse modes opened. In a strongly dissipative system,
in our case, it is not necessary to fulfil the last inequalitie
where n is the viscosity coefficient and. the cutoff fre- because an electron loses a huge amount of its energy due
guency. We use. = 10 wy. to intensive dissipative processes. In general, our mofdel o



a driven strongly dissipative system taking into accoumt th ‘

first four Bloch sub-bands remains valid if at long times the __ 10y — F=05ha,/L :
electron energy averaged over one period of the drivinggforc & |\ —— F=08Nq,/L
€av(F, ,m) (Whichis a function of the driving and dissipation «~ [\ = F=E100q, /L

parameters), is smaller thdiv, €., (F,,n) < hwy. This
can take place even 'L > hwy and) > wy because even

[10

at such driving the strong dissipation (large valueg)ofvill g%
consume major amount of the electron energy. "TE?

In Fig.[d the non-equilibrium spin current as a function of £
the amplitude of the external driving is shown for different 3
values of thez-projection of the magnetic field. For small val- £
ues of the driving amplitude and small magnetic fields it is v

'~ - -
\\_'—‘(.__,/' T

z-axis, the spin current decreases, while the opposite-direc : ‘ ! ‘

seen that if the magnetic field has the same direction as the

S O
T

tion of the magnetic field amplifies the spin current. This be- - |§/|O.a?gnetic ﬁe|d?g” HAw O]'2
havior can be physically understood from EQ.1(54). Positive BOT0
values ofH, can be equivalently considered as larger value
of .FM.O’ that is of the distance between the tr_a}nsverse_ m_o_deﬁlnction of the magnetic fieldgug Ho, for different values of the
This in turn leads to a decrease of the transition prob&slit ,mpjitude of the driving forceF. The other parameters are as in
which suppresses the spin current. On the contrary, negativsg. 7.

values ofH, correspond to smaller values bf), leading to

an increase of the transition rates and thus the spin cugent

enhanced. Another physical explanation is that the magneti

field aligns the spins along its direction. Therefore, wign

is positive or negative the spins are forced to point in the dithe magnetic field. Whe[¥{,| increases further, the spin cur-
rection of thez-axis or in the opposite direction, respectively. rent depends non-linearly aff, and a complicated interplay
The spin current gets more polarized in the direction of:the between the magnetic field, driving and dissipative praeess
axis for Hy > 0 or in the opposite direction fall, < 0. Asa  develops. This dependence of the spin current on the magneti
consequence its magnitude decreasesfpr- 0 or increases ~ field is depicted in Fid.I3 for different values of the ampdieu

for Hy < 0 since it was polarized in the direction opposite to of the driving force. In order to stay within the validity ofio

the one of the:-axis in the absence of the magnetic field. model, where only the first two transverse modes are opened,

The same dependence of the spin current on the magnel‘iee magnitude of the magnetic field must satisfy the contitio
field with small values of its magnitude (as well as for a small
value of the driving amplitudé’L = 1.0 hwy) is found in
Fig.[2 in view of its dependence on the spin-orbit interactio gus| Ho| < 0.5(hwo + Acoia 1) (61)
strengthks,. Again for Hy > 0 the magnitude of the spin- = TR
current gets smaller and fdf, < 0 it gets larger. Addition-
ally, one can see that the presence of the magnetic field does
not change the locations of minima and maxima of the spifwhereAc..,; = 3, [5(70)1-1(]“}3) - 5(702)-1(]“}3)} /N. For the
current as a function of,,. This has the following physical values of the parameters used to obtain the numerical sesult
explanation. The minima and maxima in Hig. 2 are relatedye haveAe.,.,1 = —0.07hwy. Thusgpus|Ho| < 0.465hwq.
to the periodicity of the energy spectrum in tkespace. In  As it can be seen from Fifg] 3 the magnitude of the spin current
terms of the band energy versus the quasi-momekute-  decays for large positive values 8. This happens because
pendence RSOI produces a horizontal (that is the energy @he distance between the Bloch sub-bands becomes large and
the bands does not change) split of the energy bands as weHus the transition processes are less probable. For arcerta
as their hybridization. Due to the periodicity this splind@®®  negative value ofd, the magnitude of the spin current has
minimal or maximal for some values &f, which leads to the 3 maximum after which it starts to decrease and vanishes at
corresponding minima and maxima in Hig. 2. The role of thesome pointr " < 0. After this point and forH, < H.”
hybridization is that the split is never zero and thus theimén  the spin current reverses its sign and its magnitude ineseas
of the spin current are not exactly equal to zero. In contmast again. This behavior clearly demonstrates that the magneti
this horizontal split the magnetic field produces a verig@t  field can, without changing its direction, act in phaise. de-
is along the energy axis) split and it also produces hybeidiz stroy the spin transport) with the dissipative processesedis
tion. This vertical split is not correlated with the perioty  as out-of-phasei.e. intensify the spin kinetics) with them.
of the energy bands in the-space and thus the locations of pathematically it comes from the fact that in EG.32) for the
minima and maxima remain untouched by the magnetic ﬁ6|dtransition rates the magnetic fieldy and the imaginary part
However, the picture explained above is only valid for smallof the twice integrated bath correlation functibn[Q(7)] en-
values of the driving amplitud&' and magnitude of the mag- ter the arguments of the same trigonometric functions. This
netic field| Hy| where the spin current has a linear response tas clarified by Eq. [(3[7) appropriately rewritten below foeth

%IG. 3: (Color online) Non-equilibrium spin currenf,?‘icys, as a
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FIG. 4: (Color online) Non-equilibrium spin currenfr?‘icys, as a
function of the magnetic fieldyus Ho, for different values of the
viscosity coefficienty). The driving amplitude i¥" = 1.0%iwo/L.
The other parameters are as in Eig. 1.

casef’ =1,({ =4

L2

h
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Jy1,4 = ﬁ/o dTefLTQR(T)x

KA )T_
(%))

2FL
X J0|: )
whereQgr(7) = Re[Q(7)], Q1(7) = Im[Q(7)]. The phys-
ical explanation of why in our system the magnetic field in-
teracts only with the friction part of the dissipation and no
with its noise part is rooted in the roles which the magneti
field and dissipation play for quantum coherence. On the on
side quantum coherence in a dissipative system dies oubdue
the noise part of the Feynman-Vernon influence weight func

QI(T)] x (62)
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FIG. 5: (Color online) Contour plot of the non-equilibriunpis
current, J5° . s [Lwo], as a function of the magnetic field..z Ho
[Awo], and viscosity coefficienty. The other parameters are as in
Fig.[.

distance between the corresponding Bloch sub-bands.

The minimain Figd.13 arld 4 at negative value$lgfappear
as a result of a cooperative action of the orbit-orbit caupli
confinement, magnetic field, driving and dissipation. Itsalo
tion changes when the strength of the driving and dissipatio
varies.

For completeness in Fifl 5 we also show the spin current
as a contour plot using the variablég andz. The main
effect of the interaction between the electrons and externa
environment is the electron dressing. The dressed elextron
are heavier and as aresult less mobile. Since the spin defgree
freedom is carried by these dressed electrons, the spiarturr
lecreases when the viscosity coefficient grows.

tional. On the other side, within the Feynman path integral
formalism, we see that in our system a transverse in-plaine un
form stationary magnetic field cannot produce the additiona
phase due to the integral of the vector potential along the
Feynman paths (see Appendik C). Thus in our system quan- In conclusion, we have studied averaged stationary quan-
tum coherence is totally insensitive to the magnetic field an tum transport in a driven dissipative periodic quasi-one-
as a result cannot interact with the noise part of the Feyamardimensional (1D) system with Rashba spin-orbit interarctio
Vernon influence weight functional. (RSOI) and placed in a transverse in-plane uniform stationa
The mutual impact of the magnetic field and quantum dismagnetic field. For the case of moderate-to-strong dissipat
sipative processes on the spin current in the system is shownhas been shown that the averaged stationary charge trans-
in Fig.[4 where the spin current is plotted versus the magnetiport is well suppressed as soon as it is restricted within the
field, Hy, and the viscosity coefficieny, plays a role of a pa- Bloch sub-bands grown out of the same Bloch band of the cor-
rameter. Again for large positive values@f the spin current  responding truly 1D problem without RSOI. However in the
vanishes. As expected, the spin current gets smaller ififie d same situation the averaged stationary spin transportiis ac
sipation in the system gets stronger. When the dissipagts g vated. The analytical expression for the spin current has be
weaker § = 0.05 andn = 0.03 curves) the oscillations of the derived and its behavior as a function of the driving param-
spin current become observable. These oscillations atetel eters, dissipation, spin-orbit interaction strength,iteobbit
to the interaction between the magnetic field and driving anatoupling strength and a transverse in-plane uniform statio
can be described in terms of the photon emission/absorptioary magnetic field has been analyzed. Our results on the spin
processe¥ since changingd, is equivalent to changing the transport in the system have been presented and thoroughly

VIIl. CONCLUSION
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discussed. It has been found that the spin current as aduncti 2. Truncation of the Hilbert space using Bloch states
of the magnetic field shows a highly non-trivial dependence
for different values of the dissipation and driving paraenst Let H be the Hilbert space of all possible states and let us

In particular, increasing the magnitude of the magnetidfiel choose in this space the basis of Bloch’s stdtesig) }:
does not always lead to a monotonous response in the magni-

tude of the spin current. The magnitude of the spin curremt ca (2|1, k) = e*®%uy 0 (x),
have maxima after which its dependence on the magnitude of U (2 + L) = w gy (2), (A1)
the magnetic field changes to the opposite one. Moreover, the ' '

; . . VkgeBZ,1=1,2 ...,
spin current as a function of the amplitude of an external lon
gitudinal ac electric field has reversals of its directionewh where L is the period of the Bloch amplitude 1, () and
the system is placed in a finite transverse in-plane uniforng . 7. stands for the first Brillouin zone.
stationary magnetic field. Also as a function of this magneti  Any vector|) € H represents a linear combination
field the spin current changes its direction at finite valufes o
the amplitude of the ac electric field. Such behavior is un- >
doubtedly related to a deep correlation between the dissipa [¥) = Z Z cinll k).
processes and magnetic field effects in the system.

(A2)
=1 kpeB.Z.

Another basis«) is obtained using a transformation
o) =U Y, kg), VkpeBZ,1=1,2,..., (A3)

whereU is an arbitrary unitary operator.
Acknowledgments Let us consider an operatér corresponding to an observ-
able®. Its matrix representations in the two bades]|(A1) and
Support from the DFG under the program SFB 689 is ac-@ are
knowledged. Og = (I, ks |O|l, ks),
V kg, kg € BZ.,1,I'=1,2,..., (A4)
On = (/|0]a), V a,d.

The eigen-value$);} of the two matriced (A4) are the same
APPENDIX A: EIGEN-VALUE STRUCTURE OF THE and represent all possible values of the observéble
BY BLOCH STATES OF A FINITE NUMBER OF BANDS Bloch's states corresponding to a finite numbés, of bands.
Avector|)°) € S has the form:

In this appendix we consider a physical property with the Ng
corresponding quantum mechanical operator which when op- |¢) = Z Z c1, ko lli, kB). (A5)
erating in the Hilbert space has a continuum spectrum and =1 ksenz.

show how this continuum spectrum can turn into a discrete .
one under a certain restriction of the Hilbert space. To lee sp In this subspace the operatGrhas the matrix representation:
cific we constrict the Hilbert space to a subspace using some R

: : 08 = (lir, ki3 |O|l;, k)
of the Bloch states and consider how the coordinate operator i’ MBIy VB

A6
changes its spectrum. V kg, kg € B.Z.,i,i' =1,2,... Np. (A6)

Now the eigen-valueg\s } of (A6) do not represent all possi-
ble values of the observahi2but they only give approximate
values of some of them. If the operai®rcorresponds to a
_ continuous observable with the spectrum frenxo to co, the
1. Introduction eigen-valueg\5} are some of the eigen-valués;}, that is
in this casg{\S} C {\i}.
In many problems of condensed matter theory one is not A new basis{a“} of the subspacé is related to the Bloch

usually interested in the full band structure of a solid latier one as.

in a few bands most important for the relevant physics of a |a5> = U§1|li, kg),

system. For example in metals one or a few bands with an Vks €BZ.,i=12 N
energy range containing the Fermi energy are most important ’ T
since the main contributions to transport properties colme ayhere now/3 ! is not an arbitrary unitary operator, but a uni-
most only from those bands. Taking into account only a fewary operator with the following property:

Bloch bands leads to a restriction of the Hilbert space to a A R

subspace which is then used to describe physical properties Us: |v)eS8S = Usl) eS8, Vl)eS. (A8)

(A7)



In this case the matrix

03 = (¥]0]a®), Vo', a® (A9)
has the same set of eigen-vales’} as the matrix03 in

(AG).

3. Example: coordinate

Let us specify the observabt2 from the preceding section
to be particle’s coordinate with the corresponding operator
denoted ag. We consider the operatgrin the subspacs.
Its matrix with respect to the Bloch basis is

C]g = <li” k%ﬁl(ﬂllv kB)a

A10
V kg, ki € BZ., i, =1,2,..., Ng. (A10)

Let us choose the translational operator as the unitary ope

atorUs from the preceding section, that is
Us(a) = en. (Al1)

Itis obvious that for an arbitrary value atthe operatot/s (a)
does not satisfy the properfy (A8). However, in the case L

a Bloch statgl, kg) is translated into a Bloch state with the

same, kg and thus[(AB) is fulfilled. Hence, the matrix

G5 = (lv, k| Us(L)aUs (L)L, kn),

A12
V kg, kly €B.Z., 4, =1,2,...,Ng (A12)

has the same eigen-values as the magiin (AL0). But due
to the equality

Us(L)qUs (L) =4+ L (A13)
the two matricegs andgg are related as follows:
(L, k| Us (L)aUs * (L)L, k) =
= <li/, ké|(j|li, k}3> + Léi/,iék%7k}3, (A14)

V kg, kly € B.Z., i, =1,2,..., Ng.

From [AI2) it follows that the eigen-values of the matgx

12

NN whereN is the number of the elementary cells, we con-
clude that there ar&/g eigen-values in each elementary cell.
This gives us the final expression for the eigen-values of the
matrix g3 (V is even to be definite):

Ao =JL+d5,m=12,. Ng,
N N

NN
7 2—1—, B)

N 1N(A17)
vy g

+2,...,-1,0,1,..

andN — oo afterwards.

APPENDIX B: POLARIZATION OF THE SPIN CURRENT
ALONG THE z AND y DIRECTIONS. CONVENTIONAL
SPIN CURRENT

In Ref.[34 it was shown that in an isolated system (without
any external magnetic field) the only non-vanishing spin po-
[arization is along the confinement direction, that is altime
z-axis. A natural question is then what is going on in an open
driven system in a uniform stationary magnetic field applied
along thez-axis. The external forc€l(4) and bath Hamiltonian
(6) couple to the longitudinal orbital degree of freedonatth
is to thexz-coordinate of our system. Because of the spin-orbit
coupling the external force and bath affect the spin dynam-
ics of electrons in the quasi-1D system. The magnetic field
also influences the spin transport. Can it then happen tkat th
longitudinal spin current acquires components polarizeda
thex andy axes? Below we show that the componefits (¢)
of the spin curren{(11) identically vanish.

1. Longitudinal spin current components J3¥ (¢) polarized
along thez and y axes

The expressions for the spin currents

%Tr(&m,yfﬁ(t))

(B1)

1)

can easily be found using theDVR basis{|(,m, j, ), ; }
introduced in Section I

d

are invariant under a shift equal & with j being an integer. JE(t) = 2d—TrB Z (mL 4+ dy;c j) %
That s for anyAy € {7} there exists\3, € {\5} such that b
S _ S XRe(’Y,j<<7mvjaa'/:+1|W(t)|<amaj70:_1>’Y-,j)a

AL =JL+ A (A15) (82)
Let us denote througfs } those eigen-values af; the dis-
tance between which is less than

JY(t) = —2iTrB Z (mL + d.yc i) ¥
d7 —dd| < L, Vdi.dde{di},  (AL6) dt " o ~

and which are in the zeroth elementary cell. Then each of x Im(w-@,m,j, o' = +1|W(t)|<,m,j,cr = —1>w-),
the eigen-value$\S} of the matrixgs is obtained from its (B3)

corresponding eigen-valug, € {d$} by a shiftjL with a

proper integey. It means that each elementary cell containswhere we have explicitly written the trace over the bath de-
the same number of eigen-values of the coordinate operatcgrees of freedom in order to work further with theDVR

Since the total number of the eigen-valyes’} is equal to

matrix elements of the full statistical operaid(t).
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2. Selection rules for theo-DVR matrix elements of the full operator):
statistical operator

Hian (t3) Hean (t2) Hean (t1) = Hiy_, + HE_, (Ho+
It turns out that the case of a harmonic confinement allows + F.(¢,) + Hbath)JrﬁR,Z(Ho 4 Hex(t2)+
one to formulate selection rules for tkeDVR matrix ele- - ~ - - - -
ments of the full statistical operator. These selectioagare + Hf)ath)fi[ﬁ—z-i-HRjz(Ho—kI{ext (tQA) + Hbath) X
very useful for understanding some of the properties of the x (Ho + Hexi(t1) + Hbath)+(H0 + Hexi(ts)+

spin transport. . ~ o N N . .
4+ Hpatn ) Ha o+ (Hy + Hext (t3) +Hpatn ) Hr—7zx (B8
To find the selection rules mentioned above let us decom- b th) r-z+(Ho olts) b th) R=2 (B8)

pose the Hamiltonia#/ in (@) into X (Ho + Hext(t1) + Hyaen) +(Ho + Hexe(t3)+
. . . + Hbath) (HO + Hext (t2) + Hbath)HR—Z + (H0+
0= HO + HR?Z’ (B4) + ﬁcxt(tS)‘i‘f{bath) (HO + cht(t2) + ﬁbath) (IA{O‘F
where + Hext(t1) + Hyatn).-
979 949 9 Since for a harmonic confinement all the facté¢f%, +
. h*k mws2 . 2 ; A X e
Hy = + +U@) 1+ 125 | (B5) Hoyi(tr) + Huatn) @and k., couple states with indices and
2m 2 L 4" only of identical parity and the factok$™ " couple states
with indicesj and;’ only of opposite parity, we conclude that
the matrix elements ;(¢,m, j,o’ = +1|{W(t)|(,m,j,0 =
. ke . - . —1), 5, being diagonal iy, are equal to zero:
HR*Z = - m (&mkz - &zkm)_gNB&zHO - >’m g J g a
Bhe - (B6)  (Com.jio’ = +UW ()¢ m.joo = —1),; = 0. (BY)
=— (crmkz - crzkz),
m The selection ruleg (B9) represent a specific property of sys

. . o tems with a harmonic confinement. Frdm {B9) one gets
andk!, = k, — gugHom/h?ks,. The full statistical operator

has the forni¥/ (t) = U(t, to)W (to)U1 (¢, to), where the evo- J$Y(t) = 0. (B10)

lution operatoil (¢, to) is given as the time-ordered exponent ) ) ) )
In spite of the fact that this result is only valid for the casa

o harmonic confinementit is still general in two respectst i) i
Ult, tg) = Texp [_l / dt/Hfull(t/):| — valid not only for the stationary state but for all time%: to;
to 2) the external forcé’(¢) is arbitrary.
00 i n pt to R . (87)
=y (—ﬁ) /dtn o [ dtiHean(tn) - - - Hran (1)
n=0 to to

3. Role of the spin current definition

Only the terms off/r_z with odd powers contain the spin  In light of the mathematical formalism of the this appendix
operators. These terms are lineardip and &, or bilinear  itis now convenient to discuss the difference between the co
in these spin operators which is equivalent to being linear i ventional spin current definition and the definition of thensp
dy. Contributions to the matrix elements;(¢,m,j,0’ = current used in our work, that is the definition introduced by
+1|W(t)|(, m, j,0 = —1)., ; come from the first order terms Shiet _al?g. We will co_nsider thez-polarized components of

in 6,. Itis easy to see that these terms represent product§e spin currents obtained from the two definitions. The con-
of the factors(Hy + Hex:(tx) + Hpawn) ordered chronolog- ventional spin current operator and the conventional spin ¢
ically (we mean the chronological ordering on the Keldyshrent will be denoted agg®™(¢) and Js*"¥(t), respectively.
contouf and thus operators frofi' (¢, t) are also included The spin current operator and the spin current which are used

under this terminology), an odd number of factdrsdis- 1" OuUr work will be denoted ady (t) and.Js(t), respectively.
tributed in betweer(Ho + Hox (tx) + Hiatn) in all possi- The two definitions and the difference between them are

ble ways and a number (even or odd) of factéggsalso dis- d dz

tributed in betweeriHy + Hey (t) + Hpaen) in all possible Js(t) = E(sz% B = T (B11)

ways. Such a structure is related to the fact that the Rashba- conv dé. ,
S s L . . Js(t) — J§(t) = z
Zeeman HamiltonianHg_z, is bilinear in the operator, dt
and k.. To clarify our above statement we write down the One easily finds that
third order term coming for example frobi(¢, to) (a similar y
result is obtained for products which are composed from dif- dé., Wikeo . -

ferent,U (¢, to), UT(t, to) or W (o), parts of the full statistical % =, vk (B12)
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Thus the relation between the spin currents is term in Eq. [BIB). There is not any general physical reason
for this term, averaged over one driving period, to vanish in
JSOM(t) = Js(t)+ the insulating limit at long times because it is not propvél
ks, to the time derivative of the averaged populations of thiesta
+1 m Trp Z (ML + dyic j) % but it is proportional to the averaged non-diagonal (in thie s
Cymg and transverse mode subspaces) elements of the reduced sta-
X (w@, m,j, o = +1|/Asz(t)|C,m,j, o=—1) ;- tistical opergtqr. Th_ese averaged non_—diagonalelemgntmc
., PN . general be finite in insulators. The spin ratchet effectiobth
— 1i(¢my g 0" = kW (1)|¢,m, j,0 = +1), 5). from the conventional definition of the spin current couleirth
(B13)  take place in insulators which to our opinion would be un-

The second term in E_(BIL3) can be finite for our system. rPhysical.

show this we consider the produ@t (¢3) Hsan (t2) Hean (t1)
in Eq. (B8). This product contains for example the teffi ~ APPENDIX C: EIGEN-ENERGIES AND EIGEN-SPINORS IN

whereH is given by Eq.[{B%). We can write this term as THE PRESENCE OF ORBIT-ORBIT COUPLING AND A
UNIFORM STATIONARY MAGNETIC FIELD ALONG THE
N R B2k. \2. . k. . . 2z-AXIS
H? = H + ( m> Hok?* — mso [HE (60k.—
R R A o W2 R In Ref.|34 periodic structures formed in a 2DEG with RSOI
— 6:kL) + Ho(65k. — 6:kl,)Hy| ———= (6k-— have been considered. However the influence of an external
) 5 m homogeneous stationary magnetic field on the energy spec-
— 6 VHE — <%) (60 — . )R+ (B14)  trum has not been studied. Here we generalize the results of
#relmo m v e Ref.|34 to the case of a uniform stationary magnetic field ap-
RENZ o o plied along thez-axis. Afterwards we discuss the orbit-orbit
+ ( m“’) [k.Hok. + ki, Hok, +i6, (k. Hok.,— coupling introduced in the main text in EQJ (2).
— k Hok.) + kK*HZ].

1. System’s Hamiltonian and the general eigen-value equatn

From Eq. [BI#) we see that the operaﬁgW(t) has terms
like For an arbitrary potentiaV’(z) (not necessarily confine-
ment) along the-axis and a uniform stationary magnetic field

Rl 2o | o a oo s : e L A
i( > ooty b Fob! — B Floh), (B15) ﬁp;pr):?d along thes-axis (2DEG s in ther — = plane) the
m iltonian reads
. . A . N R 521;2 . thso . .
which are even with respect fg and odd with respect té,. o= +V(3) - (60 — 6.k )+
Therefore, in general we have 2m (C1)

+ U(f) - guB6zH0.

. / 7 17 .
a6, ot = +1|kzv}/(t)|4’m’]’ 7=y In Eq. [C1)H, is thez-component of the magnetic fiel =
= 4i(Cm, g0 = =1k W (t)|(,m, j,0 = +1), ; # 0, (0,0, Hy) and the Landau gaugd, = (—Hyy, 0,0), has been
(B16) chosen. Additionally we have used the fact that in a 2DEG
y = 0. This choice effectively gives only the Zeeman term.

which means that the two spin current definitions are differe The eigen-states of Hamiltonian {IC1) are Bloch spinors with

in our problem. The physical reason for this can be undedstoothe spinorial amplitude given as (see Ref. 34)

from Eq. [BI5). The term given by Eq._(BI15) is finite since

k! andk, do not commute with,. It happens because of the Ul ks (T3 55, 0) = Ui ks koo ()01, 1550 (45 ), (C2)

presence of both the periodic potential and the confinengent a ) )

it is obvious from Eq.[(Bb). Thus we conclude that unlike free Where ui i, () is the Bloch amplitude of the correspond-

Rashba electrons the two definitions of the spin current ar'g truly 1D problem without the magnetic field and without

not equivalent for Rashba-Bloch electrons with a trangvers RS0l andi i, (7, 0) is the eigen-spinor. This eigen-spinor

confinement. is obtained from the solution of the eigen-value equation fo
As one can see from Eqs[{13).132) afd] (43) in the in-Hamiltonian [C1):

sulating limit Js(¢) — 0. This is just a consequence of the o

fact that the spin current definition which we use represants Z {53-4/50,0/ [El( (kg + okso) — gupoHo + €5—

full derivative. Itis quite reasonable from the physicalpof j'a

view that the spin ratchet effect being a transport phenamen thSQO] B2k, (C3)

is absent in insulators. However, the conventional definiti ~ —
of the spin current is not a full derivative. The spin current _
Jeonv (¢) differs from the spin currentis(¢) by the second = €L (kB)0ks.n (5, 7).

2m m

(160 (il |j'>}el,k3,n<j', o) =
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2. Harmonic confinement valid with the following change. The corresponding truly 1D
problem without RSOl and transverse confinement has to be

The case of a harmonic confinement is characterized by the0lved now not for the periodic potentigl(x) but for the
following matrix elements of the operatby: periodic potentiall, ; (x) = U(x)[1+yh(j+1/2)/muwoL?].
Thus the solution of that truly 1D problem acquires a depen-
11 dence on the transverse mode quantum numb#rough
(lks|5") = ii&j,j/il\/(j taF 2)mw07 (C4) the periodic potential dependence on that quantum number:
2h e (kg) — e (kp), |l ks) — |l,kg),;. This does not
change the structure (location of zero and non-zero ehtries
of the resultingd x 4 matrix which is thus diagonalized in

) the same manner as in Refl 34. We label the eigen-energies

and eigen-energies:

(C5) and eigen-spinors obtained from this diagonalization as
evyin(ks; Ho) and 6.,y (4,05 Ho) to stress their depen-

Therefore the only change in comparison with Ref. 34 is in thedence on the orbit-orbit coupling strength The symmetry

diagonal matrix elements of the Hamiltonian. Reproducing€lations[(CF){(CDB) are, of course, unchanged.

the same calculations as in Refl 34, that is taking into aticou

only the first two transverse modegs€ 0,1, 0 = +1,n =

1,2, 3, 4), one finds that the only change in the final results for

the eigen-energies and eigen-spinors consists in regléom APPENDIX D: BLOCH STATES IN THE DVR
functional’ (kB) with REPRESENTATION

. 1
Ej—RWO(j+§

- 51(0)(kB + ko) — El(o)(kB — ko) The scalar products; (¢, m|l, kg).,; are nothing else than
g, (ks; Ho) = B) ~  (Ce) the Bloch states of the corresponding truly 1D problem with-
out the magnetic field and without RSOI in the representa-
tion of the coordinate operatdr operating on the subspace
where we have explicitly shown the dependence onzthe S C H, see AppendikA. Thus using the eigen-values (given
component, of the magnetic field. The expressions for the in AppendixXAB) of this coordinate operator we have:
eigen-energies and eigen-spinors written through thetiimmc o (m _
e/ (kp) in Ref.[34 are unchanged. Also the structure (that is 7.7 (C; |l k), = e Rl dica)y DV (dye,), (D)

the zero and non-zero components) of the four dimensionalh d d the Bloch litude with the abbreviati
eigen-spinors is the same. where we denoted the Bloch amplitude with the abbreviation

The time reversal symmetry is now broken and as a resuf?VR in order to stress that it originates from the discreteé-va
the symmetry relations between the eigen-energies andeigeable representation and differs from the one which origisat

spinors hold only if one simultaneously changes the dioecti from the. continuum variable representation.
of the magnetic field. For the eigen-energies we have: The difference of the squares of the absolute values of the

hopping matrix elementgAX ;" (m)|? and |AZ (m) 2,

- g/'LBH()a

ein=1(k; Ho) = €1,n=2(—kn; —Hop), ) inl_) can now be expressed in terms of the DVR Bloch am-
e1,n=3(ks; Ho) = €1,n=a(—kn; —Ho). plitudes as
For the eigen-spinors the symmetry relations are writtenas ~ |AZ% " (m)[*> — |AZE ()] =
Bponet (G = 0,1}, = {+1,—1}; Hy) = - _% S sinl(kn — k) L)Im[Fy iy 1), 2
=01 ks =2(j = {0,1},0 = {~1,+1}; —Hy), (C8) ke, k

O1,kp.n=3( ={0,1},0 = {—1,+1}; Hy) =
= elkam:4(j = {07 1}5 0 = {+17 _1}; _HO)7

D D
where it is also taken into account that th@rojection of the Fh by = UG o (dV*170)%7\1/;}1{»’6{3*%0(%*171) x (D3)
spin operator (and as a result its eigen-values) changggiits
under the time reversal. The only non-vanishing polarzati
is again the one along the confinement (and also magnetithe fUﬂCtiOﬂFy;kB,kg has two useful properties which di-
field) direction. The symmetry relations for its componentsrectly follow from its definition[DB). The first property caes
are: from the fact thaTF%kByk;3 is real if the Bloch amplitudes are
real:

where we have introduced a functioy. ., ., defined as

DVR DVR *
X [uml;l,ks—kso (d’Y§1=1)u'y,O;1,k’B+kso (dw;l,o)} .

Bl alke; Ho) = —P{), 5 (~kei —Ho).  (C9) o

. . . . Im[uv,j;l,kg (d7;17j)] =0 = Im[F'y;kB,kfg] =0. (D4)
Finally, we would like to note that since for the model with

the first two transverse modes an operator even with respeghe second property is thdf,—o.x, x,, iS an even function

to 2 is effectively diagonal, the results obtained above remainn both of its arguments. Indeed, when = 0, we have



Uy it ki () = i kg (7), dosc 5 = d, thatis

Fy—oks ki = UEX;{H%O (da )UEX;?*kSO (d1)x

DR o ([d)uPYE , (d)]”.

x [ur gk,
One then finds from EqL(D5) that, —o, ks 1y, = Fy=oiknky,
andszo;k&_k% = F,—oks.k;,- AS @ CcOnsequence, from this

(D5)
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property one gets

Im[Fy—o;— kg kg, ) = Im[E 05k k],

(D6)
Im([F 0., — kg, ] = Im[Fy =0k 17, ]

which means thatm[F, —o.x, k] IS even inkg andkg. The
same is also valid foRe[F,, o1y k1,
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