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Chapter 1

Introduction

Time-resolved nanoscopy has become a key route to watch electrons move on their char-
acteristic spatial and temporal scales. Among the newest techniques, which also inspired
this work, is near-field optical tunneling emission (NOTE) microscopy [1]. It pushes spatial
resolution to the subnanometer scale and temporal resolution to the subcycle regime. A
nutshell description of NOTE microscopy is given in Fig. 1.1.
What makes NOTE microscopy special is that the tunneling dynamics is driven and read
out entirely optically, avoiding the limits of current measurements and the need for electrical
contact, thus making the technique applicable to nonconducting materials [1]. Given this
promise, focused theoretical efforts toward its description are worthwhile.

Figure 1.1: A typical experimental setup of NOTE microscopy: (a) A metallic tip and
a metallic substrate are brought to a distance of a few Å and the system is illuminated
by an ultrashort laser pulse. (b) The laser pulse induces electron dynamics and effectively
polarizes the system. A strong near field emerges in the gap. (c) Electrons tunnel across
the gap in synchrony with the driving laser pulse. (d) Accelerated charges emit radiation
in the near field that is detected optically. Adapted from [1, 2].
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The central question we take first steps toward in this work is: at which excitation energies
is the tunneling dynamics most efficiently driven and can we identify these using theoretical
tools alone, without having to conduct experiments?
We address this question by employing density functional theory (DFT) and its time-
dependent extension, TDDFT. Briefly, a short, weak perturbation excites the system and by
computing the time-dependent dipole moment from the time-dependent electron density, we
acquire the excitation spectrum. Obtaining excitation spectra for compact metallic clusters
has been demonstrated before in numerous works (for example, the work of Calvayrac [3])
with reasonable accuracy. In our work, while using a similar theoretical path, we focus on
metallic tip–substrate structures and obtain the relevant excitation energies from the dipole
oscillations of the cluster, which correspond to the energies absorbed by the system [4].
These findings are useful for both theory and experiment, as knowing which energies are
absorbed while charge transitions across the gap can provide useful information for NOTE-
like techniques and help to interpret the observations. The investigation brings several
challenges, such as distinguishing gap modes from the dynamics inherent to the tip or sub-
strate, tracking how the excitation spectrum responds to geometric variations (cluster size,
gap distance) and providing robustness over dozens of calculations.
While solving the many-electron problem with pen and paper is not an option and solving
the full Schrödinger equation for large systems is computationally infeasible, DFT offers an
efficient alternative for static problems and TDDFT extends it to excitations and real-time
dynamics. As the most important prerequisites for this work, we first introduce the essen-
tial concepts of DFT and TDDFT and demonstrate how to extract the excitation spectrum,
and provide a theoretical framework within which the observations are interpretable. After
establishing the workflow, we apply it to small metallic tip–substrate nanostructures, sys-
tematically vary the cluster size and gap distance and also justify the parameters used in our
calculations. While coming short in quantitative extendability to large real-life experimen-
tal setups, the results delivered in this work are qualitatively valuable and consistent with
state-of-the-art knowledge, opening up the path for future work to cover the quantitative
part.



Chapter 2

Ground state density functional theory -
theoretical foundations

This chapter introduces the theoretical foundations of the ground state density functional
theory (DFT), which are indispensable for the subsequent time-dependent calculations. Hav-
ing its roots in the 1920s, DFT became a complete and accurate theory in the 1960s with
the publications of Kohn, Hohenberg and Sham [5].
We begin with the quantum mechanical many-body problem and the Born-Oppenheimer
approximation, followed by the reformulation of the problem via the Hohenberg-Kohn the-
orems, which introduce the characteristic density functionals. Building on this basis, we
present the Kohn-Sham construction, derive the Kohn-Sham equations together with their
self-consistent solution and discuss some practical aspects of the calculations, such as basis
sets and pseudopotentials. Finally, we give a brief overview of the most common exchange-
correlation approximations.
The goal is to demonstrate why and how a density-based method circumvents the complexity
of the complete many-body Schrödinger equation, without compromising on its predictive
power and credibility.
This chapter closely follows standard treatments as presented in foundational texts by Ull-
rich [4], Parr and Yang [5] and Jensen [6]. The logical order and some of the physical
formulations were inspired by the Lecture Notes of Jan Wilhelm [2].

2.1 The many-electron problem

We start with the time-independent, non-relativistic Schrödinger equation in its most general
form

ĤΨn = EnΨn. (2.1)

Here, Ĥ is the Hamiltonian, Ψn is the nth eigenfunction that solves the eigenvalue equation
(2.1) with the corresponding energy eigenvalue En. The lowest energy eigenvalue is referred

4



2.1 The many-electron problem 5

to as the ground state energy and can be expressed as

E = min
n

En, (2.2)

with the corresponding eigenfunction Ψ denoted as the ground state wave function.

The wave function Ψ depends on the spatial coordinates of the electrons and the nuclei
in the system

Ψ = Ψ(r,R), (2.3)

where r and R denote the ordered sets of all coordinates in a system with N electrons and
K nuclei respectively, in the following notation [2]:

ri = (xi, yi, zi) Coordinate vector of electron i, i = 1, . . . , N

r = (r1, r2, . . . , rN) Ordered set of all electron coordinates

RA = (xA, yA, zA) Coordinates of atomic nuclei A, A = 1, . . . , K

R = (R1, . . . ,RK) Ordered set of all nuclear coordinates

Besides the kinetic energy operators of the nuclei, T̂nucl, and the electrons, T̂e, the total
many-body Hamiltonian contains nucleus-electron, electron-electron and nucleus-nucleus
interaction terms [2]

Ĥ(r,R) = T̂nucl(R) + T̂e(r) + V̂Ne(r,R) + V̂ee(r) + V̂NN(R). (2.4)

The kinetic energy operator of the electrons is

T̂e(r) = − ℏ2

2m

∑
i

∇2
ri

(2.5)

and for the nuclei
T̂nucl(R) = −

∑
A

ℏ2

2MA

∇2
RA
. (2.6)

The Coulomb potential energy terms are

V̂Ne(r,R) = −
∑
A

∑
i

ZAe
2

|ri −RA|
, (2.7)

V̂ee(r) = +
∑
i

∑
j>i

e2

|ri − rj|
, (2.8)

V̂NN(R) = +
∑
A

∑
B>A

ZAZBe
2

|RA −RB|
. (2.9)

Here, Z is the atomic charge of the nucleus, A and i are the running indices for the nuclei
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and the electrons, respectively. The inner sums in Eqs. (2.8) and (2.9) serve the purpose of
avoiding double counting of the electrostatic interactions.
Relativistic kinetic energy corrections, spin-orbit, orbit-orbit, spin-spin coupling effects, as
well as interactions with external electromagnetic fields are not covered by the Hamiltonian
(2.4).

Born–Oppenheimer approximation

A crucial simplification of this Hamiltonian (2.4) is the Born-Oppenheimer approximation.
The central idea is that the atomic nuclei are significantly heavier (a proton is about 1836
times heavier than an electron) and therefore move much more slowly. As a result, the
nuclei are assumed to be fixed.
Under this assumption, electrons then adjust very fast to the nuclear motion. The two sets
of degrees of freedom are then separated and the wave function Ψ(r,R) is then factorized
into a nuclear part Ψnucl and an electronic part Ψe

Ψ(r,R) = Ψnucl(R)Ψe,R(r). (2.10)

Here, the wave function Ψe,R(r) depends parametrically on the nuclear positions R, meaning
the nuclear positions have to be provided as numbers. The nuclei-nuclei potential opera-
tor V̂NN(R) enters the Schrödinger equation as a fixed parameter VNN,R for each nuclear
configuration and the kinetic energy of the nuclei T̂nucl(R) gets "eliminated", yielding the
modification of the Hamiltonian (2.4) for the many-electron system

Ĥe,R(r) = T̂e(r) + V̂Ne,R(r) + V̂ee(r) + VNN,R (2.11)

and the electronic Schrödinger equation becomes

Ĥe,R(r)Ψe,R(r) = EΨe,R(r). (2.12)

For simplicity, we drop the indices in the Eqs. (2.11) and (2.12)

Ĥ(r)Ψ(r) = EΨ(r). (2.13)

This approximation reduces the many-body problem to calculating the electronic structure
for fixed nuclear positions — forming the starting point for many electronic structure meth-
ods, including density functional theory. We are particularly interested in the ground state
solution of the electronic Schrödinger equation (2.13). The reason is that, in typical solids
and molecules, the lowest excited states are on the order of several electronvolts above the
ground state and since we investigate the systems in moderate temperatures, their corre-
sponding thermal energies are far too small to populate the higher excited states to any
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appreciable extent [2]. We will later see that in the context of time-dependent calculations,
such as those presented in this work, the system is also initially prepared in its ground state
and subsequently driven out of equilibrium by an external perturbation [4].

2.2 Ground state DFT

Solving the Schrödinger equation gives us full access to all quantum state information. For
instance, by knowing the ground state eigenfunction Ψ0, we now can estimate the value of
any associated physical observable Ô by calculating the expectation value in the ground
state

Ô0 = ⟨Ψ0|Ô|Ψ0⟩. (2.14)

Except for the special cases, such as for two-electron systems, systems with high symmetry
and in reduced dimensionality, solving the full many-electron Schrödinger equation (2.13)
is a huge challenge because of its overly complex numerical nature. The computational
cost of it grows exponentially to astronomical numbers the bigger the N gets [2]. Several
schemes were developed dedicated to cleverly finding approximate solutions, among which
Hartree-Fock and quantum Monte Carlo approaches are notable examples [4].
But is it in practice even absolutely necessary to solve the many-body equation fully or are
there other ways of obtaining the desired observable value, without having to face a huge
exponentially growing computational challenge? After all, the exact wave function contains
much more information that wouldn’t concern us in practice. This is where DFT comes in
consideration. It relieves us from the challenge of solving for the full Ψ and makes it possible
to calculate all properties of a given many-body system from the density of electrons n(r)
[4].

2.2.1 Hohenberg-Kohn theorems

The so-called Hohenberg-Kohn theorems provide proofs to the bold claim that it is possible
to determine all quantum properties from the density of electrons and how an electron
density dependent energy functional can give us the ground state energy [7].
The density of electrons n(r) is defined as the expectation value of the electron density
operator n̂(r)

n(r) = ⟨Ψ|n̂(r)|Ψ⟩, (2.15)

with Ψ being the many-electron wave function. The electron density operator n̂(r) is defined
as

n̂(r) =
N∑
i=1

δ(r− ri), (2.16)
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with ri being the coordinate of the electron i. If Ψ0 is a ground state wave function,
the corresponding n0(r) is then called the ground state electron density. Normalized, the
electron density n(r) gives the number of the electrons in the system [2]∫

n(r)d3r = N. (2.17)

The electronic Hamiltonian (2.11) is assumed to have the form

Ĥ(r) = T̂ (r) + V̂ext(r) + V̂ee(r), (2.18)

with an external potential

V̂ext(r) =

∫
d3r vext(r)n̂(r)

(2.16)
=

N∑
i=1

vext(ri), (2.19)

which is given by the sum over allN electrons of the potential vext arising from the interaction
of each electron with all nuclei [4].
The kinetic energy T̂ (r) and the electron-electron interaction potential V̂ee(r) are given by
the Eqs. (2.5) and (2.8).
Here, we dropped the electrostatic repulsion term VNN(R), because it is a constant, not an
operator.

First Hohenberg–Kohn theorem

The external potential vext(r) is determined uniquely by the ground state electron density
n0(r), up to a trivial additive constant [8].
In this context, the term "uniquely" implies a bijective mapping between n(r) and vext(r),
up to a constant shift. This means that from a given ground state electron density n0 one
can trace back to a single external potential vext(r), which in turn reproduces the same
density n0 [2]

vext(r) ↔ n0(r). (2.20)

As we can determine the vext(r) from the electron density, therefore the Hamiltonian (2.18)
is uniquely determined as well. Since the Hamiltonian is determined (except for a constant
shift of the energy), plugging it into the Schrödinger equation yields the many-body wave
functions for all states Ψn with their corresponding energy En. The corollary to this the-
orem states that all properties of the system can be determined given only the ground state
density n0 [9].
The first Hohenberg-Kohn theorem establishes that all properties of a system can be recon-
structed from its ground state density. But it does not provide us assurance that the trial
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density is in fact the ground state density. The second Hohenberg-Kohn Theorem gives a
formal solution to this problem by introducing a functional F [n], which delivers the ground
state energy if the input (the electron density) is right [7].

Second Hohenberg–Kohn theorem: the variation principle

A functional of electron densities for the total energy E[n] is defined as

E[n] = F [n] +

∫
vext(r)n(r)d

3r, (2.21)

where F [n] is a universal functional of electron density and valid for any number of particles
N and any external potential. The ground state density n0 is then obtained by minimizing
E[n], meaning the correct (ground state) density input provides the lowest (ground state)
total energy E0 [8]

E0 = min
n∈LN

E[n]. (2.22)

Here, LN is a function space of all electron densities of an N-electron system [2]

LN =

{
ñ : R3 → R

∣∣∣∣ ∫
R3

ñ(r) d3r = N, ñ(r) ≥ 0 ∀ r ∈ R3

}
. (2.23)

For any external potential vext, the exact ground state energy is the global minimum of the
energy functional (2.21), in other words, the value of this functional at the ground state
density n0 [9].
Let us now take the newly introduced functional F [n] into the scope [2]

F [n] = T [n] + EH [n] + Exc[n]. (2.24)

It is independent of the external potential and includes three contributions:

• The kinetic energy functional T [n] of electrons;

• the Hartree energy

EH [n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
, (2.25)

which is the classical Coulomb energy [4];

• the remaining part is called the exchange-correlation energy Exc[n]. It is the non-
classical contribution of all the electron-electron interactions other than Hartree en-
ergy. It is defined as Exc[n0] = ⟨Ψ0|V̂ee|Ψ0⟩ − EH [n0] for the ground state density
n0 and the ground state wave function Ψ0. The exact form of this functional is also
unknown and has to be approximated (see section 2.2.5).
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The exact form of F [n], once determined, enables us by minimizing the total Energy E[n]
to find the ground state with given vext [9]. The problem is that the exact form of T [n]
is unknown and in practice it is only approximated. The simplest approximation for the
kinetic energy, Thomas-Fermi approximation, provides a simple local expression for the
kinetic energy, but it fails to reproduce atomic shell structure and molecular binding [4].
This shortcoming is overcome by the Kohn–Sham formulation of DFT.

2.2.2 Kohn–Sham DFT

This section is based on the books of Ullrich [4] and Parr and Yang [5]. Kohn-Sham method
is today crucial for most applications of DFT. The key insight here is to utilize single-particle
orbitals and take advantage of an effective single-particle picture. In this formulation, the
complicated interacting many-body system is replaced by a non-interacting reference system
by introducing the so-called Kohn-Sham orbitals (KS orbitals) ψi. The electron density is
obtained by summing the squared magnitudes of these single-particle functions

n(r) =
N∑
i=1

|ψi(r)|2, (2.26)

under the orthonormality constraint, so that the reference system can be defined meaning-
fully

⟨ψi|ψj⟩ =
∫
d3rψ∗

i (r)ψj(r) = δij. (2.27)

At first glance, we see that the condition (2.26) can be fulfilled by many different combi-
nations. In a certain way, efficiency is traded for accuracy, compared to the orbital-free
formulation. This detour is, however, has been proven to be extraordinarily accurate in
approximating the kinetic energy

Ts(ψ1, ψ2, . . . , ψN) =
N∑
i=1

− ℏ2

2m
⟨ψi|∇2|ψi⟩, (2.28)

where the scalar product is given as an integral

⟨ψi|∇2|ψi⟩ =
∫
d3r ψ∗

i (r)∇2ψi(r). (2.29)

The remaining difference between T [n] and Ts[n] is presumably small and is absorbed into
the exchange-correlation functional Exc. The universal functional F [n] is rewritten as

F [n] = Ts[n] + EH [n] + Exc[n], (2.30)

whereas the Ts[n] is directly accessible through KS orbitals, the Hartree energy EH [n] is
the classical Coulomb interaction of electrons and the exchange-correlation functional Exc
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contains all remaining quantum mechanical effects beyond Hartree energy and the small
correction to the kinetic part. Inserting it into the energy functional yields

E[n] ≈ Ts[ψ1, ψ2, ..., ψN ] + EH [n] + Exc[n] + Eext[n], (2.31)

where the density n is generated from the KS orbitals ψ1, ψ2, ..., ψN as in (2.26). Note that
the symbol ≈ in (2.31) indicates that (2.28) is only an approximation to the kinetic energy.
It is central to Kohn-Sham DFT formulation that ≈ can also be written as = and since
the KS orbitals are chosen as such, that it is possible to write the Ts[ψ1, ψ2, ..., ψN ] as a
functional of density Ts[n]. A detailed justification of these two statements is beyond the
scope of this section and can be found in the literature [5]. Since we packed the kinetic
energy correction to the exchange-correlation functional, it is also necessary to redefine this
for Kohn-Sham DFT

EKS
xc [n] = Exc[n] + T [n]− Ts[n] (2.32)

and the total energy functional becomes

E[n] = Ts[n] + EH [n] + EKS
xc + Eext[n], (2.33)

with the external energy defined as

Eext[n] :=

∫
d3r vext(r)n(r). (2.34)

An important point is that accounting for the difference between EKS
xc and Exc in treatment

of the exchange-correlation energy is still not exact in practical applications and remains
a major challenge to this day. We will see in a later section how the exchange-correlation
functional can be approximated, that in the end one can use it to accurately minimize the
energy

E0 = min
n(r)

E[n] = min
n(r)

[
Ts[n] + EH [n] + EKS

xc + Eext[n]
]
, (2.35)

to compute the ground state energy E0.

2.2.3 Kohn-Sham equations

The minimizing process of the energy functional (2.35) in practical calculations is not carried
out directly over the electron density, but over the KS orbitals, which generate the density via
(2.26) considering the orthonormality constraint. We use the Lagrange multiplier method

L = T (ψ1, ψ2, . . . , ψN) + EH [n] + Exc[n] + Eext[n]−
N∑

n=1

N∑
m=1

λnm (⟨ψn|ψm⟩ − δnm) (2.36)
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and by minimizing the Lagrange function with respect to ψ1, ψ2, ..., ψn one obtains the
Kohn-Sham equations [2, 6][

− ℏ2

2m
∇2 + vH(r) + vxc(r) + vext(r)

]
ψn(r) = εnψn(r), (2.37)

with

• the parameters εn - the so-called Kohn-Sham eigenvalues, arising as the Lagrange
multipliers εn = λnn. Although they do not represent the exact single-particle energies,
they acquire physical significance in connection with ionization properties [10].

• Hartree potential

vH(r) = e2
∫
d3r′

∑N
i=1 |ψi(r

′)|2

|r− r′|
; (2.38)

• the exchange correlation potential, which is formally calculated as a functional deriva-
tive of the exchange correlation energy

vxc(r) =
δExc[n]

δn(r)
; (2.39)

• and the external potential

vext(r) = −
∑
A

ZAe
2

|r−RA|
(2.40)

represents the Coulomb potential of ion cores.

Self-consistency of Kohn-Sham equations

In practical algorithms the Kohn-Sham equations are treated iteratively in a so-called self-
consistent field (SCF) procedure, which can be outlined as follows:

1. We start from an initial guess of the electron density, which is then used to construct
the effective potential veff (r) (sum of vxc, vext and vH).

2. Using the veff (r), the KS equations are solved to obtain a new set of orbitals ψi(r).

3. Using the new set of orbitals we obtain another electron density (2.26) and this updated
density is then used to reconstruct the new veff .

The cycle then repeats until the input and output densities match - in practice, until they
converge within a predefined setting. This self-consistent loop ensures that the final orbitals
and density are consistent with the potential they generate [9].
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2.2.4 Basis sets and pseudopotentials

In practical calculations, it is essential to represent the KS-orbitals in a finite basis, in order
to produce meaningful results. The so-called basis sets consist of mathematical functions,
that serve as building blocks for the orbitals. Each Kohn-Sham orbital is expressed as a
linear combination of basis functions ϕν

ψn(r) =

Nb∑
ν=1

Cnν ϕν(r), (2.41)

where Cnν are the molecular orbital coefficients and Nb is the number of basis functions.
There are certain requirements for choosing the basis functions. First, they should exhibit
behavior appropriate to the physics of the given problem, ensuring the convergence becomes
sufficiently rapid as more basis functions are added. This means that the functions should
go towards zero with increasing distance of the electron from the nucleus. Another require-
ment is practical: The chosen function ideally should allow efficient computation of all the
required integrals. The two most commonly used basis functions are Slater Type Orbitals
(STO) and Gaussian Type orbitals (GTO), although the GTOs are generally preferred in
the calculations of electronic structures, due to the ease they provide in calculations. Al-
though the rough guideline suggests that up to three times as many GTOs than STOs are
required to achieve the same level of accuracy and despite them having a poorer r2 de-
pendence, these disadvantages are more than compensated by the considerable amount of
computational efficiency they offer. Gaussian Type orbitals have the form

χξ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ) r
2n−2−l e−ξr2 (2.42)

where N is the normalization constant, Yl,m are spherical harmonics, r2n−2−l is the radial
prefactor and the exponential term describes the distance dependence [6]. In our work, the
Kohn-Sham orbitals were expanded using the Gaussian DZVP-MOLOPT basis set [11] for
efficiency and in accordance with previous studies in this field [1].
In addition to representing the orbitals, it is also necessary to properly deal with the Coulomb
contribution of the atomic nuclei and the inner core electrons. We can, by eliminating the
core electron wave functions, reduce the number of orbitals that must be considered in the
calculations. This is where the pseudopotentials come into play. They replace the effect
of the nuclei and core electrons with an effective, smoother potential. From a chemical
perspective, explicitly calculating for large numbers of core electrons in systems involving
third-row or heavier elements from the periodic table is unnecessary [6]. Formally, this
contribution belongs to the external potential vext in the Kohn-Sham equations. Pseudopo-
tentials ease the calculations drastically by reducing the size of basis sets used [12]. We used
a dual-space, norm-conserving Goedecker–Teter–Hutter pseudopotential [12] in this work,
treating the single Na 3s1 electron. For comparison, some calculations also included the 9
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Na 2s22p63s1 electrons. "Norm-conserving" here means that the norm of the pseudo wave
function matches the norm of the all-electron wave function inside the core region [13].

2.2.5 Approximations to the exchange-correlation functional

As mentioned earlier, the exchange-correlation potential is formally obtained as the func-
tional derivative of the exchange-correlation functional

vxc(r) =
δExc[n]

δn(r)
. (2.43)

A "functional derivative" can be understood similarly to the regular derivative: it measures
the sensitivity of a functional to a small variation of its variable (here the electron density).
The following theorem summarizes how the functional derivative is computed [2]:
For a given functional

F [n] =

∫
f(r, n(r),∇n(r)) d3r, (2.44)

the functional derivative can be computed as

δF

δn(r)
=
∂f

∂n
−∇ ·

(
∂f

∂(∇n)

)
. (2.45)

The exact form of Exc[n] is unknown, therefore, we rely on approximation methods in
practical calculations.

Local density approximation (LDA)

The simplest approximation for Exc is the local density approximation (LDA), originally
proposed by Kohn and Sham. It is based on the idea that the electron density at each point
in space can be treated as if it were part of a homogeneous electron gas [4]. In LDA, Exc is
approximated as

ELDA
xc [n] =

∫
d3r f(n(r)), (2.46)

where f(n) is simply a function of density (not a functional), depending on the local value
of the density n. While fairly easy to implement, in reality, LDA typically underestimates
exchange-correlation energies of atoms and molecules [14].

Generalized gradient approximation (GGA)

A substantial improvement is achieved by Generalized Gradient Approximation (GGA),
which incorporates not only the electron density but also its gradient ∇n(r) into the func-
tional. This, in comparison with LDA, also describes how strongly the electron density n(r)
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varies in space [2]

EGGA
xc [n] =

∫
d3r f(n(r),∇n(r)). (2.47)

GGAs improve the accuracy of total energies, energy barriers and structural energy dif-
ferences and favor more realistic inhomogeneous densities. One of the widely used GGA
exchange-correlation potentials is the Perdew-Burke-Ernzerhof (PBE) [15], which is
also employed in our work within the adiabatic approximation (we will discuss the adia-
batic approximation in more detail in the next chapter. It successfully achieves a balance
between computational efficiency and good accuracy. For its detailed form and derivation
we refer the reader to the literature [4, 15], as its derivation requires extensive theoretical
background.
Beyond the methods mentioned above, more advanced classes of functionals have been de-
veloped, such as hybrid functionals (e.g. B3LYP, PBE0) or meta-GGA functionals [4],
with chemical accuracy exceeding that of GGAs or LDAs [16]. The choice of the functional
depends on the goal and available computational resources.



Chapter 3

From time-dependent DFT to spectra

Electronic dynamics takes place on extremely short timescales: it ranges from attoseconds
to a few hundred femtoseconds (see Fig. 3.1). In contrast, nuclear motion is much slower
than that of electrons due to their larger mass. Nuclear motion underlies the formation or
breaking of chemical bonds, the rearrangement of functional groups and the timescale of
chemical reactions. These processes can last hundreds of picoseconds, depending on the size
and complexity of the system.
Formally, the motion of electrons and nuclei is described by a coupled Schrödinger equation
for the electronic and nuclear degrees of freedom. Such calculations are only realistically
solvable for very small systems. While in practice the electron dynamics is treated fully
quantum mechanically, nuclear degrees of freedom are often treated classically. Throughout
this work, we assume that the nuclei remain fixed during the electronic dynamics according
to the Born-Oppenheimer approximation.
The most crucial tool introduced in this chapter is the time-dependent density functional
theory (TDDFT), which mainly focuses on electronic excitation processes and their associ-
ated time evolution in atoms, molecules and condensed matter systems. TDDFT provides a
framework that is fairly accurate and practical at the same time, linking the time-resolved
dynamics directly to the measurable quantities and thereby bridging theory with spectro-
scopic methods [4].
In this chapter, we first introduce the most intuitive quantities that can be computed from
the time-dependent density, such as particle number, before turning to dynamical dipole
moments, dipole power spectrum with examples and the widely used photoabsorption and
emission spectroscopies, together with their theoretical treatment. We then discuss the es-
sential elements of the linear response theory, which theoretically ties these observables to
excitation spectra.
Linear response is valid when the external perturbing field is weak compared to the electro-
static field created by the nuclei (on the order of 1010 V/m). Within the linear regime, we
will see that the spectral behavior is independent of the perturbation strength and that the
linear response contains all the spectral features.

16
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Figure 3.1: Characteristic processes of nature, such as biochemical kinetics, nuclear mo-
tion, electronic processes and subatomic processes with their associated time (left axis) and
energy (right axis) scales, both given in atomic units (a.u.) of time and energy. For our
purposes, the relevant range here spans from tens of attoseconds to a few hundred femtosec-
onds. Adapted from [4].

This chapter is mainly based on the book by Carsten A. Ullrich [4], complemented by the
logical structure and physical formulations of Jan Wilhelms Lecture Notes [2] and additional
literature references are given where appropriate.
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3.1 Time-dependent density functional theory

TDDFT extends the concepts of static DFT to dynamical processes. It enables the de-
scription of electronic excitations and their response to external electric fields, such as laser
pulses. Its foundations are provided by the Runge–Gross theorem and the van Leeuwen the-
orem, which lead to the practical formulation of the time-dependent Kohn-Sham scheme.

3.1.1 Time-dependent many-electron problem

In quantum mechanics, the dynamics of a many-body problem is governed by the time-
dependent Schrödinger equation

i
∂

∂t
Ψ(r1, . . . , rN , t) = Ĥ(t)Ψ(r1, . . . , rN , t). (3.1)

As in the static case, we assume the Born-Oppenheimer approximation to be valid, i.e., the
nuclei are fixed. Here, Ψ is the time-dependent wave function describing the time evolution
of the N -electrons system. The Hamiltonian is composed of, as in the static case, the kinetic
energy, the electron-electron and electron-nuclei interaction potentials and additionally the
time-dependent external potential operator V̂ (t)

Ĥ(t) = Ĥ0 + V̂ (t) θ(t− t0), (3.2)

with H0

Ĥ0 = − ℏ2

2m

∑
i

∇2
ri
−
∑
A

N∑
j=1

ZAe
2

|rj −RA|
+
∑
i

∑
j>i

e2

|ri − rj|
. (3.3)

The time-dependent external potential V̂ (t) is given as a sum over the contributions of all
N electrons interacting with the external field

V̂ (t) =
N∑
j=1

v(rj, t), (3.4)

with the time-dependent external scalar potential being

v(r, t) = −e r · E(t). (3.5)

Here, E(t) is the applied electric field, e the elementary charge and r the position vector.
When the time-dependent potential V̂ (t) is switched on at time t0, the initial many-electron
state is perturbed and with the initial state Ψ(r1, ..., rN , t0) = Ψ0(r1, ..., rN) provided, solv-
ing the Schrödinger equation (3.1) yields Ψ(r1, ..., rN , t) for all t ≥ t0. If it were not for the
exponentially growing computational nature of this problem, as already discussed in section
2.2, one could, in principle, obtain the complete information about the system by computing
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the expectation value for any observable Ô

O = ⟨Ψ(r1, . . . , rN , t) | Ô |Ψ(r1, . . . , rN , t)⟩. (3.6)

This challenge motivates the search for more efficient approaches based on a simpler quantity
than the full many-body solution.

Runge-Gross Theorem

An important extension of DFT to time-dependent systems is provided by the Runge-
Gross theorem (RGt). Just as the Hohenberg-Kohn theorems reformulated ground state
quantum mechanics in terms of the electron density, Runge and Gross (1984) established
the corresponding framework for the time-dependent systems. Formally, the RGt [17] is
illustrated as

n(r, t) and Ψ0
RGt−−→ v(r, t). (3.7)

Physically, this means that for a given initial state Ψ0, the time-dependent electron density
n(r, t) uniquely determines the time-dependent external potential v(r, t) (up to a purely
time-dependent constant). As a corollary, the theorem also implies that the time-dependent
density n(r, t), together with the initial many-electron state Ψ0, is sufficient to determine the
full time evolution Ψ(t) of the system. Consequently, all expectation values of observables
O(t) can be obtained solely from Ψ0 and n(r, t) [2]

n(r, t), Ψ0
RGt−−→ v(r, t)

(3.1)−−−−−→
Ψ0 given

Ψ(t)
(3.6)−−→, O(t) (3.8)

or formulated briefly
O(t) = [n(r, t),Ψ0](t). (3.9)

This denotes that any time-dependent observable O(t) can formally be written as a func-
tional of the time-dependent density and the initial state Ψ0, hence, the name time-dependent
density functional theory. Proof for the unique mapping between n(r, t) and the potentials
can be found in standard references on TDDFT [4] as well as in the original work of Runge
and Gross [17].

3.1.2 Time-dependent Kohn-Sham scheme

The Runge-Gross theorem already established a solid foundation for TDDFT by guaran-
teeing that the time-dependent density, in combination with the initial state, sets all the
observables, i.e., it determines their values uniquely. For practical applications, however,
this ansatz is of limited use, since it would require directly solving the many-electron time-
dependent Schrödinger equation. An efficient approach is needed that still provides the
correct time-dependent density.
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This is where the theorem proved by van Leeuwen (1999) [18] enters the picture. It es-
tablishes that there exists a non-interacting reference system which reproduces the same
density, provided the initial state and density are chosen correctly. This construction is
analogous to the Kohn-Sham DFT. On this basis, one can formulate the time-dependent
Kohn-Sham scheme (TDKS): instead of propagating the complicated many-body wave func-
tion, one propagates a set of single-particle orbitals whose combined density reproduces the
real many-body density. The TDKS scheme is summarized as follows:

1. Initialization
Assume that the many-electron system in an external potential of the nuclei is initially
in the ground state up to time t0. By solving the Kohn-Sham equations (2.37) we find
the associated Kohn-Sham orbitals ϕi(r)[

− ℏ2

2m
∇2 + vH [n0](r) + v0xc[n0](r) + vext(r)

]
ϕi(r) = εiϕi(r) (3.10)

and construct the ground state density n0(r)

n0(r) =
N∑
i=1

|ϕi(r)|2, (3.11)

with v0xc being the ground state exchange-correlation potential.

2. Set initial conditions
Use ψi(r, t0) = ϕi(r) as the starting point for the time-dependent Kohn-Sham orbitals.

3. Time propagation
For each discrete time step tj with j = 0, 1, 2, . . . (starting from t0) propagate the
orbitals ψi(r, tj) using the time-dependent Kohn-Sham equations[

− ℏ2
2m

∇2 + vH [n](r, tj)+vxc[n](r, tj)+vext(r)+v(r, tj)
]
ψi(r, tj) = i ∂tψi(r, tj), (3.12)

where ψi(r, tj) are the time-evolving single-particle orbitals at time step tj. The time-
dependent external potential v(r, tj) that perturbs the initial system, often caused by
a time-dependent electric field as given in (3.5).

4. Density update
Compute the density at each time step

n(r, tj) =
N∑
i=1

|ψi(r, tj)|2. (3.13)

5. Potential update
Recalculate the potentials from the updated density:
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• Hartree potential acquires its time dependence from the electron density

vH [n](r, tj) = e2
∫
d3r′

n(r′, tj)

|r− r′|
. (3.14)

• The time-dependent exchange-correlation potential vxc[n](r, tj) depends, in prin-
ciple, on the entire history of the electron densities n(r, t′j). This makes it funda-
mentally different from the ground-state potential v0xc[n0](r), which only depends
on the ground-state density n0(r). Since the exact form of vxc[n](r, tj) is un-
known, we rely on approximations (see section The adiabatic approximation).

This self-consistent propagation ensures that the single-particle orbitals change under an ef-
fective potential which generates the right time-dependent density of the interacting system.
The TDKS method, therefore, opens up a practical approach for the direct simulation of
the time-dependent behavior of many-electron systems exposed to external fields. The next
step would be to use the obtained time-dependent density n(r, t) as an input for computing
the physical observables, as we will see in section 3.2.

The adiabatic approximation

A natural method for approximating the time-dependent exchange-correlation potential is to
rely on the known results of the static DFT. One takes the ground state exchange-correlation
potential v0xc[n0] corresponding to the ground state density n0(r) and simply replaces n0(r)

with the time-dependent density n(r, t), yielding the adiabatic potential

vAxc(r, t) = v0xc[n0](r)
∣∣∣
n0(r)→n(r,t)

. (3.15)

The term "adiabatic" means that the potential at any given time t depends exclusively on
the instantaneous density. Past densities play no role, i.e., there are no "memory effects".
Physically, this corresponds to the assumption that the system remains in its instantaneous
eigenstate if a perturbation acting on it is slow enough1.

3.2 Common observables

In the time-dependent simulations, various physical observables can be monitored to gain
information about the electronic dynamics of the system. The most straightforward observ-
able is the time-dependent electron density itself. As the name reveals, it offers insight into
the electronic distribution as a function of both position and time.

1"slow enough" here means relative to the intrinsic timescale of the system: As long as the change in
perturbation is slower than this timescale, the system can adapt and remain in the instantaneous eigenstate.
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The particle number

Another very intuitive global observable is the particle number N , which can be obtained
by integrating the time-dependent density over the whole space∫

all space
d3r n(r, t) = N. (3.16)

Although it may appear to be a rather simple quantity, it can be of great interest to know the
number of particles in a given finite spatial region at a given moment when strong excitations
occur. For instance, we might want to know how much charge is being transferred from one
region of a cluster to another region. With appropriate computational settings, it is also
possible to analyze how much charge density escapes the system following excitation with
a laser pulse.

Dipoles and electronic resonances

Time-dependent dipole moment µ(t) directly follows from the time-dependent density as

µ(t) =

∫
d3r rn(r, t), i.e., µα(t) =

∫
d3r rα n(r, t), α = x, y, z. (3.17)

The dipole moment thus describes the shift of the charge distribution over time and reacts
directly to external electrical fields, such as a short laser pulse. An illustrative example of
this can be found in the work of Calvayrac (1997) [3], which we reproduced in our simulations
(see Appendix A for the implementation of a Gaussian laser pulse in TDDFT simulations
using CP2K). Figures 3.2a and 3.2b show the time-dependent dipole moment of a Na+9
nanoparticle subjected to Gaussian laser pulses with electric field profiles in the x-direction
(ê = êx). The pulses were applied with a non-resonant frequency of ℏω1 = 2.5 eV and a
resonant frequency of ℏω2 = 2.88 eV respectively. The selection of these excitation energies
is based on a spectral dipole power analysis of the nanoparticle, which will be introduced
in the following section.
In the non-resonant case (Fig. 3.2a) the dipole moment closely follows the applied laser
pulse. In contrast, in the resonant case (Fig. 3.2b) the dipole moment continues to oscillate
with a larger amplitude even after the pulse has ended. This behavior indicates that a
plasmon mode was excited by applying a laser pulse with the exact resonant energy.
Rather than performing multiple TDDFT simulations across a range of frequencies ω to
identify the resonant frequency of a given system, it would be more efficient to obtain the
entire spectrum of electronic resonance frequencies with a single TDDFT simulation. This
brings us to the next quantity: the dipole power.
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(a) Non-resonant case: ℏω1 = 2.5 eV
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(b) Resonant case: ℏω2 = 2.88 eV

(c) Na+9 nanoparti-
cle structure

Figure 3.2: Time-dependent dipole moments µx(t) (3.17) of a Na+9 nanoparticle computed
with TDDFT, subject to 25 fs Gaussian laser pulses with peak field E0 = 1.9 · 106 V/m and
periods T1 = 2π/ω0 = h/2.5 eV ≈ 1.65 fs (a) and T2 ≈ 1.43 fs (b). The geometric structure
of the nanoparticle in Fig. (c) was constructed using the Avogadro software [19]. Simulation
length 100 fs in 0.01 fs time steps. Simulated following the example in [3].

Dipole power spectrum

In order to simultaneously cover all possible frequencies at once, the many-electron system
must be prepared in all eigenmodes at once. This raises the question: how can this be
achieved? A nice everyday analogy can be found in [4], comparing the process to striking a
bell. When the bell receives a single sharp blow with a hammer, it starts to resonate with a
characteristic combination of the fundamental tone and overtones. The resulting frequency
spectrum can be extracted from the sound profile measurement. The bell represents the
metal cluster of interest and the hammer in the TDDFT corresponds to a sudden pertur-
bation applied at time t = t0, referred to as a delta pulse (Fig. 3.3)

Edelta(t) = Iδ(t− t0). (3.18)

Here δ(t− t0) has the unit 1/time, consequently, the magnitude of the electric-field impulse
I carries units of field×time (V · s/m). The Fourier transformation of (3.18) is a constant
function E(ω) = I, meaning all the frequencies are equally represented. After applying the
delta pulse, we let the system evolve for some time. One calculates the dipole moment µ(t)
from the time-dependent density as defined in (3.17) and its frequency picture is obtained
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via Fourier transforms over a finite time window t0 < t < t1

µ(ω) =
1

t1 − t0

∫ t1

t0

µ(t) e−iωt dt. (3.19)

Figure 3.3: Illustration of the electric pulse (3.18) applied at t0 = 0 The vertical line
represents the instantaneous perturbation, which excites all frequencies equally. The system
is then propagated in the absence of external fields. Adapted from [4].

The quantity µ(ω) is closely related to the photoabsorption cross section σ(ω), which will
be discussed in the next section. Instead of µ(ω), it is in practice convenient to work with
the power spectrum D(ω), a positive definite quantity

D(ω) = |µx(ω)|2 + |µy(ω)|2 + |µz(ω)|2. (3.20)

By applying the delta pulse (3.18) to the Na+9 nanoparticle, allowing it to propagate over
time (see Appendix A for the implementation of delta pulse excitation in TDDFT simula-
tions using CP2K) and evaluating the results with the steps (3.19) and (3.20) results in the
dipole power spectrum shown in Fig. 3.4.
The pronounced resonant peak at 2.88 eV (obtained via E = ℏω), which is known as Mie
(surface) plasmon, agrees well with the value in the literature [3]. Few spectral features of
much smaller intensity are also visible, which correspond to single-particle excitations and
bulk-like higher excitations. This spectrum explains why the nanoparticle responded so "fa-
vorably" to the gaussian pulse carrying the resonant energy and a pulse with non-resonant
energy failed to couple effectively to the system.
The reasonable accuracy of our results gives us confidence in the accuracy of our TDDFT
algorithms and other processing tools for the rest of our work. The slight deviation in the
value of the plasmon energy compared to the original work may be attributed to the differ-
ences in the exchange-correlation functional: the original work incorporates the adiabatic
local density approximation (ALDA), while our simulations employ PBE in adiabatic ap-
proximation.
It should be noted that the numerical evaluation of µα(ω) tends to introduce spurious noise
into the spectrum, because it cuts out a finite time slice of a signal that is assumed to be
periodic. In practical calculations, however, it is recommended to use some form of win-
dow function during the Fourier transformation over a finite sampling interval. Throughout
our calculations, we used the cosine filtering where the data are multiplied with a factor
cos2(tπ/2T ) following the approach of Calvayrac [3].
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Figure 3.4: Normalized dipole power spectrum (3.20) of the Na+9 nanoparticle, plotted as
a function of energy via E = ℏω. A sharp resonance at 2.88 eV is visible following a delta
pulse excitation of 0.01 a.u.magnitude. Computed using TDDFT in CP2K. Simulation
length 200 fs in 0.01 fs time steps. Simulated following the example in [3].

Emission spectrum

The applicability of the dipole moment µ(t) extends beyond the dipole power spectrum.
In techniques such as NOTE microscopy [1], the emitted electromagnetic radiation from
accelerated electrons in the near-field provides valuable information about the underlying
electron dynamics. Put simply, the dipole moment describes the position of the charges and
by extension, its second derivative ∂2µ(t)

∂t2
corresponds to the acceleration of charges. The

spectral emission power I(ω) radiated from the accelerated electrons of a many-electron
system is then given by (with k = ω/c, where c is the speed of light)

I(ω) =
1

3c3
|ω2µ(ω)|2. (3.21)

Here, the prefactor arises from the Fourier transformation of ∂2µ(t)/∂t2. This formulation
enables the calculation of the emission spectrum in NOTE microscopy and related nano-
optical techniques [2, 20].

3.3 Optical absorption spectrum and excitation energies

Optical absorption spectroscopy is one of the fundamental methods for analyzing matter,
both qualitatively and quantitatively. In a typical experiment, a sample is irradiated and
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the absorbed intensity is recorded for each frequency. The resulting absorption spectrum
provides direct access to the excitation energies, since absorption occurs when the photon
energy matches exactly the energy difference between the ground state and the excited state
[21]. An example is shown in the Fig 3.5. Such spectra can be used not only to identify
materials involved in the sample, but in some cases also to determine their quantity [2].

Figure 3.5: Comparison of absorption spectra for undoped and metal-doped CdS quantum
dots. Adapted from [22].

Let us now examine how absorption spectra can be computed using TDDFT and how this
is related to the observations from the previous section. For this purpose, we look into the
linear response theory, without going into excessive detail. Linear response applies when
the external field is sufficiently weak (compared to the electrostatic field of the nuclei). The
linear density response is given by

n1(r, t) =

∫ ∞

−∞
dt′
∫
d3r′ χnn(r, r

′, t− t′) v(r′, t′), (3.22)

where the density-density response function χ is defined as

χnn(r, r
′, t− t′) = −θ(t− t′)⟨Ψ0 | [n̂(r, t− t′), n̂(r′)] |Ψ0⟩. (3.23)

Here, n̂(r, t) represents the time-dependent density operator and Ψ0 is the ground state of
the system. The commutator [n̂′(r, t − t′), n̂(r)] quantifies how the density at position r

and time t is affected by a prior fluctuation of the density at r′ and t′. The expectation
value ⟨Ψ0 |...|Ψ0⟩ averages this effect over the ground state. The Heaviside function θ(t− t′)
ensures causality, i.e., only if the perturbation occurs at an earlier time t′ does it contribute
to the response. This response is independent of the explicit form of the perturbation
v(r, t). Importantly, the χnn quantifies how strongly the density at one point in space and
time reacts to a perturbation of the density at another point in space and an earlier time.
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The frequency-domain representation of this response function reads

χnn(r, r
′, ω) = lim

η→0+

∞∑
n=1

(
⟨Ψ0|n̂(r)|Ψn⟩⟨Ψn|n̂(r′)|Ψ0⟩

ω − Ωn + iη
− ⟨Ψ0|n̂(r′)|Ψn⟩⟨Ψn|n̂(r)|Ψ0⟩

ω + Ωn + iη

)
. (3.24)

The key quantity for us in this relation is the frequency Ωn, which corresponds to the
energy required to excite the many-electron system from ground state Ψ0 to excited state
Ψn, with definition Ωn = En −E0 (ℏ = 1 in atomic units). A strong response occurs in the
resonant case, i.e., when the frequency of the external electromagnetic radiation matches
the excitation energy ω = Ωn.
The external perturbation is taken as an oscillating field with a linear polarization along
the axis rµ (µ = 1, 2, 3, r1 ≡ x, r2 ≡ y, r3 ≡ z)

v(r, t) = −e rµE0 e
−iωt. (3.25)

The optical absorption probability of light of frequency ω, as measured in optical spectra,
is proportional to the photoabsorption cross section

σµµ(ω) =
4πω

c
Imαµµ(ω), (3.26)

with c being the speed of light and αnn(ω) the polarizability of the many-electron system.
The polarizability can be defined as the proportionality constant relating the external electric
field to the polarization of the system

pµ(ω) = αµµ(ω)Eµ(ω). (3.27)

Polarization as a response to the electric field can also be expressed in terms of density

pµ(ω) =

∫
d3r rµ n1(r, ω). (3.28)

In the linear response theory, one considers the change in the density n1(r, ω) caused by
an external field. This induces a polarization pµ(ω), which formally has the same structure
as the dipole moment from the previous section, but is given in the frequency space and
restricted to the linear response contribution. Thus, one can interpret the polarization
pµ(ω) as the Fourier transformed linear component of the time-dependent dipole moment
µ(t). The density response n1(r, t) can then be computed using Eqs. (3.22) and (3.25)

n1(r, t) =

∫
d3r′ χnn(r, r

′, ω) v(r′, ω) = −eE0e
−iωt

∫
d3r′ χnn(r, r

′, ω) r′µ. (3.29)
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Inserting this relation into (3.28) yields

pµ(ω) = −eEµ(ω)

∫
d3r d3r′ rµ r

′
µ χnn(r, r

′, ω) = −eEµ(ω)
∞∑
n=1

2Ωn |⟨Ψ0|r̂µ|Ψn⟩|2

(ω + iη)2 − Ω2
n

. (3.30)

So, for the sufficiently weak perturbation, one therefore expects direct linear dependence
of the polarization on the field magnitude. By comparing (3.30) to (3.27) we obtain the
following relation for polarizability

αµµ(ω) = −e
∞∑
n=1

2Ωn |⟨Ψ0|r̂µ|Ψn⟩|2

(ω + iη)2 − Ω2
n

(3.31)

and consequently, the absorption probability for light of frequency ω (the absorption cross
section) is proportional to

σµµ(ω) = −4πeω

c

∞∑
n=1

Im

[
2Ωn |⟨Ψ0|r̂µ|Ψn⟩|2

(ω + iη)2 − Ω2
n

]
. (3.32)

This result is crucial, as it shows that resonant driving frequencies which appear in the
optical absorption spectrum of the matter correspond to excitation energies ω = ±Ωn.
As shown in (3.30), the same conclusion is also valid in the case when computing dipoles
from the density response to the polarization: peaks appear at the resonant frequencies.
However, in most of our calculations, we perturb the system with a delta pulse (3.18). This
corresponds to Edelta(t) = Iδ(t − t0), whose Fourier transform is a constant E(ω) = I in
frequency space. Thus, instead of testing a single driving frequency, the system is excited
at all frequencies simultaneously. The subsequent time evolution of the dipole moment
contains contributions from all resonant modes Ωn. By Fourier transforming µ(t), one
directly recovers the absorption spectrum, with peaks located at the excitation energies. In
the case of delta pulse excitation, the polarization pµ(ω) takes the form

pµ(ω) = αµµ(ω)Ieiωt0 , (3.33)

showing explicitly that the polarization is linearly proportional to the pulse magnitude I.
For instance, when comparing the µx(t), µx(ω) and the dipole power spectra D(ω) for the
Na+9 nanoparticle excited with delta pulses of 0.0001 a.u. (Fig. 3.6) and 0.0002 a.u. (Fig.
3.7) in the x-direction, we observe that µx(t) and µx(ω) scale with the changing pulse
magnitude by a factor of 2 and the dipole power is enhanced by a factor of 4, as it grows
quadratically (3.20). Importantly, the spectral behavior remains unaffected, because the
spectral features are governed by αµµ in the linear regime.
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(a) Time-dependent dipole moment oscillation (3.17).
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(b) Fourier transform of µx(t) (3.19), plotted as a function of energy
via E = ℏω.
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(c) Dipole power spectrum (3.20), plotted as a function of energy via
E = ℏω.

Figure 3.6: Excitation of Na+9 by a delta pulse of 0.0001 a.u. magnitude. Simulation length
250 fs in 0.05 fs time steps.
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(a) Time-dependent dipole moment oscillation (3.17).
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(b) Fourier transform of µx(t) (3.19), plotted as a function of energy
via E = ℏω.
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(c) Dipole power spectrum (3.20), plotted as a function of energy via
E = ℏω.

Figure 3.7: Excitation of Na+9 by a delta pulse of 0.0002 a.u. magnitude. Simulation length
250 fs in 0.05 fs time steps.



Chapter 4

Excitation Spectra of Metallic
Tip-Substrate Nanostructures

In Chapter 3 we showed that the dipole power spectrum exhibits peaks corresponding exactly
to the electronic excitation energies Ωn = En−E0. In this chapter, we apply the same real-
time TDDFT protocol to metallic tip-substrate assemblies that are aligned along the z axis.
We first compute and discuss the excitation spectra of a tip-substrate structure using two
different pseudopotentials and analyze the spectral changes caused by systematic variation
of tip and substrate sizes at fixed alignment and distance. Later, we change the tip-substrate
separation distance across different metal clusters and provide physical interpretation of the
observed trends.

4.1 Methods and parameters

The overall procedure can be summarized as follows:

1. We excite the sytem with a delta-kick (Polarization vector (0,0,1), since this is the
direction of interest for scanning tunneling microscopy geometries). The impulse
strength is 0.001 a.u. and it is well within the linear regime. Verification is provided
in the Appendix B.

2. Propagate with a time step of 0.02 fs for a total duration of 500 fs. For the clusters
considered here, this simulation length is sufficient for the peak positions and their
relative intensities to stabilize. To convince the reader, representative convergence
tests for some of the clusters used in this work are also listed in the Appendix B.

3. Compute the time-dependent dipole moment for each time step from the time-dependent
electron density.

4. Obtain the dipole power spectrum from the time-dependent dipole moment and present
it on an energy axis via E = ℏω.
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For this purpose, we model metallic rectangular-box substrates and square-pyramidal tips
composed of Na atoms (body-centered-cubic lattice, lattice constant 0.428 nm). Tips and
substrates are aligned along the z axis with total heights approximately between 1 and 3 nm.
We choose Na atoms, instead of other metals that are used in real setups (W, Au, etc.), as it
considerably reduces the computational costs, while accurately describing generic metallic
behavior [23]. All clusters were constructed using the Avogadro software [19].
Tip-substrate clusters are denoted with x atoms in the tip and y atoms in the substrate as
Nax,y, e.g. Na14,34 (tip 14 atoms, substrate 34 atoms). Clusters containing only one com-
ponent are denoted with one index corresponding to the number of atoms, for example, Na14.

4.2 Effect of pseudopotential choice on the excitation

spectrum

We start from the Na14,34 cluster as a reference system with a 10Å gap between the tip
and the substrate (in Fig. 4.1). Its normalized dipole power spectra are given in Fig. 4.2,
computed with GTH-PBE-q1 and GTH-PBE-q9 pseudopotentials.

Figure 4.1: Na14,34 cluster with 10Å gap.

Both spectra exhibit features within the same frequency range, with a pronounced peak
at 3.8 eV. The differences in the peak heights within a single spectrum are due to differ-
ent transition dipole contributions, which is the numerator of the polarizability (3.31). In
the spectrum, where the GTH-PBE-q1 pseudopotential is employed in the calculation, the
response is dominated by collective oscillations of the explicitly treated 3s1 valence elec-
trons. For comparison, in the spectrum computed with the GTH-PBE-q9 pseudopotential,
i.e., with 9 electrons explicitly treated per Na atom, additional spectral features appear,
as more electrons per atom are included, but the dominant peak at 3.8 eV and the overall
energy range remain essentially unchanged. This supports the use of the GTH-PBE-q1
pseudopotential for efficient qualitative analysis of the plasmonic responses for the rest of
this work.
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Figure 4.2: Normalized dipole power spectra of the Na14,34 cluster, computed with GTH-
PBE-q1 (left) and GTH-PBE-q9 (right) pseudopotentials.

4.3 Excitation spectra as a function of tip and substrate

size

At first glance, the spectra shown in Fig. 4.2 remain ambiguous and do not provide clear
indications of where the observed resonances occur. We therefore try to disentangle tip- and
substrate-dominated features by adding another atomic layer at the tip apex, generating
the series of clusters with increasing tip sizes shown in Fig. 4.3. The corresponding spectra
(Fig. 4.4) of these clusters reveal clear size-dependent confinement effects: as the tip size
increases, several features shift and are reweighted. Interestingly, the pronounced peak at
3.8 eV remains essentially fixed within a few hundredths of an eV. This suggests that it is
only weakly affected by the tip geometry.
To rationalize the observed spectra, we adopt a minimal "particle-in-a-3D-box" model for
the two metallic parts: the substrate (Box 1) and the tip (Box 2). Each box is given as an
infinite 3D well with edge lengths Lx, Ly, Lz and eigenenergies

Enxnynz(Lx, Ly, Lz) =
ℏ2π2

2m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
, (4.1)

where nx, ny, nz ∈ N are the principal quantum numbers [24]. Initially, Box 1 (substrate)
and Box 2 (tip) are cubic with side lengths a and b, respectively. Then we elongate the tip
in one dimension: L(tip)

z : b → 1.5 b (with Lx = Ly = b). This structural change lowers all
levels in Box 2 (tip) (the z term scales as 1/L2

z) and as a consequence, the transition ener-
gies shift. Conversely, features associated with Box 1 (substrate) remain unchanged. The
near-invariance of the peak at 3.8 eV under tip-size variation, therefore, hints at a substrate-
dominated origin.
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Figure 4.3: Tip-substrate clusters with increasing tip size at 10Å gap separation:
(a) Na14,34; (b) Na30,34; (c) Na55,34; (d) Na91,34.
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Figure 4.4: Normalized dipole power spectra of the tip-substrate clusters from Fig. 4.3.
Confinement-induced shifts with tip growth, while the dominant 3.8 eV peak remains fixed.

To confirm the assignment above, we now vary the substrate sizes with a fixed tip size (Fig.
4.5). The panel (b) in Fig. 4.5 corresponds to the same cluster as panel (a) of Fig. 4.3.
Again, to vary the substrate size, we add or remove another atomic layer from the substrate,
while the gap of 10Å remains. The corresponding spectra, as shown in Fig. 4.6, shift and
reweight significantly. The previous dominant peak is strongly suppressed or disappears,
which further supports the earlier conclusion that the 3.8 eV resonance is, in fact, substrate-
dominated.
The observed changes are physically plausible and consistent with quantum confinement.
However, a clear trend, such as a uniform spectral blueshift or redshift, is not apparent
from the spectra below. This is possibly because multiple modes hybridize and although we
vary the cluster size controllably, each modification changes multiple geometric properties
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Figure 4.5: Tip-substrate clusters with increasing substrate size at 10Å gap separation:
(a) Na14,25; (b) Na14,34; (c) Na14,50; (d) Na14,59.
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Figure 4.6: Normalized dipole power spectra of the tip-substrate clusters from Fig. 4.5.

(such as apex radius, surface-to-volume ratio, edge/vertex count, etc.) simultaneously. A
more systematic investigation, such as varying vertical and lateral dimensions independently
and using different geometric shapes, is required to formally establish clear, traceable shift
tendencies.
The clusters considered in this work are tiny compared to sizes in real experimental setups,
which means the quantitative values of these spectra cannot be extended to macroscopic
systems. An open question is whether and beyond which cluster size the confinement effect
becomes indistinct. Some studies [25, 26] suggest sizes above which the confinement effect
becomes less prominent. In a quick test with our largest system Na140,290, we observe a net
blueshift of the spectrum compared to smaller clusters from before. This result is consistent
with the reported trends for sodium clusters in [27] and hints toward a possible course for
the future size-convergence tests (Fig. 4.7). Further dedicated and systematic investigations
are needed for reliable quantitative estimates of excitation energies in such systems.
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(a) 

(b) 

(c) 

Figure 4.7: (a) Na140,290 cluster; (b) normalized dipole power spectrum of Na140,290; (c)
size-dependent absorption spectra (dipole oscillation strength) of the Na clusters. Here, the
volume density response proportion (VRP) spectra are also plotted. Adapted from [27]

4.4 Excitation spectra as a function of tip–substrate dis-

tance

In STM-like techniques, tunnel effect is exploited to examine the underlying substrate. It
would therefore be very desirable to identify the so-called gap modes in our spectra, which
are associated with charge oscillations across the junction from tip to substrate and vice
versa. Unfortunately, such modes are not evident from the spectra so far. To enhance
their visibility, we systematically vary the tip-substrate separation distance from 14Å to
3Å, which is essentially the atomic distance. Such small distances are also accessible in
the experimental setups, as demonstrated in [1]. By entering these small gap distances, we
expect a significant increase in tunneling probability (Fig. 4.8) and associated changes in
the excitation spectra.

For these purposes, we consider three clusters with the same substrate geometries and
increasing tip size (Fig. 4.9) and perform distance sweeps between 14Å and 3Å. The cor-
responding distance series are shown in Fig. 4.10 for Na14,34, in Fig. B.5 and B.6 for Na30,34
and Na55,34 clusters, respectively.
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Figure 4.8: Normalized electron tunneling transmission T (l)/T (0) of a plasmonic system
composed of two parts, separated by a distanc l and characterized by tunneling transmission
T (l). Red corresponds to Na jellium material and blue to Au jellium. Adapted from [28].

To guide the reader, we first walk through the spectra from large to small gaps: At large
distances (14–10Å) the dominant peak remains essentially unchanged. With the gap nar-
rowing from 10Å to 7Å and hybridization between the tip and the substrate strengthening,
additional features appear and the spectrum exhibits a slight redshift. Below about 7Å,
new low-energy components emerge in the 0-1 eV range, which become more pronounced
upon approaching the near-atomic distances. Also noticeable is the gradual blueshift of
the overall spectrum in these distances. The same qualitative behavior is also observed for
Na30,34 and Na55,34 clusters (Fig. B.5 and B.6).
We first try to clarify the emergence of the low-energy components at small gaps across
all examined clusters. Considering the fact that the tunneling transmission T (l) between
two metallic parts should increase as the gap narrows, the first intuitive guess is that these
newly appearing features at small separation are tied to the junction itself and the exhibited
spectral shifts should also correspond to the behavior of similar metallic setups.

Figure 4.9: Tip–substrate clusters with identical substrates and increasing tip size:
(a) Na14,34; (b) Na30,34; (c) Na55,34.
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Figure 4.10: Normalized dipole power spectra of Na14,34 for gaps of 3Å to 14Å.

Therefore, we first compare the spectra of the isolated tips (Na14, Na30 and Na55) and the
substrate (Na34) used. The spectra of the isolated parts in Fig. 4.11 show the expected
confinement trends with increasing tip size and the prominent 3.8 eV peak from the previous
section appears in the spectrum of the substrate, confirming its assignment to the substrate.
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Figure 4.11: Reference spectra of the isolated cluster components: tips Na14, Na30, Na55
and substrate Na34.

Importantly, the isolated components do not exhibit the low-energy features that arise at
small separations in the coupled systems. This supports the interpretation that the low-
energy components are junction-induced modes associated with charge transfer across the
gap.
The evolution of the spectra with decreasing distance is consistent with the established
metallic dimer model, which distinguishes three interaction regimes: non-contact, tunneling,
and contact regimes (Fig. 4.12). The differences in the numerical thresholds for the gap
compared to the reference study [28] are due to our geometry, but the qualitative behavior
is in very good agreement with the following description:

• Non-contact regime (>7Å): No significant electron transmission occurs between the
tip and the substrate. As the gap narrows, capacitive coupling increases. Conse-
quently, the spectrum slightly redshifts and the near-field is enhanced.

• Tunneling regime (5-7Å): Junction-induced, low-energy modes become more pro-
nounced.

• Contact regime (≤5Å): When the clusters approach atomic distances, a conductive
neck forms and gap modes evolve to charge transfer modes (CTPs). The spectrum
gradually blueshifts, including the low-energy components.

By driving our systems into the small-gap regime, we activated the tunneling and can dis-
tinguish junction-driven features from other plasmonic resonances localized in the tip or the
substrate.
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Figure 4.12: Three distinct interaction regimes illustrated by the example of a metallic
dimer: non-contact (no electron transfer, T = 0), tunneling (T > 0) and contact (conductive
neck). Adapted from [28].

This provides a way to estimate the tunneling charge density in the gap. For a given exci-
tation energy Ωn, we can extract the frequency-specific density response and by comparing
it to the ground state density the mode-specific induced density can be acquired [4] via

∆n(n)(r) ≈ n(r,Ωn)− n0(r). (4.2)

A tailored algorithmic setup and systematic validation for extracting ∆n(n)(r) are deferred to
future studies. Other potential directions of future works also include quantitative mapping
of the three interaction regimes across different shapes and sizes, as well as polarization-
resolved (x/y/z) distance sweeps to examine whether the low-energy band is uniquely z-
active.



Chapter 5

Conclusion and Outlook

This research set out to determine the excitation spectra of metallic tip-substrate nanos-
tructures using TDDFT calculations and to take first steps toward identifying the modes
that reside in the gap. After building the theoretical foundations up to TDDFT and defin-
ing how the excitation energies are computed from the time-dependent density, a workflow
was established that produces consistent spectral responses within a justified parameter set.
Starting from a small tip-substrate model, we tracked the spectral shifts under systematic
variations of tip and substrate size. This enabled us to assign selected features to either
component of the model and qualitatively observe how confinement affects their positions.
Motivated by the pursuit of gap-specific modes, we then performed distance sweeps from
atomic distances to > 1 nm and successfully isolated features that emerge in small tip-
substrate separations across different clusters. The overall junction-induced spectral behav-
ior turned out to be consistent with the well-studied field of plasmonics.
Isolating individual excitation energies opens up the possibility to quantify the charge den-
sity that is being transferred across the gap via (4.2) and the associated emitted power via
(3.21) with dedicated computational implementations.
Furthermore, in order to provide excitation energies with experimental level accuracy, much
larger clusters containing hundreds of thousands of atoms would normally be required for
exact representation, significantly increasing the computational costs. However, supported
by the literature, we confidently believe there is a numerical threshold above which the spec-
trum would converge. The search for this threshold should go hand in hand with systematic
geometric studies, such as varying vertical and lateral dimensions controllably in tip and
substrate, disentangling the contributions of size and shape, etc.
As a final remark, these results clarify the way toward eventually simulating NOTE mi-
croscopy with nearly all of its crucial components: exact excitation energies for specific
geometries, tunneling charge density and emission power, similar to simulations already
existing for other microscopy techniques.
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Appendix A

CP2K Code

This Appendix presents the TDDFT input file for CP2K that was used throughout this
work.

Code block A.1: CP2K input file for dipole moments following a delta pulse
&FORCE_EVAL

METHOD QUICKSTEP
&DFT
BASIS_SET_FILE_NAME BASIS_MOLOPT_UZH
POTENTIAL_FILE_NAME POTENTIAL_UZH
&MGRID

CUTOFF 100
&END MGRID
&QS

EPS_DEFAULT 1.0E-10
&END QS
&SCF

SCF_GUESS RESTART
EPS_SCF 1.0E-7
MAX_SCF 500
ADDED_MOS -1
CHOLESKY INVERSE
&SMEAR ON

METHOD FERMI_DIRAC
ELECTRONIC_TEMPERATURE [K] 300

&END SMEAR
&DIAGONALIZATION

ALGORITHM STANDARD
&END DIAGONALIZATION
&MIXING

METHOD BROYDEN_MIXING
ALPHA 0.1
BETA 1.5
NBROYDEN 8

&END
&END SCF
&POISSON

PERIODIC NONE
POISSON_SOLVER MT

&END POISSON
&XC

&XC_FUNCTIONAL PBE
&END XC_FUNCTIONAL
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&END XC
&REAL_TIME_PROPAGATION

EPS_ITER 1.0E-8 ! Check convergence
PERIODIC .FALSE.
MAX_ITER 30
MAT_EXP ARNOLDI
EXP_ACCURACY 1.0E-14 ! Less than EPS_ITER

! INITIAL_WFN RT_RESTART
APPLY_DELTA_PULSE
DELTA_PULSE_DIRECTION 0 0 1
DELTA_PULSE_SCALE 0.001 ! in a.u. of E-field

&END REAL_TIME_PROPAGATION
&PRINT

&MOMENTS
FILENAME MOMENTS
PERIODIC FALSE

&END MOMENTS
&END PRINT

&END DFT
&SUBSYS
&CELL

ABC 33 33 55
PERIODIC NONE

&END CELL
&TOPOLOGY

&CENTER_COORDINATES
&END CENTER_COORDINATES
COORD_FILE_NAME struc.xyz
COORD_FILE_FORMAT XYZ

&END TOPOLOGY
&KIND Na

BASIS_SET ORB DZVP-MOLOPT-PBE-GTH-q1
POTENTIAL GTH-PBE-q1

&END KIND
&END SUBSYS

&END FORCE_EVAL
&GLOBAL

PROJECT Propagation_metal_cluster
RUN_TYPE RT_PROPAGATION
EXTENDED_FFT_LENGTHS

&END GLOBAL
&MOTION

&MD
ENSEMBLE NVE
STEPS 25000
TIMESTEP 0.02 ! timestep in femtoseconds
TEMPERATURE 300.0

&END MD
&PRINT

&TRAJECTORY
&EACH

MD 1
&END

&END
&END

&END MOTION
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To apply a Gaussian laser pulse, the keywords APPLY_DELTA_PULSE, DELTA_PULSE_DIRECTION,
DELTA_PULSE_SCALE must be removed and the following section should be added after
&END XC:

Code block A.2: Optional Gaussian pulse
&EFIELD

INTENSITY 4.8e8
WAVELENGTH [nm] 430.0 ! 2.88 eV
PHASE 0.0
POLARISATION 1 0 0 ! x-direction
ENVELOP GAUSSIAN
&GAUSSIAN_ENV
SIGMA [fs] 10.6 ! FWHM Full width at half maximum
T0 [fs] 30.0 ! Pulse maximum at 30 fs

&END GAUSSIAN_ENV
&END EFIELD

The metal cluster is provided in .xyz format and the execution is handled by a dedicated
run script. Functionalities of all keywords can be found in the official CP2K manual [29].



Appendix B

Additional Data

This appendix presents additional material that support the results discussed in the main
part. It includes linearity checks, convergence tests and supplementary spectra.

B.1 Linearity of the dipole responses
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Figure B.1: Dipole power spectrum of the Na14,34 cluster, excited by delta pulses with
strengths of 0.0001 a.u. (left) and 0.01 a.u. (right). The dipole power scales quadratically
with the impulse strength and importantly, no other spectral differences are observed be-
tween the two spectra.
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B.2 Convergence tests

The convergence tests demonstrate that the total propagation time of 500 fs is sufficient
for the peak positions and their relative amplitudes to stabilize, as seen from the spectral
evolution with increasing simulation length (Figures B.2, B.3, B.4).
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Figure B.2: Time-convergence of the dipole power spectra for the Na14,34 tip-substrate
system (20000–25000 steps, ∆t = 0.02 fs).
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Figure B.3: Time-convergence of the dipole power spectra for the Na30,34 tip-substrate
system (20000–25000 steps, ∆t = 0.02 fs).
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Figure B.4: Time-convergence of the dipole power spectra for the Na55,34 tip-substrate
system (20000–25000 steps, ∆t = 0.02 fs).
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B.3 Distance tests

The distance-dependent spectra (3Å to 14Å) of Na30,34 and Na55,34 clusters are shown below.
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Figure B.5: Normalized dipole power spectra of Na30,34 for gaps of 3Å to 14Å.
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Figure B.6: Normalized dipole power spectra of Na55,34 for gaps of 3Å to 14Å.
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