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ABSTRACT
Clinical trials conducted during the COVID-19 pandemic demonstrated the value of adaptive design methods in emerging disease
settings, when there can be considerable uncertainty around disease natural history, anticipated endpoint effect sizes and popula-
tion size. In such settings, there may also be uncertainty regarding the most appropriate primary endpoint. This might lead to an
externally-driven decision to change the primary endpoint during the course of an adaptive trial. If information on the new pri-
mary endpoint is already being collected, initially as a secondary endpoint, the trial could continue with a new primary endpoint.
In this case it is unclear how statistical inference on the final primary endpoint should be adjusted for interim analyses monitoring
the initial primary endpoint so as to control the overall type I error rate as adjusting for monitoring as if this was based on the
new endpoint could be conservative whereas failing to make any adjustment could lead to type I error rate inflation if the new and
original endpoint are correlated. This paper shows how group-sequential methods can be modified to control the type I error rate
for the analysis of the new primary endpoint irrespective of the true treatment effect on the initial primary endpoint. The method
is illustrated using a simulated data example based on a clinical trial of remdesivir in COVID-19. Construction of critical values for
the test of the new primary endpoint require a value for the correlation between this and the initial primary endpoint. We present
simulation studies to demonstrate that the type I error rate is controlled when this value is estimated from the data on the two
endpoints obtained from the trial.

1 | Introduction

The planning and conduct of a confirmatory clinical trial gener-
ally requires advanced specification of a single primary endpoint
[1]. This will be used for the primary assessment of treatment
efficacy as well as for planning purposes, for example when deter-
mining the sample size. The choice of the primary endpoint is
usually motivated by clinical and regulatory considerations to
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ensure that the trial will provide meaningful results that can lead
to product registration.

If a clinical trial is being conducted in an emerging novel dis-
ease, an absence of knowledge of the natural disease course may
make choice of a primary endpoint challenging. This was the case
in clinical trials conducted early in the COVID-19 pandemic, as
illustrated by, for example, the ACCT-1 trial [2]. In such a setting,
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a trial may start with a particular primary endpoints and, at some
point during the course of the trial, scientific consensus changes
so that specification of a new primary endpoint is desirable. If
information on this new primary endpoint is already being col-
lected, initially as a secondary endpoint, the trial could continue,
but with a decision to change the primary endpoint in the final
analysis.

As demonstrated by clinical trials conducted during the
COVID-19 pandemic, uncertainty about disease natural his-
tory, anticipated endpoint effect sizes and population size make
adaptive design methods, including group-sequential designs,
particularly attractive [3, 4]. If such an approach is being used,
the final analysis must be adjusted to allow for adaptations that
were, or could have been, made at earlier interim analyses in
order to ensure rigorous statistical inference, including control
of type I error rates. If there is an externally-driven decision to
change the primary endpoint, so that interim analyses are based
on the initial endpoint and the final, and possibly later interim
analyses are based on the final primary endpoint, it is unclear
how this adjustment should be made. The work reported below
addresses this issue.

We envisage that a group-sequential trial is designed and initiated
to compare some experimental treatment with a control, with a
particular primary endpoint that we will call endpoint A, with a
decision made on the basis of endpoint A to continue the trial
or to stop for futility or efficacy at each of a series of interim
analyses. We assume that at some point during, or possibly subse-
quent to the end of, the trial, after at least one interim analysis has
been conducted using endpoint A, a decision is made to change
to some other endpoint, which we will call endpoint B. It is now
desired to draw inference on the treatment effect on endpoint B,
and to test the null hypothesis, 𝐻 (𝐵)

0 ∶ 𝜃(𝐵) = 0, where 𝜃(𝐵) is a
parameter summarising the effect of the treatment on endpoint
B. It is assumed that this decision is driven by external factors
rather than by the data observed in the trial itself. If data on end-
point B have not previously been collected, it is clearly impossible
to test 𝐻 (𝐵)

0 , and to do so would essentially require a new trial to
be initiated. Here we consider the case in which data on endpoint
B is available for patients already in the trial, for example because
these data have been collected as a secondary endpoint. If the trial
has not previously been stopped, endpoint B will be monitored in
subsequent interim analyses, with the trial stopped for efficacy or
futility on the basis of this new primary endpoiint. If the trial has
already stopped on the basis of efficacy or futility on endpoint A,
we assume that an analysis of data on endpoint B collected up to
the stopping point will be conducted.

Conducting the test(s) of 𝐻 (𝐵)
0 in a conventional fashion will lead

to type I error rate inflation above the nominal level if there is
correlation between endpoints A and B or if the test of endpoint
B is repeated. The focus of this paper is to obtain critical values for
these tests so as to maintain control of the overall type I error rate.

2 | Motivating Example

Our work is motivated by the example of the ACCT-1 trial [2]
of remdesivir in COVID-19. The trial was initiated early in the
COVID-19 pandemic, with recruitment starting in February 2020,

at a time when knowledge of the natural history of the disease was
severely limited. An increase in knowledge of the disease natu-
ral history with time led to a change of primary endpoint being
enacted.

The ACTT-1 trial [2] was a double-blind, randomised, placebo-
controlled trial study of intravenous remdesivir in adults hospi-
talised with COVID-19 who exhibited signs of lower respiratory
tract infection. Patients were recruited from nearly 70 trial sites
located in ten different countries, with a total of 1062 patients ran-
domised, 541 of which were assigned to receive remdesivir and
521 of which were assigned to the placebo.

Patients were treated with a loading dose of 200mg remdesivir
on day 1 and then for 9 further days with daily doses of 100mg
redesivir, or received placebo in a similar manner. Patients were
followed up for 29 days with the initial primary endpoint set
to be a patient’s clinical status at day15, classified using an
eight-category ordinal scale, ranging from 1: not hospitalised and
no limitations of activities to 8: death. Secondary outcomes eval-
uated the clinical status score at days 3, 5, 8, 11, 22, and 29.
In early April 2020, following external data suggesting that the
progression of COVID-19 could be longer than initially antici-
pated, the primary endpoint was switched to time to recovery,
censored at day 29 for patients who had died or had not recov-
ered by that time. The initial primary outcome of the day 15
clinical status score was retained as an additional key secondary
outcome.

The change of endpoint was followed by a review of the effi-
cacy data by the data and safety monitoring board. This had
originally been planned as an interim analysis but a more rapid
than anticipated recruitment rate meant that recruitment had
already been completed, though follow-up was ongoing for some
patients. The data and safety monitoring board recommended
that results should be made available to the trial team, and these
were subsequently made public. The final analysis results aligned
with those from the preliminary report, indicating that remde-
sivir outperformed the placebo in significantly reducing recovery
time for this patient group.

In the setting of a trial in an emerging disease, group-sequental
or adaptive designs are likely to be considered particularly attrac-
tive. In this paper we address the problem of how such an
approach can be modified to accommodate an externally-driven
change of primary endpoint.

3 | Construction of Group-Sequential Stopping
Boundaries Allowing for an Externally-Driven
Change in Primary Endpoint

3.1 | Construction of the Original
Group-Sequential Boundary for Endpoint A

Suppose we initially plan a group-sequential trial comparing
some experimental treatment with a control treatment on the
basis of endpoint A.

Let 𝜃(𝐴) denote the treatment effect on endpoint A and suppose
that we wish to test some null hypothesis 𝐻

(𝐴)
0 ∶ 𝜃(𝐴) = 0. Let
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𝑆
(𝐴)
𝑘

and 𝐼
(𝐴)
𝑘

respecitvely denote the score statistic and observed
Fisher’s information for 𝜃(𝐴) based on all data observed on end-
point A up to interim analysis 𝑘, 𝑘 = 1, 2, . . . Note that the infor-
mation levels, 𝐼 (𝐴)

1 , 𝐼
(𝐴)
2 , . . . are assumed to be independent of

𝑆
(𝐴)
1 , 𝑆

(𝐴)
2 , . . .

We will assume that 𝑆(𝐴)
1 , 𝑆

(𝐴)
2 , . . . follows a multivariate normal

distribution with

⎛⎜⎜⎜⎝
𝑆

(𝐴)
1

𝑆
(𝐴)
2

⋮

⎞⎟⎟⎟⎠ ∼ 𝑁

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
𝜃(𝐴)𝐼

(𝐴)
1

𝜃(𝐴)𝐼
(𝐴)
2

⋮

⎞⎟⎟⎟⎠,
⎛⎜⎜⎜⎝
𝐼
(𝐴)
1 𝐼

(𝐴)
1 · · ·

𝐼
(𝐴)
1 𝐼

(𝐴)
2 · · ·

⋮ ⋮ ⋱

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠. (1)

This holds exactly if data are normally distributed with known
variance, and has been shown to hold asymptotically in a wide
range of other practical settings [5, 6].

At interim analysis 𝑘, the observed value of𝑆(𝐴)
𝑘

will be compared
with some stopping boundary value, 𝑢(𝐴)

𝑘
. If 𝑆 (𝐴)

𝑘
≥ 𝑢

(𝐴)
𝑘

, the trial
will stop and the null hypothesis 𝐻

(𝐴)
0 will be rejected. Other-

wise, the trial will continue, or stop without rejection of 𝐻 (𝐴)
0 if

𝐼
(𝐴)
𝑘

≥ 𝐼
(𝐴)
max for some maximum information level, 𝐼 (𝐴)

max, set so as
to give some specified power for the test of 𝐻 (𝐴)

0 . The trial may

stop for futility at interim analysis if 𝑆(𝐴)
𝑘

≤ 𝑙
(𝐴)
𝑘

for some lower
stopping bound value 𝑙(𝐴)

𝑘
. However, as it is often required that any

futility stopping rule is non-binding, we will ignore stopping for
futility in calculation of the boundary values 𝑢(𝐴)1 , 𝑢

(𝐴)
2 , . . . . This is

considered in more detail in the Discussion section below.

It is desired to obtain stopping boundary critical values,
𝑢
(𝐴)
1 , 𝑢

(𝐴)
2 , . . . , to control the overall type I error at (one-sided) level

𝛼. As this constraint is insufficient to specify 𝑢
(𝐴)
1 , 𝑢

(𝐴)
2 , . . . , it is

common to require that the type I error rate is spent at a rate
according to some specified spending function [7–9]. In detail, let
𝛼∗(𝐴)(𝑡)denote an increasing function from [0, 1]with 𝛼∗(𝐴)(0) = 0
and 𝛼∗(𝐴)(1) = 𝛼, specified in advance of observation of any data,
then we require the type I error ‘spent’ by interim analysis 𝑘 to be
𝛼∗(𝐴)(𝑡(𝐴)

𝑘
). That is

𝑃𝑟
𝐻

(𝐴)
0
(Stop and reject 𝐻 (𝐴)

0 at or before interim analysis 𝑘)

= 𝛼∗(𝐴)(𝑡(𝐴)
𝑘

), (2)

where 𝑡
(𝐴)
𝑘

= 𝐼
(𝐴)
𝑘

∕𝐼 (𝐴)
max. In particular, since 𝛼∗(𝐴)(1) = 𝛼, this

ensures overall type I error rate control at the specified level.

Let ℛ(𝐴)
𝑘

for 𝑘 = 1, 2, . . . denote the event that the trial reaches
look 𝑘 and stops at that look, rejecting𝐻 (𝐴)

0 . Thenℛ(𝐴)
1 = {𝑆 (𝐴)

1 ≥

𝑢
(𝐴)
1 } and, for 𝑘 = 2, . . . , ℛ(𝐴)

𝑘
= 𝒞 (𝐴)

𝑘
∩ {𝑆 (𝐴)

𝑘
≥ 𝑢

(𝐴)
𝑘

} where

𝒞 (𝐴)
𝑘

=
𝑘−1⋂
𝑟=1

{𝑆 (𝐴)
𝑟

< 𝑢(𝐴)
𝑟

}

is the event that the trial reaches look 𝑘 (𝑘 = 2, . . . ).

The condition (2) is then that

𝑘∑
𝑟=1

𝑃𝑟
𝐻

(𝐴)
0
(ℛ(𝐴)

𝑟
) = 𝛼∗(𝐴)(𝑡(𝐴)

𝑘
), (3)

The critical values 𝑢
(𝐴)
1 , 𝑢

(𝐴)
2 , . . . can then be found to satisfy (3)

recursively. In detail, using the multivariate normal distribution
(1), we can find 𝑢

(𝐴)
1 such that

𝑃𝑟
𝐻

(𝐴)
0
(ℛ(𝐴)

1 ) = 𝛼∗(𝐴)(𝑡(𝐴)1 )

and, for 𝑘 > 1, given 𝑢
(𝐴)
1 , . . . , 𝑢

(𝐴)
𝑘−1, can find 𝑢

(𝐴)
𝑘

such that
Equation (3) holds. Details are given by Jennison and
Turnbull [10].

3.2 | Construction of a Group-Sequential
Boundary With a Change of Endpoint

Suppose that part-way through the trial designed as described
above, a decision is made to change to a new primary endpoint,
endpoint B. As described in the Introduction, we assume that data
on endpoint B have been collected at previous interim analyses as
a secondary endpoint.

Suppose that the decision to change to endpoint B is made at
information time 𝑡𝑘̃, that is at interim analysis 𝑘̃, (or before
interim analysis 𝑘̃ but after interim analysis 𝑘̃ − 1) with 1 < 𝑘̃.
Thus the trial stopping rule will be based on endpoint 𝐴 for looks
𝑘 = 1, . . . , 𝑘̃ − 1. If the trial has not been stopped at or before
interim analysis 𝑘̃ − 1, it will continue with a stopping rule based
on monitoring endpint 𝐵 for looks 𝑘 = 𝑘̃, . . . . If the trial has been
stopped by interim analysis 𝑘̃ − 1, an analysis will be conducted
based on the final data on endpoint B. We will consider 𝑡𝑘̃ such
that 𝑡𝑘̃ = 1 to indicate that a decision is made to change the end-
point after the trial has concluded, with the final analysis again
based on the data observed for endpoint B.

Let 𝜃(𝐵) denote the treatment effect on endpoint B. Following the
change of endpoint, we wish to test the null hypothesis 𝐻

(𝐵)
0 ∶

𝜃(𝐵) = 0.

In order to control the overall type I error rate, we require

𝑃𝑟
𝐻

(𝐵)
0
(Stop and reject 𝐻 (𝐵)

0 ) = 𝛼. (4)

Noting that the probability of stopping, and hence the probability
of stopping and rejecting 𝐻

(𝐵)
0 , depends on the data on endpoint

A, it is required that this holds for any 𝜃𝐴, that is that

sup
𝜃(𝐴)

{
𝑃𝑟

𝐻
(𝐵)
0
(Stop and reject 𝐻 (𝐵)

0 )
}
= 𝛼.

We suppose that we have a pre-specified spending function, 𝛼∗(𝐵),
an increasing function from [0, 1]with 𝛼∗(𝐵)(0) = 0 and 𝛼∗(𝐵)(1) =
𝛼 and that it is required that

sup
𝜃(𝐴)

{
𝑃𝑟

𝐻
(𝐵)
0
(Stop and reject 𝐻 (𝐵)

0 at or before interim analysis𝑘)
}

= 𝛼∗(𝐵)(𝑡(𝐵)
𝑘

) (5)

where 𝑡(𝐵)
𝑘

= 𝐼
(𝐵)
𝑘

∕𝐼 (𝐵)
max with 𝐼

(𝐵)
max the expected value of 𝐼 (𝐵) with a

sample size for which 𝐼 (𝐴) = 𝐼
(𝐴)
max.
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Let 𝑆
(𝐵)
𝑘

and 𝐼
(𝐵)
𝑘

respecitvely denote the score statistic and
observed Fisher’s information for 𝜃(𝐵) based on all data on end-
point B observed up to interim analysis 𝑘 and assume endpoints
A and B are possibly correlated such that the correlation between
𝑆

(𝐴)
𝑘

and 𝑆
(𝐵)
𝑘

is 𝜌. For normally distributed endpoints, this is
equivalent to a correlation between the endpoints of 𝜌 (see Friede
et al. [11]).

Analogous to (1), we will assume a multivariate normal distribu-
tion for 𝑆 (𝐴)

1 , 𝑆
(𝐴)
2 , . . . , 𝑆

(𝐵)
1 , 𝑆

(𝐵)
2 , . . . such that(

𝑆
(𝐴)
1 , 𝑆

(𝐴)
2 , . . . , 𝑆

(𝐵)
1 , 𝑆

(𝐵)
2 , . . .

)′

∼ 𝑁

((
𝜃(𝐴)𝐼

(𝐴)
1 , 𝜃(𝐴)𝐼

(𝐴)
2 , . . . , 𝜃(𝐵)𝐼

(𝐵)
1 , 𝜃(𝐵)𝐼

(𝐵)
2 , . . .

)′
,𝚺

)
(6)

with

𝚺 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼
(𝐴)
1 𝐼

(𝐴)
1 · · · 𝐼 (𝐴𝐵)

1 𝐼
(𝐴𝐵)
1 · · ·

𝐼
(𝐴)
1 𝐼

(𝐴)
2 · · · 𝐼 (𝐴𝐵)

1 𝐼
(𝐴𝐵)
2 · · ·

⋮ ⋮ ⋱ ⋮ ⋮ ⋱

𝐼
(𝐴𝐵)
1 𝐼

(𝐴𝐵)
1 · · · 𝐼

(𝐵)
1 𝐼

(𝐵)
1 · · ·

𝐼
(𝐴𝐵)
1 𝐼

(𝐴𝐵)
2 · · · 𝐼

(𝐵)
1 𝐼

(𝐵)
2 · · ·

⋮ ⋮ ⋱ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝐼

(𝐴𝐵)
𝑘

= 𝜌(𝐼 (𝐴)
𝑘

𝐼
(𝐵)
𝑘

)1∕2, 𝑘 = 1, 2, . . . .

Let 𝑢(𝐵)
𝑘

denote the critical value for the test at interim analysis 𝑘,
such that 𝐻 (𝐵)

0 will be rejected and the trial stopped if 𝑆(𝐵)
𝑘

≥ 𝑢
(𝐵)
𝑘

for 𝑘 ≥ 𝑘̃ or 𝐻 (𝐵)
0 will be rejected if 𝑆(𝐵)

𝑘
≥ 𝑢

(𝐵)
𝑘

if the trial stopped
at look 𝑘 because 𝑆

(𝐴)
𝑘

≥ 𝑢
(𝐴)
𝑘

for 𝑘 < 𝑘̃.

Letℛ(𝐵)
𝑘

denote the event that the trial reaches look 𝑘 and stops at
that look, rejecting 𝐻

(𝐵)
0 . Recalling that this can occur either for

𝑘 ≥ 𝑘̃, with stopping and rejection of𝐻 (𝐵)
0 based on monitoring of

endpoint B, or for 𝑘 < 𝑘̃, when the trial has already stopped with
rejection of 𝐻 (𝐴)

0 , we have

ℛ(𝐵)
𝑘

=
⎧⎪⎨⎪⎩
ℛ(𝐴)

𝑘
∩ {𝑆 (𝐵)

𝑘
≥ 𝑢

(𝐵)
𝑘

} 𝑘 < 𝑘̃

𝒞 (𝐴)
𝑘

∩ {𝑆 (𝐵)
𝑘

≥ 𝑢
(𝐵)
𝑘

} 𝑘 = 𝑘̃

𝒞 (𝐴)
𝑘̃

∩𝒞 (𝐵)
𝑘̃,𝑘

∩ {𝑆 (𝐵)
𝑘

≥ 𝑢
(𝐵)
𝑘

} 𝑘 > 𝑘̃

(7)

with, for 𝑘 > 𝑘̃,

𝒞 (𝐵)
𝑘̃,𝑘

=
𝑘−1⋂
𝑟=𝑘̃

{𝑆 (𝐵)
𝑟

< 𝑢(𝐵)
𝑟

}.

Condition (5) can thus be rewritten as

sup
𝜃(𝐴)

{
𝑘∑

𝑟=1
𝑃𝑟

𝐻
(𝐵)
0
(ℛ(𝐵)

𝑟
)

}
= 𝛼∗(𝐵)(𝑡(𝐵)

𝑘
). (8)

Critical values 𝑢(𝐵)1 , . . . , 𝑢
(𝐵)
𝐾

can again be found recursively so as
to satisfy (8) with 𝑢

(𝐵)
1 such that

sup
𝜃𝐴

{
𝑃𝑟

𝐻
(𝐵)
0
(ℛ(𝐵)

1 )
}
= 𝛼∗(𝐵)(𝑡(𝐵)1 ) (9)

and, for 𝑘 > 1, the value of 𝑢
(𝐵)
𝑘

to satisfy (8) found given
𝑢
(𝐵)
1 , . . . , 𝑢

(𝐵)
𝑘−1.

For 𝑘 = 1, the supremum in (9) corresponds to 𝜃𝐴 → ∞ so that

𝑃𝑟𝜃(𝐴) (ℛ
(𝐴)
1 ) → 1

and
sup
𝜃𝐴

𝑃 𝑟
𝐻

(𝐵)
0
(ℛ(𝐵)

1 ) = 𝑃𝑟
𝐻

(𝐵)
0
(𝑆 (𝐵)

1 ≥ 𝑢
(𝐵)
1 ).

For 𝑘 = 𝑘̃ = 2, it possible to find the value of 𝜃𝐴 at which the
supremum in (8) occurs analytically (see Supporting Informa-
tion). Otherwise the supremum must be found numerically, for
example using the one-dimensional optimisation routine opti-
mize in R [12].

Calculation of the critical values 𝑢
(𝐵)
1 , 𝑢

(𝐵)
2 , . . . require the

variance-covariance matrix 𝚺 in Equation (6) to be known. The
information levels may be 𝐼

(𝐴)
𝑘

and 𝐼
(𝐵)
𝑘

are estimated from the
data available at the 𝑘th interim analysis using expressions given
by Whitehead [13]. The correlation, 𝜌, between the test statis-
tics 𝑆 (𝐴)

𝑘
and 𝑆

(𝐵)
𝑘

will also generally be unknown. An estimated
value might be available based on historical data, or alternatively
𝜌 can be estimated from the data available from the trial. As
noted above, for normally distributed endpoints, 𝜌 is equal to the
correlation between the endpoints A and B in each treatment
group [11]. In this case a direct estimate of 𝜌 can be obtained.
For other endpoints types, such as binary or time-to-event data,
it can be estimated using a bootstrap procedure, resampling pairs
of endpoints with replacement from each the control and treat-
ment groups and calculating 𝑆 (𝐴) and 𝑆 (𝐵) values, with their
correlation estimated from a large number of resampled repli-
cates. Since boundary values 𝑢

(𝐵)
𝑘

for 𝑘 ≤ 𝑘̃ are only required at
the point when the trial stops, the construction of these bound-
ary values can be based on a value of 𝜌 estimated using all data
from the look at which the trial stops if this is prior to look 𝑘̃, or
from the data at look 𝑘̃ if the trial has not stopped at this point.
This is illustrated in detail in the example give in Section 4.1.
The simulation study reported in Section 4.2 examines the type I
error rate when 𝜌 is estimated from the data for normally
distributed data.

4 | Numerical Example and Simulation Study

4.1 | Detailed Numerical Example

In order to illustrate the method proposed above, we simulated
trial data using the model proposed by Dodd et al. [14]. This
enabled simulation of data on an the ordinal eight-level scale as
used in the study described in Section 2 above [2] over a 28 day
follow-up period for patients with and without treatment. Reflect-
ing a situation similar to that described in Section 2 above, we
assumed that the initial endpoint was the binary outcome cor-
responding to attainment of a score of 2 or less after 15 days,
where a score of 2 = ambulatory with limitation on activities,
and that subsequently a decision was made to change the end-
point to be time to recovery (score 1), with this censored after
28 days. Expressions for 𝑆(𝐴), 𝐼 (𝐴), 𝑆 (𝐵) and 𝐼 (𝐵) for binary and
time-to-event endpoints are given by Whitehead [13].

We suppose that the initial design was constructed to have five
stages with equal numbers of patients, with these randomised
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TABLE 1 | Summary of results and critical boundary values for looks
1 to 3 for endpoint A in the simulated example data set.

Total successes

𝒌 Control Treated 𝑰
(𝑨)
𝒌

𝒖
(𝑨)
𝒌

𝒖
(𝑨)
𝒌

∕
√
𝑰
(𝑨)
𝒌

𝑺
(𝑨)
𝒌

1 93 110 22.75 12.3 2.58 8.5
2 192 221 45.47 16.8 2.50 14.5
3 281 331 68.34 19.9 2.41 25.0

1:1 to treatment and placebo control groups, with an 𝛼-spending
function of the form 𝛼∗(𝐴)(𝑡) = 𝛼𝑡 (see Hwang et al. [9]) with
one-sided type I error rate 𝛼 = 0.025, and that is desired to have
power of 0.9 to detect an increase in the proportion of patients
attaining a score of 2 or less within 15 days from 0.5 in the con-
trol group to 0.58 in the treatment group. This corresponds to
𝐼
(𝐴)
max = 114.6. From Whitehead [13], this requires a total maxi-

mum sample size of 1844 patients, with 184 patients per group
per stage for stages 1, 3 and 5 and 185 patients per group per
stage for stages 2 and 4. The full simulated data set is given in
the Supporting Information.

We will illustrate the proposed method using two example data
sets. In the first, we imagine that the trial proceeds based on end-
point A, but that subsequently a decision is made to change the
primary endpoint to be endpoint B. Suppose that the data on end-
point A for the first three stages of the trial are as shown in Table 1.
The corresponding values of 𝑆

(𝐴)
𝑘

and 𝐼
(𝐴)
𝑘

for 𝑘 = 1, . . . , 3 are
shown, together with the critical values for 𝑆(𝐴) calculated using
the method described in Section 3.1. At the third interim analy-
sis, after observation of 553 patients per group we have𝑆(𝐴)

3 > 𝑢
(𝐴)
3

and the trial stops. The null hypothesis 𝐻
(𝐴)
0 would have been

rejected at this point.

Following the decision to change to endpoint B. Test statitics 𝑆(𝐵)
3

and 𝐼
(𝐵)
3 can be calculated based on the observed time to recov-

ery data from the 1106 patients recruited to the trial. Assuming a
recovery rate of approximately 40%, with a total maximum sam-
ple size of 1844 patients, the maximum information on endpoint
B, 𝐼 (𝐵)

max, was calculated to be 184.5.

The method above illustrates how to construct the correct critical
value, 𝑢(𝐵)3 , with 𝑆

(𝐵)
3 should be compared. Beacuse the trial could

have stopped at an earlier interim, calculation of 𝑢(𝐵)3 requires the
values of 𝐼 (𝐵)

1 and 𝐼
(𝐵)
2 . For this simulated data set, these are given

in Table 2 along with the cumulative number of recovery events
in each arm observed at each interim analysis. Calculation of the
value of 𝑢(𝐵)3 , and the values of 𝑢(𝐵)1 and 𝑢

(𝐵)
2 , on which it depends,

require a value for 𝜌, the correlation between 𝑆
(𝐴)
𝑘

and 𝑆
(𝐵)
𝑘

. This
was estimated using a bootstrap approach as described above. In
this case an estimated correlation of 0.715 was obtained. Result-
ing values for 𝑢

(𝐵)
1 , . . . , 𝑢

(𝐵)
3 are shown in Table 2, together with

standardised boundary values given by 𝑢
(𝐵)
𝑖

∕
√
𝐼
(𝐵)
𝑖

, 𝑖 = 1, . . . , 3
and the values of 𝜃(𝐴) for which the supremum in (8) occurs,
denoted sup(𝜃(𝐴)). The simulated times to recovery for the 1106
patients observed up to interim analysis 3 are illustrated in
the Kaplan-Meier plot shown in Figure 1. The value of 𝑆

(𝐵)
3

is 23.13. As this exceeds 𝑢
(𝐵)
3 , the null hypothesis 𝐻

(𝐵)
0 can

be rejected.

TABLE 2 | Summary of results and critical boundary values for end-
point B in the simulated example data set with 𝑘̃ = 5.

Total recoveries Boundary with 𝒌̃ = 5

𝒌 Control Treated 𝑰
(𝑩)
𝒌

𝑺
(𝑩)
𝒌

𝝆̂ sup(𝜽(𝑨)) 𝒖
(𝑩)
𝒌

𝒖
(𝑩)
𝒌

∕
√
𝑰
(𝑩)
𝒌

1 71 76 35.35 1.60 0.715a ∞ 15.4 2.59
2 140 154 70.53 7.71 0.715a 0.2396 18.9 2.26
3 203 241 106.49 23.13 0.715 0.1838 21.6 2.09

aEstimate from later look used as boundary value calculated retrospectively.
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FIGURE 1 | Kaplan–Meier curves illustrating simulated example
time to recovery data in control (solid line) and treated (dashed line)
groups at interim analysis 3 (when trial stopped with 𝑘 = 5).

In the second example data set we envisage data as above but sup-
pose that a decision was taken to change to endpoint B after the
first interim analysis, that is 𝑘̃ = 2. Since the trial has not stopped
at this point, the trial continues, monitoring endpoint B from
interim analysis 2 onwards. At each interim analysis, the value
of 𝐼 (𝐵)

𝑘
is calculated and used to calculate 𝑢

(𝐵)
𝑘

as described above,
based on an estimated value of 𝜌. The values of 𝐼 (𝐵)

𝑘
, estimated

values of 𝜌, values of 𝜃(𝐴) corresponding to the supremum in (9),
and resulting values of 𝑢(𝐵)

𝑘
are given in Table 3. In this case, the

critical values 𝑢
(𝐵)
𝑘

are larger than those when 𝑘̃ = 5 as they are
adjusted for the possibility of earlier stopping when this is more
often based on observation of a large value of endpoint B than
of a large value of endpoint A. In this case the value of 𝑆(𝐵)

3 of
23.13 does not exceed the critical value 𝑢

(𝐵)
3 , so the trial would

continue to interim analysis 4. The simulated times to recovery
for the 1484 patients observed up to interim analysis 4 are illus-
trated in the Kaplan-Meier plot shown in Figure 2. The value of
𝑆

(𝐵)
4 is 32.35. As this exceeds 𝑢(𝐵)4 , the trial would stop and 𝐻

(𝐵)
0

would be rejected.

4.2 | Simulation Study

A simulation study was conducted to assess the properties of the
method proposed above and to compare it with possible alterna-
tive approaches.

Statistics in Medicine, 2025 5 of 10
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TABLE 3 | Summary of results and critical boundary values for end-
point B in the simulated example data set with 𝑘̃ = 2.

Total recoveries Boundary with 𝒌̃ = 2

𝒌 Control Treated 𝑰
(𝑩)
𝒌

𝑺
(𝑩)
𝒌

𝝆̂ sup(𝜽(𝑨)) 𝒖
(𝑩)
𝒌

𝒖
(𝑩)
𝒌

∕
√
𝑰
(𝑩)
𝒌

1 71 76 35.35 1.60 0.721a ∞ 15.4 2.59
2 140 154 70.53 7.71 0.721 0.0769 19.9 2.37
3 203 241 106.49 23.13 0.705 0.0030 24.5 2.37
4 264 318 139.91 32.25 0.729 −1.5836 27.7 2.34

aEstimate from later look used as boundary value calculated retrospectively.
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FIGURE 2 | Kaplan–Meier curves illustrating simulated example
time to recovery data in control (solid line) and treated (dashed line)
groups at interim analysis 4 (when trial stopped with 𝑘̃ = 2).

A group-sequential trial was initially designed for a normally dis-
tributed endpoint, endpoint A, with up to five stages planned
with these equally spaced in terms of information. The parame-
ter of interest, 𝜃(𝐴), was defined to be the standardised difference
in means between the treated and control group. Expressions for
𝑆 (𝐴) and 𝐼 (𝐴) are given by Whitehead [13].

The trial was designed with an alpha-spending function
𝛼∗(𝐴)(𝑡(𝐴)) = 𝛼𝑡(𝐴) for an overall one-sided type one error rate
𝛼 = 0.025, and power 0.9 to detect a treatment effect of size
𝜃(𝐴) = 0.5. This requires 𝐼

(𝐴)
max = 47.75, equivalent to a total sam-

ple size per treatment group of 95.5. This was rounded up to 96,
with 19 patients included per treatment arm in each of stages 1
to 4 and 20 patients per treatment arm included in stage 5.

For looks 𝑘 = 1, . . . , 𝑘̃, for 𝑘̃ equal to 3 and 5, the observed values
of 𝑆 (𝐴)

𝑘
are compared with critical values for the group sequential

test, with the trial stopped if 𝑆(𝐴)
𝑘

≥ 𝑢
(𝐴)
𝑘

.

It was assumed that at look 𝑘̃ a decision was made to change to a
new endpoint, endpoint B, with this also normally distributed. If
the trial had already stopped, the final data for endpoint B would
be analysed. Otherwise, the trial would continue with the same
sample size per treatment group per stage with endpoint B mon-
itored, so that the test has nominal power of 0.9 for a standard-
ised treatment difference on endpoint B, 𝜃(𝐵), also equal to 0.5.
Critical values 𝑢(𝐵) will be obtained to satisfy Equation (9) with

𝛼∗(𝐵)(𝑡(𝐵)) = 𝛼𝑡(𝐵) with the correlation between the test statisctics,
𝜌, which for normally distributed endpoints is just the correlation
between the endpoints, estimated from the observed data. Note
that for 𝑘̃ = 5, since this is the last planned interim analysis, the
stopping time is determined entirely by endpoint A with endpoint
B analysed for the resulting final sample.

In order to assess error rate control for a range of values of 𝜃(𝐴),
simulations were conducted with 𝜃(𝐴) ranging from −0.3 to 0.5,
with 𝜃(𝐵) equal to 0, that is under the null hypothesis, 0.3 and 0.5,
that is, with true effect of treatment B smaller than or of equal
size to the effect on treatment A for which the trial was originally
powered, with a true correlation between endpoints A and B, 𝜌 of
0.7 or 0.3. As 𝜃(𝐴) and 𝜃(𝐵) are defined as standardised treatment
differences, the variances for the normal endpoints A and B can
be set arbitrarily, so were set to 1 in both cases in the simulation
study.

Tables 4 and 5 give simulation results from 10 000 simulations
under each of the scenarios described above for 𝜌 equal to 0.7 and
0.3 respectively. Estimated error rates for the approach described
above, labelled ‘Corrected test’ are compared with those for two
other alternative approaches to testing 𝐻

(𝐵)
0 . The first, labelled

‘Naive test’ is to compare 𝑆
(𝐵)
𝑘

with a standard critical value of
1.96

√
𝐼𝑘 at the look at which the trial stops if this is less than 𝑘̃,

or at every interim analysis after 𝑘̃ if the trial has not stopped,
in the latter case stopping as soon as a critical value is exceeded.
The second alternative approach, labelled ‘Group-sequential’ is
to compare 𝑆

(𝐵)
𝑘

to a group-sequential boundary obtained using
𝐼 (𝐵) and spending function 𝛼∗(𝐵) ignoring the fact that the trial
might have been stopped early because of observation of a large
value of endpoint A.

The results in Table 4 show that using the naive testing approach
leads to inflation of the one-sided type I error rate above the nomi-
nal 0.025 level, particularly for smaller 𝑘̃. This is as expected, as in
this case, there is no adjustment for the repeated significance test-
ing of endpoint B at looks 𝑘 ≥ 𝑘̃. The error rate inflation for the
naive testing approach when 𝑘̃ = 5 arises because of the correla-
tion between endpoints A and B. The fact that the test stops when
𝑆

(𝐴)
𝑘

≥ 𝑢
(𝐴)
𝑘

means that this is likely to arise for an unusually large
value of 𝑆 (𝐴), and hence, due to the correlation, for an unusu-
ally large value of 𝑆(𝐵)

𝑘
, leading to the type I error rate inflation

observed. As the true value of 𝜃(𝐴) becomes large stopping at the
first interim analysis becomes increasing likely so that the type I
error rate inflation for the naive test of 𝐻 (𝐵)

0 is reduced; it would
be expected that this would approach the nominal 0.025 level as
𝜃(𝐴) → ∞, irrespective of the value of 𝑘̃. For 𝑘̃ = 5, as the true
value of 𝜃(𝐴) becomes very small, continuing to the last interim
analysis becomes increasing likely so that the type I error rate
inflation for the naive test of 𝐻 (𝐵)

0 is again reduced and would
be expected to approach 0.025 as 𝜃(𝐴) → −∞.

The group-sequential test of 𝐻 (𝐵)
0 with critical values constructed

ignoring the monitoring of endpoint A prior to look 𝑘̃, is conser-
vative, as the boundary over-corrects for the sequential testing.
This is particularly true for larger 𝑘̃ values.

The sequential testing boundaries constructed as above control
the type I error rate at or below the nominal level as intended

6 of 10 Statistics in Medicine, 2025
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TABLE 4 | Simulation results for 𝜌 = 0.7.

Corrected test Naive test Group-sequential test

Type I Power Power Type I Power Power Type I Power Power
𝒌̃ 𝜽(𝑨) error 𝜽(𝑩) = 0.3 𝜽(𝑩) = 0.5 error 𝜽(𝑩) = 0.3 𝜽(𝑩) = 0.5 error 𝜽(𝑩) = 0.3 𝜽(𝑩) = 0.5

2 −0.3 0.0225 0.4834 0.9001 0.0549 0.6226 0.9475 0.0201 0.4720 0.8954
−0.1 0.0227 0.4836 0.8999 0.0552 0.6227 0.9476 0.0203 0.4716 0.8954

0 0.0224 0.4820 0.8992 0.0556 0.6225 0.9475 0.0200 0.4706 0.8949
0.1 0.0221 0.4800 0.8974 0.0567 0.6216 0.9472 0.0197 0.4690 0.8930
0.3 0.0198 0.4633 0.8819 0.0575 0.6116 0.9426 0.0180 0.4524 0.8775
0.5 0.0152 0.4083 0.8288 0.0524 0.5762 0.9216 0.0138 0.3990 0.8248

3 −0.3 0.0262 0.4921 0.9045 0.0483 0.6051 0.9442 0.0196 0.4595 0.8927
−0.1 0.0263 0.4919 0.9045 0.0485 0.6053 0.9443 0.0196 0.4591 0.8928

0 0.0259 0.4909 0.9040 0.0493 0.6054 0.9442 0.0192 0.4580 0.8923
0.1 0.0254 0.4879 0.9015 0.0513 0.6036 0.9437 0.0192 0.4534 0.8895
0.3 0.0220 0.4503 0.8803 0.0514 0.5794 0.9359 0.0161 0.4119 0.8609
0.5 0.0134 0.3359 0.7806 0.0415 0.4885 0.8845 0.0097 0.2926 0.7389

4 −0.3 0.0242 0.5016 0.9109 0.0376 0.5806 0.9400 0.0153 0.4444 0.8882
−0.1 0.0246 0.5011 0.9109 0.0385 0.5809 0.9401 0.0155 0.4441 0.8883

0 0.0246 0.4999 0.9105 0.0402 0.5812 0.9400 0.0153 0.4428 0.8878
0.1 0.0249 0.4964 0.9080 0.0430 0.5797 0.9395 0.0161 0.4367 0.8850
0.3 0.0217 0.4499 0.8847 0.0436 0.5488 0.9296 0.0133 0.3767 0.8503
0.5 0.0125 0.2941 0.7598 0.0364 0.4183 0.8574 0.0081 0.2173 0.6785

5 −0.3 0.0205 0.4943 0.9154 0.0261 0.5411 0.9317 0.0117 0.4143 0.8788
−0.1 0.0216 0.4939 0.9153 0.0280 0.5414 0.9318 0.0124 0.4141 0.8789

0 0.0229 0.4927 0.9147 0.0312 0.5416 0.9317 0.0129 0.4130 0.8785
0.1 0.0256 0.4903 0.9122 0.0366 0.5414 0.9312 0.0143 0.4079 0.8758
0.3 0.0229 0.4519 0.8884 0.0417 0.5158 0.9213 0.0119 0.3473 0.8394
0.5 0.0123 0.2879 0.7582 0.0359 0.3906 0.8452 0.0077 0.1895 0.6534

for all values of 𝜃(𝐴). As the test is constructed to control the type
I error rate for any 𝜃𝐴, there is some conservatism, particuarly
when the trie value of 𝜃(𝐴) is large. The power to detect an effect
of size 𝜃(𝐵) = 0.5 is also reduced below the nominal level of 0.9
for larger values of 𝜃(𝐴), with this most marked for larger 𝑘̃, as the
trial then tends to stop with a smaller sample size than if endpoint
B has beeen used from the outset. Unsurprisingly, the power is
reduced for smaller 𝜃(𝐵) for all values of 𝜃(𝐴) and 𝑘̃.

The results in Table 5 are similar to those in Table 4, showing that
the true value of 𝜌 has relatively little impact on the properties of
the testing procedures, though the smaller value of 𝜌 leads to the
method proposed above being slightly less conservative when 𝜃(𝐴)

is large and to a slightly lower degree of type I error rate inflation
for the naive test when 𝜃(𝐴) is close to 0.

Additional simulation results giving the probability that the trial
stops at each interim analysis are given in the Supporting Infor-
mation.

5 | Discussion

Clinical trials conducted during the COVID-19 pandemic demon-
strated the value of adaptive design methods in settings in which
there is uncertainty about disease natural history, anticipated
endpoint effect sizes and population size [3, 4]. In such a setting,
there may also be uncertainty regarding the most appropriate
endpoint to use to assess the impact of treatments under inves-
tigation. As it would be undesirable to delay the start of clinical
trials, this might lead to an externally-driven decision to change
the primary endpoint during the course of a trial [2]. This is a rela-
tively unusual scenario, but as the motivating example described
above illustrates, can arise in trials in emerging novel pathogens.

If no data have been collected on the new primary endpoint, end-
point B, in the ongoing trial then in order to be able to draw
inference on the treatment effect on endpoint B will require a
new trial. If, however, data on endpoint B were collected as a sec-
ondary endpoint, this data could be analysed at the end of the
trial to draw inference on endpoint B. As demonstrated by the
simulation study reported above, the use of inappropriate statis-
tical methods in such a setting could lead to either inflated type I
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TABLE 5 | Simulation results for 𝜌 = 0.3.

Corrected test Naive test Group-sequential test

Type I Power Power Type I Power Power Type I Power Power
𝒌̃ 𝜽(𝑨) error 𝜽(𝑩) = 0.3 𝜽(𝑩) = 0.5 error 𝜽(𝑩) = 0.3 𝜽(𝑩) = 0.5 error 𝜽(𝑩) = 0.3 𝜽(𝑩) = 0.5

2 −0.3 0.0252 0.4759 0.9003 0.0596 0.6218 0.9473 0.0217 0.4640 0.8962
−0.1 0.0252 0.4747 0.8993 0.0596 0.6210 0.9468 0.0217 0.4631 0.8953

0 0.0252 0.4733 0.8972 0.0596 0.6195 0.9456 0.0217 0.4617 0.8931
0.1 0.0249 0.4698 0.8925 0.0594 0.6168 0.9425 0.0214 0.4581 0.8885
0.3 0.0240 0.4499 0.8654 0.0593 0.5985 0.9252 0.0208 0.4393 0.8615
0.5 0.0211 0.4052 0.8026 0.0560 0.5584 0.8823 0.0183 0.3953 0.7991

3 −0.3 0.0257 0.4836 0.9051 0.0484 0.6037 0.9437 0.0184 0.4528 0.8937
−0.1 0.0255 0.4823 0.9044 0.0484 0.6025 0.9432 0.0182 0.4511 0.8925

0 0.0255 0.4806 0.9011 0.0485 0.5999 0.9411 0.0182 0.4486 0.8893
0.1 0.0258 0.4737 0.8949 0.0486 0.5939 0.9365 0.0181 0.4408 0.8816
0.3 0.0244 0.4325 0.8465 0.0474 0.5520 0.9010 0.0169 0.3942 0.8218
0.5 0.0203 0.3446 0.7292 0.0425 0.4596 0.8086 0.0127 0.2967 0.6818

4 −0.3 0.0252 0.5074 0.9164 0.0376 0.5797 0.9394 0.0145 0.4370 0.8909
−0.1 0.0250 0.5056 0.9157 0.0376 0.5783 0.9389 0.0142 0.4350 0.8896

0 0.0254 0.5030 0.9122 0.0380 0.5755 0.9366 0.0143 0.4323 0.8859
0.1 0.0254 0.4941 0.9050 0.0378 0.5673 0.9312 0.0143 0.4207 0.8752
0.3 0.0261 0.4416 0.8469 0.0372 0.5129 0.8855 0.0125 0.3548 0.7975
0.5 0.0209 0.3281 0.7045 0.0349 0.3967 0.7663 0.0091 0.2353 0.6128

5 −0.3 0.0231 0.5107 0.9228 0.0262 0.5380 0.9304 0.0109 0.4092 0.8822
−0.1 0.0231 0.5095 0.9222 0.0265 0.5368 0.9300 0.0109 0.4075 0.8809

0 0.0240 0.5064 0.9187 0.0270 0.5339 0.9277 0.0113 0.4044 0.8771
0.1 0.0250 0.4972 0.9109 0.0286 0.5256 0.9216 0.0117 0.3924 0.8656
0.3 0.0273 0.4488 0.8507 0.0319 0.4729 0.8731 0.0104 0.3238 0.7835
0.5 0.0224 0.3326 0.7048 0.0329 0.3690 0.7530 0.0079 0.2071 0.5886

error rates for a test of 𝐻 (𝐵)
0 , the null hypothesis that there is no

effect on endpoint B, or alternatively to uneccessary conservatism
and a resulting lack of power. It is therefore important to develop
statistical approaches specific to this setting. This was the aim of
this paper.

The method proposed above calculates adjusted critical values for
a test of 𝐻 (𝐵)

0 allowing for the fact that in its earlier stages the
trial was monitored, and may have been stopped, using endpoint
A. Construction of boundary values requires specification of the
correlation between the test statistics based on the two endpoints,
𝜌. In the simulations reported above, this was estimated based
on the data observed in the trial. The simulation results suggest
that this does not lead to type I error rate inflation, though this is
not guaranteed for smaller sample sizes when the correlation is
less accurately estimated. If this was a particular concern, since
assuming a larger correlation leads to a more conservative test, a
larger value such as, for example, an upper 95% confidence limit,
could deliberatly be used.

The approach described above adjusts only for stopping for a pos-
itive effect (that is stopping for efficacy) on endpoint A in the
early stages or endpoint B in the later stages of the trial. A lower

(futility) stopping rule could be added [15, 16]. If this was to be
considered binding, the method described could be modified by
defining the events 𝒞 (𝐴)

𝑘
and 𝒞 (𝐵)

𝑘̃,𝑘
to also require that the test

statistic exceeded the lower boundary at looks 1, . . . , 𝑘 − 1. If a
futility stopping rule for endpoint B is introduced but not allowed
for in the construction of 𝑢(𝐵)1 , 𝑢

(𝐵)
2 , . . . , this will reduce the proba-

bility of rejecting𝐻 (𝐵)
0 and hence lead to a conservative boundary,

and associated loss of power. Introduction of a futility stopping
rule for endpoint A will also lead to conservatism in the test of
𝐻

(𝐵)
0 provided the correlation, 𝜌, is non-negative. It would gener-

ally be reasonable to assume that this is the case, but if such an
assumption was considered unreasonable, use of a non-binding
futility stopping rule for endpoint A should be avoided to prevent
type I error rate inflation.

The critical values 𝑢
(𝐵)
1 , 𝑢

(𝐵)
2 , . . . depend on the specified rate at

which the type I error rate is spent, given by 𝛼∗(𝐵)(𝑡). In the
examples above we have used 𝛼∗(𝐵)(𝑡) = 𝛼∗(𝐴)(𝑡) so that the rate
of error spending is equal to that originally planned for endpoint
A. Whilst in priniciple a different alpha-spending function could
be used, type I error rate control requires that this is specified
independently of any observed trial data. As a change of endpoint
would not typically be envisaged in advance, it is hard to imagine

8 of 10 Statistics in Medicine, 2025
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how a form for 𝛼∗(𝐵)(𝑡) that differs from 𝛼∗(𝐴)(𝑡) could be justi-
fied. In particular, specifying 𝛼∗(𝐵)(𝑡) at the point at which the trial
stops or the endpoint change occurs in such a way as to allocate
less alpha to earlier interim analyses could result in overall type
I error rate inflation for the test of 𝐻 (𝐵)

0 ; for the setting in which
𝑘̃ corresponds to the final analysis, this is equivalent to the ‘naive
test’ considered in the simulation study above. Changes in the
timing of future analyses based on the estimate of 𝜃(𝐵) could also
lead to error rate inflation (see Proschan et al. [17]), though the
sample size for the trial following the change of endpoint could be
altered based on information from outside the trial, for example
to give power for a smaller treatment effect.

An alternative approach to that described above could be based
on the conditional error principal [18]. Using this approach,
boundary values for interim analyses after a change in endpoint
can be found based on the conditional type I error given the data
on endpoint A at the time when the endpoint is changed. The
conditioning on the endpoint A data from interim analyses with
𝑘 < 𝑘̃ means that the decision to make a change of endpoint can
depend on these data rather than being considered to be driven
by external factors as in the work above. This will lead to more
stringent test boundary values.

The work presented above has focussed on control of the type
I error rate for the test of 𝐻 (𝐵)

0 . In addition, estimation of 𝜃(𝐵)
presents an important inferential problem, with conventional
point estimates likely to be biased and conventional confidence
intervals likely to have inaccurate coverage. A number of meth-
ods have been proposed for point and interval estimation follow-
ing group sequential trials [19–21] upon which further research
work in this area could be based.

The method proposed in this paper assumes that the change in
endpoint is externally-driven, that is that the decision to change
the endpoint is not influenced by any data observed in the trial. It
is also assumed that the initial endpoint, endpoint A, is no longer
of interest as a primary endpoint. The focus is thus on control of
the type I error rate for the test of 𝐻 (𝐵)

0 for any value of 𝜃(𝐴), the
unknown treatment effect on endpoint A. This is in contrast to
methods that allow co-primary endpoints, for which control of
the familywise error rate for the family {𝐻 (𝐴)

0 ,𝐻
(𝐵)
0 } might be of

more concern [22].

Although the work described has been motivated, and illus-
trated, by clinical trials in COVID-19, this is not the only area of
application. Scientific consensus on suitable endpoints has also
changed in other diseases, with recent examples including other
severe infections [23], dengue [24] and pulmonary arterial hyper-
tension [25]. These changes in endpoint would lead to similar
challenges problems to those described above for any ongoing
group-sequential trials. A specific example of the primary end-
point being changed during the course of an ongoing trial is the
IMASOY trial in bubonic plague [26].
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