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MRNA methylation at the crossroads of translation, Lo
transport, and decay in plant development and stress

responses

Yihan Dong'?, Wenna Zhang*®

Modified nucleotides on RNAs have been investigated for over
six decades for their potential role in regulating gene expres-
sion and protein synthesis across a wide range of organisms,
from animals to plants and fungi, as well as in viral genetic
materials. Among them, mRNA methylation stands out with its
dynamic nature, which underscores the adaptability of the
epitranscriptome in developmental transitions and response to
environmental stress, especially in plants. Advances in next-
generation sequencing methods have revealed the specific
sequence contexts of mMRNA methylation, uncovering their
involvement in gene regulatory networks. Additionally, genetic
perturbations on the writers, erasers, and readers of m®A and
m>C expanded our understanding of the physiological function
and the mode of action of these modifications. In this review,
we highlight recent advances in understanding how mRNA fate
decisions, mainly determined by m®A and m°C RNA methyl-
ation, shape stress response and development in plants.
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Introduction

"To date, more than 170 different RNA modifications have
been identified. Among them, N’ -methylguanosine and
5 mcotmamlde adenine dmucleotlde (NAD™) caps, and
N© -methyladenosine (m A) 5-methylcytosine (m Q),
pseudourldme, Nl—methyladenosme, 2’-O-methylation,
N* -acetylcytidine, N6,2’-O- drmethyladenosme uridyla-
tion, 5-hydroxymethylcytosine, and inosine have been
detected in plant mRNA [1—3]. The dynamic nature of
the RNA methylation marks, particularly mPA and m°C,
has drawn considerable attention, as it highlights the
versatility of the epitranscriptome in the course of
organismal development and in environmental stress
conditions [4—6]. Moreover, the elucidation of the role of
RNA modifications in plant domestication and trait
improvement implicates its potential in novel agricultural
applications [7—9].

Hundreds of m°C sites were detected on mRNAs in
plants via RNA bisulfite sequencing. Later on, antibody-
based m°C- RIP-seq and antibody- and bisulfite-
independent Nanopore dlrect RNA sequencing (DRS)
expanded the list of m°C-modified mRNAs to several
thousand [10,11]. Recently, the TET-associated chemi-
cal labelling method (m® C -TAC-seq) has been applied to
animal cells to detect m°C, but not yet to plant systems
[12]. m 5Cis deposited(written) onto mRNAs by NOP2/
Sun  RNA  METHYLTRANSFERASE  FAMILY
MEMBER 2 (NSUNZ2), tRNA-SPECIFIC METHYL-
TRANSFERASE 4B (TRM4B), and in specific cases,
DNA METHYLTRANSFERASE 2 (DNMT?2) [13,14].
The m’C sites are recognized(read) by ALYREF and
YBX1 in animals [15]. ALYREF family nuclear export
factors ALY2 and ALY4 are shown to act like m°C readers
in plants, but direct binding of ALY2 or ALY4 to m>C has
not been proven yet [16]. Although specific m >C modi-
fications were associated with mRNA stability in animal
systems, the comparison of m 5C sites across tissues and
speaes suggests that the vast majority of mammahan
m°C modifications on mRNAs are due to imprecise m 5C
deposition errors and they are nonadaptive [17,18]. In
plants, the m 3C modification has been proven to regulate
the nuclear export and mRNA mobility of three tran-
scripts. Yet, the little overlap between m- 3C and mobile
RNAs in cucumber and pumpkins suggests a lack of a
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strong association between m>C modification and mRNA
mobility across different plant species [19,20].

m®A has been the most abundant and most studied
epltranscrrptomrc mark. While antibody-dependent
m A-seq/MeRlp -seq and miCLIP-seq show the abun-
dance of m®A-modified mRNAs, antibody-independent
m®A -sensitive enzymatlc methods, such as mazF
RNase-assisted sequencing (MAZTER-seq), RNA-
Endorlbonuclease Facilitated sequencing (m °A-REF-
seq), m A—selectlve allyl chemical labelmg and
sequencing (m °A-SAC- seq), FTO-assisted m °A selec-
tive chemical labeling (m®A-SEAL- seq), Nanopore
direct RNA sequencing (DRS), deamination adjacent to
RNA modification targets (DART-seq), Glyoxal and
nitrite-mediated deamination of unmethylated adeno-
sine (GLORI) were developed to map m °A sites to
smgle nucleotide resolutron [21,22]. The most common
m°A motif RR(m®)ACH (R = A/G, H = A/C/U) is
shared between animals and plants although some
plants, such as cotton, lack it [23]. m A modifications in
plants are the most abundant at the 3’ untranslated re-
gions (3’UTRs), in the vicinity of the stop codon, and
they are relatively low in the inner exons and at the
5'UTR [1]. Besides the sequence composition and the
pos1t1or1 of the motif, gene structures also affect m®A

g)osrtron For example, introns contain more abundant
m°A sites than the inner exons. In addition, a posrtrve
correlation between longer inner exons and higher m oA
levels has been observed in both animals and plants, but
the suppression of mP°A at the exon junctions in animals
does not apply to plants [21, 24] In addition to the
shared structural features of m®A-modified mRNAs,
those containing m ®A in their 3 UTRs are enriched for
Gene Ontology (GO) terms related to RNA metabolic
processes and translation. In contrast, mRNAs harboring
m°A outside the ¥UTR are predominantly associated
with development and stress response pathways [21].

In plants, m°A is deposited (written) predominantly co-
transcnptlonally by the catalytic heterodimer core of the
m®A methyltransferase complex (MTC), consisting of
mammalian METHYLTRANSFERASE LIKE 3
(METTL3) homologue mRNA ADENOSINE METH-
YLASE A (MTA), and mammalian METTL14 homo-
logue mRNA ADENOSINE METHYLASE B (MTB).
MTA and MTB form the m°A METTL complex
(MACQC). In addition to the methyltransferases, MTC
contains multiple accessory subunits: FKBP12
INTERACTING PROTEIN 37 KD (FIP37), VIRIL-
IZER (VIR), the E3 ubiquitin ligase HAKAI, and
HAKAI-INTERACTING ZINC FINGER PROTEIN 2
(HIZ2), which form m°A-METTL-associated complex
(MACOM) [25—27]. Furthermore, FIONA1 (FIO1) is
postulated to be an independent mP®A writer, but the
exact mode of action of FIO1 requires further studies
[28,29]. Ir1 plant mza, fip37, mtb, vir, and /iz2 mutants,
global m %A levels drop substantially, whereas fio/ and

hakai mutants have a subtle effect on total m°A abun-
dance [26]. It is noteworthy that different writers may
methylate distinct m °A sites resulting in an opposing
effect on mRNA stability and splicing. For example, the
FLOWERING LOCUS C (FLC) is a well-established
transcription factor that suppresses flowering. High
FL.C transcript levels are associated with late flowering,
while low FLC level leads to an early flowering pheno-
type. FLC transcript carries m A modification in wild-
type Arabidopsis. fio-1 mutants exhibit an early flower-
ing phenotype due to a specific reduction in the tran-
script level of the major splice variant of F1.C. However,
vir-1 mutants have a late flowering phenotype and
extremely high levels of FLC transcript [30,31].
Therefore, it is postulated that VIR and FIO1 deposit

m°A on FLC at distinct sites, which have oppo-
site effects.

Two non-heme Fe(II)- and a-KG-dependent dioxyge-
nase AlkB family proteins, fat mass and obesity-
associated protern (FTO) and ALKBHS5, were discov-
ered as m°A demethylases in animals [32]. In plantae,
only green algae have homologous genes to FTO [33],
while ectopic expression of FTO alone in rice is shown
to be sufficient to reduce global m°A levels [8]. Most
plants have multiple homologous genes to ALKBHS5.
Among them, ALKBH10B, ALKBHSB in Arabidopsis
thatiana, ALKBH9 in rice, ALKBH2 in tomato, and
ALKBHIB in barley have been shown to remove (erase)
the m®A mark [32,34,35]. Atalkbhl10h mutant yields over
a thousand hypermethylated transcripts, and over-
expression of ALKBHSB leads to m°A hypomethylation
[36,37]. Besides the effect of “erasers” on global mo6A
level, ALKBH9B also acts as an eraser of m°A, specif-
ically in alfalfa mosaic virus (AMV), suggestmg a
specialized role of ALKBH9B in defense against viruses
[38]. Hence, the m°A methylation state of transcripts
depends on the interplay between MTC and ALKBH
activity, as mP®A writers and erasers, and their respective
target genes in plants (Figure 1a).

m®A modification on mRNAs is preferentially recog-
nized (read) by the YI'521-B homology (YT'H) domains
in animals and plants. YI'H domain contains a methyl-
group-binding hydrophobic aromatic cage, which is
typically composed of a combination of tryptophan (W),
phenylalanine (F), and tyrosine (T) [39]. YTH domain
family (YTHDF) EVOLUTIONARILY CONSERVED
CTERMINAL REGION (ECT) proteins are mostly
cytosolic m®A  readers, controlling mRNA stability,
decay, and translational efficiency, and mobility
(Figure 1). In addition, CLEAVAGE AND POLY-
ADENYLATION  SPECIFICITY FACTOR 30
(CPSF30) and DC1 are structurally distinct YI'H
domain-containing (YI'HDC) m°A readers, which pre-
dominantly appear in nuclear speckles and control
mRNA splicing, export, and possibly the stability of
mRNAs via alternative polyadenylation. Although its
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Figure 1
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mRNA methylation dynamics influence transcript fate and mobility in plants.

(a) MRNA fate by RNA methylation. RNA methylation can be a co-transcriptional and post-transcriptional modification. RNA methylation on mRNAs is
deposited by the core “writer” complex, and it is removed by “eraser” proteins. RNA methylation is recognized by readers (spectacles), which determines
the fate of the mRNA in development and stress conditions. mMRNA methylation (e.g., m®A) is often established co-transcriptionally and is tightly co-
ordinated with the local chromatin environment (e.g., H3K4me3). After export from the nucleus, mature mRNAs may be directed to ribosomes for
efficient translation, targeted to the RNA-induced silencing complex (RISC) for gene silencing, sequestered into condensates (brown small circles) or
processing bodies (P-bodies) (lilac small circles), degraded (Pac-Man figure), or stabilized for certain cellular processes such as photosynthesis
(chloroplast). Subcellular localization of mMRNA (trolley) was shown to be regulated by m®A in neurons, but the effect of m®A on the subcellular local-
ization of mMRNAs in plants remains elusive. Some mRNAs evade these canonical fates and instead undergo long-distance transport (truck). (b) The
importance of mMRNA transport in cold stress and the involvement of RNA methylation in mRNA mobility is shown. In a cucumber(Csa)/pumpkin(Cmo)
heterograft system, m°C was detected on CmoCK1 in vascular sap, whereas mPA was detected only in total seedling samples. Under ambient tem-
perature, CmoCK1 was marked by m°C and loaded into vascular tissues, but was not identified as a mobile transcript, likely due to degradation during
transport. Notably, m°C methylation was not cold-responsive. By contrast, méA methylation of CmoCK1, induced specifically under chilling stress,
enhanced its stability and enabled its detection following unloading from the vasculature [50]. Another cold-responsive mobile transcript, CmoKARI1,
was annotated as an m>C-modified transcript only in the vasculature and was also transported from the pumpkin rootstock to the cucumber scion.
Together, CmoCK1 and CmoKARI1 promoted jasmonoyl-isoleucine (JA-lle) biosynthesis, thereby enhancing the chilling tolerance of the heterograft

[51]. Created in BioRender (2025).

role in flowering has long been known, FLOWERING
LOCUS K (FLK) has recently been discovered as an
unusual m°A reader, which does not contain a YI'H
domain but binds to m°A sites via one of its three KH
domains [26,30,40]. Arabidopsis thaliana fIk mutant leads
to unusually high spliced FLC.1 transcript, similar to vir-
7 and in contrast to fio/ mutants, as mentioned above,
suggesting that specific readers may act downstream of
specific writers and determine the fate of the mPA-
modified mRNAs accordingly [30].

mRNA methylation in plant growth,
development, and fruit ripening

The role of the m°A and m°C modifications has been
established through extensive genetic and molecular
studies. m°A plays essential roles in various develop-
mental processes. Disruption of key components of the
mCA machinery—whether  writers, erasers, or

readers—can perturb this regulatory network, leading to
abnormal growth and reproductive development [41].

mPA writer proteins (MTA, MTB, FIP37, FIO1), reader
proteins (YT'HDE CPSF30-L, ECTs) and erasers
(ALKBH10B) are also involved in the circadian rhythms,
root meristem activity, organogenesis, hypocotyl elon-
gation and floral transition via post-transcriptional
regulation independently of light [40,42—44], promot-
ing chromatin remodeling and gene activation, ulti-
mately improving photosynthetic efficiency and yield
[8,45]. m°A methylation also exhibits species-specific
roles in regulating fruit ripening. In climacteric fruits
like tomato and kiwifruit, the m®A modification on fruit-
ripening related genes is inversely correlated with
transcript abundance of these genes. Therefore, m°A
eraser AcALLKBH10 demethylase expression increases
the abundance of these genes and thereby the process of
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fruit ripening [30,46,47]. By contrast, in the non-
climacteric strawberry, m®A writers MTA and MTB
promote natural strawberry ripening by stabilizing
mRNAs of key ABA biosynthesis and signaling trans-
ductlon pathways [9], underscoring the essential role of
m°A recognition in both vegetative growth and crop
yield enhancement.

mRNA methylation in stress and immune
responses

mRNA modification acts as a rapid and dynamic regu-
lator of plant responses to abiotic stress and immune
challenges. Its regulatory functions are closely coordi-
nated by methyltransferases, demethylases, and
reader proteins.

m>C has been implicated in adaptation to heat stress,
associated with the upregulated transcript level of the
heat- mduced m’°C writer NSUN2 in rice [48]. The
cytosolic m A methylome stabilizes photosynthesis-
related transcripts and enhances the translation effi-
ciency of cold-responsive genes, thereby sustaining cold
tolerance in Arabidopsis [28,49]. In the cucumber and
pumpkm heterograft system, where the cucumber scion
is grafted on a pumpkin root, the global m ®A level—but
not the m°C level—increased and positively contrib-
uted to the chilling tolerance of cucumber scions
(Figure 1b). mP®A  modification within the coding
sequence (CDS) promoted the mobility of a cold-
responsive pumpkin transcript, CmoCKI, which is
involved in jasmonic acid (JA) biosynthesis, following
chilling stress [50]. In our recent study, we identified
another cold-specific mobile mRNA, CmoKARII, a
single-copy gene involved in isoleucine biosynthesis.
Together with CmoCK1, CmoKARI1 contributes to JA-
Ile biosynthesis, enhancing chilling tolerance. This
study ruled out a role for transported isoleucine itself
[51]. A previous study also demonstrated that JA can be
transported from the shoot to the root but not from the
root to the shoot [52]. Collectively, these findings
highlight the advantage of mRNA as a specific and
efficient long-distance signaling molecule. In contrast,
metabolite transport is often constrained by diffusion-
related losses and lacks directional specificity
(Figure 1b). Furthermore, the accumulation of certain
metabolites in the source organ can trigger pleiotropic
effects before their long distance movement. CmoKARI1
is reported to have m 5C modification specifically in the
vascular tissue, albeit a mechanistic link between
CmoKARI m>C mark and its mobility requires further
investigation [51].

Moreover, MTA/ECT-mediated m®A methylation con-
tributes to mRNA transcription stability and translation
in Arabidopsis and apple under either drought stress or
salinity stress [53—55]. Additionally, m °A modification
and ECT1 also stabilize immune-related mRNAs and

fine-tune their translation during pattern-triggered im-
munity, further underscoring their involvement in
pathogen defense [55,56]. Collectively, these findings
establish mRNA methylation as a key regulator of post-
transcriptional gene expression in plant immunity and
highlight its potential for biotechnological applications
in developing stress-tolerant crops.

The effect of mMRNA methylation on mRNA
fate

After export from the nucleus, properly processed
mRNAs are typically directed to ribosomes for trans-
lation. Alternatively, they may be targeted to the RNA-
induced silencing complex (RISC) for gene silencing,
sequestered in processing bodies (P-bodies) for storage,
or degraded (Figure 1la). Interestingly, some mRNAs
escape these canonical fates and are instead subjected to
long-distance transport. The fate of mRNA is tightly
regulated by numerous cis-acting elements, such as
secondary structures and upstream open reading frames
(uORFs), as well as trans-acting factors, including
eukaryotic initiation factors (elFs) and components of
the nonsense-mediated decay (NMD) pathway. Over
the past several years, mRNA methylation has emerged
as a crucial layer of post-transcriptional regulation
influencing mRNA destiny [10,57].

As mentioned above, m°A has been implicated in the
regulation of various developmental processes and envi-
ronmental Jesponses in plants. Depending on the
context, m°A can either enhance or suppress mRINA
translation efficiency and stability [28, 3() ,49,53,55,56,
58—63]. The interaction between the m°A reader pro-
tein ECTZ and poly(A)-binding proteins (PABPs) may
provide mechanistic insight into how m °A modulates
these processes [44,62]. The interaction between
the ECT2 and PABPs is mtrlgumg and suggests a po-
tential crosstalk between m°®A deposition and the func-
tion of poly(A) tails on mRNA stability and translation
efficiency [21]. Yet, the exact mechanism is still not
fully understood.

A recent study sheds light on the molecular mechanisms
of epitranscriptomic regulation impinging on fruit
elongation and fruit domestication in cucumber. A syn-
onymous mutation on aminocyclopropane-1-carboxylic acid
synthase 2 (ACS2) coding sequence reveals that YI'H1
reader weakens the structural conformation of the ACS2
mRNA by binding to m®A-modified target site on the
coding sequence. The translational efficiency increases
upon unwinding of the ACS2 mRNA and leads to higher
ACS2 protein levels and shorter cucumbers [7].
Enrichment of such synonymous m®A-site disruptive
mutations in tumor suppressors in cancer genomes, and
changes in the structure and abundance of mRNAs upon
loss of m°A sites in animals, suggest  that
epitranscriptome-mediated mRNA  stability is an
ancient mechanism [64,65].
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Recent findings in animal systems may offer new per-
spectives for plant research. In mammals, the mCA
methyltransferase METTL3 (homologue of plant MTA)
has been shown to interact with elF3h, a non-core
subunit of the eukaryotic initiation factor 3 complex.
‘This interaction promotes selective translation of m°A-
marked transcripts and has been associated with
enhanced ribosome loading, as evidenced by circularized
polysomes observed via electron microscopy [66].
Moreover, the exonjuncmon complex (EJC) plays a dual
role: it suppresses m °A deposition in mammals (but not
in plants) and, when not removed during the pioneer
round of translation, targets the transcript for degrada-
tion via the NMD pathway. This is particularly relevant
for mRNAs containing upstream open reading frames
(uORFs), which are often NMD targets in animals [67].
Interestingly, uORF-containing mRNAs in plants appear
to be less susceptible to NMD [67]. Moreover, plant
elF3h has been specifically implicated in the translation
of uORF—contammg mRNAs [68,69]. It remains unclear
whether m®A deposition in plants is required for this
process, as has been observed in animals [66]. Since
both METTL3 and elF3h are conserved across plants
and animals, it will be intriguing to investigate whether
they physically interact and whether such an interaction
is required for translation reinitiation. However animals
and plants employ distinct mechanisms for m®A depo-
sition, suggesting that the role of m°A in translation
regulation might not be conserved [21]. Nevertheless,

-marked viral mRNAs can be targeted for degrada-
tion via the plant NMD pathway, as demonstrated by
the interaction between ECT proteins and two
nonsense-mediated mRNA decay factor proteins, SUP-
PRESSOR WITH MORPHOGENETIC EFFECTS
ON GENITALIA 7 (SMG7) and UP-FRAMESHIFT-
SUPPRESSOR 3 HOMOLOG (UPF3) in Nicotiana
benthamiana [23]. Given that plant viral mRNAs rely
entirely on the host’s translational machinery, regulation
of their translation is particularly critical. For example
BjelF2BP from Brassica juncea recruits the m °A deme-
thylase ALKBHO9B to modulate viral mRNA translation
[70]. Additionally, the m°A reader ECT8 has been
shown to promote phase separation and interact with
the decapping enzyme DCP5 within P-bodies, facili-
tating mRNA degradation [54,59]. Collectively, these
findings suggest that plants may employ unique and
diverse strategies to coordinate m°A-mediated regula-
tion of translation and mRINA surveillance, highlighting
a promising avenue for future research.

Compared to m°A, m°C remains much less well
characterized 1n plants. The clearest established
function of m°C to date is its role in inhibiting
translation and promoting long-distance mRNA trans-
port [14,19]. This aligns with expectations, as suc-
cessful transport requires that the mRNA avoid
engagement by ribosomes, as mRNAs cannot be sys-
temically mobile when they are loaded onto ribosomes

RNA fate by epitranscriptome Dong et al. 5

[71]. Another essential prerequisite for transport is
mRNA stab111ty A recent study by Li et al. demon-
strated that m°C influences the likelihood of an
mRNA being transported, while m °A determines the
extent to which transported mRNAs remain detect-
able, effectively reflecting thelr post-transport stabil-
ity [50]. Notably, a range of m °A reader proteins have
been identified in plants, each contributing to distinct
regulatory processes [72]. In contrast, no promising

m°C reader proteins have yet been dlscovered in
plants leaving the mechanistic basis of m’ SC-mediated
regulation largely unresolved.

Future perspectives and open questions

An increasing number of studies focusing on the molec-
ular mechanisms of epitranscriptomic regulation, and the
recent studies on the impact of mRNA modifications on
crop quality, implicate their pivotal roles in plant growth,
development, and stress adaptation. Moving forward,
future research should place greater emphasis on the
transport dimension of mRNA regulation. Especially,
revisiting the roles of RNA methylation in systemic
mRNA transport in the light of the novel and more
rigorous bioinformatic tools for mobile mRNAs is likely to
be fruitful [73]. For instance, RNA stability and mobility
are fundamental for the success of exogenous RNA
(exoRNA) applications (such as dsRNA or mRNA
sprays), and the influence of RNA methylation on the
fate of these mobile RNAs could critically determine
their efficiency [74,75]. Drawing inspiration from models
of small RNA (sRNA) transport, where AGO binding
dictates which small RNAs are stabilized in AGO—RNA
complexes and which remain mobile, it will be an
exciting frontier to explore how translation efficiency and
ribosome heterogeneity coordinate the long-distance
mobility of mRNAs [76]. Structural features of tRINAs
allow their systemic movement in plants [77]. Recently,
it has been shown that these tRNA features are trans-
ferable to other RNA species. For example, when mRNAs
are artificially tagged with such features, they also move
from the shoot to root [78]. Therefore, it is promising to
investigate mRNA modifications in light of the knowl-
edge from other RNA species. To illustrate, it is possible
to hypothesize that 2’-O-methylation in mRNA has a
similar impact on mRNA fate to HEN1-mediated 2’-O-
methylation in miRNAs, which is known to increase
miRNA stability and movement [79]. Furthermore, while
1ntracellular RNA localization has been shown to depend
on m°A in neurons, the role of RNA modifications in
subcellular mRNA trafficking beyond nuclear export re-
mains poorly understood in plants [80]. Addressing these
knowledge gaps will be essential to unravel how RNA
modifications regulate both long-distance transport and
intracellular localization, thereby opening new avenues
for optimizing crop performance and enabling controlled
developmental outcomes through transport-aware
epitranscriptomic strategies.
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