

mRNA methylation at the crossroads of translation, transport, and decay in plant development and stress responses

Yihan Dong^{1,a}, Wanna Zhang^{2,a} and Veli Vural Uslu^{3,4,a}

Modified nucleotides on RNAs have been investigated for over six decades for their potential role in regulating gene expression and protein synthesis across a wide range of organisms, from animals to plants and fungi, as well as in viral genetic materials. Among them, mRNA methylation stands out with its dynamic nature, which underscores the adaptability of the epitranscriptome in developmental transitions and response to environmental stress, especially in plants. Advances in next-generation sequencing methods have revealed the specific sequence contexts of mRNA methylation, uncovering their involvement in gene regulatory networks. Additionally, genetic perturbations on the writers, erasers, and readers of m⁶A and m⁵C expanded our understanding of the physiological function and the mode of action of these modifications. In this review, we highlight recent advances in understanding how mRNA fate decisions, mainly determined by m⁶A and m⁵C RNA methylation, shape stress response and development in plants.

Addresses

¹ Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France

² Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China

³ Institute of Cell Biology and Plant Biochemistry, Department of Plant RNA Transport, University of Regensburg, Germany

⁴ Center for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany

Corresponding authors: Dong, Yihan (yihan.dong.1989@gmail.com); Uslu, Veli Vural (Veli-vural.uslu@ur.de); Zhang, Wanna (zhangwenna@cau.edu.cn)

^a Equal contribution.

Introduction

To date, more than 170 different RNA modifications have been identified. Among them, N⁷-methylguanosine and 5' nicotinamide adenine dinucleotide (NAD⁺) caps, and N⁶-methyladenosine (m⁶A), 5-methylcytosine (m⁵C), pseudouridine, N¹-methyladenosine, 2'-O-methylation, N⁴-acetycytidine, N6,2'-O-dimethyladenosine, uridylation, 5-hydroxymethylcytosine, and inosine have been detected in plant mRNA [1–3]. The dynamic nature of the RNA methylation marks, particularly m⁶A and m⁵C, has drawn considerable attention, as it highlights the versatility of the epitranscriptome in the course of organismal development and in environmental stress conditions [4–6]. Moreover, the elucidation of the role of RNA modifications in plant domestication and trait improvement implicates its potential in novel agricultural applications [7–9].

Hundreds of m⁵C sites were detected on mRNAs in plants via RNA bisulfite sequencing. Later on, antibody-based m⁵C-RIP-seq and antibody- and bisulfite-independent Nanopore direct RNA sequencing (DRS) expanded the list of m⁵C-modified mRNAs to several thousand [10,11]. Recently, the TET-associated chemical labelling method (m⁵C-TAC-seq) has been applied to animal cells to detect m⁵C, but not yet to plant systems [12]. m⁵C is deposited(written) onto mRNAs by NOP2/Sun RNA METHYLTRANSFERASE FAMILY MEMBER 2 (NSUN2), tRNA-SPECIFIC METHYLTRANSFERASE 4B (TRM4B), and in specific cases, DNA METHYLTRANSFERASE 2 (DNMT2) [13,14]. The m⁵C sites are recognized(read) by ALYREF and YBX1 in animals [15]. ALYREF family nuclear export factors ALY2 and ALY4 are shown to act like m⁵C readers in plants, but direct binding of ALY2 or ALY4 to m⁵C has not been proven yet [16]. Although specific m⁵C modifications were associated with mRNA stability in animal systems, the comparison of m⁵C sites across tissues and species suggests that the vast majority of mammalian m⁵C modifications on mRNAs are due to imprecise m⁵C deposition errors and they are nonadaptive [17,18]. In plants, the m⁵C modification has been proven to regulate the nuclear export and mRNA mobility of three transcripts. Yet, the little overlap between m⁵C and mobile RNAs in cucumber and pumpkins suggests a lack of a

Current Opinion in Plant Biology 2026, 89:102851

This review comes from a themed issue on **Epigenetics and gene regulation_2025**

Edited by **Sara Farrona** and **Ralf Müller-Xing**

For a complete overview see the [Issue](#) and the [Editorial](#)

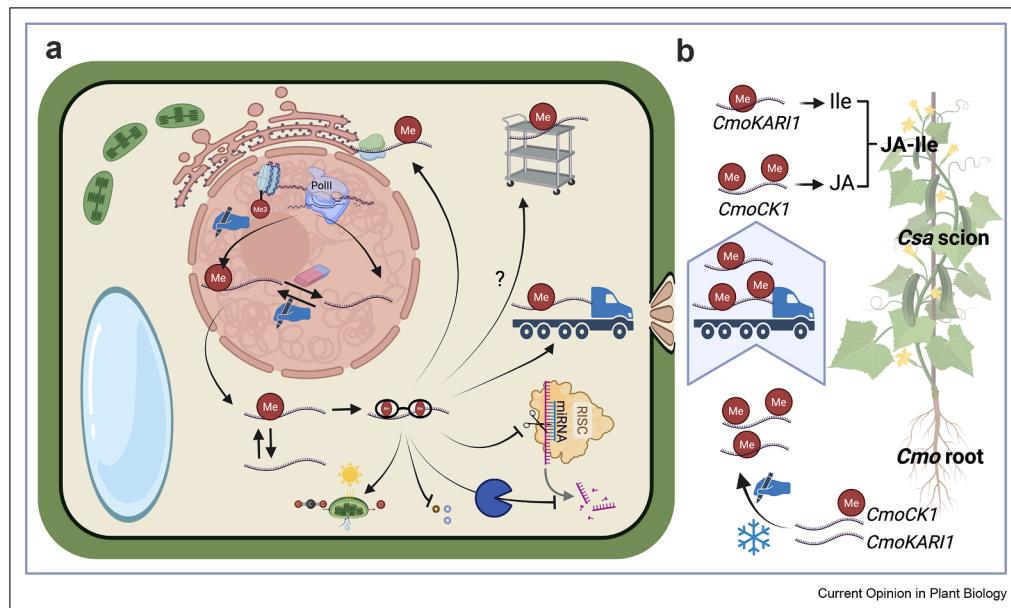
Available online xxx

<https://doi.org/10.1016/j.pbi.2025.102851>

1369-5266/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

strong association between m⁵C modification and mRNA mobility across different plant species [19,20].

m⁶A has been the most abundant and most studied epitranscriptomic mark. While antibody-dependent m⁶A-seq/MeRip-seq and miCLIP-seq show the abundance of m⁶A-modified mRNAs, antibody-independent m⁶A-sensitive enzymatic methods, such as mazF RNase-assisted sequencing (MAZTER-seq), RNA-Endoribonuclease-Facilitated sequencing (m⁶A-REF-seq), m⁶A-selective allyl chemical labeling and sequencing (m⁶A-SAC-seq), FTO-assisted m⁶A selective chemical labeling (m⁶A-SEAL-seq), Nanopore direct RNA sequencing (DRS), deamination adjacent to RNA modification targets (DART-seq), Glyoxal and nitrite-mediated deamination of unmethylated adenosine (GLORI) were developed to map m⁶A sites to single-nucleotide resolution [21,22]. The most common m⁶A motif RR(m⁶)ACH (R = A/G, H = A/C/U) is shared between animals and plants, although some plants, such as cotton, lack it [23]. m⁶A modifications in plants are the most abundant at the 3' untranslated regions (3'UTRs), in the vicinity of the stop codon, and they are relatively low in the inner exons and at the 5'UTR [1]. Besides the sequence composition and the position of the motif, gene structures also affect m⁶A deposition. For example, introns contain more abundant m⁶A sites than the inner exons. In addition, a positive correlation between longer inner exons and higher m⁶A levels has been observed in both animals and plants, but the suppression of m⁶A at the exon junctions in animals does not apply to plants [21,24]. In addition to the shared structural features of m⁶A-modified mRNAs, those containing m⁶A in their 3'UTRs are enriched for Gene Ontology (GO) terms related to RNA metabolic processes and translation. In contrast, mRNAs harboring m⁶A outside the 3'UTR are predominantly associated with development and stress response pathways [21].


In plants, m⁶A is deposited (written) predominantly cotranscriptionally by the catalytic heterodimer core of the m⁶A methyltransferase complex (MTC), consisting of mammalian METHYLTRANSFERASE LIKE 3 (METTL3) homologue mRNA ADENOSINE METHYLASE A (MTA), and mammalian METTL14 homologue mRNA ADENOSINE METHYLASE B (MTB). MTA and MTB form the m⁶A METTL complex (MAC). In addition to the methyltransferases, MTC contains multiple accessory subunits: FKBP12 INTERACTING PROTEIN 37 KD (FIP37), VIRILIZER (VIR), the E3 ubiquitin ligase HAKAI, and HAKAI-INTERACTING ZINC FINGER PROTEIN 2 (HIZ2), which form m⁶A-METTL-associated complex (MACOM) [25–27]. Furthermore, FIONA1 (FIO1) is postulated to be an independent m⁶A writer, but the exact mode of action of FIO1 requires further studies [28,29]. In plant *mta*, *fip37*, *mtb*, *vir*, and *hiz2* mutants, global m⁶A levels drop substantially, whereas *fio1* and

hakai mutants have a subtle effect on total m⁶A abundance [26]. It is noteworthy that different writers may methylate distinct m⁶A sites resulting in an opposing effect on mRNA stability and splicing. For example, the FLOWERING LOCUS C (FLC) is a well-established transcription factor that suppresses flowering. High *FLC* transcript levels are associated with late flowering, while low *FLC* level leads to an early flowering phenotype. *FLC* transcript carries m⁶A modification in wild-type *Arabidopsis*. *fio1* mutants exhibit an early flowering phenotype due to a specific reduction in the transcript level of the major splice variant of *FLC*. However, *vir1* mutants have a late flowering phenotype and extremely high levels of *FLC* transcript [30,31]. Therefore, it is postulated that VIR and FIO1 deposit m⁶A on *FLC* at distinct sites, which have opposite effects.

Two non-heme Fe(II)- and α -KG-dependent dioxygenase AlkB family proteins, fat mass and obesity-associated protein (FTO) and ALKBH5, were discovered as m⁶A demethylases in animals [32]. In plantae, only green algae have homologous genes to FTO [33], while ectopic expression of FTO alone in rice is shown to be sufficient to reduce global m⁶A levels [8]. Most plants have multiple homologous genes to ALKBH5. Among them, ALKBH10B, ALKBH8B in *Arabidopsis thaliana*, ALKBH9 in rice, ALKBH2 in tomato, and ALKBH1B in barley have been shown to remove (erase) the m⁶A mark [32,34,35]. *Atalkbh10b* mutant yields over a thousand hypermethylated transcripts, and over-expression of ALKBH8B leads to m⁶A hypomethylation [36,37]. Besides the effect of “erasers” on global m⁶A level, ALKBH9B also acts as an eraser of m⁶A, specifically in alfalfa mosaic virus (AMV), suggesting a specialized role of ALKBH9B in defense against viruses [38]. Hence, the m⁶A methylation state of transcripts depends on the interplay between MTC and ALKBH activity, as m⁶A writers and erasers, and their respective target genes in plants (Figure 1a).

m⁶A modification on mRNAs is preferentially recognized (read) by the YT521-B homology (YTH) domains in animals and plants. YTH domain contains a methyl-group-binding hydrophobic aromatic cage, which is typically composed of a combination of tryptophan (W), phenylalanine (F), and tyrosine (T) [39]. YTH domain family (YTHDF) EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins are mostly cytosolic m⁶A readers, controlling mRNA stability, decay, and translational efficiency, and mobility (Figure 1). In addition, CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 30 (CPSF30) and DC1 are structurally distinct YTH domain-containing (YTHDC) m⁶A readers, which predominantly appear in nuclear speckles and control mRNA splicing, export, and possibly the stability of mRNAs via alternative polyadenylation. Although its

Figure 1

Current Opinion in Plant Biology

mRNA methylation dynamics influence transcript fate and mobility in plants.

(a) mRNA fate by RNA methylation. RNA methylation can be a co-transcriptional and post-transcriptional modification. RNA methylation on mRNAs is deposited by the core “writer” complex, and it is removed by “eraser” proteins. RNA methylation is recognized by readers (spectacles), which determines the fate of the mRNA in development and stress conditions. mRNA methylation (e.g., m⁶A) is often established co-transcriptionally and is tightly co-ordinated with the local chromatin environment (e.g., H3K4me3). After export from the nucleus, mature mRNAs may be directed to ribosomes for efficient translation, targeted to the RNA-induced silencing complex (RISC) for gene silencing, sequestered into condensates (brown small circles) or processing bodies (P-bodies) (lilac small circles), degraded (Pac-Man figure), or stabilized for certain cellular processes such as photosynthesis (chloroplast). Subcellular localization of mRNA (trolley) was shown to be regulated by m⁶A in neurons, but the effect of m⁶A on the subcellular localization of mRNAs in plants remains elusive. Some mRNAs evade these canonical fates and instead undergo long-distance transport (truck). (b) The importance of mRNA transport in cold stress and the involvement of RNA methylation in mRNA mobility is shown. In a cucumber(*Csa*)/pumpkin(*Cmo*) heterograft system, m⁵C was detected on *CmoCK1* in vascular sap, whereas m⁶A was detected only in total seedling samples. Under ambient temperature, *CmoCK1* was marked by m⁵C and loaded into vascular tissues, but was not identified as a mobile transcript, likely due to degradation during transport. Notably, m⁵C methylation was not cold-responsive. By contrast, m⁶A methylation of *CmoCK1*, induced specifically under chilling stress, enhanced its stability and enabled its detection following unloading from the vasculature [50]. Another cold-responsive mobile transcript, *CmoKARI1*, was annotated as an m⁵C-modified transcript only in the vasculature and was also transported from the pumpkin rootstock to the cucumber scion. Together, *CmoCK1* and *CmoKARI1* promoted jasmonoyl-isoleucine (JA-Ile) biosynthesis, thereby enhancing the chilling tolerance of the heterograft [51]. Created in BioRender (2025).

role in flowering has long been known, FLOWERING LOCUS K (FLK) has recently been discovered as an unusual m⁶A reader, which does not contain a YTH domain but binds to m⁶A sites via one of its three KH domains [26,30,40]. *Arabidopsis thaliana* *flk* mutant leads to unusually high spliced *FLC.1* transcript, similar to *vir-1* and in contrast to *fio1* mutants, as mentioned above, suggesting that specific readers may act downstream of specific writers and determine the fate of the m⁶A-modified mRNAs accordingly [30].

mRNA methylation in plant growth, development, and fruit ripening

The role of the m⁶A and m⁵C modifications has been established through extensive genetic and molecular studies. m⁶A plays essential roles in various developmental processes. Disruption of key components of the m⁶A machinery—whether writers, erasers, or

readers—can perturb this regulatory network, leading to abnormal growth and reproductive development [41].

m⁶A writer proteins (MTA, MTB, FIP37, FIO1), reader proteins (YTHDF, CPSF30-L, ECTs) and erasers (ALKBH10B) are also involved in the circadian rhythms, root meristem activity, organogenesis, hypocotyl elongation and floral transition via post-transcriptional regulation independently of light [40,42–44], promoting chromatin remodeling and gene activation, ultimately improving photosynthetic efficiency and yield [8,45]. m⁶A methylation also exhibits species-specific roles in regulating fruit ripening. In climacteric fruits like tomato and kiwifruit, the m⁶A modification on fruit-ripening related genes is inversely correlated with transcript abundance of these genes. Therefore, m⁶A eraser *AcALKBH10* demethylase expression increases the abundance of these genes and thereby the process of

fruit ripening [30,46,47]. By contrast, in the non-climacteric strawberry, m⁶A writers MTA and MTB promote natural strawberry ripening by stabilizing mRNAs of key ABA biosynthesis and signaling transduction pathways [9], underscoring the essential role of m⁶A recognition in both vegetative growth and crop yield enhancement.

mRNA methylation in stress and immune responses

mRNA modification acts as a rapid and dynamic regulator of plant responses to abiotic stress and immune challenges. Its regulatory functions are closely coordinated by methyltransferases, demethylases, and reader proteins.

m⁵C has been implicated in adaptation to heat stress, associated with the upregulated transcript level of the heat-induced m⁵C writer NSUN2 in rice [48]. The cytosolic m⁶A methylome stabilizes photosynthesis-related transcripts and enhances the translation efficiency of cold-responsive genes, thereby sustaining cold tolerance in *Arabidopsis* [28,49]. In the cucumber and pumpkin heterograft system, where the cucumber scion is grafted on a pumpkin root, the global m⁶A level—but not the m⁵C level—increased and positively contributed to the chilling tolerance of cucumber scions (Figure 1b). m⁶A modification within the coding sequence (CDS) promoted the mobility of a cold-responsive pumpkin transcript, *CmoCK1*, which is involved in jasmonic acid (JA) biosynthesis, following chilling stress [50]. In our recent study, we identified another cold-specific mobile mRNA, *CmoKARI1*, a single-copy gene involved in isoleucine biosynthesis. Together with *CmoCK1*, *CmoKARI1* contributes to JA-Ile biosynthesis, enhancing chilling tolerance. This study ruled out a role for transported isoleucine itself [51]. A previous study also demonstrated that JA can be transported from the shoot to the root but not from the root to the shoot [52]. Collectively, these findings highlight the advantage of mRNA as a specific and efficient long-distance signaling molecule. In contrast, metabolite transport is often constrained by diffusion-related losses and lacks directional specificity (Figure 1b). Furthermore, the accumulation of certain metabolites in the source organ can trigger pleiotropic effects before their long-distance movement. *CmoKARI1* is reported to have m⁵C modification specifically in the vascular tissue, albeit a mechanistic link between *CmoKARI1* m⁵C mark and its mobility requires further investigation [51].

Moreover, MTA/ECT-mediated m⁶A methylation contributes to mRNA transcription stability and translation in *Arabidopsis* and apple under either drought stress or salinity stress [53–55]. Additionally, m⁶A modification and ECT1 also stabilize immune-related mRNAs and

fine-tune their translation during pattern-triggered immunity, further underscoring their involvement in pathogen defense [55,56]. Collectively, these findings establish mRNA methylation as a key regulator of post-transcriptional gene expression in plant immunity and highlight its potential for biotechnological applications in developing stress-tolerant crops.

The effect of mRNA methylation on mRNA fate

After export from the nucleus, properly processed mRNAs are typically directed to ribosomes for translation. Alternatively, they may be targeted to the RNA-induced silencing complex (RISC) for gene silencing, sequestered in processing bodies (P-bodies) for storage, or degraded (Figure 1a). Interestingly, some mRNAs escape these canonical fates and are instead subjected to long-distance transport. The fate of mRNA is tightly regulated by numerous cis-acting elements, such as secondary structures and upstream open reading frames (uORFs), as well as trans-acting factors, including eukaryotic initiation factors (eIFs) and components of the nonsense-mediated decay (NMD) pathway. Over the past several years, mRNA methylation has emerged as a crucial layer of post-transcriptional regulation influencing mRNA destiny [10,57].

As mentioned above, m⁶A has been implicated in the regulation of various developmental processes and environmental responses in plants. Depending on the context, m⁶A can either enhance or suppress mRNA translation efficiency and stability [28,30,49,53,55,56,58–63]. The interaction between the m⁶A reader protein ECT2 and poly(A)-binding proteins (PABPs) may provide mechanistic insight into how m⁶A modulates these processes [44,62]. The interaction between the ECT2 and PABPs is intriguing and suggests a potential crosstalk between m⁶A deposition and the function of poly(A) tails on mRNA stability and translation efficiency [21]. Yet, the exact mechanism is still not fully understood.

A recent study sheds light on the molecular mechanisms of epitranscriptomic regulation impinging on fruit elongation and fruit domestication in cucumber. A synonymous mutation on *aminocyclopropane-1-carboxylic acid synthase 2 (ACS2)* coding sequence reveals that YTH1 reader weakens the structural conformation of the *ACS2* mRNA by binding to m⁶A-modified target site on the coding sequence. The translational efficiency increases upon unwinding of the *ACS2* mRNA and leads to higher *ACS2* protein levels and shorter cucumbers [7]. Enrichment of such synonymous m⁶A-site disruptive mutations in tumor suppressors in cancer genomes, and changes in the structure and abundance of mRNAs upon loss of m⁶A sites in animals, suggest that epitranscriptome-mediated mRNA stability is an ancient mechanism [64,65].

Recent findings in animal systems may offer new perspectives for plant research. In mammals, the m⁶A methyltransferase METTL3 (homologue of plant MTA) has been shown to interact with eIF3h, a non-core subunit of the eukaryotic initiation factor 3 complex. This interaction promotes selective translation of m⁶A-marked transcripts and has been associated with enhanced ribosome loading, as evidenced by circularized polysomes observed via electron microscopy [66]. Moreover, the exon junction complex (EJC) plays a dual role: it suppresses m⁶A deposition in mammals (but not in plants) and, when not removed during the pioneer round of translation, targets the transcript for degradation via the NMD pathway. This is particularly relevant for mRNAs containing upstream open reading frames (uORFs), which are often NMD targets in animals [67]. Interestingly, uORF-containing mRNAs in plants appear to be less susceptible to NMD [67]. Moreover, plant eIF3h has been specifically implicated in the translation of uORF-containing mRNAs [68,69]. It remains unclear whether m⁶A deposition in plants is required for this process, as has been observed in animals [66]. Since both METTL3 and eIF3h are conserved across plants and animals, it will be intriguing to investigate whether they physically interact and whether such an interaction is required for translation reinitiation. However, animals and plants employ distinct mechanisms for m⁶A deposition, suggesting that the role of m⁶A in translation regulation might not be conserved [21]. Nevertheless, m⁶A-marked viral mRNAs can be targeted for degradation via the plant NMD pathway, as demonstrated by the interaction between ECT proteins and two nonsense-mediated mRNA decay factor proteins, SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA 7 (SMG7) and UP-FRAMESHIFT-SUPPRESSOR 3 HOMOLOG (UPF3) in *Nicotiana benthamiana* [23]. Given that plant viral mRNAs rely entirely on the host's translational machinery, regulation of their translation is particularly critical. For example, BjeIF2B β from *Brassica juncea* recruits the m⁶A demethylase ALKBH9B to modulate viral mRNA translation [70]. Additionally, the m⁶A reader ECT8 has been shown to promote phase separation and interact with the decapping enzyme DCP5 within P-bodies, facilitating mRNA degradation [54,59]. Collectively, these findings suggest that plants may employ unique and diverse strategies to coordinate m⁶A-mediated regulation of translation and mRNA surveillance, highlighting a promising avenue for future research.

Compared to m⁶A, m⁵C remains much less well characterized in plants. The clearest established function of m⁵C to date is its role in inhibiting translation and promoting long-distance mRNA transport [14,19]. This aligns with expectations, as successful transport requires that the mRNA avoid engagement by ribosomes, as mRNAs cannot be systemically mobile when they are loaded onto ribosomes

[71]. Another essential prerequisite for transport is mRNA stability. A recent study by Li et al. demonstrated that m⁵C influences the likelihood of an mRNA being transported, while m⁶A determines the extent to which transported mRNAs remain detectable, effectively reflecting their post-transport stability [50]. Notably, a range of m⁶A reader proteins have been identified in plants, each contributing to distinct regulatory processes [72]. In contrast, no promising m⁵C reader proteins have yet been discovered in plants, leaving the mechanistic basis of m⁵C-mediated regulation largely unresolved.

Future perspectives and open questions

An increasing number of studies focusing on the molecular mechanisms of epitranscriptomic regulation, and the recent studies on the impact of mRNA modifications on crop quality, implicate their pivotal roles in plant growth, development, and stress adaptation. Moving forward, future research should place greater emphasis on the transport dimension of mRNA regulation. Especially, revisiting the roles of RNA methylation in systemic mRNA transport in the light of the novel and more rigorous bioinformatic tools for mobile mRNAs is likely to be fruitful [73]. For instance, RNA stability and mobility are fundamental for the success of exogenous RNA (exoRNA) applications (such as dsRNA or mRNA sprays), and the influence of RNA methylation on the fate of these mobile RNAs could critically determine their efficiency [74,75]. Drawing inspiration from models of small RNA (sRNA) transport, where AGO binding dictates which small RNAs are stabilized in AGO–RNA complexes and which remain mobile, it will be an exciting frontier to explore how translation efficiency and ribosome heterogeneity coordinate the long-distance mobility of mRNAs [76]. Structural features of tRNAs allow their systemic movement in plants [77]. Recently, it has been shown that these tRNA features are transferable to other RNA species. For example, when mRNAs are artificially tagged with such features, they also move from the shoot to root [78]. Therefore, it is promising to investigate mRNA modifications in light of the knowledge from other RNA species. To illustrate, it is possible to hypothesize that 2'-O-methylation in mRNA has a similar impact on mRNA fate to HEN1-mediated 2'-O-methylation in miRNAs, which is known to increase miRNA stability and movement [79]. Furthermore, while intracellular RNA localization has been shown to depend on m⁶A in neurons, the role of RNA modifications in subcellular mRNA trafficking beyond nuclear export remains poorly understood in plants [80]. Addressing these knowledge gaps will be essential to unravel how RNA modifications regulate both long-distance transport and intracellular localization, thereby opening new avenues for optimizing crop performance and enabling controlled developmental outcomes through transport-aware epitranscriptomic strategies.

Funding

VVU was supported by BMBF 031B1231B funding. WZ was supported by the National Natural Science Foundation of China (32372792) and the 2115 Talent Development Program of China Agricultural University.

Declaration of competing interest

There are no competing interests to disclose

Data availability

No data was used for the research described in the article.

References

Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest
** of outstanding interest

1. Sun H, Li K, Liu C, Yi C: **Regulation and functions of non-m(6)A mRNA modifications.** *Nat Rev Mol Cell Biol* 2023, **24**: 714–731.
2. Boccalotto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, et al.: **MODOMICS: a database of RNA modification pathways.** 2021 update. *Nucleic Acids Res* 2022, **50**: D231–D235.
3. Ge L, Pan F, Jia M, Pott DM, He H, Shan H, et al.: **RNA modifications in plant biotic interactions.** *Plant Commun* 2025, **6**: 101232.
4. Sharma B, Prall W, Bhatia G, Gregory BD: **The diversity and functions of plant RNA modifications: what we know and where we Go from here.** *Annu Rev Plant Biol* 2023, **74**:53–85.
5. Jia G, Fu Y, He C: **Reversible RNA adenosine methylation in biological regulation.** *Trends Genet* 2013, **29**:108–115.
6. Zaccara S, Ries RJ, Jaffrey SR: **Reading, writing and erasing mRNA methylation.** *Nat Rev Mol Cell Biol* 2019, **20**:608–624.
7. Xin T, Zhang Z, Zhang Y, Li X, Wang S, Wang G, et al.: **Recessive epistasis of a synonymous mutation confers n.** *Cell* 2025, **188**:4517–4529 e15.
8. Yu Q, Liu S, Yu L, Xiao Y, Zhang S, Wang X, et al.: **RNA demethylation in crecucumber domestication through epitranscriptomic regulationas the yield and biomass of rice and potato plants in field trials.** *Nat Biotechnol* 2021, **39**: 1581–1588.
9. Zhou L, Tang R, Li X, Tian S, Li B, Qin G: **N(6)-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner.** *Genome Biol* 2021, **22**:168.
10. Bhat SS, Paul M, Gregory BD: **Epitranscriptomic modifications in plant RNAs.** *RNA Biol* 2025, **22**:1–14.
11. Yu F, Qi H, Gao L, Luo S, Njeri Damaris R, Ke Y, et al.: **Identifying RNA modifications by direct RNA sequencing reveals complexity of epitranscriptomic dynamics in rice.** *Genom Proteom Bioinform* 2023, **21**:788–804.
12. Lu L, Zhang X, Zhou Y, Shi Z, Xie X, Zhang X, et al.: **Base-resolution m(5)C profiling across the mammalian transcriptome by bisulfite-free enzyme-assisted chemical labeling approach.** *Mol Cell* 2024, **84**:2984–3000 e8.
13. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, et al.: **5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader.** *Cell Res* 2017, **27**:606–625.
14. Cui X, Liang Z, Shen L, Zhang Q, Bao S, Geng Y, et al.: **5-methylcytosine RNA methylation in *Arabidopsis Thaliana*.** *Mol Plant* 2017, **10**:1387–1399.
15. Yu J, Zhang Y, Zhang J, Che P, Long G, Yang Z, Ji SJ: **The m5C reader protein Ybx1 promotes axon growth by regulating local translation in axons.** *Development* 2024, **151**.
16. Xu Y, Székely A, Ostendorp S, Gupta S, Tomkins M, Yang L, et al.: **Systemic mRNA transport depends on m⁵C methylation, nuclear mRNA export factors and developmental phase changes.** *bioRxiv* 2024. 2024.05.30.596576, <https://doi.org/10.1101/j.pbi.2025.102828>
17. Li Z, Mi K, Xu C: **Most m5C modifications in Mammalian mRNAs are nonadaptive.** *Mol Biol Evol* 2025, **42**.
18. Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, et al.: **5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs.** *Nat Cell Biol* 2019, **21**:978–990.
19. Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, Kramdi A, et al.: **m(5)C methylation guides systemic transport of messenger RNA over graft junctions in plants.** *Curr Biol* 2019, **29**:2465–2467 e5.
20. Li X, Uslu VV, Chen Y, Han X, Berr A, Zhang W, Dong Y: **Specific chromatin states and m6A modifications are associated with mRNA mobility in planta.** *Horticulture Research* 2024, **11**.
21. Wang G, Li H, Ye C, He K, Liu S, Jiang B, et al.: **Quantitative profiling of m(6)A at single base resolution across the life cycle of rice and arabidopsis.** *Nat Commun* 2024, **15**:4881.
22. Shen W, Sun H, Liu C, Yi Y, Hou Y, Xiao Y, et al.: **GLORI for absolute quantification of transcriptome-wide m(6)A at single-base resolution.** *Nat Protoc* 2024, **19**:1252–1287.
23. He Y, Si Z, Mei G, Cheng Y, Zhang J, Jiang T, et al.: **N6-methyladenosine RNA modification regulates photoperiod sensitivity in cotton.** *Plant Physiol* 2024, **196**:1095–1109.
24. He PC, Wei J, Dou X, Harada BT, Zhang Z, Ge R, et al.: **Exon architecture controls mRNA m(6)A suppression and gene expression.** *Science* 2023, **379**:677–682.
25. Zhang M, Bodz Z, Mackinnon K, Zhong S, Archer N, Mongan NP, et al.: **Two zinc finger proteins with functions in m(6)A writing interact with HAKAI.** *Nat Commun* 2022, **13**:1127.
26. Brodersen P, Arribas-Hernandez L: **The m(6)A-YTH regulatory system in plants: a status.** *Curr Opin Plant Biol* 2024, **82**: 102650.
27. Shen L: **Functional interdependence of N6-methyladenosine methyltransferase complex subunits in arabidopsis.** *Plant Cell* 2023, **35**:1901–1916.
28. Wang S, Wang H, Xu Z, Jiang S, Shi Y, Xie H, et al.: **m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in arabidopsis.** *Plant Physiol* 2023, **192**:1466–1482.
29. Xu T, Wu X, Wong CE, Fan S, Zhang Y, Zhang S, et al.: **FIONA1-Mediated m(6) A modification regulates the floral transition in arabidopsis.** *Adv Sci (Weinh)* 2022, **9**, e2103628.
30. Amara U, Hu J, Cai J, Kang H: **FLK is an mRNA m(6)A reader that regulates floral transition by modulating the stability and splicing of FLC in arabidopsis.** *Mol Plant* 2023, **16**: 919–929.
31. Cai J, Hu J, Amara U, Park SJ, Li Y, Jeong D, et al.: **Arabidopsis N6-methyladenosine methyltransferase FIONA1 regulates**

This work is the first comprehensive profiling of m5C in plants, revealing its distribution and its association with low translation efficiency.

This work established the major role of m5C in controlling long-distance mRNA transport in plants.

This work highlights a concept of how chromatin dynamics regulate mRNA fate through coding mRNA methylation.

This is the most comprehensive and precise m6A profiling to date in plants, revealing plant-specific m6A deposition and function.

This work identifies the m6A writer complex components HIZ1 and HIZ2.

This work demonstrates that FLK specifically reads m6A at the 3'UTR of FLC transcript, thus reducing its stability and splicing.

This work highlights the importance of epitranscriptomics for crop domestication by revealing the molecular mechanisms between cucumber fruit size and epitranscriptomic regulation of ACS2 gene via YTH1.

This work highlights the importance of epitranscriptomics for crop domestication by revealing the molecular mechanisms between cucumber fruit size and epitranscriptomic regulation of ACS2 gene via YTH1.

This work highlights the importance of epitranscriptomics for crop domestication by revealing the molecular mechanisms between cucumber fruit size and epitranscriptomic regulation of ACS2 gene via YTH1.

This work highlights the importance of epitranscriptomics for crop domestication by revealing the molecular mechanisms between cucumber fruit size and epitranscriptomic regulation of ACS2 gene via YTH1.

This work highlights the importance of epitranscriptomics for crop domestication by revealing the molecular mechanisms between cucumber fruit size and epitranscriptomic regulation of ACS2 gene via YTH1.

This work highlights the importance of epitranscriptomics for crop domestication by revealing the molecular mechanisms between cucumber fruit size and epitranscriptomic regulation of ACS2 gene via YTH1.

floral transition by affecting the splicing of FLC and the stability of floral activators SPL3 and SEP3. *J Exp Bot* 2023, 74:864–877.

32. Tang J, Chen S, Jia G: **Detection, regulation, and functions of RNA N(6)-methyladenosine modification in plants.** *Plant Commun* 2023, 4:100546.

33. Mielecki D, Zugaj DL, Muszewska A, Piwowarski J, Chojnacka A, Mielecki M, et al.: **Novel AlkB dioxygenases—alternative models for in silico and in vivo studies.** *PLoS One* 2012, 7, e30588.

34. Tang J, Lei D, Yang J, Chen S, Wang X, Huang X, et al.: **OsALKBH9-mediated m(6)A demethylation regulates tapetal PCD and pollen exine accumulation in rice.** *Plant Biotechnol J* 2024, 22:2410–2423.

35. Zang Y, Qiao JH, Liu DS, Gao DM, Zhang XW, Pan TT, et al.: **The barley m6A demethylase HvALKBH1B undergoes phase separation to enhance immunity to a plant rhabdovirus.** *Plant Cell* 2025, 37.

36. Duan HC, Wei LH, Zhang C, Wang Y, Chen L, Lu Z, et al.: **ALKBH10B is an RNA N(6)-Methyladenosine demethylase affecting arabidopsis floral transition.** *Plant Cell* 2017, 29: 2995–3011.

37. Huong TTY, Ngoc LNT, Kang H: **ALKBH8B, a putative RNA demethylase, plays a role in the response of arabidopsis to salt stress and abscisic acid.** *J Plant Biol* 2022, 65:319–330.

38. Martinez-Perez M, Aparicio F, Lopez-Gresa MP, Belles JM, Sanchez-Navarro JA, Pallas V: **Arabidopsis m(6)A demethylase activity modulates viral infection of a plant virus and the m(6)A abundance in its genomic RNAs.** *Proc Natl Acad Sci U S A* 2017, 114:10755–10760.

39. Liao S, Sun H, Xu C: **YTH domain: a family of N(6)-methyladenosine (m(6)A) readers.** *Genom Proteom Bioinform* 2018, 16:99–107.

40. Song P, Yang J, Wang C, Lu Q, Shi L, Tayier S, Jia G: **Arabidopsis N(6)-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies.** *Mol Plant* 2021, 14:571–587.

This work shows that the m6A-binding function of CPSF30-L enhances LLPS, leading to the formation CPSF30-L nuclear bodies, and determines polyadenylation sites.

41. Shan C, Dong K, Wen D, Cui Z, Cao J: **A review of m(6)A modification in plant development and potential quality improvement.** *Int J Biol Macromol* 2025, 308(Pt 2):142597.

42. Wang C, Yang J, Song P, Zhang W, Lu Q, Yu Q, Jia G: **FIONA1 is an RNA N(6)-methyladenosine methyltransferase affecting arabidopsis photomorphogenesis and flowering.** *Genome Biol* 2022, 23:40.

This work identifies FIONA1 as a U6 mRNA methyltransferase and its specific regulatory role compared to its mammalian counterparts.

43. Wang X, Jiang B, Gu L, Chen Y, Mora M, Zhu M, et al.: **A photoregulatory mechanism of the circadian clock in arabidopsis.** *Nat Plants* 2021, 7:1397–1408.

44. Due Tankmar M, Reichel M, Arribas-Hernandez L, Brodersen P: **A YTHDF-PABP interaction is required for m(6) A-mediated organogenesis in plants.** *EMBO Rep* 2023, 24, e57741.

This work identifies the tyrosine-rich motif in ECT2 mediating the interaction with major polyA binding proteins, thus regulating organogenesis.

45. Cheng P, Bao S, Li C, Tong J, Shen L, Yu H: **RNA N(6)-methyladenosine modification promotes auxin biosynthesis required for Male meiosis in rice.** *Dev Cell* 2022, 57:246–259 e4.

46. Su D, Shu P, Hu N, Chen Y, Wu Y, Deng H, et al.: **Dynamic m6A mRNA methylation reveals the involvement of AcALKBH10 in ripening-related quality regulation in kiwifruit.** *New Phytol* 2024, 243:2265–2278.

47. Zhou L, Tian S, Qin G: **RNA methylomes reveal the m(6)A-mediated regulation of DNA demethylase gene SIDML2 in tomato fruit ripening.** *Genome Biol* 2019, 20:156.

This work reveals a crosstalk between m6A and 5 mC DNA methylation in plants.

48. Tang Y, Gao CC, Gao Y, Yang Y, Shi B, Yu JL, et al.: **OsNSUN2-Mediated 5-Methylcytosine mRNA modification enhances rice adaptation to high temperature.** *Dev Cell* 2020, 53: 272–286 e7.

49. Vicente AM, Manavski N, Rohn PT, Schmid LM, Garcia-Molina A, Leister D, et al.: **The plant cytosolic m(6)A RNA methylome stabilizes photosynthesis in the cold.** *Plant Commun* 2023, 4: 100634.

50. Li X, Wang C, Chen Y, Liu W, Zhang M, Wang N, et al.: **m5C and m6A modifications regulate the mobility of pumpkin CHOLINE KINASE 1 mRNA under chilling stress.** *Plant Physiol* 2025, 197.

This is the first work providing experimental evidence that m6A participate in mRNA long-distance transport by stabilizing them.

51. Zhang M, Liu W, Wang C, Lin S, Chen Y, Cui H, et al.: **Root-to-shoot mobile mRNA CmoKARI1 promotes JA-Ile biosynthesis to confer chilling tolerance in grafted cucumbers.** *Nat Commun* 2025, 16:7782.

52. Schulze A, Zimmer M, Mielke S, Stellmach H, Melnyk CW, Hause B, Gasperini D: **Wound-Induced shoot-to-root relocation of JA-Ile precursors coordinates arabidopsis growth.** *Mol Plant* 2019, 12:1383–1394.

53. Ganguly DR, Li Y, Bhat SS, Tiwari S, Ng PJ, Gregory BD, Sunkar R: **mRNA ADENOSINE METHYLASE promotes drought tolerance through N(6)-methyladenosine-dependent and independent impacts on mRNA regulation in arabidopsis.** *New Phytol* 2025, 245:183–199.

54. Wu X, Su T, Zhang S, Zhang Y, Wong CE, Ma J, et al.: **N(6)-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in arabidopsis.** *Nat Plants* 2024, 10:469–482.

This work reveals how ECT8 mediates the phase separation of PYL7, thus inhibiting its translation and further ABA response.

55. Lee KP, Liu K, Kim EY, Medina-Puche L, Dong H, Di M, et al.: **The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in arabidopsis.** *Plant Cell* 2024, 36:746–763.

This work proves that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses.

56. Chen T, Greene GH, Motley J, Mwimba M, Luo GZ, Xu G, et al.: **m(6)A modification plays an integral role in mRNA stability and translation during pattern-triggered immunity.** *Proc Natl Acad Sci USA* 2024, 121, e2411100121.

This work highlights specific m6A readers directing mRNAs to translation or decay.

57. Shinde H, Dudhate A, Kadam US, Hong JC: **RNA methylation in plants: an overview.** *Front Plant Sci* 2023, 14:1132959.

58. Cai J, Hu J, Xu T, Kang H: **FIONA1-mediated mRNA m(6) A methylation regulates the response of arabidopsis to salt stress.** *Plant Cell Environ* 2024, 47:900–912.

59. Cai Z, Tang Q, Song P, Tian E, Yang J, Jia G: **The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in arabidopsis.** *Plant Cell* 2024, 36:2908–2926.

This work identifies the interaction between ECT8 and DCP5, revealing a potential mechanism by which m6A influences mRNA stability and cap-dependent translation initiation.

60. Prall W, Sheikh AH, Bazin J, Bigeard J, Almeida-Trapp M, Crespi M, et al.: **Pathogen-induced m6A dynamics affect plant immunity.** *Plant Cell* 2023, 35:4155–4172.

61. Sheikh AH, Tabassum N, Rawat A, Almeida Trapp M, Nawaz K, Hirt H: **m6A RNA methylation counteracts dark-induced leaf senescence in arabidopsis.** *Plant Physiol* 2024, 194: 2663–2678.

62. Song P, Wei L, Chen Z, Cai Z, Lu Q, Wang C, et al.: **m(6)A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct recruitment of the poly(A) binding proteins in arabidopsis.** *Genome Biol* 2023, 24:103.

This work shows the interaction between ECT2/3/4 and poly(A) binding proteins contributing to the stability of mRNA involved in ABA signaling, like ABI5.

63. Xing K, Liu Z, Liu L, Zhang J, Qamber G, Wang Y, et al.: **N(6)-Methyladenosine mRNA modification regulates transcripts stability associated with cotton fiber elongation.** *Plant J* 2023, **115**:967–985.
64. Lan Y, Xia Z, Shao Q, Lin P, Lu J, Xiao X, et al.: **Synonymous mutations promote tumorigenesis by disrupting m(6)A-dependent mRNA metabolism.** *Cell* 2025, **188**: 1828–1841 e15.
65. Hofler S, Duss O: **Interconnections between m(6)A RNA modification, RNA structure, and protein-RNA complex assembly.** *Life Sci Alliance* 2024, **7**.
66. Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, et al.: **mRNA circularization by METTL3-elf3h enhances translation and promotes oncogenesis.** *Nature* 2018, **561**:556–560.
67. Dong Y, Ryabova LA: **Do plants drive translation reinitiation to dodge nonsense-mediated decay?** *J Exp Bot* 2023, **74**:7–11.
68. Mancera-Martinez E, Dong Y, Makarian J, Srour O, Thiebeauld O, Jamsheer M, et al.: **Phosphorylation of a reinitiation supporting protein, RISP, determines its function in translation reinitiation.** *Nucleic Acids Res* 2021, **49**:6908–6924.
69. Schepetilnikov M, Dimitrova M, Mancera-Martinez E, Geldreich A, Keller M, Ryabova LA: **TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of elf3h.** *EMBO J* 2013, **32**:1087–1102.
70. Sha T, Li Z, Xu S, Su T, Shopan J, Jin X, et al.: **elf2Bbeta confers resistance to turnip mosaic virus by recruiting ALKBH9B to modify viral RNA methylation.** *Plant Biotechnol J* 2024, **22**:3205–3217.

This work illustrates a mechanism how the plant translation machinery say NO to virus by manipulating virus mRNA m6A methylation.

71. Li X, Uslu VV, Chen Y, Han X, Berr A, Zhang W, Dong Y: **Specific chromatin states and m6A modifications are associated with mRNA mobility in planta.** *Horticulture Research* 2024.

This work highlights a concept of how chromatin dynamics regulate mRNA fate through coding mRNA methylation.

72. Nguyen TKH, Kang H: **Reading m(6)A marks in mRNA: a potent mechanism of gene regulation in plants.** *J Integr Plant Biol* 2024, **66**:2586–2599.
73. Paajanen P, Tomkins M, Hoerbst F, Veevers R, Heeney M, Thomas HR, et al.: **Re-analysis of mobile mRNA datasets raises questions about the extent of long-distance mRNA communication.** *Nat Plants* 2025, **11**:977–984.
74. Uslu VV, Dobrowitsch M, Danger KP, Furch AU, Noetzold J, Richter AM, et al.: **Foliar mRNA spray induces protein synthesis in monocot crop and dicot model plant species.** *bioRxiv* 2025. 2025.08.07.668951.
75. Yong J, Xu W, Wu M, Zhang R, Mann CWG, Liu G, et al.: **Lysozyme-coated nanoparticles for active uptake and delivery of synthetic RNA and plasmid-encoded genes in plants.** *Nat Plants* 2025, **11**:131–144.
76. Voinnet O: **Revisiting small RNA movement in plants.** *Nat Rev Mol Cell Biol* 2022, **23**:163–164.
77. Zhang W, Thieme CJ, Kollwig G, Apelt F, Yang L, Winter N, et al.: **tRNA-Related sequences trigger systemic mRNA transport in plants.** *Plant Cell* 2016, **28**:1237–1249.
78. Yang L, Machin F, Wang S, Saplaoura E, Kragler F: **Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks.** *Nat Biotechnol* 2023, **41**:958–967.
79. Bologna NG, Voinnet O: **The diversity, biogenesis, and activities of endogenous silencing small RNAs in arabidopsis.** *Annu Rev Plant Biol* 2014, **65**:473–503.
80. Loedige I, Baranovskii A, Mendonsa S, Dantsuji S, Popitsch N, Breimann L, et al.: **mRNA stability and m(6)A are major determinants of subcellular mRNA localization in neurons.** *Mol Cell* 2023, **83**:2709–2725 e10.