
Universität Regensburg
Fakultät für Informatik und Data Science

Lehrstuhl für Datensicherheit und Kryptographie

Practical Challenges of UOV-based
Signature Schemes: Physical Security

and Advanced Security Notions

Dissertation
zur Erlangung des Grades Doctor rerum naturalium (Dr. rer. nat.)

eingereicht an der Fakultät für Informatik und Data Science
der Universität Regensburg

vorgelegt von

Thomas Aulbach

Erstgutachterin: Prof. Dr. Juliane Krämer
Zweitgutachter: Prof. Dr. Tim Güneysu

Tag der Disputation: 05. November 2025

© 2025 Thomas Aulbach

This work is licensed under a Creative Commons
“Attribution 4.0 International” license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Achknowledgement

The completion of such a large project provides a good opportunity to pause
and reflect on the past few years. I have met many people who have had a
profound influence on me as a person and as a researcher, and to whom I would
like to express my heartfelt gratitude.

First of all, I would like to thank my supervisor, Prof. Juliane Krämer.
Juliane introduced me to the topics of post-quantum cryptography and physical
security and provided me with tremendous support throughout my doctoral
studies. She has a very calm and composed, but also humorous manner, which
made working with her very enjoyable. I am very grateful for her professional
advice, the research projects we completed together, and her reliability. I could
not have imagined a better supervisor for this period.

I would also like to thank the second reviewer of my thesis, Prof. Tim
Güneysu. I am glad that he agreed to review my work and I was very pleased
to get to know him better in the process. Thanks also to the members of the
examination committee, Prof. Radu Curticapean and Prof. Philipp Rümmer.
My sincere thanks also go to Prof. Fabio Campos, Prof. Simona Samardjiska,
and Dr. Patrick Struck, who formed my thesis advisory board and supported
me not only in joint research projects but throughout my entire doctoral studies.
In addition, I would like to thank all my co-authors, from whom I have learned
so much. My thanks also go to Prof. Steuding, the supervisor of my bachelor’s
and master’s theses, and Prof. Reith, who introduced me to Juliane.

I consider myself fortunate to have been part of an appreciative team during
my time as a doctoral student, a team that supports each other and never loses
sight of the fun in their work. The colleagues I spent the most time with are
Patrick, Samed, Michael, and Maxi. Patrick is incredibly helpful, patient, and
kind—simply a wonderful friend. Even his move to Konstanz did not prevent
him from always being there for me and many others in the group. Thank
you very much! Samed is a selfless person with many interests from whom I
was able to learn an enormous amount. Our conversations about math, sports,
politics, and justice constantly taught me new things. Thank you for your
tremendous support. Michael, my office mate, darts rival, and backgammon
mentor. Thank you for all the fun moments we shared and for being a role
model for me in scientific work and research. Maxi is a great friend. She is very
kind and empathetic, but also humorous, and it was inspiring to work with her.

iii

iv

All four of you are absolute role models when it comes to staying calm under
pressure and working with focus. Our many breaks, evenings after work, and
business trips together have always recharged my motivation. I laughed a lot
with you and will never forget the last few years. Many thanks also to Antoine
for fun conversations about food and our runs together. I really liked your
pragmatic approach to nutrition and sports, and I immediately internalized
your trick for peeling eggs with a spoon. My thanks also go to my former and
new colleagues Oscar, Harrison, Stefan, and Jan. I would have loved to work
with you longer and hope that our paths will continue to cross. Furthermore, I
want to thank Heidi for her continuous support at university.

Special thanks go to my parents, Andreas and Reinhilde, who sparked my
enthusiasm for lifelong learning, especially when I was young, and gave me the
freedom to develop in the way I wanted to. Many thanks also to my sister
Juliane, from whom I learned what it means to act independently, to persevere,
and that it is worth taking unusual paths. I would also like to thank all my
friends in Würzburg, Gräfendorf, Munich, Stuttgart, and many other places,
who have shown me time and again how multifaceted and wonderful life is.

Most importantly, a huge thank you to my wife Marlene. She has accom-
panied me throughout my entire academic career and witnessed all its ups and
downs. Thank you for your encouragement, distractions, and incredible support
during this long journey. It is a wonderful experience to raise our little Mariella,
who is herself the greatest motivation to always give it our best.

Würzburg, December 12, 2025
Thomas

Abstract

This thesis presents research results on the challenges of deploying UOV-based
signature schemes in practical applications.

UOV-based signature schemes constitute a popular branch of multivariate
cryptography, one of the oldest families of post-quantum cryptography. They
offer desirable features, like small signature sizes as well as fast signing and
verification times, but further research about their security is indispensable
before they can be considered for use in security protocols. In this thesis, we
address these challenges and contribute to the research area of UOV-based
signature schemes in three directions.

First, we develop and implement concrete physical attacks against the sig-
nature schemes Rainbow, MAYO, and UOV. This includes the detection of
vulnerable code lines, a detailed description of the side-channel information
or fault propagation achieved by the physical attack, and the presentation of
algebraic tools that are utilized to recover the secret key. Moreover, we either
simulate the attack on an emulation platform or execute it directly on a target
device.

Second, we further contribute to more resistant implementations of UOV-
based signature schemes. On the one hand, we create an overview of vulner-
abilities based on all side-channel and fault attacks available in the literature.
This overview is developed especially for UOV and transferred to all UOV-based
signatures that are candidates in the ongoing standardization process initiated
by NIST. On the other hand, we implement and benchmark dedicated counter-
measures that are designed to mitigate these attacks. Together, these two parts
enhance the knowledge about the physical security of UOV-based signatures.

Third, there are approaches to reduce the public key size of UOV by utilizing
sparse polynomials instead of random polynomials in the scheme specific equa-
tions. We analyze the security of three variants of such an instantiation, called
MQ-Sign, and present a polynomial-time key-recovery attack against two of
them, proving their insecurity. Furthermore, we analyze the security of several
UOV-based signature schemes with respect to advanced security notions (the
BUFF notions), which are not covered by the standard EUF-CMA security
notion. These notions are crucial to protect certain real-world protocols against
misuse. Finally, we deduce a lightweight method to achieve these notions, which
works equally for all analyzed UOV-based signature schemes.

v

Publications

Publications Contributing to this Thesis

[ACK25] Thomas Aulbach, Fabio Campos, and Juliane Krämer. “SoK: On
the Physical Security of UOV-based Signature Schemes”. In: In-
ternational Conference on Post-Quantum Cryptography. Springer.
2025.

[ACK+23] Thomas Aulbach, Fabio Campos, Juliane Krämer, Simona Samard-
jiska, and Marc Stöttinger. “Separating Oil and Vinegar with a
Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on
UOV”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 3 (2023).

[ADM+24] Thomas Aulbach, Samed Düzlü, Michael Meyer, Patrick Struck,
and Maximiliane Weishäupl. “Hash Your Keys Before Signing:
BUFF Security of the Additional NIST PQC Signatures”. In: In-
ternational Conference on Post-Quantum Cryptography. Springer.
2024.

[AKK+22] Thomas Aulbach, Tobias Kovats, Juliane Krämer, and Soundes
Marzougui. “Recovering Rainbow’s Secret Key with a First-Order
Fault Attack”. In: International Conference on Cryptology in
Africa. Springer. 2022.

[AMS+24] Thomas Aulbach, Soundes Marzougui, Jean-Pierre Seifert, and
Vincent Quentin Ulitzsch. “MAYo or MAY-not: Exploring imple-
mentation security of the post-quantum signature scheme MAYO
against physical attacks”. In: 2024 Workshop on Fault Detection
and Tolerance in Cryptography (FDTC). IEEE. 2024.

[AST24] Thomas Aulbach, Simona Samardjiska, and Monika Trimoska.
“Practical Key-Recovery Attack on MQ-Sign and More”. In: In-
ternational Conference on Post-Quantum Cryptography. Springer.
2024.

vii

viii

[SMA+24] Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane
Krämer, and Jean-Pierre Seifert. “HaMAYO: A Fault-Tolerant
Reconfigurable Hardware Implementation of the MAYO Signa-
ture Scheme”. In: International Workshop on Constructive Side-
Channel Analysis and Secure Design. Springer. 2024.

Further Publications

[MKK+23] Soundes Marzougui, Ievgen Kabin, Juliane Krämer, Thomas Aulbach,
and Jean-Pierre Seifert. “On the Feasibility of Single-Trace At-
tacks on the Gaussian Sampler using a CDT”. In: International
Workshop on Constructive Side-Channel Analysis and Secure De-
sign. Springer. 2023.

Contents

List of Acronyms xiii

1 Introduction 1
1.1 Multivariate Cryptography . 3
1.2 Digital Signatures in Real-World Applications 4
1.3 Physical Security . 10
1.4 Research Topics in this Thesis 12
1.5 Contributions . 14

2 Background 19
2.1 Signature Schemes . 19
2.2 Multivariate Signatures . 21
2.3 Physical Attacks . 29

3 Developing Physical Attacks 37
3.1 Fault Injection Attacks on Multivariate Signature Schemes . . . 37
3.2 Side-channel Attacks on Multivariate Signature Schemes 42
3.3 Future Research Directions . 44

4 Enhancing Implementation Security 47
4.1 Overview of Vulnerabilities . 48
4.2 Implementation Guidelines and Implemented Countermeasures 54
4.3 Future Research Directions . 58

5 Analyzing Security Features 61
5.1 EUF-CMA Security of MQ-Sign 62
5.2 Security Beyond Standard Notions and the Case of UOV-based

Signatures . 67
5.3 Future Research Directions . 74

6 Conclusion 77

Bibliography 79

A Developing Physical Attacks 97

ix

x Contents

A.1 Recovering Rainbow’s Secret Key with a First-Order Fault Attack 98
A.2 Separating Oil and Vinegar with a Single Trace 120
A.3 MAYo or MAY-not: Exploring Implementation Security of the

Post-Quantum Signature Scheme MAYO Against Physical Attacks146

B Enhancing Implementation Security 153
B.1 SoK: On the Physical Security of UOV-based Signature Schemes 154
B.2 HaMAYO: A Fault-Tolerant Reconfigurable Hardware Implemen-

tation of the MAYO Signature Scheme 188

C Analyzing Security Features 209
C.1 Practical Key-Recovery Attack on MQ-Sign and More 209
C.2 Hash your Keys before Signing: BUFF Security of the Additional

NIST PQC Signatures . 229

List of Figures

1.1 The landscape of multivariate cryptography. 5

2.1 General workflow of trapdoor-based multivariate signature schemes. 22
2.2 UOV algorithm for key generation. 26
2.3 UOV algorithm for secret key expansion. 27
2.4 UOV algorithm for signature generation. 27
2.5 UOV algorithm for public key expansion. 28
2.6 UOV algorithm for verification. 28
2.7 MAYO algorithm for signature generation. 30

4.1 QR-UOV algorithm for signature generation. 49
4.2 SNOVA algorithm for signature generation. 50

5.1 The PS-3 transform. 71
5.2 The BUFF transform. 71

xi

List of Tables

1.1 Performance metrics of several standardized and on-ramp signature
schemes. 7

1.2 NIST standardization process round 2 signature candidates. 9
1.3 NIST’s call for additional digital signature schemes round 2 candidates. 10

2.1 UOV variants with different key compression levels. 26

3.1 Comparison of fault attacks on various UOV-based signature schemes
that target the vinegar variables. 41

3.2 Comparison of side-channel attacks on various UOV-based signature
schemes. 44

4.1 The strategic signing steps of UOV-based signature schemes. . . . 51
4.2 Overview of fault attacks and their applicability to UOV, MAYO,

QR-UOV, and SNOVA. 53
4.3 Overview of side-channel attacks and their applicability to UOV,

MAYO, QR-UOV, and SNOVA. 54

5.1 KpqC round 1 candidates for PKE/KEMs and signatures. 62
5.2 Secret key and signature sizes of the four MQ-Sign variants submitted

to KpqC round 1. 65
5.3 KpqC round 2 candidates for PKE/KEMs and signatures. 67
5.4 Different transformations of signature schemes and their security

guarantees. 70
5.5 BUFF Security of several UOV-based signature schemes. 73

xii

List of Acronyms

AEAD authenticated encryption with associated data 11

AES Advanced Encryption Standard 1

ASIC Application Specific Integrated Circuits 42

BF big field . 38

BUFF Beyond UnForgeability Features 17

CA Certificate Authority . 4

CBC Cipher Block Chaining . 11

CPA Correlation Power Analysis . 43

CPU Central Processing Unit . 12

DES Data Encryption Standard . 33

DFA Differential Fault Analysis . 12

DH Diffie-Hellman . 1

DPA Differential Power Analysis . 32

DRAM Dynamic Random-Access Memory 12

DRKey Dynamically Recreatable Key 69

DSA Digital Signature Algorithm . 1

DSS Digital Signature Standard . 8

ECDH elliptic-curve Diffie-Hellman . 1

ECDSA elliptic-curve Digital Signature Algorithm 1

EdDSA Edwards-curve Digital Signature Algorithm 8

EO exclusive ownership . 14

EUF-CMA existential unforgeability under chosen message attack . . 17

FIA fault injection attacks . 11

xiii

xiv List of Acronyms

FPGA Field Programmable Gate Array 15

HFE hidden field equations . 3

IETF Internet Engineering Task Force 7

IoT internet of things . 4

KEM key-encapsulation mechanism . 2

KpqC Korean PQC competition . 4

M-S-UEO malicious-strong-universal exclusive ownership 68

MBS message bound signatures . 14

MI Matsumoto-Imai . 3

ML machine learning . 32

MPC multi-party computation . 2

NESSIE New European Schemes for Signatures, Integrity, and Encryption 42

NIS National Intelligence Service . 62

NIST National Institute for Standards and Technology 2

NR non resignability . 14

OV oil and vinegar . 3

PKC public-key cryptography . 1

PKE public-key encryption . 62

PQC post-quantum cryptography . 2

S-CEO strong-conservative exclusive ownership 68

S-DEO strong-destructive exclusive ownership 68

S-UEO strong-universal exclusive ownership 68

SCA side-channel attack . 11

SCT signed certified timestamps . 6

SGX Software Guard Extensions . 12

SPA simple power analysis . 32

SSH Secure Shell . 1

STS stepwise triangular system . 38

TLS Transport Layer Security . 1

TVLA test vector leakage assessment 16

wNR weak non resignability . 69

XOF extendable output function . 56

1

Introduction

The desire to protect information during transmission appears natural and
is indeed very old. Attempts of obscuring messages such that only specific
receiver have access to them, i.e., achieving confidentiality, can be traced back
to ancient Egypt, Mesopotamia, and ancient Greece and Rome. It started with
very simple methods, like substitution or transposition ciphers, e.g., the scytale
and the well-known Caesar cipher. The main goal at this time was to keep
knowledge of manufacturing methods or planned military operations secret.

Besides confidentiality one expects more from a communication path that
is called secure. Information should not be altered or tampered with during its
storage and transmission, which is commonly termed as integrity. Furthermore,
authentication is an important aspect to verify the identity of parties involved
in the communication or data exchange.

Nowadays, designing techniques, algorithms, and protocols to securing com-
munication is attributed to the field of cryptography. Although it is a highly
diverse field with numerous procedures in improbably many applications and
scenarios, there are some core techniques one should be aware of. To encrypt
messages between two parties, one commonly uses symmetric-key algorithms.
The most prominent algorithm is the Advanced Encryption Standard (AES),
which belongs to the class of block ciphers. Symmetric-key algorithms are
generally quite efficient, but require a secret key, which the two parties share.
In order to agree on a common secret key over a possibly insecure channel, one
needs to employ techniques from asymmetric or public-key cryptography (PKC).
The key exchange is classically realized by schemes like Diffie-Hellman (DH),
elliptic-curve Diffie-Hellman (ECDH), or other variations of them. These algo-
rithms are based on the factorization problem or the discrete logarithm problem.
Currently, there is no algorithm known that can solve either of these problems
efficiently on classical computers. The same holds for digital signatures, like
RSA and the Digital Signature Algorithm (DSA) or its elliptic-curve variant
elliptic-curve Digital Signature Algorithm (ECDSA), which are implemented
to authenticate the two communicating parties and ensure data integrity.

The former paragraph conveys a glimpse of the interaction of symmetric
and asymmetric cryptography in frequently used protocols, as Transport Layer
Security (TLS) or Secure Shell (SSH), just to name a few. The importance of
these protocols render secure cryptographic algorithms absolutely indispensable

1

2 Introduction

in any kind of public information system. However, the security of all afore-
mentioned asymmetric schemes is threatened by the theoretical breakthrough
constituted by Shor’s quantum algorithms [Sho94] and the continuous advances
in the physical development of quantum computers. Shor presented polynomial-
time solutions for factoring and computing discrete logarithms, but they place
massive demands on the number of qubits and error rate of the quantum com-
puter, which go quite far beyond currently realizable capacity and reliability.
A popular diagram and brief explanation of the quantum computing landscape
can be found in [Jaq24]. Furthermore, [BSI24] contains a status report on
quantum computer development, estimating their relevance for cryptography.

Due to these heavy requirements, the sword of Damocles to asymmetric
cryptography, which Shor’s algorithms present, received little attention for
some years until significant advances in quantum computing made the threat
more real. Driven by the gigantic opportunities large-scale quantum computers
offer, many resources were put into their development. Competitors like Google
Quantum AI and IBM composed ambitious roadmaps [Goo23; IBM24] towards
large scale error-corrected quantum computers. The successive completion of
strategic intermediate milestones visualize the relentless development progress
and it seems that quantum computers capable of breaking cryptographic al-
gorithms based on the factorization or discrete logarithm problem are within
reach in the foreseeable future. The exact year of their arrival is difficult to
estimate, since unpredictable setbacks or breakthroughs might appear along the
way, but cybersecurity experts have agreed that the transition from classical to
quantum-safe or post-quantum cryptography (PQC) is inevitable and should
be prepared as soon as possible [Mos18].

The various approaches, that are currently thought to be secure, even in the
presence of quantum computers, can be divided into the following families: hash-
based and multi-party computation (MPC)-in-the-head signatures, as well as
code-based, multivariate, lattice-based, and isogeny-based cryptography. Each
of them is equipped with its own set of advantages and drawbacks, stemming
mainly from the underlying mathematical hardness assumption. Furthermore,
many of the suggested algorithms are quite young and their security needs to
be evaluated consistently. In 2016, the National Institute for Standards and
Technology (NIST) started the PQC Standardization Process with a first call
for proposals ending in November 2017 [NIST17]. The goal was to evaluate and
standardize one or more quantum-resistant digital signature algorithm and key-
encapsulation mechanism (KEM). Indeed, after three evaluation rounds, three
new standards have been published in August 2024, under the abbreviation
FIPS 203-205, namely ML-KEM, ML-DSA, and SLH-DSA. The key encapsula-
tion ML-KEM is derived from the lattice-based submission KYBER. The digital
signatures ML-DSA and SLH-DSA are derived from the lattice-based submission
DILITHIUM and the hash-based submission SPHINCS+, respectively.1 However,
despite putting forth some new, hopefully quantum-safe standards, the stan-
dardization process is not yet completed. The community is still looking for
secure algorithms, to diversify the portfolio of standards and find suitable solu-
tions for various applications. After a fourth evaluation round just for KEMs,
the code-based scheme HQC was selected for standardization in March 2025.

1Another winner, named FALCON, was announced among the digital signatures. FALCON,
which is also based on lattices, will be included in the FIPS 206 standard and dubbed FN-DSA.

1.1. Multivariate Cryptography 3

Regarding digital signatures, the lack of alternatives to lattice-based schemes
led to a completely new call for proposals that ended in June 2023. Meanwhile,
this additional standardization process [NIST22] entered its second round, with
14 candidates for digital signatures remaining.

This thesis deals with multivariate signature schemes that employ the oil-
and-vinegar principle. They are also often termed UOV-based signatures. All
of the four multivariate candidates that advanced to the second round of the
additional standardization process are of this type. With their very short signa-
ture sizes, and efficient signing and verification time, these schemes constitute
attractive candidates for standardization. In the next section, we will give
a brief history of multivariate cryptography with an emphasis on UOV-based
signature schemes, as these represent the main scope of this thesis.

1.1 Multivariate Cryptography

All multivariate cryptosystems build upon the problem of finding solutions
to a system of nonlinear polynomial equations. This problem is shown to
be NP-complete even in its simplest version of quadratic polynomials over
the finite field with two elements [FY79; GJ79]. For the sake of efficiency,
most multivariate cryptosystems employ the aforementioned case where all
polynomials have degree two. Then, the problem of solving the polynomial
system is called the MQ problem (for Multivariate Quadratic).

Let the system consist of m quadratic equations in n variables. If m ∼ n, i.e.,
the system is not heavily under- or overdetermined, then all known algorithms
to solve this system have exponential running time in n and m. There are many
ways to develop an encryption or signature scheme on top of this problem. Most
commonly, a trapdoor is installed into the system of equations, that allows only
the person with knowledge of the trapdoor to find solutions efficiently. We defer
the details of how this is technically realized for UOV-based signature schemes
to Section 2.2.

In the following, we want to provide a comprehensive overview of the land-
scape of multivariate cryptography, starting with the Matsumoto-Imai (MI)
cryptosystem [MI88]. After breaking this cryptosystem [Pat95], Patarin (and
others) designed schemes based on hidden field equations (HFE) [Pat96] and the
oil and vinegar (OV) principle [KPG99]. A lot—but not all—of the subsequently
developed schemes can be assigned to one of the three branches emanating from
these design principles, as visualized in Figure 1.1. It is recognizable that the
history of multivariate encryption and signature schemes is characterized by
numerous successful cryptanalytic attacks. In order to restore the security of
the affected schemes, several variants or modifiers were applied, which even-
tually got broken again by adapted or new attacks. Two prominent examples
are the attacks [Beu22; TPD21] on GeMSS [CFM+20] and Rainbow [DCP+20],
which had a significant impact on the PQC standardization process, as indi-
cated above. The repeated adaption of broken or weakened schemes, led to a
vast amount of interrelated cryptographic schemes, of which currently only a
small group of signature schemes are considered secure and efficient enough for
practical use. This is underlined by the fact that all four multivariate schemes
that advanced to the second round of NIST’s call for additional signatures are

4 Introduction

UOV itself, or variants of it.2 In Figure 1.1 we mark these particular schemes
with green background color. To visualize all UOV-based signatures, which
are analyzed in at least one of the publications contained in this thesis, we
give them a thick dashed frame. All of them have been relevant either in a
standardization process by NIST [NIST17; NIST22] or in the Korean PQC
competition (KpqC) [QRC21].

1.2 Digital Signatures in Real-World Applications

Digital signatures are an elegant tool to provide authenticity and data integrity
for electronic communication between two parties. Therefore, they are ubiqui-
tous in all technological areas. One of the most prominent examples is their
deployment in the TLS protocol, to secure client-server communication over
computer networks. Here, the server needs to provide a digital certificate to
prove its identity and the integrity of its displayed public key. This certificate
also contains the digital signature of a Certificate Authority (CA) that vouches
for the validity of the certificate’s content. If the CA is a trusted entity, the
client can then use the public key to generate session keys for secure communi-
cation, i.e., proceed with the TLS handshake. We will return to the specifics
of the TLS protocol later in this section and analyze where and how many
signatures it uses, since this will pose an interesting example for the different
use-cases of signature schemes.

First, we want to present more application areas of digital signatures. They
are used by email providers and messaging platforms to guarantee the identity
of the communicating parties and ensure that transferred messages are not
tampered with. The same holds for software distribution and updates. Software
vendors sign their executable files, libraries, and patches, to prove they originate
from a legitimate source and have not been modified. Furthermore, digital
signatures are a fundamental building block of cryptocurrencies, because they
are used to authenticate transactions in blockchains. Here, they ensure that
only the owner of a secret key can authorize a transfer from that wallet. Another
important field is the one of embedded systems and the internet of things (IoT),
especially in the industrial setting. IoT devices need to communicate with
centralized servers or cloud platforms. On the one hand, it is essential to verify
the authenticity of the device, to prohibit an adversary from infiltrating the
system with a corrupted device. On the other hand, the commands sent from
the cloud to the specific devices need to be trustworthy, in order to guarantee
a safe and functional operating process. In many cases, these systems operate
in constrained environments with limited computational power, memory, and
energy resources, posing additional requirements to the employed signature
schemes. There are countless other fields of application, where authenticity,
data integrity, and security is paramount. This includes governmental services,
electronic voting, healthcare systems, legal affairs, and many more.

The examples above illustrate that digital signatures are absolutely indis-
pensable in our everyday world. Before we introduce the technical definition
and properties in Section 2.1, we want to indicate the operating principle and

2In total, 14 signature schemes made it to Round 2 [NIST24]. The four multivariate ones
are MAYO, QR-UOV, SNOVA, and UOV.

1.2. Digital Signatures in Real-World Applications 5

2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988

Attacks Encryption Signature Attacks

Matsumoto-Imai (MI)

PMI

PMI+

SLFASH

PFLASH

EFLASH

Hidden Field
Equation (HFE)

ZHFE

IPHFE+

MultiHFE

Quartz

Gui

GeMSS

Oil and Vinegar
(OV)

UOV

Rainbow

LUOV

QR-UOV

MAYO

MQ-Sign

TUOV
VOX

SNOVA

PROV

ABC

SRP

Dob

DME

TTM

ELSA

TTS

enTTS

MQDSS

Mudfish

[Pat95]

[GC00]

[FGS05]

[BFP11]

[MPS14]

[CSV17]

[BBPS24]

[PPS17]

[ØFRC20]

[ØFR24]

[KS98]

[DFSS07]

[TPD21]

[DDS+20]

[TW12]

[Beu22]

[HIT18]

[Beu25]

[FI25; GJP+24]

Round 2 candidate
Round 1 candidate

Scheme
Covered in this thesis

Attack

MI branch
HFE branch
OV branch

Figure 1.1: The landscape of multivariate cryptography. Schemes with strong
relations to each other are connected with a line. The shown attacks had con-
siderable impact on the schemes, by either breaking them or strongly affecting
the parameter choices.

6 Introduction

performance measures for signature schemes. Furthermore, we present concrete
examples of classical and post-quantum signature schemes.

1.2.1 Working Principle
Roughly speaking, digital signatures use cryptographic algorithms with under-
lying mathematical problems to link an identity to a message, just as written
signatures tie a person to a particular document. To this end, users generate
a pair of keys, one private and one public key. The public key represents the
owner’s identity and is publicly available. The private key is kept secret, allow-
ing only its owner to sign specific messages. The generated signature is then
sent alongside the message. Thus, anyone can use the displayed public key to
verify that first, the owner of that public key really signed the message (authen-
ticity) and second, the message has not been modified during its transmission
(integrity). Another important feature is that a signer cannot later deny having
signed a message (non-repudiation).

1.2.2 Performance Metrics
There are various performance metrics that determine the suitability of signa-
ture schemes for certain applications. These include the size of the public and
private key, the size of the signature, and, certainly, the computation time that
is required by the algorithms to set up the key pair, sign the document, and
verify the signature. Out of these performance metrics, the secret key size and
the key generation time are arguably the least important for most applications,
since the secret key will usually not be transferred and key generation happens
only once and is most often not time critical. However, the requirements for
signature schemes depend heavily on the application they are used in. In the
context of software distribution for instance, the signature generation time
is less important, because signing is usually performed only once per release.
The signature, in contrast, is distributed to all users alongside the software,
rendering the signature size and verification time more critical.

Even in a single application, various requirements can be set to the used
signature schemes. We return to the already mentioned TLS protocol. Besides
the handshake signature of the server, three more signatures appear in the
certificate chain and another two are part of the signed certified timestamps
(SCT). The server’s signature during handshake is the only one that is generated
online. It is created and verified only once, whereas the other signatures are
verified by different clients. Furthermore, the public keys of the CA and the
SCTs are not part of the handshake, but pre-distributed and included in the
browsers or operating system’s trusted log list [Wes24]. Thus, some signatures
require a good balance of public key and signature size, as well as signing
and verification efficiency, while others only demand short signatures and fast
verification.

In Table 1.1 we present performance metrics of various classical and post-
quantum signature schemes. We included the older, but widely deployed classi-
cal standards, the newly published post-quantum standards, and some of the
current candidates in the call for additional signatures, that have a chance of
being standardized in the coming years. What strikes immediately is that no
post-quantum representative comes close to the all-round qualities of Ed25519.

1.2. Digital Signatures in Real-World Applications 7

Table 1.1: Performance metrics of standardized and on-ramp signature schemes.
The style of the table is adopted from a similar table in the blog post The state
of the post-quantum Internet [Wes24]. The numbers for the PQ signatures are
taken from TII’s pqsort webpage [TII25] and for the classical signatures we
used benchmarks from supercop [ECR25].

Scheme Family in Bytes in CPU Kcycles
public key signature sign verify

Standardized classical schemes
Ed25519 ECC 32 64 51 182
RSA-2048 RSA 256 256 3 317 51

Standardized PQC schemes
ML-DSA-44 lattice-based 1 312 2 420 250 87
FN-DSA-512 lattice-based 897 752 667 159
SLH-DSA-128f hash-based 32 17 088 29 181 2 399

Selection of on-ramp PQC signature schemes
CROSS code-based 54 9 120 2 737 1 862
HAWK lattice-based 1 024 555 94 114
LESS code-based 97 484 1 329 57 537 55 117
MAYO multivariate 1 420 454 673 278
PERK MPC-in-the-head 241 8 026 7 516 5 059
QR-UOV multivariate 24 256 200 2 375 1 834
SNOVA multivariate 1 016 248 468 254
SQIsign isogeny-based 65 148 103 042 5 173
UOV multivariate 66 576 96 106 119

Isogeny- and hash-based schemes have tiny public keys, but are discouragingly
slow. Lattice-based schemes are quite efficient but feature medium sized public
keys and signatures. Multivariate schemes offer smaller signatures compared
to their lattice-based counterparts, but (mostly) suffer from large public keys.
However, it can be expected that more signatures will be standardized and
deployed in the coming years to diversify the list of underlying mathematical
problems and to cover the wide range of applications more effectively.

1.2.3 Classical Signature Schemes
In the following we provide concrete examples of signature schemes and a brief
overview of historical milestones in the development and standardization of
digital signatures.

Shortly after Diffie and Hellman presented their famous key exchange and
established the concept of public-key cryptography [DH76] in 1976, Rivest,
Shamir, and Adleman developed the RSA cryptosystem [RSA78], which sup-
ports both, public-key encryption and digital signatures. RSA is based on
the hardness of factoring large integers and despite its age, it is still widely
deployed in many applications. It has been standardized in the PKCS#1 v1.53

by RSA Laboratories in 1993 and republished by the Internet Engineering Task
Force (IETF) in RFC 2313. The document, of course, was subject to many
changes over the years, with PKCS#1 v2.2 from 2012 being its latest version
to date, which was republished by IETF in RFC 8017.

3PKCS is short for Public-Key Cryptography Standards. Earlier versions of the standard
were only privately distributed, and not published officially.

8 Introduction

Two other schemes that have shaped the landscape of digital signatures are
the ElGamal signature scheme [Gam85] and Schnorr signatures [Sch89; Sch91],
both relying on the discrete logarithm problem. These schemes played a major
role in the development of DSA, which can be seen as a standardized variant of
ElGamal signatures, that include conceptual influences of Schnorr signatures.
DSA was proposed by NIST in 1991 and a few years later adopted as FIPS 186
in their Digital Signature Standard (DSS). Initially, it was the only supported
algorithm in FIPS 186, before they included RSA in the first revision FIPS 186-1
of their standard in 1998. However, the popularity of DSA has declined sharply
and it has been mostly superseded by its two successors ECDSA and Edwards-
curve Digital Signature Algorithm (EdDSA). ECDSA is an analog of DSA based
on the discrete logarithm problem for elliptic curves over finite fields. The use
of elliptic curves in cryptography was analyzed and suggested independently by
Koblitz [Kob87] and Miller [Mil85]. It is specified in ANSI X9.62 and approved
by NIST from FIPS 186-2 onwards. The digital signature scheme EdDSA is a
variant of Schnorr signatures based on twisted Edwards curves [BDL+11]. Its
most popular representative is Ed25519, which uses a special elliptic curve with
transparent parameter choices and fast arithmetic. It has been standardized
by IETF in RFC 8032 and included in FIPS 186-5 by NIST.

In summary, the most widespread digital signature schemes are RSA, ECDSA,
and EdDSA. All of them are vulnerable to Shor’s algorithm and therefore con-
sidered insecure in the presence of sufficiently large quantum computers. Many
leading entities have already announced that these algorithm will be declared
as deprecated by 2030, and their usage will end 2035, at the latest.

1.2.4 Post-Quantum Signature Schemes

Driven by the need for quantum-resistant public-key algorithms, NIST initiated
a process to evaluate and standardize one or more digital signature schemes and
KEMs. In a call for proposals at the end of 2016, NIST was soliciting proposals
for post-quantum cryptosystems that are based on mathematical problems,
which are assumed to be hard to solve, even in the presence of large-scale quan-
tum computers. Some of these cryptosystems have already been investigated
by researchers for a long time, but their overall performance could not match
the one of classical schemes. For instance, encryption schemes based on the
hardness of decoding a general linear code were developed in 1978 and signature
schemes based on the hardness of solving a system of multivariate quadratic
equations were present since the late 1980s. Both problems are considered to
be secure against quantum algorithms, but the derived cryptosystems usually
suffer from large public keys.

The proclaimed standardization process was intended to deepen research in
this area and ensure a transparent selection process to which the global research
community in the field of cryptography contributed. At the end of 2017, 69
submissions of cryptographic algorithms were accepted as complete and proper.
In a first evaluation round, the schemes were analyzed regarding three criteria:
security, performance, and implementation characteristics. At the beginning
of 2019, 26 of the 69 submissions advanced to the second round. The 26
submissions consisted of 17 public-key encryptions and nine signature schemes.
Since this thesis focuses on signature schemes, we present these nine signature

1.2. Digital Signatures in Real-World Applications 9

schemes in Table 1.2 and sketch their further path in the standardization
process.

Table 1.2: The nine signature schemes that advanced to round 2 of the NIST
standardization process in 2019. The six schemes that advanced to round 3 are
divided into finalists and alternate candidates. NIST expected to select one
or more finalist for standardization at the end of the third round, while the
alternate candidates were supposed to be further evaluated in a fourth round.

NIST PQC standardization process
Status Signature scheme Family Standardized

Finalist DILITHIUM lattice-based ✓

in round 3 FALCON lattice-based ✓
Rainbow multivariate ✗

Alternate candidate GeMSS multivariate ✗

in round 3 Picnic MPC-in-the-head ✗
SPHINCS+ hash-based ✓

Eliminated at the LUOV multivariate ✗

end of round 2 MQDSS multivariate ✗
qTESLA lattice-based ✗

As can be seen in Table 1.2, four of the signature schemes are based on
multivariate quadratic equations: GeMSS, LUOV, MQDSS, and Rainbow. Out
of these, LUOV and Rainbow are based on UOV. Lattice-based schemes were
represented by DILITHIUM, FALCON, and qTESLA, while Picnic is based on
the MPC-in-the-head paradigm and SPHINCS+ is a hash-based signature. At
the end of the second evaluation round in July 2020, LUOV was eliminated,
since a cryptanalytic attack broke its security claims, and MQDSS and qTESLA
were no longer considered for performance reasons. During the third evaluation
round, in which DILITHIUM, FALCON, and Rainbow were highlighted as finalists,
both GeMSS and Rainbow suffered from devastating attacks, excluding these
schemes from further consideration. In July 2022, DILITHIUM, FALCON, and
SPHINCS+ were selected for standardization, and renamed ML-DSA, FN-DSA,
and SLH-DSA.

As depicted in Table 1.1, the two lattice-based schemes offer good overall
performance and are therefore considered as the most suitable general-purpose
algorithms. The hash-based scheme is preferable in applications that prioritize
conservative security design, since the only underlying security assumption is
the existence of secure cryptographic hash functions, which are very well-studied.
On the downside, SLH-DSA has large signature sizes and slow signing times,
which makes it impractical for a wide range of applications. Thus, to avoid over-
reliance on lattice-based signature schemes, a more diverse signature portfolio
in terms of a broader range of underlying hardness assumptions was still—if not
even more—desirable. Consequently, NIST announced to issue a new call for
proposals for additional quantum-resistant digital signature schemes. In July
2023, 40 submissions were accepted as complete and proper. These include ten
multivariate signature schemes, of which seven can be classified as UOV-based.
Similar to the main PQC standardization project, the selection of additional
digital signatures is organized in several evaluation rounds. At the end of

10 Introduction

the first evaluation round in October 2024, 14 candidates were announced to
advance to round 2. We list these schemes in Table 1.3.

Table 1.3: The 14 signature schemes that advanced to round 2 of NIST’s call
for additional digital signatures.

NIST PQC additional digital signatures schemes
Algorithm Family Algorithm Family

CROSS code-based HAWK lattice-based
LESS Mirath
SQIsign isogeny-based MQOM
MAYO PERK MPC-in-the-head
QR-UOV multivariate RYDE
SNOVA (UOV-based) SDitH
UOV FAEST symmetric

Three of the seven UOV-based schemes got eliminated: PROV, TUOV, and
VOX. The status report by NIST only covered schemes that advanced to the next
round and lacked reasoning for the exclusion of candidates. From the discussions
during the first evaluation round, we assume that the attack presented in [FI23]
led to the elimination of VOX, and the advantages that PROV and TUOV pose
over UOV were not considered vital enough. The four schemes that advanced
to the second round are MAYO, QR-UOV, SNOVA, and UOV. Thus, together
with the MPC-in-the-head signatures, UOV-based signatures form the largest
group of the second round candidates.

The remaining schemes offer different advantages and disadvantages regard-
ing performance metrics and security foundations. It will be intriguing to see
in which direction the standardization process will develop. NIST plans to
select finalists for a third evaluation round in 2026. In the meantime, the cryp-
tographic research community is challenged to enhance the knowledge about
candidate algorithms, e.g., to work on security claims, develop optimized imple-
mentations, analyze their suitability for constrained platforms, and investigate
their physical security.

1.3 Physical Security

We have not yet defined what it means for a signature scheme to be secure
and we will return to this question in Section 2.1.2. Nevertheless, it is clear
that an adversary should not be able to compute the secret key efficiently from
publicly available data. In this case, anyone could impersonate the actual owner
of the secret key and sign messages in their name. Since all the mentioned
signature schemes rely on a certain mathematical problem, this means there
should not exist an efficient number theoretic or algebraic algorithm to compute
a secret key from the corresponding public key or certain message-signature
pairs. This property is sometimes phrased as mathematical security, if one
wants to emphasize that only the underlying mathematical model is considered,
while physical aspects are not regarded.

However, cryptographic algorithms are executed on real hardware devices,
which makes it necessary to also consider physical effects. The devices running

1.3. Physical Security 11

the algorithms have a specific power consumption and execution time, which
not only depends on the executed operations, but also on the processed data.
Furthermore, they emit electromagnetic radiation, residual heat, and even low
sound emissions. The precise characteristic of these effects depends on several
parameters, but also on the exact values of the secret key. The term side-
channel attack (SCA) describes the approach to passively gather these types of
information from a target device, analyze them with statistical tools, and exploit
the gained information about intermediate values or certain key bits to realize
efficient key-recovery methods, which depend on the implemented cryptographic
algorithm. On the other hand, an adversary could also attempt to manipulate
the device to make it behave incorrectly. There are various strategies to disrupt
the normal operation of a device or algorithm, like clock and voltage glitching,
laser fault injection, temperature attacks, and electromagnetic fault injection.
These types of active attacks are known as fault injection attacks (FIA).

Including the previously mentioned strategies into the attacker model might
increase the amount of information an adversary has at hand to retrieve secret
data. The ability of cryptographic algorithms and especially their implementa-
tion to resist attacks, which are based on the aforementioned physical aspects,
is termed physical security.

Even though these approaches may appear somewhat futuristic at first
glance, it was already proven in the late 1990s, that secrets could be extracted
from devices like smart cards [BDH+97; BDL97; MDS99]. In the 2000s, interest
in these methods increased sharply and various techniques for their applica-
tion were developed, even with low-cost equipment [BMM00; BS03; GMO01;
SA02]. At the latest since the 2010s, physical security became a serious design
requirement in cryptographic implementations, since researchers demonstrated
a multitude of realistic attacks in various environments. We elaborate closer
about the history and background of physical attacks in Section 2.3. In the fol-
lowing, we shortly present a selection of attacks that attracted a lot of attention
in recent years, underlining the real-world relevance of secure implementations.

Side-channel attacks. Lucky13 [AP13] is a timing side-channel attack on
padding during the decryption of encrypted TLS records. The authors noticed,
that for certain padding length, i.e., 13 bytes, there are tiny time differences in
the decryption, which leak information about the plaintext and enable them
to recover it incrementally. It allowed the attacker to restore session cook-
ies, passwords, or sensitive data in TLS versions that worked with Cipher
Block Chaining (CBC)-mode ciphers. It was prevented entirely by switching
to authenticated encryption with associated data (AEAD) ciphers in TLS 1.3
and can also be mitigated with constant-time decryption and padding checks.

The Raccoon attack [MBA+21] exploits a vulnerability in the TLS key
exchange when using DH or ECDH. The adversary queries the server with
crafted messages and is able to reveal the most significant bits of the private
key from timing variations or validation errors. The key can be recovered bit-
by-bit by adapting the crafted messages in an iterative procedure. The attack
compromises the server’s secure communication. It was demonstrated on real-
world TLS implementations (including OpenSSL) and affected the versions
TLS 1.2 and earlier. TLS 1.3 is protected against this attack, since it uses
ephemeral key exchanges by default.

12 Introduction

The authors of Hertzbleed [WPH+22] showed how to exploit power side-
channel information via timing variations without having physical access to the
device. They noticed that modern Central Processing Unit (CPU) dynamically
adjust clock frequency based on power consumption and observed that secret-
dependent computations can affect CPU frequency due to subtle variations in
power usage. This has an impact on execution time, even if the cryptographic
operations are implemented in constant-time. Hertzbleed bridges a gap between
power side-channels, which are typically local, and remote timing attacks. It
affects CPUs from Intel and AMD and can be mitigated by avoiding data-
dependent execution patterns.

There are other famous micro architectural attacks, like Spectre [KHF+19],
Meltdown [LSG+18], and CrossTalk [RMR+21], which indicate that even cer-
tain kernel and core isolation techniques cannot guarantee complete security
against cache-timing attacks. These attacks affected a variety of processors and
had a large impact on secure software and hardware design.

Fault attacks. Rowhammer [KDK+14] is a fault attack that exploits a weak-
ness in Dynamic Random-Access Memory (DRAM) modules. By repeatedly
accessing (hammering) a row of memory (the aggressor row) one can cause
bit flips in adjacent rows (the victim rows), even without accessing them di-
rectly. The frequent activation causes electromagnetic interference, such that
capacitors of the memory cells might exceed or fall below a certain threshold,
which leads to a bit flip. The Rowhammer attack demonstrates a hardware
vulnerability that could be triggered completely from software. It has a large
impact, since it leads to arbitrary memory corruption and breaks process and
memory isolation. Possible solutions are probabilistic row refreshing or stronger
memory isolation policies on a hardware level.

In Plundervolt [MOG+20], the authors managed to undervolt the CPU
inside an Intel Software Guard Extensions (SGX) enclave,4 which causes faults
during sensitive operations (e.g., AES encryption). The induced faults could be
exploited by Differential Fault Analysis (DFA) techniques to recover secret AES
keys. Similar to Rowhammer, this attack works without physical access, thereby
representing another software-based fault injection attack. To prevent the Plun-
dervolt attack, Intel released code updates to lock voltage controls when SGX
is active, which disabled undervolting via software. VoltPillager [CVM+21]
builds on Plundervolt, but utilizes a hardware tool to control the CPU’s voltage
externally, thereby bypassing the countermeasure and update introduced by
Intel. This shows that undervolting attacks are still viable with physical access
and hardware-level tools. The mitigation of such attacks requires hardware
redesign with fault-tolerant ot tamper-resistant future enclaves.

1.4 Research Topics in this Thesis

The research focus of this thesis lies on the security of UOV-based signatures.
They belong to the family of multivariate cryptographic schemes, build an
important branch of signatures, and provide promising candidates for efficient,

4Intel SGX is a hardware-based security technology that creates isolated memory regions
called enclaves within an Intel processor.

1.4. Research Topics in this Thesis 13

quantum-resistant signature schemes that might even be selected for standard-
ization in NIST’s call for additional digital signatures. On their way to practical
deployment, there is still a great need for research regarding their security and
efficiency. This thesis contributes to a better understanding of the physical
security of UOV-based signature schemes and, additionally, analyzes several of
them against advanced security notions. We divide this thesis into three main
chapters.

Developing physical attacks. The first part, featured in Chapter 3, presents
physical attacks against several multivariate schemes, namely Rainbow, UOV,
and MAYO. The development of new physical attacks is necessary to reveal
vulnerabilities in implementations of cryptographic algorithms. The presented
attacks comprise various stages, such as identifying vulnerable code lines that
might reveal useful intermediate values, and exploiting the gained information
with algebraic techniques to recover the secret key. Furthermore, the attacks
are either simulated or practically executed on devices that carry the architec-
ture of targeted microprocessors, in order to demonstrate that there is indeed
a need to apply countermeasures and protect the elaborated code lines. In this
chapter we present both SCA and FIA. They are completed by the suggestion
of tailored countermeasures, that mitigate these specific attacks.

Enhancing implementation security. The second part is dedicated to
harden various UOV-based schemes against physical attacks and is given in
Chapter 4. Here, we focus on the integration of developed countermeasures
to cover a wide range of possible vulnerabilities. Even though several physical
attacks have been developed against UOV and its variants, the discussion for
countermeasures remained merely theoretical and existing implementations
are not hardened against side-channel and fault attacks. We take first steps
towards more secure implementations by presenting the first masked versions
of UOV and MAYO, the two signature schemes that exhibit the most advanced
implementations of the UOV-based schemes. Furthermore, we provide a more
comprehensive overview of vulnerabilities, by transferring existing attacks on
individual schemes to UOV, MAYO, QR-UOV, and SNOVA, i.e., the schemes
that advanced to the second round of the NIST PQC standardization effort for
additional digital signatures.

Analyzing security features. The final part, presented in Chapter 5, deals
with security features of UOV-based signature schemes. Our analysis is twofold.
First, since the basic UOV signature scheme suffers from large public keys,
there have been several attempts to reduce the public key size by introducing
modifications. Hence, it is necessary to check if the tweaked schemes are still
secure. Hereby, we present a security analysis of MQ-Sign, a variant of UOV that
employs very sparse coefficient matrices to reduce the amount of coefficients
that need to be stored. We introduce a key-recovery attack and a forgery attack
on different variants of MQ-Sign, which feature different sparsity levels. Second,
we analyze seven UOV-based signatures regarding advanced security features
that go beyond unforgeability. In the rapidly growing field of applications of
cryptography, there is a large variety of protocols tailored to specific use cases.
Protocol developers might use signature schemes in a way they are not designed

14 Introduction

for, such that the standard security guarantees may not be sufficient anymore.
Therefore, it is desirable that signature schemes fulfill certain security notions
like exclusive ownership (EO), non resignability (NR), and message bound
signatures (MBS). We investigate these properties for UOV, MAYO, QR-UOV,
SNOVA, PROV, TUOV, and VOX.

1.5 Contributions

In this section, I present a detailed description of my contributions to the three
research areas, classified in Section 1.4, as part of my dissertation. To this end,
I give a thorough summary of our related research papers and focus on my share
of the ideas and work packages within them. In Chapter 3, 4, and 5, I provide
more context to these research papers and elaborate on how our contributions
fit into the research areas. The corresponding publications can be found in
Appendix A, B, and C, respectively.

1.5.1 Developing Physical Attacks
The publications [ACK+23; AKK+22; AMS+24] contribute to the field of
physical attacks against UOV-based signature schemes.

Together with Kovats, Krämer, and Marzougui [AKK+22], we develop two
fault attacks against Rainbow, a multi-layered version of UOV and finalist in
the NIST PQC Standardization Process. The idea for the first fault attack was
already present in the literature [KL19; SK20], but we managed to improve
the complexity of the algebraic post-processing significantly. We introduced a
cryptanalytic method that allows us to reveal the secret key just by solving linear
equations, after the fault injection attack was executed successfully. Before that,
the complexity to complete the fault attack was estimated to be around 238 to
242 for the security level I parameters. Our approach works in polynomial-time
and is efficiently applicable to the parameter sets across all security levels. The
second fault attack is new and targets an operation that has previously not
been the target of a fault attack. It works in complexity O(qv1−o1), which is as
small as 216 for the security level I parameter set. Both fault attacks require
only a limited amount of faulted signatures in the range from a few to several
dozens, depending on the concrete parameter set. Additionally, we verify both
attacks on an emulated ARM M4 architecture. Thus, the compiled binary is
executed as it is running on a real signing device and we skip the relevant
instruction of the assembly code. Moreover, we specify countermeasures for
both attacks.

I developed the ideas for the improved algebraic post-processing and the
second fault attack under the supervision of Krämer. To support the theoretical
observations, which formed the basis of the attacks, I implemented a Sagemath
script that confirmed the complexity claims of the attack. The attack simulation
was implemented by Kovats. The countermeasures were developed jointly by
all co-authors.

In joint work with Marzougui, Seifert, and Ulitzsch [AMS+24], we assessed
the practicality of a fault injection attack on MAYO, a compact UOV-based
signature scheme, that is a promising candidate in NIST’s call for additional
digital signatures. The paper discusses two variations of a FIA, where the

1.5. Contributions 15

critical values are either reused or set to zero, as a consequence of the fault
injection attack. In both cases only a single faulted signature is sufficient to
achieve key-recovery in a matter of seconds. We execute the attack on an
STM32F4 target board using a ChipWhisperer Lite. We provide all attack
parameters to allow a convenient reproduceability of the given attacks, as well
as a Sagemath implementation, which computes the secret key from the faulted
signature and the public key.

For this research work, I contributed the idea for the attacks and provided
the mathematical background for an efficient key-recovery attack. Furthermore,
I supported Marzougui, who was working on the practical execution of the at-
tack, and Ulitzsch, who verified the algebraic attacks with Sagemath simulation
scripts. Both were working under the supervision of Seifert in this project.

Joint with Campos, Krämer, Samardjiska, and Stöttinger [ACK+23], we
developed an end-to-end profiled side-channel attack against UOV, which is also
a candidate in NIST’s call for additional digital signatures. We were the first
to target the inversion of the central map during signature generation. In more
detail, we exploit a correspondence of the public and secret key, which helped
us to recover the (secret) vinegar vector by means of a simple power analysis.
We chose a profiling approach that allowed us to mount a single-trace attack,
i.e., we only need a single attack trace taken during the signature generation
by the target device. The power traces for the templates are conducted by
executing the attacked subroutine with self-chosen input vectors on a similar
device beforehand. This is quite crucial, since the targeted vinegar variables
are generated randomly and vary across different signing procedures. From
the vinegar vector and the generated signature, we deduce an oil vector, which
enables an efficient algebraic key-recovery attack to determine the complete oil
space. Thus, we recovered the core of the secret key, which allows to create
signatures for arbitrary messages, just as the legitimate signer would compute
them. We performed all steps of the introduced side-channel attack. We con-
ducted power measurements with the ChipWhisperer Lite on a STM32F3 target
board, identified regions of interest, and implemented a correlation analysis,
which provided us with the most likely values for the targeted vinegar vector.
Furthermore, we implemented the modified Kipnis-Shamir attack, which effi-
ciently revealed the complete oil space upon this input. The work is concluded
by an elaborate discussion of general and scheme-specific countermeasures.

The idea for the side-channel attack was developed in joint work between
the co-authors. I identified the vulnerable operation and noticed the public
and secret key correspondence that increased the efficiency of the attack under
the supervision of Krämer. Together with Campos and Stöttinger, I conducted
the power measurements and analyzed the traces. Samardjiska and I worked
jointly on the implementation of the algebraic attack.

1.5.2 Enhancing Implementation Security
The goal of the publications [ACK25; SMA+24] was to harden implementations
of UOV-based signature schemes, such that they exhibit more resistance against
physical attacks.

In [SMA+24], we present a hardware implementation of the MAYO signa-
ture scheme. We developed a reconfigurable hardware design compatible with
various Field Programmable Gate Array (FPGA) architectures and adaptable

16 Introduction

to different security levels. Certain key modules, like the matrix-vector multi-
plication and Gaussian solver, were optimized with respect to the total memory
consumption. The implementation was tested on the Zynq Zedboard with a
Zynq-7020 SoC. Furthermore, we investigated the physical security of MAYO
against side-channel and fault-injection attacks, and implemented lightweight
countermeasures. Power analysis methods like [ACK+23; PSKH18; PSN21]
are mitigated by performing the matrix vector multiplication in a shuffled
fashion, instead of treating the same secret values in blocks, before hopping
to the next one. First-order fault attacks like [AKK+22; KL19; SK20] are
prevented by adding certain double checks and check sums at specified parts
of the implementation.

Sayari took care of the hardware implementation, while Marzougui and I
supported him with background information about MAYO, and digital signa-
ture schemes, in general. Together with Marzougui, I performed the analysis of
potential vulnerabilities and constructed dedicated countermeasures. The im-
plementation of the countermeasures was again realized by Sayari. The project
was carried out under the supervision of Krämer and Seifert, who guided us
with strategic advice.

Together with Krämer and Campos, we created an extensive overview of
vulnerabilities against physical attacks against UOV-based signature schemes
in [ACK25]. First, we began by reviewing existing side-channel and fault at-
tacks on various—also possibly broken or deprecated—UOV-based schemes,
updating these assessments to align with the current UOV specifications, which
have evolved over recent years. Moreover, we introduce new physical attacks
to create a more complete picture of potential vulnerabilities. Our study also
examines how these attacks apply to related schemes like MAYO, QR-UOV,
and SNOVA. We selected the four signature schemes that advanced to the sec-
ond round of NIST’s call for additional signatures, as they have the chance
of being standardized in the upcoming years. To enhance resistance against
physical attacks, the paper highlights that certain implementation choices,
such as key compression techniques and randomization methods, significantly
impact physical security, particularly concerning the effectiveness of fault at-
tacks. Furthermore, we provide implementations of UOV and MAYO for the
ARM Cortex-M4 architecture, incorporating first-order masking and protec-
tions against selected fault attacks. We benchmark the performance overhead
on a NUCLEO-L4R5ZI board and validate our approach through test vector
leakage assessment (TVLA), observing significantly reduced t-values in the
protected subroutines. The power traces for the TVLA were taken with the
ChipWhisperer Lite on a STM32F4 target board.

Krämer initiated the project and had the idea of providing an extensive
literature overview. I suggested to incorporate dedicated countermeasures to
achieve a first assessment of the expected overhead for first-order masking in
UOV-based schemes. Krämer and I prepared the literature survey of existing
attacks. The transfer of the physical attacks across the schemes was done mostly
by myself, with the support of Krämer. The main part of the implementation
of countermeasures was done by Campos, while we worked together regarding
scheme-specific and strategic aspects. The TVLA was realized in joint work
with Campos.

1.5. Contributions 17

1.5.3 Analyzing Security Features
With the publications [ADM+24; AST24], we assess the security of various
UOV-based signature schemes against different security notions.

Together with Samardjiska and Trimoska, we developed attacks against the
UOV-based signature scheme MQ-Sign, breaking its existential unforgeability
under chosen message attack (EUF-CMA) security. MQ-Sign, proposed by
Shim, Kim, and An [SKA22] as a candidate in the first round of South Korea’s
post-quantum cryptography competition (KpqC), comes in four variants: MQ-
Sign-SS, MQ-Sign-RS, MQ-Sign-SR, and MQ-Sign-RR, with MQ-Sign-RR being
equivalent to standard UOV. First, we present a polynomial-time key-recovery
attack against MQ-Sign-SS and MQ-Sign-RS. Second, we describe a forgery
attack against MQ-Sign-SR with reduced exponential running time. The com-
plexity estimates show that the variant falls indeed short of the claimed security
level. We provide a verification script for the key-recovery attack, which recon-
structs the secret key in less than seven seconds, even for security level V. The
complexity of the forgery attack is composed of an enumeration step, and the
process of solving a smaller system of quadratic equations. We implement the
non-trivial system solving part to reinforce the complexity claims.

While I provided the initial idea for the key-recovery attack on two of the
variants, all co-authors worked on the details in joint work, and its implemen-
tation was developed by Trimoska. The forgery attack was joint work with
Samardjiska and Trimoska, while I was visiting the research group at Radboud
University. The implementation was again realized mainly by Trimsoka, with
the support of Samardjiska and myself.

In joint work with Düzlü, Meyer, Struck, and Weishäupl [ADM+24], we
analyzed the Beyond UnForgeability Features (BUFF) security of seventeen
signature schemes based on codes, lattices, isogenies, and multivariate equations,
that were submitted to NIST’s call for additional digital signatures [NIST22].
BUFF security addresses vulnerabilities related to maliciously generated keys,
ensuring properties such as EO, MBS, and NR. The results vary across the
whole spectrum, from schemes that achieve neither notion (e.g., WAVE) to
schemes that achieve all notions (e.g., CROSS). Inspired by the results of the
analysis for HAWK and PROV, which satisfy all BUFF properties, by essentially
using the PS-3 transform, we investigated whether this transform suffices for
the other schemes as well.

Motivated by NIST’s declaration of BUFF security as a desired feature in
the additional call for digital signatures, the idea to analyze the candidates was
jointly elaborated. The analysis of the seventeen selected signature schemes
was divided among all co-authors according to their expertise and resources. I
participated mainly in the analysis of the code-based and multivariate schemes.
The insights we deduced from the result and conclusions we were able to draw,
were developed in joint work.

2

Background

This chapter presents the background for the main topics of this thesis and is
organized as follows. First, we provide more details about signature schemes
in general. This includes their definition and the properties that let them
achieve the security goals we stated in Chapter 1. Furthermore, we briefly
introduce classical signature schemes, which are already used in practice, and
post-quantum signature schemes, which have emerged in the recent years as
a result of the PQC standardization process hosted by NIST. Subsequently,
we give insights into multivariate signatures, show different methods of how
to construct signature schemes from the MQ-Problem, and give a detailed
description of the UOV-based signature schemes UOV and MAYO. To conclude
this chapter, we discuss the history and working principle of physical attacks.
These can be divided into fault-injection and side-channel attacks.

2.1 Signature Schemes

In Section 1.2 we elaborated on the applications of digital signatures and
their deployment in certain cryptographic protocols. In this section, we will
briefly introduce the technical definition and properties of signature schemes.
Furthermore, we give some examples of classical signature schemes that have
been used in real-world protocols for many years and provide insights into the
standardization process of quantum-resistant signature schemes.

2.1.1 Definition
A signature scheme Σ consists of three efficient algorithms:

KeyGen: The key generation algorithm KeyGen(1λ) generates a pair of two keys.
As input, it gets a security parameter λ, which determines the strength
of the keys. The output is a secret key sk along with a public key pk.

Sign: The signing algorithm Sign(sk, msg) is used to generate a signature sig for
a given message msg. Accordingly, it gets a secret key sk and a message
msg as input and outputs a signature sig, which serves as proof that msg
was signed by the owner of sk.

19

20 Background

Verify: The verification algorithm Verify(pk, msg, sig) is used to check the va-
lidity of a signature. It takes as input a public key pk, a message msg,
and a signature sig, and it outputs a boolean value v, which is true if the
signature is valid and false otherwise.

2.1.2 Properties
The two main properties of a signature scheme are correctness and security.

Correctness. Correctness follows the intuition that an honestly generated
signature, obtained by using the secret key, should verify under the correspond-
ing public key. The formal definition is straightforward. A signature scheme is
correct if, for any key pair (pk, sk)← KeyGen(1λ), we have

Verify(pk, msg, Sign(sk, msg)) = true

for every possible message msg. This property ensures that the signature scheme
works as intended under normal conditions and honest users.

Security. The definition of security requires more attention. Naturally, it
should not be feasible to compute the secret key from public information. These
kind of attacks are called key-recovery attacks. Moreover, it is clear that only
the party in possession of the secret key should be able to generate valid signa-
tures for a given message. This property is termed unforgeability and attacks
against this feature are dubbed forgery attacks. There are different threat
models that vary in the amount of information a potential adversary has at
hand. Is the adversary given only the public key (key-only attack), or also
valid signatures for a variety of messages (known message attack)? In an even
stronger threat model (adaptive chosen message attack), the attacker is allowed
to learn signatures on arbitrary messages of its own choice. The standard secu-
rity notion EUF-CMA follows the latter approach and requires the adversary
to find one valid message-signature pair (msg, sig), for a message msg that has
not been signed by the legitimate signer before. To make this more concrete,
consider the following experiment [KL14] for an adversary A:

The signature experiment Sig-forgeA,Σ(λ) is defined by:
1. KeyGen(1λ) is run to obtain keys (pk, sk).
2. The adversaryA is given pk and access to an oracle Sign(sk, ·) that outputs

valid signatures for messages of its choice. Let Q denote the set of all
queries that A asked its oracle. The adversary then outputs (msg, sig).

3. A succeeds if and only if Verify(pk, msg, sig) and msg /∈ Q.
A signature scheme Σ = (KeyGen, Sign, Verify) is EUF-CMA, or just secure, if
the probability that an adversary succeeds in the signature experiment Sig-
forgeA,Σ(λ) is negligible.

Even though EUF-CMA security is the standard security notion for dig-
ital signatures, there exist other advanced security notions that are relevant
in practice. These are especially interesting, when participating parties act
maliciously, i.e., they do not stick to honestly generated key pairs, but try to

2.2. Multivariate Signatures 21

manipulate the public key, such that certain signatures seem valid. We will
define and discuss these advanced notions in Section 5.2.

2.2 Multivariate Signatures

We indicated in Section 1.1 that multivariate signatures are based on the hard-
ness of finding a solution to a system of multivariate quadratic equations. We
will elaborate now, how one constructs a signature scheme upon this problem
and focus especially on the oil-and-vinegar approach in this section.

Let m be the number of equations, n the number of variables, and Fq the
finite field with q elements. Each quadratic equation over Fq is defined by a
quadratic polynomial P(k) : Fn

q → Fq with

P(k)(x1, . . . , xn) =
∑

1≤i≤j≤n

γ
(k)
ij xixj +

n∑

i=1
β

(k)
i xi + α(k),

where k ∈ {1, . . . , m} and γ
(k)
i,j , β

(k)
i , α(k) ∈ Fq represent the quadratic, linear,

and constant coefficients of this equation. Together, these m polynomials con-
stitute the multivariate quadratic map P = (P(1), . . . ,P(m)) : Fn

q → Fm
q , which

represents the system of quadratic equations. Solving a system of equations can
be translated to finding a solution vector s ∈ Fn

q given a target vector t ∈ Fm
q ,

such that P(s) = t holds. Already for m and n at moderate size, i.e., even
around 50 or 60, this becomes an infeasible task for a random map P without
any additional information.

Constructing signature schemes. There are two main concepts on how to
construct a signature scheme upon this problem.

1) One can compute a pair (s, t) ∈ Fn
q ×Fm

q with P(s) = t, by just randomly
sampling s and evaluating it under P to obtain t. It is possible to develop a
zero-knowledge proof of knowledge of a solution s to the multivariate quadratic
system P with target value t. Proposals for those zero knowledge proofs are
given in [SSH11] and [Beu20]. They can be used as a tool to build identification
schemes, and thus, can be turned into a signature scheme with the well-known
Fiat-Shamir transform, introduced in [FS86]. Two examples for such signature
schemes based on the MQ-problem are MQDSS [CHR+16] and Mudfish [Beu20].

2) One can install a trapdoor into P, which allows to efficiently compute
solutions to given target vectors. To this end, the map P is usually derived as
the composition of several maps, i.e. P = S ◦F ◦ T . Here, the so-called central
map F : Fn

q → Fm
q is also a multivariate quadratic map, but one with a certain

structure that allows to invert F efficiently. The maps S and T , however, are
affine or linear bijections, introduced to hide the structure of F . To obtain a
signature scheme, one can use a hash function H : F∗q → Fm

q to map a certain
message into the target space H(msg) = t ∈ Fm

q , which is also the image space
of the public map P = S ◦ F ◦ T . The signer, who has knowledge of the secret
trapdoor, i.e., the individual maps P is composed of, can invert these maps
one after the other to compute a preimage s. To check if s is indeed valid, the
verifier simply has to compute P(s) and check whether P(s) = t actually holds.

22 Background

Signature Generation

t ∈ Fm
q

-S−1
y ∈ Fm

q
-F−1

x ∈ Fn
q

-T−1
s ∈ Fn

q

6

P

Signature Verification

Figure 2.1: General workflow of trapdoor-based multivariate signature schemes.

Here, the map P is publicly available. It is commonly called the public map P.
This procedure is sketched in Figure 2.1.

The inverses of S and T can be computed efficiently, so the main task here
lies in the inversion of F . There are several options on how to define the central
map F such that finding preimages y with F(y) = x for given x becomes
feasible. One example is the HFE approach, where the central polynomial is
defined as a univariate polynomial over an extension field Fqn . This allows
a signer with knowledge of this hidden representation of the polynomial to
efficiently invert the system. There exists a variety of schemes based on the
HFE approach, but most of them got broken eventually. The most known
representative is GeMSS, a highly efficient signature scheme, which was broken
by the attack of Tao et al. [TPD21]. In this thesis, however, we focus on the
OV approach, first introduced by Patarin [Pat97].

The Oil-and-Vinegar (OV) approach. The key idea of this approach
to enable fast inversion of F : Fn

q → Fm
q , is to split the input variables

x = {x1, . . . , xn} into two sets, the vinegar variables {x1, . . . , xv} and the oil
variables {xv+1, . . . , xn}, and not allow F to have any quadratic terms in the
oil variables. Thus, the polynomials of such a map F = (F (1), . . . ,F (m)) are
defined by

F (k)(x) =
∑

1≤i≤n

∑

1≤j≤v

γ
(k)
i,j xixj +

n∑

i=1
β

(k)
i xi + α(k) (2.2.1)

for k ∈ {1, . . . , m}. Here, v denotes the number of vinegar variables. Note that
every polynomial F (k) becomes linear if one fixes these v vinegar variables to
arbitrary values. In doing so, one can turn F into a system of m linear equations,
in the remaining n − v oil variables. By selecting parameter, s.t. n − v = m,
the derived linear system has a solution with large probability. The solution
vector x to the equation F(x) = y is then composed of the randomly generated
v vinegar variables, and the m oil variables that constitute the solution of the
derived linear system with m variables in m equations.
Remark 2.1. Let O′ be the m-dimensional vector space that contains all the
vectors whose first v entries are zero, i.e., O′ = {x ∈ Fn

q | xi = 0 for all i ≤ v}.
It is obvious that the quadratic part of F vanishes on this subspace O′, since

2.2. Multivariate Signatures 23

each quadratic monomial contains one of these zero variables. Therefore, the
quadratic part of P vanishes on the space O := T−1(O′), where T : Fn

q → Fn
q is

the secret invertible transformation from above, introduced to hide the structure
of the central map F . This subspace O is also known as the oil space and will
play a major role in the upcoming description of the schemes and attacks
in this thesis, since its knowledge allows anyone to sign arbitrary messages.
Consequently, the oil space O constitutes the ’real’ secret of signature schemes,
that follow the OV approach.

Kipnis-Shamir attack on balanced OV. In the initial presentation of the
OV approach [Pat97], the number of vinegar variables v was chosen equally
large as the number of oil variables m, i.e., n = v +m = 2m. This (in hindsight)
lead to the name balanced OV. Soon after, Kipnis and Shamir [KS98] found an
attack against this scheme, making use of exactly this property. They noticed
that certain matrices, which can be derived directly from the public key, map
the oil space O ⊂ Fn

q onto itself. This set of matrices, which have O as a
common invariant subspace, is sufficiently large, so that the authors were able
to present two efficient algorithms for detecting the invariant subspace solely
from the matrices derived from the public key. As a result, the attack presented
in [KS98], also known as the Kipnis-Shamir attack, constitutes a polynomial-
time key recovery attack against the balanced instance of OV schemes. For more
details on the utilized set of matrices and the algorithms to detect invariant
subspaces, we refer to [KS98].

Unbalancing the number of oil and vinegar variables. A crucial con-
dition for the Kipnis-Shamir attack to work so efficiently is that the oil vari-
ables make up for at least half of the total variables, i.e., 2m ≥ n. Kipnis et
al. [KPG99] suggest to use more vinegar than oil variables, i.e., v > m, leading
to 2m < m + v = n. Then the matrices mentioned above do not have O as an
invariant subspace anymore, preventing the polynomial-time attack from above.
Instead, they might have an invariant subspace, which is a subspace of O itself.
The probability for this to happen is related to the difference d = v −m of the
number of vinegar and oil variables. The authors estimate the complexity of
this adapted attack as proportional to qd−1n4, rendering it exponential in d.
Thus, they choose v sufficiently larger than m, dubbing the modified scheme
UOV, short for Unbalanced Oil-and-Vinegar. While the authors initially sug-
gest to use v ≥ 2m, current implementations employ v ≈ 1.5m or n = 2.5m,
to reduce the number of total variables, since this still gives enough security
margin against the Kipnis-Shamir attack [BCD+23].

UOV is known for its fast signing and verification algorithm, but suffers
from large expanded public and secret keys. With compression techniques, it
is possible to reduce the size of the secret key tremendously (at the cost of a
less efficient signing algorithm) and the public key to some extent. We will
present concrete performance numbers of the different variants in the following
section. However, compared to classical or lattice-based signature schemes, the
public key size is still enormous, even in its compressed variant. Not least for
this reason, a considerable number of modifications was invented to aim for
improvements of UOV.

24 Background

UOV-based signature schemes. Two prominent examples of such signa-
ture schemes that were submitted to the NIST PQC standardization process
in 2017, are LUOV and Rainbow.

LUOV [BPSV19] was a round 2 candidate, but got eliminated before round 3.
The field lifting approach used in LUOV was developed by Beullens and Preneel
in [BP17]. The idea is to generate the keys over the field F2 to achieve small
keys, but to lift them to a larger extension field F27 or F247 , where finding
solutions to the MQ Problem is harder. Ding et al. [DDS+20] exploited the
’lifted’ structure and developed a new method called the Subfield Differential
Attack, with complexity estimates below the targeted security levels. The
attacks could be countered by adapting the parameter sets, without affecting
the efficiency of the scheme too heavily. Nevertheless, NIST did not select
LUOV for the third round, since, in their opinion, the field lifting innovation
has not been analyzed enough.

Rainbow [DCP+20] was even one of the finalists in round 3 of the NIST
PQC standardization process. Ding and Schmidt [DS05a] constructed Rainbow
as a multi-layered version of UOV to increase its efficiency and decrease its key
sizes. The layers are solved individually following the oil-and-vinegar principle,
and the solution is inserted into the next layer. While the authors initially
suggested to employ five layers, it soon became clear that only two layers make
for the most efficient instantiation of the scheme. In this fashion, Rainbow was
submitted to the standardization process in 2017, as it was considered to be a
more efficient variant of UOV. However, Beullens [Beu22] eventually managed
to exploit this layer structure and mounted an efficient key-recovery attack,
destroying all benefits Rainbow had over UOV. Consequently, it was not chosen
for standardization and eliminated from the process.

More UOV-based signature schemes were submitted to NIST’s call for addi-
tional digital signatures in 2023, namely MAYO [BCC+23], PROV [GCF+23],
QR-UOV [FIH+23], SNOVA [WCD+23], TUOV [DGG+23], VOX [PCF+23],
and UOV [BCD+23] itself. MAYO was developed by Beullens in [Beu21b]. It
employs an oil space of considerable, smaller dimension compared to UOV. To
compensate for that, the public key map gets ’whipped-up’ during signature
generation, to ensure that solutions to the linear system can still be found
efficiently. This brings another security assumption into play, which the author
calls the Multi-Target Whipped MQ Problem. At the point of writing this
thesis, there are no cryptanalytic approaches that can exploit this additional
attack vector. The benefit of this approach is that the smaller parameters
entail drastically reduced key sizes and efficient algorithms for key generation,
signing, and verification. Overall, the performance numbers of MAYO are quite
convincing and are at the level of standardized lattice-based signatures, as
depicted in Table 1.1. QR-UOV, SNOVA, and VOX also apply techniques to
reduce the public key size compared to UOV. PROV is defined in a way that
admits an EUF-CMA security proof under the assumption that the public key
map is hard to invert. TUOV adds some ’triangular’ polynomials to the central
map, but does not provide more efficiency or compactness compared to UOV.

Since UOV and MAYO are at the core of several of the research papers
contributing to this thesis, we will introduce these schemes in more details in
the following sections. For the remaining schemes, we will provide additional
information in the respective chapter, if necessary.

2.2. Multivariate Signatures 25

2.2.1 UOV
The specification of UOV [BCD+23] has a different look than the short intro-
duction to the OV approach we gave above. On the one hand, this is due to the
modifications and optimizations that were applied over the years. The scheme
only employs homogeneous polynomials, since the constant and linear parts do
not add to the security of the scheme, but increase the key sizes and hamper
efficiency. The same holds for the secret transformation T , which is chosen as
a linear transformation, not as an affine one [BWP05]. The transformation S,
which is present in some other multivariate schemes, was omitted right from
the start, since it is not contributing to the security of UOV.

On the other hand, the description of UOV now focuses more on the oil
space O, instead of the secret central map F that was defined by the equation
P = F ◦ T . In fact, one gets a concise characterization of UOV and its signing
strategy, from the description manifested in [Beu21a]. Recall that P : Fn

q → Fm
q

is a homogeneous quadratic map and the oil space O has the property that
P(o) = 0 for all o ∈ O. Assume that we want to find a preimage s ∈ Fn

q with
P(s) = t, for a certain target value t = H(msg, salt) ∈ Fm

q . We pick a (vinegar)
vector v ∈ Fn

q at random and insert it into the equation

P(v + o) = P(v) + P(o) + P ′(v, o) = t. (2.2.2)

The map P ′ : Fn
q × Fn

q → Fm
q , defined by Equation (2.2.2), is called the

differential of P and is bilinear and symmetric [Beu21a]. Since for o ∈ O, it
holds that P(o) = 0, the equation above is a system of linear equations in o,
which can be reformulated to

P ′(v, o) = t− P(v). (2.2.3)

The oil vector o can be described as a linear combination of m basis vectors
given in O. Hence, Equation (2.2.3) is a system of m linear equations in m
variables. This can be solved efficiently for o, or in case no solution exists, one
samples a new vinegar vector v and tries again. The sum of the vinegar and
oil vector s = v + o yields a preimage of the target t and constitutes the main
part of the scheme’s signature.

UOV functionalities and variants. There are three variants of UOV,
namely, uov.classic, uov.pkc, and uov.pkc+skc, where the suffix indicates
whether the keys are uncompressed, only the public key is compressed, or both
the public and private key are compressed. The compression technique was
introduced by Petzoldt et al. in [PTBW11]. The reduced key size is at the ex-
pense of increased signing and verification time, since expansion operations are
added to the corresponding algorithms. This trade-off is visualized in Table 2.1.

Basically, all three variants are composed of the same five functionalities
below, but depending on the variant, the UOV.ExpandSK and UOV.ExpandPK
algorithm are considered as part of the key generation or the sign and verify
algorithm. We go through the five functionalities in the following and explain
the scheme in more detail, alongside its pseudocode. The algorithms are dis-
played exactly as in the same manner as they are shown in the specification of
the UOV signature scheme [BCD+23].

26 Background

Table 2.1: UOV variants with different key compression levels. CPU cycles
are obtained from [BCD+23, Table 6] and benchmarked on a Intel Skylake
processor. Public and secret key sizes are obtained from [BCD+23, Table 4].

UOV variant Key pair pk size sk size sign verify
in Bytes in CPU cycles

uov.classic (esk, epk) 278 432 237 896 105 324 90 336
uov.pkc (esk, cpk) 43 576 237 896 105 324 224 006

uov.pkc+skc (csk, cpk) 43 576 48 1 876 442 224 006

Key generation. The key generation algorithm (see Figure 2.2) sets up the
oil space O and the public map P, such that P vanishes on O.

The m-dimensional oil space O is expanded from a randomly generated
secret seed seedsk and stored in O ∈ Fn−m×m

q , where the columns of the
matrix Ō = (O, Im)⊤ are the basis vectors that define O. The coefficients of
the polynomials P(k)(x) are stored in matrices

Pi =
(

P(1)
i P(2)

i

0 P(3)
i

)
. (2.2.4)

Hereby, the submatrices P(1)
i and P(2)

i can be chosen randomly and are ex-
panded from a public seed seedpk, which has been randomly generated. In
contrast, P(3)

i has to be computed according to the equation in Line 6 of
Figure 2.2, to ensure P(o) = 0 holds for all o ∈ O.

UOV.CompactKeyGen():
1 : seedsk ← {0, 1}sk_seed_len

2 : seedpk ← {0, 1}pk_seed_len

3 : O := Expandsk(seedsk)

4 : {P(1)
i , P(2)

i }i∈[m] := ExpandP (seedpk)
5 : for j = i, . . . , m do

6 : P(3)
i := Upper(−O⊤P(1)

i O−O⊤P(2)
i)

7 : cpk := (seedpk, {P(3)
i }i∈[m])

8 : csk := (seedpk, seedsk)
9 : return (cpk, csk)

Figure 2.2: UOV key generation algorithm [BCD+23].

Expand sk. During secret key expansion, the compressed secret key csk =
(seedpk, seedsk) gets expanded to esk = (seedsk, O, {P(1)

i , Si}i∈[m]). The algo-
rithm is depicted in Figure 2.3. Here, {P(1)

i }i∈[m] is needed to evaluate P(v)
from Equation (2.2.3) during signing. Note that the last m elements of v ∈ Fn

q

are set to zero, and random values get only assigned to the first v entries of
v. Therefore, it is indeed sufficient to add {P(1)

i }i∈[m] to esk. The matrices
{Si}i∈[m] are computed according to the equation in Line 4 of Figure 2.3. This

2.2. Multivariate Signatures 27

can be interpreted as inserting the information obtained from o ∈ O into the
term P ′(v, o). The matrix O, which describes the oil space O also needs to be
added to esk, since it is needed to compute the resulting oil vector o from the
solution x of the linear system at the end of the signing algorithm, as we will
see below.

UOV.ExpandSK(csk): // csk = (seedpk, seedsk)

1 : O := Expandsk(seedsk)

2 : {P(1)
i , P(2)

i }i∈[m] := ExpandP (seedpk)
3 : for i = 1, . . . , m do

4 : Si := (P(1)
i + P(1)⊤

i)O + P(2)
i

5 : esk := (seedsk, O, {P(1)
i , Si}i∈[m])

6 : return esk

Figure 2.3: Algorithm that expands csk to esk in UOV [BCD+23].

Sign. As indicated above, signing in UOV boils down to setting up and solving
Equation (2.2.3). The individual steps are depicted in Figure 2.4. The target
vector t is derived from the message and a randomly generated salt. Then, the
vinegar vector v is generated and inserted into the term P ′(v, o) in Line 7. If
the resulting matrix is invertible, i.e., the system is solvable, we evaluate also
P(v) (Line 9) and solve the derived linear system (Line 10). The solution x
yields the coefficients of the basis representation of the oil vector, so o = Ōx
computes the oil vector. The sum of v and o account for the solution vector s
that forms the signature together with the salt.

UOV.Sign(esk, msg): // esk = (seedsk, O, {P(1)
i

, Si}i∈[m])

1 : salt← {0, 1}salt_len

2 : t← H(msg||salt) // t ∈ Fm
q

3 : for ctr = 0, . . . , 255 do
4 : v := Expandv(msg||salt||seedsk||ctr) // v ∈ Fn−m

q

5 : L := 0m×m

6 : for i = 1, . . . , m do
7 : Set i-th row of L to v⊤Si

8 : if L is invertible then

9 : y := [v⊤P(1)
i v]i∈[m] // y ∈ Fm

q

10 : Solve Lx = t− y for x
11 : s := [v, 0m] + Ōx // s ∈ Fn

q

12 : sig := (s, salt)
13 : return sig
14 : return ⊥

Figure 2.4: Algorithm that signs a message msg in UOV [BCD+23].

28 Background

Expand pk. This routine, given in Figure 2.5, simply expands seedpk to get
the coefficients in P(1)

i and P(2)
i and puts them together with P(3)

i according to
Equation (2.2.4). Thus, the expanded public key is just a complete description
of the public map P.

UOV.ExpandPK(cpk): // cpk = (seedpk, {P(3)
i
}i∈[m])

1 : {P(1)
i , P(2)

i }i∈[m] := ExpandP (seedpk)
2 : for i = 1, . . . , m do

3 : Pi := (P(1)
i , P(2)

i , P(3)
i)

4 : epk := {Pi}i∈[m]

5 : return epk

Figure 2.5: Algorithm that expands cpk to epk in UOV [BCD+23].

Verify. In order to verify a signature, one just recomputes the target value t,
evaluates the public key map at the solution vector s, which is part of the
signature, and checks if the vectors are identical. This process is depicted in
Figure 2.6.

UOV.Verify(epk, msg, sig): // sig = (s, salt)

1 : t← H(msg||salt) // t ∈ Fm
q

2 : return (t == [s⊤Pis]i∈[m])

Figure 2.6: Verification algorithm in UOV [BCD+23].

2.2.2 MAYO
MAYO is an UOV-based signature scheme introduced by Beullens in [Beu21b].
The public and secret key exhibit exactly the same structure as in UOV. They
are given by a description of a multivariate quadratic map P : Fn

q → Fm
q and a

seed that defines the oil space O ⊂ Fn
q , for which P(o) = 0 for all o ∈ O holds,

respectively. The essential modification is the idea to ’whip up’ the public key
map P into a larger map P∗ : Fkn

q → Fm
q during signing and verification. This

is realized by defining

P∗(x1, . . . , xk) :=
k∑

i=1
EiiP(xi) +

∑

1≤i<j≤k

EijP ′(xi, xj), (2.2.5)

where the matrices Eij ∈ Fm×m
q are fixed system parameters with the property

that all their non-trivial linear combinations have rank m. Note, that the
whipped map P∗ accepts k input vectors xi ∈ Fn

q .
This property allows to reduce the dimension of the oil space O, which

in turn leads to less variables n and hence more compact key sizes. Recall,
that in UOV, it was necessary to set the dimension of the oil space O to
dim(O) = m, such that we have the same number of equations and variables
in Equation (2.2.3). In MAYO, however, the goal is not finding a preimage of

2.3. Physical Attacks 29

the target vector t under the public map P, but under the whipped map P∗,
i.e., to solve the equation

P∗(s1, . . . , sk) = P∗(v1 + o1, . . . , vk + ok) = t, (2.2.6)

for (o1, . . . , ok) ∈ Fkn
q after fixing the vectors (v1, . . . , vk) to randomly gen-

erated values. Let dim(O) = o be the dimension of the oil space O. Then
Equation (2.2.6) turns into a system of m equations in ko variables. Depending
on the chosen parameter k, this allows for a considerably smaller oil space O
with dim(O) = o < m. The solution vectors {si = vi + oi}i∈[k] again represent
the core part of the signature and the verifier just has to check if they indeed
form a valid preimage of t, i.e., if P∗(s1, . . . , sk) = t holds true.

MAYO functionalities. The specification of MAYO [BCC+23] defines the
same five functionalities that are given in the UOV specification.1 Since the keys
are, except for parameter choices, the same as in UOV, the MAYO.CompactKey-
Gen, MAYO.ExpandSK, and MAYO.ExpandPK algorithms are defined analo-
gously to their UOV counterparts, apart from slight notation deviations. Thus,
we omit the presentation of those algorithms here and refer to the specifi-
cation [BCC+23]. For MAYO.Verify the adaptions compared to UOV are
straightforward. One simply replaces the map P by P∗ and checks whether
P∗(s1, . . . , sk) = t is satisfied. Therefore, we also omit the depiction of
MAYO.Verify here.

Sign. The MAYO.Sign algorithm, in contrast, features some adaptions, mainly
induced by solving a linear system derived from P∗ instead of P. The physical
attacks, which we are going to discuss in Chapter 3 and Chapter 4, refer to
specific code lines. Therefore, we depict the MAYO.Sign algorithm in Figure 2.7.

We chose to take over the depiction from the MAYO specification, such
that the code lines we refer to in this thesis match with the official document.
However, we skip the first two code blocks, since they are not relevant to under-
stand the signature scheme or comprehend the mentioned attacks. The main
difference, compared to UOV, is the construction of the linear system in Lines
21 to 34. The terms P(vi) and P ′(vi, oj), which result from Equation (2.2.6),
have to be computed for multiple vectors. This is realized in Lines 28 to 29 and
Lines 25 to 27, respectively. The multiplication with the emulsifier matrices Eij

and the accumulation of the terms, which are part of the whipping procedure
that transforms P into P∗ (see Equation (2.2.5)), is realized in Lines 30 to 34.
The remaining steps of the signing process, i.e., the system solving and the
addition of the oil and vinegar terms are again similar to UOV, except that one
has to treat multiple vectors {si = vi + oi}i∈[k].

2.3 Physical Attacks

Physical attacks in cryptography exploit the fact that cryptographic imple-
mentations can leak information or be manipulated in their execution on a

1Theoretically, one could define the same three variants (as in uov.classic, uov.pkc,
uov.pkc+skc) for MAYO upon these five functionalities. The submitters of MAYO decided
to only have one variant in the specification, which works with compressed public and secret
keys, and is therefore comparable to uov.pkc+skc.

30 Background

MAYO.Sign(esk, msg) // esk = (seedsk, O, {P(1)
i

, Si}i∈[m])

...

7 : // Hash message and derive salt and target vector t
8 : M_digest← SHAKE256(msg, digest_bytes)

9 : R← 0Rbytes
or R

$←− BRbytes // Optional randomization

10 : salt← SHAKE256(M_digest ∥R ∥ seedsk, salt_bytes)
11 : t← Decodevec(m, SHAKE256(M_digest ∥ salt, ⌈(m log(q))/8⌉))
12 :
13 : // Attempt to find a preimage for t
14 : for ctr = 0, . . . , 255 do
15 : // Derive vi and r

16 : V ← SHAKE256(M_digest ∥ salt ∥ seedsk ∥ ctr, k · vbytes + ⌈ko log(q)/8⌉)
17 : for i = 0, . . . , k − 1 do
18 : vi ← Decodevec(n− o, V [i · vbytes : (i + 1) · vbytes])
19 : r← Decodevec(ko, V [k · vbytes : k · vbytes + ⌈ko log(q)/8⌉])
20 :
21 : // Build linear system Ax = y.

22 : A← 0m×ko ∈ Fm×ko
q

23 : y← t, ℓ← 0
24 : for i = 0, . . . , k − 1 do

25 : Mi ← 0m×o ∈ Fm×o
q

26 : for j = 0, . . . , m− 1 do
27 : Mi[j, :]← v⊺

i Lj // Set j-th row of Mi

28 : for j = k − 1, . . . , i do

29 : u← {v⊺
i P(1)

a vi}a∈[m] if i = j

u← {v⊺
i P(1)

a vj + v⊺
j Pavi}a∈[m] if i ̸= j

30 : y← y−Eℓu

31 : A[:, i · o : (i + 1) · o]← A[:, i · o : (i + 1) · o] + EℓMj

32 : if i ̸= j then

33 : A[:, j · o : (j + 1) · o]← A[:, j · o : (j + 1) · o] + EℓMi

34 : ℓ← ℓ + 1
35 :
36 : // Try to solve the system

37 : x← SampleSolution(A, y, r)
38 : if x ̸= ⊥ then
39 : break
40 :
41 : // Finish and output the signature

42 : s← 0kn

43 : for i = 0, . . . , k − 1 do
44 : s[i · n : (i + 1) · n]← (vi + Ox[i · o : (i + 1) · o]) ∥ x[i · o : (i + 1) · o]
45 : return sig = Encodevec(s) ∥ salt

Figure 2.7: The algorithm that signs a message msg in MAYO. The pseudocode
is the same as given in Algorithm 8 of the MAYO specification [BCC+23]. We
omitted the first code lines that include only the secret key decoding.

2.3. Physical Attacks 31

hardware device. This is especially concerning for embedded devices like smart
cards, microcontrollers, and hardware security modules. There are two major
classes of physical attacks: side-channel and fault injection attacks. In the
following, we briefly introduce the history and theory of these attacks. Notably,
the development of the two fields happened almost in parallel in the late 1990s,
even though they were driven by different research teams. We focus on the
threat models that are crucial to understand the concepts of the attacks in
Chapter 3.

2.3.1 Side-Channel Analysis
The beginning of the modern era of side-channel attacks against cryptographic
algorithms was marked by the two seminal papers of Kocher in the late 1990s:
He presented a timing attack [Koc96] on implementations of RSA and Diffie-
Hellman, exploiting the fact that the execution time can vary based on the
input values and secret key. Furthermore, he showed that the power con-
sumption also correlates with the data and especially the secret key being
processed [KJJ99]. Even though side-channel attacks were not formally studied
in the cryptographic community before that, related concepts already existed.
The TEMPEST program (from the 1950s to 1970s) refers to the study of
unintentional electromagnetic emissions from electronic equipment by the U.S.
government and covers both methods to exploit this emission and how to protect
equipment against this leakage. The devices and equipment they considered
were not bound to cryptographic applications, but had a larger framework,
which included keyboards, displays, rotor machines, and more. However, public
documentation on this was limited. In 1985, van Eck [Eck85] demonstrated
how emissions from monitors can be captured and reconstructed, proving that
real-world EM-eavesdropping is feasible. Afterwards, the two mentioned pub-
lications by Kocher paved the way for side-channel analysis of cryptographic
algorithms as we know it today. Another important result of the early stages
of side-channel analysis was brought forth by Messerges et al. [MDS99]. They
analyzed the vulnerability of public key algorithms against power analysis on
smartcards. The experimental validation further underlined the practical via-
bility of Kocher’s methods.

From these, a tremendous variety of different side-channel attacks emerged,
which we can not possibly cover in this thesis. All side-channel attacks on
UOV-based schemes we are aware of, including those we developed ourselves,
are power analysis attacks. Therefore, we will provide background for these
methods in the following.

Power Analysis Methods

Digital circuits have static and dynamic power consumption. Static power is
needed to keep the device running, when it is idle. Dynamic power is required to
switch transistors when a signal changes from 0 to 1 and vice versa. The latter is
proportional to the number of bits that change (i.e., Hamming distance) or the
value of newly assigned data (i.e., Hamming weight). Of course, this depends
on the executed instructions, but also on the processed data and intermediate
values. Power analysis exploits this correlation between power consumption and
intermediate computational states. Over the years several concepts have been

32 Background

developed. We briefly present the classification that is also chosen in [MOP07],
and refer to this book for further reading.

simple power analysis (SPA). Here, only a single or few power measure-
ments of an operation on a target device can be conducted by the adversary.
In its most simple case an adversary inspects the collected power traces to visu-
ally identify patterns or bit-dependencies. This attack type is mainly working
for vulnerable implementations with clear, structured power signatures due to
conditional branches. An example are RSA exponentiation loops, where the
device performs a multiplication only if the secret key bit is set to 1. The power
trace directly reveals the sensitive value, e.g., by spikes that occur only in one
of the conditional branches.

However, in many cases a differentiation based on completely different
operations that follow branches depending on the secret key bits is not possible.
If the leakage is more subtle and harder to detect, it is helpful to characterize the
device under attack by determining templates for certain instruction sequences.
To this end, we might use another device of the same type as the attacked
one and execute these instructions with different data and keys in order to
record the resulting power consumption and group them according to the key
bits. This is called the template building phase. In the template matching
phase, the power trace of the target device processing the actual secret key
is assessed. The template that exhibits the highest correlation to this trace
indicates the correct key bits. This template approach was further optimized
using machine learning (ML) techniques. In this case the data collected in
the template building phase is used to train a ML model and the template
matching phase is given by the prediction of the ML classifier.

Differential Power Analysis (DPA). These attacks are possible when a
large number of power traces of a cryptographic algorithm can be gathered.
While in SPA attacks the power consumption is mainly analyzed along the
time axis, DPA attacks analyze how the power consumption at a fixed moment
depends on the processed data. This generally involves forming a hypothesis
value and then comparing the hypothesis against measured power traces. It is
usually applied by a divide and conquer approach where the attacker repeats
the same process on small parts of the key until the full key is recovered.
Following [MOP07], this process can be described by five steps:

1. Choosing an intermediate result of the executed cryptographic
algorithm. This intermediate result is the function f(d, k) of a known
non-constant data value d and an unknown value k, which represents a
small part of the secret key.

2. Measuring the power consumption. Measure the power consumption
of the target at the position of the function localized in Step 1 while it
processes several different data blocks di. For each run, the attacker needs
to know the data values di and records the corresponding power traces.
Here, trace alignment is important, hence the same part of the traces
should be caused by the same operations.

3. Calculating hypothetical intermediate values. This step computes
possible intermediate values vi,j = f(di, kj) for every possible secret value

2.3. Physical Attacks 33

kj and all data values di. This is also the reason why one cannot attack
the whole key at once, but has to focus on small fractions of it.

4. Mapping hypothetical intermediate values to hypothetical power
consumption values. Each hypothetical intermediate value is mapped
to a hypothetical power consumption hi,j by some simulation technique.
Usually, Hamming weight or Hamming distance models are applied.

5. Statistically comparing the hypothetical power values with the
measured power traces. In this step, the attacker compares the hy-
pothetical power consumption values hi,j for all key hypotheses with the
recorded traces of Step 2. Statistical methods can be applied to reveal
the unknown value k that is used by the device. If Pearson’s correlation
coefficient is used here, the attack is often referred to as Correlation Power
Analysis (CPA).

The number of traces that is needed to perform such an attack depends on many
parameters, such as the quality of the obtained power traces or the accuracy
of the applied simulation model for the hypothetical power consumption. For
certain attacks, this can even go in the range of 100 000 traces or more [MOP07].

DPA can also be turned into template-based DPA attacks, when the attacker
has the chance to characterize the power consumption of a device. They are
essentially an extension of what was described for template-based SPA attacks.
The first template-based DPA was introduced by Agrawal et al. [ARR03].

2.3.2 Fault Injection Attacks

Two ground-breaking papers in the context of fault attacks are introduced by
Boneh et al. [BDL97] and Biham and Shamir [BS97] in 1997. Boneh et al.
have shown how the signing key in RSA implementations based on the Chinese
Remainder Theorem is exposed from a single erroneous RSA signature, as this
might leak one of the factors of the RSA modulus. Futhermore, they extend
their analyis to the identification protocol by Fiat-Shamir and Schnorr and
elaborate that the secret key is also exposed from a certain amount of faulty
executions of the protocol. Biham and Shamir proposed a related attack on
symmetric key algorithms such as the Data Encryption Standard (DES), which
is the predecessor of AES. They named their approach DFA. Both publications
state that the exploited faults could just appear randomly due to malfunctions
of the device, but also mention methods of how an adversary could tamper
with the device to actively cause such events. We briefly introduce some of the
most common methods that have been established over the years. Bar-El et
al. [BCN+06] and Verbauwhede et al. [VKS11] published classification papers
that provide a broad overview of existing fault injection techniques.

Clock glitching. Briefly overclocking or underclocking the CPU clock signal
can violate timing constraints and cause the CPU to misinterpret or skip
instructions. This requires a fast and precise clock control, which can be
generated using an FPGA or glitching tool.

34 Background

Voltage glitching. A rapid drop or spike in voltage supply causes setup or
hold time violations inside the processor. This can corrupt the control flow
or logic operations, and thereby skip instructions or load incorrect data. It
requires a high-speed trigger to time the glitch accurately during a specific
instruction or execution round.

Laser fault injection. A precisely targeted laser pulse is fired at a specific
region of a chip while it operates. This often requires the decapsulation of the
chip and a high-priced laser station with micrometer precision. It can be used
to disrupt gates or force bit flips and can target specific registers or memory
cells.

Electromagnetic fault injection. An electromagnetic pulse is emitted near
the chip to induce transient voltages in the circuit. In general, this is less
invasive than a laser, but harder to precisely control.

Rowhammer. This is a software-based approach that rapidly accesses (’ham-
mers’) rows of memory to cause electrical interference in adjacent rows, which
eventually can lead to bit flips. It is enabled by hardware design flaws in
DRAM, where cells are packed so tightly that repeated activation can leak
charge into neighboring cells. These faults can be triggered remotely without
physical access to the device.

Effect and Impact of Faults

These faults can have different effects depending on where, when, and how
they are introduced. When they target the memory during fetch, load, or
store operations, it might cause processed data to be corrupted. Faults in
a register can lead to bit flips of certain values during the execution of an
operation. Faulting the instruction decoder can trigger instruction skips of
whole functions and, by targeting the control logic, one can manipulate loop
counters or branch conditions. In their survey on fault attacks [GT04], Giraud
and Thiebeauld also differentiate between permanent and transient faults.

In order to exploit the induced fault and reconstruct sensitive values, the
provoked errors often need to be tracked precisely and their effect for subsequent
intermediate values and computations has to be analyzed, which requires a
profound knowledge of the underlying cryptographic algorithm.

2.3.3 Experimental Setup
In the previous two sections we elaborated on several physical attack method-
ologies, but omitted details about how to inject glitches or conduct power
measurements technically. The range of possibilities to mount such physical
attacks is enormous and depends on the concrete application, the target under
attack, and also the technical equipment and budget of an adversary. The post-
quantum signature algorithms we analyze in this thesis are not yet standardized
and do not appear in real-world protocols or security applications. Therefore,
the main goal is not to recreate realistic scenarios for our attacks, but to gener-
ate understandable results that enhance the knowledge about physical attack
vectors of the analyzed signature algorithms. To this end, it is advisable to

2.3. Physical Attacks 35

facilitate a low-cost setup with open source software, that is affordable for
universities, institutions, and other researchers of the cryptographic community.
In the recent years, the ChipWhisperer ecosystem has become a well accepted
framework for working with side-channel and fault analysis [Tec23]. Its setup
is also accessible to a wide range of researchers as it reduces the electrical
engineering background that is necessary to perform glitching attacks or power
measurements. Consequently, we opted for this platform to execute our de-
veloped attacks on UOV-based signature algorithms. We briefly describe the
workflow for conducting physical attacks with the ChipWhisperer setup here.

The target device, e.g., a STM32 microcontroller is connected to the Chip-
Whisperer capture device, which itself is connected to a general work station
like a laptop. The ChipWhisperer provides built-in support to flash the required
cryptographic implementation, e.g., a post-quantum signature algorithm, onto
the target microcontroller. The firmware must be compiled in advance and
makefiles for certain platforms, like the STM32, are also provided. The flashed
code usually includes a trigger signal to mark the start and end of the opera-
tion under attack. A reliable trigger is essential for a precise alignment of the
executed attack, such that the same operations are captured or skipped when
the attack is repeated. Depending on the type of attack, parameters need to
be configured. For power measurement, one defines the sampling rate, offset
and length. For glitching attacks, the parameters include the width, offset, and
trigger source. The actual attack is executed by running the flashed code on
certain inputs (i.e., messages in case of signature algorithms) and observing
the target’s behavior, by either analyzing the conducted power measurement
or the (possibly) faulted signatures. Subsequently, post-processing of the col-
lected data is necessary to reveal intermediate or sensitive values of the target
device. This requires statistical tools and analysis methods as described in
Section 2.3.1 and Section 2.3.2, and enhanced knowledge of the investigated
signature algorithm.

3

Developing Physical Attacks

In this chapter we provide context for our research results given in [AKK+22],
[AMS+24], and [ACK+23]. The former two are fault injection attacks on
Rainbow and MAYO, while the latter one is a power analysis attack on UOV.
The corresponding publications can be found in Appendix A.

The design and implementation of new physical attacks is an indispensable
part of making cryptographic algorithms more resistant towards these kind of
attacks, and thus, more secure. Developed attacks prove certain vulnerabilities
in the analyzed implementation and materialize the need to put countermea-
sures into practice. These countermeasures generally produce an overhead in
execution time and/or memory requirement, so that the willingness to accept
these disadvantages in favor of more security only increases, when attacks are
carried out properly. In multivariate cryptography, the state of the art re-
garding secure implementations and physical attacks is not as advanced as in
other post-quantum families, in particular lattice-based cryptography. There
are timing attacks [BBB+25], fault attacks [BP18; KPLG24; PP21], cache at-
tacks [BHLY16], and other side-channel attacks [EFGT17; RRCB20; SLKG23]
on a variety of lattice-based schemes, and this only represents a fraction of the
existing literature on that topic. The survey by Ravi et al. [RCDB24] provides
a broad overview for lattice-based schemes.

In multivariate cryptography, many schemes got broken, e.g., LUOV, GeMSS,
and Rainbow, whereas others, like MAYO, SNOVA, and QR-UOV, are really
young and are mainly analyzed in terms of their mathematical security. Fur-
thermore, many research experts focused more on lattice-based signature and
encryption schemes, since those were the clear favorites to be selected for stan-
dardization in the recent years. Nevertheless, there are some physical attacks
on multivariate signature schemes. We present them subsequently and show
how our research work fits into this scope.

3.1 Fault Injection Attacks on Multivariate Signature
Schemes

In this section we discuss our research works [AKK+22] and [AMS+24], present
related work, and point out the minutiae of the attacks. The former contains
fault attacks via instruction skips on Rainbow, while the latter targets MAYO.

37

38 Developing Physical Attacks

Both contain an attack that exploits the role of fixed vinegar variables in these
schemes. To enable a better classification of our work, we first outline the
history of fault attacks on multivariate schemes, starting from the pioneering
work of Hashimoto et al. [HTS11]. Second, since there are many attacks, we
present an overview of all publications that deal with the fault model of fixing
the random ephemeral vinegar variables to elaborate the differences between
the results.

3.1.1 Literature Overview
The groundwork for fault attacks against multivariate public-key cryptogra-
phy was laid in 2011, when Hashimoto et al. [HTS11] presented two fault
attack models that were applicable to various popular multivariate schemes.
They classified multivariate schemes into big field (BF) type (e.g., MI, HFE,
SFLASH [ACDG03]) and stepwise triangular system (STS) type1 schemes (e.g.,
UOV [KPG99], Rainbow [DS05b], TTS [YC05]). The two introduced fault at-
tacks inspired quite some follow-up work, so we present their development in
detail here.

Bit flip on a coefficient in the central map. First, Hashimoto et al. [HTS11]
introduce a fault model, where the attacker is able to cause a fault that changes
a coefficient of the central map. It is applicable to both types of schemes,
but the number of faults and required message-signature pairs for partial key
recovery is different. They state that for BF type schemes they require one
fault and (n + 1)(n + 2)/2 message-signature pairs and for STS type schemes
they require n − 1 faults, but only a single message-signature pair to recover
parts of the secret affine transformations. In both cases, the authors do not
state the concrete complexity of recovering the secret transformations S and
T completely, but claim that the fault attack reduces the parameters in the
affine transformation to recover them with reduced complexity using existing
algebraic attacks. The presented fault attacks are neither physically executed
on a concrete implementation nor simulated and remains completely theoretical.
The authors present success probabilities, but these refer to the likelihood that
a randomly faulted coefficient in the secret key is indeed one belonging to the
central map, and not one of the other maps S or T , which are also part of
the secret key. The probabilities do not report the likelihood that a certain
physical event indeed causes a bit flip in the memory of a device that is running
the algorithms. Several years later, Krämer and Loiero [KL19] tried to apply
this fault model specifically to the signature schemes UOV and Rainbow. They
were successful in the case of Rainbow, but found that UOV was not vulnerable
to this attack, since it relied on recovering some information about the map T
first. This map is simply not present in UOV, in contrast to Rainbow. Furue
et al. [FKNT22] managed to adapt the approach by [HTS11] and [KL19], such
that they gained information about the entries in S, which in turn enables a

1Multivariate schemes are divided into BF and STS type schemes in [HTS11]. In BF
schemes, the central map is given by polynomials over a large extension of the original field.
In STS type schemes, the variables are divided into different groups, for which the solution is
determined subsequently. The latter form a subset of the single field schemes, characterized
in [KL19].

3.1. Fault Injection Attacks on Multivariate Signature Schemes 39

secret key recovery with reduced complexity,2. Again, none of the mentioned
attacks were executed in practice.

A different, but related approach is used by Mus et al. [MIS20] in their
QuantumHammer attack on LUOV. Their fault model also employs bit flips in
memory, but they target the secret transformation T instead of the central map
F . Moreover, they present a practical technique to induce the faults, namely
the Rowhammer attack discovered by Kim et al. [KDK+14]. The attack is
software-only, i.e., physical access to the target device is not a requirement,
and applied to a constant-time AVX2-optimized implementation on a Haswell
system equipped with Intel Core i7-4770 CPU @ 3.40GHz and 2 GBytes DDR3
Samsung DRAM. In an online phase, where the victim is running and per-
forming signing operations, the bit-flips are introduced by rapidly activating
neighboring DRAM rows. This is possible when the DRAM is shared between
different processes or virtual machines. The resulting faulty signatures are
processed offline on a separate machine to recover key bits. In less than four
hours of online phase, the authors are able to recover a good share of the secret
transformation T and finish the key-recovery attack algebraically in around 49
hours. For more details on the bit-tracing and algebraic post-processing attack,
we refer to [MIS20]. The QuantumHammer fault attack represents the only
end-to-end fault attack, where memory cells are manipulated, on a UOV-based
signature scheme.

Instruction skip on random ephemeral values. Second, [HTS11] dis-
cussed a fault model, which assumes that an attacker is able to fix a part of the
ephemeral random values generated during the signing procedure. Considering
the BF type schemes, this is only applicable to schemes employing a ’minus’
or ’vinegar’ variation, where such random parameters are used. In the former,
several polynomials of the central map are removed to provide less information
to an attacker. The latter describes the technique to add more variables into
the equations, which are then randomly fixed during the signing operation. For
the STS type schemes, including UOV and its variants, the randomly generated
vinegar variables are the target of such an attack. The authors state that
it requires n − u + 1 message-signature pairs to recover a part of the secret
transformation S, where u denotes the number of fixed vinegar variables.

In [KL19] the approach is applied concretely to UOV and Rainbow. The
authors state complexity estimates for the reduced MinRank attack to recover
S completely, confirming the findings of [HTS11].

Shim and Koo [SK20] developed this approach further to a full key-recovery
attack. They discovered that if all vinegar variables are affected by the attack,
full key recovery is possible in polynomial-time for UOV. In the case of Rainbow,
a significant complexity remained, ranging from 238 to 242 depending on the
concrete parameter set.3 Additionally, they stated the complexity for their
algebraic post-processing method when the number of affected vinegar variables
u was less than v, the number of all vinegar variables, for several values of u.

2In [HTS11] the central map is called G with the public map being F = T ◦ G ◦ S. In
[KL19] the central map is denoted by F and the public map P = T ◦ F ◦ S for Rainbow and
P = F ◦S for UOV. In [FKNT22] the central map is called F and the public map P = F ◦T .

3[SK20] considered three parameter sets for the attack. All of them were designed to
satisfy NIST security level I. For parameter sets of larger security levels, the remaining
complexity is considerable larger.

40 Developing Physical Attacks

Furthermore, the authors of [SK20] discussed three fault scenarios, the Reuse,
Reveal, and Zeroing fault model, and computed the number of faulted signatures
that was needed for the previously described key-recovery attack. The concrete
number depends on the parameter of the investigated scheme, but ranges from
a few dozens up to a few hundreds. The evaluation of the attack models above
remains completely theoretical and it is not indicated how the faults could be
realized in practice.

In [AKK+22] we drive forward the results of [SK20] by analyzing the fault
attack targeting the vinegar variables in Rainbow. We managed to improve
the algebraic post-processing step, such that the secret key recovery could be
realized in polynomial time. Furthermore, the attacks are simulated on an
ARM Cortex-M4 architecture environment based on Unicorn, which in turn is
based on QEMU. This means the compiled binary of the unmodified source code
is executed within the simulation just as a real device with this architecture
would execute it. This framework then allows cycle-accurate skipping faults
and memory analysis during execution. As proof of concept, the simulated
faulty signatures are then used for the newly introduced key-recovery attack.

In [SMA+24] we transferred the attack to MAYO for the first time, but
only discussed it theoretically in order to derive and implement countermea-
sures for a fault-tolerant hardware implementation of MAYO. We will provide
more details about this work in Chapter 4. The first practical execution of
the fault attack that targets the sampling process of the vinegar variables was
realized in [AMS+24]. We used the ChipWhisperer-Lite evaluation platform
to launch the fault injection attack. The algorithm is running on a standard
STM32F4 target board containing an ARM Cortex-M4 STM32F415RGT6 pro-
cessor mounted on an CW308 UFO board. We bypass the sampling loop by
performing a clock-glitching attack. Therefore, the ChipWhisperer modifies the
clock pulse and thus, causes the microcontroller under attack to exit the sam-
pling loop early. Our key-recovery computations show that this attack works in
polynomial-time in both cases, when the vinegar variables are initialized with
zero values and when they are reused in memory for two consecutive signature
generations.

Jendral and Dubrova [JD24a] introduced three fault attacks that reveal the
vinegar variables by fixing the seed that is used to derive the vinegar variables.
Two of the attacks target the absorption phase of the SHAKE256 algorithm
that is part of the FIPS202 standard [NIST15] and used to sample the vinegar
variables. The third attack skips the initialization of one of the arguments for
the computation of the seed. The authors verified the attack experimentally
on the ChipWhisperer-Husky setup, using the same target board as above, but
mounted on a CW313 adapter board. Banegas and Villanueva-Polanco [BV24]
transfer the fault model to SNOVA. They analyze two scenarios where they
either fix field elements or just bits of the vinegar variables and support their
findings with key-recovery simulations. This work finalizes the research branch
focusing on this specific attack at the time of writing this thesis.

From the developments in the algebraic post-processing of the aforemen-
tioned fault attacks, one can summarize this fault model as follows. The random
sampling of the vinegar variables is manipulated via fault-injection methods to
reveal the vinegar part of the final signature to an attacker. Since the signature
is the sum of the vinegar and oil part, this in turn reveals an oil vector, which
enables efficient key recovery with certain algebraic attacks.

3.1. Fault Injection Attacks on Multivariate Signature Schemes 41

However, there is another approach that allows adversaries to separate the
contribution of the oil and vinegar terms to the signature. One can try to tamper
with the addition of the two parts at the end of the signing process. There
are two works in the literature that apply this approach, namely [AKK+22]
and [SMA+24]. The former aims at skipping the application of the secret
transformation S to some intermediate values in Rainbow, which is equivalent
to preventing the combination of the oil and vinegar shares of the signature.
The latter discusses the attack as a theoretical threat to the presented hardware
implementation of MAYO and implements countermeasures to mitigate it.

3.1.2 Classification of our Fault Attacks

The two papers contributing to this section both contain an attack that targets
the random sampling of the vinegar variables. As the summary above indicates,
there are many research results that deal with this approach, targeting various
UOV-based signature schemes and featuring various levels of practicality. To
provide an easier comparison and also to illustrate how the attack approach
developed and improved over time, we present the key figures and evaluation
methods in Table 3.1. Similar overviews are provided by [JD24a] and [BV24]
in their related work sections.

Table 3.1: Comparison of fault attacks on UOV-based signature schemes that
target the contribution of the vinegar variables to the signature by either zeroing,
reusing, or revealing them. When a cell states Multiple, the concrete number
depends on the chosen parameters m and n, and usually varies between several
dozens and a few hundred.

Scheme Evaluation #Signatures #Faults

Hashimoto et al. Several Theoretical Multiple Multiple[HTS11]

Krämer and UOV/ Theoretical Multiple MultipleLoiero [KL19] Rainbow
Shim and Koo UOV/ Theoretical Multiple Multiple[SK20] Rainbow
Aulbach et al. Rainbow Simulation Multiple 1[AKK+22]

Sayari et al. MAYO Theoretical 2 1[SMA+24]

MAYO Practical
1 1Aulbach et al.

[AMS+24] 2 1

Jendral and MAYO Practical, 1 1

Dubrova [JD24a] Simulation 1 1
1 1

Banegas and
SNOVA Simulation

Multiple 1
Villanueva-
Polanco [BV24] 1 Multiple

42 Developing Physical Attacks

3.2 Side-channel Attacks on Multivariate Signature
Schemes

In this section we give an overview of side-channel attacks on multivariate
signature schemes. The first research works in the early 2000s were motivated
by the participation of some multivariate signatures in the New European
Schemes for Signatures, Integrity, and Encryption (NESSIE) project and their
potential use in smartcards. Afterwards, we are not aware of published results
until more than a decade later, when interest in multivariate signatures and
their practical applications rose again. Based on the provided overview, we
outline how our profiled side-channel analysis of UOV can be classified compared
to other known results.

3.2.1 Literature Overview
The first side-channel attacks on multivariate signatures were designed to break
FLASH and SFLASH, which are both based on the MI-cryptosystem. These
schemes attracted some interest of researchers since they have been proposed
within the NESSIE project for the use on low-cost smartcards. The faster
variant SFLASH was even one of the three finally selected digital signature
algorithms in 2003, but got broken in 2007 by Dubois et al. [DFSS07] with
a strong cryptanalytic attack. Some years before, Steinwandt et al. [SGB01]
already theoretically discussed a DPA to reveal a seed that is part of the secret
key. With said seed at hand, efficient algebraic attacks to recover the remaining
parts of the secret key were possible. The authors claim that a DPA on the
XOR-operations of the SHA-1 function that has the secret seed as input would
be possible and require the power consumption of several hundred executions of
the signing algorithm. The authors argue that the attack lacks an experimental
proof, since there were no smart card implementations of SFLASH available
at that time. Okeya et al. [OTV04] performed a similar DPA to recover the
secret seed in SFLASH, but their target was the addition modulo 232 inside the
SHA-1 function, not the XOR-operation. They took 200, 000 samples of power
consumption on an IC chip, while the device was running the SFLASH signing
procedure. The authors declare that the large amount of observed samples
was taken to make differences in the power consumption clearly visible, but
less samples should be sufficient to differentiate between the secret key bits.
Unfortunately, the authors of [OTV04] do not report more details about the
target device and the used implementation.

More recently, in 2017, Yi and Li presented a DPA on enTTS [YL17], a
signature scheme that contains some common features with Rainbow, such as the
layer structure of the central map and the enclosing affine transformations. The
authors perform their attack on a naive enTTS implementation on Application
Specific Integrated Circuits (ASIC) with simulated power traces, generated
with ModelSim. The experimental results show that it is possible to recover the
secret affine transformation and central map with around 2, 000 traces. However,
as part of the attacker model, the authors also assume a possible fault injection
attack that fixes certain unknown items in the signature generation to enable
the DPA. In total, this renders the assumed attacker model relatively strong.
The same holds for the side-channel attack presented in [YN18]. Yi and Nie
recover the secret coefficients of the central map by a DPA of the matrix-vector

3.2. Side-channel Attacks on Multivariate Signature Schemes 43

multiplications and evaluation of the secret polynomials. However, similar
to [YL17], the authors assume that it is possible to fix certain variables in
the computation to known values with a fault attack. The authors do neither
indicate how to achieve this behavior nor execute the fault attack on a target
device to show that this assumption is plausible. The power measurements for
the side-channel analysis are conducted with an oscilloscope, while the UOV
implementation is running on a Sakura-G FPGA board. The authors state
that they were able to recover the secret key from the analysis of the signing
procedure on around 4, 000 messages within a few hours.

Park et al. [PSKH18] introduced a side-channel attack on Rainbow, targeting
the secret linear transformations S and T , which are used to hide the structure
of the central map F . The authors observed that some input values to these
transformation are publicly available for an attacker, which allowed them to
mount an effective Correlation Power Analysis (CPA) attack. Therefore, the
authors ported the corresponding matrix-vector product code (of reduced size)
on an Atmel XMEGA128 target board and recorded power traces with the
ChipWhisperer-Lite evaluation platform. They showed that around 30-40 traces
were enough to differentiate between certain secret key bits. The CPA was
completed by an efficient key-recovery attack, revealing the complete secret
key. The authors also discussed how their attack might apply to UOV, where
only one of the secret transformations is present. In [PSN21], Pokorny et al.
took a similar approach, also attacking Rainbow with CPA on the secret linear
transformations. It took them a few hundred power traces to recover secret key
bits with high probability, depending on the exact location they target with
the CPA. However, compared to [PSKH18], their setup seems more realistic,
since they used the implementation submitted to the NIST PQC competition
round 2 and a 32-bit target device, namely the STM32F303 microcontroller
based on an ARM Cortex-M4 core. The measurements were also conducted
with a ChipWhisperer-Lite.

Our side-channel analysis of UOV [ACK+23] marks the first attack that
does not directly target the secret key bits in UOV, but aims at recovering the
vinegar variables first. This is achieved by analyzing their evaluation under
(publicly known) coefficients of the central map, which ultimately boils down
to matrix-vector multiplications over the employed finite field F28 . Since these
vinegar variables are multiplied with several dozens (depending on the concrete
parameter set) of known values, this results in a strong leakage, which can be
exploited. We opt for a profiling attack that takes a template trace for each
possible value in the field F28 . This enables us to implement the first single trace
attack on UOV, and a UOV-based signature scheme, in general. Knowledge
of the used vinegar variables and the corresponding oil vector, again leads to
efficient secret key recovery, as it was the case for the mentioned recent fault
attack scenarios. The measurements were taken using the ChipWhisperer-Lite
and a 32-bit STM32F303 microcontroller with ARM Cortex-M4 architecture.
The algebraic post-processing runs in polynomial-time, and presents the first
efficient secret key recovery in UOV from a single oil vector. The result regarding
the algebraic attack was achieved independently by Pébereau [Péb24].

Jendral and Dubrova [JD24b] perform side-channel attacks on two func-
tions in MAYO. One targets the matrix-matrix multiplication during secret key
expansion, and the other one the matrix-vector multiplication at the end of
the signing process. The latter operation is comparable to the matrix-vector

44 Developing Physical Attacks

product that was attacked in [PSKH18] and [PSN21]. The first attack is com-
parable to our attack [ACK+23], since it also exploits the large amount of
multiplications with publicly known values, stored in these matrices. The au-
thors also use a profiling approach. However, they are modeling information
leakage with a powerful deep learning model instead of templates. They achieve
very high success probabilities, especially for the first attack, where the number
of exploitable modular multiplications is very high. From their deep learning-
assisted power analysis, they directly recover an oil vector. Similar to previous
works, this oil vector can be used for efficient secret key recovery. Their work
presents the first single-trace attacks on the signature scheme MAYO.

3.2.2 Classification of our Side-Channel Attack
In Table 3.2, we summarize and compare the side-channel attacks on UOV-
based signature schemes, which we introduced above. Our attack is the only
one, where the power analysis part targets recovering the vinegar vector first,
instead of directly going for the secret oil vector.

Table 3.2: Comparison of side-channel attacks on UOV-based signature schemes.

Scheme Target Subroutine Attack Type #Traces

Yi and Nie UOV Vinegar eval. P(v) (FIA) FIA, DPA 4,000[YN18] and matrix-vector mul. (DPA)

Park et al. Rainbow Matrix-vector mul. Ox CPA 30[PSKH18]

Pokorny et al. Rainbow Matrix-vector mul. Ox CPA 300[PSN21]

Aulbach et al. UOV Vinegar eval. P(v) Profiling 1[ACK+23] Template

Jendral and MAYO Secret key expansion or Profiling 1Dubrova [JD24b] matrix-vector mul. Ox Deep Learning

Note that the last two attacks are profiling attacks. They manage to get
along with a single attack trace, but, naturally, more power traces are needed
to create the template or train the model in the case of the deep-learning attack.
The evaluation of the vinegar vector P(v) and the secret key expansion both
belong to the most costly subroutines of the signing procedure of the respective
UOV-based signature schemes, so protecting them against these side-channel
attacks will probably introduce a lot of overhead to the respective schemes. In
Chapter 4, we will provide more details on the cost of masking these operations
in UOV and MAYO.

3.3 Future Research Directions

The continuous development of strong physical attacks in realistic scenarios is
necessary to highlight the urgency of protected implementations before UOV-
based signature schemes are widely deployed in practice. We can split the
research paths to follow in three categories: (1) the technical part of the
practical attack execution; (2) the analysis part, including the selection of

3.3. Future Research Directions 45

vulnerable code lines and evaluation of power traces and fault behavior; (3) the
mathematical part of exploiting the gained information to achieve key recovery.

The technical part includes to select an optimized and mature implemen-
tation as target. UOV and MAYO already provide optimized implementations
for x86 with AVX2, ARM Neon, and ARM Cortex-M4. Additionally, there are
FPGA implementations that could be evaluated on different hardware target
platforms. For the other schemes, it is expected that more advanced implemen-
tations will be created during the course of the standardization process.

Regarding the analysis part, it would be interesting to see how modern
machine learning techniques can increase the accuracy of known attacks or
reduce the number of required traces. So far, [JD24b] is the only side-channel
attack on a UOV-based scheme, which employs a deep-learning approach. Fur-
thermore, next to the subroutines that were shown to be vulnerable by previous
attacks, there are more operations that seem exploitable. We discuss several of
them in [ACK25] and present them in Table 4.2 (fault injection attacks) and
in Table 4.3 (side-channel attacks).

For the algebraic part, the next step is to develop an approach that deals
with vectors that are ’almost’ an oil vector. Recent attacks only declare the
physical attack to be successful, in case an oil vector is recovered, since it can be
utilized for efficient key recovery. Since the proposed attacks are rather strong,
they still achieve a high success probability and do not need to cope with the
case that only a vector, which is ’close’ to an oil vector, is recovered. However,
in the presence of more noise or when attacking protected implementations, it
might be reasonable to utilize these vectors, too. To this end, one needs a more
precise definition of what ’close’ to an oil vector means. Are there a few entries
that are guessed incorrectly? Are the entries only recovered up to Hamming
weight, but not determined exactly? Thus, the development of a sophisticated
algebraic approach that manages to handle those approximate oil vectors to
determine the complexity of key recovery is desirable.

4

Enhancing Implementation Security

With the research works [SMA+24] and [ACK25], listed in Appendix B, we con-
tribute towards more secure implementations of UOV-based signature schemes
with respect to physical attacks. As one would expect, the state of the art
concerning implementation security is less advanced for UOV-based algorithms,
and for multivariate algorithms in general, compared to those that are already
used in practice. Classical algorithms like AES and RSA are in the field for
several decades now, and their deployment started even before physical secu-
rity was raised as a general concern. Thus, the physical attacks described in
Section 1.3 and Section 2.3 affected the cryptographic algorithms and their
implementation while they were already securing certain applications. This
obviously constitutes a vulnerability, which eventually might lead to the loss
of sensitive data or even safety issues. With the partially started, but predomi-
nantly still forthcoming, migration from classical to PQC algorithms, there is
the chance of hardening new algorithms against common attacks before they
are deployed in practice. In lattice-based cryptography, this has been and
still is an active research area. There are works on constant-time implementa-
tions [BBE+19; KAA22], efforts to protect from cache attacks [BBK+17], and
efficient masked implementations of multiple subroutines even at higher orders
are available [BPO+20; BBE+18; BDH+21; OSPG18; PPRS23; SPOG19].

In multivariate cryptography the situation is different for the same reasons
as elaborated in Chapter 3. To the best of our knowledge, there are no imple-
mentations of multivariate schemes available, which are considered secure or at
least hardened against physical attacks. Some of the used subroutines, e.g., the
Gaussian solver to obtain a solution of the derived linear system in UOV-based
schemes, are implemented in constant-time, but the protection against power
analysis and fault injection attacks is not yet sufficiently developed. Although
the research works assembled in Section 3.1 and Section 3.2 discuss individual
countermeasures for the presented attacks, these have not been incorporated in
existing optimized implementations of the schemes. It is therefore still difficult
to estimate the overhead that can be expected if UOV-based signature schemes
are implemented with countermeasures against physical attacks.

We divide our contribution to address this gap into two main parts. The
first part is the elaboration of an overview of all potential vulnerabilities. This
topic is presented in Section 4.1. It is necessary to get a hold of every potential

47

48 Enhancing Implementation Security

attack vector, in order to specify the requirements of secure implementations.
The second part, given in Section 4.2, is dedicated to the discussion of implemen-
tation guidelines, and the presentation of countermeasures that we incorporate
into implementations of UOV and MAYO.

4.1 Overview of Vulnerabilities

The core part of the publication [ACK25] contributes to the findings presented
in this section. We consider all physical attacks on UOV-based schemes available
in the literature, also those, which have been proposed against outdated versions
of UOV, or broken schemes, like LUOV and Rainbow. Afterwards, we evaluate
if these attacks can be translated to UOV and try to complete the list of
vulnerabilities by investigating the remaining parts of the implementation that
have not been targeted yet. Furthermore, we analyze if the attacks can be
transferred to the three multivariate signatures besides UOV that advanced
to the second round of NIST’s call for additional signatures, namely MAYO,
QR-UOV, and SNOVA.

Since QR-UOV and SNOVA have not been introduced as part of Chapter 2,
we will give a short introduction in the next paragraphs. Based on the provided
signing algorithms, we will then extract similarities that hold for the signing
procedure of UOV-based schemes. This will help us to assess the transferability
of side-channel and fault attacks to the relevant schemes, in general. Lastly,
we will provide our results on the applicability of existing physical attacks on
concrete implementations of these schemes.

QR-UOV. QR-UOV is a variant of UOV, which is using a quotient structure
in its secret and public matrices. It was initially proposed by Furue et al.
in [FIKT21] and is another attempt to reduce the public key size of UOV. QR-
UOV exhibits major similarities with UOV and uses the traditional description
of UOV, focusing on the central map F = (F (1), . . . ,F (m)) in its specification.
The authors specify the linear transformation S, which is employed to hide the
structure of F in the public map P, via P = F ◦S. Recall, that the coefficients
γ

(k)
i,j ∈ Fq define the quadratic parts of F (k) in Equation (2.2.1) for UOV. Thus,

the private maps can be represented by m matrices F (k), containing the field
elements γ

(k)
i,j . In QR-UOV, the matrices F (k) exhibit more structure and are

composed of elements of the matrix ring X
(k)
i,j ∈ Fl×l

q instead. These matrices
correspond to elements of a quotient ring Fq[x]/(f), where f ∈ Fq[x] is an
irreducible polynomial of degree l. Thus, not every element of the matrices
X

(k)
i,j , which compose F (k), needs to be stored, since the l2 entries of X

(k)
i,j

can be represented by just l coefficients of the corresponding quotient ring
element. The same holds for the elements of the public matrices P (k), which
are computed by P (k) = S⊤F (k)S.

The described modifications mainly impact the key generation and allow a
more compact representation of the keys. The signing and verification processes,
in contrast, are the same as those for plain UOV, from a logical point of view.
Nevertheless, the signing and verification algorithms look differently to those
of UOV, since the submitters of QR-UOV chose the traditional description in
their specification. We depict the signing algorithm in Figure 4.1, where we

4.1. Overview of Vulnerabilities 49

allocate the found vulnerabilities to the respective code lines in the pseudocode.
We allocate the logical steps of the signing algorithm to the corresponding code
lines in Table 4.1.

QR-UOV.Sign(msg, pk, sk)
Input: message msg, public key pk, secret key sk
Output: signature sig

1 : (seedpk, {Pi,3}i∈[m])← pk
2 : seedsk ← sk
3 : {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)
4 : S′ ← Expandsk(seedsk)
5 : for i from 1 to m do
6 : Fi,1 ← Pi,1

7 : Fi,2 ← −Pi,1S′ + Pi,2

8 : endfor

9 : S ←
(

Iv S′

0m×v Im

)

10 : y = (y1, . . . , yv)⊤ $←− Fv
q

11 : L←




2y⊤F1,2
...

2y⊤Fm,2


 // L ∈ Fm×m

q

12 : u← (y⊤F1,1y, . . . , y⊤Fm,1y)⊤ // u ∈ Fm
q

13 : repeat

14 : r
$←− {0, 1}λ

15 : t← Hash(msg||r) // t ∈ Fm
q

16 : until Lx = t− u has solutions for x.

17 : Choose one solution (yv+1, . . . , yn) ∈ Fm
q of Lx = t− u randomly.

18 : s← S−1(y1, . . . , yv, yv+1, . . . , yn)⊤

19 : return sig = (r, s)

Figure 4.1: Algorithm that signs a message msg in QR-UOV. The algorithm is
depicted as in the QR-UOV specification document [FIH+23] submitted to the
call for additional digital signatures.

SNOVA. SNOVA is a variant of UOV, where the quadratic polynomial equa-
tions are defined over the noncommutative ring R = Matl×l(Fq). The authors
apply even more structure to the central and public maps by including multipli-
cation with other random matrices before and after the typical UOV structure.
This renders the representation of the maps quite complicated. Each component
of the central map F = [F1, . . . , Fm] : Rn → Rm is defined by

50 Enhancing Implementation Security

Fi =
l2∑

α=1
Aα ·

(∑

(j,k)∈Ω

Xj(Qα1Fi,jkQα1)Xk

)
·Bα, (4.1.1)

where the Fi,jk are randomly chosen from R, Aα and Bα are invertible ele-
ments randomly chosen from R, and Qα1, Qα2 are invertible matrices randomly
chosen from Fq[S]. Here, Fq[S] is a commutative symmetric subring of R. Like
in UOV, the public matrices are then set to fulfill the equation Pi = Fi ◦ T and
therefore, are of similar type as the central matrices.

Despite these differences in the definition of the public and central maps,
the signing procedure again follows a similar approach as other UOV-based
signatures. We display the sign algorithm in Figure 4.2. Many of the operations
are outsourced to other algorithms and we refer to [WCD+23] for the details.
Nevertheless, we can divide the signing algorithm into several steps and allocate
them to the corresponding code lines in Table 4.1. Furthermore, Beullens
noticed that the structure in SNOVA exhibits similarities to the whipping
technique in MAYO [Beu25].

SNOVA.Sign(seedpk, seedsk, digest)
Input: public and private seeds (seedpk, seedsk)

digest of the document digest = Hash(D)
Output: the signature sig and salt

1 : Generate (Aα, Bα, Qα1, Qα1 for 0 ≤ α < l2) using Algorithm 4
2 : m← o

3 : Generate (T 12, F 11
i , F 12

i , F 21
i for 0 ≤ i < m) using Algorithm 6

4 : T ←
(

I11 T 12

0 I22

)

5 : numsig ← 0
6 : repeat
7 : numsig ← numsig + 1
8 : Assign vinegar values (X0, . . . , Xv−1) using Algorithm 7
9 : Compute (Fi,V V for 0 ≤ i < m) using Algorithm 8

10 : Compute (Mik for 0 ≤ i < m, 0 ≤ k < o) using Algorithm 9
11 : Build the augmented matrix G using Algorithm 10
12 : flag_redo,(X̃0, . . . , X̃o−1)← Gauss(G)
13 : if flag_redo == FALSE then
14 : sig← T (X0, . . . , Xv−1, X̃0, . . . , X̃o−1)⊤

15 : end
16 : until flag_redo == FALSE;
17 : return (sig, salt)

Figure 4.2: Algorithm that signs the digest of a message digest = Hash(D)
in SNOVA. The algorithm is depicted as in the SNOVA specification docu-
ment [WCD+23] submitted to the call for additional digital signatures.

4.1. Overview of Vulnerabilities 51

Note that the specifiction defines two variants of SNOVA, i.e., SNOVA-ssk
and SNOVA-esk, where the former stands for ’seed-type secret key’ and the
latter means ’expanded secret key’. When SNOVA-esk is applied, the first four
lines of Figure 4.2 can be disregarded, as the keys are already inserted in their
expanded form.

4.1.1 Signing Strategy of UOV-based Schemes
Even though the signing algorithms of the four considered UOV-based signature
schemes, shown above and in Chapter 2, appear very different at first glance,
they have great similarities and the differences can be attributed in large parts
to notation and style choices. However, just by observing the pseudocodes of
these four signature schemes, it is hard to grasp the logic behind the algorithms.
Therefore, we deduce six logical steps, which summarize the signing strategy of
these signature schemes more tangible. In Table 4.1, we present the signing steps
and match them with the corresponding code lines of the signing algorithms of
the considered signature schemes.

Table 4.1: The first column shows the strategic steps that compose the signing
algorithm of a UOV-based signature scheme. Here, the schemes UOV, MAYO,
QR-UOV, and SNOVA are considered. The remaining columns localize these
steps in the pseudocode of the respective signature scheme.

Signing step UOV MAYO QR-UOV SNOVA
Figure 2.4 Figure 2.7 Figure 4.1 Figure 4.2

1. Secret Key Shifted to Shifted to Line 3-8 Line 1-4Expansion UOV.ExpandSK MAYO.ExpandSK

2. Generate random Line 4 Line 16 Line 10 Line 8vinegar vector
3. Compute Line 9 Line 28-30 Line 12 Line 9constant part
4. Compute Line 5-7 Line 24-27, Line 11 Line 10linear part & 31-34
5. Solve linear Line 10 Line 37 Line 17 Line 11,12system
6. Add oil and Line 11 Line 44 Line 18 Line 14vinegar part

The first step, i.e., the secret key expansion, can be seen as a preparation of
the signing algorithm, when compressed keys are used. In this step, the seeds
get expanded and the matrices needed for the subsequent steps are derived.
In UOV and MAYO, the required steps are shifted to a separate algorithm.
In QR-UOV and SNOVA, they are performed at the beginning of the signing
algorithm. This step belongs to the more time consuming parts of the algorithm
and it is prone to side-channel attacks, due to the massive amount of matrix
multiplications that are necessary, as we will examine later in this section. The
next step, which is the random sampling of the vinegar variable, is a common
feature of all UOV-based schemes and has been subject to many fault injection
attacks in the past. Step three and four serve the purpose of setting up the
linear system that has to be solved during signature generation. To this end,
the sampled vinegar vector is multiplied with the matrices prepared during key

52 Enhancing Implementation Security

expansion, to evaluate the constant and linear part of the system. Similar to
the first step, the required operations are time consuming and can be attacked
with power analysis. Step five entails finding a solution of the derived system
via Gaussian elimination. In case this system has no solution, one has to repeat
steps two to five until a solution can be found. In the last step, the found
solution is mapped to an oil vector, and added to the vinegar vector. Together,
they constitute the preimage, that builds the core part of the signature. This
step is susceptible to both fault injection and side-channel attacks.

General transferability. From the findings above, we can conclude that
the general idea behind the physical attacks can be transferred well from one
UOV-based signature scheme to the other. Consider, e.g., a fault attack on
the random sampling process of the vinegar vector (Step 2 in Table 4.1), or a
side-channel attack on the secret values during the linear system setup (Step 3
and Step 4 in Table 4.1), or the idea to hinder the addition of the oil and
vinegar values (Step 6 in Table 4.1). These approaches apply to all schemes
likewise, in theory. Whether or not the practical execution of such attacks is
feasible also depends on the chosen implementation. We will assess the question
regarding the applicability of these attacks on current implementations in the
next section.

Of course, there are also some operations that appear exclusively in one
of the mentioned schemes. For instance, the multiplication with so-called
emulsifier maps Eij is a peculiarity of MAYO. Consequently, it would not be
possible to transfer an attack, which targets operations on these emulsifier
maps, from MAYO to other UOV-based signature schemes. So far, however,
there have been no attacks that aim at such special features of the signature
schemes.

4.1.2 Attack Overview
In [ACK25], we conduct a literature survey covering all physical attacks against
UOV-based signature schemes and evaluate their applicability on the first
round submission package [NIST22] of the schemes UOV, MAYO, QR-UOV,
and SNOVA. The paper was submitted for publication in November 2024. At
this time, NIST already announced the fourteen proposals, which advance to
round 2. Hence, it was clear that the four mentioned schemes were the only
multivariate schemes remaining in the process. We decided to analyze the
implementations submitted to round 1, since the updated submission packages
for round 2 were not published yet and due in January 2025.

In the following we present a short overview of our results regarding fault
attacks and side-channel attacks. For more details about how and why certain
attacks apply to the individual schemes we refer to our publication [ACK25],
which is also shown in Appendix B.1.

Fault attack overview. In Table 4.2, we provide an overview of fault in-
jection attacks against UOV-based signature schemes. We list the publications
that introduce these attacks, indicate if they are feasible in the respective im-
plementations, and localize the vulnerable code lines in the signing algorithm.

One fault attack, i.e., the instruction skip to prevent the addition of the
oil and vinegar parts, can depend heavily on the variable handling in the

4.1. Overview of Vulnerabilities 53

Table 4.2: Overview of existing and new fault attacks on UOV, MAYO, QR-UOV,
and SNOVA. This table is adopted from [ACK25]. Regarding the feasibility
of the attacks, we refer to the specifications submitted to the NIST call for
additional signatures in mid-2023. When there are differences between the
three UOV variants uov-classic, uov-pkc and uov-pkc+skc, deterministic
and randomized MAYO or the variants SNOVA-esk and SNOVA-ssk, we list them
individually in the given order. With ✓ we state that an attack is possible, while
✗ means the opposite. By ⋆ we denote that an attack is generally possible, but
the technical execution is more difficult than in the initially presented attack.

Attack description Source Initially Feasible in Target
for current version

Fix vinegar vector
[AKK+22] Rainbow UOV: ✓ UOV.Sign Line 4
[AMS+24] UOV MAYO: ✓ [BCC+23] Alg.8 Line 16,18

[HTS11; JD24a] MAYO QR-UOV: ✓ [FIH+23] Alg.2 Line 10
[KL19; SK20] SNOVA: ✓ [WCD+23] Alg.11 Line 8

[MIS20] LUOV
UOV: ✓ | ✓ | ⋆

Rowhammer on MAYO: ⋆ uncompressed
oil space O QR-UOV: ⋆ secret key in memory

SNOVA: ✓ | ⋆

[HTS11] UOV: ✓ | ✓ | ⋆
Bit flip on stored [KL19] Rainbow MAYO: ✓ | ✗ uncompressed
secret matrices [FKNT22] UOV QR-UOV: ⋆ secret key in memory

SNOVA: ✗

[SMA+24] MAYO
UOV: ✓ UOV.Sign Line 11

Prevent addition MAYO: ✓ [BCC+23] Alg.8 Line 44
of oil and vinegar QR-UOV: ✗ [FIH+23] Alg.2 Line 18

SNOVA: ✗ [WCD+23] Alg.11 Line 14

[ACK25] UOV
UOV: ✗ UOV.Sign Line 5-10

Disturb linear MAYO: ✓ | ✗ [BCC+23] Alg.8 Line 22-33
system setup QR-UOV: ✗ [FIH+23] Alg.2 Line 11,12

SNOVA: ✗ [WCD+23] Alg.11 Line 9,10

implementations. For instance, if the sensitive value is stored in a certain
variable and another arbitrary value is added to it, then an instruction skip
that avoids the addition can be critical, since it eventually reveals the sensitive
value. In case the order is reversed, the attack is harmless, since it only reveals
the non-sensitive value. On the other hand, we discovered that the instruction
skip that targets the random sampling of the vinegar vector, affects all the
listed implementations equivalently.

The other fault attacks are influenced by implementation choices that are
initially not related to physical security. E.g., we showed that the question of
compressed vs. uncompressed keys and randomized vs. deterministic signatures
has an impact on the feasibility of these fault attacks. We will elaborate more
on that in Section 4.2.

Side-channel attack overview. In Table 4.3, we provide an overview of
side-channel attacks against UOV-based signature schemes. Again, we list the
publications that introduce these attacks, indicate if they are feasible in the
respective implementations, and localize the vulnerable code lines in the affected
algorithm.

The case for side-channel attacks is less complicated. Since all considered
implementations offer no designated protection against power analysis, the
attacks apply to all schemes. Certainly, there are differences in the amount
of effort that is required to make the power analysis work and reveal the

54 Enhancing Implementation Security

Table 4.3: Overview of existing and new side-channel attacks on UOV, MAYO,
QR-UOV, and SNOVA. This table is adopted from [ACK25]. Regarding the
feasibility of the attacks, we refer to the specifications submitted to the NIST
call for additional signatures in mid-2023. When there is a difference between
deterministic and randomized MAYO, we list them individually in the given
order. With ✓ we state that an attack is possible. By ⋆ we denote that an
attack is generally possible, but the technical execution is more difficult than
in the initially presented attack.

Description: Source Initially Feasible in Target
Power analysis ... for

[ACK+23] UOV
UOV: ✓ UOV.Sign Line 9

of vinegar MAYO: ✓ [BCC+23] Alg.8 Line 29
evaluation QR-UOV: ✓ [FIH+23] Alg.2 Line 12

SNOVA: ✓ [WCD+23] Alg.8 Line 3,4

Rainbow UOV: ⋆ UOV.Sign Line 11
of secret matrix [PSKH18] UOV MAYO: ✓ | ⋆ [BCC+23] Alg.8 Line 44
multiplication [JD24b] MAYO QR-UOV: ⋆ [FIH+23] Alg.2 Line 18

SNOVA: ⋆ [WCD+23] Alg.11 Line 14

[ACK25] UOV
UOV: ✓ UOV.Sign Line 7

of linear MAYO: ✓ [BCC+23] Alg.8 Line 27,29
system setup QR-UOV: ✓ [FIH+23] Alg.2 Line 11

SNOVA: ✓ [WCD+23] Alg.9 Line 3,4,14,26
UOV: ✓ UOV.ExpandSK Line 4

of secret [ACK25] UOV MAYO: ✓ [BCC+23] Alg.6 Line 17
key expansion [JD24b] MAYO QR-UOV: ✓ [FIH+23] Alg.2 Line 7

SNOVA: ✓ [WCD+23] Alg.6 Line 6,7

[ACK25] UOV
UOV: ✓ UOV.CompactKeyGen Line 6

during key MAYO: ✓ [BCC+23] Alg.5 Line 16
generation QR-UOV: ✓ [FIH+23] Alg.1 Line 5

SNOVA: ✓ [WCD+23] Alg.5 Line 5

secret entries, due to parameter choices. The number of total variables n,
the number of equations m, and the employed finite field Fq, vary across the
different signature schemes. Even within one scheme, often multiple parameter
sets are offered. Depending on these parameters, an adversary conducting the
power measurements can extract more or less information of the vulnerable
subroutines, depending on the amount of multiplications that are available for
analysis. Accordingly, if the underlying field is smaller, it becomes easier to
select the right field element from the obtained power traces.

4.2 Implementation Guidelines and Implemented
Countermeasures

In the following, we present mitigation techniques that were suggested and
implemented as part of our publications [ACK25; SMA+24] to protect against
the set of vulnerabilities derived above. Again, we split the attack vectors into
fault injection and side-channel attacks to discuss them separately.

4.2.1 Fault-Tolerant Implementation
In the case of fault injection attacks, the setting is twofold. Besides the design
of dedicated countermeasures, there are also implementation choices, which
are originally made without reference to physical security, but turn out to
have a large impact on the resistance of UOV-based signature schemes against

4.2. Implementation Guidelines and Implemented Countermeasures 55

fault attacks. These implementation choices are represented by the options:
compressed vs. uncompressed keys and randomized vs. deterministic signing.
We explain these options briefly and argue how compressed keys and randomized
signing protect against certain fault attacks from Table 4.2 and are therefore
preferable in the context of fault-tolerant implementations. Subsequently, we
address how the remaining fault attack vectors can be mitigated by methods
based on the idea of infective computation.

Compressed keys. UOV-based signature schemes offer the possibility of
working with compressed keys to tackle their main disadvantage—large key
sizes. This method was already introduced by Petzoldt et al. [PTBW11]. The
uncompressed UOV variant uov-classic stores all coefficients of the public
map P in the expanded public key epk = {P(1)

i , P(2)
i , P(3)

i }i∈[m]. The secret
key is composed of a private seed seedsk, the representation matrix O of the oil
space O, a part of the public matrices {P(1)

i }i∈[m], and some helper matrices
{Si}i∈[m], which are needed during the signing procedure. Thus, we have
esk = (seedsk, O, {P(1)

i , Si}i∈[m]).
However, O is generated randomly and can also be expanded from the

private seed seedsk. The public map P needs to fulfill the property that P(o) =
0, for all o ∈ O. To this end, one can expand the submatrices {P(1)

i , P(2)
i }i∈[m]

from a public seed seedpk and only has to store the values of {P(3)
i }i∈[m] in

the public key, additionally. The remaining components from esk can also be
derived from csk = seedsk and cpk = (seedpk, {P(3)

i }i∈[m]).
The UOV specification defines two more variants uov-pkc and uov-pkc+skc.

As indicated by their names, the former variant uses only compressed public
keys, while the latter uses both, compressed public and secret keys. Obvi-
ously, this reduces the key sizes massively at the cost of increased signing and
verification time. This trade-off is depicted in Table 2.1.

In theory, the functionalities of the other mentioned UOV-based signature
schemes could be composed in a similar way, such that they also constitute these
three different compression variants. Still, the designers of the schemes decided
to define them otherwise. According to their specification, MAYO and QR-UOV
always work with compressed keys, i.e., they specify the secret key expansion
subroutine as part of signing. The SNOVA specification defines two variants
SNOVA-esk and SNOVA-ssk, where the former variant works with uncompressed
and the latter with compressed keys.

With respect to physical security, the variants that employ compressed keys
seem to be preferable across all UOV-based schemes. As can be observed from
Table 4.2, there are two fault attacks that aim at altering certain secret values
in the memory, namely the ’Rowhammer attack on O’ and the ’Bit flip on the
secret matrices’. Both attacks rely on the possibility of flipping individual bits
of the respective secret matrices. Flipping individual bits of the seed is useless,
from the perspective of an adversary, since it would lead to untraceable errors
due to the avalanche effect of the cryptographic hash function or extendable
output function that is used to expand the seed. If the secret matrices are not
stored in memory, but are expanded from the seed as part of every signature
generation, this significantly reduces the time slot for an attacker to introduce
the exploitable bit flips. Furthermore, it limits the insertion of persistent faults,

56 Enhancing Implementation Security

as each newly triggered signing procedure would overwrite introduced faults
from before.

Randomized signing. Another implementation choice is the question of
randomized or deterministic signing. In randomized signing external random-
ness is used to ensure that even if one signs the same message with the same
secret key twice, one gets two different signatures. In the deterministic setting,
signing the same message with the same secret key again leads to identical
signatures. Currently, the four UOV-based signature schemes UOV, MAYO, QR-
UOV, and SNOVA use randomized signing in their specification, while MAYO is
the only one that offers both options, randomized and deterministic, according
to its specification. This was not always the case for UOV-based signatures and
Rainbow, for instance, opted for deterministic signing as the default setting.

There might be scenarios, where the deterministic setting is recommended,
e.g., if one wants to minimize the reliance on random number generators or
when reproducible signatures are desired. When it comes to resistance against
physical attacks, the randomized setting is clearly preferable. In UOV-based
signatures, the natural point to introduce randomness to the signing procedure
is the sampling of the vinegar vector. The vinegar vector is often derived as the
output of an extendable output function (XOF), like SHAKE-256. If the input
to this function only depends on the message msg and the seed seedsk, one
generates the same vinegar vector if the message and secret key are unchanged
and eventually ends up with the same signature. On the other hand, if one
adds a random salt to the input of the XOF, one receives different vinegar
vectors during signing, which lead to different linear systems with different
solutions. The latter offers far better protection against physical attacks. This
applies first and foremost to the fault attack that aims at disturbing the linear
system setup. Assume deterministic signing is chosen, i.e., the same vinegar
vector v is generated when the same message is signed twice. Then, every
fault injection that alters a value during Step 3, 4, or 5 of Table 4.1 leads to a
different oil vector o′ as a result of the linear system solving. Consequently, the
difference of a valid and a faulted signature s− s′ = (v + o)− (v + o′) = o− o′
reveals an oil vector. Since these steps also belong to the most time consuming
steps, the time slot to inject such a fault is overwhelmingly large. Furthermore,
it is not necessary that the attacker keeps track of the fault location or the
error propagation, since the signing algorithm automatically generates a new
oil vector, by deriving a different solution to the altered linear system. This
seems extremely hard to protect, and we therefore do not recommend to use
deterministic signing in applications where physical security is relevant.

Protect vinegar and oil vectors. For the remaining fault attacks of Ta-
ble 4.2, i.e., reusing or zeroing the vinegar vector and preventing the addition of
the oil and vinegar vector at the end of signing, we have to implement dedicated
countermeasures.

Certain methods have been suggested to protect the random sampling of
the vinegar vector. To avoid reusing certain variables that remain in the buffer
from earlier signature generations, it was recommended to free buffers from
sensitive information at the end of signing. Zeroing these buffers, however,
is not desirable, since this could be exploited by argument initialization at-

4.2. Implementation Guidelines and Implemented Countermeasures 57

tacks [SK20]. In contrast, it is more desirable to overwrite these buffers with
random data [JD24a; SMA+24]. This countermeasure would be vulnerable to
a second-order fault attack. In [ACK25], we suggest to instead add random
data r to the vinegar vector v directly after it has been used to derive the
linear system, and before it is added to the signature vector s, via s += v. Of
course, the contribution of this random vector has to be removed via s -= r,
before outputting the signature. If the addition to randomize the vinegar vector
v += r is skipped by another fault injection, the signature output would be
erroneous and useless to an attacker, since the component r would still be
subtracted from s. This follows the idea of infective computation [GST12].

At the end of the signing process, the implementer has to ensure that both
v and o contribute to the signature s. Here, the variable assignment can be
crucial. In the analyzed implementation of UOV and MAYO, the vinegar part is
first copied to the signature vector, and afterwards the oil part is added. Thus,
a single instruction skip could remove the vinegar part completely from the
signature output and reveal the sensitive oil part. In contrast, the analyzed QR-
UOV and SNOVA implementations process the vinegar and oil vector together
in a single function and assign the added values to the signature vector one
entry after the other. This offers more resistance against instruction skips.
Additionally, it is advisable to implement double checks to ensure that the
finally released signature vector is not identical to the previously derived oil
vector [SMA+24].

4.2.2 Protection against Power Analysis
The operations that are vulnerable to side-channel attacks presented in Table 4.3
are all given by matrix-vector or matrix-matrix multiplications, and eventually
boil down to field multiplications in Fq. If not protected against power analysis,
these multiplications leak information about the involved factors, especially if
one of the factors is already known to the attacker, since it is publicly available.
The publications [ACK+23; JD24b; PSKH18] show how this leakage can be
exploited to recover secret values, and eventually the complete secret key.

For UOV-based signature schemes no implementations were available that
offer protection against power analysis. Therefore, our goal was to employ
some of the well-established countermeasures, that can be applied to protect
the involved secret values in these computations. In [SMA+24] we imple-
mented a shuffling countermeasure to the matrix-vector multiplications in
MAYO. In [ACK25] we present a masked implementation of UOV and MAYO.

Shuffling. The idea behind shuffling is to randomize the operation order
during computation. Attackers often rely on a fixed operation order to match
points of interest in a power trace to the corresponding secret values that are
processed by the device at this point in time. Randomizing the execution
order makes such an alignment much harder. Shuffling is especially effective
against SPA and DPA, since the attacker can not rely on the same execution
patterns and the misalignment causes noise in statistical attacks. However,
it does not eliminate the leakage, but only adds noise, which increases the
number of traces needed for a successful attack. With more effort put in
trace analysis, the application of advanced statistical methods or powerful
approaches like template attacks, side-channel attacks are still possible. A

58 Enhancing Implementation Security

benefit of shuffling is that it comes with a rather small overhead, compared to
more powerful countermeasures like masking. In [SMA+24, Section 4.2], we
explain the execution patterns we want to break by randomizing the order of
the matrix-vector multiplications in MAYO.

Masking. The idea behind masking is to split sensitive intermediate variables
randomly into multiple shares such that each share individually leaks no useful
information to an attacker. One of the simplest and most common forms of
masking is to split a secret value randomly into two additive shares x = x1⊕x2.
This is also called boolean first-order masking. The employed fields in UOV
and MAYO are Fq = F24 and Fq = F28 . Both of them have characteristic 2, i.e.,
the ⊕ operation is compatible with the field addition x = x1 ⊕ x2 = x1 + x2.
Thus, we can mask linear operation efficiently by boolean masking, which is
equivalent to field masking in this scenario. Instead of handling the secret value
x directly, one performs the operations on both shares individually. Even if
an attacker is able to observe power traces of operations on one of the shares,
those values are statistically independent of the secret data. The shares are
only combined at the end of the signing algorithm. In [ACK25, Section 5.5],
we describe our masking strategy for UOV and MAYO. This includes a catalog
of functions that we estimated to be vulnerable and is in line with the derived
vulnerabilities we listed in Table 4.3. In [ACK25, Section 6.1], we present a
performance comparison of our developed masked implementations for UOV
and MAYO.

4.3 Future Research Directions

There are several tasks to be accomplished when it comes to the implementation
security of UOV-based signature schemes.

First, protected implementations should be optimized with respect to their
efficiency and stack memory consumption. As the countermeasures for power
analysis attacks seem critical in this regard, the focus should lie on optimized
masked implementations. In terms of security, it is desirable to develop higher-
order masked implementations of the signature schemes. In related research
fields, e.g., symmetric or lattice-based cryptography, attacks have been proposed
even against protected implementations. We expect this to be possible in the
case of multivariate signature schemes as well. Therefore, it is recommended
to demonstrate the effectiveness of implemented countermeasures by leakage
assessment strategies or reevaluation of the considered attack vectors.

Second, it might be worthwhile to analyze if there are any adaptations to
the signature procedure that might increase the implementation security on an
algorithmic level. Our results in [ACK25] have shown that a substantial share
of the overhead in masked implementations results from protecting Step 3 and
Step 4 of Table 4.1, which entail the multiplication of the vinegar vector to
matrices of the expanded secret key. The vinegar vector has to be protected,
since the signature is composed as s = v + o. Thus, knowledge of the vinegar
vector v in combination with the (public) signature vector s leads to the actual
secret, an oil vector o. Alternatively, one could add a third vector e to the
composition, and output a signature of the form s = v + e + o. This would
render the vinegar vector less sensitive, since its leakage would not lead to an oil

4.3. Future Research Directions 59

vector, if e is kept secret. Of course, this would imply rather big modifications
to the signing algorithm and a careful security analysis of the modification is
necessary. In the end, this strategy is only one possible approach of developing
a more masking-friendly signature algorithm and we are curious about new
concepts that will be brought forth in the future.

5

Analyzing Security Features

The research paper [AST24] and [ADM+24], provided in Appendix C, both deal
with the analysis of certain UOV-based signature schemes regarding specific
security notions. The former presents mathematical attacks on MQ-Sign, a
UOV-based signature scheme participating in the KpqC competition. These
attacks break its EUF-CMA security. In the latter, we analyze, among others,
seven UOV-based signatures regarding the security notions EO, MBS, and NR.
Accordingly, we split this chapter into two parts.

In Section 5.1 we show how modifications to the EUF-CMA secure signature
scheme UOV can open new attack vectors, such that this security notion is not
fulfilled anymore. Therefore we analyze MQ-Sign, a variant of UOV that uses
sparse coefficient matrices, i.e., sparse polynomials, in the secret map. This
modification is mainly applied to reduce the size of the secret key, but it also has
the potential to increase the efficiency of the scheme, since sparse polynomials
can be evaluated faster at certain points. The authors presented four variants of
MQ-Sign, featuring different sparsity levels, where one variant is equivalent to
UOV. In [AST24], we give polynomial-time key-recovery attacks for two variants,
which in turn also allow polynomial-time forgery for any given message. For
the third variant, we manage to present an exponential-time forgery attack
with reduced complexity, showing that this variant falls short of the claimed
security level.

In the second part we deal with advanced security notions beyond unforge-
ability. We introduce and motivate these so-called BUFF notions individually
in Section 5.2. Signatures might be used in cryptographic protocols in a fashion
that allows adversaries to attack them in different ways than by means of a
forgery. Unforgeability is defined upon a challenge public key. The objective of
the adversary is to find a valid message-signature pair under the given public
key. Here, the implicit assumption is that the adversarial party has no control
over that public key. In practice, however, keys themselves might be chosen
maliciously. This opens the door for potential misuse, depending on the con-
crete use-case. We will present several real-world examples to highlight the
importance of the BUFF properties, which can counter such security risks.

61

62 Analyzing Security Features

5.1 EUF-CMA Security of MQ-Sign

In this section, we will provide details about the MQ-Sign signature scheme,
its participation in the KpqC competition [QRC21], and the impact of our
attacks [AST24] on certain variants of MQ-Sign.

The KpqC competition. South Korea, like many other nations, is striving
to transition its cryptography systems to PQC in order to protect the nation
from quantum computing threats and strengthen its cybersecurity in the long
term. Therefore, South Korea’s National Intelligence Service (NIS) and the
National Security Research Institute launched the KpqC competition in 2021,
with the goal to identify efficient and robust PQC algorithms and standardize
them for national use. Furthermore, the initiators had the objective of fostering
local and international technology exchange and enhancing the development of
human resources in this field. The initiative is aligning with South Korea’s PQC
master plan, published by NIS in 2023. It provides a roadmap for the transition
to PQC until 2035, which coincides with the timescales estimated by Europe
and the US. Besides the already mentioned NIST PQC standardization project
and the KpqC competition, we are only aware of one more PQC competition,
initiated by the Chinese Association for Cryptologic Research [CAC18]. This
is due to the fact that the results obtained by NIST are generally accepted in
large parts of the world. As an example, the European Telecommunications
Standards Institute is not running its own competition, but adheres to the one
initiated by NIST.

The KpqC competition, however, is set to consist of two evaluation rounds.
Nine digital signature schemes and seven public-key encryption (PKE) schemes
respectively KEMs were submitted to the first evaluation round, running from
November 2022 to November 2023. We list them in Table 5.1. The second
evaluation round lasted from April to November 2024 and the final algorithms
were selected in January 2025. We will portray the course of the competition
in this section, with a focus on the UOV-based signature scheme MQ-Sign.

Table 5.1: The nine digital signature and seven PKE/KEM algorithms submit-
ted to the KpqC competition. With ∗ we indicate that the scheme was also
submitted to NIST’s call for additional digital signatures.

KpqC round 1 candidates
Digital Signatures PKE/KEM

Algorithm Family Algorithm Family
AIMer∗ MPC-in-the-head IPCC graph-based
Enhanced psqigRM∗ code-based Layered ROLLO-I code-based
FIBS isogeny-based NTRU+ lattice-based
GCKSign lattice-based PALOMA code-based
HAETAE∗ lattice-based REDOG code-based
MQ-Sign multivariate SMAUG lattice-based
NCC-Sign lattice-based TiGER lattice-based
Peregrine lattice-based
SOLMAE lattice-based

5.1. EUF-CMA Security of MQ-Sign 63

Sparse polynomials in UOV. In order to understand MQ-Sign, we re-
consider the central map F = (F (1), . . . ,F (m)) : Fn

q → Fm
q introduced in

Section 2.2 and divide the coefficients of its quadratic monomials into two sets

F (k)
V (x1, . . . , xn) =

∑

i∈V,j∈V

α
(k)
ij xixj

and
F (k)

OV (x1, . . . , xn) =
∑

i∈V,j∈O

β
(k)
ij xixj ,

where V = {1, . . . , v} and O = {v+1, . . . , n}. We refer to these as the quadratic
vinegar-vinegar part and the quadratic vinegar-oil part. In contrast to UOV,
MQ-Sign employs inhomogeneous polynomials. The coefficients of the linear
and constant terms are denoted by

F (k)
L,C(x1, . . . , xn) =

∑

1≤i≤n

γ
(k)
i xi + δ(k).

They play only a minor role in our security analysis, but contribute to the
secret key size, so we mention them for the sake of completeness. In total, the
coefficients of the central polynomials are split into the three terms

F (k) = F (k)
V + F (k)

OV + F (k)
L,C .

The main idea behind the MQ-Sign signature scheme is to choose the central
polynomial sparse, i.e., to set a certain amount of the coefficients α

(k)
ij and β

(k)
ij

of the quadratic parts F (k)
V and F (k)

OV to zero. As these coefficients account for
the largest share of the secret key, this obviously can reduce the secret key size
significantly. In the following we first present the four variants submitted by
Shim et al. [SKA22] to the first round of the KpqC competition. The mathe-
matical cryptanalysis given in [AST24] concerns three of these four variants,
where two variants were affected by a polynomial-time key-recovery attack. As
a result, these two MQ-Sign variants were withdrawn after the first round. The
third variant was subject to changes before the beginning of the second round.
Subsequently, we will present the two variants, which the authors submitted to
the second round of the KpqC competition.

MQ-Sign first round submission. There are many possibilities to introduce
sparseness into the central map. The principal submitters of MQ-Sign [SKA22],
decide to choose one with high sparseness and suggest to allow only v quadratic
terms in each F (k)

V and F (k)
V O, instead of v · (v + 1)/2 and v · o, respectively.

These new sparse versions of the two quadratic parts of the central map are
denoted F (k)

VS
and F (k)

V OS
, and are defined in [SKA22] as

F (k)
VS

(x1, . . . , xv) =
v∑

i=1
α

(k)
i xix(i+k−1(mod v))+1 (5.1.1)

and
F (k)

OVS
(x1, . . . , xn) =

v∑

i=1
β

(k)
i xix(i+k−2(mod m))+v+1. (5.1.2)

64 Analyzing Security Features

As already presented in Section 2.2, we can represent the quadratic parts
of the polynomials by matrices F(k)

V and F(k)
OV , storing the coefficients of the

quadratic terms F (k)
V and F (k)

V O. This makes also for a neat visualization of
the chosen sparsity rule in F (k)

VS
and F (k)

V OS
. As can be seen from the indices

in Equations (5.1.1) and (5.1.2), the non-zero coefficients also depend on the
number k of the represented equation. Exemplary, for the first quadratic
vinegar-vinegar part F (1)

VS
and its corresponding coefficient matrix F(1)

VS
, we

have

F(1)
VS

=




0 α
(1)
1 0 · · · 0

0 0 α
(1)
2 · · · 0

...
...

...
0 0 0 · · · α

(1)
v−1

α
(1)
v 0 0 · · · 0




.

The non-zero entries of each equation are placed on a diagonal across the matrix
and once the last column is reached, it continues on the first column of the
next row. For the next equation, this diagonal is shifted one entry to the right:

F(2)
VS

=




0 0 α
(2)
1 · · · 0

...
...

...
0 0 0 · · · α

(2)
v−2

α
(2)
v−1 0 0 · · · 0
0 α

(2)
v 0 · · · 0




.

This pattern continues for all of the m matrices up to F(m)
VS

. The F(k)
V matrices

can also be represented as upper-triangular matrices, since the coefficients at
the entries (i, j) and (j, i) contribute to the same monomial xixj .

For the quadratic vinegar-oil part the modifications are very similar. The
coefficient matrices have less columns than rows here (because m < v), but the
authors again avoid any zero rows with their definition of the sparse variant.
The coefficient matrix F(1)

OVS
of F (1)

OVS
is given by

F(1)
OVS

=




β
(1)
1 0 · · · · · · 0
0 β

(1)
2 · · · · · · 0

...
...

...
...

0 0 · · · · · · β
(1)
m

β
(1)
m+1 0 · · · · · · 0
... 0
0 · · · β

(1)
v 0 0




.

5.1. EUF-CMA Security of MQ-Sign 65

Again, this diagonal is shifted one entry to the right for each of the coefficient
matrices, when counting through the equations.

The MQ-Sign proposal provides a parameter selection for four variants of
the scheme: MQ-Sign-SS, MQ-Sign-RS, MQ-Sign-SR, and MQ-Sign-RR. The
first letter S/R in the suffix specifies whether the quadratic vinegar-vinegar
part is defined with sparse (FVS

) or random (FV) polynomials. The second
letter S/R refers to the same property, but for the quadratic vinegar-oil part,
also with a sparse (FOVS

) and a random (FOV) option. Note that the variant
MQ-Sign-RR, which comprises two random quadratic parts, corresponds to the
traditional UOV scheme, defined with inhomogenous polynomials. We present
the parameters and signature size of MQ-Sign in Table 5.2, alongside the secret
key size of these individual variants. If both FVS

and FOVS
are used, the key

size reduction of the secret key is larger than one order of magnitude. If only
one of the two sparse versions is applied, the secret key size is approximately
halved.

Table 5.2: Secret key and signature sizes of the four MQ-Sign variants submitted
to round 1 [SKA22] of the KpqC competition. The secret key size depends
highly on the sparsity level of the coefficient matrices. We prove that all variants
except MQ-Sign-RR fall short of the claimed security level.

Security Parameter Signature size Secret key size
Level (q, v, m) in Byte in Kilobyte

Variant MQ-Sign-xx
SS RS SR RR

I (28, 72, 46) 134 16 133 165 282
III (28, 112, 72) 200 38 485 610 1 058
V (28, 148, 96) 260 66 1 111 1 416 2 460

Algebraic attacks during round 1. In [AST24], we present a polynomial-
time key-recovery attack that exploits the sparseness of FOVS

. Therefore, it
affects the two variants MQ-Sign-RS and MQ-Sign-SS. The attack was reported
to run in 0.6 seconds for the proposed parameters for security level I, 2.3 seconds
for security level III, and 6.9 seconds for security level V on a consumer grade
laptop. The attack also relied on the fact that the secret transformation S was
chosen to be in block matrix structure. Shortly after, Ikematsu et al. [IJY23]
generalized our approach to arbitrary affine maps S. The proposed key-recovery
attack is still running in polynomial-time and takes less than 30 minutes to
complete, for any security level. Together, these two attacks completely break
the security of the concerned variants MQ-Sign-RS and MQ-Sign-SS.

Moreover, in [AST24], we introduce another algebraic attack, which exploits
the sparseness and structure of FVS

and therefore targets the variant MQ-Sign-
SR. In contrast to the aforementioned attacks, this one is not a key-recovery
attack, but a forgery attack, i.e., we do not compute the secret key (F , S), but
instead show how to compute a solution vector s ∈ Fm

q , with P(s) = t for any
given t ∈ Fm

q . It has exponential running time and is not practical, but it shows
that also the last variant that offers a key size reduction compared to UOV
falls slightly short of the claimed security level. However, this attack could be
prevented quite easily by modifying the structure of FVS

.

66 Analyzing Security Features

Selected algorithms to advance to round 2. In December 2023 the KpqC
team announced four digital signature schemes and four PKE/KEMs that ad-
vanced to the second and final round. We list these schemes in Table 5.3.
MQ-Sign was one of the selected signature schemes that advanced to the sec-
ond round. Researchers affiliated to the Eindhoven University of Technology
published a detailed evaluation report [CHH+23] about all first round candi-
dates, which provides some reasoning for the selection process. Authors were
encouraged to update their submission package for the second evaluation round,
which lasted from April to November 2024.

MQ-Sign second round submission. As a result of the polynomial-time
key-recovery attacks mentioned above, the authors decided to remove the two
variants MQ-Sign-RS and MQ-Sign-SS from the specification. The forgery attack
on the variant MQ-Sign-SR was less critical, so the authors kept an approach
that utilizes a sparse vinegar-vinegar part, but applied some modifications to
it, in order to diminish the security concerns. They dubbed this new variant
MQ-Sign-LR. We denote the modified quadratic vinegar-vinegar part FVL

. It
is defined as

F (k)
VL

(x1, . . . , xv) =
v∑

i=1
xiL(i+k−1(mod v))+1, (5.1.3)

where Li =
∑v

j=1 δijxj is a linear combination of the variables {x1, . . . , xv},
for i ∈ {1, . . . , v}. We note that this does not lead to zero coefficients in the
quadratic monomials xixj as it was the case for FVS

. Thus, the derived coeffi-
cient matrices F(k)

VL
are not sparse and we do not display them here. However,

it remains quite obvious, that the v2 elements δij are enough to define FVL
,

providing the desired key size reduction. According to Equation (5.1.3), the
individual polynomials F (k)

VL
of the modified quadratic vinegar-vinegar part FVL

can be represented as




F (1)
VL

F (2)
VL...
F (m)

VL




=




x1 x2 . . . xv

xv x1 . . . xv−1
...

...
xv−m+2 xv−m+3 . . . xv−m+1


 ·




L1
L2
...

Lv


 .

Algebraic attacks during round 2. At the end of the second evaluation
round, Ran and Trimoska [RT25] found a way to exploit the structure intro-
duced in MQ-Sign-LR. They discovered a set of weak targets, for which they
were able to compute preimages efficiently. The set of weak targets is large
enough, to turn this into a forgery attack on any given message msg, by enumer-
ating salts r until a weak target t = H(msg, r) is found. The average number
of salts to try is 280 for security level I, 2128 for security level III, and 2176 for
security level V. Thus, the variant MQ-Sign-LR in its submitted form is not
meeting the claimed security level. Again, the variant MQ-Sign-RR was not
affected by the attack.

5.2. Security Beyond Standard Notions and the Case of UOV-based Signatures 67

Table 5.3: The four digital signature and four PKE/KEM algorithms advancing
to the second evaluation round in the KpqC competition. The schemes in
green were selected for standardization. Initially, SMAUG and TiGER were
two individual submissions, but got merged after the first evaluation round,
because of their similarities.

KpqC round 2 candidates
Digital Signatures PKE/KEMs

Algorithm Family Algorithm Family
AIMer MPC-in-the-head NTRU+ lattice-based
HAETAE lattice-based PALOMA code-based
MQ-Sign multivariate REDOG code-based
NCC-Sign lattice-based SMAUG-T lattice-based

Selected final algorithms. In January 2025 the KpqC team announced the
final algorithms and winner of the competition. Regarding digital signature
schemes, AIMer and HAETAE were selected. AIMer is following the MPC-in-
the-head approach, while HAETAE is a lattice-based scheme with similarities
to DILITHIUM. In the case of PKE/KEMs, the lattice-based schemes NTRU+
and SMAUG-T were chosen.

5.2 Security Beyond Standard Notions and the Case of
UOV-based Signatures

Signature schemes are employed in a vast number of cryptographic protocols,
which might exhibit a complex structure, involve a multitude of parties, and
engage various other cryptographic primitives. This increases the difficulty of
assessing the protocol’s security and protocol designers can often not solely rely
on the basic security of the used cryptographic primitives. Thus, an in-depth
security analysis of the developed protocol requires a considerable amount of
time and resources to detect subtle vulnerabilities. Even though this would still
be the desirable and recommendable approach, it is very optimistic to assume
that such a procedure will be applied in general, and it cannot be guaranteed.
Therefore, it would be beneficial to design the basic building blocks such that
they achieve more advanced security features to prevent them from potential
misuse. In the case of signature scheme, three different classes of advanced
security notions beyond unforgeability have emerged in the recent years. In
Section 5.2.1, we provide an intuition for these individual features and highlight
their practical relevance. In Section 5.2.2, we present transforms that can be
applied to arbitrary signature schemes to make them achieve some or all of
these security features. Finally, in Section 5.2.3, we elaborate on important
results discovered in [ADM+24] and present the case of UOV-based signature
schemes in detail.

5.2.1 The Beyond Unforgeability Features
The different advanced security notions have in common that they allow ma-
liciously chosen public keys, a concept which is not covered by EUF-CMA.
In general, these crafted public keys do not need to originate from the key

68 Analyzing Security Features

generation algorithm of the signature scheme, and therefore could have no
corresponding secret key. They might be constructed by an adversary to sat-
isfy certain properties to eventually pass the verification algorithm for specific
message-signature pairs. The following security notions ask to find such tupels
of public keys, messages, and signatures under certain conditions depending on
the concrete notion. The lack of these notions can implicate severe consequences
as we will illustrate for real-world protocols. Not only for this reason, the in-
terest in these notions increased in recent years, and when NIST announced
the call for additional digital signatures [NIST22] in 2022, they declared BUFF
security as a desirable feature.

Exclusive ownership (EO). Briefly summarized, EO is concerned with the
question whether a signature is tied to a single public key or whether it is
possible to find another (malicious) public key under which this signature also
verifies. In more detail, an adversary having access to a signing oracle for a
certain public key pk, is challenged to create another public key pk ̸= pk such
that one of the queried signatures sig is still valid, i.e., Verify(pk, msg, sig) = true.
For our analysis in [ADM+24], we consider two versions of EO, namely strong-
conservative exclusive ownership (S-CEO) and strong-destructive exclusive own-
ership (S-DEO). The former requires the message to be the same as in the
respective query yielding sig, while the latter requires the message to be distinct
from it. These notions were introduced by Cremers et al. [CDF+21]. There ex-
ists also a joint formalization of S-CEO and S-DEO, dubbed strong-universal ex-
clusive ownership (S-UEO), where the message can be either the same or distinct
from the one in the oracle query. The notions S-UEO and the even stronger vari-
ant malicious-strong-universal exclusive ownership (M-S-UEO) were put forth
by Brendel et al. [BCJZ21]. We will come back to the latter in Section 5.2.3.
The name exclusive ownership was first used by Pornin and Stern [PS05], but
the underlying idea goes even back to the Duplicate-Signature Key Selection
attacks by Blake-Wilson and Menezes [BM99].

Not achieving one of the EO notions clearly implies an undesired behavior
of a signature scheme. If adversaries are able to find a new public key pk
with the described properties, they could claim ownership of certain signatures
they encounter. The claimed ownership would be approved by the fact that
Verify(pk, msg, sig) = true indeed holds, and sig appears as a valid signature of
the owner of pk. An early draft of a certification protocol for Let’s Encrypt
illustrates how this could lead to misuse in a real-world protocol. The protocol
was designed to act as an automated CA. Users who wanted to obtain a
certificate for their website, were asked to sign a certain challenge message and
put the signature in a privileged position on the website to prove admin access.
Then, the authority checks if the provided signature verifies under the user’s
public key with the issued challenge message, and provides the certificate, in
case it does. Malicious users capable of breaking S-DEO for the underlying
signature scheme are now able to request certificates for websites, which they do
not own. Upon receiving the challenge message of the authority, they construct
a new public key for which the existing signature verifies. Finally, the CA
assumes that the malicious user provided a valid signature on the website and
issues a valid certificate, even though the adversary was never able to access the
website itself. The vulnerability was found by Ayer and documented in [Aye15].

5.2. Security Beyond Standard Notions and the Case of UOV-based Signatures 69

An approach to fix this issue was to adapt the protocol, such that it requires
the user to put the hash of its public key into the privileged position on the
website, instead of the signature.

Message bound signatures (MBS). Next, we want to investigate whether
a signature can be valid for more than one message. This question is dealt
with in MBS, where an adversary is challenged to find a public key pk, a
signature sig, and at least two distinct messages msg ̸= msg, such that the
signature is valid for both messages under the given (adversarially chosen)
public key, i.e., Verify(pk, msg, sig) = true and Verify(pk, msg, sig) = true. It
seems natural to demand from a signature scheme that it fulfills MBS. The
absence of this property would allow adversaries to switch messages after signing.
This contradicts non-repudiation, one of the main features of a signature, which
is ensuring that a party cannot deny their actions, such as sending a certain
message or signing a specific document. The first appearance of MBS can
be traced back to Stern et al. [SPMS02], who discussed it under the name
duplicate signatures. While Jackson et al. [JCCS19] specified it formally as non-
colliding signatures, the first game-based formalization was given by Brendel
et al. [BCJZ21], who introduced the now established name message-bound
signatures.

Non resignability (NR). The last notion NR is concerned with the question
whether it is possible to provide a valid signature under another public key,
given a signature for an unknown message. The exact formalization of NR is
probably the most difficult one among the three properties described in this
section. The reason for that is that the initial definition in [CDF+21] includes
auxiliary information about the message. This models a scenario where the
adversary might have access to some structural information about the message,
e.g., when it is known that the message stems from a key exchange between two
parties. However, if the auxiliary information contains the hash of the unknown
message and the signature scheme in question uses the hash-and-sign paradigm,
an adversary can just generate a new key pair and compute a new signature
using this hash value. Don et al. presented this attack in [DFHS24] and also
suggested a new version of NR with adaptions to the auxiliary information. In
[ADM+24] we deal with a version of NR that avoids the auxiliary information
completely, called weak non resignability (wNR). This does not depict all use
cases, but for many schemes we were able to develop attacks against this notion,
which also imply insecurity for any stronger versions.

Concretely, wNR assumes that an adversary is given a public key pk a
signature sig, but not the corresponding message msg, for which sig is valid, i.e.,
Verify(pk, msg, sig) = true. Then it is challenged to find a distinct public key pk
and a signature sig, such that Verify(pk, msg, sig) = true. Here sig is allowed to
be the same signature as sig.

A signature scheme not achieving wNR is contrary to the intuition that it is
necessary to know the message in order to generate a signature for this message.
Moreover, Jackson et al. [JCCS19] broke authentication and collision-resistance
in the Dynamically Recreatable Key (DRKey) protocol used for secure routing
by using the possibility to sign unknown messages. The protocol aims at
providing path integrity by requiring intermediate nodes to sign a symmetric

70 Analyzing Security Features

key which they will share with the endpoint. However, a malicious node could
resign a received packet and claim that the path went through another malicious
node, instead of the actual honest node. We refer to [JCCS19] for more details
about the DRKey protocol and the detected attack.

Now that we defined these additional desirable security features of signature
schemes, we turn to the question whether and how these notions can be satisfied.
If an analyzed signature scheme does not fulfill some or all of the BUFF notions
by design, it is possible to apply general transformations to it. In the next
section we will discuss some of these transformations in detail.

5.2.2 Transforms Towards BUFF Security
The main results regarding transforms to achieve more advanced security no-
tions are provided in [PS05] and [CDF+21]. The PS-1, PS-2, and PS-3 transform
from [PS05] have been designed to achieve security regarding some individual
features, but neither achieves full BUFF security. With full BUFF security, we
imply that the security features S-CEO, S-DEO, MBS, and NR are satisfied.
The BUFF-lite and the BUFF transform were developed in [CDF+21]. The
BUFF-lite transform manages to achieve all features except NR, and the BUFF
transform guarantees full BUFF security. In Table 5.4 we give an overview of
the existing transforms. All transforms lead to some overhead. Adding the
public key to the inputs of the hash function will have an impact on the effi-
ciency of the scheme, while appending the hash output of the message and/or
the public key increases the signature size. Arguably, these drawbacks are not
critical, but for schemes that feature rather short signature sizes, the relative
increase due to appending the hash output (64 bytes) is considerable. This
might diminish the main asset of such a signature scheme and could be an
impediment in use cases where short signatures are crucial. In the following,
we present the PS-3 and the BUFF transform in more detail, as they will take
important roles in our analysis.

Table 5.4: Comparing existing transformations regarding security of several
advanced security properties. This table is based on Table 2 in [CDF+21].

Transform Signature S-CEO S-DEO MBS NR

PS-1 Sign(sk, msg), H(msg) ✗ ✓ ✓ ✗
PS-2 Sign(sk, msg), H(pk) ✓ ✓ ✗ ✗
PS-3 Sign(sk, H(msg, pk)) ✗ ✗ ✗ ✗

BUFF-lite Sign(sk, msg), H(msg, pk) ✓ ✓ ✓ ✗
BUFF Sign(sk, H(msg, pk)), H(msg, pk) ✓ ✓ ✓ ✓

The PS-3 transform [PS05]. Formally defined, given a signature scheme
Σ = (Σ.KeyGen, Σ.Sign, Σ.Verify) and a hash function H, the PS-3 transform of
Σ with respect to H is Σ′ = PS-3[Σ, H] with Σ′ = (Σ′.KeyGen, Σ′.Sign, Σ′.Verify)
as depicted in Figure 5.1. This means, that instead of signing a message msg,
one signs h = H(msg, pk), the hash output of the message and the public key,
to somewhat bind the used public key to the signature.

As shown in Table 5.4, the PS-3 transform is the only transform that is not
appending a hash value to the signature and has therefore no impact on the

5.2. Security Beyond Standard Notions and the Case of UOV-based Signatures 71

Σ′.KeyGen():
(sk, pk)←$ Σ.KeyGen()
return (sk, pk)

Σ′.Sign(sk, msg):
h← H(msg, pk)

sig←$ Σ.Sign(sk, h)
return sig

Σ′.Verify(pk, msg, sig):
h← H(msg, pk)

return Σ.Verify(pk, h , sig) = true

Figure 5.1: The PS-3 transform Σ′ := PS-3[Σ, H] of a signature scheme Σ =
(Σ.KeyGen, Σ.Sign, Σ.Verify) and hash function H. The modifications applied to
the plain signature scheme Σ are depicted in green boxes.

signature size. Unfortunately, it is also the only transform that does not come
with any additional security guarantees for arbitrary signature schemes per se.
However, it might still be the case that the transform leads to BUFF security,
but this depends on properties of the respective signature scheme and needs to
be analyzed carefully. We will present examples for this case in Section 5.2.3.

The BUFF transform [CDF+21]. The BUFF transform achieves all be-
yond unforgeability features without posing any conditions on the underlying
signature scheme. Therefore, the BUFF transform can be applied in a black-box
manner without further analysis or detailed knowledge of the subtle properties
of the signature scheme. The description is similar to the PS-3 transform, with
the difference that the hash output h is additionally appended to the signa-
ture, thereby increasing the signature size. The BUFF transform is depicted in
Figure 5.2.

Σ′.KeyGen():
(sk, pk)←$ Σ.KeyGen()
return (sk, pk)

Σ′.Sign(sk, msg):
h← H(msg, pk)

sig←$ Σ.Sign(sk, h)

sig← (sig, h)
return sig

Σ′.Verify(pk, msg, sig):

(sig, ĥ)← sig

h← H(msg, pk)

v← Σ.Verify(pk, h , sig) = true

return
(

v = true ∧ ĥ = h
)

Figure 5.2: The BUFF transform Σ′ := BUFF[Σ, H] of a signature scheme Σ =
(Σ.KeyGen, Σ.Sign, Σ.Verify) and hash function H. The modifications applied to
the plain signature scheme Σ are depicted in orange boxes.

5.2.3 Improving the Overall Understanding of BUFF
Security

In [ADM+24], we analyze 17 signature schemes of NIST’s call for additional
signatures regarding their BUFF security. We opt for all submitted schemes
based on isogenies, lattices, codes, and multivariate polynomials, which were
still considered to be EUF-CMA secure at the time of writing the paper. The
complete results of our analysis can be found in Appendix C.2. Besides our
concrete analysis of the individual schemes’ security regarding the different
advanced security notions S-CEO, S-DEO, MBS, and NR, we came across
other intriguing results.

72 Analyzing Security Features

First, we noticed that some schemes, e.g., the code-based candidate CROSS,
fulfill all BUFF security notions without applying any of the mentioned trans-
forms. In this case, the achieved BUFF security is solely provided by intrinsic
properties of the constructed signature scheme. This is, of course, the most
preferable scenario, since the overheads mentioned in Section 5.2.2, that are
caused by the transforms, can be avoided completely.

Second, most of the submitted candidates fulfill MBS security by design.
Furthermore, we observed, that the investigated signature schemes fulfill all
BUFF notions, when MBS security is already achieved and the PS-3 transform
is applied to them. Indeed, motivated by this evidence, Düzlü et al. [DFF24]
were able to prove that the lattice-based signature scheme FALCON, which
initially only achieved MBS security, gains full BUFF security by using the
PS-3 transform. Düzlü and Struck [DS24] showed that this implication holds
in general, i.e., signature schemes satisfying (only) MBS are going to achieve
full BUFF security, when the PS-3 transform is applied.1 In particular, this
is the case for all analyzed UOV-based signatures, so we will elaborate on this
result in more detail later in this section.

Third, we disproved claims made by the authors of some schemes regarding
BUFF security. In more detail, the submitters of the lattice-based signature
scheme SQUIRRELS asserted that SQUIRRELS satisfies MBS, which we were
able to disprove. Moreover, the submitters of the multivariate signature scheme
VOX claimed that they fulfill all BUFF notions, since they append the public
key to the message before hashing it. This would be quite similar to the changes
required for the PS-3 transform, but we noticed that not the complete public
key was included, which opens a door for further attacks on S-CEO, S-DEO,
and NR. This illustrates that one really has to take details into account when
analyzing signature schemes regarding these advanced security notions.

BUFF Security of UOV-based signature schemes. In the following we
will focus on the BUFF security of UOV-based signature schemes. We present
the ascertained security results of the seven analyzed multivariate signature
schemes in Table 5.5. Notably, all these seven multivariate signature schemes
are based on the OV approach. Additionally, we also include the UOV-based
signatures Rainbow and MQ-Sign-RR in this table. Rainbow, the third round
finalist of NIST’s initial standardization process, was analyzed in [CDF+21].
For MQ-Sign-RR, a candidate in the KpqC as described in Section 5.1, there is
no formal analysis yet, but we can determine its security regarding the BUFF
notions from the findings within this section.

What immediately catches the eye is that all UOV-based signature schemes
achieve MBS security. Furthermore, most of the analyzed schemes fulfill neither
the EO notions nor wNR (i.e., any NR notions), whereas PROV and MQ-Sign-
RR fulfill all BUFF notions. For the detailed analysis we refer to [ADM+24]
in Appendix C.2, but we give some reasoning for these results here.

To this end, we recall that in UOV-based signatures the equation P(s) = t
plays a major role, as described in Section 2.2. In this equation the solution
vector s represents the signature of the scheme, the coefficients of the public
map P are encoded in the public key, and the target vector t is derived from

1This holds for S-CEO and S-DEO, but not for the stronger version M-S-UEO, as we
will point out later in this section.

5.2. Security Beyond Standard Notions and the Case of UOV-based Signatures 73

Table 5.5: BUFF Security of several UOV-based signature schemes.

Signature scheme Analysis S-CEO S-DEO MBS NR
Rainbow [CDF+21] ✗ ✗ ✓ ✗

MAYO [ADM+24] ✗ ✗ ✓ ✗
PROV [ADM+24] ✓ ✓ ✓ ✓

QR-UOV [ADM+24] ✗ ✗ ✓ ✗
SNOVA [ADM+24] ✗ ✗ ✓ ✗
TUOV [ADM+24] ✗ ✗ ✓ ✗
UOV [ADM+24] ✗ ✗ ✓ ✗
VOX [ADM+24] ✗ ✗ ✓ ✗

MQ-Sign-RR This thesis ✓ ✓ ✓ ✓

the message. During verification, P(s) = t′ is evaluated and subsequently it
is checked if this value is equal to the target vector t. Thus, if a signature is
supposed to be valid for two different messages msg and msg as it is the case in
MBS, this implies that P(s) = t = t needs to hold for the two derived target
values t and t. Consequently, it is necessary to break the collision resistance of
the underlying hash function, in order to attack MBS security of these schemes.

In contrast, it was relatively simple to find attacks against the EO and
wNR notions for the majority of the schemes. While finding a solution s to
a multivariate quadratic system P, as required by forgery attacks, might be
hard, it becomes less complicated to construct this system P, such that certain
properties are fulfilled, as requested by the EO and NR notions. The task of
crafting such a public key, i.e., such a quadratic system with certain conditions
on the solution and target vectors s and t, is in general more manageable, since
one has many variables to play with, namely all coefficients that define the
polynomial system. PROV and MQ-Sign-RR handle these security concerns
by including the public key into the derivation of the target vector t from the
message. To be precise, they define, e.g., t = H(msg, pk) instead of t = H(msg).2
Then it becomes infeasible to construct a public key such that P(s) = t holds for
specific vectors, since modifying the coefficients of P will also alter t, therefore
affecting both sides of the equation simultaneously. This strategy of including
the public key as a hash input is essentially the same as applying the PS-3
transform, as can be obtained from Figure 5.1. In the next paragraph, we will
see that these two schemes are no isolated cases and there is a general rule for
when the PS-3 transform is enough for achieving BUFF security.

Achieving BUFF security with a lightweight transform. Motivated
from the findings above, we were able to show that it is sufficient to apply the
more lightweight PS-3 transform to UOV-based signature schemes to achieve
full BUFF security. This is in particular interesting, since these schemes are
characterized by their small signature sizes, which are depicted in Table 1.1.
Using any other transform from Table 5.4 would restrain one of their main
features and limit their attractiveness for real-world deployment. The additional

2In fact, the hash input often also includes a salt, so that the target vector is derived via
t = H(msg, pk, salt), but this has no impact on the analysis.

74 Analyzing Security Features

64 bytes due to appending the hash value to the signature would lead to a
considerable relative increase in signature size, and should therefore be avoided.

Düzlü and Struck [DS24] were able to generalize the pattern described above:
If a signature scheme already achieves MBS security, then it is enough to apply
the PS-3 transform to additionally fulfill the notions S-CEO, S-DEO, and wNR.
Here, we want to emphasize that the PS-3-transformed schemes satisfy S-CEO
and S-DEO, and therefore the combined notion S-UEO, but in general not the
stronger version M-S-UEO. The authors prove this by developing an attack
against the M-S-UEO security of PS-3 transformed UOV. Since this suits the
theme of this section very well, we briefly sketch the brilliant idea behind the
M-S-UEO attack from [DS24] in the following. In M-S-UEO, the adversary is
allowed to pick both public keys pk and pk maliciously and find a signature
sig that is valid for two messages msg and msg, i.e., Verify(pk, msg, sig) = true
and Verify(pk, msg, sig) = true. Let O be an (arbitrary) oil space of dimension
2m. The public keys pk and pk can be chosen in a way that the corresponding
public maps P and P both vanish on O.3 Now, we can derive two target vectors
t = H(msg, pk) and t = H(msg, pk) from two arbitrary messages msg and msg.
The overdimensioned oil space O now allows to find a solution vector s, such
that P(s) = t and P(s) = t hold simultaneously: After inserting a reduced
vinegar vector v ∈ Fn−2m

q , similar to the usual signing procedure of UOV,
the combined linear system has 2m variables in 2m equations and is therefore
efficiently solvable. For more details, we refer to [DS24, Section 3.2].

5.3 Future Research Directions

We divide this paragraph in two parts according to the two topics presented in
this chapter: the use of sparse polynomials in UOV-based signatures and the
achievement of the BUFF notions.

Despite the presented attacks in [AST24], the employment of sparse poly-
nomials in multivariate signature schemes remains an interesting research topic.
The key-recovery attack was enabled, since some secret submatrices of coeffi-
cients were chosen sparse, which provided the attacker with additional linear
equations. However, choosing the public submatrices sparse would not allow
for an attack like this, but would lead to reduced public key sizes in classic,
uncompressed variants, or less memory consumption when compressed keys are
used. Another crucial question is: how sparse are the employed polynomials,
i.e., their coefficient matrices? The forgery attack was only possible since the
number of zero entries was chosen extremely large. If scheme designers opt for
a more conservative approach and set only a moderate amount of coefficients to
zero, a good trade-off between key size reduction and security might be achiev-
able. There has already been a follow-up work by Ran and Trimoska [RT25],
that analyzes the security of the new variant MQ-Sign-LR. The authors also
found a way to exploit the structure in this variant, reducing the security claims.
However, the research on sparse polynomials in UOV-based signature schemes
is far from being complete. New sparse variants can be introduced and com-
bined with schemes like MAYO and SNOVA, to further reduce public key sizes.

3A UOV instance with a oil space of such dimension would be insecure, but this is not of
importance here, since the challenge for the adversary is only to craft two public keys with
the required properties.

5.3. Future Research Directions 75

Providing a security reduction of a newly designed sparse variant to the case
of random polynomials would be desirable, and important to increase the trust
in these optimized variants.

Currently, we do not see any open question when it comes to the BUFF no-
tions of UOV-based signature schemes. As elaborated above, the plain schemes
do only satisfy MBS security. The PS-3 transform, as intrinsically applied by
PROV and MQ-Sign-RR, offers a lightweight solution to achieve all remaining
BUFF notions, except M-S-UEO, as proven by Düzlü and Struck in [DS24].
If one wants to fulfill this additional feature as well, it is necessary to apply
the BUFF transform, which increases the signature size by the length of a
hash output. To this date, we are not aware of any use case, where a protocol
relies on M-S-UEO security. The BUFF security of newly proposed UOV-based
schemes needs to be reassessed in case major modifications are applied to the
scheme, which might impact the security analysis. This would be the case if the
method of deriving the target value t or the strategy of verifying a signature
would change fundamentally. Until, there are no indications for this to happen.

6

Conclusion

The strive for secure and efficient PQC algorithms is not yet complete. The
third round of NIST’s PQC standardization process ended in July 2022 with
the selection of one lattice-based KEM, two lattice-based signature schemes
and one hash-based signature scheme. From this point, the standardization
effort followed two different paths. For KEMs, the process continued with a
fourth round, including three code-based and one isogeny-based KEM. During
the fourth round, the isogeny-based candidate got broken completely and in
the end, the code-based candidate HQC got selected for standardization in
March 2025. For signature schemes, a whole new selection process started in
2023, with 14 signature schemes remaining in the process at the time of writing
this thesis in May 2025. Among them are four UOV-based signature schemes.
These schemes are of great interest for the cryptographic community, since
they offer the best combined performance numbers with respect to signature
size, signing time, and verification time. Thus, they would not only present a
valuable alternative, in case the security of lattice-based schemes is harmed by
cryptanalytic breakthroughs, but even represent the preferable choice in certain
applications, where short signatures and efficient signing times are crucial.

There are several research branches that need to be addressed in order to
raise the trust in UOV-based signature schemes and get them ready for standard-
ization and practical deployment. First and foremost, further mathematical
in-depth security analysis for the currently considered UOV-based schemes is
needed. The trust in multivariate cryptography is weakened due to the breaks
of Rainbow, LUOV, GeMSS, and many more variations of multivariate schemes.
Only profound cryptanalysis of the schemes and their underlying assumptions
can either strengthen the confidence or reveal further vulnerabilities. This also
holds for the numerous attempts to reduce the public key size of UOV-based
schemes, either by introducing modifications to the signature schemes itself or
by utilizing sparse instead of random equations. Many of them proved to be
insecure, since they were vulnerable to individualized attacks or more general
approaches such as rank attacks.

Another hurdle that needs to be tackled is the resistance of UOV-based
schemes against physical attacks. This thesis has shown that the available
implementations are all vulnerable to a substantial amount of fault injection
and side-channel attacks. While we believe that fault tolerance can be improved

77

78 Conclusion

by dedicated countermeasures without dramatically impacting efficiency, the
case for side-channel attacks and especially power analysis seems more severe.
Established countermeasures like shuffling and masking can be implemented
in a quite straightforward way, due to the many linear operations present in
the cryptographic algorithms. However, in particular masking introduces quite
a severe overhead and impairs the efficiency of the scheme. Even more, it is
not guaranteed that these countermeasures will prevent more sophisticated and
elaborate attacks with advanced analysis methods and deep-learning approaches.
Further research on both, optimized protected implementations as well as newly
designed attacks to break or analyze these protections, is mandatory to evaluate
how the physical attack resistance of UOV-based signature schemes compares
to other families, e.g., code-based and lattice-based schemes.

Bibliography

[ARR03] Dakshi Agrawal, Josyula R. Rao, and Pankaj Rohatgi. “Multi-
channel Attacks”. In: Cryptographic Hardware and Embedded Sys-
tems - CHES 2003, 5th International Workshop, Cologne, Ger-
many, September 8-10, 2003, Proceedings. 2003. doi: 10.1007/
978-3-540-45238-6_2.

[ACDG03] Mehdi-Laurent Akkar, Nicolas T. Courtois, Romain Duteuil, and
Louis Goubin. “A Fast and Secure Implementation of Sflash”. In:
Public Key Cryptography - PKC 2003, 6th International Workshop
on Theory and Practice in Public Key Cryptography, Miami, FL,
USA, January 6-8, 2003, Proceedings. 2003. doi: 10.1007/3-540-
36288-6_20.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. “Lucky Thirteen:
Breaking the TLS and DTLS Record Protocols”. In: 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA,
USA, May 19-22, 2013. 2013. doi: 10.1109/SP.2013.42.

[ACK25] Thomas Aulbach, Fabio Campos, and Juliane Krämer. “SoK: On
the Physical Security of UOV-based Signature Schemes”. In: In-
ternational Conference on Post-Quantum Cryptography. Springer.
2025.

[ACK+23] Thomas Aulbach, Fabio Campos, Juliane Krämer, Simona
Samardjiska, and Marc Stöttinger. “Separating Oil and Vinegar
with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack
on UOV”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 3 (2023).

[ADM+24] Thomas Aulbach, Samed Düzlü, Michael Meyer, Patrick Struck,
and Maximiliane Weishäupl. “Hash Your Keys Before Signing:
BUFF Security of the Additional NIST PQC Signatures”. In: In-
ternational Conference on Post-Quantum Cryptography. Springer.
2024.

[AKK+22] Thomas Aulbach, Tobias Kovats, Juliane Krämer, and Soundes
Marzougui. “Recovering Rainbow’s Secret Key with a First-Order
Fault Attack”. In: International Conference on Cryptology in
Africa. Springer. 2022.

79

https://doi.org/10.1007/978-3-540-45238-6_2
https://doi.org/10.1007/978-3-540-45238-6_2
https://doi.org/10.1007/3-540-36288-6_20
https://doi.org/10.1007/3-540-36288-6_20
https://doi.org/10.1109/SP.2013.42

80 Bibliography

[AMS+24] Thomas Aulbach, Soundes Marzougui, Jean-Pierre Seifert, and
Vincent Quentin Ulitzsch. “MAYo or MAY-not: Exploring imple-
mentation security of the post-quantum signature scheme MAYO
against physical attacks”. In: 2024 Workshop on Fault Detection
and Tolerance in Cryptography (FDTC). IEEE. 2024.

[AST24] Thomas Aulbach, Simona Samardjiska, and Monika Trimoska.
“Practical Key-Recovery Attack on MQ-Sign and More”. In: In-
ternational Conference on Post-Quantum Cryptography. Springer.
2024.

[Aye15] Ayer, Andrew. Duplicate Signature Key Selection Attack in Let’s
Encrypt. https://www.agwa.name/blog/post/duplicate_
signature_key_selection_attack_in_lets_encrypt. 2015.

[BPO+20] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider,
and Tim Güneysu. “High-Speed Masking for Polynomial Compar-
ison in Lattice-based KEMs”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 3 (2020). doi: 10.13154/TCHES.V2020.I3.483-
507.

[BV24] Gustavo Banegas and Ricardo Villanueva-Polanco. “A Fault Anal-
ysis on SNOVA”. In: Cryptology ePrint Archive, Paper 2024/1883
(2024). https://eprint.iacr.org/2024/1883.

[BDH+97] Feng Bao, Robert H. Deng, Yongfei Han, Albert B. Jeng, Ar-
cot Desai Narasimhalu, and Teow-Hin Ngair. “Breaking Public
Key Cryptosystems on Tamper Resistant Devices in the Pres-
ence of Transient Faults”. In: Security Protocols, 5th International
Workshop, Paris, France, April 7-9, 1997, Proceedings. 1997. doi:
10.1007/BFB0028164.

[BCN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall,
and Claire Whelan. “The Sorcerer’s Apprentice Guide to Fault
Attacks”. In: Proc. IEEE 2 (2006). doi: 10.1109/JPROC.2005.
862424.

[BBE+18] Gilles Barthe, Sonia Belaid, Thomas Espitau, Pierre-Alain Fouque,
Benjamin Grégoire, Mélissa Rossi, and Mehdi Tibouchi. “Mask-
ing the GLP Lattice-Based Signature Scheme at Any Order”. In:
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual In-
ternational Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II. 2018. doi: 10.1007/978- 3- 319- 78375-
8_12.

[BBE+19] Gilles Barthe, Sonia Belaid, Thomas Espitau, Pierre-Alain Fouque,
Mélissa Rossi, and Mehdi Tibouchi. “GALACTICS: Gaussian
Sampling for Lattice-Based Constant- Time Implementation of
Cryptographic Signatures, Revisited”. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019. 2019.
doi: 10.1145/3319535.3363223.

https://www.agwa.name/blog/post/duplicate_signature_key_selection_attack_in_lets_encrypt
https://www.agwa.name/blog/post/duplicate_signature_key_selection_attack_in_lets_encrypt
https://doi.org/10.13154/TCHES.V2020.I3.483-507
https://doi.org/10.13154/TCHES.V2020.I3.483-507
https://eprint.iacr.org/2024/1883
https://doi.org/10.1007/BFB0028164
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1145/3319535.3363223

Bibliography 81

[BBB+25] Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin,
Anupam Chattopadhyay, Tee Kiah Chia, Matthias J. Kannwis-
cher, Franziskus Kiefer, Thales B. Paiva, Prasanna Ravi, and
Goutam Tamvada. “KyberSlash: Exploiting secret-dependent di-
vision timings in Kyber implementations”. In: IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2 (2025). doi: 10.46586/TCHES.V2025.
I2.209-234.

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo-Yin Yang. “High-Speed High-Security Signatures”. In: Cryp-
tographic Hardware and Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings. 2011. doi: 10.1007/978-3-642-23951-9_9.

[BFP11] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. “Crypt-
analysis of Multivariate and Odd-Characteristic HFE Variants”.
In: Public Key Cryptography - PKC 2011 - 14th International
Conference on Practice and Theory in Public Key Cryptogra-
phy, Taormina, Italy, March 6-9, 2011. Proceedings. 2011. doi:
10.1007/978-3-642-19379-8_27.

[Beu20] Ward Beullens. “Sigma Protocols for MQ, PKP and SIS, and Fishy
Signature Schemes”. In: Advances in Cryptology - EUROCRYPT
2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part III. 2020. doi: 10.1007/978-3-
030-45727-3_7.

[Beu21a] Ward Beullens. “Improved Cryptanalysis of UOV and Rainbow”.
In: Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, October 17-21, 2021, Pro-
ceedings, Part I. 2021. doi: 10.1007/978-3-030-77870-5_13.

[Beu21b] Ward Beullens. “MAYO: Practical Post-quantum Signatures from
Oil-and-Vinegar Maps”. In: Selected Areas in Cryptography - 28th
International Conference, SAC 2021, Virtual Event, September 29
- October 1, 2021, Revised Selected Papers. 2021. doi: 10.1007/
978-3-030-99277-4_17.

[Beu22] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Lap-
top”. In: Advances in Cryptology - CRYPTO 2022 - 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Bar-
bara, CA, USA, August 15-18, 2022, Proceedings, Part II. 2022.
doi: 10.1007/978-3-031-15979-4_16.

[Beu25] Ward Beullens. “Improved Cryptanalysis of SNOVA”. In: Ad-
vances in Cryptology - EUROCRYPT 2025 - 44th Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, Madrid, Spain, May 4-8, 2025, Proceedings,
Part VI. 2025. doi: 10.1007/978-3-031-91095-1_10.

[BCC+23] Ward Beullens, Fabio Campos, Sophía Celi, Basil Hess, and
Matthias J. Kannwischer. MAYO. Tech. rep. National Institute
of Standards and Technology, 2023.

https://doi.org/10.46586/TCHES.V2025.I2.209-234
https://doi.org/10.46586/TCHES.V2025.I2.209-234
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-19379-8_27
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-031-91095-1_10

82 Bibliography

[BCD+23] Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong,
Matthias J. Kannwischer, Jacques Patarin, Bo-Yuan Peng, Dieter
Schmidt, Cheng-Jhih Shih, Chengdong Tao, and Bo-Yin Yang.
UOV. Tech. rep. National Institute of Standards and Technology,
2023.

[BP17] Ward Beullens and Bart Preneel. “Field Lifting for Smaller UOV
Public Keys”. In: Progress in Cryptology - INDOCRYPT 2017 -
18th International Conference on Cryptology in India, Chennai,
India, December 10-13, 2017, Proceedings. 2017. doi: 10.1007/
978-3-319-71667-1_12.

[BPSV19] Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Ver-
cauteren. LUOV. Tech. rep. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/round-2- submissions. Na-
tional Institute of Standards and Technology, 2019.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöp-
pelmann, and Michiel Van Beirendonck. “Attacking and Defend-
ing Masked Polynomial Comparison for Lattice-Based Cryptogra-
phy”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 3 (2021).
doi: 10.46586/TCHES.V2021.I3.334-359.

[BMM00] Ingrid Biehl, Bernd Meyer, and Volker Müller. “Differential Fault
Attacks on Elliptic Curve Cryptosystems”. In: Advances in Cryp-
tology - CRYPTO 2000, 20th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2000,
Proceedings. 2000. doi: 10.1007/3-540-44598-6_8.

[BS97] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret
Key Cryptosystems”. In: Advances in Cryptology - CRYPTO ’97,
17th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 1997, Proceedings. 1997. doi: 10.
1007/BFB0052259.

[BBK+17] Nina Bindel, Johannes Buchmann, Juliane Krämer, Heiko Mantel,
Johannes Schickel, and Alexandra Weber. “Bounding the Cache-
Side-Channel Leakage of Lattice-Based Signature Schemes Using
Program Semantics”. In: Foundations and Practice of Security -
10th International Symposium, FPS 2017, Nancy, France, October
23-25, 2017, Revised Selected Papers. 2017. doi: 10.1007/978-3-
319-75650-9_15.

[BM99] Simon Blake-Wilson and Alfred Menezes. “Unknown Key-Share
Attacks on the Station-to-Station (STS) Protocol”. In: Public
Key Cryptography, Second International Workshop on Practice
and Theory in Public Key Cryptography, PKC ’99, Kamakura,
Japan, March 1-3, 1999, Proceedings. 1999. doi: 10.1007/3-540-
49162-7_12.

[BS03] Johannes Blömer and Jean-Pierre Seifert. “Fault Based Crypt-
analysis of the Advanced Encryption Standard (AES)”. In: Fi-
nancial Cryptography, 7th International Conference, FC 2003,
Guadeloupe, French West Indies, January 27-30, 2003, Revised
Papers. 2003. doi: 10.1007/978-3-540-45126-6_12.

https://doi.org/10.1007/978-3-319-71667-1_12
https://doi.org/10.1007/978-3-319-71667-1_12
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://doi.org/10.46586/TCHES.V2021.I3.334-359
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1007/BFB0052259
https://doi.org/10.1007/BFB0052259
https://doi.org/10.1007/978-3-319-75650-9_15
https://doi.org/10.1007/978-3-319-75650-9_15
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/978-3-540-45126-6_12

Bibliography 83

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the
Importance of Checking Cryptographic Protocols for Faults (Ex-
tended Abstract)”. In: Advances in Cryptology - EUROCRYPT
’97, International Conference on the Theory and Application of
Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceeding. 1997. doi: 10.1007/3-540-69053-0_4.

[BWP05] An Braeken, Christopher Wolf, and Bart Preneel. “A Study of the
Security of Unbalanced Oil and Vinegar Signature Schemes”. In:
Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track
at the RSA Conference 2005, San Francisco, CA, USA, February
14-18, 2005, Proceedings. 2005. doi: 10.1007/978-3-540-30574-
3_4.

[BCJZ21] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang
Zhao. “The Provable Security of Ed25519: Theory and Practice”.
In: 42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021. 2021. doi: 10.1109/
SP40001.2021.00042.

[BBPS24] Pierre Briaud, Maxime Bros, Ray A. Perlner, and Daniel Smith-
Tone. “Practical Attack on All Parameters of the DME Signa-
ture Scheme”. In: Advances in Cryptology - EUROCRYPT 2024
- 43rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zurich, Switzerland, May
26-30, 2024, Proceedings, Part VI. 2024. doi: 10.1007/978-3-
031-58754-2_1.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yu-
val Yarom. “Flush, Gauss, and Reload - A Cache Attack on the
BLISS Lattice-Based Signature Scheme”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2016 - 18th International
Conference, Santa Barbara, CA, USA, August 17-19, 2016, Pro-
ceedings. 2016. doi: 10.1007/978-3-662-53140-2_16.

[BP18] Leon Groot Bruinderink and Peter Pessl. “Differential Fault At-
tacks on Deterministic Lattice Signatures”. In: IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 3 (2018). doi: 10.13154/TCHES.V2018.
I3.21-43.

[BSI24] Bundesamt für Sicherheit in der Informationstechnik. Status of
quantum computer development. https://www.bsi.bund.de/
SharedDocs / Downloads / DE / BSI / Publikationen / Studien /
Quantencomputer/Entwicklungstand_QC_V_2_1.pdf. 2024.

[CSV17] Daniel Cabarcas, Daniel Smith-Tone, and Javier A. Verbel. “Key
Recovery Attack for ZHFE”. In: Post-Quantum Cryptography -
8th International Workshop, PQCrypto 2017, Utrecht, The Nether-
lands, June 26-28, 2017, Proceedings. 2017. doi: 10.1007/978-
3-319-59879-6_17.

[CFM+20] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat,
Jacques Patarin, Ludovic Perret, and Jocelyn Ryckeghem. GeMSS.
Tech. rep. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-

https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-540-30574-3_4
https://doi.org/10.1007/978-3-540-30574-3_4
https://doi.org/10.1109/SP40001.2021.00042
https://doi.org/10.1109/SP40001.2021.00042
https://doi.org/10.1007/978-3-031-58754-2_1
https://doi.org/10.1007/978-3-031-58754-2_1
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.13154/TCHES.V2018.I3.21-43
https://doi.org/10.13154/TCHES.V2018.I3.21-43
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.pdf
https://doi.org/10.1007/978-3-319-59879-6_17
https://doi.org/10.1007/978-3-319-59879-6_17
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

84 Bibliography

standardization/round-3-submissions. National Institute of
Standards and Technology, 2020.

[CHR+16] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. “From 5-Pass MQ -Based Iden-
tification to MQ -Based Signatures”. In: Advances in Cryptology
- ASIACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II. 2016.
doi: 10.1007/978-3-662-53890-6_5.

[CVM+21] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David
F. Oswald, and Flavio D. Garcia. “VoltPillager: Hardware-based
fault injection attacks against Intel SGX Enclaves using the SVID
voltage scaling interface”. In: 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021. 2021.

[CAC18] Chinese Association for Cryptologic Research (CACR). CACR
post-quantum competition. https://www.cacrnet.org.cn/site/
content/854.html. 2018.

[CHH+23] Jolijn Cottaar, Kathrin Hövelmanns, Andreas Hülsing, Tanja
Lange, Mohammad Mahzoun, Alex Pellegrini, Alberto Ravagnani,
Sven Schäge, Monika Trimoska, and Benne de Weger. “Report on
evaluation of KpqC candidates”. In: Cryptology ePrint Archive,
Paper 2023/1853 (2023). https://eprint.iacr.org/2023/
1853.

[CDF+21] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and
Christian Janson. “BUFFing signature schemes beyond unforge-
ability and the case of post-quantum signatures”. In: 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA,
USA, 24-27 May 2021. 2021. doi: 10.1109/SP40001.2021.00093.

[DH76] Whitfield Diffie and Martin E. Hellman. “New directions in cryp-
tography”. In: IEEE Trans. Inf. Theory 6 (1976). doi: 10.1109/
TIT.1976.1055638.

[DCP+20] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt,
Bo-Yin Yang, Matthias J. Kannwischer, and Jacques Patarin.
Rainbow. Tech. rep. available at https : / / csrc . nist . gov /
projects / post - quantum - cryptography / post - quantum -
cryptography-standardization/round-3- submissions. Na-
tional Institute of Standards and Technology, 2020.

[DDS+20] Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng
Zhang. “Cryptanalysis of the Lifted Unbalanced Oil Vinegar Sig-
nature Scheme”. In: Advances in Cryptology - CRYPTO 2020 -
40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
III. 2020. doi: 10.1007/978-3-030-56877-1_10.

[DGG+23] Jintai Ding, Boru Gong, Hao Guo, Xiaoou He, Yi Jin, Yuansheng
Pan, Dieter Schmidt, Chengdong Tao, Danli Xie, and Ziyu Yang
Bo-Yin Zhao. TUOV. Tech. rep. National Institute of Standards
and Technology, 2023.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-662-53890-6_5
https://www.cacrnet.org.cn/site/content/854.html
https://www.cacrnet.org.cn/site/content/854.html
https://eprint.iacr.org/2023/1853
https://eprint.iacr.org/2023/1853
https://doi.org/10.1109/SP40001.2021.00093
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-030-56877-1_10

Bibliography 85

[DS05a] Jintai Ding and Dieter Schmidt. “Rainbow, a New Multivari-
able Polynomial Signature Scheme”. In: Applied Cryptography and
Network Security, Third International Conference, ACNS 2005,
New York, NY, USA, June 7-10, 2005, Proceedings. 2005. doi:
10.1007/11496137_12.

[DS05b] Jintai Ding and Dieter Schmidt. “Rainbow, a New Multivari-
able Polynomial Signature Scheme”. In: Applied Cryptography and
Network Security, Third International Conference, ACNS 2005,
New York, NY, USA, June 7-10, 2005, Proceedings. 2005. doi:
10.1007/11496137_12.

[DFHS24] Jelle Don, Serge Fehr, Yu-Hsuan Huang, and Patrick Struck. “On
the (In)Security of the BUFF Transform”. In: Advances in Cryp-
tology - CRYPTO 2024 - 44th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2024, Pro-
ceedings, Part I. 2024. doi: 10.1007/978-3-031-68376-3_8.

[DFSS07] Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques
Stern. “Practical Cryptanalysis of SFLASH”. In: Advances in
Cryptology - CRYPTO 2007, 27th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2007,
Proceedings. 2007. doi: 10.1007/978-3-540-74143-5_1.

[DFF24] Samed Düzlü, Rune Fiedler, and Marc Fischlin. “BUFFing FAL-
CON Without Increasing the Signature Size”. In: Selected Areas in
Cryptography - SAC 2024 - 31st International Conference, Mon-
treal, QC, Canada, August 28-30, 2024, Revised Selected Papers,
Part I. 2024. doi: 10.1007/978-3-031-82852-2_6.

[DS24] Samed Düzlü and Patrick Struck. “The Role of Message-Bound
Signatures for the Beyond UnForgeability Features and Weak
Keys”. In: Information Security - 27th International Conference,
ISC 2024, Arlington, VA, USA, October 23-25, 2024, Proceedings,
Part II. 2024. doi: 10.1007/978-3-031-75764-8_4.

[Eck85] Wim van Eck. “Electromagnetic radiation from video display
units: An eavesdropping risk?” In: Comput. Secur. 4 (1985). doi:
10.1016/0167-4048(85)90046-X.

[ECR25] ECRYPT. eBACS: ECRYPT Benchmarking of Cryptographic Sys-
tems. https://bench.cr.yp.to/results- sign.html. 2025.
(Visited on 05/24/2025).

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoit Gérard, and Mehdi
Tibouchi. “Side-Channel Attacks on BLISS Lattice-Based Signa-
tures: Exploiting Branch Tracing against strongSwan and Elec-
tromagnetic Emanations in Microcontrollers”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017. 2017. doi: 10.1145/3133956.3134028.

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: Practical
solutions to identification and signature problems”. In: Conference
on the theory and application of cryptographic techniques. Springer.
1986.

https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-031-68376-3_8
https://doi.org/10.1007/978-3-540-74143-5_1
https://doi.org/10.1007/978-3-031-82852-2_6
https://doi.org/10.1007/978-3-031-75764-8_4
https://doi.org/10.1016/0167-4048(85)90046-X
https://bench.cr.yp.to/results-sign.html
https://doi.org/10.1145/3133956.3134028

86 Bibliography

[FGS05] Pierre-Alain Fouque, Louis Granboulan, and Jacques Stern. “Dif-
ferential Cryptanalysis for Multivariate Schemes”. In: Advances
in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings. 2005.
doi: 10.1007/11426639_20.

[FY79] Aviezri S. Fraenkel and Yaacov Yesha. “Complexity of problems
in games, graphs and algebraic equations”. In: Discrete Applied
Mathematics 1-2 (1979).

[FI23] Hiroki Furue and Yasuhiko Ikematsu. “A New Security Analysis
Against MAYO and QR-UOV Using Rectangular MinRank At-
tack”. In: Advances in Information and Computer Security - 18th
International Workshop on Security, IWSEC 2023, Yokohama,
Japan, August 29-31, 2023, Proceedings. 2023. doi: 10.1007/978-
3-031-41326-1_6.

[FI25] Hiroki Furue and Yasuhiko Ikematsu. “A New Cryptanalysis
Against UOV-Based Variants MAYO, QR-UOV and VOX”. In:
IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences 3 (2025).

[FIH+23] Hiroki Furue, Yasuhiko Ikematsu, Fumitaka Hoshino, Tsuyoshi
Takagi, Kan Yasuda, Toshiyuki Miyazawa, Tsunekazu Saito, and
Akira Nagai. QR-UOV. Tech. rep. National Institute of Standards
and Technology, 2023.

[FIKT21] Hiroki Furue, Yasuhiko Ikematsu, Yutaro Kiyomura, and Tsuyoshi
Takagi. “A New Variant of Unbalanced Oil and Vinegar Using
Quotient Ring: QR-UOV”. In: Advances in Cryptology - ASI-
ACRYPT 2021 - 27th International Conference on the Theory
and Application of Cryptology and Information Security, Sin-
gapore, December 6-10, 2021, Proceedings, Part IV. 2021. doi:
10.1007/978-3-030-92068-5_7.

[FKNT22] Hiroki Furue, Yutaro Kiyomura, Tatsuya Nagasawa, and Tsuyoshi
Takagi. “A New Fault Attack on UOV Multivariate Signature
Scheme”. In: Post-Quantum Cryptography - 13th International
Workshop, PQCrypto 2022, Virtual Event, September 28-30, 2022,
Proceedings. 2022. doi: 10.1007/978-3-031-17234-2_7.

[Gam85] Taher El Gamal. “A public key cryptosystem and a signature
scheme based on discrete logarithms”. In: IEEE Trans. Inf. Theory
4 (1985). doi: 10.1109/TIT.1985.1057074.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. “Elec-
tromagnetic Analysis: Concrete Results”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2001, Third International
Workshop, Paris, France, May 14-16, 2001, Proceedings. 2001. doi:
10.1007/3-540-44709-1_21.

[GJ79] Michael R. Garey and David S. Johnson. Computers and in-
tractability: A Guide to the Theory of NP-Completeness. 1979.

https://doi.org/10.1007/11426639_20
https://doi.org/10.1007/978-3-031-41326-1_6
https://doi.org/10.1007/978-3-031-41326-1_6
https://doi.org/10.1007/978-3-030-92068-5_7
https://doi.org/10.1007/978-3-031-17234-2_7
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/3-540-44709-1_21

Bibliography 87

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall.
“Infective Computation and Dummy Rounds: Fault Protection
for Block Ciphers without Check-before-Output”. In: Progress
in Cryptology - LATINCRYPT 2012 - 2nd International Con-
ference on Cryptology and Information Security in Latin Amer-
ica, Santiago, Chile, October 7-10, 2012. Proceedings. 2012. doi:
10.1007/978-3-642-33481-8_17.

[GT04] Christophe Giraud and Hugues Thiebeauld. “A Survey on
Fault Attacks”. In: Smart Card Research and Advanced Applica-
tions VI, IFIP 18th World Computer Congress, TC8/WG8.8 &
TC11/WG11.2 Sixth International Conference on Smart Card Re-
search and Advanced Applications (CARDIS), 22-27 August 2004,
Toulouse, France. 2004. doi: 10.1007/1-4020-8147-2_11.

[Goo23] Google Quantum AI. Our quantum computing roadmap. https:
//quantumai.google/roadmap. 2023. (Visited on 01/13/2025).

[GCF+23] Louis Goubin, Benoît Cogliati, Jean-Charles Faugére, Pierre-Alain
Fouque, Robin Larrieu, Gilles Macario-Rat, Brice Minaud, and
Jacques Patarin. PROV. Tech. rep. National Institute of Stan-
dards and Technology, 2023.

[GC00] Louis Goubin and Nicolas T. Courtois. “Cryptanalysis of the
TTM Cryptosystem”. In: Advances in Cryptology - ASIACRYPT
2000, 6th International Conference on the Theory and Application
of Cryptology and Information Security, Kyoto, Japan, December
3-7, 2000, Proceedings. 2000. doi: 10.1007/3-540-44448-3_4.

[GJP+24] Hao Guo, Yi Jin, Yuansheng Pan, Xiaoou He, Boru Gong, and
Jintai Ding. “Practical and Theoretical Cryptanalysis of VOX”.
In: International Conference on Post-Quantum Cryptography.
Springer. 2024.

[HIT18] Yasufumi Hashimoto, Yasuhiko Ikematsu, and Tsuyoshi Takagi.
“Chosen message attack on multivariate signature ELSA at Asi-
acrypt 2017”. In: Advances in Information and Computer Security:
13th International Workshop on Security, IWSEC 2018, Sendai,
Japan, September 3-5, 2018, Proceedings 13. Springer. 2018.

[HTS11] Yasufumi Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai.
“General Fault Attacks on Multivariate Public Key Cryptosys-
tems”. In: Post-Quantum Cryptography - 4th International Work-
shop, PQCrypto 2011, Taipei, Taiwan, November 29 - December 2,
2011. Proceedings. 2011. doi: 10.1007/978-3-642-25405-5_1.

[IBM24] IBM Quantum. Technology for the quantum future. https://www.
ibm.com/quantum/technology. 2024. (Visited on 01/13/2025).

[IJY23] Yasuhiko Ikematsu, Hyungrok Jo, and Takanori Yasuda. “A Secu-
rity Analysis on MQ-Sign”. In: Information Security Applications
- 24th International Conference, WISA 2023, Jeju Island, South
Korea, August 23-25, 2023, Revised Selected Papers. 2023. doi:
10.1007/978-981-99-8024-6_4.

https://doi.org/10.1007/978-3-642-33481-8_17
https://doi.org/10.1007/1-4020-8147-2_11
https://quantumai.google/roadmap
https://quantumai.google/roadmap
https://doi.org/10.1007/3-540-44448-3_4
https://doi.org/10.1007/978-3-642-25405-5_1
https://www.ibm.com/quantum/technology
https://www.ibm.com/quantum/technology
https://doi.org/10.1007/978-981-99-8024-6_4

88 Bibliography

[JCCS19] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf
Sasse. “Seems Legit: Automated Analysis of Subtle Attacks on
Protocols that Use Signatures”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019. 2019. doi: 10.
1145/3319535.3339813.

[Jaq24] Samuel Jaques. Landscape of quantum computing in 2024. https:
//sam-jaques.appspot.com/quantum_landscape_2024. 2024.
(Visited on 01/13/2025).

[JD24a] Sönke Jendral and Elena Dubrova. “MAYO Key Recovery by
Fixing Vinegar Seeds”. In: IACR Commun. Cryptol. 4 (2024).
doi: 10.62056/AB0LJBKRZ.

[JD24b] Sönke Jendral and Elena Dubrova. “Single-trace side-channel at-
tacks on MAYO exploiting leaky modular multiplication”. In:
Cryptology ePrint Archive, Paper 2024/1850 (2024). https://
eprint.iacr.org/2024/1850.

[KAA22] Emre Karabulut, Erdem Alkim, and Aydin Aysu. “Efficient, Flex-
ible, and Constant-Time Gaussian Sampling Hardware for Lat-
tice Cryptography”. In: IEEE Trans. Computers 8 (2022). doi:
10.1109/TC.2021.3107729.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryp-
tography, Second Edition. 2014.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
“Flipping bits in memory without accessing them: An experimen-
tal study of DRAM disturbance errors”. In: ACM/IEEE 41st
International Symposium on Computer Architecture, ISCA 2014,
Minneapolis, MN, USA, June 14-18, 2014. 2014. doi: 10.1109/
ISCA.2014.6853210.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. “Unbalanced
Oil and Vinegar Signature Schemes”. In: Advances in Cryptology
- EUROCRYPT. 1999. doi: 10.1007/3-540-48910-X_15.

[KS98] Aviad Kipnis and Adi Shamir. “Cryptanalysis of the Oil & Vinegar
Signature Scheme”. In: Advances in Cryptology - CRYPTO ’98,
18th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 23-27, 1998, Proceedings. 1998. doi: 10.
1007/BFB0055733.

[Kob87] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of
computation 177 (1987).

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
“Spectre Attacks: Exploiting Speculative Execution”. In: 2019
IEEE Symposium on Security and Privacy, SP 2019, San Fran-
cisco, CA, USA, May 19-23, 2019. 2019. doi: 10.1109/SP.2019.
00002.

https://doi.org/10.1145/3319535.3339813
https://doi.org/10.1145/3319535.3339813
https://sam-jaques.appspot.com/quantum_landscape_2024
https://sam-jaques.appspot.com/quantum_landscape_2024
https://doi.org/10.62056/AB0LJBKRZ
https://eprint.iacr.org/2024/1850
https://eprint.iacr.org/2024/1850
https://doi.org/10.1109/TC.2021.3107729
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BFB0055733
https://doi.org/10.1007/BFB0055733
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002

Bibliography 89

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems”. In: Advances in Cryp-
tology - CRYPTO ’96, 16th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings. 1996. doi: 10.1007/3-540-68697-5_9.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential
Power Analysis”. In: Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings. 1999. doi: 10.
1007/3-540-48405-1_25.

[KPLG24] Elisabeth Krahmer, Peter Pessl, Georg Land, and Tim Güneysu.
“Correction Fault Attacks on Randomized CRYSTALS-Dilithium”.
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 3 (2024). doi:
10.46586/TCHES.V2024.I3.174-199.

[KL19] Juliane Krämer and Mirjam Loiero. “Fault Attacks on UOV and
Rainbow”. In: Constructive Side-Channel Analysis and Secure De-
sign - 10th International Workshop, COSADE 2019, Darmstadt,
Germany, April 3-5, 2019, Proceedings. 2019. doi: 10.1007/978-
3-030-16350-1_11.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. “Melt-
down: Reading Kernel Memory from User Space”. In: 27th
USENIX Security Symposium, USENIX Security 2018, Balti-
more, MD, USA, August 15-17, 2018. 2018.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
analysis attacks - revealing the secrets of smart cards. 2007.

[MI88] Tsutomu Matsumoto and Hideki Imai. “Public Quadratic Polynominal-
Tuples for Efficient Signature-Verification and Message-Encryption”.
In: Advances in Cryptology - EUROCRYPT. 1988. doi: 10.1007/
3-540-45961-8_39.

[MBA+21] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj So-
morovsky, Johannes Mittmann, and Jörg Schwenk. “Raccoon At-
tack: Finding and Exploiting Most-Significant-Bit-Oracles in TLS-
DH(E)”. In: 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021. 2021.

[MDS99] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan.
“Power Analysis Attacks of Modular Exponentiation in Smart-
cards”. In: Cryptographic Hardware and Embedded Systems, First
International Workshop, CHES’99, Worcester, MA, USA, August
12-13, 1999, Proceedings. 1999. doi: 10.1007/3- 540- 48059-
5_14.

[Mil85] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: Ad-
vances in Cryptology - CRYPTO ’85, Santa Barbara, California,
USA, August 18-22, 1985, Proceedings. 1985. doi: 10.1007/3-
540-39799-X_31.

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.46586/TCHES.V2024.I3.174-199
https://doi.org/10.1007/978-3-030-16350-1_11
https://doi.org/10.1007/978-3-030-16350-1_11
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-48059-5_14
https://doi.org/10.1007/3-540-48059-5_14
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31

90 Bibliography

[MPS14] Dustin Moody, Ray A. Perlner, and Daniel Smith-Tone. “An
Asymptotically Optimal Structural Attack on the ABC Multivari-
ate Encryption Scheme”. In: Post-Quantum Cryptography - 6th
International Workshop, PQCrypto 2014, Waterloo, ON, Canada,
October 1-3, 2014. Proceedings. 2014. doi: 10.1007/978-3-319-
11659-4_11.

[Mos18] Michele Mosca. “Cybersecurity in an Era with Quantum Com-
puters: Will We Be Ready?” In: IEEE Secur. Priv. 5 (2018). doi:
10.1109/MSP.2018.3761723.

[MOG+20] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. “Plundervolt: Software-based
Fault Injection Attacks against Intel SGX”. In: 2020 IEEE Sympo-
sium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020. 2020. doi: 10.1109/SP40000.2020.00057.

[MIS20] Koksal Mus, Saad Islam, and Berk Sunar. “QuantumHammer: A
Practical Hybrid Attack on the LUOV Signature Scheme”. In:
CCS ’20: 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, USA, November 9-13, 2020.
2020. doi: 10.1145/3372297.3417272.

[NIST15] National Institute of Standards and Technology. SHA-3 Stan-
dard: Permutation-Based Hash and Extendable-Output Functions.
https://doi.org/10.6028/NIST.FIPS.202. 2015. (Visited on
02/12/2025).

[NIST17] National Institute of Standards and Technology. Call for Pro-
posals for the Post-Quantum Cryptography Standardization Pro-
cess. https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum - Cryptography / documents / call - for - proposals -
final-dec-2016.pdf. 2017.

[NIST22] National Institute of Standards and Technology. Call for Addi-
tional Digital Signature Schemes for the Post-Quantum Cryp-
tography Standardization Process. https : / / csrc . nist . gov /
csrc/media/Projects/pqc-dig-sig/documents/call-for-
proposals-dig-sig-sept-2022.pdf. 2022.

[NIST24] National Institute of Standards and Technology. Round 2 Ad-
ditional Signatures. https://csrc.nist.gov/projects/pqc-
dig-sig/round-2-additional-signatures. 2024. (Visited on
01/23/2025).

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim
Güneysu. “Practical CCA2-Secure and Masked Ring-LWE Imple-
mentation”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 1
(2018). doi: 10.13154/TCHES.V2018.I1.142-174.

[OTV04] Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuillaume. “On
the Importance of Protecting Delta in SFLASH against Side Chan-
nel Attacks”. In: International Conference on Information Tech-
nology: Coding and Computing (ITCC’04), Volume 2, April 5-7,
2004, Las Vegas, Nevada, USA. 2004. doi: 10.1109/ITCC.2004.
1286713.

https://doi.org/10.1007/978-3-319-11659-4_11
https://doi.org/10.1007/978-3-319-11659-4_11
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1145/3372297.3417272
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/projects/pqc-dig-sig/round-2-additional-signatures
https://csrc.nist.gov/projects/pqc-dig-sig/round-2-additional-signatures
https://doi.org/10.13154/TCHES.V2018.I1.142-174
https://doi.org/10.1109/ITCC.2004.1286713
https://doi.org/10.1109/ITCC.2004.1286713

Bibliography 91

[ØFR24] Morten Øygarden, Patrick Felke, and Håvard Raddum. “Analysis
of Multivariate Encryption Schemes: Application to Dob and C*”.
In: J. Cryptol. 3 (2024). doi: 10.1007/S00145-024-09501-W.

[ØFRC20] Morten Øygarden, Patrick Felke, Håvard Raddum, and Carlos Cid.
“Cryptanalysis of the Multivariate Encryption Scheme EFLASH”.
In: Topics in Cryptology - CT-RSA 2020 - The Cryptographers’
Track at the RSA Conference 2020, San Francisco, CA, USA,
February 24-28, 2020, Proceedings. 2020. doi: 10.1007/978-3-
030-40186-3_5.

[PSKH18] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han.
“Side-Channel Attacks on Post-Quantum Signature Schemes
based on Multivariate Quadratic Equations - Rainbow and UOV
-”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 3 (2018). doi:
10.13154/TCHES.V2018.I3.500-523.

[Pat95] Jacques Patarin. “Cryptanalysis of the Matsumoto and Imai Pub-
lic Key Scheme of Eurocrypt’88”. In: Advances in Cryptology -
CRYPTO. 1995. doi: 10.1007/3-540-44750-4_20.

[Pat96] Jacques Patarin. “Hidden Fields Equations (HFE) and Isomor-
phisms of Polynomials (IP): Two New Families of Asymmetric
Algorithms”. In: Advances in Cryptology - EUROCRYPT. 1996.
doi: 10.1007/3-540-68339-9_4.

[Pat97] Jacques Patarin. “The oil and vinegar algorithm for signatures”.
In: Dagstuhl Workshop on Cryptography, 1997. 1997.

[PCF+23] Jacques Patarin, Benoît Cogliati, Jean-Charles Faugére, Pierre-
Alain Fouque, Louis Goubin, Robin Larrieu, Gilles Macario-Rat,
and Brice Minaud. VOX. Tech. rep. National Institute of Stan-
dards and Technology, 2023.

[Péb24] Pierre Pébereau. “One Vector to Rule Them All: Key Recovery
from One Vector in UOV Schemes”. In: Post-Quantum Cryptogra-
phy - 15th International Workshop, PQCrypto 2024, Oxford, UK,
June 12-14, 2024, Proceedings, Part II. 2024. doi: 10.1007/978-
3-031-62746-0_5.

[PPS17] Ray A. Perlner, Albrecht Petzoldt, and Daniel Smith-Tone. “Total
Break of the SRP Encryption Scheme”. In: Selected Areas in
Cryptography - SAC 2017 - 24th International Conference, Ottawa,
ON, Canada, August 16-18, 2017, Revised Selected Papers. 2017.
doi: 10.1007/978-3-319-72565-9_18.

[PP21] Peter Pessl and Lukas Prokop. “Fault Attacks on CCA-secure
Lattice KEMs”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
2 (2021). doi: 10.46586/TCHES.V2021.I2.37-60.

[PTBW11] Albrecht Petzoldt, Enrico Thomae, Stanislav Bulygin, and
Christopher Wolf. “Small Public Keys and Fast Verification for
Multivariate Quadratic Public Key Systems”. In: Cryptographic
Hardware and Embedded Systems - CHES 2011 - 13th Interna-
tional Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings. 2011. doi: 10.1007/978-3-642-23951-9_31.

https://doi.org/10.1007/S00145-024-09501-W
https://doi.org/10.1007/978-3-030-40186-3_5
https://doi.org/10.1007/978-3-030-40186-3_5
https://doi.org/10.13154/TCHES.V2018.I3.500-523
https://doi.org/10.1007/3-540-44750-4_20
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/978-3-031-62746-0_5
https://doi.org/10.1007/978-3-031-62746-0_5
https://doi.org/10.1007/978-3-319-72565-9_18
https://doi.org/10.46586/TCHES.V2021.I2.37-60
https://doi.org/10.1007/978-3-642-23951-9_31

92 Bibliography

[PPRS23] Rafael del Pino, Thomas Prest, Mélissa Rossi, and Markku-Juhani
O. Saarinen. “High-Order Masking of Lattice Signatures in Quasi-
linear Time”. In: 44th IEEE Symposium on Security and Privacy,
SP 2023, San Francisco, CA, USA, May 21-25, 2023. 2023. doi:
10.1109/SP46215.2023.10179342.

[PSN21] David Pokorný, Petr Socha, and Martin Novotný. “Side-channel
attack on Rainbow post-quantum signature”. In: Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE 2021,
Grenoble, France, February 1-5, 2021. 2021. doi: 10 . 23919 /
DATE51398.2021.9474157.

[PS05] Thomas Pornin and Julien P. Stern. “Digital Signatures Do Not
Guarantee Exclusive Ownership”. In: Applied Cryptography and
Network Security, Third International Conference, ACNS 2005,
New York, NY, USA, June 7-10, 2005, Proceedings. 2005. doi:
10.1007/11496137_10.

[QRC21] Quantum resistant cryptography research center. Korean post-
quantum cryptographic competition. https://kpqc.or.kr/. 2021.

[RMR+21] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. “CrossTalk: Speculative Data Leaks Across
Cores Are Real”. In: 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021.
2021. doi: 10.1109/SP40001.2021.00020.

[RT25] Lars Ran and Monika Trimoska. “Shifting Our Knowledge of
MQ-Sign Security”. In: Post-Quantum Cryptography - 16th Inter-
national Workshop, PQCrypto 2025, Taipei, Taiwan, April 8-10,
2025, Proceedings, Part I. 2025. doi: 10.1007/978-3-031-86599-
2_8.

[RCDB24] Prasanna Ravi, Anupam Chattopadhyay, Jan-Pieter D’Anvers,
and Anubhab Baksi. “Side-channel and Fault-injection attacks
over Lattice-based Post-quantum Schemes (Kyber, Dilithium):
Survey and New Results”. In: ACM Trans. Embed. Comput. Syst.
2 (2024). doi: 10.1145/3603170.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and
Shivam Bhasin. “Generic Side-channel attacks on CCA-secure
lattice-based PKE and KEMs”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 3 (2020). doi: 10.13154/TCHES.V2020.I3.307-335.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A
Method for Obtaining Digital Signatures and Public-Key Cryp-
tosystems”. In: Commun. ACM 2 (1978). doi: 10.1145/359340.
359342.

[SSH11] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. “Public-
Key Identification Schemes Based on Multivariate Quadratic Poly-
nomials”. In: Advances in Cryptology - CRYPTO 2011 - 31st An-
nual Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2011. Proceedings. 2011. doi: 10.1007/978-3-642-22792-
9_40.

https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.23919/DATE51398.2021.9474157
https://doi.org/10.23919/DATE51398.2021.9474157
https://doi.org/10.1007/11496137_10
https://kpqc.or.kr/
https://doi.org/10.1109/SP40001.2021.00020
https://doi.org/10.1007/978-3-031-86599-2_8
https://doi.org/10.1007/978-3-031-86599-2_8
https://doi.org/10.1145/3603170
https://doi.org/10.13154/TCHES.V2020.I3.307-335
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-642-22792-9_40

Bibliography 93

[SMA+24] Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane
Krämer, and Jean-Pierre Seifert. “HaMAYO: A Fault-Tolerant
Reconfigurable Hardware Implementation of the MAYO Signa-
ture Scheme”. In: International Workshop on Constructive Side-
Channel Analysis and Secure Design. Springer. 2024.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim
Güneysu. “Efficiently Masking Binomial Sampling at Arbitrary
Orders for Lattice-Based Crypto”. In: Public-Key Cryptography
- PKC 2019 - 22nd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Beijing, China, April
14-17, 2019, Proceedings, Part II. 2019. doi: 10.1007/978-3-
030-17259-6_18.

[Sch89] Claus-Peter Schnorr. “Efficient Identification and Signatures for
Smart Cards”. In: Advances in Cryptology - CRYPTO ’89, 9th An-
nual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 20-24, 1989, Proceedings. 1989. doi: 10.1007/0-
387-34805-0_22.

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart
Cards”. In: J. Cryptol. 3 (1991). doi: 10.1007/BF00196725.

[SKA22] Kyung-Ah Shim, Jeongsu Kim, and Youngjoo An. MQ-Sign:
A New Post-Quantum Signature Scheme based on Multivariate
Quadratic Equations: Shorter and Faster. https://www.kpqc.or.
kr/images/pdf/MQ-Sign.pdf. 2022.

[SK20] Kyung-Ah Shim and Namhun Koo. “Algebraic Fault Analysis of
UOV and Rainbow With the Leakage of Random Vinegar Values”.
In: IEEE Trans. Inf. Forensics Secur. (2020). doi: 10.1109/TIFS.
2020.2969555.

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete
Logarithms and Factoring”. In: 35th Annual Symposium on Foun-
dations of Computer Science, Santa Fe, New Mexico, USA, 20-22
November 1994. 1994. doi: 10.1109/SFCS.1994.365700.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault
Induction Attacks”. In: Cryptographic Hardware and Embedded
Systems - CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers. 2002. doi:
10.1007/3-540-36400-5_2.

[SLKG23] Hauke Malte Steffen, Georg Land, Lucie Johanna Kogelheide,
and Tim Güneysu. “Breaking and Protecting the Crystal: Side-
Channel Analysis of Dilithium in Hardware”. In: Post-Quantum
Cryptography - 14th International Workshop, PQCrypto 2023, Col-
lege Park, MD, USA, August 16-18, 2023, Proceedings. 2023. doi:
10.1007/978-3-031-40003-2_25.

[SGB01] Rainer Steinwandt, Willi Geiselmann, and Thomas Beth. “A The-
oretical DPA-Based Cryptanalysis of the NESSIE Candidates
FLASH and SFLASH”. In: Information Security, 4th Interna-
tional Conference, ISC 2001, Malaga, Spain, October 1-3, 2001,
Proceedings. 2001. doi: 10.1007/3-540-45439-X_19.

https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF00196725
https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf
https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf
https://doi.org/10.1109/TIFS.2020.2969555
https://doi.org/10.1109/TIFS.2020.2969555
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/978-3-031-40003-2_25
https://doi.org/10.1007/3-540-45439-X_19

94 Bibliography

[SPMS02] Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel
P. Smart. “Flaws in Applying Proof Methodologies to Signature
Schemes”. In: Advances in Cryptology - CRYPTO 2002, 22nd An-
nual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 18-22, 2002, Proceedings. 2002. doi: 10.1007/3-
540-45708-9_7.

[TPD21] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. “Efficient
Key Recovery for All HFE Signature Variants”. In: Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryp-
tology Conference, CRYPTO 2021, Virtual Event, August 16-20,
2021, Proceedings, Part I. 2021. doi: 10.1007/978-3-030-84242-
0_4.

[Tec23] NewAE Technology. Repository of ChipWhisperer tool chain -
commit a9527b5. https://github.com/newaetech/chipwhisperer.
2023.

[TII25] Technology Innovation Institute. PQ-SORT: Post-Quantum Sig-
natures On-Ramp Tests. https://pqsort.tii.ae/. 2025. (Vis-
ited on 05/24/2025).

[TW12] Enrico Thomae and Christopher Wolf. “Cryptanalysis of enhanced
TTS, STS and all its variants, or: Why cross-terms are important”.
In: Progress in Cryptology-AFRICACRYPT 2012: 5th Interna-
tional Conference on Cryptology in Africa, Ifrance, Morocco, July
10-12, 2012. Proceedings 5. Springer. 2012.

[VKS11] Ingrid Verbauwhede, Dusko Karaklajic, and Jörn-Marc Schmidt.
“The Fault Attack Jungle - A Classification Model to Guide You”.
In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, FDTC 2011, Tokyo, Japan, September 29, 2011. 2011. doi:
10.1109/FDTC.2011.13.

[WCD+23] Lih-Chung Wang, Chun-Yen Chou, Jintai Ding, Yen-Liang Kuan,
Ming-Siou Li, Bo-Shu Tseng, Po-En Tseng, and Chia-Chun Wang.
SNOVA. Tech. rep. National Institute of Standards and Technol-
ogy, 2023.

[WPH+22] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Ho-
vav Shacham, Christopher W. Fletcher, and David Kohlbrenner.
“Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86”. In: 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022.
2022.

[Wes24] Bas Westerbaan. The state of the post-quantum Internet. https:
//blog.cloudflare.com/pq-2024/. 2024. (Visited on 01/27/2025).

[YC05] Bo-Yin Yang and Jiun-Ming Chen. “Building Secure Tame-like
Multivariate Public-Key Cryptosystems: The New TTS”. In: In-
formation Security and Privacy, 10th Australasian Conference,
ACISP 2005, Brisbane, Australia, July 4-6, 2005, Proceedings.
2005. doi: 10.1007/11506157_43.

https://doi.org/10.1007/3-540-45708-9_7
https://doi.org/10.1007/3-540-45708-9_7
https://doi.org/10.1007/978-3-030-84242-0_4
https://doi.org/10.1007/978-3-030-84242-0_4
https://github.com/newaetech/chipwhisperer
https://pqsort.tii.ae/
https://doi.org/10.1109/FDTC.2011.13
https://blog.cloudflare.com/pq-2024/
https://blog.cloudflare.com/pq-2024/
https://doi.org/10.1007/11506157_43

Bibliography 95

[YL17] Haibo Yi and Weijian Li. “On the Importance of Checking Multi-
variate Public Key Cryptography for Side-Channel Attacks: The
Case of enTTS Scheme”. In: Comput. J. 8 (2017). doi: 10.1093/
COMJNL/BXX010.

[YN18] Haibo Yi and Zhe Nie. “Side-channel security analysis of UOV
signature for cloud-based Internet of Things”. In: Future Gener.
Comput. Syst. (2018). doi: 10.1016/J.FUTURE.2018.04.083.

https://doi.org/10.1093/COMJNL/BXX010
https://doi.org/10.1093/COMJNL/BXX010
https://doi.org/10.1016/J.FUTURE.2018.04.083

A

Developing Physical Attacks

In this chapter, we include our contribution to the development of physical
attacks against UOV-based signature schemes.

Contents

A.1 Recovering Rainbow’s Secret Key with a First-Order Fault Attack 98
A.2 Separating Oil and Vinegar with a Single Trace 120
A.3 MAYo or MAY-not: Exploring Implementation Security of the

Post-Quantum Signature Scheme MAYO Against Physical Attacks146

The paper in Appendix A.1 is the publication Recovering Rainbow’s Secret
Key with a First-Order Fault Attack [AKK+22] in AFRICACRYPT’22.

Appendix A.2 contains the paper Separating Oil and Vinegar with a Single
Trace [ACK+23], published at TCHES’23.

In Appendix A.3 we include the FDTC’24 paper MAYo or MAY-not: Explor-
ing Implementation Security of the Post-Quantum Signature Scheme MAYO
Against Physical Attacks [AMS+24].

97

Recovering Rainbow’s Secret Key
with a First-Order Fault Attack

Thomas Aulbach1(B), Tobias Kovats2, Juliane Krämer1,
and Soundes Marzougui3

1 Universität Regensburg, Regensburg, Germany
{thomas.aulbach,juliane.kraemer}@ur.de

2 SBA Research, Vienna, Austria
tkovats@sba-research.org

3 Technische Universität Berlin, Berlin, Germany
soundes.marzougui@tu-berlin.de

Abstract. Rainbow, a multivariate digital signature scheme and third
round finalist in NIST’s PQC standardization process, is a layered ver-
sion of the unbalanced oil and vinegar (UOV) scheme. We introduce two
fault attacks, each focusing on one of the secret linear transformations
T and S used to hide the structure of the central map in Rainbow. The
first fault attack reveals a part of T and we prove that this is enough
to achieve a full key recovery with negligible computational effort for
all parameter sets of Rainbow. The second one unveils S, which can
be extended to a full key recovery by the Kipnis-Shamir attack. Our
work exposes the secret transformations used in multivariate signature
schemes as an important attack vector for physical attacks, which need
further protection. Our attacks target the optimized Cortex-M4 imple-
mentation and require only first-order instruction skips and a moderate
amount of faulted signatures.

Keywords: Rainbow · Fault injection attacks · Multivariate schemes ·
Post-quantum cryptography · Cortex M4 implementation

1 Introduction

Quantum computers pose a threat to public-key schemes based on the integer fac-
torization or the discrete logarithm problem, like the widely deployed RSA and
ECC. Since Shor published his famous algorithms [28] to solve these problems
in polynomial time, their security depends on the technical feasibility of large
scale quantum computers. Although there still is a certain amount of scepticism
about the possibility of quantum computers being capable of factorizing inte-
gers and solving the discrete logarithm for cryptographically relevant instances
in the upcoming decades [17,19,26], the National Institute of Standards and
Technology (NIST) states that:

“[...] regardless of whether we can estimate the exact time of the arrival of
the quantum computing era, we must begin now to prepare our information
security systems to be able to resist quantum computing” [1].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Batina and J. Daemen (Eds.): AFRICACRYPT 2022, LNCS 13503, pp. 348–368, 2022.
https://doi.org/10.1007/978-3-031-17433-9_15

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 349

Therefore, a standardization process for post-quantum, i.e., quantum-resistant
cryptographic algorithms was initiated. Currently five families of post-quantum
cryptography are being studied, each relying on different mathematical assump-
tions. Concerning signatures, the remaining candidates in the currently ongoing
third round of the standardization process mainly consist of lattice-based, hash-
based, and multivariate schemes.

The evaluation criteria of NIST are not only the security and performance
of the candidates, but also other properties such as resistance to side chan-
nel attacks and misuse resistance. Hence, NIST asked for efficient implementa-
tions that are protected against physical attacks, such as side channel and fault
attacks. In these attacks, an attacker does not exploit mathematical weaknesses
of a cryptographic scheme. Instead, in a side channel attack an attacker measures
physical information during the computation of a cryptographic algorithm that
she then analyzes to reveal secret data. In a fault attack, an attacker intention-
ally introduces faults into the computation such that it results in faulty outputs
that she can analyze to learn secret data. In a first-order fault attack, an attacker
induces a single fault during a computation, while in higher-order fault attacks,
at least two faults are induced in the same computation. Since this is technically
more complex, first-order faults are generally believed to be more realistic and,
hence, more practically relevant.

In this work, we study first-order fault attacks on Rainbow, a multivariate sig-
nature scheme that was selected as finalist in the NIST standardization [14,15].
We are aware of the significant improvements in mathematical cryptanalysis on
the multivariate signature schemes GeMSS and Rainbow that have been pub-
lished recently [3,4,30]. Especially the improved cryptanalytic approach pre-
sented by Beullens massively reduces the complexity of key recovery attacks
against Rainbow, in particular against the parameter set for security level I [4].
However, NIST announced that there will be a fourth round where further post-
quantum signature schemes can be submitted1. This became necessary since on
the one hand, for security and practicality reasons diversity of (post-quantum)
signatures is needed, while on the other hand the remaining signature candidates
in the current third round are mostly based on structured lattices. Thus, for the
fourth round NIST is especially interested in schemes that are not based on struc-
tured lattices and we expect that, despite the recent cryptanalytic results, other
multivariate schemes will be submitted. For instance, the well-studied scheme
UOV is likely to gain more attention soon, since it is explicitly not affected by
Beullens latest approach. Hence, we believe that our results are relevant for the
future development of multivariate signature schemes even if Rainbow turns out
to be insecure or even broken. Our results reveal attack vectors for and weak-
nesses of a specific multivariate signature scheme, which have to be prevented in
future developments or optimizations of other multivariate signature schemes,
too.

1 Announced by Dustin Moody at the third PQC Standardization Conference
in June 2021 https://www.nist.gov/video/third-pqc-standardization-conference-
session-i-welcomecandidate-updates.

350 T. Aulbach et al.

Related Work. The number of publications on the physical security of multi-
variate cryptography has increased in recent years, but is still manageable. Some
effort was put into side channel analysis (SCA) of signature schemes. To name a
few of them, Steinwandt et al. theoretically conducted differential power analysis
(DPA) to reveal the secret seed and subsequently the affine bijections S and T
used in FLASH and SFLASH already in 2001 [29]. Some years later, Okeya et al.
were the first to experimentally verify a DPA attack against SFLASH [23]. More
recently, in 2017, Yi and Li presented a DPA on enTTS [32], a signature scheme
that contains some common features with Rainbow, such as the layer structure
of the central map and the enclosing affine transformations. Finally, there are
side channel attacks by Park et al. [24] and by Pokorny et al. [25] on Rainbow,
both targeting the affine transformations via correlation power analysis (CPA).

The literature on fault attacks on multivariate signatures is less extensive.
In 2011, Hashimoto et al. described some general ideas that might be applicable
to multivariate schemes [18]. However, their ideas remain rather high-level and
refer to several schemes at once. The authors in [32] mentioned a fault model
that is supposed to facilitate the DPA on the central map F of the enTTS
scheme, but they also did not provide a detailed description of their approach.
They merely stated to “cause a fault, to change the unknown items during the
signature generation”. Krämer and Loiero transferred two ideas of [18] to UOV
and Rainbow [21]. First, they analyzed how a faulted coefficient in the central
map propagates through the signature and can be utilized to regain informa-
tion about the secret transformation S. Second, they discussed the effect of
fixing the vinegar variables across multiple signatures and show how informa-
tion about the secret transformation T can be revealed by this. Shim and Koo
developed the latter approach further to a full key recovery attack [27]. But
the algebraic post-processing method they used still has a significant complexity
of 240, rendering the attack impractical. The most practical attack yet, called
Quantumhammer [22] by Mus, Islam, and Sunar, was performed on LUOV. The
authors randomly induce bit flips in the linear transformation T and learn one
bit of the secret key through each faulty signature. They also append an alge-
braic attack to the online fault injection phase, but they manage to limit the
effort in the range of hours. In summary, there is no fault attack on Rainbow
that presents a full key recovery in reasonable time.

Contribution. We introduce the first two efficiently executable fault attacks on
Rainbow that lead to full key recovery. Both fault attacks only require first-order
instruction skips and a moderate number of faulted signatures to be executed.
We target the optimized Cortex-M4 implementation from [12].

1. We revisit the already existing theoretical approach of fixing the vinegar
variables via a fault injection attack. This attack leads to partial leakage
of one of the secret transformations used in Rainbow. The authors of [27]
suggested to exploit this leakage by speeding up the key recovery attack
using the notion of good keys [31]. Although they can reduce the number of
variables and equations, the remaining system of quadratic equations is still

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 351

of significant complexity of around 240 [27, Table. VII] for the Rainbow level I
parameter set. We introduce a cryptanalytical method for circumventing this
costly procedure and show how it is possible to recover the remaining bits
of the secret key by just solving linear equations. Contrary to the previously
suggested key recovery attack, this method can be applied to any possible
parameter set of Rainbow and leads to full key recovery.

2. We present a new fault attack that targets the application of the linear
transformation S. By collecting a small number of faulted signatures, we
obtain enough input and output values of S to completely recover it. By
knowledge of S, the complexity of Rainbow can be reduced to a small UOV
instance with reduced parameter sizes [3]. To complete the key recovery, we
apply the Kipnis-Shamir attack2 for unbalanced oil and vinegar values [20],
with remaining complexity O(qv1−o1). Considering Rainbows security level I
parameter set, it holds qv1−o1 = 216. Compared to the first fault attack, this
attack works with half the number of faulted signatures.

We see the algebraic post-processing that is used to further exploit the informa-
tion gained by the fault attacks as a contribution of its own. It can be used as
a plug-and-play method for all kinds of physical attacks. For instance, Sect. 3.1
proves that if an attacker obtains the block T1 of the secret Rainbow parame-
ters through any kind of leakage, she can achieve full key recovery without any
further physical or computational effort.

Furthermore, we verify our attacks on an emulated ARM M4 architecture. On
the one hand, this implies that we execute the compiled binary of the source code
as a real signing device would and, therefore, can target the specific instruction
of the assembly code that needs to be skipped. On the other hand, it verifies
the feasibility of our attacks and proves the claims we made above for a given
Rainbow key pair.

Finally, we suggest efficient countermeasures to prevent the mentioned
attacks and make implementations of multivariate schemes more resilient against
fault attacks.

1.1 Organization

In Sect. 2, we develop the background that is necessary for the presented attacks.
This includes the Rainbow signature scheme, relevant simplifications applied by
the authors of the corresponding NIST submission, and background information
on fault attacks. In Sect. 3, we present the two fault attacks, together with a
detailed description of the algebraic post-processing. We uncover the low-level
instructions that need to be skipped in the practical fault attack in Sect. 4 and
present our simulation. In Sect. 5, we suggest countermeasures to the previously
described fault attacks and Sect. 6 concludes the work.

2 In a very recent paper Esser et al. claim that there is another way to complete the
key recovery, instead of using the Kipnis-Shamir attack [16]. If their findings hold
true, this works with significantly lower complexity O(n3), which is efficient even for
higher parameter sets.

352 T. Aulbach et al.

2 Background

In this section, we recall useful background information for understanding the
rest of the paper. This includes an overview on the Rainbow signature scheme
and fault injection attacks.

Notation. Let Fq be a finite field with q elements. By x = (x1, . . . , xn) ∈ Fn
q we

denote a vector and by T ∈ Mn(Fq) we denote a matrix with entries in Fq. The
multivariate quadratic maps P : Fn

q → Fm
q are given by m quadratic polynomials

p(i) in n variables. To concatenate two strings x and y, x||y is written. H(x)
represents the application of a hash function H on a value x.

2.1 The Rainbow Signature Scheme

The Rainbow signature scheme [15] can be seen as a generalization of the unbal-
anced oil and vinegar (UOV) scheme [20]. It consists of several layers, where
the oil and vinegar variables of the i-th layer are used as vinegar variables of
the subsequent layer. Inserting them into the central polynomials of this layer,
leads to easily solvable linear equations, since there are no quadratic oil terms
in each layer just as it is the case for UOV. Initially, the authors suggested to
use u = 5 layers, but it turned out to work best for u = 2 which is used by
all currently suggested parameter sets. The case u = 1 constitutes the original
UOV, the scheme whose security and efficiency Rainbow is supposed to improve.

More formally, let Fq be a finite field with q elements and v1 < . . . < vu+1 = n
be integers. Set Vi = {1, . . . , vi} and Oi = {vi + 1, . . . , vi+1} for i ∈ {1, . . . , u}.
Therefore, it holds |Vi| = vi and |Oi| = oi for i ∈ {1, . . . , u}. The central
map F of Rainbow consists of m = n − v1 multivariate quadratic polynomi-
als f (v1+1), . . . , f (n) of the form

f (k)(x) =
∑

i,j∈Vl

α
(k)
ij xixj +

∑

i∈Vl,j∈Ol

β
(k)
ij xixj +

∑

i∈Vl∪Ol

γ
(k)
i xi + δ(k), (1)

where l ∈ {1, . . . , u} is the only integer such that k ∈ Ol. In each layer l there
remain no quadratic terms in the polynomials f (k) after inserting the values of
the vinegar variables xi for i ∈ Vl. This leads to an easily invertible central map
F : Fn → Fm consisting of the m coordinate functions f . This special structure
of F facilitates the signature generation and must be hidden in the public key.
To this end, two invertible linear maps S : Fm → Fm and T : Fn → Fn are
concatenated to the central map in order to generate the public key

P = S ◦ F ◦ T : Fn → Fm. (2)

Since the composed maps look like a random system of multivariate quadratic
equations, it is hard to find a preimage under P. By holding the private key maps
S,F , and T , this task becomes feasible. The signing and verifying procedure for
the Rainbow signature scheme can be briefly summarized as follows. For the
signing procedure we also present the pseudo code in Algorithm 1.

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 353

Signature Generation: To generate a signature for a message (or hash value)
w ∈ Fm, one performs the following three steps.

1. Compute x = S−1(w) ∈ Fm.
2. Compute a pre-image y of x under the central map F .
3. Compute the signature z ∈ Fn by z = T−1(y).

Signature Verification: To check, if z ∈ Fn is a valid signature for a message
w ∈ Fm, one simply computes w0 = P(z). If w0 = w holds, the signature is
accepted, otherwise rejected.

Since both fault attacks presented in this work target the signing procedure,
we shortly present it in Algorithm 1 to give the reader a first intuition of the
code lines that render the signature scheme vulnerable.

The algorithm is located in Sect. 3.1 to keep it close to the presented fault
attacks. We use a similar description as [14, Section 3.5], but align the notation
tighter to the actual implementation and simplify the representation of the secret
maps, as they are all chosen to be homogeneous in [14, Section 4], anyway. The
first fault attack in Sect. 3.1 targets the sampling of random vinegar variables
in Line 2. The second fault attack in Sect. 3.2 bypasses the application of S
in Line 8. Since both lines are located in a loop, one has to consider under
which conditions the fault might be annihilated by a repeated execution of the
respective lines. We exit the while loop if the matrices given by F̂1 and F̂2

are invertible. If we assume the entries to be uniformly distributed in Fq, the
probability that a matrix Mn(Fq) is invertible is given by

n∏

i=0

(
qn − qi

qn2) =

n∏

i=1

(1 − 1

qi
). (3)

For the given parameters this evaluates to approximately 93%. We will carefully
analyze what impact the injected fault might have on the conditions of the while
loop in Sect. 4.2.

Remark 1. Very recently, Beullens presented an improved cryptanalytic app-
roach that massively reduces the complexity of key recovery attacks [4], in par-
ticular against the Rainbow parameter set for security level I. His paper builds
on an earlier analysis of him [3], where he introduced a new description of the
Rainbow scheme, avoiding the presence of the central map and rather consider-
ing secret subspaces that satisfy certain equations under the public map P and
its polar form P ′. He defines

O′
1 ⊂ Fn

q := {x ∈ Fn
q : xi = 0 for i ∈ {1, . . . , v1}},

O′
2 ⊂ Fn

q := {x ∈ Fn
q : xi = 0 for i ∈ {1, . . . , v1 + o1}},

W ′ ⊂ Fm
q := {x ∈ Fm

q : xi = 0 for i ∈ {1, . . . , o1}}.

The interesting point about these (public) subspaces is that all polynomials
of the central map vanish on O′

2 and the polynomials of the first layer vanish

354 T. Aulbach et al.

even on O′
1, i.e., it holds F(O′

2) = 0 and F(O′
1) ⊂ W ′, respectively. The secret

linear maps S and T now transform the given subspaces to the secret subspaces
O1 = T−1O′

1, O2 = T−1O′
2, and W = SW ′. The new technique in [4] finds a

vector in the secret subspace O2 with way less computational effort than needed
in previous works. The attack is completed in similar style as in [3], where he
uses the vector in O2 to recover W efficiently by using the polar form of the
public key and finally, applying the Kipnis-Shamir attack to compute O1. The
important take-away for our analysis in Sect. 3.2 is that recovering the secret
transformation S is equivalent to detecting the secret subspace W using this
notation. For more details we refer to [3, Section 5].

2.2 Conventions in the Specification

In the Rainbow specification [14], several simplifications are made. They are
introduced to speed up the key generation process and reduce the key sizes,
while it is argued that they do not weaken the security of Rainbow. First, the
secret transformations S and T are chosen to be of the form

S =

(
I S1

0 I

)
and T =

⎛
⎝

I T1 T2

0 I T3

0 0 I

⎞
⎠ . (4)

This is justified by the fact that, for every public map P, there exists an equiv-
alent secret key (S,F , T) with S and T as in Eq. (4). Consequently, the inverse
maps have the same structure and are given by

S−1 =

(
I S1

0 I

)
and T−1 =

⎛
⎝

I T1 T4

0 I T3

0 0 I

⎞
⎠ , (5)

where T4 = T1T3 −T2. Furthermore, the Rainbow submitters restrict themselves
to a homogeneous central map F . As a result, the public map P = S ◦ F ◦ T
is homogeneous as well. Thus, the coefficients of every quadratic polynomial
f (i) and p(j) for i, j ∈ {1, . . . , m} can be collected in n × n matrices, by defining
Fi ∈ Mn×n(Fq) and Pj ∈ Mn×n(F�) as the matrices that satisfy f (i)(x) = x�Fix
and p(j)(x) = x�Pjx, respectively. Following this notation, Eq. (2) can be turned
into an equation of matrices of the form

Fi =

m∑

j=1

s̃ij(T̃
�Pj T̃). (6)

Here, s̃ij denote the entries of S−1 and T̃ = T−1. This method of switching back
and forth from public to secret matrices will play a major role in the analysis of
our fault attacks. Interchanging the roles of Fi and Pj in Eq. (6) represents the
basic procedure of computing the public key from the private key. In the above
form, the equation occurs less frequently in the literature, but is used, e.g., by

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 355

Thomae in [31]. Due to the structure of the central polynomials in Eq. (1), sev-
eral parts of the matrices Fi are forced to be zero and this is obvious to any
attacker. In more detail, the zero blocks of the matrices are given as

Fi =

⎛
⎝

F
(1)
i F

(2)
i 0

0 0 0
0 0 0

⎞
⎠ for i ∈ {1, . . . , o1} (7)

and

Fi =

⎛
⎜⎝

F
(1)
i F

(2)
i F

(3)
i

0 F
(5)
i F

(6)
i

0 0 0

⎞
⎟⎠ for i ∈ {o1 + 1, . . . , o2}.

If an attacker somehow obtains secret information, she can use Eq. (6) together
with the structure of the occurring matrices given by Eq. (5) and Eq. (7), to
further exploit this leakage. In Sect. 3.1 we will show, e.g., how an attacker that
has T1 at hand, is able to recover S1 and subsequently T3 and T4, just by solving
linear equations. Although this assumes a strong leakage in the first place, to
the best of our knowledge this is the first work that demonstrates such a result.

2.3 Fault Attacks

Fault attacks against cryptographic schemes were first described 25 years ago [8].
Since then, a great variety of fault attacks has been developed. All fault attacks
have in common that an attacker actively and intentionally disturbs the com-
putation of a cryptographic algorithm so as to gain secret information from the
faulty output. Both the kind of physical fault and the effect of a fault can be
manifold. For instance, a fault can be injected via clock glitching, e.g., [9], or
laser fault injection, e.g., [11], and it can be either transient or permanent. Most
published fault attacks result in a zeroed or randomized value or an instruction
skip, see, e.g., [6]. Instruction skips as also used in this work correspond to skip-
ping, i.e., ignoring, selected lines of the program code. Since fault attacks were
first described, most cryptographic schemes have been analyzed with respect to
them and in recent years, fault attacks have been published for all five families
of post-quantum cryptography, e.g., [6,9–11,21]. These works range from purely
theoretical publications [6] to more practical attacks [22].

3 Full Key Recovery Attacks

In this section we present two different fault attack scenarios. Both rely on a
first-order skipping fault model, i.e., the attacker is assumed to be capable of
introducing a single instruction skip during the signing procedure. Compared to
fault attacks that require randomizing or zeroing values in memory, the instruc-
tion skips belongs to the more practical ones and it has been shown that even

356 T. Aulbach et al.

higher-order skipping faults against real-world cryptographic implementations
are possible [7]. The first attack already exists in the literature. It aims at fixing
the vinegar variables across consecutive signature generations and leads to valid
signatures. We significantly reduce the complexity of the post-processing that is
necessary to achieve a full key recovery. Additionally, we introduce a completely
new attack that benefits from the same efficient techniques and works with even
less faulted signatures. They constitute the first fault attacks on the Rainbow
scheme that lead to a complete revealing of the secret key which are executable
on a desktop machine. In both cases, the messages that are chosen to generate
the faulty signatures not need to fulfill special requirements, that are hard to
control. The messages must be different from each other and should lead to lin-
early independent vectors at some point of the respective procedures, but the
attacker can just discard a faulty signature if it does not meet this requirement
and start over with a new message. We will emphasize this condition in the
description of the two fault attacks.

In Sect. 3.1, we reinvestigate the case of fixed vinegar variables, which was
presented in detail in [21]. The authors of [27] are the first to expand this to a
complete key recovery attack. However, their approach is reliant on a costly post-
processing step that involves solving a system of quadratic equations of moderate
size. They investigate three different level I parameter sets of Rainbow, and even
in the best case their complexities remain as high as 238. This is still considerably
large to constitute another hurdle in the practicability of the fault attack. We
introduce a method on how to bypass this step, leading to an easily executable
full key recovery attack.

Furthermore, we present in Sect. 3.2 a new fault attack that gets along with
significantly less faulted signatures. The faulted output reveals the secret trans-
formation S and the attack can be completed to a full key recovery by a sub-
sequent Kipnis-Shamir attack. Due to the knowledge of S, the parameters of
the system to solve allow for an efficiently executable instance of the Kipnis-
Shamir attack. After explaining the attacks, we also translate the procedure
to the abstract secret subspace notation used by Beullens which we stated in
Remark 1.

3.1 Attack 1: Full Key Recovery from Fixed Vinegar Variables

This fault attack aims to skip the random generation of vinegar variables during
the signing process. Depending on the implementation, this results in either the
vinegar variables from the previous signature being reused, or being equal to
zero in case they are zeroed at the end of the signing process. Both cases have
already been mentioned in [27] and are very similar. The main difference is that
for the reuse model an additional, unfaulted reference signature is needed. In
the following we focus on the optimized bitsliced implementation developed in
[12]. Here, the vinegar variables are not zeroed at the end of the signing process
and therefore skipping the generation of the new vinegar variables results in the
same variables being used for successive signature computations.

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 357

Algorithm 1. Rainbow Sign

Input message d, private key (S, F , T), length l of the salt.
Output signature σ = (z, salt) ∈ Fn

q × {0, 1}l s.t. P(z) = H(H(d)||salt).

1: repeat
2: (z1, . . . , zv1) ←R Fv1

q

3:
(
f̂ (v1+1), . . . , f̂ (n)) ← (f (v1+1)(z1, . . . , zv1), . . . , f

(n)(z1, . . . , zv1)
)

4: until IsInvertible(F̂1) == True
5: repeat
6: salt ←R {0, 1}l

7: y ← H(H(d)||salt)
8: y ← S−1(y)
9: zv1+1, . . . , zv2 ← F̂ −1

1 (yv1+1, . . . , yv2)
10: (f̂ (v2+1), . . . , f̂ (n)) ←

(
f (v2+1)(zv1+1, . . . , zv2), . . . , f

(n)(zv1+1, . . . , zv2)
)

11: until IsInvertible(F̂2) == True
12: zv2+1, . . . , zn ← F̂ −1

2 (yv2+1, . . . , yn)
13: z ← T −1(z)
14: σ = (z, salt)
15: return σ

First, we show how the secret matrices T1 ∈ Mo1×o2
(Fq) and T2 ∈ Mo2×o2

(Fq)
in Sect. 2.2 can be determined from the faulty signatures. Let z′ be the error-
free generated signature of an arbitrary message d′. According to the Rainbow
specification, z′ is defined by z′ = T−1◦F−1◦S−1(y), where y = H(H(d′)||salt) ∈
Fm

q . From an attacker’s point of view, all intermediate values are unknown. What
is known is that the first v1 entries of F−1 ◦ S−1(y) consist of the generated
vinegar values, whereas the remaining m = o1 +o2 entries are the corresponding
solutions of the first and second layer of the central map under the chosen vinegar
variables. Thus, we can write

z′ = T−1

⎛
⎝

v
o′
1

o′
2

⎞
⎠ ,

with v ∈ Fv1
q , o′

1 ∈ Fo1
q , and o′

2 ∈ Fo2
q . By using the instruction skip indicated

in Sect. 2.1 and elaborated in detail in Sect. 4.1, the attacker successively gener-
ates m signatures, all of which fall back to the same vinegar variables v as the
reference signature z′. For i ∈ {1 . . . m}, we denote these signatures by

z(i) = T−1

⎛
⎜⎝

v

o
(i)
1

o
(i)
2

⎞
⎟⎠ .

The remaining entries o
(i)
1 and o

(i)
2 of the input of T−1 are under no control of

the attacker and do not need to be considered in more detail. By subtracting
the reference signature and multiplying with T , we receive

358 T. Aulbach et al.

T (z(i) − z′) =

⎛
⎜⎝

v

o
(i)
1

o
(i)
2

⎞
⎟⎠ −

⎛
⎝

v
o′
1

o′
2

⎞
⎠ =

⎛
⎜⎝

0

õ
(i)
1

õ
(i)
2

⎞
⎟⎠ , (8)

for i ∈ {1 . . . m}. Let Z ∈ Mn×m be the matrix whose i-th column is defined
by the vector z(i) − z′. Then Equation (8) implies that the first v1 rows of T
map Z to 0v1×m. If this linear system of equations can be solved uniquely, it
reveals the first v1 rows of T , more precisely the submatrices T1 ∈ Mo1×o2

(Fq)
and T2 ∈ Mo2×o2

(Fq). Therefore, we need the columns of Z and thus the last
m entries of Tz(i) to be linearly independent, since the first entries are identical
to the entries of the reference signature. Following Eq. 3 this happens with high
probability and in case we draw a faulted signature that is linearly dependent
of the previous, we can just disregard it and draw a new one. We note that Eq.
(8) does not provide any further information about the remaining rows of T .

Remark 2. The authors of [27] only utilize parts of the gained information for
their algebraic key recovery attack. More precisely, they use certain entries of
the submatrices to reduce the complexity of a key recovery attack introduced in
[31] using the good key approach. However, this still requires solving a system
of quadratic equations. In the following we show how this can be completely
omitted by utilizing the whole submatrix T1.

Recover the Secret Transformation S. We take a closer look at Eq. (6). By
also dividing the public matrices Pj and the secret transformation T into 3 × 3
block matrices we receive

F̃i =

m∑

j=1

s̃ij

[⎛
⎝

I 0 0
T�

1 I 0
T�

4 T�
3 I

⎞
⎠

⎛
⎜⎝

P
(1)
j P

(2)
j P

(3)
j

0 P
(5)
j P

(6)
j

0 0 P
(9)
j

⎞
⎟⎠

⎛
⎝

I T1 T4

0 I T3

0 0 I

⎞
⎠

]
. (9)

The resulting matrices are not necessarily equal to the matrices Fi of the central
map but the polynomials they represent are identical. Consequently, by denoting

F̃i =

⎛
⎜⎝

F̃
(1)
i F̃

(2)
i F̃

(3)
i

F̃
(5)
i F̃

(5)
i F̃

(6)
i

F̃
(7)
i F̃

(8)
i F̃

(9)
i

⎞
⎟⎠ , (10)

it follows from Eq. (7) that F̃
(5)
i needs to be skew symmetric and F̃

(7)�
i + F̃

(3)
i =

0v1×o2
and F̃

(8)�
i + F̃

(6)
i = 001×o2

holds for the central maps of the first layer,
i.e., for i ∈ {1, . . . , o1}.

Now, we solely focus on the middle block F̃
(5)
i ∈ Mo1×o1

(Fq) and observe that
T1 is the only part of the secret transformation T contributing to that block.
Thus, neglecting the other submatrices turns Eq. (9) into

F̃
(5)
i =

m∑

j=1

s̃ij

(
T�

1 P
(1)
j T1 + T�

1 P
(2)
j + P

(4)
j T1 + P

(5)
j

)
. (11)

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 359

Note that the term inside the brackets is completely known to the attacker,
since she has already recovered T1. The remaining unknowns are now the entries
of S−1, in particular the o1 · o2 entries of S1. Since Eq. (11) holds for all
i ∈ {1, . . . , o1}, the resulting linear system of equations is overdetermined and
solving it provides exactly the entries of S1.

Recover the Remaining Part of the Secret Transformation T. Having
access to the complete transformation S, the attacker is able to exploit (9) even

more. She now targets the v1 × o2 block F
(3)
i on the top right and the o2 × o1

block F
(7)
i on the bottom left. Similarly to (11), she derives

F
(7)�
i + F

(3)
i = 0v1×o2

=
m∑

j=1

s̃ij

(
P

(1)�
j T4 + P

(1)
j T4 + P

(2)
j T3 + P

(3)
j

)
. (12)

Now the attacker wants to solve for the unknowns in T3 and T4. By now, she
has knowledge of all the entries s̃ij , which turns (12) into a linear system of
equations. Once more the number of equations exceeds the number of variables
and its solution reveals the submatrices T3 and T4 and therefore the remaining
part of the secret transformation T−1. This finishes the key recovery attack. The
algebraic post-processing of the fault attack can be summarized as follows.

Attack 1: Full Key Recovery from Fixed Vinegar Variables. After suc-
cessful execution of the fault attack, the attacker takes the reference signature
z′ and m faulted signatures z(1), . . . , z(m), obtained in the way described above
and proceeds as follows.

1. Build the matrix Z ∈ Mn×m(Fq) with columns z(i) − z′ for i ∈ {1, . . . , m}.
2. Compute the echelon form of the matrix T ′ ∈ Mv1×n(Fq) that fulfills T ′Z = 0.

It holds T ′ =
(
I T1 T2

)
.

3. Insert T1 into Eq. (11). Solve the resulting system of linear equations to
recover S.

4. Insert S into Eq. (12). Solve the resulting system of linear equations to recover
T3 and T4.

5. Use Eq. (6) to obtain F . The attacker recovered the full secret key (S,F , T).

Remark 3. This attack can also be translated to the more abstract language
established in Remark 1. The difference of two signatures z(i) − z′ that are
generated with identical vinegar variables, can be seen as a vector in the secret
subspace O1. This becomes obvious when considering Eq. (8), which shows that
T maps this vector to a vector whose first v1 entries are zero, i.e., an element in
O′

1. Thus, the m linearly independent vectors of the matrix Z that are gained by
our fault attack, together span the secret subspace O1 from which the remaining
secret subspaces can be deduced.

360 T. Aulbach et al.

3.2 Attack 2: Secret Key Recovery by Skipping the Linear
Transformation S

This fault attack aims to skip the application of the matrix S−1 during the gen-
eration of the signature. If the instruction skip is successful, the signing process
evaluates to z̃ = T−1◦F−1(y). By inserting this faulted signature into the public
map P, an attacker receives P(z̃) = S ◦ F ◦ T (z̃) = S(y) =: w ∈ Fm

q .
Since y = H(H(d)||salt) is known to the attacker, this fault attack presents

a method for deriving input-output pairs for the secret linear transformation
S. Now, let W ∈ Mm×o2

(Fq) be the matrix whose columns consist of vectors
w(i) ∈ Fm

q , i ∈ {1 . . . o2}, which are obtained in the manner described above,
and Y ∈ Mm×o2

(Fq) be the matrix whose columns consist of the corresponding
starting vectors y(i), i ∈ {1 . . . o2}. By dividing the matrices and vectors into
blocks according to Eq. (4), we receive

SY =

(
I S1

0 I

)(
Y1

Y2

)
=

(
Y1 + S1Y2

Y2

)
=

(
W1

W2

)
. (13)

Thus, the secret submatrix S1 can be obtained via S1 = (W1 − Y1) ∗ Y −1
2 .

Consequently, for the attack to be successful o2 faulty signatures are needed and
the starting vectors y(i) need to be chosen s.t. Y2 ∈ Mo2×o2

(Fq) is invertible.

Recover T by Using S. Having access to the secret transformation S, an
attacker can use the very same strategy to recover T4 and T3 as described in
Sect. 3.1. By the time this step was applied during the post-processing of the
first fault attack, the attacker had already learned T1, which is not the case
anymore. However, in order to exploit Eq. (12) it is enough to know S, i.e., the
attacker does not need any of the entries of T1 to recover T3 and T4.

This procedure - although presented somewhat differently - was already pro-
posed by Park et al. in [24, Section 4.2]. In their work, they used Correlation
Power Analysis to obtain S and thus, faced the same challenge for the subse-
quent algebraic evaluation, i.e., the recovery of T under the knowledge of S. In
order to obtain T1, they suggest to use a similar approach, namely by focusing

on the o1 × o2 block F
(6)
i and the o2 × o1 block F

(8)
i of (10). However, it is not

possible to continue the attack like this, as we sketch in the following. Therefore,
observe

F
(8)�
i + F

(6)
i = 0o1×o2

=

m∑

j=1

s̃ij

(
T�

1 (P
(1)�
j + P

(1)
j)T4 + T�

1 (P
(2)
j)T3 + . . .

. . . P
(2)�
j T4 + (P

(5)�
j + P

(5)
j)T3 + T�

1 P
(3)
j + P

(6)
j

)
.

(14)

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 361

While it is true that only linear equations remain, after inserting the known
values for T3, T4, and S, one can deduce from

T�
1

m∑

j=1

s̃ij

(
(P

(1)�
j + P

(1)
j)T4 + (P

(2)
j)T3 + P

(3)
j

)
(12)
= T�

1 0,

that Eq. (14) does not provide further information about the block T1, since it
is satisfied independent of its choice. The authors of [31] and [24] confirmed our
findings in this regard.

Thus, one way to proceed and obtain T1, is to fall back to the well-known
Kipnis-Shamir attack on UOV [20]. Note that the knowledge of S is equivalent
to the recovery of the secret subspace W , referring to the notation in Remark 1.
Following [3, Section 5.3], this reduces the problem of finding O1 to a small UOV
instance with reduced parameter n′ = n − o2 and m′ = m − o2 and complex-
ity O(qn′−2m′

) = O(qn+o2−2m) = O(qv1−o1). In case of Rainbow parameter set
I, this leads to a very efficient method to finish the key recovery attack, since it
holds n′ ≈ 2m′. For higher parameter sets this approach still remains infeasible,
as we have n′ � 2m′, rendering the Kipnis-Shamir attack inefficient.

Very recently, Esser et al. published a work on partial key exposure
attacks [16], in which they cover Rainbow, among other schemes. They also
treat the task of exposing T1 after the remaining part of the secret matrices are
known. Their approach builds up on a work by Billet and Gilbert [5] and has
complexity O(n3), which would be very efficient, even for larger parameter sets
of Rainbow.

Attack 2: Secret Key Recovery by Skipping the Linear Transformation
S. After successful execution of the fault attack, the attacker takes the generated
faulted signatures z(1), . . . , z(o2) and the used starting values y(1), . . . , y(o2) being
of the form described above and performs the following steps:

1. Compute w(i) = P(z(i)) for i ∈ {1, . . . , o2}.
2. Build the matrices W ∈ Mm×o2

(Fq) and Y ∈ Mm×o2
(Fq) as described for

Eq. (13).
3. Recover S by computing S1 = (W1 − Y1) ∗ Y −1

2 .
4. Insert S into Eq. (12). Solve the resulting system of linear equations to recover

T3 and T4.
5. Obtain T by applying the Kipnis-Shamir attack to the reduced UOV instance.
6. Use Eq. (6) to obtain F . The attacker recovered the full secret key (S,F , T).

4 Code Analysis and Simulation

To implement the attacks described in Sect. 3, an in-depth analysis of the
instruction code needs to be performed. The following section discusses how
to uncover the low-level instructions that need to be skipped to achieve the

362 T. Aulbach et al.

desired behaviour of the fault attacks as specified in Sect. 3 based on the source
code of the ARM Cortex M4 optimized round 3 submission by the authors of
[12]3. Furthermore, we present an elaborated simulation of our results.

4.1 Attack 1: Fixing the Vinegar Variables

Listing 1.1 shows the relevant code snippet for our first attack. The implemen-
tation proposed by [12] does not set the vinegar variables to zero after signature
generation. Therefore skipping the function call to prng gen in line 55 will leave
them with the same values due to the temporary variable being reallocated to
the same address at each function call. This, of course, assumes that the respec-
tive memory region is not overwritten between two function calls, which holds
if the device acts solely as a signing oracle.

By analyzing the disassembly of the compiled binary, we find the relevant
instruction given in Listing 1.2. By skipping the branch performed in line 0xdfb2,
the desired behaviour is achieved and the vinegars remain constant for subse-
quent signatures.

4.2 Attack 2: Skipping the Linear Transformation S

To prohibit the application of the linear transformation S−1 we aim at skipping
the function call to gf256v add in line 178 of the source code shown in Listing
1.1. However, for this function being inlined - meaning the compiler inserts the
function body instead of a branch - a single instruction skip does not suffice.
Therefore the beforehand executed call to gf16mat prod 16 32 in line 173 is
skipped, leaving the variable temp o at its initial all-zero value and rendering
the subsequent call to gf256v add without effect. To achieve this effect, we target
line 0xe070 of the assembly code shown in Listing 1.2 with a first order fault.

Exiting the While Loop. In this paragraph, we discuss the probability of
exiting the respective while loop on the first iteration, assuming that the fault
injection was successful. Regarding the attack in Sect. 4.1, if the skip of the
vinegar variables in Line 2 of Algorithm 1 is introduced successfully, the same
vinegar variables are used again for consecutive signatures. Thus, the chosen
vinegar variables already led to an invertible matrix F̂1 in the previous signature.
Since F̂1 only depends on the vinegar variables (y1, . . . , yv1

) and the polynomials
of the first layer, the condition in Line 8 is always fulfilled. Regarding the attack
in Sect. 4.2, the condition in Line 11 also depends on the solution of the first
layer in Line 9. Thus the probability of F̂2 to be invertible can be approximated
by the probability of that a randomly generated matrix with entries in Fq is
invertible which is given by Eq. (3).

3 The source code can be found at https://github.com/rainbowm4/rainbowm4.git.

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 363

26 int ra inbow s ign (. . .)
27 {
.
51 while (! l 1 s u c c) // u n t i l s o l u t i o n found
52 {
.
. . . // sk ipped by Attack 1
55 prng gen(&prng s ign , v inegar , V1 BYTE) ;
.
80 }
.
. . . // temp o i s i n i t i a l i z e d wi th ze ros
155 u i n t 8 t temp o [MAX O BYTE + 32] = {0} ;
.
157 while (! succ) // u n t i l s o l u t i o n found
158 {
. . . // sk ipped by Attack 2
173 gf16mat prod 16 32 (temp o , sk−>s1 , z + O1 BYTE) ;
.
. . . // app l y ing S
178 gf256v add (y , temp o , O1 BYTE) ;
.
228 }
.
292 }

Listing 1.1. Relevant snippets of the rainbow sign function in rain-
bowm4/crypto sign/rainbowI-classic/m4/rainbow.c

. . .
0 xdfb0 add s ignature , sp ,#0xe4
0xdfb2 b l prng gen
0xdfb6 add d i g e s t , sp ,#0x6c
. . .
0 xe06e add s ignature , sp ,#0x144
0xe070 b l g f16mat prod 16 32
0xe074 l d r sk , [sp ,#y [4]]
. . .
Listing 1.2. Relevant snippets of the assembly code corresponding to line 55 and line
173 of the rainbow sign function in Listing 1.1.

4.3 Simulation

To verify our assumptions and provide a first proof of concept, we implement
a generic ARM M4 architecture simulation environment based on Unicorn [13],
which itself is based on QEMU [2]4. The validity of our results exceed the ones
one would obtain by simple code modification - i.e., removing code lines one

4 The codebase of our framework can be found at https://anonymous.4open.science/
r/double rainbow submission-E3CC.

364 T. Aulbach et al.

wishes to skip - as the compiled binary of the unmodified source code is executed
within our simulation just as a real device would execute it. The 32-bit Reduced
Instruction Set Computer (RISC) architecture as defined by ARM is emulated
in its entirety.

The framework allows per-instruction execution of the compiled binary, cycle-
accurate skipping faults and memory analysis at any given point during execu-
tion. This facilitates the validation of both attacks’ feasibility through injection
of the intended faults and subsequent analysis of the memory space mapped to
the vinegar variables and y for the first and second attack, respectively. After
verification of the skipping faults’ effects on memory, signature collection is per-
formed. Both attacks lead to successful recovery of the secret key, proving the
feasibility of our attacks. In the following we give a brief overview of the core
features of the simulation framework.

Key Generation. For the generation of the public and secret key being compu-
tationally expensive and very time consuming within the simulation, we imple-
ment it on the host machine and subsequently map the keys to the simulated
device memory.

Signing. The signing algorithm runs entirely within the simulation. Upon exe-
cuting the binary starting from the respective function’s memory address, the
secret key is mapped to the simulated device’s memory. The address of the
memory region holding the message to be signed, a buffer for the result and the
key’s address are written to the corresponding registers according to the calling
convention. To implement the attacks, the simulation first stops at the address
where we want to inject the fault. Then the instruction pointer is incremented as
required by the length of the instruction to be skipped. Execution is subsequently
resumed at the following instruction.

Verification. For completeness, verification inside the simulation is also imple-
mented. Of course, the adversary may implement verification on any device. It is
merely used to verify successful fault injection and extract temporary variables
that facilitate executing Attack 2.

4.4 Applicability to Other Implementations

The attack we introduced in Section 3.1 is not directly applicable to the reference
implementation of Rainbow that was submitted to the NIST Standardization
Process [14]. This is due to the fact that the vinegar variables are zeroed at the
end of the signing process there, so they can’t be reused in a subsequent signing
process by a first-order fault attack. See Sect. 5.1 for more details. The second
attack, however, can be applied to the reference implementation, since the same
steps as mentioned in Listing 1.1 are executed there.

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 365

5 Countermeasures

Countermeasures attempt to either verify the integrity of the executed algorithm
before returning its result or ensuring that a system cannot leak secrets even
when compromised. If the latter is the case, the returned value should either be a
random number or an error constant. A traditional way to tackle this problem for
the case of fault injections is to repeat the computation and compare the results.
However, this approach is very expensive in terms of computation time and relies
on the assumption that an attacker will fail to successfully inject faults in two
subsequent runs of the algorithm. In this section we suggest countermeasures
that can be adopted in order to avoid the attacks described in Sect. 3.

5.1 Countermeasures for Attack 1

For the first attack relying on keeping the vinegar variables constant, some coun-
termeasures aiming for either zeroing or randomization can be employed.

Firstly, resetting the memory region mapped to the vinegars at the end of
the function call to zero - as it is done in the original NIST submission in [15]
- is the most straight-forward solution. Then, if the respective fault is injected,
the system of equations is rendered non-solvable, leading to re-iteration of the
loop until either a threshold number of iterations is reached and the function
is exited or the fault injection fails and vinegar variables are sampled correctly.
However, depending on the implementation, this can enable a different attack of
higher complexity relying on partial zeroing of the vinegars, as described in [27].

Secondly, if the vinegars were to be saved in between subsequent function
calls, they could be checked for equivalence before returning the signature. While
this might seem a viable solution, care must be taken to ensure safe storage not
to leak their values. Moreover, since simple checks are assumed to be easily
skippable, the checking procedure has to be elegantly integrated in the signing
procedure.

Thirdly, inlining the function call to prng gen could prohibit the attack for
some parameter sets. Depending on the implementation and the corresponding
number of vinegars, the loop copying the random values to the vinegars can be
exited earlier by injecting a fault, leaving them partially constant. While this
prohibits our attack which requires all vinegars to stay constant, similar attacks
with less stringent constraints might still be applicable. To further mitigate these,
loop unrolling could provide remedy. However, this combined mitigation tech-
nique would introduce non-negligible overhead in code size which might render
it inapplicable to constrained devices.

5.2 Countermeasures for Attack 2

For the second attack that aims to skip the application of the secret transforma-
tion S, an evident mitigation technique is to verify the signature before returning
it. However, this leads to an overhead of around 25% [12], rendering this strategy
very costly.

366 T. Aulbach et al.

More practical, one could initialize the temp o variable so that the skipping
fault would result to an all-zero y after execution of gf256v add. To achieve
this, temp o first o1/2 bytes - i.e., the bytes that are affected by the subsequent
addition - are initialized with y ’s first o1/2 bytes (i.e., 16 for the parameter set of
32 oil variables in the bitsliced representation). The subsequent F256 addition -
i.e., implemented as multiple consecutive binary XORs - then leads to an all-zero
y, prohibiting leakage of the secret key through the collected signatures.

Furthermore, inlining the call to gf16mat prod 16 32 would prohibit a first-
order skipping fault attack. However, due to this function being implemented
in assembly language for optimization purposes, there is a discrepancy for the
required build steps. Therefore this mitigation technique might not be trivial to
implement.

6 Conclusion

This paper demonstrated how important it is to protect the secret transforma-
tions S and T in multivariate schemes against fault attacks. They are the only
obstacles an attacker faces when trying to discover the structure of the central
map F . Due to their linearity, it is possible to recover them either partially (see
Sect. 3.1) or in total (see Sect. 3.2), by collecting enough input and output vec-
tors and analyzing their transformation. As the generated signature constitutes
the output of T−1 and the hash value that is to be signed represents the input
to S−1, an attacker only needs to obtain an intermediate result, e.g., the input
vector of T−1 or the output vector of S−1, in order to gain secret information. If
she is able to thoughtfully induce a fault that compromises one of these interme-
diate vectors, either by skipping a code line or forcing the algorithm to compute
with the same values over and over again, the security of the scheme is no longer
guaranteed.

For instance, it was already shown in [27] that UOV and LUOV are vulnerable
to the attack that fixes the vinegar variables. Whereas the authors of [22] doubt
that it is possible to fix a large portion of the vinegar variables by physical fault
injection, we showed that this is indeed possible by a single instruction skip.

Specifically for Rainbow, we proved that it is not even necessary to recover the
whole secret transformation T , by the means of a fault attack. The introduced
algebraic attack restores the complete secret key of Rainbow on input of the
submatrix T1 by just solving linear equations. This is of course not limited
to the evaluation of fault attacks, but also holds if T1 is leaked through any
other kind of side-channel analysis. In the light of the recent breakthrough in
cryptanalysis [4], we acknowledge that the Rainbow parameter set for security
level I is deprecated. However, the fault attacks we suggest, directly reveal either
the secret subspaces O1 (see Sect. 3.1) or W (see Sect. 3.2) and thus, work for
any given parameter set, in particular for higher security levels and adapted
parameters that are designed to meet new requirements.

Recovering Rainbow’s Secret Key with a First-Order Fault Attack 367

Acknowledgement. This research work has been funded by the German Ministry
of Education, Research and Technology in the context of the project Aquorypt (grant
number 16KIS1022) and the project Full Lifecycle Post-Quantum PKI - FLOQI (grant
number 16KIS1074). Furthermore, we want to thank Enrico Thomae and Namhun Koo
for the helpful correspondence concerning the algebraic evaluation in Sect. 3.2.

References

1. Post-Quantum Cryptography. NIST Official Website (2021). https://csrc.nist.gov/
projects/post-quantum-cryptography

2. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC 2005, p. 41,
USA. USENIX Association (2005)

3. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 13

4. Beullens, W.: Breaking rainbow takes a weekend on a laptop. Cryptology ePrint
Archive, Report 2022/214 (2022). https://ia.cr/2022/214

5. Billet, O., Gilbert, H.: Cryptanalysis of rainbow. In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006). https://doi.
org/10.1007/11832072 23

6. Bindel, N., Buchmann, J., Krämer, J.: Lattice-based signature schemes and their
sensitivity to fault attacks. In: 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2016, Santa Barbara, CA, USA, 16 August 2016, pp. 63–77.
IEEE Computer Society (2016)

7. Blömer, J., Da Silva, R.G., Günther, P., Krämer, J., Seifert, J.P.: A practical
second-order fault attack against a real-world pairing implementation. In: 2014
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 123–136. IEEE
(2014)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

9. Campos, F., Krämer, J., Müller, M.: Safe-error attacks on SIKE and CSIDH. In:
Batina, L., Picek, S., Mondal, M. (eds.) SPACE 2021. LNCS, vol. 13162, pp. 104–
125. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95085-9 6

10. Castelnovi, L., Martinelli, A., Prest, T.: Grafting trees: a fault attack against the
SPHINCS framework. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 165–184. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-79063-3 8

11. Cayrel, P.-L., Colombier, B., Drăgoi, V.-F., Menu, A., Bossuet, L.: Message-
recovery laser fault injection attack on the Classic McEliece cryptosystem. In:
Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp.
438–467. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6 15

12. Chou, T., Kannwischer, M.J., Yang, B.Y.: Rainbow on cortex-M4. Cryptology
ePrint Archive, Report 2021/532 (2021). https://ia.cr/2021/532

13. Quynh, N.A., Vu, D.H.: Unicorn: next generation CPU emulator framework (2015)
14. Ding, J., et al.: Rainbow. Technical report, National Institute of Standards and

Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

368 T. Aulbach et al.

15. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

16. Esser, A., May, A., Verbel, J., Wen, W.: Partial key exposure attacks on BIKE.
Rainbow and NTRU, Cryptology ePrint Archive (2022)

17. Grimes, R.A.: Cryptography Apocalypse: Preparing for the Day When Quantum
Computing Breaks Today’s Crypto. Wiley, Hoboken (2019)

18. Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivariate public
key cryptosystems. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 1–
18. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 1

19. Kalai, G.: The argument against quantum computers, the quantum laws of nature,
and Google’s supremacy claims. arXiv preprint arXiv:2008.05188 (2020)

20. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

21. Krämer, J., Loiero, M.: Fault attacks on UOV and rainbow. In: Polian, I.,
Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 193–214. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-16350-1 11

22. Mus, K., Islam, S., Sunar, B.: QuantumHammer: a practical hybrid attack on the
LUOV signature scheme. In: Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1071–1084 (2020)

23. Okeya, K., Takagi, T., Vuillaume, C.: On the importance of protecting Δ in
SFLASH against side channel attacks. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 88(1), 123–131 (2005)

24. Park, A., Shim, K.A., Koo, N., Han, D.G.: Side-channel attacks on post-quantum
signature schemes based on multivariate quadratic equations:-rainbow and UOV.
IACR Trans. Cryptographic Hardware Embed. Syst. 500–523 (2018)

25. Pokornỳ, D., Socha, P., Novotnỳ, M.: Side-channel attack on rainbow post-quantum
signature. In: 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 565–568. IEEE (2021)

26. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 9

27. Shim, K.-A., Koo, N.: Algebraic fault analysis of UOV and rainbow with the leakage
of random vinegar values. IEEE Trans. Inf. Forensics Secur. 15, 2429–2439 (2020)

28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

29. Steinwandt, R., Geiselmann, W., Beth, T.: A theoretical DPA-based cryptanal-
ysis of the NESSIE candidates FLASH and SFLASH. In: Davida, G.I., Frankel,
Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 280–293. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45439-X 19

30. Tao, C., Petzoldt, A., Ding, J.: Improved key recovery of the hfev-signature scheme.
Cryptology ePrint Archive (2020)

31. Thomae, E.: A generalization of the rainbow band separation attack and its appli-
cations to multivariate schemes. Cryptology ePrint Archive (2012)

32. Yi, H., Li, W.: On the importance of checking multivariate public key cryptography
for side-channel attacks: the case of enTTS scheme. Comput. J. 60(8), 1197–1209
(2017)

A.1. Recovering Rainbow’s Secret Key with a First-Order Fault Attack 119

IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 3, pp. 221–245. DOI:10.46586/tches.v2023.i3.221-245

Separating Oil and Vinegar with a Single Trace
Side-Channel Assisted Kipnis-Shamir Attack on UOV

Thomas Aulbach1, Fabio Campos2,3, Juliane Krämer1, Simona Samardjiska3

and Marc Stöttinger2

1 University of Regensburg, Regensburg, Germany
{thomas.aulbach,juliane.kraemer}@ur.de

2 RheinMain University of Applied Sciences, Wiesbaden, Germany
campos@sopmac.de,marc.stoettinger@hs-rm.de

3 Radboud University, Nijmegen, Netherlands
simonas@cs.ru.nl

Abstract.
Due to recent cryptanalytical breakthroughs, the multivariate signature schemes that
seemed to be most promising in the past years are no longer in the focus of the
research community. Hence, the cryptographically mature UOV scheme is of great
interest again. Since it has not been part of the NIST process for standardizing
post-quantum cryptography so far, it has not been studied intensively for its physical
security.
In this work, we present a side-channel attack on the latest implementation of UOV.
In the first part of the attack, a single side-channel trace of the signing process is
used to learn all vinegar variables used in the computation. Then, we employ a
combination of the Kipnis-Shamir attack and the reconciliation attack to reveal the
complete secret key. Our attack, unlike previous work, targets the inversion of the
central map and not the subsequent linear transformation. It further does not require
the attacker to control the message to be signed.
We have verified the practicality of our attack on a ChipWhisperer-Lite board with
a 32-bit STM32F3 ARM Cortex-M4 target mounted on a CW308 UFO board. We
publicly provide the code and both reference and target traces. Additionally, we
discuss several countermeasures that can at least make our attack less efficient.
Keywords: Multivariate signature schemes · UOV · Side-channel attack · Kipnis-
Shamir attack · Reconciliation attack

1 Introduction
In July 2022, the National Institute of Standards and Technology (NIST) announced
four post-quantum schemes which will soon be standardized, three of which are signature
schemes. Two of these signature schemes - Dilithium [DKL+18] and Falcon [PFH+22] - are
based on lattices and the third one - SPHINCS+ [BHK+19] - is hash-based. While lattice-
based schemes are generally considered to be widely applicable, SPHINCS+ signatures are
huge, consuming several KB even for the smallest parameter set. This makes SPHINCS+

useful mainly for specific applications.
Overall, given that currently five families of post-quantum cryptographic assumptions

are studied, the three selected signature schemes from only two families imply a lack of
diversity. This is problematic for at least two reasons: On the one hand, signature schemes
from all five families feature different advantages such as small keys, small signatures, or
small computation time. Hence, having standardized signature schemes from more than

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-01-15 Accepted: 2023-03-15 Published: 2023-06-09

222 Separating Oil and Vinegar with a Single Trace

two families would allow to choose the optimal scheme for each application. On the other
hand, future breakthroughs in (quantum) cryptanalysis might considerably decrease the
hardness of post-quantum assumptions, hence decrease the security of the schemes built on
them. Having standardized signature schemes from more than two families would provide
alternative standardized signature schemes in case one class of assumptions turns out to
provide less security than expected, instead of mainly relying on the security of lattices.
NIST reacted to this lack of diversity by an explicit call for new signature proposals for
the 4th round. For the reasons stated above, NIST is especially interested in signature
schemes that are not based on lattices and have small signatures.

Multivariate signature schemes in general feature very small signatures, and the two
multivariate signature schemes Rainbow [DCP+20] and GeMSS [CFM+20] also advanced
to the third round of NIST’s standardization process for post-quantum cryptography
(PQC). However, powerful attacks against the third round alternate candidate GeMSS
by Tao et al. [TPD21] and the third round finalist Rainbow by Beullens [Beu22a] showed
that these two schemes should not be standardized. At this stage, the most relevant
signature schemes in the field of multivariate cryptography are MAYO [Beu22b] and
UOV [KPG99]. Although UOV has already been published at the end of the 1990s and
is the basis for Rainbow, research concentrated on Rainbow after its publication because
it is more efficient than UOV both in terms of required memory and computation time.
Although Rainbow is a generalization of the oil-and-vinegar construction underlying UOV,
Beullen’s attack on Rainbow does not apply to UOV. This makes UOV again a very
interesting signature scheme since it withstands cryptanalysis since nearly two decades and
has very small signatures. Consequently, it will be submitted to the 4th round of NIST’s
PQC standardization process. Already now, a paper describing modern parameters and
implementations of UOV exists [BCH+23].

Since UOV has initially not been submitted to the NIST PQC standardization process,
UOV has also not been in the focus of physical security research until now. Therefore, we set
out to analyze the physical security of UOV. In this paper, we propose the first single-trace
side-channel attack (SCA) on UOV, targeting the latest UOV implementation [BCH+23,
UOV23].

Related Work Since Rainbow was a third round finalist until 2022, most existing results
on the physical security target Rainbow and not UOV. Although both schemes are very
similar, not all known results for Rainbow can be transferred to UOV, since UOV does
not use the layer structure and the second affine transformation S which mixes the
quadratic polynomial equations. Interesting physical attacks have also been proposed
against LUOV [BPSV19], an adaptation of the UOV signature scheme that advanced
to the second round of NIST’s PQC standardization process. We first state results for
Rainbow and LUOV that cannot be transferred to UOV and then those which can be
transferred to UOV or have been explicitly developed for UOV.

In 2020, Villanueva-Polanco described how to reveal a complete LUOV secret key by a
cold boot attack [VP20], i.e., in a setting where an adversary can learn a noisy version of
the secret key by cold booting the target device. In the same year, Mus et al. published
a hybrid attack on LUOV [MIS20] where they first collect signatures that have been
incorrectly computed due to Rowhammer fault injection and then reveal the complete
secret key in a divide-and-conquer attack. A correlation power analysis on Rainbow was
presented in 2021 by Pokorný et al. [PSN21]. The attack is based on a known message and
needs a few hundred power traces to first recover the maps S and T and then reveal the
central map F . In 2022, two fault attacks on Rainbow have been presented by Aulbach et
al. [AKKM20]. The first attack leads to partial leakage of the secret transformation T by
fixing vinegar variables. The second attack induces faults during the application of the
linear transformation S. Both attacks eventually lead to full key recovery.

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 223

In 2018, Park et al. presented side-channel attacks on Rainbow and UOV [PSKH18].
The attacks are similar to the one described in [PSN21]. They use correlation power analysis
together with algebraic key-recovery attacks and demonstrate the practical feasibility of
their attack on an 8-bit AVR microcontroller. Again, the attack is based on known
messages and first reveals the map S and then the map T . The attack is described for
Rainbow but can be transferred to UOV when UOV is implemented with equivalent keys.

Regarding fault attacks not specific to Rainbow, three publications are interesting:
Hashimoto et al. described general methods how to attack multivariate cryptography
with fault attacks already in 2011 [HTS11]. Based on these ideas, Krämer and Loiero
presented two fault attacks on UOV and Rainbow in 2019 [KL19]. In the first attack
(to which UOV is immune), a coefficient of the central map F is randomized and in the
second attack, vinegar variables are fixed. Just recently, another fault attack on UOV
was published [FKNT22], again based on the ideas of [HTS11]. In this attack, a single
coefficient of the secret key is faulted.

Contribution In this work, we present the first single-trace side-channel attack against
UOV. Our attack targets the latest implementation of UOV [BCH+23,UOV23] and leads
to full key recovery. Contrary to existing work, we target the inversion of the central map
during signature generation, not the subsequent linear transformation. Since the target
routine of our side-channel attack is the multiplication of (secret) vinegar variables with
UOV’s secret key, the message to be signed does not need to be controlled nor to be known
by the attacker. The attack consists of three steps: First, a single side-channel trace of the
inversion of the central map during signature generation allows us to recover the (secret)
vinegar variables that are used during the signing process. Therefore, we make use of a
correspondence between the public and the secret key, due to the special choice of the
linear transformation T . This correspondence exists for both existing versions of UOV -
the standard and the compressed version. Then, we use these vinegar variables to recover
a vector that is annihilated by the public key, i.e., a vector of the secret linear oil space O.
In the third step this allows us to apply a modified version of the Kipnis-Shamir attack
on reduced parameters that runs in polynomial time and reveals a second oil vector. For
all given parameter sets these two oil vectors bear enough information to compute the
remaining oil space, i.e., the secret key, by employing an efficient reconciliation attack that
only requires us to solve linear equations.

We perform the attack practically on a ChipWhisperer-Lite board with a 32-
bit STM32F3 ARM Cortex-M4 target mounted on a CW308 UFO board. The code can
be found here: https://github.com/mstoetti/SCA_assisted_recon_UOV. We collected
reference traces on a profiling device and attack traces on a target device.

Additionally, we provide scripts for collecting reference and target traces on the reader’s
own ChipWhisperer Setup, if available. The template attack can then be executed, either
with the power traces we provide, or with the ones the reader collects. Furthermore,
we adapted the Kipnis-Shamir attack [KS06] and the reconciliation attack to accept oil
vectors as additional input in order to reduce the complexity. When the side-channel
attack recovered an oil vector successfully, the script performs the algebraic attacks to
obtain the complete oil space.

We suggest several countermeasures: First we introduce a countermeasure that breaks
the correspondence between the public key and the secret key which makes our attack so
strong. However, we present a detailed analysis of how the attack can be adapted in that
case. Hence, removing this correspondence does not fully prevent the attack, but makes it
considerably less powerful. Then we show how known countermeasures such as masking,
shuffling, and using precomputations can be applied to UOV.

224 Separating Oil and Vinegar with a Single Trace

Organization The rest of this paper is organized as follows: In Section 2, we introduce
the UOV algorithm and further background information that is relevant for this work. In
Section 3, we present the theoretical part behind our side-channel attack. We present the
critical correspondence between the secret key and the public key and show how we can
reveal the complete secret UOV key from a single side-channel trace. In Section 4, we
present the practical attack. We describe the setup, discuss the parameters we attacked,
provide power traces, and discuss how we dealt with noise and what the expected noise
resistance of our approach is. Finally, we present countermeasures against our attack in
Section 5.

2 Background
In this section, we provide the background knowledge necessary to understand the an-
nounced attack. We will present the UOV signature scheme [KPG99], both in its traditional
description and the one recently introduced by Beullens [Beu21]. They are equivalent, but
facilitate our understanding of different aspects of the attack. Furthermore, we specify
details of a major step of the signing process in UOV, the inversion of the central map.
Since our attack targets a specific subroutine thereof, it is inevitable to examine this step
more closely. The section is concluded by an elaborated presentation of the Kipnis-Shamir
attack [KPG99] and the reconciliation attack [DYC+08]. The additional information gained
through side-channel leakage, reduces the complexity of the algebraic attacks significantly
and allows for an efficient recovery of the complete secret key.

Notation Let Fq be a finite field with q elements. Let n and m be two positive integers
with n > m and v = n − m. Subspaces of vector spaces over Fq are written in bold
capital letters, e.g., O ⊆ Fnq and their elements have bold letters x with i-th coordinate xi.
Multivariate quadratic maps between those spaces are denoted in calligraphic font P . Their
coefficients can be stored in a collection of matrices with capital letters and enumerating
superscripts P (k). The matrices we use often have block structure, so we use P (k)

i to
denote the submatrices or 0m×v for the zero matrix and Iv for the identity matrix of a
certain size.

2.1 Unbalanced Oil and Vinegar Signature Scheme
The essence of UOV consists of a multivariate quadratic map P : Fnq → Fmq that contains
a certain elegant trapdoor, namely that P vanishes on a secret linear subspace O ⊂ Fnq
of dimension dim(O) = m. This trapdoor information allows for efficiently obtaining
solutions x ∈ Fnq of P(x) = y ∈ Fmq . Without this trapdoor information, finding preimages
of P boils down to solving the multivariate quadratic polynomial (MQ) problem for the
system of quadratic equations given by P(x) = y, which is assumed to be hard. There are
two common ways to describe how this trapdoor function facilitates the construction of a
signature scheme. We will present both of them in the following.

2.1.1 Traditional Description

For around two decades, researchers commonly utilized another multivariate quadratic
map F : Fnq → Fmq , the so-called central map, in order to specify UOV. The polynomials
of this map F = (f (1), . . . , f (m)) are defined by

f (k)(x) =
∑

1≤i≤n

∑

1≤j≤v
α

(k)
i,j xixj (1)

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 225

for k ∈ {1, . . . ,m}, where α(k)
i,j ∈ Fq represent the coefficients of each quadratic polynomial.

Observing the constrains on the indices in Equation (1), this reveals that the linear
subspace of dimension m, which consists of vectors with zeros in the first v coordinates, is
annihilated by F . We denote this subspace by

O′ = {x | xi = 0 for all 1 ≤ i ≤ v}.

The central map F is concatenated with a random linear transformation T : Fnq → Fnq ,
that is supposed to hide the specific structure of F from anyone who has only access
to the concatenation P = F ◦ T . The resulting public key map P vanishes on the
linear subspace O := T−1(O′). Since all available instantiations of UOV only consider
homogeneous polynomials, the coefficients from Equation (1) can be stored in matrices
F (k) such that evaluating the polynomial f (k) in x is equivalent to computing x>F (k)x for
all k ∈ {1, . . . ,m}. Similarly, we can obtain n× n matrices P (k) with p(k)(x) = x>P (k)x
for the public key polynomials P = (p(1), . . . , p(m)). Thus, from P = F ◦ T , we have

P (k) = T>F (k)T. (2)

By fixing the first v entries (x̃1, . . . , x̃v) - the so-called vinegar variables - in x to certain
random elements in Fq and applying them to Equation (1), we receive polynomials
(f̂ (1), . . . , f̂ (m)). These constitute a linear system of m equations in the remaining m
variables (xv+1, . . . , xn) - the so-called oil variables - of x. This system is solvable with
quite a high probability and therefore explains why it is possible to find preimages under F .

Key Generation We show a natural method for generating key pairs in Algorithm 1. For
any public key map P, there exists an equivalent secret key (F , T) with

T =
(
Iv×v T1
0m×v Im×m

)
. (3)

Thus, in order to obtain a key pair, we first randomly generate T1. For the central map F it
suffices to randomly generate upper triangular matrices F (k) ∈ Fn×nq since the coefficients
αi,j and αj,i can be grouped together. Furthermore, there is a zero block, since we have
no quadratic oil terms in Equation (1). Consequently, we only need to generate upper
triangular blocks F (k)

1 ∈ Fv×vq and blocks F (k)
2 ∈ Fv×mq for k ∈ {1, . . . ,m}. Then, compute

P (k) by applying Equation (2) and store the final coefficients again in upper triangular
form. There are ways to reduce the key sizes, by, e.g., storing a seed instead of the ma-
trices or storing only T1 as the secret key. This will be discussed in more detail in Section 3.1.

Signature Generation and Verification Signature generation is displayed in Algorithm 2.
To sign a message d, one needs to find a preimage of y = H(H(d)||salt) ∈ Fmq . This can
be done as described above, by turning F into an invertible linear map F̂ . The vinegar
and oil variables together represent a solution of x = F (−1)(y). In the next section we will
present some algorithmic details of how the described linear system is generated. Finally,
we obtain z ∈ Fnq that fulfills P(z) = y by computing z = T−1(x).

Signature Verification boils down to verifying that z is indeed a preimage of y under P .

2.1.2 Beullens’ Description

In [Beu21] the author introduces an approach that omits the central map. Here, signing is
facilitated directly by knowledge of the secret linear oil space O of dimension m. To this
end, consider the polar form of a homogeneous quadratic polynomial defined by

226 Separating Oil and Vinegar with a Single Trace

Algorithm 1 UOV Key Generation
Input: Parameters (q, n, v,m)
Output: Key pair (pk, sk)

1: T1 ←R Fv×mq

2: for k = 1 to m do
3: (F (k)

1 , F
(k)
2)←R (Fv·(v+1)/2

q ,Fv×mq)
4: Build T and F (k) from its blocks, according to Equation (3) and (7)
5: Compute P (k) = T>F (k)T
6: P (k) ← Upper(P (k))
7: end for
8: pk ← P = ({P (k)}k={1,...,m})
9: sk ← (T,F) = (T, {F (k)}k={1,...,m})

10: return (pk, sk)

Algorithm 2 UOV Signature Generation
Input: message d, private key (T,F), length l of the salt.
Output: signature σ = (z, salt) ∈ Fnq × {0, 1}l s.t. P(z) = H(H(d)||salt).

1: (x1, . . . , xv)←R Fvq
2: F̂ =

(
f̂ (1), . . . , f̂ (m))← (f (1)(x1, . . . , xv), . . . , f (m)(x1, . . . , xv)

)

3: if rank(F̂) 6= m then
4: return to step 1
5: end if
6: salt←R {0, 1}l
7: y ← H(H(d)||salt)
8: xv+1, . . . , xn ← F̂−1(yv+1, . . . , yn)
9: z ← T−1(x)

10: σ = (z, salt)
11: return σ

p′(x, y) := p(x+ y)− p(x)− p(y) + p(0). (4)
The map p′ : Fnq × Fnq → Fmq is a symmetric bilinear form. Assume that P is the matrix
associated to the polynomial p(x), then there exists a matrix satisfying p′(x, y) = x>P ′y
and this matrix is given by P ′ = P + P>. This notion can be extended to the map P and
we write P ′ for the corresponding map.

Given a target t ∈ Fmq , we can use P ′ to find a preimage under P. Therefore, fix an
arbitrary vector v ∈ Fnq and solve the system P(v + o) = t for a vector o ∈ O. This boils
down to solving the following linear system of equations

P(v + o) = P(v)︸ ︷︷ ︸
constant

+P(o)︸ ︷︷ ︸
=0

+ P ′(v,o)︸ ︷︷ ︸
linear in o

= t, (5)

because by definition P vanishes on the secret oil space O, i.e., P(o) = 0, for all o ∈ O.
Since dim(O) = m, Equation (5) is a linear system of m equations in m variables. If it
is solvable, we have found a solution v + o = z ∈ Fnq , otherwise, one restarts with a new
random vinegar vector v.
Remark 1. The characterization of UOV from [Beu21] is an instantiation of what is known
as (s, t)-linearity in symmetric key cryptography, first introduced by Boura and Canteaut
[BC14] and adapted to multivariate cryptography by Samardjiska and Gligoroski [SG14].
In essence, a function F : Fnq → Fmq is said to be (s, t)-linear if there exist two linear

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 227

subspaces V ⊂ Fnq , W ⊂ Fmq with dim(V) = s, dim(W) = t such that for all w ∈ W ,
wᵀ · f has degree at most 1 on all cosets x + V of V . It was shown in [SG14] that UOV is
(m,m)-linear, i.e., the public map is linear on any coset of the oil space. This is exactly
what Equation (5) tells us.

Boura and Canteaut [BC14] further give a characterization of (s, t)–linearity through
second order derivatives defined by Da,bf = DaDbf = DbDaf where the first order
derivative is simply Daf = f(x + a)− f(x). Here, f is (s, t)–linear with respect to V ,W
if and only if all second order derivatives Da,bw

ᵀ · f , with a, b ∈ V , w ∈W vanish.
For UOV, this means that Do1,o2P = 0 for all oil vectors o1,o2 ∈ O. This result was

used in [SG14] to provide an alternative description of the reconciliation attack by Ding et
al. [DYC+08], that we describe in Section 2.3.2.
Remark 2. We want to point out a difference in notation to prevent potential misunder-
standing. In the traditional description, a vector x ∈ Fnq is split by its entries into vinegar
and oil variables. In the above description, on the other hand, there are two vectors v and
o ∈ Fnq , that are called vinegar vector and oil vector, respectively.

Key Generation First, the user generates an oil space O by sampling a uniformly random
matrix O ∈ Fv×mq , and letting O be the rowspace of (OIm). Consequently, a multivariate
quadratic polynomial pk(x) vanishes on O, if for the associated matrix P (k) it holds

(
O
Im

)>(
P

(k)
1 P

(k)
2

0m×v P
(k)
3

)(
O
Im

)
= 0. (6)

Thus, in order to reduce the key size, we can expand P
(k)
1 and P

(k)
2 from a seed and

compute P (k)
3 , such that Equation (6) is fulfilled. This implies the following algorithm for

key generation.

Algorithm 3 UOV Key Generation according to [Beu21]
Input: Parameters (q, n, v,m)
Output: Key pair (pk, sk)

1: O ←R Fv×mq

2: seed←R {0, 1}λ
3: for k = 1 to m do
4: (P (k)

1 , P
(k)
2)← Expand(seed||k)

5: P
(k)
3 ← −(OP (k)

1 O> +OP
(k)
2)

6: end for
7: pk ← (seed, {P (k)

3 }k={1,...,m})
8: sk ← (seed,O)
9: return (pk, sk)

Signature Generation and Verification The signing process can be directly derived from
Equation (5) and is presented in Algorithm 4. Similar to the traditional description, it is
possible that the resulting system of linear equations has no solution. In this case, a new
vinegar vector has to be generated. Verification is basically done by evaluating P(z), so
there is no need for any adaptions.

2.2 Detailed Description of the Central Map Inversion
In Line 2 of Algorithm 2 the randomly generated vinegar variables are inserted into
the central map F to generate a linear system of equations. In the following we give

228 Separating Oil and Vinegar with a Single Trace

Algorithm 4 UOV Signature Generation according to [Beu21]
Input: message d, private key (seed,O), length l of the salt.
Output: signature σ = (z, salt) ∈ Fnq × {0, 1}l s.t. P(z) = H(H(d)||salt).

1: salt←R {0, 1}l
2: y ← H(H(d)||salt)
3: v ←R Fn−mq × {0}m
4: if rank(P(v + o)) 6= m then
5: return to step 3
6: end if
7: Solve P(v + o) = y for o ∈ O
8: σ ← (z = v + o, salt)
9: return σ

more details on this procedure, as it contains the routine we target in our suggested
side-channel attack later on. As described in Section 2.1, the coefficients of F are stored
in the matrices F (k). Due to the structure of the polynomials in Equation (1), i.e., they
do not have quadratic oil terms, these matrices are of the form

F (k) =
(
F

(k)
1 F

(k)
2

0 0

)
. (7)

Thus, substituting the vinegar variables x̃ into the central map amounts to computing
x̃>F (k)

1 x̃ and x̃>F (k)
2 x′, where x′ = {xv+1, . . . , xn} are the remaining oil variables of the

linear system of equations. Consequently, inserting the vinegar variables into the central
map amounts to performing the algebraic operations indicated above for all matrices F (k),
where k ∈ {1, . . . ,m}.

2.3 Attacks on the Oil & Vinegar Construction
In the following we describe two well-known algebraic attacks on signature schemes that
are based on the Oil and Vinegar principle, since we need modified versions of them to
complete our side-channel attack.

2.3.1 Kipnis-Shamir Attack

In the original Oil and Vinegar scheme, the two sets of variables were of the same size, i.e.,
m = v and n = 2v. This revealed some weaknesses that were used by Kipnis and Shamir
to break the scheme [KS06]. The main observation of the attack is that the secret oil space
is an invariant subspace (an eigenspace) of P ′ij = P ′−1

j P ′i , for any two invertible matrices
P ′i and P ′j of the map P ′, i.e., P ′−1

j P ′iO = O. The invariant subspace of the matrices can
be found efficiently, for example by looking at the characteristic polynomial of one such
matrix P ′ij . If the characteristic polynomial factors into two irreducible factors C1 and C2
of degree v, then the oil space can be found as the kernel of the matrix C1(P ′ij) or C2(P ′ij).
Kipnis and Shamir [KS06] argue that the probability for such a factorization is high, thus
obtaining an efficient algorithm for distilling the oil space.

The unbalanced version, with n > 2m [KPG99] was constructed to prevent this attack.
Indeed, in this case two matrices P ′i and P ′j do not necessarily map the oil space into the
exact same subspace of the vinegar space. Nevertheless, the intersection of P ′iO and P ′jO
is still very high. The authors of [KPG99] show the following crucial result.

Theorem 1 ([KPG99]). Let Q′ be an invertible linear combination of the matrices
P ′1, . . . , P

′
m. Then for any invertible P ′j, the matrix P ′−1

j Q′ has a non-trivial invariant
subspace, which is also a subspace of O with probability at least q−1

q2(n−2m)−1 .

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 229

When the difference n− 2m is not very big, this probability is high, and one can expect
to find this subspace efficiently. In order to do that, the original Kipnis-Shamir attack
can be generalized to look for a small invariant subspace of the matrices P ′ij that is also
a subspace of O. Thus, one can use any factorization of the characteristic polynomial of
P ′ij , and check whether for any of the factors C, the kernel of C(P ′ij) is in the oil subspace.
Recall that we can efficiently test membership of a vector in the oil space by checking
whether the public map vanishes on the said vector.

Note that the procedure needs to be repeated, in order to find the whole oil space, or
one can use other methods such as the reconciliation attack (see Section 2.3.2), once a few
oil vectors are known.

2.3.2 Reconciliation Attack

Recall from Remark 1 that the public map of UOV is (m,m)-linear. Thus, in order to
break the scheme, it is necessary to find a vector space - the oil space O, such that P is
(m,m)–linear with respect to (O,Fmq).

Ding et al. in [DYC+08] propose an algorithm that sequentially performs a change of
basis that reveals gradually the space O. They call the algorithm Reconciliation Attack on
UOV. In Algorithm 5, we present an equivalent version of the attack interpreted in terms
of (s, t)–linearity (cf. Algorithm 2 [DYC+08]).

Algorithm 5 Reconciliation Attack on UOV in terms of (s, t)–linearity
Input: UOV public key P : Fnq → Fmq .
Output: An oil space O = Om of dimension m.

1: O0 ← the zero-dimensional vector space
2: for k := 1 to m do
3: Find ok = (o(k)

1 , ..., o
(k)
v , 0, ..., 0, 1n−k+1, 0, ..., 0) ∈ Fnq , where 1n−k+1 denotes that

the (n− k + 1)-th coordinate is 1, by solving

ojP ′iok = 0, for i ∈ {1, . . . ,m} and j < k

okPiok = 0, for i ∈ {1, . . . ,m}.

4: Construct the space Ok = Ok−1 ⊕ Span {ok}
5: end for
6: return O = Om

Note that the form of the oil vectors ok is chosen to assure they are all independent,
i.e., the algorithm finds a basis of the oil space. Other forms are possible, and they are
all equivalent up to some column permutation. Actually, there is a small probability that
a chosen form can’t be the basis of the oil space, in case of which we choose randomly
another form, i.e., we perform a randomization of the coordinates.

At the k-th iteration, the algorithm solves a system of m quadratic and (k− 1)m linear
equations in v variables. This means that in the first iteration, there are no available
linear relations, so finding the first oil vector is computationally the dominating step.
At each subsequent step, we have m additional linear relations that basically reduce the
problem to solving a quadratic system of m less variables. As soon as the algorithm reaches
k > v/m+ 1, there are enough linear equations to solve the system, and finding the rest
of the oil vectors becomes easy.

Remark 3. The given description of the reconciliation attack from Algorithm 5 is very
similar to the recent description given by Beullens [Beu21].

230 Separating Oil and Vinegar with a Single Trace

3 Strategy for a Complete Secret Key Recovery
In this section, we summarize the attack strategy. First, we highlight a correspondence
between private and public keys in UOV, invoked by the design choices of the scheme.
This correspondence partially reveals the input of the subroutine that is the target of our
side-channel attack. We explain what information we get from the power measurements
and how to exploit them to recover a vector from the secret oil space. Finally, we add a
brief complexity analysis of the reconciliation attack with one (or two) known oil vectors,
which is used to obtain the remaining oil space and therefore, the complete secret key.

3.1 Overlap in Public and Private Key
One possible way to generate a valid UOV key pair is given in Algorithm 1. This is what
we refer to as ‘Standard UOV’ in the following, as there are no compression techniques
applied and the secret key can be used for signing right away. It is also possible to not
store large parts of the coefficients of the matrices and instead either expand them from a
seed or calculate back and forth between them via Equation (2). Thereby, the key sizes
can be reduced massively, at the expense of signing and verification time. This will be
noted as ‘Compressed UOV’. We will now show, that due to the relation given by Equation
(2), in both cases1, the entries of the sub-matrices F (i)

1 of Equation (7) are obvious to any
person with access to the public key.

Standard UOV First, the secret key sk = (T, F (1), . . . , F (m)) is randomly generated.
The matrices are of the block-matrix structure given in Equations (7) and (3). Now, the
public key pk = (P (1), . . . , P (m)) is computed by evaluating P (i) = T>F (i)T and bringing
the resulting matrices to upper triangular form. Since the blocks F (i)

1 are already upper
triangular matrices, this operation has no impact on them. From

(
I 0
T>1 I

)(
F

(i)
1 F

(i)
2

0 0

)(
I T1
0 I

)
=
(

F
(i)
1 F

(i)
1 T1 + F

(i)
2

T>1 F
(i)
1 T>1 F

(i)
1 T1 + T>1 F

(i)
2

)

we deduce

P (i) =
(
P

(i)
1 P

(i)
2

0 P
(i)
3

)
=
(
F

(i)
1 (F (i)

1 + F
>(i)
1)T1 + F

(i)
2

0 Upper(T>1 F
(i)
1 T1 + T>1 F

(i)
2)

)
. (8)

We notice that the special structure of T leads to P
(i)
1 = F

(i)
1 , which implies that a

considerable amount of the public and private key is identical.

Compressed UOV Here the order is reversed. First, the matrices P (i)
1 and P

(i)
2 are

expanded from a random seed pkseed. Then, after T is randomly generated from a secret
seed skseed, the relation shown in Equation (8) is used to compute F (i)

1 and F (i)
2 . Thus,

the secret key only consists of two seeds sk = (pkseed, skseed). Finally P (i)
3 is computed,

again following Equation (8) to complete the key generation. Note, that again P (i)
1 = F

(i)
1

is satisfied. This time P (i)
1 is not directly included in the public key, but can be recovered

by expanding the public key seed pkseed, which is part of the public key pk = (pkseed, P (i)
3).

1We want to point out that there are more possible ways to generate valid UOV key pairs. We will
bring up one of them in Section 5, where we discuss countermeasures. We focus on these two in the attack
description, as they are mainly considered and employed by current implementations.

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 231

3.2 Single-Trace Recovery of the Vinegar Variables
The previous findings help us to identify a vulnerability in terms of side-channel resistance
in the signing process. Namely, it is the sub-routine responsible for setting up the constant
part of the system of linear equations, indicated in Section 2.2. It is given by computing

x̃F
(k)
1 x̃> = (x̃1, . . . , x̃v)




α
(k)
1,1 · · · α

(k)
1,v

...
0 · · · α

(k)
v,v


 (x̃1, . . . , x̃v)>, (9)

using the secret key matrices F (k)
1 , for all k ∈ {1, . . . ,m}. To abbreviate, we will write

x̃F1x̃> if we want to compute Equation (9) for all k ∈ {1, . . . ,m}. Here, the randomly
generated vinegar variables (x̃1, . . . , x̃v) are multiplied with a considerable amount of
known values α(k)

i,j . In more detail, for every i ∈ {1, . . . , v} the product

α
(k)
i,i · x̃i (10)

is computed for all k ∈ {1, . . . ,m}. The power consumption of this multiplication depends
on the exact value of the respective vinegar variable, which makes them an apparent target
for power analysis. In Section 4, we present the details of the suggested side-channel
attack. In fact, the attack vector is so strong, that we are able to recover all v vinegar
variables from measuring the power consumption of just one signing process with large
probability. In the next section, we show that a whole set of vinegar variables, together
with the corresponding signature leads to a secret oil vector.

3.3 Obtaining a Secret Oil Vector
As stated in Section 2.2, the vinegar variables x̃ = (x̃1, . . . , x̃v) in combination with the
secret key generate a linear system of equations. Its solution x′ = (xv+1, . . . , xv+m), the
so-called oil variables, are concatenated to the vinegar variables. To finalize the signature
generation, the resulting vector (x̃,x′)> is transformed by T−1, as depicted in Line 9 of
Algorithm 2. The result constitutes the signature (s1, s2)>. Thus, it holds

(
s1
s2

)
=
(
I −T1
0 I

)(
x̃
x′

)
=
(

x̃− T1(x′)
x′

)
.

Obtaining x̃ by a side-channel attack, enables us to choose a vector o = (T1(x′),x′)>
with the property, that its first n − m = v entries are zero, after it is transformed by
T . From the structure of the secret key matrices Fi in Equation (8) one can see that
P(o) = F ◦ T (o) = 0. Consequently, we found a vector of the secret oil space o ∈ O. This
reduces the complexity of algebraic key recovery attacks significantly.

Remark 4. The previous section basically concludes that if one is in possession of a
signature and the corresponding vinegar vector used to build this signature, one is able to
determine a secret oil vector by subtracting the two from each other. Using the description
given in Section 2.1.2, this is quite obvious, since the signature is of the form s = v + o.
However, the implementations currently considered follow the description in Section 2.1.1,
so we added the former result for clarification.

3.4 Recovering the Secret Oil Space Using (a Combination of) the
Kipnis-Shamir Attack and the Reconciliation Attack

As discussed in Section 2.3.2 (also illustrated in [Beu22b, Section 4.1]), when one oil vector
o1 is known in the reconciliation attack, we obtain m linear equations in the entries of a

232 Separating Oil and Vinegar with a Single Trace

second o2. Thus finding a second vector o2 ∈ O can be achieved by solving a quadratic
system of m equations in n−m−m variables which can be done using any general system
solver, for example the XL algorithm and its variants [CKPS00,Die04,YC05], the (Hybrid)
F4/F5 algorithm [Fau99,Fau02,BFP12] or the Joux-Vitse Crossbred algorithm [JV17].
Since n = 2, 5m, the complexity of the attack is significantly reduced, however, it is still
exponential in the number of variables. Instead of using an algebraic solver and the
reconciliation attack, we can first use a modification of the Kipnis-Shamir attack to find a
second vector o2 ∈ O. Alternatively, we can obtain o2 by an SCA in the same way we
recovered o1 ∈ O. Note that a second oil vector again provides us with m linear equations
and n < 3m, so once two oil vectors are known, the remaining oil space can be recovered
in polynomial time using the reconciliation attack. We measured the time consumption of
this step with the parameters of different security levels and present it in the last column
of Table 1. We describe next the procedure for recovering the second oil vector using the
Kipnis-Shamir attack.

Using the known oil vector o1, we form the linear equations P ′(o1,x) = 0, i.e.,

o1P
′
ix = 0, for i ∈ {1, . . . ,m}

that characterize the space of the remaining oil vectors. We can use these to replace m
variables xn−m+1, . . . , xn in the equations of the public system P(x) = 0. Furthermore,
for a nonzero coordinate i ∈ {1, . . . , n −m} of the oil vector o1, fixing xi = 0 restricts
the oil space of the system to O \ {o1}. Without loss of generality, let i = n −m. We
can now apply efficiently the Kipnis-Shamir attack on the obtained system as long as
the number of variables n −m − 1 is close to two times the dimension of the oil space
dim(O \ {o1}) = m− 1.

However, the attack can’t be directly applied, because the symmetric matrices of the
obtained system are not full rank. As a matter of fact, the rank is only 2n−4m. The reason
is that for each Pi, the linear equations above add m− 1 additional constrains on the oil ×
vinegar part, which means the kernel of the matrices is at least 2m−1−(n−m) = 3m−n−1.
This situations can be remedied, by fixing additional 3m− n− 1 variables, but this will
also reduce the dimension of the oil space by 3m− n− 1. In total, we obtain a system

Mi(x1, . . . , x2n−4m) = 0, i ∈ {1, . . . ,m}

whose oil space OM is of dimension n − 2m, i.e., we obtain a balanced oil and vinegar
instance, for which the Kipnis-Shamir attack works best.

As said above, we only need to find one additional oil vector, because then the
reconciliation attack can very efficiently recover the rest of the oil space O. Thus, the
generalization of Kipnis-Shamir attack from [KPG99] for finding a small invariant subspace
of M ′−1

j M ′i works best, and we expect to find an oil vector in approximately q trials.
We have implemented and verified both parts of the algebraic attack for all NIST

security levels. The results are summarized in Table 1.

Table 1: Practical experiments on different parameter sets when only one oil vector is
available. We show the time for finding a second oil vector with the KS attack, and the
time for finding m− 2 more basis vectors of O with the reconciliation attack.

Security level Kipnis-Shamir step Reconciliation step
in hh:mm:ss in hh:mm:ss

Reduced parameters (v,m) = (42, 28) 00:00:25 00:01:07
Security level I (v,m) = (68, 44) 00:08:00 00:11:34
Security level II (v,m) = (112, 72) 00:44:36 02:23:19
Security level III (v,m) = (148, 96) 00:58:16 10:42:51

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 233

4 Executing the Side-Channel Attack
For the side-channel attack presented here, we exploit the data-dependent power consump-
tion of the subroutine discussed in Section 3.2 to compute x̃F1x̃>. In [PSKH18,PSN21],
the authors have already published side-channel attacks on UOV and Rainbow based on
correlation power analysis (CPA). However, in all these attacks, the attacker model assumes
some kind of public data under control, in order to perform a classic CPA with different
messages, i.e., the attack needs control over the digest of the salted and hashed message
H(H(d)||salt). Furthermore, their attacks require a considerable amount of power traces,
taken from the target device. As described in [PSKH18, Section 4.1] around 30 traces
are needed to recover elements of the secret linear transformation. Moreover, they are
attacking a generic matrix-vector multiplication deviating from the specific implementation
that is used in recent UOV implementations.

Our proposed side-channel attack does not require control over the message d during
the attack phase to extract vinegar variables. Instead of conducting a CPA, we perform a
template-based profiling attack to extract individual bits of the processed vinegar variables
while performing the operation x̃F1x̃>. Therefore, we need a learning phase with access
to an identical device running the same implementation of UOV that we are targeting.
We also investigate a transferable SCA scenario where the training device in the template
building phase is not identical to the target device in the attack phase. We used two
STM32F3 core-based platforms, and were also able to extract the secret x̃ in the attack
phase successfully. In the learning phase, we recorded reference traces for every possible
value in Fq, i.e., in our case q = 256. We fix every entry in c ∈ Fvq to the same element
in Fq and execute the operation cF1c> a single time. Subsequently, for every entry
i ∈ {1, . . . , v}, we cut out the region of the trace where the entry ci ∈ c is processed, so
that it can be compared to the corresponding region of xi ∈ x̃ that is measured in the
attack phase. Because of the dependencies between the private and public keys discussed
in Section 3.1, we know the α-values of the secret key of the signature operation we are
targeting by considering the available public key. Hence, we can create a template for the
multiplication operation in Equation (10) with all the necessary knowledge.

In detail, we exploit execution patterns in the power consumption caused by a bit-value
dependent execution within the bit-sliced implementation of the targeted operation. In
Section 4.2, we discuss the side-channel exploitation of the implementation in detail.

4.1 Practical Setup
All practical experiments were implemented using the ChipWhisperer tool chain [Tec23]
(version 5.6.1) in Python (version 3.8.10) and performed on a ChipWhisperer-Lite board
with the CW308T UFO board. The victim board, containing a 32-bit STM32F303RCT7
microcontroller with ARM Cortex-M4 architecture, is mounted on the UFO board. The
ARM Cortex-M4 implementation was compiled with arm-none-eabi-gcc (version 10.1.0)
and the C reference implementation for x86 compiled with gcc (version 10.1.0). For running
the experiments on our setup, slight modifications of the available implementations [UOV23]
were required. The side-channel exploited sections of the code remain unchanged.

Due to the SRAM size of 40 KB on the target STM32F3 core, we specify a reduced
parameter set aimed at adapting the attacked routine to the limitations of the target
device. For this, we chose the parameters (v,m) = (42, 28) as shown in Table 2 resulting in
≈ 25 KB of used memory for the matrices in F1. Further, our ARM implementation only
includes the required functions from Section 3.2 for generating traces. Thus, the execution
time for a single run is reduced and more experiments can be conducted within a certain
time frame. We note that by adapting the parameter set, our implementation can be used
to attack other instantiations, e.g., higher security levels (see Table 2) on suitable target
boards. Every coefficient is a field element in Fq and thus, consumes one byte if q = 256.

234 Separating Oil and Vinegar with a Single Trace

Table 2: Required memory size for computing x̃F1x̃> for different security levels.

Security level Number of coefficients in F1
m · v · (v + 1)/2

Reduced parameters (v,m) = (42, 28) 25.284
Security level I (v,m) = (68, 44) 103.224
Security level II (v,m) = (112, 72) 455.616
Security level III (v,m) = (148, 96) 1.058.496

Additionally, we adapted the C reference implementation for the x86 architecture
from [UOV23] in order to output the public key and signature in a file, since we need
them for the attack later on. Furthermore, we output the part of the public key, that
contains the coefficients of F1, and the used vinegar variables x̃ in another file. Note, that
the latter are used solely to execute the function from Equation (9) on the target device.
They are not used in the analysis of our measurements, nor in the subsequent algebraic
attack, since they are not known to an attacker. The reference traces are recorded on a
profiling device identical to the target device. Hereby, the used vinegar variables are fixed
to a certain value c ∈ Fq while recording the corresponding trace.

4.2 Exploitable Side-Channel Information
The vinegar variables x̃ are passed via the function parameter uint8_t b to the function
gf256v_mul_u32(uint32_t a, uint8_t b) and get internally processed bitwise. This
function performs the basic multiplication operation stated in Equation (10). This operation
is required during the computation of x̃F1x̃> to set up the constant part of the generated
linear system during signing. Then, depending on the value of each of the 8 bits of x̃i
(resp. parameter uint8_t b), a multiplication will be executed, see Line 2 in Algorithm 6
or, for more details, Line 5, 10, 15, 20, 25, 30, 35, 40 in Listing 1 in the appendix.
As shown in Figure 1, the spots for these multiplications are easily recognizable for every
single bit within the captured power traces.

Algorithm 6 Algorithmic representation of gf256v_mul_u32(αki,i, x̃i) from [UOV23]
Input: αki,i, x̃i
Output: αki,i · x̃i

1: for z0 = 0 to 7 do
2: temp = temp xor αki,i · ((x̃i » z0) and 1)
3: α_msb = αki,i and 0x80808080
4: αki,i = αki,i xor α_msb
5: αki,i = (αki,i « 1) xor ((αki,i_msb » 7) · x̃i)
6: end for
7: return temp

In the learning phase of our attack, we collect and store reference power traces for all
256 possible values of uint8_t b, i.e., for the values x̃i. The collected traces represent the
average over m/4 runs (since four α-values are processed simultaneously) and include 1000
analog digital converter (ADC) samples recorded in a single capture during the execution
of the function gf256v_mul_u32. As shown in Figure 1, this number of ADC samples is
sufficient to capture the entire execution of the targeted function. The reference traces
must be captured only once for a certain target device and public key, and can be reused
for further attacks.

After collecting the reference traces, we can create template traces based on the

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 235

Figure 1: Captured power traces during the execution of the attacked function
gf256v_mul_u32(uint32_t a, uint8_t b) for random b for all 42 vinegar variables.

reference traces by extracting and concatenating the points of interest. Thus, the template
trace consists only of the samples marked in Figure 1. As can be seen from Figure 1, we
obtain for each of the possible 256 vinegar candidates one unique sequence of value per
reference trace based on each processed bits. With this construction of a template, we can
perform a correlation analysis that follows more the idea of a horizontal attack as known
from CPA attacks against elliptic-curve cryptography (ECC), cf. [NC17].

In the leak extraction phase, usually referred to as the attack phase in the context of a
side-channel template attack, we use Pearson correlation [BCO04] to compare all generated
reference traces with the acquisition power consumption of a signature creation operation.
Of course, we also need to prepare the recorded power traces similarly to the reference
traces and extract only the time points of interest of the captured trace for each processing
of vinegar variable within the operation of (α(k)

i,i · x̃i). As shown in Figure 2, the correct
candidate can be extracted by calculating the Pearson correlation coefficient between the
reference trace and the captured power trace section where the vinegar variable under
investigation is processed.

As in general for single trace attacks the extractable information are quite limited.
Thus, the correct candidate might not be clearly identifiable due to the signal-to-noise
ratio, since there might be one or more field elements that have corresponding power
traces with correlation coefficient similar high to the maximum. There is of course no
way to verify the correctness of the vinegar variables guess individually, but as described
in Section 3.3 there is an efficient way to check if all vinegar variables are correct. We
subtract them from the signature and test if the corresponding oil vector candidate is
annihilated by P. If this is not the case, we apply a small trial-and-error replacement,
where we successively substitute vinegar variables that have a few reference traces with
similar high correlation. Following this strategy, we managed to find a valid oil vector,
even if our initial guess that uses the values with maximum correlation coefficients was
not correct. We implemented the trial-and-error replacement such that it aborts after a
few seconds, since we wanted to keep the analysis fast and it was enough in most of the
cases. If we have not found an oil vector by then, the attack is considered as unsuccessful,
which happened in around 2% of the cases.

4.3 Generalizing the Attack
The achieved results depend strongly on the analyzed implementation, which is shown in
Listing 1. The given algorithm processes the targeted vinegar variables bitwise, which
implies that the power consumption is directly related to the single bits of the value we
want to recover. In the following, we assume that there is a protected implementation in
place, that disallows us to draw conclusions about the single bits or even the Hamming

236 Separating Oil and Vinegar with a Single Trace

Figure 2: Recovering the value of one vinegar variable by correlation value.

weight (HW) of the vinegar variables x̃i itself. We will now discuss theoretically a more
relaxed attack model in which we can only obtain information about the Hamming weight
of the products α(k)

i,i · x̃i via side channels. We prove that this would still allow us to recover
the vinegar variables and perform the remaining algebraic attack as described in Section 3,
up to a certain noise level.

Focus on a specific entry x̃i, assuming we have m measurements w(k) = HW(αki,i · x̃i)
and knowledge of the respective values αki,i for k = 1, . . . ,m. Then, this entry can be
recovered very precisely, since for every k, there is only a small number of field elements
c ∈ Fq, such that αki,i · c has the measured Hamming weight w(k). A natural method to
recover the right value of x̃i, is to go through k = 1, . . . ,m and count for every c ∈ Fq the
number of times the Hamming weight of the product αki,i · c does not coincide with the
measured Hamming weight. The element with the smallest number of misses is likely to
be the x̃i we are looking for.

We have carried out several simulations to test at which noise levels the described
method has a high probability of success. To simulate a certain noise level, we took the
correct Hamming weights and added an error value ε(k) following a normal distribution
with deviation σ. Consequently, adding error values following such a distribution with,
e.g., σ = 1, implies around 68.3% of the conducted Hamming weight measurements w(k)

are correct and the others are faulty. Table 3 summarizes the results for various noise levels
and the parameter sets of three different security levels2. Here, pi states the probability
for correctly obtaining one vinegar variable x̃i and p states the probability for a successful
recovery of the complete vinegar vector x̃.

Table 3: Success probability of recovering the right vinegar variable(s) at different noise
levels of the generalized Hamming weight attack.

Noise level Security level I Security level II Security level III
(v,m) = (68, 44) (v,m) = (112, 72) (v,m) = (148, 96)

dev acc in % pi p pi p pi p
σ = 1 68.3 99.9 93, 3 > 99.9 > 99.9 > 99.9 > 99.9
σ = 1.3 55.8 98.8 43.3 99.9 93.3 > 99.9 > 99.9
σ = 1.4 52.5 97.9 20.0 99.8 83.3 99.9 93.3

There are two main conclusions we can draw from this. First, even if only around
two thirds of the conducted Hamming weight measurements w(k) are correct, we can still
recover a whole vinegar vector with high probability. This can be transformed to an oil

2The script for simulating the noise and determining the success probability of the recovery of the used
values can also be found at https://github.com/mstoetti/SCA_assisted_recon_UOV.

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 237

vector, that enables an efficient Kipnis-Shamir attack, similar to our strategy in Section 3.
Second, this probability even grows for larger parameter sets, since there are more available
measurements for each vinegar variable, as m grows.

These are just theoretical bounds stating what noise level would be acceptable to still
run the generalized attack on the Hamming weight of the products αki,i · x̃i. The real noise
level would depend on the target architecture and on the concrete implementation that is
chosen to protect the vinegar variables from our attack in Section 4.2.

5 Countermeasures
In this section, we discuss possible countermeasures to prevent the side-channel attack
proposed in this work. We will discuss in total four countermeasures, one of which is specific
to the UOV algorithm while the other countermeasures rely on established techniques.
The concrete implementation of the countermeasures is not discussed in this section and is
reserved for future work.

5.1 UOV-Specific Countermeasure
The attack described in this work relies on the correspondence between the public key and
the private key, which results from the choice of the linear transformation T (Section 3.1,
Equation (3)). This kind of key generation has been coined as equivalent keys and is the
usual way of generating UOV keys. Another method exists, however, which is referred to
as random affine T [PSKH18]. In this method the whole matrix T is generated randomly
such that it does not feature three blocks of all zeros or the identity matrix. When T is
chosen like this, both the (αki,j) and the vinegar variables are secret. Hence, the attacker
can observe side-channel leakage of only a multiplication of two unknown factors. In the
following, we show how our attack adapts to this case. We show that, since both the
vinegar variables x̃i and the secret key elements αki,j have to be revealed, an attacker
needs considerably more side-channel traces and the attack is less noise-resistant. Still, an
attacker can reveal secret information.

In our target routine, the first operation performed is F1 · x̃>, followed by x̃ · F1 · x̃>.
The intermediate results of the first matrix vector multiplication are accumulated in the
considered implementation:

F
(k)
1 · x̃> =




αk1,1x̃1 + αk1,2x̃2 + · · · + αk1,vx̃v
αk2,2x̃2 + · · · + αk2,vx̃v

. . . +
...

αkv,vx̃v


 .

In a second step, x̃ is multiplied to this vector from the left:

x̃ · F (k)
1 · x̃> =




v∑

j=1
αk1,j x̃j


 x̃1 +




v∑

j=2
αk2,j x̃j


 x̃2 + · · ·+ αkv,vx̃vx̃v.

During both computations, we can observe the Hamming weight of all individual summands,
i.e., the product of two or three unknown values. This is specific to the implementation
we are attacking in this work, which is the latest implementation of UOV [UOV23]. Other
implementations might lead to other exploitable information.

The general idea underlying this attack is that the Hamming weight of a product
carries information about potential values of the factors. First, we focus on the HW pairs
HW (x̃v · αkv,v) and HW (x̃v · x̃v · αkv,v),

238 Separating Oil and Vinegar with a Single Trace

corresponding to the last vinegar variable x̃v. Hence, by analyzing these Hamming
weights, we learn the HW of a product (x̃v · x̃v · αkv,v) and also of one of the factors
(x̃v · αkv,v), which helps us reveal information about the co-factor x̃v. We emphasize that
both multiplications are computed for m different values αkv,v, i.e., all multiplications
using the same vinegar vector x̃ are computed with m different secret matrices. This
increases the information one gets about the vinegar variables. By passing through all
provided k = 1, . . . ,m pairs, we can step by step reduce the number of candidates and
eventually reduce the number of candidates to a small number (between 1 and 3) with
high probability. Consequently, we can almost uniquely learn the value of the vinegar
variable x̃v.

In the next step, we repeat this analysis for several signatures, which is why more
side-channel traces are needed in this scenario. Each new signature uses different vinegar
variables, but the same matrices (αki,j). Hence, we obtain different sets of candidates for
the last vinegar variables x̃(i)

v used to generate the corresponding signature. Together with
the knowledge of the weights

HW (x̃(i)
v · α1

j,v), . . . ,HW (x̃(i)
v · αmj,v)

for all i and j, these candidates facilitate the recovery of all α1
j,v, α

2
j,v, . . . , α

m
j,v, for every

j, i.e., the last column of all the matrices (αki,j) with k ∈ {1, . . . ,m}. Assuming that we
choose the amount of signatures high enough, which also highly depends on the noisiness
of the traces, this will leave us with unique values αlj,v instead of only a list of candidates.
With these exact values we can revisit the list of candidates for x̃(i)

v and also obtain the
exact value for x̃(i)

v that meets the requirement for the corresponding Hamming weights.
We proceed to the previous column, and so on. In general for column v − s:

1. Recover first the value of x̃(i)
v−s (almost uniquely) from the knowledge of the Hamming

weight of the first summand, the exact knowledge of the remaining summands, and the
Hamming weight of the product of v(i)

v−s with this sum:

HW (x̃(i)
v−s · α1

v−s,v−s) + · · ·+ x̃
(i)
v · α1

v−s,v HW (x̃(i)
v−s(x̃(i)

v−s · α1
v−s,v−s + · · ·+ x̃

(i)
v · α1

v−s,v))
HW (x̃(i)

v−s · α2
v−s,v−s) + · · ·+ x̃

(i)
v · α2

v−s,v HW (x̃(i)
v−s(x̃(i)

v−s · α2
v−s,v−s + · · ·+ x̃

(i)
v · α2

v−s,v))
...

...
HW (x̃(i)

v−s · αm
v−s,v−s) + · · ·+ x̃

(i)
v · am

v−s,v HW (x̃(i)
v−s(x̃(i)

v−s · αm
v−s,v−s + · · ·+ x̃

(i)
v · αm

v−s,v)).

2. As previously, now recover all α1
j,v−s, α

2
j,v−s, . . . , α

m
j,v−s, for all j.

3. Now, use the αlj,v−s to determine x̃(i)
v−s uniquely, for all i.

The previous procedure recovers all vinegar variables and the entire matrices F1. It
demands a high number of traces and is very susceptible to noise, but shows that choosing
T as affine random T does not completely prevent the attack presented in this work.

5.2 Generic Countermeasures
In contrast to the previous discussed countermeasure that exploits the mathematical
structure and properties of UOV the here discussed countermeasure concepts can be
applied to various cryptographic schemes. In detail, we will discuss three different possible
concepts to prevent our proposed attack. These countermeasure techniques are masking,
shuffling and pre-computation. Also we will only focus on prevention of first order side-
channel leakage.

Masking is a well-established countermeasure against side-channel attacks and can
also be used to prevent our proposed attack. In [PSKH18] the authors already propose a
multiplicative masking scheme for the operation of a matrix-vector multiplication. This

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 239

proposal can be directly applied to the computation of αki,i · x̃i to prevent first-order
leakage exploitation. The basic idea is to multiply a random non-zero value Ψ to the secret
vinegar variable x̂i = x̃i · Ψ . Hence, the operation ŷi = αki,i · x̂i is performed with the
randomized vinegar variable x̂i. Afterwards, the original value can be reconstructed by
multiplying the inverse of the random value Ψ−1 by the multiplication result yi = ŷi · Ψ−1.
In this multiplicative masking setting, an attacker would only obtain the masked vinegar
variable x̂i by applying our template-based CPA to the captured traces. Of course, an
attacker could perform our proposed attack twice to first guess the Ψ and then reconstruct
x̃i = x̂i · Ψ−1. To perform such a second-order template attack, the noise in the power
traces must be very low to correctly guess Ψ .
In praxis shuffling is implemented in parallel to masking to decrease the signal-to-noise
ration of the captured traces. This noise introduced by shuffling will not cancel the
side-channel leakage, but more measurements needs to be conducted to extract the side-
channel information. Due to [HOM06] the number of required traces for a successful attack
increases quadratically. In case of the presented attack on UOV we can only captured one
trace with the same settings of α. Therefore, shuffling can be considered as a sufficient
countermeasure against our proposed single trace template attack. To counteract our
analysis, shuffling can be applied at two different places. First, shuffling can be applied on
the vector-matrix multiplication given in Equation (9). The authors of [PSKH18] already
proposed a shuffling scheme on matrix-vector multiplication to prevent their proposed
CPA attack. In the attack we introduce, the shuffling approach only needs to be applied
to the multiplication involving the diagonal elements of the central map (αki,i · x̃i). Thus,
depending on the security parameters of UOV, the number of possible execution sequences
corresponds to the factorial of m. Thereby the proposed randomization of the index i does
not provide as much permutation as the scheme proposed by [PSKH18], but it requires
less randomness to execute the permutation.
Second, execution order of the bit-dependent operation in the bit-sliced implementation
of gf256v_mul_u32 can be shuffled. The proposed shuffle scheme in Algorithm 7 exploits
a modulus operation and a random value Φ to change the starting index of the cyclic
execution over the 8 bits. Thereby not all potential permutations of the index sequence by
!8 are exploited, but it provides a minimal computational overhead. By just applying the
alternating starting point of the sequence in Line 2 of Algorithm 7 we have only 8 different
sequences.

Algorithm 7 Shuffled conditional move version of Algorithm gf256v_mul_u32(αki,i, x̃i, Φ)

Input: αki,i, x̃i, Φ
Output: αki,i · x̃i

1: for z0 = 0 to 7 do
2: z1 = ((z0 + Φ) mod 7)
3: if ((x̃i » z1) and 1) then
4: tempT = tempT xor αki,i
5: tempF = tempF xor 0x00
6: else
7: tempF = tempF xor αki,i
8: tempT = tempT xor 0x00
9: end if

10: αki,i_msb = αki,i and 0x80808080
11: αki,i =̂ αki,i xor αki,i_msb
12: αki,i = (αki,i « 1) xor ((αki,i_msb » 7) · x̃i)
13: end for
14: return tempT

240 Separating Oil and Vinegar with a Single Trace

Hence, an attacker can reconstruct all 8 possible values form the guessed bits. However,
with 8 possible candidates per vinegar variable, the complexity increases to a computational
complexity of the 8th power to the numbers of entries in x̃, i.e v.
In addition, we adopted the idea of Always-Double-and-Add, known as ECC side-channel
countermeasure, to hide the conditional execution of the operation in Line 2 of Algorithm 6.
In Algorithm 7 the previous conditional operation of temp = temp xor αki,i in Line 2 of
Algorithm 6 is always executed, but conditionally stored in different registers, see Line
3 to 9. Thereby, conditional execution based leakage does not exist anymore. Still this
scheme is attackable with an Adress-PDA [IIT02] to distinguish the storage location of
the intermediate values, but therefore more than one measurement is required. In general,
we propose to apply a combination of the above mentioned countermeasures to prevent
our proposed attack on UOV.

Finally, we observe that if the vinegar variables are generated message independent, then
their insertion into the central polynomials, i.e., the vulnerable subroutine we identified,
might be part of a precomputation step. In case there is an offline phase in place, where
message independent operations are precomputed, like suggested by Shim et al. in [SLK22],
then this protects also against our proposed attack, since there is no way anymore to
obtain necessary side-channel information.

6 Conclusion
In this paper we present a novel side-channel attack against UOV. It exploits leakage,
that appears by inserting the vinegar variables into the secret polynomials. This leakage
becomes substantial, since we can inherently deduce a large amount of the coefficients
of these polynomial. This facilitates a template attack, where we only need a single
attack trace to recover a complete set of vinegar variables (resp. an oil vector). We have
implemented the attack with the ChipWhisperer Setup and a STM32F3 target board.
The success probability thereof, lies above 97% even though we took the reference traces
for the template and the attack traces on different devices, i.e., we separated carefully
into profiling and target device. From an attacker point of view, it is easy to verify if
the side-channel attack was successful, since the retrieved oil vector is annihilated by the
public-key map. With the knowledge of one (single-trace) additional oil vector, we can
recover the secret key in polynomial time by means of the Kipnis-Shamir attack and the
reconciliation attack.

We theoretically extended our approach to a potentially protected implementation that
screens the vinegar variables, where we might have only access to the Hamming weights of
the products of the vinegar variables and the coefficients of the secret polynomials. We
showed that the attack is still feasible and even has a certain noise resistance. Contrary
to existing side-channel attacks on UOV, we do not attack the linear transformation.
This indicates that our attack is still viable when the implementation is adapted to the
description we stated in Section 2.1.1, which omits the usage of the central map and linear
transformation. Here, the vinegar variables are inserted directly into the public key map,
so we do not need the correspondence derived in Section 3.1.

This also provides ideas for future work, where we want to apply the presented attack
to the MAYO signature scheme [Beu22b]. During signing in MAYO, several sets of
vinegar variables are inserted into the public key map, that is very similar to the one
used in UOV. This indicates the possibility to recover oil vectors in a similar fashion, and
with the parameters used in the available public implementation3, one known oil vector is
enough to start a very efficient reconciliation attack. Furthermore, there might be room
for improvement regarding our classification technique. We applied a straight forward
template attack, where we just clued together the regions of interest and sought for the

3https://github.com/WardBeullens/MAYO

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 241

trace of the field element that had the highest correlation. We managed to achieve good
results on the available implementation, but it might be necessary to apply tools like a
machine learning classifier to attack more protected implementations.

Acknowledgement
We want to thank Ward Beullens sincerely for pointing us to the applicability of the
Kipnis-Shamir attack in our scenario. In a previous version of this work, we needed two
traces to be able to construct a linear system of equations, while a single-trace attack
required a more complex analysis phase.
This research work has been funded by the German Ministry of Education, Research and
Technology in the context of the project Aquorypt (grant number 16KIS1022).

A Source code of gf256v_mul_u32
1 s t a t i c i n l i n e uint32_t gf256v_mul_u32 (uint32_t a , uint8_t b) {
2 uint32_t a_msb ;
3 uint32_t a32 = a ;
4 uint32_t b32 = b ;
5 uint32_t r32 = a32 ∗(b32&1) ; // E xplo i t Bit 0
6
7 a_msb = a32&0x80808080 ;
8 a32 ^= a_msb ;
9 a32 = (a32<<1)^ ((a_msb>>7)∗0x1b) ;

10 r32 ^= (a32) ∗ ((b32>>1)&1) ; // Ex plo i t Bit 1
11
12 a_msb = a32&0x80808080 ;
13 a32 ^= a_msb ;
14 a32 = (a32<<1)^ ((a_msb>>7)∗0x1b) ;
15 r32 ^= (a32) ∗ ((b32>>2)&1) ; // Ex plo i t Bit 2
16
17 a_msb = a32&0x80808080 ;
18 a32 ^= a_msb ;
19 a32 = (a32<<1)^ ((a_msb>>7)∗0x1b) ;
20 r32 ^= (a32) ∗ ((b32>>3)&1) ; // Explo i t Bit 3
21
22 a_msb = a32&0x80808080 ;
23 a32 ^= a_msb ;
24 a32 = (a32<<1)^ ((a_msb>>7)∗0x1b) ;
25 r32 ^= (a32) ∗ ((b32>>4)&1) ; // Ex plo i t Bit 4
26
27 a_msb = a32&0x80808080 ;
28 a32 ^= a_msb ;
29 a32 = (a32<<1)^ ((a_msb>>7)∗0x1b) ;
30 r32 ^= (a32) ∗ ((b32>>5)&1) ; // Ex plo i t Bit 5
31
32 a_msb = a32&0x80808080 ;
33 a32 ^= a_msb ;
34 a32 = (a32<<1)^ ((a_msb>>7)∗0x1b) ;
35 r32 ^= (a32) ∗ ((b32>>6)&1) ; // Ex plo i t Bit 6
36
37 a_msb = a32&0x80808080 ;
38 a32 ^= a_msb ;
39 a32 = (a32<<1)^ ((a_msb>>7)∗0x1b) ;
40 r32 ^= (a32) ∗ ((b32>>7)&1) ; // Ex plo i t Bit 7
41
42 r e t u r n r32 ;
43}

Listing 1: Vulnerable bit-sliced multiplication operation used for the calculation of
(αki,i · x̃i) in Equation (1) from the available implementation [UOV23].

242 Separating Oil and Vinegar with a Single Trace

References
[AKKM20] Thomas Aulbach, Tobias Kovats, Juliane Krämer, and Soundes Marzougui.

Recovering Rainbow’s Secret Key with a First-Order Fault Attack. In Progress
in Cryptology - AFRICACRYPT 2020 - 12th International Conference on
Cryptology in Africa, Cairo, Egypt, July 20-22, 2020, Proceedings, volume
12174 of Lecture Notes in Computer Science. Springer, 2020.

[BC14] Christina Boura and Anne Canteaut. A new criterion for avoiding the prop-
agation of linear relations through an Sbox. In FSE 2013 - Fast Software
Encryption, LNCS, Singapore, 2014. Springer.

[BCH+23] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer,
Bo-Yuan Peng, Cheng-Jhih Shih, and Bo-Yin Yang. Oil and Vinegar: Modern
Parameters and Implementations. Cryptology ePrint Archive, Report 2023/059,
2023. https://ia.cr/2023/059, accepted for publication at TCHES’23.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th Inter-
national Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer,
2004.

[Beu21] Ward Beullens. Improved cryptanalysis of UOV and Rainbow. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 348–373. Springer, 2021.

[Beu22a] Ward Beullens. Breaking Rainbow Takes a Weekend on a Laptop. In CRYPTO,
volume 13508 of Lecture Notes in Computer Science, pages 464–479. Springer,
2022.

[Beu22b] Ward Beullens. Mayo: Practical post-quantum signatures from oil-and-vinegar
maps. In International Conference on Selected Areas in Cryptography, pages
355–376. Springer, 2022.

[BFP12] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polynomial
systems over finite fields: improved analysis of the hybrid approach. In
Joris van der Hoeven and Mark van Hoeij, editors, Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation – ISSAC ’12,
pages 67–74. ACM, 2012. https://hal.inria.fr/hal-00776070/document.

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. The SPHINCS+ Signature Framework. In
CCS, pages 2129–2146. ACM, 2019.

[BPSV19] Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Vercauteren.
LUOV. Technical report, National Institute of Standards and Technology,
2019. available at https://github.com/WardBeullens/LUOV/blob/master/
Supporting_Documentation/luov.pdf.

[CFM+20] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and
J. Ryckeghem. GeMSS. Technical report, National Institute of Standards and
Technology, 2020.

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 243

[CKPS00] Nicolas Courtois, Er Klimov, Jacques Patarin, and Adi Shamir. Efficient Algo-
rithms for Solving Overdefined Systems of Multivariate Polynomial Equations.
In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807, pages 392–407, 2000. www.iacr.org/archive/eurocrypt2000/1807/
18070398-new.pdf.

[DCP+20] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo-Yin
Yang, Matthias Kannwischer, and Jacques Patarin. Rainbow. Technical report,
National Institute of Standards and Technology, 2020.

[Die04] Claus Diem. The XL-algorithm and a conjecture from commutative al-
gebra. In Advances in Cryptology – ASIACRYPT 2004, volume 3329,
pages 323–337, 2004. https://www.iacr.org/archive/asiacrypt2004/
33290320/33290320.pdf.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A Lattice-Based
Digital Signature Scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(1):238–268, 2018.

[DYC+08] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and
Chen-Mou Cheng. New Differential-Algebraic Attacks and Reparametrization
of Rainbow. In ACNS, volume 5037 of LNCS, pages 242–257, 2008.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
bases (F4). Journal of Pure and Applied Algebra, 139:61–88, 1999. http:
//www-polsys.lip6.fr/~jcf/Papers/F99a.pdf.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation – ISSAC ’02, pages 75–83.
ACM, 2002. http://www-polsys.lip6.fr/~jcf/Papers/F02a.pdf.

[FKNT22] Hiroki Furue, Yutaro Kiyomura, Tatsuya Nagasawa, and Tsuyoshi Takagi.
A New Fault Attack on UOV Multivariate Signature Scheme. In PQCrypto,
volume 13512 of Lecture Notes in Computer Science, pages 124–143. Springer,
2022.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card
implementation resistant to power analysis attacks. In Jianying Zhou, Moti
Yung, and Feng Bao, editors, Applied Cryptography and Network Security, 4th
International Conference, ACNS 2006, Singapore, June 6-9, 2006, Proceedings,
volume 3989 of Lecture Notes in Computer Science, pages 239–252, 2006.

[HTS11] Yasufumi Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai. General fault
attacks on multivariate public key cryptosystems. In Post-Quantum Cryptogra-
phy - 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November
29 - December 2, 2011. Proceedings, pages 1–18, 2011.

[IIT02] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. Address-bit differential
power analysis of cryptographic schemes OK-ECDH and OK-ECDSA. In Bur-
ton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 129–143. Springer, 2002.

244 Separating Oil and Vinegar with a Single Trace

[JV17] Antoine Joux and Vanessa Vitse. A Crossbred Algorithm for Solving Boolean
Polynomial Systems. In Jerzy Kaczorowski, Josef Pieprzyk, and Jacek
Pomykala, editors, Number-Theoretic Methods in Cryptology - First Interna-
tional Conference, NuTMiC 2017, Warsaw, Poland, September 11-13, 2017,
Revised Selected Papers, volume 10737 of Lecture Notes in Computer Science,
pages 3–21. Springer, 2017.

[KL19] Juliane Krämer and Mirjam Loiero. Fault Attacks on UOV and Rainbow. In
COSADE, volume 11421 of Lecture Notes in Computer Science, pages 193–214.
Springer, 2019.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and
Vinegar Signature Schemes. In Jacques Stern, editor, Advances in Cryptology -
EUROCRYPT ’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding,
volume 1592 of Lecture Notes in Computer Science, pages 206–222. Springer,
1999.

[KS06] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil and vinegar signature
scheme. In Advances in Cryptology—CRYPTO’98: 18th Annual International
Cryptology Conference Santa Barbara, California, USA August 23–27, 1998
Proceedings, pages 257–266. Springer, 2006.

[MIS20] Koksal Mus, Saad Islam, and Berk Sunar. QuantumHammer: a Practical
Hybrid Attack on the LUOV Signature Scheme. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pages
1071–1084, 2020.

[NC17] Erick Nascimento and Lukasz Chmielewski. Horizontal Clustering Side-Channel
Attacks on Embedded ECC Implementations (Extended Version). IACR
Cryptol. ePrint Arch., page 1204, 2017.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute of
Standards and Technology, 2022.

[PSKH18] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. Side-channel
attacks on Post-Quantum Signature Schemes based on multivariate quadratic
equations:-Rainbow and UOV. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 500–523, 2018.

[PSN21] David Pokorný, Petr Socha, and Martin Novotný. Side-Channel Attack on
Rainbow Post-Quantum Signature. In 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 565–568. IEEE, 2021.

[SG14] Simona Samardjiska and Danilo Gligoroski. Linearity Measures for Multivariate
Public Key Cryptography. In SECURWARE 2014, The Eighth International
Conference on Emerging Security Information, Systems and Technologies,
pages 157–166, 2014.

[SLK22] Kyung-Ah Shim, Sangyub Lee, and Namhun Koo. Efficient Implementations
of Rainbow and UOV using AVX2. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 245–269, 2022.

[Tec23] NewAE Technology. Repository of chipwhisperer tool chain - commit 6bf3bac,
2023. https://github.com/newaetech/chipwhisperer.

Aulbach, Campos, Krämer, Samardjiska and Stöttinger 245

[TPD21] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. Efficient Key Recovery
for All HFE Signature Variants. In CRYPTO (1), volume 12825 of Lecture
Notes in Computer Science, pages 70–93. Springer, 2021.

[UOV23] Repository of Oil and Vinegar: Modern Parameters and Implementations -
commit eeedc68, 2023. https://github.com/pqov/pqov-paper.

[VP20] Ricardo Villanueva-Polanco. Cold Boot Attacks on LUOV. Applied Sciences,
10:4106, 06 2020.

[YC05] Bo-Yin Yang and Jiun-Ming Chen. All in the XL family: Theory and practice.
In Choon sik Park and Seongtaek Chee, editors, Information Security and
Cryptology – ICISC 2004, pages 67–86, 2005. http://by.iis.sinica.edu.
tw/by-publ/recent/xxl.pdf.

A.2. Separating Oil and Vinegar with a Single Trace 145

MAYo or MAY-not: Exploring Implementation
Security of the Post-Quantum Signature Scheme

MAYO Against Physical Attacks
Thomas Aulbach∗

University of Regensburg, Germany
thomas.aulbach@ur.de

Soundes Marzougui∗
STMicroelectronics, Belgium

soundes.marzougui@st.com

Jean-Pierre Seifert∗
TU Berlin – SECT, Germany

Fraunhofer SIT, Darmstadt, Germany
jean-pierre.seifert@tu-berlin.de

Vincent Quentin Ulitzsch∗
TU Berlin – SECT, Germany

vincent@sect.tu-berlin.de

Abstract—MAYO is a multivariate signature scheme notable
for its efficiency and compact key size. Targeting NIST security
level I, MAYO features a public key size of 1168 bytes and
a signature size of 321 bytes, making it more compact than
leading lattice-based signature schemes like Falcon and Dilithium,
thereby easing integration into embedded systems. With the de-
ployment of MAYO in embedded systems, studying the resilience
of MAYO implementations against fault injection attacks is of
increasing importance. In this paper, we investigate the security
of MAYO against fault injection attacks, and present the first
end-to-end fault injection attack on the multivariate scheme.
The attack introduces a loop-abort fault in the sampling of the
vinegar vector. We present two variants: A zero-ing attack, in
which the skipped sampling results in an all-zero vinegar vector,
and a differential fault attack. In both variants, the faulted
signature reveals an oil vector, allowing for full key recovery
through techniques borrowed from the reconciliation attack in a
few seconds.

Index Terms—fault-injection, MAYO, multivariate schemes,
post-quantum cryptography

I. INTRODUCTION

Quantum attacks can compromise the computational prob-
lems foundational to classical cryptography, such as factoriza-
tion and discrete logarithms. This underscores the urgent need
to develop cryptographic methods resilient to quantum attacks.
In response, researchers have proposed new mathematical as-
sumptions and computational problems that remain intractable
for quantum computers, thereby giving rise to the field of post-
quantum cryptography. These new assumptions are grouped
into different families, such as lattice-based, code-based, hash-
based, and multivariate cryptography. Multivariate cryptogra-
phy schemes, referred to as MQ schemes, primarily depend
on the computational difficulty of solving large systems of

∗ Authors are listed in alphabetical order.
The authors acknowledge the financial support by the Federal Ministry of
Education and Research of Germany in the programme of “Souverän. Digital.
Vernetzt.” Joint project 6G-RIC, project identification number: 16KISK030.
Furthermore, this work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - project number 50550035.

multivariate quadratic equations. Since the first MQ encryption
scheme was introduced by Imai and Matsumoto, most of these
schemes have been broken [Beu22], [Pat00], [KS98], with the
exception of a few signature schemes like Unbalanced Oil-and-
Vinegar (UOV) variants and HFEv-variants. MQ schemes are
build on relatively simple operations, relying mostly on vector-
matrix operations and solving linear systems over small finite
fields without the need for multi-precision arithmetic. They are
also considered to be highly efficient, especially for resource-
constrained devices with modest computational power, and do
not require a cryptographic coprocessor. Additionally, the size
of the signatures of MQ schemes is among the shortest, among
all known post-quantum signature schemes. However, the
major disadvantage of multivariate schemes was recognized to
be in the size of the keys. Multivariate schemes suffer from rel-
atively large key sizes (in the order of hundreds of kilobytes).
As a consequence, the integration of multivariate schemes was
limited to devices with sufficient memory capabilities such as
smartphones.

Rainbow [DS05] and LUOV [BPSV19] were multivariate
schemes present in the first rounds of the NIST standardiza-
tion process. The LUOV scheme was already excluded from
the NIST competition, despite it being simpler and having
a smaller attack surface when compared to Rainbow. On
the other hand, in 2022, Rainbow was broken by Beullens
[Beu22]. To defend against this attack, one solution is to
increase the parameters used in the Rainbow scheme, but this
results in larger key and signature sizes.

The NIST standardization competition is still ongoing and
continuously evolving, with new submissions and emerging
attacks regularly influencing the landscape. Notably, MAYO
was submitted in response to a call for more diverse crypto-
graphic approaches to signature schemes. MAYO is a post-
quantum signature scheme submitted by Beullens. According
to [Beu21b], MAYO is considered to be the most efficient
multivariate scheme due to its small public key size compared
to other multivariate schemes, such as Rainbow and UOV.

28

2024 Workshop on Fault Detection and Tolerance in Cryptography (FDTC)

2995-0252/24/$31.00 ©2024 IEEE
DOI 10.1109/FDTC64268.2024.00012

20
24

 W
or

ks
ho

p
on

 F
au

lt
D

et
ec

tio
n

an
d

To
le

ra
nc

e
in

 C
ry

pt
og

ra
ph

y
(F

D
TC

) |
 9

79
-8

-3
50

3-
80

36
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

FD
TC

64
26

8.
20

24
.0

00
12

Authorized licensed use limited to: Universitaetsbibliothek Regensburg. Downloaded on April 25,2025 at 07:46:54 UTC from IEEE Xplore. Restrictions apply.

With parameters targeting NISTPQC security level I, the
public key size of MAYO is 1168 bytes, and the signature
size is 321 bytes, making it even more compact than other
state-of-the-art lattice-based signature schemes such as Falcon
and Dilithium.

With the introduction of MAYO, current efforts have been
directed towards optimizing its implementation, as seen in
studies like [HSMR23], [SMA+24]. Given these optimiza-
tions, MAYO is likely to see real-world deployment on
embedded devices. This introduces a new threat-landscape;
cryptographic schemes deployed on embedded devices face the
threat of physical side-channel and fault injection attacks. It is
therefore important to safeguard the implementations against
these attacks. The authors of the MAYO scheme acknowledge
this threat in their NIST submission end emphasize that the
use of a salt in their implementation reduces the attack surface
against active physical attacks [BCC+23].

To understand how MAYO can be secured against physical
attackers, it is important to study a physical attacker’s capabili-
ties and points of attack in MAYO implementations. However,
so far, there is little research of end-to-end attack on multi-
variate schemes. Existing research focuses on theoretical or
emulated attacks, such as [KL19] and [FKNT22]. Historically,
multivariate schemes have been hindered by large key sizes,
making their deployment in embedded devices challenging.
For instance, deploying Rainbow on a Cortex-M4 target board
on a ChipWhisperer was not feasible. This limitation has likely
contributed to the mentioned absence of end-to-end attacks on
multivariate schemes in the literature. As of writing of this
paper, no end-to-end fault-injection attack has been reported
against multivariate schemes in general, and against MAYO
specifically.

a) Contribution: In this paper, we present multiple fault
injection attacks on the multivariate signature scheme MAYO.
We show that by attacking the random sampling of the
vinegar values, an attacker can recover MAYO’s secret key
given only one faulted signature. The key insight is that the
attacker can recover a vector from the secret oil space from
a a faulted signature and then recover the oil space through
techniques borrowed from the reconciliation attack. The tech-
niques presented here are akin to fault injection attacks on
Rainbow — as such, they demonstrate a critical section in the
MAYO implementation that needs to be protected against fault
injection for real-world deployment.

In Section II, we give a background on multivariate
schemes. Section III describes the fault injection attacks,
following by experimental evaluation of the attacks in Section
IV. We conclude the paper with Section V where we discuss
the possible countermeasures that can present against the
presented attack.

b) Related work: Prior work demonstrated fault injec-
tion attacks against multivariate cryptography, but the attack
surface of MAYO implementations has been unexplored so
far. Fault injection attacks on multivariate public-key crypto
systems were first introduced by Hashimoto et. al in [HTS11].
The authors demonstrated how to recover the secret key with

a single fault. In [KL19], Krämer and Loiero based on the
results of [HTS11] to comprehensively analyse how the attacks
can be applied to UOV and Rainbow. First, they analyzed
the propagation of a faulted coefficient in the central map
through the signature, demonstrating how this can be exploited
to gain information about the secret transformation. Second,
they examined the impact of fixing the vinegar variables across
multiple signatures, revealing how this process can disclose
information about the secret transformation. Shim and Koo
further developed this latter approach into a full key recovery
attack [SK20]. However this method has high computational
complexity. In [AKKM22], Aulbach et al. demonstrate how
Rainbow can be attacked through fault injection.

II. BACKGROUND

A. Multivariate Signature Schemes

The core of multivariate signature schemes in general and
MAYO signature scheme [Beu21b] specifically is a quadratic
map. For example, this map can be defined as the following
P : Fn

q → Fm
q with m multivariate quadratic polynomials as

a sequence p1(x), . . . , pm(x) in n variables x = (x1, . . . , xn)
and the coefficients of the polynomials are in Fq , a finite field
with q elements.

Herein, the hardness of multivariate schemes is based on
the hardness of finding a preimage s ∈ Fn

q of a target vector
t ∈ Fm

q under a given multivariate quadratic map P , i.e.,
solving a multivariate system of quadratic equations. This task
is often referred to as the MQ problem.

In a multivariate cryptography scheme, the map P is given
as the public key, while the secret key is a trapdoor in the
public map P , allowing to invert P . To sign a message, the
signer first hashes the message into a target vector t ∈ Fm

q ,
and then finds a pre-image s of t under P . The verifier then
simply checks that P(s) = t.

B. The Trapdoor in UOV

The Mayo signature scheme is a special modification of the
UOV signature scheme. The main idea behind oil and vinegar
schemes is to introduce a trapdoor into the set of equations to
allow efficient sampling of preimages. In UOV, the trapdoor
information is a basis of a secret linear subspace O ⊂ Fn

q

of dimension dim(O) = m, the so-called oil space [Beu21a].
This oil space has the property that it vanishes on the public
key map, i.e., P(o) = 0m for all o ∈ O.

One can define the polar form or differential of the multi-
variate quadratic polynomials pi(x) as

p′i(x,y) := pi(x+ y)− pi(x)− pi(y) + pi(0).

Note, that the multivariate quadratic polynomials constitute
the map P via P(x) = p1(x), . . . , pm(x).

Since these quadratic polynomials are homogeneous poly-
nomials, the term pi(0) will be omitted in the following. The
differential or polar form of P can now be defined as

P ′(x,y) = p′1(x,y), . . . , p
′
m(x,y).

29

Authorized licensed use limited to: Universitaetsbibliothek Regensburg. Downloaded on April 25,2025 at 07:46:54 UTC from IEEE Xplore. Restrictions apply.

The map P ′ : Fn
q × Fn

q → Fm
q is a symmetric and bilinear

map, see [Beu21a, Theorem 1].
Furthermore, if an attacker has knowledge of the secret oil
space, she can easily generate a legitimate signature of a
message of her choice. This proceeds by using the oil space
to efficiently find preimages x ∈ Fn

q of a given target t ∈ Fm
q

(derived from the message to sign) such that P(x) = t. To do
so, one can randomly pick a vinegar vector v ∈ Fn

q and solve
the system P (v+ o) = t for o ∈ O. This is possible since in

t = P(v + o) = P(v) + P(o) + P ′(v,o) (1)

the term P(v) is constant and P(o) vanishes, so whenever the
linear map P ′(v, ·) is non-singular, the system has a unique
solution o ∈ O, which can be computed efficiently. Without
the knowledge of the oil space O, the term P(o) implies that
Equation 1 constitutes a system of quadratic equations, which
remains hard to solve.

Building a signature scheme directly from this setting has,
however, one important disadvantage influencing the perfor-
mance of the scheme. To be secure against algebraic attacks
introduced in the literature, the oil space and the image space
of the multivariate quadratic map P need to be picked carefully
and should be equally large, i.e., dim O = m. Moreover, the
parameter n representing the variables needs to be sufficiently
larger than m, with n ≈ 2, 5m being used in all currently
considered implementations. This is mandatory to counter the
Kipnis-Shamir attack [KS98]. Additionally, the parameter m
itself needs to be of a certain size as well, to provide security
against the intersection attack [Beu21a]. Those conditions lead
to key pairs of enormous size, which is considered the main
drawback of multivariate signatures. The MAYO scheme aims
at tackling this problem.

C. Description of MAYO

The huge size of the key pairs of multivariate schemes is
linked to the parameters m and n, representing the number of
multivariate quadratic polynomials and variables, respectively.
The MAYO scheme relies on the downsizing of the dimension
of the oil space to dim O = o < m. However, this oil space is
now too small to sample signatures, since the system P(v +
o) = t given in Equation 1 consists consequently of m linear
equations in o variables and is unlikely to have any solutions.
The approach taken by the authors of MAYO in [Beu21b]
is to stretch the public key map into a larger whipped map
P∗ : Fkn

q → Fm
q , such that it accepts k input vectors

x ∈ Fn
q . This is realized by defining

P∗(x1, ..., xk) :=
k∑

i=1

EiiP(xi) +
∑

1≤i<j≤k

Eij(P ′(xi, xj)),

(2)
where the matrices Eij ∈ Fm×m

q represent multiplications
by 1, X,X2, . . . , X(k2)−1 in Fq[X]/f(X), for some monic
irreducible polynomial f(X) of degree m. This is possible
for parameter sets that satisfy

(
k
2

)
< m.

Figure 1 gives the pseudocode of the MAYO algorithms, as

described in [Beu21b]. We stick to this description, since it
contains all the key ideas, but remains very compact at the
same time, omitting a lot of details like the de- and encoding
of the matrices given in the pseudocode of the actual NIST
submission [BCC+23].

The oil and vinegar property holds for MAYO as well.
Hence, one can notice that P∗ vanishes on the subspace Ok =
{(o1, . . . , ok)| with oi ∈ O for all i ∈ [k]} of dimension ko.
By choosing the parameters such that ko ≥ m, the k copies
of the oil space are large enough to construct preimages of
a target vector t ∈ Fm

q under the whipped map P∗. In more
detail, the signer randomly samples (v1, . . . , vk) ∈ Fkn

q , and
then solves

P∗(v1 + o1, . . . , vk + ok) = t (3)

for (o1, . . . , ok) ∈ Ok. Observe from Equation 2 that this
system remains linear in the presence of the linear emulsifier
maps Eij ∈ Fm×m

q . Thus, the signer can efficiently compute a
preimage {si = vi+oi}i∈[k] of t. To verify a MAYO signature,
one needs to check if the given {si}i∈[k] satisfy Equation 3.

D. Introduction to Fault Injection Attacks

Fault injection attacks are active attacks where the attacker
is required to interact physically with the victim’s device
to instantly tamper with a processor’s electrical inputs (e.g.,
voltage or clock). By violating the safe ranges of these
operating parameters, a fault can occur within the processor,
resulting in skipped instructions or corrupt memory transac-
tions. Therefore, the attacker exploits the faulted output to
reveal the secret information.

A fault attack is described through a fault attack model.
This model summarizes the type of error it produces (e.g.
skipping the execution of a specific instruction or flipping a
bit in data), the timing precision, or the number of faults.
The latter characteristic defines the order of the attack. For
instance, first-order attacks assume that an attacker can inject
only one error per execution of the target algorithm. Similarly,
second-order attacks assume that an attacker can induce two
errors per execution, and so forth. It is plausible, that the
feasibility of the fault injection attack decreases with the order
of the attack i.e., the number of injected faults.

III. FAULT-INJECION ATTACK AGAINST MAYO

The main idea of our attack is to perturb the sampling
of the vinegar variables in a way that the resulting faulted
signature reveals a vector from the secret oil space. This oil
vector enables an attacker to recover the entire oil space in
polynomial time via techniques borrowed from the reconcilia-
tion attack. As described in Section II, the secret key is solely
given by the secret linear oil space O. Thus, an attacker is
able to forge signatures, as soon as she recovered O. This
Section first recalls the details of the reconciliation attack, and
then describes scenarios in which an attacker can reveal an oil
vector through fault injection attacks.

30

Authorized licensed use limited to: Universitaetsbibliothek Regensburg. Downloaded on April 25,2025 at 07:46:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 KeyGen()

1: O← Fo×(n−o)
q

2: seed ← {0, 1}λ
3: for i from 1 to m do
4: P

(1)
i ← Expand(seed∥P1∥i)

5: P
(2)
i ← Expand(seed∥P2∥i)

6: P
(3)
i ← −OP

(1)
i O⊤ −OP

(2)
i

7: end for
8: pk = (seed, {P(3)

i }i∈{1,...,m})
9: sk = (seed,O)

10: return (pk, sk)

Algorithm 2 Sign(M, sk)

1: (seed,O)← sk
2: salt ← {0, 1}2λ
3: t← Hash(M∥salt)
4: P∗(x1, . . . ,xk) ←

∑k
i=1 EiiP(xi) +∑

1≤i<j≤k EijP ′(xi,xj)
5: vi ← Fn−m

q × {0}m
6: if P∗(v1 + o1, . . . ,vk + ok) does not

have full rank then
7: return to step 5
8: end if
9: Solve P∗(v1+o1, . . . ,vk+ok) = t for

o1, . . . ,ok ∈ RowSpace(O∥Io).
10: return σ = (salt, {si = vi + oi}i∈[k])

Algorithm 3 Verify(M, pk, σ)

1: (salt, {si}i∈[k])← σ
2: t← Hash(M∥salt)
3: t′ ← ∑k

i=1 EiiP(si) +∑
1≤i<j≤k EijP ′(si, sj)

4: if t = t′ then
5: return accept
6: else
7: return reject
8: end if

Fig. 1: The MAYO signature algorithm [Beu21b].

A. Reconciliation Attack

The reconciliation attack tries to find a collection of linearly
independent vectors oi ∈ O until a complete basis of the secret
oil space O is found. The first vector o1 has to be obtained
by solving the system P(o1) = 0 consisting of m quadratic
polynomials. As dim(O) = o, we expect a unique solution,
if o affine constraints are fixed in the entries of o1. Thus, we
need to find a solution to a quadratic system of m equations
in n − o variables. Obviously, the parameters of MAYO are
chosen in a way, that the required computational complexity
is beyond the respective security level.

However, as soon as a first vector o1 ∈ O is recovered,
finding additional vectors becomes significantly more efficient.
E.g. for o2, we now have the combined system

{
P(o2) = 0
P ′(o1,o2) = 0

at hand. For fixed o1, the bilinear differential map
P ′(o1,o2) = 0 imposes m linear equations in the entries
of o2. This follows from the fact that P ′(o1,o2) consists
of m bilinear polynomials p′i(o1,o2), each providing a
linear equation in n variables - the entries of o2. Since
dim(O) = o > n −m, we can fix n −m of those variables,
solve the linear system and receive a new oil vector o2 ∈ O.
This process can be iterated for o3, . . . ,oo to recover a
complete basis of O with complexity O(o · m3). One just
needs to be careful that the newly recovered oil vectors are
linearly independent of the previous ones. For further reading,
we refer to [DYC+08] and [Beu21b].

Since it is impracticable to recover the starting vector o1 by
algebraic methods, we instead apply the fault injection attack
described in Section III-B to obtain o1. As described above,
the computations to retrieve the remaining oil space are indeed
trivial. We implemented the key recovery algorithm using the
Sagemath [The24] package. For the MAYO1 parameter set

submitted to NIST which sets q = 16, n = 66,m = 64, o =
8, k = 9, the secret oil space O can be recovered in a matter of
seconds on an consumer-grade laptop, given that the attacker
already knows one oil vector o1 ∈ O.

B. Fault Injection Attack
We now turn our attention to fault injection scenarios that

can reveal a vector from the secret oil space.
a) Assumptions: The attacks suggested in the following

are first-order fault injection attacks and assume an attacker
to be able to skip one specific instruction during the signing
process. The resulting faulted signature is used to recover the
secret key.

b) Key Idea: The main idea of our attack is to inject a
loop-abort fault during the sampling of the vinegar variables
(Line 5 in the Sign function, Figure 1), disturbing the sampling
in a way that an oil vector can be recovered from the
resulting faulted signature. Assuming that the vinegar vectors
are sampled in sequential order, a loop-abort fault results in
the sampling of one or more vinegar vectors being skipped.
Note that the sampling of the vinegar vectors is implemented
in a sequential manner in both the NIST reference implemen-
tation submitted as well the implementation provided with the
original paper [Beu21b], [BCC+23].

We present two scenarios in which such a loop-abort fault
can lead to key recovery. First, assume that the vinegar vectors
are initialized to a constant value before being sampled. In that
case, a loop-abort fault will lead to one or more vinegar values
being set to this constant. For simplicity, assume that value to
be zero. Then, skipping the sampling of the k’th vinegar vector
will lead to the faulted faulted signature s = (s1, . . . , sk) =
(v1 + o1, . . . ,vk + ok) = (v1 + o1, . . . ,0 + ok), directly
revealing the oil vector ok.

The second scenario uses a differential fault attack. Here, the
attacker first lets the device compute a signature s correctly,
and then injects a loop-abort fault during the computation of
a second signature s′. If this loop-abort fault results in at least

31

Authorized licensed use limited to: Universitaetsbibliothek Regensburg. Downloaded on April 25,2025 at 07:46:54 UTC from IEEE Xplore. Restrictions apply.

one vinegar vector v′
i being assigned the same value as in

the first (correct) signature, then we can launch an attack
as follows. The attacker subtracts an obtained correct (not
faulted) signature s and the faulted signature s′ and receives
s− s′ = (s1 − s′1, . . . , sk − s′k). Observe that for the entry i,
where vi = v′

i holds, we have si − s′i = vi + oi − v′
i − o′

i =
oi − o′

i. As a result, we again have obtained a vector from
the secret oil space. We highlight that this scenario does not
require the other vinegar values to be the same (and therefore,
works even if the signature generation is randomized), but
only that at least one vinegar value of the faulted signature is
equal to a vinegar value of the correct signature. This could
happen, for example, if the variable holding the vinegar vectors
is merely allocated on the stack, but not set to an initial
value before sampling. In this case, the vinegar vectors are
set to whatever value is currently in the respective location –
which could be the values of the vinegar vector from the prior
signature generation.

In both scenarios, the attacker can use the obtained vector
from the secret oil space to recover the entire oil space in
polynomial time. Note that the attacker must be careful not
fault the sampling of all vinegar vectors, as otherwise the
equation P∗(v1 + o1, . . . ,vk + ok) = t might not have a
solution.

IV. EXPERIMENTAL VALIDATION

a) Simulations: We have verified the described attacks
through both Sagemath simulations as well as a fault in-
jection executed on an STM32F4 board. For the Sagemath
simulations, we modified the Sage reference implementation
submitted as part of MAYO’s NIST submission [BCC+23]
to simulate the fault injection scenarios described in Section
III-B. For both fault injection scenarios, we were able to
recover the key in a matter of seconds on a consumer-grade
laptop using our Sagemath implementation of the reconcilia-
tion attack.

b) Practical Fault Injection Attack: To verify that our
attack works in practice, we launched the fault injection attack
against the proof of concept implementation [BC22] provided
with the original MAYO paper [Beu21b], executed on an
STM32F4 target board having 1 MB of Flash memory and 192
KB of RAM. The target board is mounted on an UFO board
which has three 20-pin female headers into which the target
board fits. The proof of concept implementation of the original
MAYO paper calls a function that samples random vinegar
values during signature generation. This sample_vinegar
function, depicted in Listing 1, samples vinegar values in a
nested loop. In our attack, the attacker tries to trigger a loop-
abort fault in this loop, causing an early exit out of the outer
sampling loop of the vinegar values (Line 5 in Listing 1).

1void sample_vinegar(unsigned char *inputs){[...]
2int c = 0;
3for (int i = 0; i < K; ++i){

//Trigger the CW’ GPIO pin here if i==K-1
4for (int j = 0; j < paramN-O; ++j){
5while(randomness[c]%(1<<PRIME_BITS) >= PRIME){
6c++;
7}
8inputs[i*paramN + j] = randomness[c];
9c++;
10}
11
12}
13}

Listing 1: Sampling the vinegar values

To bypass the sampling loop, we perform a clock-glitching
attack using the ChipWhisperer. The ChipWhisperer gener-
ates the base clock for the microcontroller, with the clock
frequency set to 7.327 MHz. The devices under test can
raise a GPIO pin to trigger the clock modification. Upon
detecting the GPIO as raised, the ChipWhisperer modifies
the clock pulse, causing the microcontroller to skip instruc-
tions. This GPIO pin is triggered by the code under test.
In our experiments, we modified the MAYO code to raise
the GPIO pin when sampling the vinegar values (i.e., in the
sample_vinegar function). The clock modification by the
ChipWhisperer system occurs within a single clock cycle.
It adjusts the clock as follows: during the targeted clock
period, the ChipWhisperer delays the rising clock edge for
width percent of the clock period after leaving the rising
edge unchanged for offset percent of the clock period, with
the parameters being adjustable by the attacker.

For simplicity, we modified the code to initialize the vinegar
values to zero. We then triggered a loop-abort fault, with
parameters and trigger adjusted to skip the sampling of just
one vinegar vector. This reveals an oil vector through the
resulting signature – we can recover the oil space through a
reconciliation attack as described earlier. Our results confirm
the efficacy of the presented fault-injection attacks.

V. COUNTERMEASURES

Our security analysis shows that the implementation of
MAYO [BC22] is vulnerable to fault injection attacks, and
an attacker might be able to reveal the full secret key with
one fault. Securing an implementation against the presented
attacks is non-trivial. First, note that the attacks lead to valid
signatures, and therefore, cannot be mitigated by a signature
check. Second, note that zeroing the vinegar values is also
sufficient to perform key recovery, and thus, a simple loop
counter inside the loop sampling the vinegar value is not
sufficient. The differential fault attack can also not be mitigated
through randomness in the signature generation, since only
the faulted vinegar vector needs to be the same, all other
vinegar vectors can differ between the faulted and the non-
faulted signature. Our analysis therefore helps to isolate critical
regions in the MAYO code that need dedicated protection, but
further research is required to design dedicated and efficient
countermeasures against the presented fault injection attacks.

32

Authorized licensed use limited to: Universitaetsbibliothek Regensburg. Downloaded on April 25,2025 at 07:46:54 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION

In conclusion, this paper presents the first end-to-end
fault injection attack on the MAYO scheme, a candidate in
the ongoing NIST post-quantum cryptography standardization
process. We demonstrate that a single fault injection can
successfully disclose the secret key. This underscores the
need for protective measures against such physical attacks.
By studying the attack surface of MAYO, we are able to
propose lightweight and easy-to-implement countermeasures
to enhance the scheme’s resilience, emphasizing the necessity
of implementing these protections to safeguard the integrity
and security of the MAYO scheme in practical applications.
Our work serves as a starting point for future work, extending
our analysis of MAYO’s attack surface against physical at-
tacks, thereby enabling the design of secure, but still efficient
implementations.

REFERENCES

[AKKM22] Thomas Aulbach, Tobias Kovats, Juliane Krämer, and Soundes
Marzougui. Recovering Rainbow’s Secret Key with a First-
Order Fault Attack. In International Conference on Cryptology
in Africa. Springer, 2022.

[BC22] Ward Beullens and Sofı́a Celi. Mayo implementation.
https://github.com/WardBeullens/MAYO, 2022.

[BCC+23] Ward Beullens, Fabio Campos, Sofı́a Celi, Basil Hess, and
Matthias Kannwischer. MAYO-algorithm specifications. MAYO
team. https://pqmayo.org/assets/specs/mayo.pdf, 2023.

[Beu21a] Ward Beullens. Improved cryptanalysis of UOV and Rainbow.
In Advances in Cryptology–EUROCRYPT 2021. Springer, 2021.

[Beu21b] Ward Beullens. MAYO: Practical Post-Quantum Signatures from
Oil-and-Vinegar Maps. In Selected Areas in Cryptography.
Springer, 2021.

[Beu22] Ward Beullens. Breaking Rainbow Takes a Weekend on a
Laptop. In Annual International Cryptology Conference, pages
464–479. Springer, 2022.

[BPSV19] Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik
Vercauteren. Reference implementation of the LUOV signature
scheme. https://github.com/WardBeullens/LUOV, 2019.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new Multivariable
Polynomial Signature Scheme. In ACNS, volume 5, pages 164–
175. Springer, 2005.

[DYC+08] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing
Chen, and Chen-Mou Cheng. New differential-algebraic attacks
and reparametrization of rainbow. In Applied Cryptography and
Network Security, pages 242–257. Springer, 2008.

[FKNT22] Hiroki Furue, Yutaro Kiyomura, Tatsuya Nagasawa, and
Tsuyoshi Takagi. A new fault attack on uov multivariate
signature scheme. In International Conference on Post-Quantum
Cryptography. Springer, 2022.

[HSMR23] Florian Hirner, Michael Streibl, Ahmet Can Mert, and Su-
joy Sinha Roy. Whipping the mayo signature scheme using hard-
ware platforms. Cryptology ePrint Archive, Paper 2023/1267,
2023. https://eprint.iacr.org/2023/1267.

[HTS11] Yasufumi Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai.
General fault attacks on multivariate public key cryptosystems.
In Post-Quantum Cryptography, pages 1–18. Springer Berlin
Heidelberg, 2011.

[KL19] Juliane Krämer and Mirjam Loiero. Fault attacks on uov and
rainbow. In Ilia Polian and Marc Stöttinger, editors, Constructive
Side-Channel Analysis and Secure Design, 2019.

[KS98] Aviad Kipnis and Adi Shamir. Cryptanalysis of the Oil and Vine-
gar Signature Scheme. In Advances in Cryptology—CRYPTO’98.
Springer, 1998.

[Pat00] Jacques Patarin. Cryptanalysis of the matsumoto and imai public
key scheme of eurocrypt’98. Designs, codes and cryptography,
20(2):175–209, 2000.

[SK20] Kyung-Ah Shim and Namhun Koo. Algebraic fault analysis
of uov and rainbow with the leakage of random vinegar val-
ues. IEEE Transactions on Information Forensics and Security,
15:2429–2439, 2020.

[SMA+24] Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane
Krämer, and Jean-Pierre Seifert. Hamayo: A fault-tolerant
reconfigurable hardware implementation of the mayo signature
scheme. In COSADE. Springer, 2024.

[The24] The Sage Developers. SageMath, the Sage
Mathematics Software System (Version x.y.z), 2024.
https://www.sagemath.org.

33

Authorized licensed use limited to: Universitaetsbibliothek Regensburg. Downloaded on April 25,2025 at 07:46:54 UTC from IEEE Xplore. Restrictions apply.

152 Developing Physical Attacks

B

Enhancing Implementation Security

In this chapter, we include our contributions towards more implementation
security of UOV-based signature schemes.

Contents

B.1 SoK: On the Physical Security of UOV-based Signature Schemes 154
B.2 HaMAYO: A Fault-Tolerant Reconfigurable Hardware Implemen-

tation of the MAYO Signature Scheme 188

Appendix B.1 contains a copy of the PQCRYPTO’25 paper SoK: On the
Physical Security of UOV-based Signature Schemes [ACK25].

In Appendix B.2, we include the COSADE’24 paper HaMAYO: A Fault-
Tolerant Reconfigurable Hardware Implementation of the MAYO Signature
Scheme [SMA+24].

153

SoK: On the Physical Security
of UOV-Based Signature Schemes

Thomas Aulbach1(B), Fabio Campos2, and Juliane Krämer1

1 University of Regensburg, Regensburg, Germany
{thomas.aulbach,juliane.kraemer}@ur.de

2 Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany
campos@sopmac.de

Abstract. Multivariate cryptography currently centres mostly around
UOV-based signature schemes: All multivariate round 2 candidates in
the selection process for additional digital signatures by NIST are either
UOV itself or close variations of it: MAYO, QR-UOV, SNOVA, and
UOV. Also schemes which have been in the focus of the multivariate
research community, but are broken by now - like Rainbow and LUOV
- are based on UOV. Both UOV and the schemes based on it have been
frequently analyzed regarding their physical security in the course of the
NIST process. However, a comprehensive analysis regarding the physical
security of UOV-based signature schemes is missing.

In this work, we want to bridge this gap and create a comprehensive
overview of physical attacks on UOV and its variants from the second
round of NIST’s selection process for additional post-quantum signature
schemes, which just started. First, we collect all existing side-channel
and fault attacks on UOV-based schemes and transfer them to the cur-
rent UOV specification. Since UOV was subject to significant changes
over the past few years, e.g., adaptions to the expanded secret key, some
attacks need to be reassessed. Next, we introduce new physical attacks in
order to obtain an overview as complete as possible. We then show how
all these attacks would translate to MAYO, QR-UOV, and SNOVA. To
improve the resistance of UOV-based signature schemes towards phys-
ical attacks, we discuss and introduce dedicated countermeasures. As
related result, we observe that certain implementation decisions, like
key compression techniques and randomization choices, also have a large
impact on the physical security, in particular on the effectiveness of the
considered fault attacks. Finally, we provide implementations of UOV
and MAYO for the ARM Cortex-M4 architecture that feature first-order
masking and protection against selected fault attacks. We benchmark
the resulting overhead on a NUCLEO-L4R5ZI board and validate our
approach by performing a TVLA on original and protected subroutines,
yielding significantly smaller t-values for the latter.

Author list in alphabetical order; see https://www.ams.org/profession/leaders/
CultureStatement04.pdf. This work has been supported by the German Federal Min-
istry of Education and Research (BMBF) under the project SASPIT (ID 16KIS1858).
Furthermore, this work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) - project number 50550035. Date of this document:
2025-01-31.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Niederhagen and M.-J. O. Saarinen (Eds.): PQCrypto 2025, LNCS 15577, pp. 199–231, 2025.
https://doi.org/10.1007/978-3-031-86599-2_7

200 T. Aulbach et al.

Keywords: Multivariate Cryptography · Physical Security · Fault
Attacks · Side-channel Analysis · Masking · ARM Cortex-M4 · TVLA

1 Introduction

At the latest since the standards FIPS 203, FIPS 204, and FIPS 205 have been
published, post-quantum cryptography can be considered mature enough for
practical use. For practical applications, however, not only standardized schemes
are interesting, but also other post-quantum schemes which offer useful alterna-
tives, for instance, regarding key sizes or computation times. Depending on the
application, schemes that are not (yet) standardized might be therefore also in
demand.

A very promising post-quantum family for signature schemes with interest-
ing properties is multivariate cryptography. Two multivariate signature schemes,
including Rainbow [17], also advanced to the third round of NIST’s standardiza-
tion process for post-quantum cryptography (PQC).1 However, powerful attacks
against both schemes showed that these two schemes should not be standard-
ized [8,42]. The two attacks, especially the one on Rainbow by Beullens, brought
the unbalanced oil and vinegar (UOV) scheme [29] back into the interest of the
research community. Although UOV had already been published at the end of
the 1990s and is the basis for Rainbow, research concentrated on Rainbow after
its publication because it seemed to be more efficient than UOV both in terms of
required memory and computation time. This is also why UOV has initially not
been submitted to the NIST PQC standardization process. However, although
Rainbow is a generalization of the oil-and-vinegar construction underlying UOV,
the sweeping attack on Rainbow does not apply to UOV. This makes UOV again
a very interesting signature scheme since it withstands cryptanalysis since more
than two decades.

UOV in particular and multivariate signature schemes in general feature
very small signatures. Short signatures (and fast verification) were also features
of signature schemes NIST was explicitly interested in for their call for addi-
tional post-quantum signatures.2 The goal of this process is to diversify the post-
quantum signature standards by selecting additional general-purpose signature
schemes not based on structured lattices and schemes that are particularly suit-
able for certain applications. Hence, it was not surprising that ten out of fourty
submissions to the call in 2023 have been based on multivariate cryptography.3
For three of these schemes - 3WISE, DME, and HPPC - rapidly efficient attacks
have been found. The remaining seven schemes all rely on the oil-and-vinegar
principle, i.e., are UOV-based: MAYO [11], PROV [23], QR-UOV [20], SNOVA
[44], TUOV [19], UOV [12], and VOX [35]. Hence, since then, all multivariate

1 https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/round-3-submissions.

2 https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-
proposals-dig-sig-sept-2022.pdf.

3 https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

SoK: On the Physical Security of UOV-Based Signature Schemes 201

signature schemes which are in the focus of the research community are based
on the UOV principle. Very recently, on October 25, 2024 NIST announced the
14 schemes to advance to the next round.4 The share of multivariate signature
schemes even increased slightly, since four of the schemes advanced to round 2:
MAYO, QR-UOV, SNOVA, and UOV.

When cryptographic schemes are used in practical applications, not only their
mathematical security and efficiency, but also their resistance towards physical
attacks is important. Hence, post-quantum schemes have been analyzed with
respect to their physical security in recent years, and there is also a line of
research targeting multivariate cryptography in general and UOV-based signa-
ture schemes in particular.

1.1 State of the Art and Related Work

Starting in 2011 [24], UOV-based signature schemes have been analyzed both
with respect to passive, i.e., side-channel, and active, i.e., fault attacks. There
are results that specifically target UOV [2,21] or another UOV-based scheme [3,
4,25,32,39,41], but also publications that analyze several schemes [24,31,34].

However, by reading these publications, one does not get a comprehensive
picture of the state of the art of the physical security of UOV-based signature
schemes. This has several reasons: 1) Some of the schemes have received more
attention from the research community than others; simply because of their age,
but also because of the existence of a mature implementation. To the best of our
knowledge, there was no effort yet to study the transferability of all attacks to all
UOV-based signature schemes. 2) Some of the attacks [3,32] targeted schemes
that have since been proven to be insecure, like LUOV and Rainbow. Also for
these attacks, it is often unknown if and how they transfer to other schemes.
3) Both the specifications of the schemes and their implementations have been
subject to various changes and optimizations over time, e.g., the method of gen-
erating compressed public keys introduced in [37]. Hence, it is not even clear
if the older attacks still remain a realistic threat to the current version of the
algorithms. 4) Although attacks are usually published with descriptions of coun-
termeasures, there are limited results about implemented countermeasures and
their overhead, or physically secure implementations of multivariate schemes in
general. This might also be due to the fact that for a long time there were no
common reference implementations that could serve as a basis. 5) Moreover,
since the recent history of multivariate signatures is characterized by major
breaks and fixes, e.g., [8,18,42], the research community focused initially on the
mathematical security of the schemes, which is natural and reasonable.

Now, with NIST’s process for standardizing additional digital signature
schemes commencing the second round, we have the chance to study all remain-
ing UOV-based schemes on the basis of consistent specifications and implementa-
tions. Our goal is to advance their resistance against physical attacks by creating
an extensive survey of possible attack vectors, implementing countermeasures, and
measuring their overhead directly in comparison to existing implementations.

4 https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures.

202 T. Aulbach et al.

1.2 Contribution

In this project, we provide a comprehensive overview on the physical security of
today’s most relevant UOV-based signature schemes, i.e., the schemes MAYO,
QR-UOV, SNOVA, and UOV, that are being analyzed in the second round
of NIST’s standardization process for additional signature schemes. While we
analyze all four schemes in this work, we specifically focus on UOV and MAYO,
since they provide the more advanced implementation: The more practical a
physical attack is carried out, the greater its relevance. To practically perform
a physical attack, however, a target implementation is needed. Therefore, UOV
and MAYO can be considered the most relevant signature schemes in the field of
multivariate cryptography with respect to physical attacks. They both provide
optimized implementations for the ARM Cortex-M4 architecture and both are
analyzed several times in the literature, already.

In this work, we provide a complete overview of known side-channel and fault
attacks against UOV-based schemes and derive their core attack vectors. We set
out to understand if further vulnerabilities exist. In finding new vulnerabilities,
we concentrate on side-channel attacks, since so far most attacks are based on
faults. We provide a complete overview for all considered schemes regarding their
susceptibility towards physical attacks: For all attacks, both known and new, we
analyze if and how they can be transferred to all considered schemes. For all
attacks, we provide existing and newly developed countermeasures. Moreover,
we describe the effect of certain implementation decisions on the physical security
of the schemes and derive implementation guidelines from this.

For UOV and MAYO, based on existing optimized M4 implementations,
we provide first-order masked implementations for the ARM Cortex-M4 archi-
tecture. Additionally, the implementations include protection against the most
relevant fault attacks. We benchmark the resulting overhead on a NUCLEO-
L4R5ZI board and validate our approach by performing a test vector leakage
assessment (TVLA) on original and protected subroutines, yielding significantly
smaller t-values for the latter. Our implementation is available to the public at
https://github.com/SoK-Psec-UOV-based/code.

1.3 Organization

In Sect. 2, we discuss the notation used in this work, describe the UOV scheme
and the main differences between UOV and MAYO, QR-UOV, and SNOVA, and
explain why an attack on a UOV-based scheme often leads to full key recovery
once a single oil vector is found. In Sects. 3 and 4, we present a comprehensive
collection of fault attacks and side-channel attacks, respectively, on UOV-based
signature schemes. We present both known and new attacks, and analyze if they
can be transferred to the current specifications of UOV, MAYO, QR-UOV, and
SNOVA. In Sect. 5, we describe implementation guidelines that we derived from
the analysis of the attacks. In Sect. 6, we present implementations of UOV and
MAYO that include protection against selected fault attacks from Sect. 3 and
countermeasures against all side-channel attacks from Sect. 4, i.e., are first-order
masked. In Sect. 7, we conclude this work.

SoK: On the Physical Security of UOV-Based Signature Schemes 203

2 Background

2.1 Notation

In this paper we describe physical attacks and countermeasures to existing UOV-
based signature schemes, which are all submitted to NIST’s call for additional
digital signatures for the PQC standardization process. Thus, we deem it reason-
able to use exactly the notations and conventions introduced in the specification
of the designated signature scheme. E.g., the discussions on UOV follow the
notation given in [12], the findings about MAYO follow the notation in [11], etc.
This requires the reader to be cautious at time, since the respective specifica-
tions might use different names or variables for similar objects. Nevertheless, we
think this is the correct way, since using a fixed notation in here, would force the
reader to adjust the notation on their own when referring to different schemes.

2.2 UOV

Here, we would like to recall UOV in its current form and the most important
properties. We will also link its abstract mathematical description to the steps
listed in the pseudo code.

The main objects in multivariate cryptography are multivariate quadratic
maps P : Fn

q → Fm
q . In general, it is hard to find a solution s ∈ Fn

q to a given
target t ∈ Fm

q such that P(s) = t. This task is also known as the MQ Problem. It
can be solved in polynomial time in the very under- or overdetermined case, i.e.
m ≥ n(n + 1)/2 or n ≥ m(m + 1), but is believed to be exponentially hard even
for large scale quantum computers if n ∼ m. By installing a secret trapdoor into
the public map P, one can render this task efficiently solvable and construct
a signature scheme thereof. In UOV this trapdoor is a m-dimensional linear
subspace O ⊂ Fn

q - the oil space - with the property P(o) = 0 for all o ∈ O.
The message μ, together with a random salt, is mapped to a target value t in
the codomain Fm

q using a cryptographic hash function H, i.e. t = H(μ||salt).
Computing a signature boils down to finding a preimage s ∈ Fn

q with P (s) = t.
To this end one can deploy the following method, if knowledge of the oil space
is provided. First, one picks a vector v at random and then solves the equation

P(v + o) = P(v) + P(o) + P ′(v,o) = t (1)

for o ∈ O. The map P ′ : Fn
q × Fn

q → Fm
q defined by the equation above, is called

the differential of P and is bilinear and symmetric [6]. Viewing the oil vector o
as a linear combination of its m basis vectors given in O ensures P(o) = 0m and
shows clearly that

P ′(v,o) = t − P(v) (2)

is a system of m linear equations in m variables. If there exists a solution, it can
be computed efficiently, if not, one samples a new v and tries again. Together,
the vinegar and oil vector yield a preimage s = v + o to the target t, which
constitutes the core of the signature.

204 T. Aulbach et al.

Key Generation. Within key generation we need to generate the m-
dimensional oil space O and a multivariate quadratic map P : Fn

q → Fm
q that van-

ishes on O. The map P is a sequence of m quadratic polynomials p1(x), . . . , pm(x)
in n variables. The linear and constant part of the polynomials is omitted, and
the coefficients of the quadratic monomials can be stored in an upper triangular
matrix Pi, such that evaluating the polynomial pi at a value a can be realized
by computing pi(a) = a�Pia.

The oil space is chosen to be the space spanned by the rows of a matrix
Ō = (O� Im), where O ∈ F(n−m)×m

q is sampled uniformly at random. Thus, to
guarantee that the quadratic polynomials pi vanish on O, i.e. o�Pio = 0 for all
o ∈ O, one can set the term

(O� Im)

(
P(1)

i P(2)
i

0 P(3)
i

)(
O
Im

)
= O�P(1)

i O + O�P(2)
i + P(3)

i

to zero. This is achieved by sampling P(1)
i ∈ F(n−m)×(n−m)

q (upper triangular)
and P(2)

i ∈ F(n−m)×m
q uniformly at random and setting P(3)

i accordingly to

P(3)
i = Upper(−O�P(1)

i O − O�P(2)
i).

The described procedure is exactly the key generation algorithm of UOV, which
is depicted in Fig. 1. Hereby, O and P(1)

i ,P(2)
i can be expanded from a private

or public seed, respectively.

Fig. 1. UOV key generation algorithm

Secret Key Expansion. As indicated above, it is necessary to solve Eq. 2 with
respect to o during signing. The i-th component of P ′(v,o) is computed by
v�(Pi + P�

i)o and o is written as a linear combination of its basis vectors in

SoK: On the Physical Security of UOV-Based Signature Schemes 205

Ō, where the coefficients x are the variables we need to solve for. Thus, we can
prepare the term (Pi + P�

i)o by setting Si = (P(1)
i + P(1)�

i)O + P(2)
i and store

it in the expanded secret key esk, since it is independent from the message μ.
The coefficients in P(1)

i are necessary to compute P(v), so they are also added
to esk. The pseudo code of the secret key expansion is presented in Fig. 2.

Fig. 2. Algorithm that expands csk to esk in UOV

Signing. The signing algorithm is shown in Fig. 3. After generating the salt
and deriving the target value t, the vinegar vector v is sampled. Note, that the
last m entries of v are set to zero, which enables a more efficient implementation.
With v at hand, one computes the remaining part of P ′(v,o) in Line 7, which
represents the linear part of the system given in Line 10. In order to evaluate
y = P(v) in Line 9, only the submatrix P(1)

i is necessary, since the last entries of
v were chosen to be zero. Solving the derived linear system reveals the coefficients
x of the oil vector o = Ōx = [Ox,x]. Finally, the sum of the vinegar and oil
vector yield the signature s = [v,0m] + Ōx.

Public Key Expansion and Verification. To verify that the signer really
found a preimage s under the public map P of the target vector t, one needs
to expand the public coefficients in P(1)

i and P(2)
i from the seed and check if

P(s) = t really holds. We omit the pseudo code of these two functionalities,
since we do not focus on them in the main part of this work.

Variants. We have to differentiate between the variants uov-classic, uov-pkc
and uov-pkc+skc. In uov-pkc+skc the secret key is stored in a compact way csk,
such that the function UOV.ExpandSK is called before signing with UOV.Sign
and has to be protected as well. In uov-classic and uov-pkc UOV.ExpandSK
is part of the key gen, since the secret key is stored in an expanded manner.

One considerable drawback of UOV are its large public keys, due to the
amount of coefficients needed to define the public map P. Even in the variants
with compressed public keys uov-pkc+skc and uov-pkc, where a large fraction

206 T. Aulbach et al.

Fig. 3. Algorithm that signs a message μ in UOV

of the coefficients is expanded from a short seed, the part P(3)
i still needs to be

stored explicitly and contains around m3/2 coefficients in Fq. Here, one factor m
comes from the number of polynomials m in the public map P, but the remaining
factor m2/2 depends on the dimension of the oil space dim(O) = m, which are
chosen to be equal in UOV.

2.3 MAYO, QR-UOV and SNOVA

In [7], Beullens presented MAYO, a signature scheme that also employs the oil-
and-vinegar principle but reduces the dimension of the oil space from m to o

drastically, which in turn reduces the number of coefficients in P(3)
i to mo2/2

and eventually shrinks down the public key size. The problem is that one can
not simply decrease the dimension of the oil space from m to o, with o � m and
continue as before, since the system P ′(v,o) = t − P(v) in Eq. (2) becomes
a system of m linear equations in o variables and bears no solution with high
probability. Thus an adaption to the signing and verification procedure was
necessary and the following solution was suggested: The public key map P is
stretched into a larger whipped map P∗ : Fkn

q → Fm
q , such that it accepts k

input vectors s ∈ Fn
q . This is realized by setting

P∗(s1, . . . , sk) :=

k∑

i=1

EiiP(si) +
∑

1≤i<j≤k

EijP ′(si, sj), (3)

where the matrices Eij ∈ Fm×m
q are fixed system parameters with the property

that all their non-trivial linear combinations have rank m. The map P∗ vanishes

SoK: On the Physical Security of UOV-Based Signature Schemes 207

on the subspace Ok = {(o1, . . . ,ok)| with oi ∈ O for all i ∈ [k]} of dimension
ko. This gives back some degrees of freedom when looking for a solution in the
new domain Fkn

q , i.e. the system obtained from

P∗(v1 + o1, . . . ,vk + ok) = t (4)

after randomly sampling and inserting (v1, . . . ,vk) ∈ Fkn
q , is a system of m linear

equations in ko variables. Consequently, if the parameters are chosen such that
ko > m, it possible to sample signatures s = (s1, . . . , sk) = (v1+o1, . . . ,vk +ok)
similar as before, despite the small dimension of the initial oil space O.

Another attempt in reducing the public key size of UOV is made by QR-
UOV. It is very similar to UOV, except that elements of a quotient ring
Fq[x]/(f) are employed, instead of just finite field elements Fq. Let l be a
positive integer and f ∈ Fq[x] of degree l. Then any element g of the quo-
tient ring Fq[x]/(f) uniquely defines a l × l matrix Φf

g over Fq such that
(1, x, . . . , xl−1) · Φf

g = (g, xg, . . . , xl−1g). The mapping from g to its polyno-
mial matrix Φf

g is an injective ring homomorphism from Fq[x]/(f) to Fl×l
q and

every element of Af := {Φf
g ∈ Fl×l

q |g,∈ Fq[x]/(f)} can be represented by only l
elements in Fq. For the construction of QR-UOV, the central maps Fi and pub-
lic maps Pi are set to be composed of such matrices. This additional structure
allows that not every element of these maps are stored since l2 entries of Φf

g can
be represented by just l coefficients of g. The central maps Fi are secret, easily
invertible maps, that allow the signer to generate signatures efficiently. Their
structure is hidden via the transformation Pi = S�FiS.

SNOVA also work with quotient rings, but apply even more structure to the
central and public maps. Each component of the central map F = [F1, . . . , Fm] :
Rn → Rm is defined by

Fi =
l2∑

α=1

Aα ·
(∑

(j,k)∈Ω

Xj(Qα1Fi,jkQα1)Xk

)
· Bα,

where the Fi,jk are randomly chosen from R, Aα and Bα are invertible elements
randomly chosen from R, and Qα1, Qα2 are invertible matrices randomly chosen
from Fq[S]. Here R is the matrix ring F(l×l)

q and Fq[S] is a commutative sym-
metric subring of R. Like in UOV, the public matrices are then set to fulfill the
equation Pi = Fi ◦T and therefore, are of similar type than the central matrices.

For more details about MAYO, QR-UOV, and SNOVA we refer to the respec-
tive specifications given in [11,20,44].

2.4 One Vinegar or One Oil Vector Is (In Many Cases) Sufficient
for Complete Key Recovery

With respect to signature schemes, it is always an interesting task to determine
the amount of data that is necessary to forge signatures, especially from an
adversarial point of view. When the secret key is just a seed, as in MAYO, it

208 T. Aulbach et al.

might become infeasible to recover this seed with side-channel attacks. But it still
is useful to obtain information about the values of the expanded seed. Conversely,
in uov-classic the secret key is of enormous size and only a fraction of it
suffices to forge signatures. However, for UOV-based signature schemes, there
is a pretty and common answer to this problem: knowledge of the employed oil
space O allows to efficiently generate signatures. Even more, there are algebraic
methods, that allow to recover the entire space in polynomial time as soon as
one or several (depending on the concrete dimensions) oil vectors o ∈ O are
found.

Regarding MAYO, it was already clear from the description in [7, Section 4.1]
that one oil vector is enough to efficiently recover O. The case for UOV was
treated in [2] and [36], where again only a single oil vector is needed, since all
existing UOV parameter sets fulfill the equation n − m ≤ 2m.

In [36], Pebereau also elaborated on the very unbalanced case, i.e. when
n > 3m. In this scenario, there might be several oil vectors needed for polynomial
time key recovery, namely β of them, where β is the smallest integer such that n−
βm ≤ 2m holds. This becomes interesting, since some parameter sets suggested
by QR-UOV and SNOVA lie in the very unbalanced case with n ≥ 6m or even
up to n ≥ 9m. In these cases, the security of the scheme might already be
compromised when one or two oil vectors are leaked, but attackers are only able
to forge signatures in polynomial time, when they get their hands on β of them.

However, if it is possible to reveal one oil vector by means of a physical attack,
repeating it on several signing procedures will probably leak more of them. Thus,
the attack strategy remains the same, even in the very unbalanced case. Most of
the time obtaining a vinegar vector v is equally strong, since the corresponding
oil vector o can be recovered by subtracting it from the signature s = v + o.
Consequently, every time one of them is used in a computation, it has to be
protected against physical attacks.

3 Fault Attacks on UOV-Based Signatures

In this section, we study the vulnerability of UOV-based signature schemes
towards fault attacks. We investigate existing fault attacks on UOV-based sig-
nature schemes and provide a more complete catalog of vulnerabilities by also
presenting new attacks. Our analysis results in a list of functions that need to be
protected in order to achieve an implementation that is more resistant to fault
attacks.

We first analyze the vulnerability of UOV, as this scheme builds the base for
all remaining signature schemes analyzed in this work. Subsequently, we explain
how these attacks translate to the MAYO signature scheme and its current
Cortex M4 implementation. Finally, we consider the case of the remaining UOV-
based signatures, QR-UOV and SNOVA. We expect these rather young schemes
to be subject to various algorithmical changes and code modifications in the
future, thus the findings of this work can be seen as a starting point towards
their physical security and as a general estimation whether the respective scheme
might be vulnerable to this kind of attack.

SoK: On the Physical Security of UOV-Based Signature Schemes 209

To provide a better overview of the existing, transferred, and new vulnera-
bilities, we summarize the findings of this section in Table 1.

Table 1. Overview of existing and new fault attacks on UOV, MAYO, QR-UOV,
and SNOVA. Regarding the feasibility of the attacks, we refer to the specifications
submitted to the NIST call for additional signatures in mid-2023. When there are
differences between the three UOV-variants uov-classic, uov-pkc and uov-pkc+skc,
deterministic and randomized MAYO or the variants SNOVA-esk and SNOVA-ssk, we
list them individually in the given order. With ✓ we state that an attack is possible,
while ✗ means the opposite. By � we denote that an attack is generally possible, but
the technical execution is more difficult than in the initially presented attack.

Attack description Source Initially for Feasible in current version Target

Fix vinegar vector [3,4,24] Rainbow UOV: ✓ UOV.Sign Line 4
[25,31,41] UOV MAYO: ✓ [11] Alg.8 Line 16,18

MAYO QR-UOV: ✓ [20] Alg.2 Line 10
SNOVA: ✓ [44] Alg.11 Line 8

Rowhammer on oil space O [32] LUOV UOV: ✓ | ✓ | �

MAYO: � uncompressed
QR-UOV: � secret key in memory
SNOVA: ✓ | �

Bit flip on stored secret matrices [21,24,31] Rainbow UOV: ✓ | ✓ | �

UOV MAYO: ✓ | ✗ uncompressed
QR-UOV: � secret key in memory
SNOVA: ✗

Prevent addition of oil and vinegar [39] MAYO UOV: ✓ UOV.Sign Line 11
MAYO: ✓ [11] Alg.8 Line 44
QR-UOV: ✗ [20] Alg.2 Line 18
SNOVA: ✗ [44] Alg.11 Line 14

Disturb linear system setup This work UOV UOV: ✗ UOV.Sign Line 7
MAYO: ✓ | ✗ [11] Alg.8 Line 22–33
QR-UOV: ✗ [20] Alg.2 Line 11,12
SNOVA: ✗ [44] Alg.11 Line 9,10

3.1 Existing Attacks

In the following, we discuss fault attacks against UOV-based schemes that are
present in the literature. If the attack was initially not developed for UOV itself,
we try to give a detailed analysis of its applicability to UOV.

Fault Injection to Fix the Vinegar Vector. There has been a series of
works [3,4,25,31,41] studying the effectiveness of an instruction skip in Line 4
of Fig. 3. These works set the number of necessary faulted signatures to m =
n − v, which lies in the range from several dozens to hundreds, depending on
the security level. Using the findings in [2,36] and [30] it is now clear that one

210 T. Aulbach et al.

faulted signature is enough for efficient key-recovery. This can be obtained by
the following observations.

If the instruction skip is applied successfully, it leads to the reusage of the
vinegar variables that are still stored in v from a previous signing process. Denote
the unfaulted previous signature by s and the faulted signature by s̃. The oil
vectors o and õ, which are computed during the respective signature generation
and added to the vinegar vector v, are different, but both are elements of the
oilspace O. Thus, we have

s̃ − s = (v + õ) − (v − o) = õ − o ∈ O,

since O is a linear subspace of Fn
q . With a secret oil vector at hand, full key

recovery can be achieved in a matter of seconds.
In [25], the authors present two attacks - an absorption skipping and absorp-

tion abort attack - directly on the SHAKE256 function that is used to derive the
vinegar vectors. These lead to an predictable output of the sampling and there-
fore reveal the vinegar vectors vi. They do not make any assumptions about the
memory initialization of the device. Since they present this attack specifically
on MAYO, we will resume to this in Sect. 3.3.

RowHammer to Alter a Value in O. In [32], the authors present a Rowham-
mer attack to cause bit flips in the secret transformation T in LUOV and show
how this can be exploited to recover individual bits of T. Repeated execution
of the fault attack leads to partial knowledge of the secret T, one bit for every
faulted signature. Once enough key bits of T are recovered, the attacker can
apply algebraic analysis techniques to increase the efficiency of the attack and
limit the number of faulted signatures that need to be obtained for a full key
recovery.

Briefly summarized, the QuantumHammer attack works as follows. The
secret data is stored in the DRAMs in memory cells. There is a certain threshold
of the voltage level that determines whether a capacitor represents a binary one
or zero. If one manages to activate neighboring rows rapidly, this can cause vari-
ations in the voltage level of the victim cells due to induction. When a certain
threshold is passed, this results in a bit-flip from 0 to 1 or vice versa. Since the
attacker does not know at which entry of the secret transformation T the bit flip
occurred, he needs to apply a bit-tracing algorithm to locate the faulted spot
and learn the initial value of the flipped bit. The bit flip in T causes an error in
the last part of the signing algorithm in LUOV, where the (vinegar part of the)
signature is finally computed by

⎛
⎜⎝

s1

...
sv

⎞
⎟⎠ =

⎛
⎜⎝

t11 · · · t1m

...
. . .

...
tv1 · · · tvm

⎞
⎟⎠ ×

⎛
⎜⎝

o1

...
om

⎞
⎟⎠ +

⎛
⎜⎝

v1

...
vv

⎞
⎟⎠ . (5)

Thus, a bit flip of the entry tij leads to a faulted signature entry s̃i, where the
erroneous entry s̃i differs from the correct one si by oj . The bit-tracing algorithm
now tries to correct the faulted signature by successively adding the values ok

SoK: On the Physical Security of UOV-Based Signature Schemes 211

for k ∈ {1, . . . , m} to the entries sl for l ∈ {1, . . . , v}. Once the signature is
corrected, the position (i, j) of the induced bit flip is successfully located. This
works particularly well, since the entries tij in LUOV are binary, while the values
ol are elements of a larger field, depending on the parameter choice, e.g., of F28 .
Therefore, the chances that different bit flips in T , say at position tij and tik,
cause the same error in s are rather small, since then oj = ok needs to hold. For
more details, please see [32, Section 3.3].

This attack can be transferred to UOV, since the targeted operation in Eq. (5)
similarly appears in the signing algorithm of UOV, see Line 11 of Fig. 3. Here,
the oilspace O takes the role of the linear transformation T and they behave
equivalently. Since the second block of Ō = (O, Im) is the identity, the values
in x ∈ Fm

q are visible to any attacker as the last m entries of the signature s,
analogically to the vector o in LUOV.

However, when it comes to the bit-tracing algorithm we need to be more
careful, since in UOV the entries ti,j are not binary anymore, but elements of F28

as well. Let si =
∑m

l=1 til · ol + vi be the entry of the unfaulted signature vector.
Introducing a single bit flip to tij results in an faulted entry s̃i =

∑m
l=1 til ·ol+vi+

fij ·oj , with fij ∈ F28 having hamming weight 1. Now, if we have fij ·oj = fik ·ok,
for two different indices j
= k, this implies a bit flip corresponding to fij results
in the same faulted signature entry s̃i as a bit flip corresponding to fik would.
The bit-tracing algorithm is still able to correct the faulted signature, but would
not be able to decide if the deviation results from fij or fik and thus, could not
uniquely determine the position of the introduced bit flip.

Bit Flip in Matrices of esk. See [21,24,31] for this attack. It is shown that
changing a single coefficient of Fi leads to reduction of the UOV instance to a
smaller one. Recent UOV implementations, including the NIST submission [12],
are not working with the central maps Fi anymore, but include the public matri-
ces P(1)

i and auxiliary matrices Si = (P(1)
i + P(1)�

i)O + P(2)
i in their secret key.

However, this is merely a change in notation, since the former blocks F(1)
i and

F(2)
i of Fi were defined just like that. The analysis [21,24,31] can be applied to

the new setting accordingly and a single altered coefficient in P(1)
i or Si, leads to

faulted signature s′, such that P(s′) and t indeed deviate in exactly one entry.
This difference then allows conclusions about the used oil space O.

Fault Injection to Skip the Addition of the Vinegar and Oil Parts.
This fault attack targets the addition in Line 11 of Fig. 3, where the vinegar
and oil part are added to receive the signature s = v + o. It highly depends
on the chosen implementation, but if an attacker is able to exclude the vinegar
part by an instruction skip, this is threatening. If there is a way to avoid the
contribution of v, this directly reveals s = o in the signature, which enables key
recovery. Currently, this is implemented via a memcpy call that copies v to s, so
this line needs to be protected.

Remark 1. Sampling the vinegar vector v is randomized by including the salt
as input to the expand function in Line 4 of Fig. 3. If we would deal with a

212 T. Aulbach et al.

deterministic approach instead, where the signing procedure generates the same
vinegar vector v and outputs identical signatures when a message is signed twice,
an adversary could exploit the faulted signature s′ = v as follows: Subtracting
the un-faulted signature s of the same message s − s′ = v + Ox − v = Ox = o
reveals an oil vector.

A similar strategy that also only works in the deterministic setting, is to
disturb the computation of the oil vector during signing. If one is able to enforce
the computation of a different solution x′ to the linear system, then this again
reveals an oil vector. Subtracting the two signatures s′ −s = v+Ox′ −v−Ox =
O(x−x′) would cancel out the identical vinegar values and reveal an non-zero oil
vector, since x′
= x. A similar strategy is applied by the following fault attack.

3.2 New Attack

In addition to the attacks gathered in the section above, we identified the follow-
ing spots, where exploits by an adversary are conceivable and countermeasures
should be applied.

Fault Injection to Disturb Linear System Setup (Skip the New Assign-
ment of L or Y). Disturbing the linear system Lx = t−y leads to a different
solution x′, which might lead to key recovery in the deterministic setting, as
explained in Remark 1. Perturbing the values in L or y can be achieved by skip-
ping Line 5 of Fig. 3 and some or all of the loop in Line 6–7 or introducing faults
to the computation of y in Line 9, respectively. Hereby, it is important that not
a single row of L remains all zero due to the fault attack. This would imply that
the system is not solvable, which results in a second iteration of the signing loop,
where v and L are refreshed. However, this strategy is only successful when the
signature is deterministic and thus, current implementations are not vulnerable.

3.3 Transferability to MAYO

The functionalities of UOV are a subset of those needed to implement MAYO.
Therefore, it seems natural to conclude that the listed fault attacks for UOV
easily transfer to MAYO. Although this is more or less true, there are some
minutiae to bear in mind. 1) The applicability of attacks that target the secret
key in memory depends on the format (compressed vs. uncompressed) of the
stored keys. MAYO always uses compressed keys, which makes MAYO resis-
tant towards such attacks, although classic UOV is vulnerable. 2) Some attacks
depend on the randomization choice of the scheme which might deviate to UOV.
More details on these two aspects can be found in Sects. 5.1 and 5.2. 3) While
UOV works with only one pair of oil and vinegar vectors, there are k of them in
MAYO. Nevertheless, a single known oil vector is enough to perform key recov-
ery in polynomial time. Thus, certain attacks might become technically easier
in MAYO, since there are k targets available, while only one of them needs to
be recovered.

SoK: On the Physical Security of UOV-Based Signature Schemes 213

Fault Injection to Fix One or More Vinegar Vectors. This fault attack
can be easily transferred to MAYO. Current implementations clear the vine-
gar vectors at the end of the signing procedure as a security measure to avoid
reusing attacks. However, in MAYO one all-zero vinegar vector will not lead to
an unsolvable system in Line 37 of MAYO.Sign. This is due to the fact that
multiple matrices Mi[j, :] = v�

i Lj contribute to the linear part of the system
A. Consequently, having some vi set to zero will not necessarily result in a non-
invertible system and another iteration of the signing loop. Thus, by inserting an
instruction skip or loop abort in Line 16 or Line 18 such that one or more (but
not all) vinegar vectors remain zero makes the corresponding oil vector oi visible
in the signature. Furthermore, the authors of [25] present three attacks on this
subroutine, in total. Two of them target the absorption phase of the shake256
internally and the other one forces the unknown input to be zero. In all cases
the attacker can predict the outcome of the sampling process which reveals one
or more vinegar vectors. Rightfully predicting randomly sampled intermediate
values during the signing phase, by directly attacking the shake256 function, is
disastrous in many cryptographic primitives, as is also shown, e.g., in [27]. Thus,
we only consider the latter attack as scheme-specific to MAYO, which should be
treated with dedicated countermeasures. Instead of zeroing buffers with sensitive
information at the end of signing, overwriting these buffers with random data is
suggested in [25]. Countermeasures of the aforementioned attacks are discussed
in more detail in Sect. 5.4.

RowHammer to Alter a Value in O. In MAYO the secret key only contains
a seed seedsk. The MAYO.API.sign algorithm (Algorithm 10 in [11]) employs
the two functionalities MAYO.ExpandSK (Algorithm 6 in [11]) and MAYO.Sign
(Algorithm 8 in [11]) to derive the expanded secret key esk from the seed and sign
the message using esk. The secret oil space O, which is the target of the original
fault attack, is therefore not a part of the compressed secret key csk Thus, it
is not stored in memory permanently and less accessible for bit-flip attempts.
Furthermore, the addressed variable is zeroed at the end of the signing procedure
as a security measure. This is not depicted in the pseudo code, but realized in
the submitted implementations [11]. Thus we do not deem the attack given in
[32] to be technically feasible in this scenario.

However, in case an adversary could manage to insert a bit-flip during signing,
while O is stored as part of esk in the memory, a similar description as in Sect. 3.1
would apply, since the oil space takes an equivalent role as in UOV.

Bit Flip in Matrices of esk. Let s′ be the faulted signature, that is gen-
erated when a single bit-flip is applied to either of the matrices {P(1)

i ,Si} in
the expanded secret key, The crucial part of this fault attack against UOV is
that P(s) and t only deviate in one entry. In contrast, the whipped public map
P∗(s1, ..., sk) =

∑k
i=1 EiiP(si)+

∑
1≤i<j≤k EijP ′(si, sj) in MAYO is of different

structure. The
(
k
2

)
-many emulsifier maps Eij and the accumulation of all the

transformed terms ensures that P∗(s′) and t deviate in most of the entries, even
if only a single bit-flip was applied. We confirmed this statement with simula-

214 T. Aulbach et al.

tions, where we manually change a single bit in one of the P(1)
i or Si. Thus,

the introduced fault attack can not be transferred to MAYO, at least not in a
straightforward way.

However, for the deterministic variant the situation is different. The bit flips
lead to altered solution vectors x′ = (x′

1, . . . ,x′
k). This most likely results in an

invalid signature s′ = (s′
1, . . . , s′

k) = (v1+Ox′
1, . . . ,vk+Ox′

k). But if we compare
that to the correct signature s = (s1, . . . , sk) = (v1 +Ox1, . . . ,vk +Oxk) of the
same message, we see that the vinegar part is identical in the deterministic
scenario. Consequently, the term si −s′

i = Oxi +Ox′
i would reveal an oil vector,

since Ox′
i ∈ O.

Fault Injection to Skip the Addition of the Vinegar and Oil Parts. In
general, this fault attack also applies to MAYO. In the MAYO signing proce-
dure [11, Alg.2, Line 45] the sum of k pairs of vinegar and oil vectors is com-
puted. In the current implementation this is achieved by adding both compo-
nents into another variable s via mat_add(vi, Ox, s + i * param_n, ...,
1);. Regarding the fault attack, this approach is more secure than first copying
vi to s, and then adding Ox to it, as it is done in UOV. However, before the
actual addition happens, the vinegar part gets reassigned via vi = Vdec + i *
(param_n - param_o);. If this instruction can be skipped and vi remains empty
or assigned with a certain constant value, then an oil vector can be recovered
with the approach given in Remark 1.

Fault Injection to Disturb Linear System Setup (Skip the New Assign-
ment of A or Y). There are plenty of options to introduce faults during the
linear system set up in [11, Alg.2] between Line 22 and 33, which might change
the solution vectors x’i and therefore also the resulting oil vectors o’i. In the
non-randomized setting this could be exploited, similar to the description given
in Remark 1.

3.4 Transferability to QR-UOV and SNOVA

In this section we discuss if and how the fault attacks in Table 1 can be transferred
to QR-UOV and SNOVA. Both schemes employ the quotient ring structure, but
this does not have a large impact on the mentioned attacks.

Fault Injection to Fix the Vinegar Vector. This attack works analogously
for QR-UOV and SNOVA. As described in Sect. 3.1, the crucial part here is that
the signature is composed of an oil and a vinegar vector. Then, the repeated
usage of two identical vinegar vectors makes them canceling each other out,
when those signatures are subtracted from each other. In QR-UOV and SNOVA
this last step of mixing the oil and vinegar terms is represented by applying
the secret linear transformation s = S−1(y1, . . . , yv, yv+1, . . . , yn) in [20, Alg.2,
Line 18] or sig = [T](X0, . . . , Xv−1, X̃0, . . . , X̃o−1) in [44, Alg.11, Line 14], where

SoK: On the Physical Security of UOV-Based Signature Schemes 215

the first v entries represent the vinegar and the last o entries represent the oil
variables. Due to the block matrix structure of S and T, with an identity and
zero block in the first column, the vinegar variables contribute unaltered to the
signature.

RowHammer to Alter a Value in S or T . In general, this attack works
as initially described for LUOV or adapted to UOV. However, QR-UOV and
the variant SNOVA-ssk use compressed secret keys. Consequently, the linear
transformations S and T , which are only part of the expanded secret keys, are
not permanently stored in memory at a specific location. Thus, from a technical
point of view, the execution of the fault attack becomes way more difficult.
The time slot where the fault can be induced successfully is reduced to signing
time and furthermore, the resulting bit-flip is not permanent, since the secret
key will be expanded again in the next signing procedure. However, regarding
SNOVA-esk the attack would work equivalently to the original one on LUOV.

Bit flip in Matrices of esk. The transfer of this fault attack is again non-
trivial. Considering the notation of QR-UOV and SNOVA, there are now the
matrices Fi,1, Fi,1 and F 11

i , F 12
i , F 21

i under attack. It is not the quotient-ring
structure that determines if a bit-flip in one of these matrices yields useful infor-
mation for the attacker, but the structure of the public map. In the verification
of QR-UOV, the signature is evaluated with the bare public map P, similar to
UOV. Therefore, we again are in the case that P(sig′) and t only differ in a
single entry, which is exploitable.

SNOVA, in contrast, has the whipping structure of MAYO, as pointed out
by Beullens in [9]. In Corollary 2 he states that the SNOVA public map can be
written as P(U) =

∑l−1
j=0

∑l−1
k=0 Ej,kB(uj ,uk), where the matrices Ej,k have a

block diagonal structure with m identical blocks of size F(l2×l2)
q on the diagonal.

This goes well with the result of our simulations, where a bit-flip introduced to
one of the matrices F 11

i , F 12
i , or F 21

i , caused the vectors P(sig) and t to deviate
in l2 entries. Thus, the mentioned fault attack can not be applied to SNOVA, at
least not without profound modification.

Fault Injection to Skip the Addition of the Vinegar and Oil Parts.
QR-UOV and SNOVA are both randomized schemes. As a result, the only way
to mount this attack is to stop the vinegar variables - and only them - from
contributing to the signature (see Remark 1).

We analyzed the submitted reference implementation from QR-UOV and
came to the conclusion that this is not possible with a first-order fault attack.
The signature is computed via sig->s[i] = Fql_sub(vineger[i], t);, where
the vinegar part vineger is not altered or reassigned beforehand and the oil part
is encoded in t. Skipping this instruction would detain both parts from appearing
in s.

In SNOVA the case is a little different. They first copy the vinegar entry to
the signature gf16m_clone(signature...[index], X...[index]); and after-
wards add the oil entry to it. However, since this is done entry-wise, aborting

216 T. Aulbach et al.

the loop or similar strategies would not be successful, as they also prevent the
remaining oil entries from contributing.

Thus, both schemes do not seem to be vulnerable regarding that attack.
Remarkably, this is not due to the quotient ring structure, but to their current
implementation details.

Fault Injection to Disturb Linear System Setup. As concluded in Sect. 3.2,
this attack only works in the deterministic setting. Since both QR-UOV and
SNOVA do not expand the vinegar variables from a fixed seed, but generate
them randomly, the given attack is not feasible.

4 Side-Channel Attacks on UOV-Based Signatures

In this section, we investigate the security of UOV-based signature schemes in
terms of side-channel attacks. Similar to the previous section, we first recall
and transfer existing attacks to UOV. With the goal of being as exhaustive as
possible, we then consider further potential vulnerabilities. The resulting attacks
are subsequently adapted to MAYO, QR-UOV, and SNOVA. Table 2 presents
an overview of this section.

4.1 Existing Attacks

The following attacks against UOV or a familiar scheme are present in the lit-
erature. Both existing attacks target the UOV.Sign routine shown in Fig. 3 and
focus on subroutines where secret data is multiplied with public values.

Power Analysis of the Evaluation of the Vinegar Vector. The target of
this side-channel attack is the computation y = [v�P(1)

i v]i∈[m] given in Line 9
of Fig. 3. The vinegar vector v is multiplied from both sides to m matrices
P(1)

i containing public values. This marks an evident entrance door for side
channel attacks via power analysis. In [2] the authors showed how to exploit this
vulnerability with a profiling attack, that gets along with only a single attack
trace. In the profiling phase, the entries vi of v are set by hand to certain known
values. Then, the considered function is called and power traces are gathered
- labeled with the respective value in vi as reference. During the attack phase,
the power trace of the execution of y = [v�P(1)

i v]i∈[m] with the unknown (and
secret) vector v is recorded and compared to the reference traces. The attack
trace is likely to have the highest correlation to the reference trace where the
identical value vi is used. In this manner, the entries of v are revealed, which in
turn exposes a secret oil vector o and enables complete secret key recovery.

SoK: On the Physical Security of UOV-Based Signature Schemes 217

Table 2. Overview of existing and new side-channel attacks on UOV, MAYO, QR-
UOV, and SNOVA. Regarding the feasibility of the attacks, we refer to the specifica-
tions submitted to the NIST call for additional signatures in mid-2023. When there is
a difference between deterministic and randomized MAYO, we list them individually
in the given order. With ✓ we state that an attack is possible. By � we denote that
an attack is generally possible, but the technical execution is more difficult than in the
initially presented attack.

Description: Power analysis ... Source Initially for Feasible in Target

of vinegar evaluation [2] UOV UOV: ✓ UOV.Sign Line 9
MAYO: ✓ [11] Alg.8 Line 29
QR-UOV: ✓ [20] Alg.2 Line 12
SNOVA: ✓ [44] Alg.8 Line 3,4

of secret matrix multiplication [26,34] Rainbow UOV: � UOV.Sign Line 11
UOV MAYO: ✓ | � [11] Alg.8 Line 44

MAYOa QR-UOV: � [20] Alg.2 Line 18
SNOVA: � [44] Alg.11 Line 14

of linear system setup This work UOV UOV: ✓ UOV.Sign Line 7
MAYO: ✓ [11] Alg.8 Line 27,29
QR-UOV: ✓ [20] Alg.2 Line 11
SNOVA: ✓ [44] Alg.9 Line 3,4,14,26

of secret key expansion This work UOV UOV: ✓ UOV.ExpandSK Line 4
[26] MAYOa MAYO: ✓ [11] Alg.6 Line 17

QR-UOV: ✓ [20] Alg.2 Line 7
SNOVA: ✓ [44] Alg.6 Line 6,7

during key generation This work UOV UOV: ✓ UOV.CompactKeyGen Line 6
MAYO: ✓ [11] Alg.5 Line 16
QR-UOV: ✓ [20] Alg.1 Line 5
SNOVA: ✓ [44] Alg.5 Line 5

a Simultaneously to our work, Jendral and Dubrova [26] demonstrated a deep learn-
ing assisted power analysis of the corresponding functions in MAYO. Note that their
attack is the only side-channel attack considered in this work that was explicitly devel-
oped against MAYO. For the others, we analyzed if the attacks against UOV can be
translated to MAYO.

Power Analysis of the Linear Subspace Matrix Multiplication. The
authors of [34] present a differential power analysis (DPA) on the multiplication
of the linear transformation T with the intermediate vector x, that is the solu-
tion to the derived linear system. In our notation here, the transformation T is
replaced by the basis Ō of the linear subspace O. Therefore, this attack can be
seen as a power analysis of the matrix vector multiplication in Line 11 of Fig. 3.
The attack takes advantage of the fact that some entries of the vector x are part
of the signature, since they are not altered by the identity block of Ō, resp. T .
In more detail, we have Ōx = [Ox,x] and s = [v,0m] + [Ox,x]. Thus, during
the computation of Ox, the secret entries in O are multiplied with known values
and are consequently vulnerable to DPA.

218 T. Aulbach et al.

The authors in [34] require a few dozen of repeated computations of Ox
to recover the entries in O by using correlation coefficients. At the time they
performed this attack on Rainbow and UOV, these schemes used a deterministic
approach. This allowed the authors to make the valid assumption that x will not
change when the same message is signed repeatedly. In the current randomized
implementation, the solution vector x will change with every signing procedure,
since every time a new vinegar vector v is sampled, leading to a completely
different linear system Lx = t − y.

Hence, the attack will not work in the presented form and needs to be adapted
to the new setting. However, we still believe the considered function Ox needs to
be protected, since sensitive data is multiplied with public values, which could be
exploited with more evolved analysis methods, like profiling or machine learning
techniques5.

4.2 New Attacks

Power analysis attacks are possible on various other spots of the UOV function-
alities. In UOV.ExpandSK and UOV.CompactKeyGen there is a bulk of matrix
multiplications that involve the secret matrix O and public values stored in P(1)

i

and P(2)
i , which is clearly vulnerable. Regarding the algorithm UOV.Sign, we

additionally identified the following operation where caution is required.

Power Analysis of the Computation of L. In Line 7 of Fig. 3 the linear
part L of the system of equations in Line 10 is computed. Hereby, the i-th row
of L is given by v�Si. Both components involved are unknown to an attacker,
which makes it harder to mount a successful power analysis attack than in the
considered scenarios above, where one component is public. However, the matri-
ces Si are part of the expanded secret key, and, consequently, remain constant
over various signing procedures with the same secret key. If Hamming weight
information about one of the factors and their product is leaked, we have seen
that blind side-channel attacks [16,38] can exploit this and reveal information
about the considered factors v and Si.

Power Analysis of the Computation of S i During Secret Key Expan-
sion. The multiplication in Line 4 of Fig. 2 could be analyzed similarly to the
side-channel attack against Line 9 of Fig. 3. This is also critical and needs to
be countered. In the variant uov-pkc+skc compressed secret keys are used and
the mentioned procedure is part of the signing process. Regarding the other
two variants uov and uov-pkc, where the Si are already part of the key, this
functionality is attributed to key generation.

Power Analysis of the Computation of P (3)
i During Key Generation.

The same holds for the matrix multiplications during key generation, depicted
in Line 6 of Fig. 1. If an adversary is able to retrieve side-channel information
here, these operations also need to be protected, following the same reasoning.

5 The recent attack [26] confirms this conjecture.

SoK: On the Physical Security of UOV-Based Signature Schemes 219

4.3 Transferability to MAYO, QR-UOV, and SNOVA

The task of theoretically transferring the discussed side-channel attacks to
MAYO, QR-UOV, and SNOVA is considerably less complicated than it was
for the fault attacks. On one hand this is due to the fact that certain implemen-
tation choices, like the utilization of compressed keys, have a smaller impact on
the effectiveness of side-channel attacks. On the other hand, also the scheme-
specific properties are less critical here, since all four schemes contain the typical
UOV-like work flow: Generate the vinegar vector(s), compute the constant and
linear part of the system of equations, solve the linear system via Gauss, multiply
the solution with the oil space to receive corresponding oil vector(s), and finally
add the vinegar and oil part together. Thus, the vulnerable subroutines listed in
Table 2 need to be executed some way or the other, and whether the scheme uses
elements of the field F24 or F28 or of a quotient ring Fq[x]/(f), like QR-UOV
and SNOVA, is not decisive for the theoretical applicability of the attack, since
they also boil down to multiplications over a huge amount of field elements.

The practical execution of the attack, in contrast, will depend heavily on
the chosen implementation. In [10], the MAYO team announced that they will
change their specification from a bit- to a nibble-sliced representation for their
keys etc. Among other things, they present an efficient implementation of MAYO
on the Arm Cortex-M4, where the costly matrix multiplications are based on the
Method of the Four Russians. This method deviates from previous approaches
and to the best of our knowledge, there are no reported side-channel attacks
against such implementations in the literature. To perform such a side-channel
analysis could pose some interesting challenges and therefore, provides a charm-
ing open research questions.

For the remaining schemes QR-UOV and SNOVA, there are currently no
Arm Cortex-M4 implementations available, so a concrete analysis of their side-
channel security cannot yet be performed. Nevertheless, we hope Table 2 with
the respective code lines can provide a good orientation about the vulnerable
functions, which need to be treated with caution.

5 Implementation Guidelines

In this section, we present implementation guidelines and dedicated countermea-
sures to protect implementations of UOV-based signature schemes against the
physical attacks presented in this work.

During our research, we identified several theoretical attack vectors - both
existing and new ones - that do not lead to physical attacks in practice since
the current UOV and MAYO implementations are not vulnerable against them.
However, we realized that the implementation decisions that prevent these
attacks do not seem to be motivated by preventing physical attacks, primar-
ily. As an example, the utilization of compressed keys first and foremost serves
the purpose of reducing key sizes, but at the same time it prevents fault attacks
that alter the secret key in memory (cf. Sects. 3.3 and 5.2). Hence, we do not
consider it correct to term these parts of the implementations countermeasures,

220 T. Aulbach et al.

in contrast to concrete modifications of implementations with the aim of making
the implementations more resistant towards physical attacks. Still, we consider it
important to list also these implementation decisions in this section to emphasize
their importance for physical attack security, which is why we term this section
implementation guidelines instead of countermeasures.

5.1 Randomized Signatures

From a physical security point of view, it is desirable to utilize a randomized
signature generation process. For the considered UOV implementation this is
already the case. In Line 1 of Fig. 3 the salt s generated randomly. This salt
among others) contributes as input to the Hash and Expand functions that are
used to derive the target vector t ∈ Fm

q and the vinegar vector v ∈ Fn−m
q . Thus,

if the same message is signed twice, the generated signatures (and most of the
intermediate values) are different. In contrast, the considered MAYO implemen-
tation offers both options - random and deterministic - that determine how the
salt s derived in Line 10 of the signing algorithm. If the signature computation
is deterministic, this is beneficial for an attacker. Subtracting signatures of iden-
tical messages leads to vinegar parts canceling each other out, possibly revealing
non-zero oil vectors, if one of the two latter fault attacks in Table 1 is applied
correctly. Thus, we recommend the usage of the randomized version to prevent
both of these attacks. Furthermore, this helps to mitigate side-channel analysis
with the goal of obtaining the sampled vinegar vectors. If the vinegar vectors
vary between different signing processes, it will be much harder to apply differen-
tial power analysis methods. Nevertheless, we suggest masking as an additional
countermeasure, see Sect. 5.5.

5.2 Compressed Keys

In addition to the obvious advantage of reduced key sizes, the use of compressed
keys is also beneficial with respect to physical security. If the secret key only
consists of a seed, there are less options to introduce exploitable faults while it
is stored in memory. Recently, [21] and [32] showed that bit flips introduced to
an uncompressed secret key can lead to serious leakage. Even when the precise
spot of occurrence is unknown at first, there are methods to localize the bit flips
and use them to achieve full key recovery. Moreover, [32] practically executed
the attack on LUOV, emphasizing its relevance for UOV-based schemes.

Using compressed keys prevents both fault attacks described in this work
that target the secret key in memory, namely the Rowhammer attack on the
secret matrix O and the one introducing bit flips on the secret matrices.

5.3 Counter RowHammer Fault Attack

However, there are scenarios where key compression techniques are undesirable,
e.g., in order to enable a faster signing process. Here, we introduce a method

SoK: On the Physical Security of UOV-Based Signature Schemes 221

to prevent the RowHammer fault attack on the secret subspace O for such sce-
narios. To be precise, it is not the secret subspace O which is stored in mem-
ory, but a certain basis of it. Right now this basis is represented in standard
form, such that the identity part Im×m can be omitted and only the remaining
O ∈ Mm×(n−m)(Fq) is stored. This method is memory efficient, but the stan-
dard form for a given oil space is unique, hence fixed. This enables the bit tracing
algorithm used in the RowHammer attack.

Instead one could compute m random - though linearly independent - vectors
of O and store this modified basis instead. During signing, we would load the
modified basis from memory, compute its standard form and continue signing
like usual. Afterwards we again transform the basis to a random one by building
random linear combinations. This way, the explicit form of the secret key, i.e.,
the basis of the subspace O, would change with every signature generation, while
the secret information remains the same.

The resulting overhead is obvious. On one hand, the size of the matrix to be
stored increases from Mm×(n−m)(Fq) to Mm×n(Fq). At first glance, this seems
like a considerable drawback, but the fraction of the expanded secret key that is
consumed by O or its enlarged version is rather small compared to the matrices
Si that are also part of the secret key. Thus, the expanded key size would only
increase from 238 to 240 KB in uov-Ip.

On the other hand, the effort to compute the standard form at the beginning
of the signature generation and the randomized basis at the end, will increase
the signing time slightly.

5.4 Modify Vinegar Variable After Usage

The fault attack that leads to re-using or zeroing (most of) the vinegar variables
belongs to the most prominent ones in literature, see, e.g., [3,24,31,41]. It leads
to valid signatures, since the actual signing process is unaltered by the fault.
Only the vinegar variables are forced to values that are either known by the
attacker, or have been used before. The part of signing that computes the actual
solution to the equation P(v + o) = t is executed correctly and therefore finds
a correct signature. Thus, unlike many fault attacks, it can not be detected by
a validity check.

Instead, one actively needs to ensure that the sampled vinegar variables are
sound and vary across consecutive signing procedures. To this end, we suggest
the following modification. After the sampled vinegar variables are used in Line
7 and 9 of Fig. 3, we add a vector with random values to it, i.e., v += r. Since
the vinegar vector v is added to the signature s via s += v towards the end
of the signing process, the component r needs to be removed from the derived
signature at the end by appending the instruction s -= r.

Obviously this countermeasure could be circumvented with two additional
instruction skips, which would lead to a third-order fault attack altogether. An
attacker who is able to introduce three independent faults, however, could proba-
bly attack a signature algorithm in a simpler way and is therefore not considered

222 T. Aulbach et al.

a relevant scenario in this work. Irrespective of this, depending on how the addi-
tional random value r is chosen, this countermeasure can even be circumvented
more easily: When r is designed to be a new variable with randomly sampled
values, the assignment of the random value to the variable r might be skipped,
resulting in r = 0. In this case, the countermeasure would be completely cir-
cumvented by a single instruction skip, leading to a second-order fault attack
altogether, which can be considered to be realistic [14]. To avoid such second-
order fault attack, we instead suggest to not initialize r with randomly sampled
values, but to use already existing intermediate values of the signing procedure
and directly add them to v. For instance, we can make use of the unknown entries
of the vectors r := v� · Si for any i ∈ {1, . . . , m}, that are used to compose the
linear system which is solved during signing.

This countermeasure can be seen as an approach to randomize the data
stored in v after its usage, which is also suggested by [25]. Since v is added
to the signature s subsequently, this furthermore employs the idea of infective
computing [22]. The component r is a secret error, which needs to be removed
finally. If an injected fault skips the addition of this error, the output of the
algorithm will be incorrect and can not be exploited by an attacker.

5.5 Masking Against Power Analysis

The listed side-channel attacks in Sect. 4 all follow a similar concept, namely
the power analysis of certain matrix vector multiplications, that ultimately boil
down to field multiplications in Fq. The field is rather small, e.g., q ∈ {24, 28} in
UOV or q = 24 in MAYO, and 32-bit processors, like the ARM Cortex-M family,
treat multiple field elements at once. Even though this hampers Hamming weight
analysis of the secret or vulnerable values, it has been shown that DPAs [34] or
profiling attacks [2] are possible.

The most common countermeasure to prevent power analysis attacks is mask-
ing. Currently, to the best of our knowledge there are no masked implementations
of UOV-based signature schemes available. In this work, we bridge this gap by
providing a first masked version of UOV and MAYO. The goal is to protect
the vulnerable intermediate values, mainly the oil and vinegar vectors, whenever
they are used, and thereby protect against the existing and newly developed
attacks in Sect. 4.1 and Sect. 4.2. Since the majority of the utilized functions in
signing (and key generation) is linear, they are straightforward to mask. In the
following, we provide an overview of the affected lines in the pseudo code and
the measures we implemented to mitigate their vulnerability. Therefore, we refer
to the pseudocode of UOV, especially the signing algorithm in Fig. 3.

– The original implementation uses shake256 [1] to generate the vinegar vector
v ∈ Fn

q . In fact it only samples n−m entries of v, as the last m entries are set
to zero. Instead, we propose to use a masked version masked_shake256 [5] to
sample two (additive) shares of these entries, that will be used for computa-
tions later on and are combined at the end of the signing procedure.

SoK: On the Physical Security of UOV-Based Signature Schemes 223

– Line 7, compute v�S i, the linear part of the system of linear equations: In
this step we compute the coefficients of the linear part of the system of equa-
tions that needs to be solved during signing. Hereby, the vinegar vector v is
multiplied with numerous matrices Si, which are part of the (expanded) secret
key and do not change in subsequent signature generations. Each resulting
vector represents a row in the matrix L that constitutes the linear system.
The matrices Si are defined by Si ← (P(1)

i + P(1)�
i)O + P(2)

i (see Line 4
of Fig. 2) and contain information about the secret oil space O. Therefore,
we split them randomly into two additive shares. Since the function v� · Si

is linear in both components and the vinegar vector already arrives in two
shares, we need to compute it four times, one for each combination of the
respective two components.

– Line 9, compute v�P (1)
i v , which contributes to the constant part of the system

of linear equations: In [2] the authors perform a profiled side-channel attack
against this operation. Since the values in P(1)

i are public, they can take those
matrices as given in the public key and collect profiling traces of this operation
for various known values of v. After the profiling phase has finished, only a
single attack trace of this operation with the used vinegar vector v is needed
to recover its actual value. Thus, masking the vector v is not an option,
since an attacker could just recover the value of both shares with this kind
of single trace attack. Instead, we suggest to mask the values given in P(1)

i .
To collect meaningful profiling traces it is crucial that an attacker knows the
exact value of P(1)

i . By masking the entries of these matrices, we prohibit
this strategy and render the collected profiling traces useless. Consequently,
we compute y0 = v�P(1)

i,0v and y1 = v�P(1)
i,1v for the two shares P(1)

i,0 and
P(1)

i,1 and continue with the additive shares y0 and y1, which contribute to
the constant part of the system of linear equations.

– Line 10, solve Lx = t − y for x : At this point we already arrive with two
shares y0 and y1 of y. Since we do not want an attacker to get track of
the value y, we suggest to continue with these two shares and compute two
solutions x0 and x1 of the linear systems Lx0 = t − y0 and Lx1 = −y1.
Their sum x = x0 + x1 gives us the coefficients of the oil vector, since Lx =
L(x0 + x1) = Lx0 + Lx1 = t − y0 − y1 = t − y just like in the original
implementation.

– Line 11, add together vinegar and oil vector: First, we compute two shares o0

and o1 of the oil vector. To this end, we split the oil space randomly into two
additive shares O0 and O1. Now, we can compute o0 = O0x and o1 = O1x.
We do not need to work with the shares of x anymore, since x itself is leaked
as part of the signature to the public anyway. Finally, to receive the signature
s, we add up all the shares s = v0 + v1 + o0 + o1.

We implemented these countermeasures as described above and measured their
overhead. The practical results are presented in Sect. 6. As one could expect,
masking the functions in Line 7 and 9 is responsible for the majority of the
total overhead induced by masking UOV. These functions are quite expensive

224 T. Aulbach et al.

themselves and the vast amount of randombytes that is required to generate
the shares of the involved matrices also contributes significantly to the increased
number of clock cycles, as detailed in Sect. 6.

6 Practical Results

This section firstly presents the performance evaluation of our protected imple-
mentations for UOV and MAYO. As there is currently no Cortex-M4 imple-
mentation of QR-UOV and SNOVA publicly available, the practical part of this
work focus on UOV and MAYO. In this section, we further provide experimental
results in terms of side-channel resistance. For all evaluation purposes, we use
existing, unprotected implementations for NIST security level I of both schemes
as a basis. More precisely, our implementations are based on the respective opti-
mized UOV (ov-Ip-pkc/m4f) and MAYO (mayo1/m4f) Cortex-M4 implemen-
tation available within the pqm4 [28] library.

To increase compatibility, all changes were applied within the respective sign-
ing function itself, i.e. the signature of the function remains unchanged. Note
that our findings (cf. Sect. 5) and implemented measures can be easily applied
to other parameter sets.

6.1 Performance Results

In this section we present some performance figures of our first-order masked
implementation of UOV and MAYO. For benchmarking, we target the ST
NUCLEO-L4R5ZI board featuring an Arm Cortex-M4F core with 640 KB of
RAM and 2 MB of flash memory. All randomness required for masking is
generated using the internal hardware random number generator available on
that board. We used the arm-none-eabi-gcc compiler (version 13.3.1) with
the compiler flags -O3 -std=gnu99 -mthumb -mcpu=cortex-m4 -mfloat-abi-
=hard -mfpu=fpv4-sp-d16 for compilation.

For the targeted parameter set (ov-Ip) of UOV, the combined size of the
expanded secret key and the expanded public key is 516 KB. Due to the 640 KB
of RAM, both expanded keys fit into the RAM. However, in order to obtain the
required space for masking within the 640 KB of RAM on the ST NUCLEO-
L4R5ZI board, we applied the approach [13,15] of writing the keys to flash
memory. Table 3 presents the memory requirements of our protected implemen-
tations compared to the existing versions. In the case of UOV, it shows 1) the
increase of stack usage during the key generation due to having to cache the keys
in RAM before writing them to the flash memory, 2) the additional stack usage
when signing due to our implemented masking measures, and 3) the increase of
code size required for masking. Whereas in the case of MAYO, the additional
memory requirement is significantly lower, as the size of the RAM is sufficient
for masking without writing the keys to the flash memory. This is due to having
to cache the keys in RAM before writing them to flash.

SoK: On the Physical Security of UOV-Based Signature Schemes 225

Table 3. Memory requirements for each implementation. Code, data and BSS size
listed are in bytes, stack usage in 210 byte (i.e., KiB).

Scheme Impl. Library size Stack usage
Code Data BSS keygen sign verify

ov-Ip-pkcm4f 80 006 0 0 15.2 5.1 2.5
m4f-flash 80 062 0 0 401.6 5.1 2.5
masked-m4f-flash 213 076 0 0 401.6 264.4 2.5

MAYO1 m4f 16 513 8 0 72.7 110.8 430.3
masked-m4f 17 630 8 0 72.7 217.2 430.3

Table 4 compares the performance of protected and unprotected versions of
UOV. Thereby, we differentiate between certain subroutines (cf. Sect. 5) to clar-
ify the cost of each measure. In addition to the masked implementation, we
implemented blinding as an alternative protecting method for two suitable and
most costly subroutines based on the following approach. The functions v�Si

and v�Piv are linear with respect to the used matrices, so blinding works in a
straightforward way. We multiply them with random values ri ∈ Fq\{0} before-
hand and nullify its effect by multiplying the result with r−1

i . Note that we use
different random values ri for each of the matrices Si and Pi for i ∈ {1, . . . , m}.

This approach is less powerful than masking every single entry of these matri-
ces, but it still ensures that the values in Si do not remain identical over various
signing procedures and the values in Pi are not open to public anymore. Table 4
shows that 1) the masked version is about 5× slower than the unprotected imple-
mentation and 2) blinding is in total almost 2× slower than masking.

Table 4. Cortex-M4F cycle counts for our protected implementations in comparison to
the optimized unprotected implementation of ov-Ip-pkc. Note that the implementation
with blinding only differs from the masked implementation in two subroutines.

Pseudo code Subroutine UOV unprotected [this work] masking [this work] with blinding

Line 4 Sample vinegar vectors 13 455 132 363 132 363
SHAKE256

Line 7 Linear part of system 1 083 775 6 816 989 12 069 951
L = v� · Si

Line 9 Constant part of system 903 390 3 721 735 8 359 110
y = v� · Pi · v

Line 10 Solve linear system 435 349 872 866 872 866
Solve Lx = t − y for x

Line 11 Add oil and vinegar 26 633 109 454 109 454
s = v + Ox

CM of Sec. 5.4 Modify vinegar after usage - 768 768
v = v + r

Total cycle counts for signing 2 478 708 11 840 264 21 916 475

226 T. Aulbach et al.

Table 5 compares the performance of protected and unprotected versions of
MAYO. Similar to UOV, we present the performance results of each implemented
subroutine. The present figures show that the overhead of masking is in total
smaller than 2×. Although we followed the same approach for both schemes, the
slowdown for UOV is significantly larger compared to MAYO.

Table 5. Cortex-M4F cycle counts for various subroutines within the expanding and
signing procedure in comparison to the unprotected implementation of MAYO1.

Pseudo code Subroutine MAYO unprotected [this work] masking

[11] Alg.6 Line 17 Secret key expansion 2 165 338 5 343 609
Li = (P

(1)
i + P

(1)T
i)O + P

(2)
i

[11] Alg.8 Line 16 Sample vinegar vectors & randomizer 40 775 394 917
SHAKE256

[11] Alg.8 Line 27Linear part of system 524 900 1 782 457
Mi[j, :] = vT

i Lj

[11] Alg.8 Line 30Constant part of system 1 969 234 3 782 901
u = vT

i P
(1)
a vi

[11] Alg.8 Line 38 Solve linear system 928 381 1 858 051
Solve Ax = y for x

[11] Alg.8 Line 45Add vinegar and oil terms 105 209 188 488
si = (vi + Oxi) || xi

Total cycle counts for signing 9 122 185 16 783 809

6.2 Side-Channel Evaluation

In this section, we present evaluation results for potential side-channel leakages
of an unprotected compared to our masked implementation of UOV. All exper-
iments regarding leakage evaluation were carried out using the ChipWhisperer
tool chain [33,43] in Python (version 3.9.5) and performed on a ChipWhisperer-
Lite board with an STM32F405 target board featuring an Arm Cortex-M4 core
with 192 KB of RAM and 1 MB of flash memory.

Since all vulnerable subroutines (cf. Table 4), with the exception of SHAKE,
boil down to multiplications, we focus our efforts on the most costly function
gfmat_prod which multiplies a vector v with matrices Si. Therefore, our imple-
mentation for side-channel evaluation only provides the gfmat_prod function
and all required subroutines for generating traces. For leakage evaluation, we
applied the commonly used Welch’s t-test methodology [40]. More precisely,
we used the fixed vs. random (FvR) approach. Thereby, we multiply a random
vinegar vector with fixed matrices or random matrices, resp. In this case, these
matrices represent part of the (extended) secret key.

As shown in Fig. 4a, the unmasked implementation is highly leaking by pre-
senting very high t-values in the range of about (100,−100), confirming the

SoK: On the Physical Security of UOV-Based Signature Schemes 227

threat induced by the leakages. In contrast, the t-values for the masked imple-
mentation depicted in Fig. 4b are all in the required range of (−4.5, 4.5).

Fig. 4. Evaluation of the t-test after 10,000 traces for 20 000 samples traced during the
computation of the gfmat_prod function. The range of the t-values is significantly lower
for the masked (b) than for the unmasked version (a). The red lines in (b) indicate the
threshold for side-channel leakage. (Color figure online)

7 Conclusion

In this work we conducted an extensive literature review of all existing physical
attacks on UOV-based signature schemes and identified further attack vectors.
Since all analyzed schemes share a large amount of operations that are con-
tributed to the oil-and-vinegar principle, the theoretical idea behind the attacks
transfers really well across the schemes, both for side-channel and fault attacks.
Even the utilization of the quotient ring structure in QR-UOV and SNOVA had
no impact on the transferability. The technical realization, however, depends
highly on the given implementation.

We conclude that certain implementation choices, namely the utilization of
compressed keys and employing a randomized signing process, has a positive
impact on the resistance against fault attacks. The remaining fault attacks can
be covered by dedicated countermeasures, with only a small overhead. Note, that
we only covered first-order fault attacks in this work.

228 T. Aulbach et al.

However, we see a greater risk with regard to side-channel attacks. In every
scheme we analyzed, sensitive values are multiplied with huge amounts of pub-
lic data, which represents a major gateway for power analysis methods. This
observation is confirmed by our TVLA conducted on unprotected multiplication
routines of UOV. To this end, we present a first-order masked version of both
UOV and MAYO on the basis of their existing optimized Cortex-M4 implemen-
tations available within the pqm4 library. The results are supposed to serve as
a first assessment of the overhead one can expect when applying masking coun-
termeasures to UOV-based schemes. We observed that the produced overhead is
smaller for MAYO than for UOV and identified two reasons for that. First, the
amount of random bytes that are necessary to split the matrices into two shares
is considerably smaller in MAYO, due to smaller parameters. Second, there are
some subroutines in MAYO, i.e., the multiplication with public emulsifier maps
and the accumulation of these products, where we concluded masking is not
required. Thus, the share of sensitive operations is a little higher in UOV than
in MAYO.

References

1. FIPS PUB 202: SHA-3 standard: Permutation-based hash and extendable-output
functions. Federal Information Processing Standards Publication 202. National
Institute of Standards and Technology, U.S. Department of Commerce (2015)

2. Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., Stöttinger, M.: Separating
oil and vinegar with a single trace side-channel assisted Kipnis-Shamir attack on
UOV. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2023). https://doi.org/10.
46586/tches.v2023.i3.221-245

3. Aulbach, T., Kovats, T., Krämer, J., Marzougui, S.: Recovering rainbow’s secret
key with a first-order fault attack. In: Progress in Cryptology - AFRICACRYPT
2022: 13th International Conference on Cryptology in Africa. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17433-9_15

4. Aulbach, T., Marzougui, S., Seifert, J.-P., Ulitzsch, V.Q.: Mayo or may-not: explor-
ing implementation security of the post-quantum signature scheme MAYO against
physical attacks. In: Workshop on Fault Detection and Tolerance in Cryptography,
FDTC 2024. IEEE (2024). https://doi.org/10.1109/FDTC64268.2024.00012

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power anal-
ysis resistant implementations of Keccak. In: Second SHA-3 Candidate Con-
ference (2010). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&
doi=fe3d80a12e34d67ce14d438935302c6ef371901c

6. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_13

7. Beullens, W.: MAYO: practical post-quantum signatures from oil-and-vinegar
maps. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 355–376.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_17

8. Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Advances in
Cryptology - CRYPTO 2022. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-15979-4_16

SoK: On the Physical Security of UOV-Based Signature Schemes 229

9. Beullens, W.: Improved cryptanalysis of SNOVA. IACR Cryptol. ePrint Arch.
(2024). https://eprint.iacr.org/2024/1297

10. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: Nibbling MAYO:
optimized implementations for AVX2 and cortex-m4. IACR Trans. Cryptogr.
Hardw. Embed. Syst. (2024). https://doi.org/10.46586/tches.v2024.i2.252-275

11. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: MAYO. Technical
report, National Institute of Standards and Technology (2023). https://csrc.nist.
gov/Projects/pqc-dig-sig/round-1-additional-signatures

12. Beullens, W., et al.: UOV. Technical report, National Institute of Stan-
dards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures

13. Beullens, W., et al.: Oil and vinegar: modern parameters and implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. (2023). https://doi.org/10.46586/
tches.v2023.i3.321-365

14. Blömer, J., Da Silva, R.G., Günther, P., Krämer, J., Seifert, J.P.: A practical
second-order fault attack against a real-world pairing implementation. In: 2014
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2014. IEEE
Computer Society (2014). https://doi.org/10.1109/FDTC.2014.22

15. Chen, M.-S., Chou, T.: Classic McEliece on the ARM cortex-m4. IACR Trans.
Cryptogr. Hardw. Embed. Syst. (2021). https://doi.org/10.46586/tches.v2021.i3.
125-148

16. Clavier, C., Reynaud, L.: Improved blind side-channel analysis by exploitation
of joint distributions of leakages. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 24–44. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-66787-4_2

17. Ding, J., et al.: Rainbow. Technical report, National Institute of Standards and
Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

18. Ding, J., Deaton, J., Vishakha, Yang, B.-Y.: The nested subset differential attack -
a practical direct attack against LUOV which forges a signature within 210 minutes.
In: Advances in Cryptology - EUROCRYPT 2021. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77870-5_12

19. Ding, J., et al.: TUOV. Technical report, National Institute of Stan-
dards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures

20. Furue, H., et al.: QR-UOV. Technical report, National Institute of Stan-
dards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures

21. Furue, H., Kiyomura, Y., Nagasawa, T., Takagi, T.: A new fault attack on UOV
multivariate signature scheme. In: Post-Quantum Cryptography - 13th Interna-
tional Workshop, PQCrypto 2022. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-17234-2_7

22. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy
rounds: fault protection for block ciphers without check-before-output. In: Hevia,
A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 305–321. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_17

23. Goubin, L., et al.: PROV. Technical report, National Institute of Stan-
dards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures

230 T. Aulbach et al.

24. Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivariate public
key cryptosystems. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 1–
18. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_1

25. Jendral, S., Dubrova, E.: MAYO key recovery by fixing vinegar seeds. IACR Cryp-
tol. ePrint Arch. (2024). https://eprint.iacr.org/2024/1550

26. Jendral, S., Dubrova, E.: Single-trace side-channel attacks on MAYO exploiting
leaky modular multiplication. IACR Cryptol. ePrint Arch. (2024). https://eprint.
iacr.org/2024/1850

27. Jendral, S., Mattsson, J.P., Dubrova, E.: A single-trace fault injection attack
on hedged module lattice digital signature algorithm (ML-DSA). In: Workshop
on Fault Detection and Tolerance in Cryptography, FDTC 2024. IEEE (2024).
https://doi.org/10.1109/FDTC64268.2024.00013

28. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM cortex-m4. IACR Cryptol. ePrint Arch. (2019).
https://eprint.iacr.org/2019/844

29. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15

30. Koo, N., Shim, K.-A.: Security analysis of reusing vinegar values in UOV signature
scheme. IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3409778

31. Krämer, J., Loiero, M.: Fault attacks on UOV and rainbow. In: Polian, I., Stöt-
tinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 193–214. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-16350-1_11

32. Mus, K., Islam, S., Sunar, B.: Quantumhammer: a practical hybrid attack on
the LUOV signature scheme. In: CCS 2020: 2020 ACM SIGSAC Conference on
Computer and Communication Security. ACM (2020). https://doi.org/10.1145/
3372297.3417272

33. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0_17

34. Park, A., Shim, K.-A., Koo, N., Han, D.-G.: Side-channel attacks on post-quantum
signature schemes based on multivariate quadratic equations - rainbow and UOV.
IACR Trans. Cryptogr. Hardw. Embed. Syst. (2018). https://doi.org/10.13154/
tches.v2018.i3.500-523

35. Patarin, J., et al.: VOX. Technical report, National Institute of Stan-
dards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures

36. Pébereau, P.: One vector to rule them all: Key recovery from one vector in
UOV schemes. In: Post-Quantum Cryptography - 15th International Work-
shop, PQCrypto 2024. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
62746-0_5

37. Petzoldt, A., Thomae, E., Bulygin, S., Wolf, C.: Small public keys and fast ver-
ification for Multivariate Quadratic public key systems. In: Preneel, B., Takagi,
T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 475–490. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23951-9_31

38. Ravi, P., Jap, D., Bhasin, S., Chattopadhyay, A.: Invited paper: machine learn-
ing based blind side-channel attacks on PQC-based KEMs - a case study of
kyber KEM. In: IEEE/ACM International Conference on Computer Aided Design,
ICCAD 2023. IEEE (2023). https://doi.org/10.1109/ICCAD57390.2023.10323721

SoK: On the Physical Security of UOV-Based Signature Schemes 231

39. Sayari, O., Marzougui, S., Aulbach, T., Krämer, J., Seifert, J.-P.: HAMAYO: a
fault-tolerant reconfigurable hardware implementation of the MAYO signature
scheme. In: Constructive Side-Channel Analysis and Secure Design - 15th Inter-
national Workshop, COSADE 2024. Springer, Cham (2024). https://doi.org/10.
1007/978-3-031-57543-3_13

40. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4_25

41. Shim, K.-A., Koo, N.: Algebraic fault analysis of UOV and rainbow with the leakage
of random vinegar values. IEEE Trans. Inf. Forensics Secur. (2020). https://doi.
org/10.1109/TIFS.2020.2969555

42. Tao, C., Petzoldt, A., Ding, J.: Efficient key recovery for all HFE signature variants.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 70–93.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_4

43. NewAE Technology. Repository of ChipWhisperer tool chain - commit a9527b5
(2023). https://github.com/newaetech/chipwhisperer

44. Wang, L.-C., et al.: SNOVA. Technical report, National Institute of Stan-
dards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures

B.1. SoK: On the Physical Security of UOV-based Signature Schemes 187

HaMAYO: A Fault-Tolerant
Reconfigurable Hardware Implementation

of the MAYO Signature Scheme

Oussama Sayari1(B), Soundes Marzougui1,2(B), Thomas Aulbach3(B),
Juliane Krämer3, and Jean-Pierre Seifert1,4

1 Technical University of Berlin, Berlin, Germany
oussama sayari@yahoo.fr, jean-pierre.seifert@tu-berlin.de

2 STMicroelectronics, Diegem, Belgium
soundes.marzougui@st.com

3 University of Regensburg, Regensburg, Germany
{thomas.aulbach,juliane.kraemer}@ur.de

4 Fraunhofer Institute SIT, Darmstadt, Germany

Abstract. MAYO is a topical modification of the established multivari-
ate signature scheme UOV. Signer and Verifier locally enlarge the public
key map, such that the dimension of the oil space and therefore, the
parameter sizes in general, can be reduced. This significantly reduces
the public key size while maintaining the appealing properties of UOV,
like short signatures and fast verification. Therefore, MAYO is consid-
ered as an attractive candidate in the NIST call for additional digital
signatures and might be an adequate solution for real-world deployment
in resource-constrained devices.

When emerging to hardware implementation of multivariate schemes
and specifically MAYO, different challenges are faced, namely resource
utilization, which scales up with higher parameter sets. To accommo-
date this, we introduce a configurable hardware implementation designed
for integration across various FPGA architectures. Our approach fea-
tures adaptable configurations aligned with NIST-defined security levels
and incorporates resources optimization modules. Our implementation is
specifically tested on the Zynq ZedBoard with the Zynq-7020 SoC, with
performance evaluations and comparisons made against previous hard-
ware implementations of multivariate schemes.

Furthermore, we conducted a security analysis of the MAYO imple-
mentation highlighting potential physical attacks and implemented
lightweight countermeasures.

Keywords: MAYO · Multivariate Cryptography · Post-Quantum
Cryptography · Digital Signature · Hardware Implementation ·
Physical Security

1 Introduction

As quantum computing continues to advance, it is anticipated that quan-
tum attacks can break many of the computational problems that classical

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Wacquez and N. Homma (Eds.): COSADE 2024, LNCS 14595, pp. 240–259, 2024.
https://doi.org/10.1007/978-3-031-57543-3_13

HaMAYO: Hardware Implementation of MAYO 241

cryptography relies on, such as factorization and discrete logarithms used in
RSA and ECDSA, respectively. To address this, researchers have proposed new
mathematical assumptions and computational problems that are difficult to solve
with quantum computers, resulting in the field of post-quantum cryptography.
These new assumptions are grouped into different families, such as lattice-based,
code-based, hash-based, and multivariate cryptography.

Multivariate schemes mainly rely on the difficulty of solving large systems
of multivariate quadratic equations, known as the MQ Problem. As such, the
signature scheme Rainbow [DS05] was a finalist in the third round of the NIST
post-quantum cryptography (PQC) Standardization Process. Rainbow is a two-
layered version of the UOV signature scheme [KPG99]. Hence, multivariate sig-
nature schemes based on the oil and vinegar principle received a lot of attention.
They offer very short signatures and efficient verification, since the signature is
mainly the solution to a system of multivariate quadratic equations, and verifying
boils down to evaluating the polynomials at the presumed solution. Still, during
the third round, Beullens developed an algebraic attack on Rainbow [Beu22a],
targeting the layer structure that differentiates Rainbow from UOV. This led to
the elimination of Rainbow from the ongoing process since it lost all its alleged
advantages over the base scheme UOV.

Since mainly lattice-based signatures remained in the competition, NIST
called for the submission of additional post-quantum digital signature schemes
to enhance the given variety of signatures by prioritizing those that are not
reliant on structured lattices, have short signatures and fast verification. The
majority of the multivariate schemes submitted to this process are based on the
oil and vinegar principle.

MAYO, introduced in [Beu22b], is one of them. It uses the same trapdoor - a
secret oil space that is annihilated by the public key map - but is developed such
that the signer and the verifier locally enlarge the public key matrices. Therefore,
the dimension of the oil space can be reduced. That also allows to reduce other
parameters like the number of variables in the quadratic equations since certain
algebraic attacks get harder with a smaller oil space [KS06]. In total, this leads
to significantly smaller public keys in MAYO, while keeping good performance
numbers and signature sizes. For instance, with parameters targeting the first
security level of the NIST process, the public key size of MAYO is 1,168 bytes,
the secret key is 24 bytes, and the signature size is 321 bytes [BCC+23]. These
results make the MAYO signature scheme even more compact than state-of-the-
art lattice-based signature schemes such as Falcon and Dilithium [PQD23].

Contribution. In this paper, we present an open source pure hardware implemen-
tation of the multivariate signature scheme MAYO. Our main target was a trade-
off between SRAM/BRAM Consumption and FPGA Slides. In a second part,
we investigated the physical security of MAYO implementation against side-
channel analysis and fault-injection attacks. We, moreover, suggest lightweight
countermeasures and implement them.

242 O. Sayari et al.

The contribution is summarized as follows:

• We manually settle a pure hardware implementation of MAYO. Our imple-
mentation is reconfigurable and can be easily integrated with different FPGA
architectures and for different security levels.

• Certain functionalities used within key generation and signing are optimized,
with a focus on low memory consumption.

• We present a new approach for the Gaussian solver and compare it to the
well-known GSMITH approach of Rupp et al. in [REBG11].

• We considered threats emerging from possible fault injection and side channel
analysis attacks, and cover them by employing low cost countermeasures.

The source code is available upon request.

Deployed Parameter Set. When we started with the hardware implementation,
there was only one proof of concept implementation available on https://github.
com/WardBeullens/MAYO and it used the parameter set (n = 62,m = 60, o =
6, k = 10, q = 31) (see also [Beu22b, Section 8]). Thus, we also deployed these
parameters in our work. In the meantime, the parameters were updated and as
a main difference, MAYO also works over a field with even characteristic now,
i.e., q = 16. This allows for higher efficiency and further implementation tricks,
since now one field element occupies 4 bits instead of 5, and consequently, 2 field
elements can be stored in one byte. The other parameters were also updated,
but with minor impact. Thus, our work is one of the very few implementations
of a multivariate schemes that utilizes a finite field with odd characteristic.

Related Work. At the time of writing this paper, there is a scarcity of complete
hardware designs for post-quantum cryptographic schemes [ZZW+21,XL21,
FG18,HZ18]. However, given that the NIST PQC reached the fourth round and
started the call for additional digital signature schemes, it is expected that more
dedicated hardware designs will emerge. These designs would be instrumental in
showcasing the strength and inherent properties of specific protocols [NIS23a].

Multivariate schemes necessitate the development of comprehensive and
extensive implementation designs to address the challenging gaps due to the
schemes’ large key sizes [DS05,KPG99]. These key sizes often pose challenges
for devices with limited resources, as they may struggle to accommodate the stor-
age requirements of these schemes. Moreover, multivariate schemes commonly
involve memory and time-consuming blocks, with the Gaussian solver being
a well-known performance bottleneck [REBG11]. Despite the above-mentioned
challenges, there have been a few published hardware implementations that have
reported results for multivariate schemes [TYD+11,HZ18,FG18].

In [FG18], Ferozpuri and Gaj present a high-speed FPGA implementation
of Rainbow. Their hardware implementation uses a parameterized system solver
where the execution time is proportional to the system dimension, i.e., it can
solve an n-by-n system in n clock cycles. Moreover, their work reduces the num-
ber of required multipliers by almost half, speeds up execution as compared to

HaMAYO: Hardware Implementation of MAYO 243

the previous state-of-the-art work, and implements Rainbow for higher security
levels.

In [TYD+11], Tang et al. present another high-speed hardware implemen-
tation of Rainbow. The authors targeted similar functionalities for optimization
as in [FG18], i.e., the Gaussian solver and the multipliers. They developed a
new parallel hardware design for the Gaussian elimination and designed a novel
multiplier to speed up the multiplication of three elements over a finite field.
With Rainbow being broken [Beu22a], all its previously published software and
hardware implementations needs to be revised and transferred to secure schemes
for practical use. To address this issue, MAYO is seen as a viable alternative,
showcasing improved performance results.

Simultaneous Work. During the preparation of this paper, hardware implemen-
tations of UOV [BCH+23] and MAYO [HSMR23] were published in 2023. The
latter already features the updated parameter set of MAYO (n = 66,m = 64, o =
8, k = 9, q = 16), where m is chosen to be a multiple of 32 and q is a power of 2
to facilitate further implementation optimizations.

2 Preliminaries

The MAYO signature scheme [Beu22b] is a special modification of the UOV
signature scheme [KPG99] and belongs to the field of multivariate cryptography.
Herein, the main object is the multivariate quadratic map P : Fn

q → Fm
q with

m components and n variables. In more detail, it is a sequence p1(x), . . . , pm(x)
of m quadratic polynomials in n variables x = (x1, . . . , xn), with coefficients in
a finite field Fq. Very abbreviated, multivariate cryptography is based on the
hardness of finding a preimage s ∈ Fn

q of a target vector t ∈ Fm
q under a given

multivariate quadratic map P, i.e., solving a multivariate system of quadratic
equations. This task is often referred to as the MQ problem. One way that allows
the signer to compute a signature s is to install a secret trapdoor into the public
map P.

2.1 The Trapdoor in UOV

In UOV, the trapdoor information is a basis of a secret linear subspace O ⊂ Fn
q

of dimension dim(O) = m, the so-called oil space [Beu21]. The multivariate
quadratic map P : Fn

q → Fm
q is then chosen in a way that it vanishes on this oil

space, i.e., P(o) = 0m for all o ∈ O. For the multivariate quadratic polynomials
pi(x), which constitute the map P via P(x) = p1(x), . . . , pm(x), one can define
their polar form or differential as

p′
i(x,y) := pi(x + y) − pi(x) − pi(y) + pi(0).

Since we commonly work with homogeneous polynomials, the term pi(0) will be
omitted in the following. Similarly, we can define the polar form of P as

P ′(x,y) = p′
1(x,y), . . . , p′

m(x,y).

244 O. Sayari et al.

As shown in [Beu21, Theorem 1], the map P ′ : Fn
q × Fn

q → Fm
q is a symmetric

and bilinear map. Furthermore, if one has knowledge of the secret oil space, it
can be used to efficiently find preimages x ∈ Fn

q of a given target t ∈ Fm
q such

that P(x) = t. To do so, one can randomly pick a vinegar vector v ∈ Fn
q and

solve the system P (v + o) = t for o ∈ O. This is possible since in

t = P(v + o) = P(v) + P(o) + P ′(v,o) (1)

the term P(v) is constant and P(o) vanishes, so whenever the linear map P ′(v, ·)
is non-singular, the system has a unique solution o ∈ O, which can be computed
efficiently. This happens with probability roughly q−1

q . If this is not the case, one
can simply pick a new value for v and try again. Without a description of the
oil space O, the term P(o) implies that Eq. 1 constitutes a system of quadratic
equations, which remains hard to solve.

Building a signature scheme directly from this setting has one big disadvan-
tage. The oil space needs to be as large as the image space of the multivariate
quadratic map P, i.e., dim O = m. To counter the Kipnis-Shamir attack [KS06],
the parameter n needs to be sufficiently larger than m, with n ≈ 2, 5m being used
in all currently considered implementations. The parameter m itself needs to be
of a certain size as well, to provide security against direct attacks or the intersec-
tion attack [Beu21]. This leads to key pairs of enormous size, which is considered
the main drawback of multivariate signatures. Recently, Beullens developed the
signature scheme MAYO to tackle this problem.

2.2 Description of MAYO

The essential modification is the downsizing of the dimension of the oil space to
dim O = o < m. Actually, this oil space is now too small to sample signatures,
since the system P(v + o) = t given in Eq. 1 consists consequently of m linear
equations in o variables and is unlikely to have any solutions. Thus, the approach
taken in [Beu22b] is to stretch the public key map into a larger whipped map
P∗ : Fkn

q → Fm
q , such that it accepts k input vectors x ∈ Fn

q . This is realized
by defining

P∗(x1, ...,xk) :=

k∑

i=1

EiiP(xi) +
∑

1≤i<j≤k

Eij(P ′(xi,xj)), (2)

where the matrices Eij ∈ Fm×m
q are fixed system parameters with the property

that all their non-trivial linear combinations have rank m.
It is easy to see that P∗ vanishes on the subspace Ok = {(o1, . . . ,

ok)| with oi ∈ O for all i ∈ [k]} of dimension ko. By choosing the parameters
such that ko ≥ m, the k copies of the oil space are large enough to construct
preimages of a target vector t ∈ Fm

q under the whipped map P∗. In more detail,

the signer randomly samples (v1, . . . ,vk) ∈ Fkn
q , and then solves

P∗(v1 + o1, ...,vk + ok) = t (3)

HaMAYO: Hardware Implementation of MAYO 245

for (o1, ...ok) ∈ Ok. Observe from Eq. 2 that this system remains linear in the
presence of the linear emulsifier maps Eij ∈ Fm×m

q . Thus, the signer can effi-
ciently compute a preimage {si = vi +oi}i∈[k] of t. Similar to UOV, the verifier
just needs to check if the given {si}i∈[k] satisfy Eq. 3.

Remark 1. Please note that both, the signer and the verifier, only locally whip up
the public key map P to P∗, so this modification comes with no additional cost
in terms of key sizes. However, it entails additional computations during signing
and verification. Furthermore, it increases signature size, since now a k-tuple of
vectors in Fn

q constitute the signature. These negative effects are cushioned by
the ability to reduce parameter sizes while maintaining the security level.

2.3 The Implemented MAYO Functionalities

The above descriptions remain rather high-level and abstract. Here we show
more details about the main functionalities that need to be implemented, e.g.,
evaluations of (parts of) the public key map P via vector-matrix multiplica-
tions and finding solutions to the generated linear system via Gaussian elimi-
nation. Due to the page limit we do not present all the algorithms we imple-
mented here, but refer to the MAYO specification [BCC+23, Section 2], specif-
ically to the algorithms MAYO.CompactKeyGen(), MAYO.ExpandSK(csk) and
MAYO.Sign(esk,M). The latter will also play a major role in our security dis-
cussion in Sect. 4, so it is presented in Algorithm 1 below. The first few lines are
used to sort the bit string of the expanded secret key to the respective matrices
(line 1–5) and to derive a target vector t ∈ Fm

q and salt (line 7–11). The main
part of the signing process can be described by generating random variables (line
15–19), inserting the vinegar variables vi into P to set up a linear system (line
21–35), solving the system (line 37–40) and adding the solution to the vinegar
variables (line 42–45).

3 Hardware Design

In this section, we present the hardware design of our implementation. Our
primary goal is to provide a reconfigurable hardware code that can be easily
integrated with different FPGA architectures and for different security levels.

Although MAYO has keys of reduced size compared to other multivariate
alternatives, it still necessities a large amount of internal memory to execute
the key-generation and signing phase [Beu22b] in the order of several dozen KB.
This is partially attributed to the fact that the keys are stored as seeds. During
the signing the seed is expanded into large matrices, e.g., for the parameter set
(n,m, o, k, q) = (66, 64, 8, 9, 16), the public key of 1168B is expanded into 70KB.

For implementation and testing of our hardware design, we opted for the
target board Zynq ZedBoard with the Zynq-7020 SoC [Xil23], which has 85K
Logic Cells and 4.9MB Block RAM serving as an upper bound for the memory
consumption.

246 O. Sayari et al.

Algorithm 1. MAYO.Sign(esk,M) [BCC+23]

Input: Expanded secret key esk ∈ Besk bytes, Message M ∈ B∗

Output: Signature sig ∈ Bsig bytes

1: // Decode esk
2: seedsk ← esk[0 : sk seed bytes]

3: O ← DecodeO(esk[sk seed bytes : sk seed bytes + O bytes])

4: {P(1)
i }i∈[m] ← DecodeP (1)(esk[sk seed bytes + O bytes] : sk seed bytes + O bytes] +

P1 bytes])

5: {Li}i∈[m] ← DecodeL(esk[sk seed bytes + O bytes] + P1 bytes : esk bytes])

6:
7: // Hash message and derive salt and t

8: Mdigest ← SHAKE256(M, digest bytes)

9: R ← 0Rbytes

10: salt ← SHAKE256(Mdigest ‖ R ‖ seedsk, salt bytes)

11: t ← Decodevec(m, SHAKE256(Mdigest ‖ salt, �(m log(q))/8�))
12:
13: // Attempt to find a preimage for t

14: for ctr from 0 to 255 do

15: # Derive vi and r

16: V ← SHAKE256(Mdigest ‖ salt ‖ seedsk ‖ ctr, k · vbytes + �ko log(q)/8�)
17: for i from 0 to k − 1 do

18: vi ← Decodevec(n − o, V [i · vbytes : (i + 1) · vbytes])

19: r ← Decodevec(ko, V [k · vbytes : k · vbytes + �ko log(q)/8�])
20:
21: // Build linear system Ax = y.

22: A ← 0m×ko ∈ Fm×ko
q

23: y ← t, � ← 0

24: for i from 0 to k − 1 do

25: Mi ← 0m×o ∈ Fm×o
q

26: for j from 0 to m − 1 do

27: Mi[j, :] ← vᵀ
i Lj

28: for j from k − 1 to i do

29: u ← {vᵀ
i P

(1)
a vi}a∈[m] if i = j

30: u ← {vᵀ
i P

(1)
a vj + vᵀ

jPavi}a∈[m] if i �= j

31: y ← y − E�u

32: A[:, i · o : (i + 1) · o] ← A[:, i · o : (i + 1) · o] + E�Mj

33: if i �= j then

34: A[:, j · o : (j + 1) · o] ← A[:, j · o : (j + 1) · o] + E�Mi

35: � ← � + 1

36:
37: // Try to solve the system

38: x ← SampleSolution(A,y, r)

39: if x �= ⊥ then

40: break

41:
42: // Finish and output the signature

43: s ← 0kn

44: for i from 0 to k − 1 do

45: s[i · n : (i + 1) · n] ← (vi + Ox[i · o : (i + 1) · o] ‖ x[i · o : (i + 1) · o])
return sig = Decodevec(s) ‖ salt

HaMAYO: Hardware Implementation of MAYO 247

The majority of the system architecture of our hardware design is described
in VHDL, while a few modules are implemented using Verilog.

It is essential for the architecture to be encapsulated as an Intellectual Prop-
erty (IP), to ensure design reuse. We developed Keygen and Sign IPs intended
for use on an end-user device in diverse applications such as the authentica-
tion of bank transactions. It remains paramount that these two IPs guarantee
compliance with the device’s memory constraints, especially regarding time and
memory utilization. In contrast, we expect that the verification process takes
place within an environment boasting ample resources such as a dedicated server,
where security measures are not as critical as those required for IPs operating
directly on confidential data, i.e., Keygen and Sign.

It is possible to utilize one of the IPs on the target chip. Both cores are
independent and capable of coexisting on the Programmable Logic operating at
respectable frequencies.

The CPU-Peripheral communications between the built IPs are handled
through AXI4-FULL, AXI-Lite, and interrupts. The provided firmware takes
care of the AXI transactions, thanks to the Zynq hybrid architecture. Inciden-
tally, the design focuses on maintaining high transfer bit-rates by extensively
leveraging the CPU’s 32-bit architecture. Frequencies and reset signals are also
controlled by the hardcore and are propagated throughout the design.

Based on the proposed MAYO pseudo-code in [BCC+23], the scheme incor-
porates multiple helper functions that are implemented as sub-modules and
arithmetic units within the hardware IPs. This approach fulfills another sig-
nificant design requirement by minimizing unused module and minimizing the
utilization of Flip-Flops (FFs) and Lookup Tables (LUTs). By avoiding code
duplication in hardware and organizing the design into smaller, specialized mod-
ules, each capable of performing a single functionality, the overall efficiency and
modularity of the design are improved.

Considering the scheme’s parameter set, the memory is divided into three
True Dual Port BRAMs, statically partitioned into 2 × 256KB BRAMs to store
big matrices and large vectors like the P system and Ok subspaces, and 1×4KB
BRAM designated for small scratch buffers and sensitive information such as
the seed, signature, and secret key. Among these BRAMs, only one of the big
BRAMs is exposed to CPU through the AXI bus. Detailed memory management
and utilization is deliberated later in Sect. 3.4. As shown in Fig. 1, most modules
are connected to the BRAMs accordingly.

3.1 Hash Function

Our design employs the Keccak core [BDH+22] to generate seeds and expand
the message as a first step of the signing process. For the first security level,
SHAKE128 was used as an extendable-output function (XOF) based on the FIPS
202 standard [NIS23c]. We note that for higher security levels, it is necessary
to adjust the parameters within the Keccak core accordingly. Nonetheless, the
fundamental design of the hash sub-module remains applicable and does not
require significant changes.

248 O. Sayari et al.

ZYNQ CPU

KEYGEN FSM

SIGN FSM

IRQ

AXI-LITE
CONTROLLER

LINEAR COMBINATION

ADDER

GAUSS. ELIM.

TRNG

AXI4 CONTROLLER

HASH (Keccak)

SAMPLER

Arithmetic Core N

DP-BRAM 0

DP-BRAM 1

DP-BRAM 2
M

U
X / BU

S

32

32

32

32

32

32

IPs

32

Fig. 1. Block Diagram of the MAYO Core

The Keccak implementation in [BDH+22] streams data utilizing a different
format compared to the proposed MAYO hardware 32-bit format. To address
this discrepancy, we developed a wrapper around the core. The reasoning behind
this is that MAYO algorithm requires a hash of approximately 120KB for the key
generation. The hash is eventually stored in the inner 32-bit-wide block memory.

The proposed architecture stores the input seed and output message in sep-
arate descriptor-like registers. These intermediate registers are simultaneously
accessed by the hash core and BRAM. The core itself takes care of BRAM
communication and indexing, simplifying the architecture’s state change and its
modularity.

3.2 Random Number Generator

The random number generator leverages AES-128 in CTR Cipher mode, with
the flexibility to seamlessly switch to AES-256 if necessary. Tinkering with key
parameters like seed and counter interval (PRNG-Based) is effortlessly accom-
plished within the core. To optimize FPGA Slice utilization, the core’s decryp-
tion functionalities have been deprecated, given the inherent independence of
CTR-mode from such operations.

3.3 Vector-Matrix Multiplication

Referring to Sect. 2.2, it is evident that matrix-vector multiplication proceeded
by a Fq space reduction, is a frequently utilized operation throughout the algo-
rithm. Hence, its optimization will improve the performance of our design.

Compared to the initial MAYO Software C implementation1, the vector-
matrix multiplication iterates through a matrix stored in a row-wise manner, as
seen in the left side of Fig. 2, multiplying (using MULT operation) the content
with a given series of coefficients and accumulating the results. Once this nested

1 Note here that we refer to the first implementation of MAYO scheme by Ward
Beullens in [Beu22b].

HaMAYO: Hardware Implementation of MAYO 249

row/column loop concludes, another loop starts reducing the accumulated result
through MOD operation. For instance, on an ARM Cortex-M3 with ARMv7-M
instruction set, a single MULT operation with 8-bit operands takes around 2 to
3 clock cycles [ARM]. The reduction is done using the MOD operation that is
usually translated to MULT and UDIV as Cortex-M3 lacks native modulo calcu-
lation. Consequently, the vector-matrix multiplication function could consume
up to 6500 clock cycles, excluding the memory load and store operations.

i

j

i8bit

j

Software Implentation

Hardware Implentation

Buffer1

32

Buffer2

DSPs
(MAC)

DSPs
(MAC)

mod q

32
32

row 0

row 1

row 2

row 3

BRAM FETCH 8bit 8bit 8bit

Result
buf1

buf2

en

en

FSM

8 8 88

32

8 8

Fig. 2. Matrix-Vector multiplication architecture; on the left side the vector-matrix
multiplication iterates through a matrix stored in a row-wise manner as in the software
implementation. In hardware design, we reversed the indexing order, and input four
bytes to each DSP which executes 4 multiplications simultaneously.

In this paper, we process the multiplications differently. Firstly, our design
offers four values on each memory read operation thanks to its 32-bit wide bus
and executes 4 MULT operations from one row simultaneously. Secondly, we
reversed the indexing of the input matrix, as shown in Fig. 2.

As matrices are stored row-wise, each memory access returns four sequential
cells from one row. Note that the matrix is stored in BRAMs and not in an FF-
layered structure.

Furthermore, the input of both Digital Signal Processors (DSPs) is com-
posed of 4 bytes. This architecture helps increase the throughput and enables
the parallelization of both MULT and MOD operations.

Once the accumulated data of a block of four columns begins the final MOD
operation, the subsequent block is fetched and starts with MULT operation.
The first row of the Matrix M and the first coefficient of the Vector V are
fetched from the BRAMs. The read port then keeps feeding the system with
blocks from each consequent row noted as M[rowIndex, columnBlock], until
the accumulated result is ready to be stored through a different write-only port
(WriteRES).

3.4 Memory Organization

The hardware implementation of MAYO mainly relies on BRAMs to store its
vectors and matrices. To ensure that both cores, namely the KeyGen and Sign,

250 O. Sayari et al.

have sufficient stack-like memory, 82% (4.03 Mb) of the available on-chip BRAM
is allocated for the implementation. Thereby we provide enough headroom for
potential parameter modification of MAYO that might increase memory usage,
e.g., when changing the security level from 1 to 5, the expanded secret key size
increases from 70KB to 557KB [BCC+23].

The design aligns itself with the 32-bit ARM multi-core processor architec-
ture and uses a 32-bit data bus width. This approach simplifies data processing
within each sub-module. In the case of MAYO, the values are usually stored in
a 5 bits-wide reduced space. For the NIST security level 1, the scheme operates
on values that are eventually reduced to Fq, meaning that the results must be
less or equal to q = 31. To store such numbers in the BRAM, 5 = �log2(31)� bits
are mandatory. As a result, the design allocates 8 bits of memory (i.e., unsigned
char) for each numerical unit. We, then, exploit the 32-bit architecture in various
pipeline techniques by processing simultaneously four 8-bit values.

It is important to note that our implementation adapts the parameter set
(n = 62,m = 60, o = 6, k = 10, q = 31) and resulted in a public key and
signatures have a size of 803B and 420B respectively. However for the NIST first
level the parameters are (66, 64, 8, 9, 16) and result in public key and signature
size of 926B and 387B.

There exist different variants of the MAYO first security level where the
public key size is increased at the expense of smaller signature. Precisely, these
variants increase the n which is the number of variables in the multivariate
quadratic polynomials in the public key at the expense of decreasing k which is
the whipping parameter. This results in bigger public key size and smaller sig-
nature size as the whipping parameters are directly connected to the calculation
of the signature.

In addition, the q does not have significant impact on the sizes of the public
key and the signature itself but more on the stack-like memory during the key
generation and the singing processes. On the other hand, if q = 16, one byte can
be used to pack two elements as all elements are in F16. However, this is not the
case for our implementation.

It is important to note, that not all the allocated memory is utilized for
the first security level. In fact, only roughly 70% (2.8 Mb) of the allocated
BRAM of the Zynq device is filled with data. The rest is left empty, but deemed
necessary due to ARM’s 32-bit memory alignment rules. The content of the
BRAM cells is pre-allocated and statically organized since the sizes of most
elements are pre-defined. In other words, all vectors and matrices’ addresses are
provided in a VHDL file to create a mapping. This file is then included in all
sub-modules for better consistency. To eliminate dependency on vendor-specific
SDKs, a set of Python scripts takes charge of memory template generation.
These scripts meticulously analyze the VHDL file, dynamically determining the
required depth of BRAMs. This approach not only fosters platform independence
but also enhances adaptability by allowing seamless adjustments to memory
configurations based on the specifics of the VHDL code. The result is a more

HaMAYO: Hardware Implementation of MAYO 251

agile and versatile solution for memory management within the FPGA design,
especially for various parameter sets.

The memory is partitioned into three dual port BRAMs, offering enhanced
performance and flexibility. This configuration allows, for instance, efficient read-
ing from one port while dedicating the other port for writing. Some sub-modules,
such as vector-matrix multiplication, or vector addition, tend to utilize three
ports for dual read and final write operations, therefore allowing better oppor-
tunities for parallelism within the sub-module.

Small buffers and vectors that are not meant to be accessed exclusively by
programmable hardware are found in the smaller BRAM. The big BRAMs are
indeed also shared with the CPU through AXI bus to stream input information
such as the message and secret key to the MAYO core itself. Furthermore, since
the key generation and the signing are not designed to operate synchronously
but rather consecutively, multiple arrays and vector spaces overlap if one of their
lifetimes expires. This approach helps the system avoid unnecessary increases in
memory fingerprints.

3.5 Gaussian Elimination

Solving a System of Linear Equations (SLE) is evidently one of the primordial
computations for the MAYO algorithm to generate a valid message signature
as explained in Sect. 2.2. Several publications deal with hardware implementa-
tion of Gaussian elimination for various cryptographic applications, primarily
focusing on F2. Among them, GSMITH [REBG11] has been widely recognized
for efficiently handling F2k equations. Unfortunately, GSMITH’s architecture
only conforms with small and medium-sized matrices, whereas MAYO’s SLE
m × m shaped matrix is larger. This quadratic shape depends on the NIST
security level. Not only would the proposed GSMITH architecture utilize costly
resources, but also hinder the overall architecture’s performance and increase
the needed Look-up Tables (LUTs) when targeting F31. GSMITH describes, in
fact, a systolic network composed of various types of tiny processors capable of
specific Gaussian steps and propagating its values. Yet, since the source code was
not open-sourced, we had to redesign GSMITH. The final architecture, however,
fails to meet our resource requirements, depleting the Zynq’s FFs and LUTs, due
to the internal registers required in each GSMITH processor and its interconnec-
tion with the proposed BRAM. When considering the other needed arithmetic
cores, we concluded it was unfeasible to fit GSMITH for the first security level.

To overcome this issue, we developed a state machine that fetches values
directly from BRAM as the matrix is stored externally rather than within the
core’s FFs. Additionally, it was mandatory to allocate sufficient memory to accu-
mulate every cell in the matrix. In other words, during the first step of the Gaus-
sian elimination, multiplying rows with scalars may surpass the existing 8-bit
limit. Hence, the targeted matrix is initially unpacked into 16-bit wide values
with added padding, meaning that every row in the BRAM now contains two
instead of four values.

252 O. Sayari et al.

Moreover, to speed up the mod-inverse, which calculates the needed value to
transform the pivot element into 1 throughout the first scale step, prefilled Read-
Only Memory (ROM) with end results of this operation is utilized instead of
performing the actual calculations on run-time. These optimizations contribute
to the overall effectiveness of the MAYO core in solving an SLE. Although
GSMITH might offer superior performance, this core certainly consumes less
memory resources. Our architecture is theoretically compatible with other con-
figuration sets, with a marginal difference in resource utilization. For instance,
n,m, o control the SLE size which should affect BRAM consumption, while q
modifies the LUT consumption, cell width, and the unpacking operation. The
solver should support up to F28 and for smaller q values, unpacking the matrix
might become unnecessary, as the result could still fit inside the original 8-bit
vector.

3.6 Optimizations and Firmware

Besides resource utilization, the goal of our design is to achieve a reasonable
time area trade-off. Therefore, we designed the sub-modules in a way that they
share the same access to one of the BRAM ports. Nevertheless, the usage of each
port, whether for reading, writing, or both differs. The core responsible for the
vectors addition, for example, features multiple modes depending on the location
of the input vectors in different BRAMs. It efficiently utilizes all available ports
to leverage data throughput and synchronize the addition process accordingly.

Another notable design optimization lies in the polynomial reduction sub-
module where multiple arrays of scratch buffers are used to minimize memory
interactions. Hence, the core is provided only with new values which are stored
as final results.

Various functionalities of MAYO are divided into separate modules, each
described individually. That said, each module still has access to header-like
files that declare the security level parameters, the memory space allocations,
utility functions required to fetch offsets or even ROM secret keys specifically
intended for non-debugging purposes. Numerous bit vectors are built upon these
constants. The code’s style guide itself heavily discourages simple number inclu-
sion, but instead, it is expected to utilize these pre-defined macro-like lines to
improve code readability and ensure that the overall architecture can fit different
configuration sets, i.e., different security levels.

In addition to the hardware implementation, the utilization of the MAYO
core necessitates the development of accompanying firmware. This firmware
serves as the interface between the hardware core and the software MAYO appli-
cation, setting AXI/AXI-Lite transactions up. The existing C Bit-fields feature
Control and Status Registers that can enable debug mode, interrupts, and sup-
ply the ARM CPU with the end of executions information besides the interrupt
signal.

HaMAYO: Hardware Implementation of MAYO 253

4 Mitigation of Physical Attack Vectors in MAYO

In Sect. 2.2, we stated that the secret key is solely given by the secret linear oil
space O. Thus, an attacker is able to forge signatures, as soon as she recovered O.
Even more, the description of the reconciliation attack in [Beu22b, Section 4.1]
shows that it is enough to know a single vector o1 ∈ O, to recover the remaining
space O in polynomial time, since the first vector o1 implies m linear equations
via P ′(o1, o2) on the entries of o2. Consequently, we need to solve m quadratic
equations in n−m−o variables. Since in MAYO n < m+o holds, the remaining
basis vectors of O can be obtained just by solving linear equations.

Moreover, the randomly generated vinegar variables can also be used to
recover the secret key. Recall, that a given MAYO signature has the form
s = (s1, . . . , sk) = (v1 + o1, . . . , vk + ok), so the knowledge of one of the vi’s
together with the corresponding si leads the attacker to a vector of the oil space
and thus, to the full secret key.

In the following, we show different scenarios where the attacker uses fault
injection or side-channel attacks to reveal either a vinegar or an oil vector.

4.1 Fault Injection

The attacks suggested in the following are first-order fault injection attacks and
assume an attacker to be able to skip one specific instruction during the signing
process. The resulting faulted signature is used to recover the secret key.

Skip Sampling of Vinegar Values (Re-using). The main idea here is
to insert an instruction skip during the sampling of the vinegar variables. In
Algorithm 1, this corresponds to a jump over line 18, for one (or more) of the
i ∈ 1, . . . , k. This fault injection attack forces the same vinegar variable vi ∈ Fn

q

to be used for two consecutive signatures of different messages m and m′. We
subtract the obtained correct (not faulted) signature s and the faulted signature
s′ and receive s − s′ = (s1 − s′

1, . . . , sk − s′
k). Observe that for the entry i, where

vi = v′
i holds, we have

si − s′
i = vi + oi − v′

i − o′
i = oi − o′

i.

Since O forms a subspace, we know oi − o′
i ∈ O and thus, we found a vector in

the secret subspace.
It has already been shown that UOV [KPG99] and Rainbow [DS05] are vul-

nerable to this kind of attack [AKKM22], so this can be seen as an extension of
the approach to MAYO, which also works with vinegar and oil variables. Note,
that the attack leads to valid signatures, and therefore, cannot be mitigated by
a signature check.

Implemented Countermeasure. To mitigate this attack we shuffle the vinegar
variables vi ∈ Fn

q at the end of the signing algorithm. This is more secure than
zeroing the respective variables since vi = 0 could also lead to the leakage of

254 O. Sayari et al.

oil variables in the next signing procedure. Thus, it is advisable to permute the
entries of the used variables instead, rendering them unknown to an attacker
and ensuring vi 	= v′

i.

Skip Addition of Oil Values. An attack vector that follows a similar reason-
ing, is to skip the addition of the oil variable oi at the end of the signing process
(see line 45 in Algorithm 1) for one (or more) i ∈ 1, . . . , k. If the fault is injected
correctly, this modifies the resulting signature to s′ = (v1+o1, . . . , vi, . . . , vk+ok).
First, we see that s′ is not a valid signature anymore, since P(s′) 	= t with very
high probability. Let s be the valid signature corresponding to the same message,
then we can compute

si − s′
i = vi + oi − v′

i = oi ∈ O.

Note that the signing is deterministic and the randomness that is used to
generate the vinegar variable depends solely on the given message, which we
have chosen to be identical. Therefore, vi = v′

i. Again, we found a vector of the
secret oilspace oi ∈ O and recover the remaining space with the reconciliation
attack in negligible time.

Implemented Countermeasure. To avoid this attack we need to guarantee, that
the vinegar and oil variables are really added, and neither of them are part of
the signature by skipping their addition or the assignment of their values. Since
the faulted signature is not valid anymore, one option is to verify the gener-
ated signature. However, this comes with a considerable performance overhead.
Therefore, we rather chose to implement a check, that monitors if the entries
of the computed signature si are different from the earlier generated vinegar
variables vi.

4.2 Side Channel Analysis

In this section, we focus on the leakage of the vector-matrix multiplication
function. This function is called multiple times during key generation, secret
key expansion and signing. It multiplies a secret vector by a known matrix
(part of the public key), as shown in line 29 and 30 of Algorithm 1, as
well as in line 16 of the algorithm MAYO.CompactKeyGen() and in line 17
of MAYO:ExpandSK(csk), for which we refer to [BCC+23, Section 2.1.5]. In
MAYO, or more general, in UOV-based signature schemes, this is repeated for

a considerable amount of public key matrices P
(1)
i .

An attacker is able to measure the power traces of the multiplication

(vi)j · (P
(1)
a)j,· for several a ∈ [m], perform a profiling or a correlation attack,

and predict the value (vi)j which is supposed to remain unknown. This attack
strategy was demonstrated in [ACK+23] ,where the authors attack an imple-
mentation of UOV, that incorporates similar operations as the one mentioned
above. Again, the recovered values of vi lead to efficient key recovery.

HaMAYO: Hardware Implementation of MAYO 255

Implemented Countermeasure. In order to execute the SCA successfully, the

attacker needs to know both, the value of the cofactor in P
(1)
a and at which

point in time the target (vi)j is multiplied with this value. Thus, our approach
to mitigate this attack, is to rearrange the order in which the multiplications
are executed. In previous implementations optimized for efficiency a vinegar
variable (vi)j is picked and multiplied consecutively to the corresponding entry

in all P
(1)
a for a ∈ {1, . . . , m}. This way, there is a certain interval in the power

trace, that contains m multiplications of the sensitive value (vi)j with public

values. We treat the P
(1)
a individually, and thus, the entry (vi)j is only multiplied

with (P
(1)
a)j· before we move on to the next multiplication (vi)j+1 · (P

(1)
a)j+1,·.

Consequently, on a 32-bit architecture, where at least 4 field elements are treated
at once (even 8 if we move to the updated parameters q = 16), this massively
increases the failure probability of a correlation attack, since the power trace
is now related to 4 different secret field elements ((vi)j , (vi)j+1, (vi)j+2, (vi)j+3)
at once, and not only to the same secret element (vi)j as previously. However,
more advanced analysis methods that employ machine learning for the selection
of point of interest might still pose a threat to this approach. This could require
a vast amount of profiling traces and we leave a concrete analysis thereof as
future work.

5 Results, Comparison, and Discussion

In Table 1, we show the resource consumption of the whole design and sub-
modules for the first security level defined by the NIST PQC standardization
process [NIS23b]. The parameters defining MAYO are q (the size of the finite
field), n (the number of variables in the multivariate quadratic polynomials in
the public key), m (the number of multivariate quadratic polynomials in the
public key), o (the dimension of the oil space), and k (the whipping parameter,
satisfying ko ≥ m). For our results, these parameters are set to q = 31, n = 62,
m = 60, o = 6, and k = 10.

Our design stands out as the most optimized among the current implemen-
tations of multivariate schemes concerning resource utilization. The proposed
design effectively utilizes roughly 31% of the total logic resources available on
the Zynq board, specifically accounting for 13K Flip-Flops (FFs) and 21K Look-
Up Tables (LUTs). These resources are distributed among different sub-modules.

The dominance of the Keccak core is evident as it commands the majority of
FPGA slices, enveloping nearly third of the entire design. This dominance arises
from its expansive internal buffer and its’ interwoven XOR network, crucial for
generating the output hash. Additionally, the RNG Core, integrating AES-128,
significantly contributes to resource consumption. Remarkably, the combined
impact of these cores results in approximately 40% (9K LUTs) of the design’s
overall slice usage, underscoring the notion that the MAYO core in isolation
represents a minimalist design.

Our Gaussian elimination proves an improvement in the memory utilization
as compared to the previous work [REBG11]. In [REBG11], the FPGA imple-

256 O. Sayari et al.

mentation on Xilinx Spartan-3 XC3S1500 (300 MHz) consumes 7,384 and 2,574
LUTs and FFs, respectively, for a number of equations equal to 50. In our imple-
mentation on a Zynq Z-7020 (100MHz), for a number of equations equal to 60,
the consumption in LUTs and FFs is 1,822 and 413, respectively.

Table 1. Resource utilization of our
hardware design on Zynq 7020 at a fre-
quency of 100 MHz.

Resource Utilization

Submodules LUTs FFs DSP

Keccak (Hash) 6759 4453 0

RNG 2354 3208 0

Vector-Matrix multiplication 1035 528 8

Oil Space Sampling 176 289 0

Gaussian Elimination 1822 413 3

Vector Addition 485 300 0

Vector Negation 176 93 0

Vinegar Sampling 245/686∗ 277/614∗ 0

BRAMs Port management 448 0 0

FSM Signing 2871 1057 0

Combined Architectures 21000 13005 11
∗ Secure implementation

Table 2. Comparison of our results
with related work

Implementation Platform LUT FF DSP BR

Our Z-7020 @ 100MHz 21,000 13,005 11 129

[HSMR23] KC705 @ 100MHz 91,266 42,113 2 45
[HSMR23] AU280 @ 225MHz 89,014 42,066 2 45

[BCH+23] Artix-7 @ 90.8MHz 32,422 23,262 2 48

Implementation Platform Key Generation Signing
cylcles cycles

Our Z-7020 @ 100MHz 996K 2,867K

[HSMR23] KC705 @ 100MHz 12K 42K

[BCH+23] Artix-7 @ 90.8MHz 11,072K 843K

We present in Table 1 the resource utilization of our implementation. While
the implementation by [HSMR23] is highly optimized for efficiency, our imple-
mentation shows better performance in the direction of LUT and FF usage, as
showed in Table 2. We use 4.3× less LUTs and 3.2× less FFs while our BRAM
utilization is 2.8× more, we believe that this is due to the parameter set we
follow specifically the choice of q = 31. This also has a significant impact on
the execution time, since we could not rely on optimized modules, but had to
build some of them from scratch like the method for solving SLEs (see Sect. 3.5
for more details). Tuning our implementation to the new parameter set so that
each two elements can be packed in one byte for example will result in reducing
considerably the BRs utilization and execution time.

When compared to the implementation from [BCH+23] corresponding to a
hardware implementation of the variant of ov-Ip with n = 112, m = 44, and
F256, our implementation shows less consumption of LUTs. This is mainly due
to the fact that their implementation LUTs utilization increases with higher q
[BCH+23]. For example, for F256, the LUT is 8-in-8-out and requires 40 LUTs
in the synthesis, while for F16, it requires 2 LUTs [BCH+23]. Our results show
reduced LUTs and FFs which lead to faster logic operations, potentially resulting
in improved clock speeds and reduced latency, especially for the key generation.
The integration of 8 DSPs for vector-matrix multiplication shows potential for
heightened parallel processing capabilities within the system architecture.

Our primary goal revolved around achieving an efficient usage of memory
utilization and taking a first step towards physical security. Furthermore, our

HaMAYO: Hardware Implementation of MAYO 257

parameters choice proved the adaptability of the MAYO scheme for deployment
in resource-constrained devices even in case the field is extended to q = 31
instead of 16. In fact, our implementation offers a commendable trade-off, show-
casing an adept combination of efficient resource utilization and operational
speed. Furthermore, the implementation of the proposed countermeasures had
hardly any impact on resource utilization as shown in Table 1. The increase in
clock cycles that originates from the countermeasures lies in the order of hun-
dreds and can be disregarded when considering the overall costs.

6 Conclusion

The implementation of multivariate signature schemes has faced challenges due
to their large key sizes, impeding them from deployment on resource-constrained
embedded devices. In response, the MAYO scheme was developed as a new mod-
ification of the mature UOV signature scheme. MAYO has successfully addressed
the issue of large key sizes and can now be seen as one of the prominent candi-
dates of NIST’s call for additional digital signatures in regard of performance,
key, and signature size. In this paper, we introduced a reconfigurable hardware
implementation of MAYO, optimized to reduce the memory consumption dur-
ing the key generation and the signing processes. Our implementation serves
as evidence of MAYO’s practicality for real-world deployment especially when
deployed in resource-constraints devices. In fact, our design highlights the neces-
sity of time area trade off. Moreover, we discussed a set of new security chal-
lenges brought by the deployment of MAYO in embedded systems, particularly
in terms of defending against fault injection and side-channel attacks and suggest
lightweight countermeasures.

Acknowledgments. The authors acknowledge the financial support by the Federal
Ministry of Education and Research of Germany in the programme of the project Full
Lifecycle Post-Quantum PKI - FLOQI (ID 16KIS1074). Furthermore, this work was
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- project number 505500359. Moreover, we would like to thank Amir Moradi for his
valuable input which greatly improved the paper.

References

[ACK+23] Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., Stöttinger, M.: Sep-
arating oil and vinegar with a single trace: side-channel assisted Kipnis-
Shamir attack on UOV. IACR Trans. Cryptogr. Hardw. Embed. Syst. 221–
245 (2023)

[AKKM22] Aulbach, T., Kovats, T., Krämer, J., Marzougui, S.: Recovering rainbow’s
secret key with a first-order fault attack. In: Batina, L., Daemen, J. (eds.)
AFRICACRYPT 2022. LNCS, vol. 13503, pp. 348–368. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17433-9 15

[ARM] ARM. Armv7-m architecture reference manual. https://developer.arm.
com/documentation/ddi0403/d/Application-Level-Architecture/The-
ARMv7-M-Instruction-Set

258 O. Sayari et al.

[BCC+23] Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.: MAYO-
algorithm specifications. MAYO team (2023). https://pqmayo.org/assets/
specs/mayo.pdf

[BCH+23] Beullens, W., et al.: Modern Parameters and Implementations. Cryptology
ePrint Archive (2023)

[BDH+22] Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van
Keer, R.: Keccak open-source hardware implementation (2022). https://
keccak.team/index.html

[Beu21] Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Can-
teaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696,
pp. 348–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 13

[Beu22a] Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis,
Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 464–479.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4 16

[Beu22b] Beullens, W.: MAYO: practical post-quantum signatures from oil-and-
vinegar maps. In: Altawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol.
13203, pp. 355–376. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-99277-4 17

[DS05] Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature
scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.
org/10.1007/11496137 12

[FG18] Ferozpuri, A., Gaj, K.: High-speed FPGA implementation of the NIST
round 1 rainbow signature scheme. In: 2018 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pp. 1–8 (2018)

[HSMR23] Hirner, F., Streibl, M., Mert, A.C., Roy, S.S.: A hardware implementation
of mayo signature scheme. IACR Cryptology ePrint Archive 2023:1267
(2023)

[HZ18] Yi, H., Nie, Z.: High-speed hardware architecture for implementations of
multivariate signature generations on FPGAs. EURASIP J. Wirel. Com-
mun. Netw. 1687–1499 (2018)

[KPG99] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signa-
ture schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 15

[KS06] Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature
scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–
266. Springer, Heidelberg (2006). https://doi.org/10.1007/BFb0055733

[NIS23a] NIST. NIST post-quantum cryptography standardization (2023). https://
csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-
timeline

[NIS23b] NIST. NIST post-quantum cryptography standardization: evalua-
tion criteria (2023). https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/evaluation-
criteria/security-(evaluation-criteria)

[NIS23c] NIST. SHA-3 standard: permutation-based hash and extendable-output
functions (2023). https://csrc.nist.gov/publications/detail/fips/202/final

[PQD23] PQDB post-quantum data base (2023). https://www.pqdb.info/

HaMAYO: Hardware Implementation of MAYO 259

[REBG11] Rupp, A., Eisenbarth, T., Bogdanov, A., Grieb, O.: Hardware SLE solvers:
efficient building blocks for cryptographic and cryptanalytic applications.
Integration 44(4), 290–304 (2011)

[TYD+11] Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-speed hardware imple-
mentation of rainbow signature on FPGAs. In: Yang, B.Y. (ed.) PQCrypto
2011. LNCS, vol. 7071, pp. 228–243. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25405-5 15

[Xil23] AMD Xilinx. Zynq-7000 SoCs with Hardware and Software Programma-
bility (2023). https://www.xilinx.com/products/silicon-devices/soc/zynq-
7000.html

[XL21] Xing, Y., Li, S.: A compact hardware implementation of CCA-secure key
exchange mechanism CRYSTALS-KYBER on FPGA. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2021(2), 328–356 (2021)

[ZZW+21] Zhao, C., et al.: A compact and high-performance hardware architecture
for CRYSTALS-Dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2022(1), 270–295 (2021)

208 Enhancing Implementation Security

C

Analyzing Security Features

In this chapter, we include our contributions to the analysis of security features
of UOV-based signature schemes.

Contents

C.1 Practical Key-Recovery Attack on MQ-Sign and More 209
C.2 Hash your Keys before Signing: BUFF Security of the Additional

NIST PQC Signatures . 229

In Appendix C.1, we include the PQCrypto’24 paper Practical Key-Recovery
Attack on MQ-Sign and More [ADM+24].

Finally, the paper Hash your Keys before Signing: BUFF Security of the
Additional NIST PQC Signatures in Appendix C.2 is a copy of the PQCrypto’24
paper [AST24].

Practical Key-Recovery Attack
on MQ-Sign and More

Thomas Aulbach1(B), Simona Samardjiska2, and Monika Trimoska3

1 University of Regensburg, Regensburg, Germany
thomas.aulbach@ur.de

2 Radboud Universiteit, Nijmegen, The Netherlands
simonas@cs.ru.nl

3 Eindhoven University of Technology, Eindhoven, The Netherlands
m.trimoska@tue.nl

Abstract. In this paper we describe attacks on the UOV-based signa-
ture scheme called MQ-Sign. MQ-Sign was submitted by Shim, Kim,
and An as a first-round candidate for standardization in the (South)
Korean post-quantum cryptography competition (KpqC). The scheme
makes use of sparseness of the secret central polynomials and equiva-
lent key construction to reduce the size of the private key. The authors
propose four variants exploiting different levels of sparsity, MQ-Sign-SS,
MQ-Sign-RS, MQ-Sign-SR, and MQ-Sign-RR with the last one being
the standard UOV signature scheme.

We show that apart from the MQ-Sign-RR variant, all the others
are insecure. Namely, we present a polynomial-time key-recovery attack
on the variants MQ-Sign-SS and MQ-Sign-RS and a forgery attack on
the variant MQ-Sign-SR below the claimed security level. Our attack
exploits exactly the techniques used for reduction of keys - the sparsity
of the central polynomials in combination with the specific structure of
the secret linear map S.

We provide a verification script for the polynomial-time key-recovery
attack, that recovers the secret key in less than seven seconds for security
level V. Furthermore, we provide an implementation of the non-guessing
part of the forgery attack, confirming our complexity estimates.

1 Introduction

In recent years we have witnessed a substantial effort from standardization bodies
and the cryptographic community to design, develop and scrutinize candidates
for post-quantum secure key-encapsulation mechanisms and digital signatures
[7,12,14,20,26]. This effort is racing an equally fuelled one for developing a large
scale error-tolerant universal quantum computer which, although still very much
elusive, will likely be reality in a decade or so [19]. When this happens, all the
classical cryptography we are happily using today will be immediately rendered
insecure. Therefore, as the community widely agrees upon, we need to move as
fast as possible with the standardization of post-quantum cryptosystems that
we believe are secure even against quantum adversaries.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M.-J. Saarinen and D. Smith-Tone (Eds.): PQCrypto 2024, LNCS 14772, pp. 168–185, 2024.
https://doi.org/10.1007/978-3-031-62746-0_8

Practical Key-Recovery Attack on MQ-Sign and More 169

On the other hand, we need to be extremely careful in the assessment of
the level of scrutiny put into these standardization processes. For example, a
major disruption in NIST’s standardization process, and certainly a shock for the
crypto community, was the cryptanalysis [3,28] of the two multivariate quadratic
(MQ) signature schemes - GeMSS [6] and Rainbow [8] after they were chosen
as finalists [20]. Both of these schemes were thought to be well understood, with
solid security analysis, albeit both with ad-hoc designs and no security proof.

These developments resulted in NIST choosing two lattice-based signature
schemes in the new standard [18,25] in addition to the heavy SPHINCS+ [13],
and no adequate solution for use-cases in need of very small signatures. NIST
reopened the call for post-quantum digital signature proposals, specifying the
need for shorter signatures with fast verification. This spurred a huge number of
new multivariate signatures, many of which are variants of UOV (Unbalanced
Oil and Vinegar) [16]. UOV is one of the oldest, simplest and most studied ad-
hoc multivariate signature schemes. It has very short signatures, but the public
key is huge. Therefore, it was not particularly interesting for a very long time,
especially since the alternative Rainbow seemed to be more efficient for the same
security level (after the attack by Beullens [3] this advantage disappeared). After
Rainbow was out of the game, the community returned to UOV in a new round
of attempts to reduce the size of the public key while not compromising the
security.

One of those efforts is the MQ-Sign [27] signature scheme submitted to
the Korean Post-Quantum Cryptography Competition [26], and since recently
selected to advance to the 2nd round. The MQ-Sign submission combines two
known techniques from multivariate cryptography - equivalent keys [24] and
sparse central polynomials [30]. The central map is a standard UOV map that can
additionally exhibit sparseness in either the vinegar-vinegar part or the vinegar-
oil part. The authors propose four different variants. Both the vinegar-vinegar
and vinegar-oil parts being sparse corresponds to the MQ-Sign-SS variant, which
yields the smallest private keys. In the variant MQ-Sign-RS, the vinegar-vinegar
part is random and the vinegar-oil part is sparse. The two parts switch their
structure in the MQ-Sign-SR variant. Finally, the variant MQ-Sign-RR, where
both parts are random, corresponds to the standard UOV signature scheme.

1.1 Our Contribution

In this work, we study the security of the MQ-Sign signature scheme. We propose
two attacks that cover all variants using sparseness, i.e. every except the last,
MQ-Sign-RR variant.

First, we show how the property of using sparse polynomials can be exploited
to develop a polynomial time key-recovery attack on the variants MQ-Sign-
SS and MQ-Sign-RS. Our attack relies on two key properties – the sparseness
property of the vinegar-oil quadratic part and the specific structure of the linear
transformation S, as per the equivalent keys key generation technique. We first
recover the linear transformation S, which allows to subsequently compute the

170 T. Aulbach et al.

central map F . Our attack is very efficient, and recovers the key in just seconds
regardless of the security level.

Second, we introduce a forgery attack on the variant MQ-Sign-SR which is
actually a direct attack using only the public key. Our attack exploits a bilinear
substructure emerging as a result of the sparse secret polynomials. The attack is
not practical, but still shows that MQ-Sign-SR falls short of the claimed security
levels by about 30 bits.

We perform a complexity analysis of both attacks, showing that these three
variants do not reach the originally estimated security levels. The claims in our
complexity analysis are additionally backed up with experimental results. Most
notably, we provide an implementation of the practical key-recovery attack that
is executed in less than seven seconds for all security levels. We also provide an
implementation of the non-guessing part of the forgery attack, confirming our
complexity estimates. Both the implementation of attacks and the code used for
confirming the complexity estimates are open source.

1.2 Timeline

Our key recovery attack on MQ-Sign-RS and MQ-Sign-SS with S in block matrix
structure (using the equivalent keys optimization) was announced in March 2023.
Shortly afterwards, Ikematsu, Jo, and Yasuda [15] generalized our approach and
gave an efficient attack that also works with general S. As a result of the two
attacks, the authors of MQ-Sign removed the two variants MQ-Sign-RS and MQ-
Sign-SS from their specifications in the ongoing KpqC competition. Note that
in the current version of the specifications, both remaining variants still use the
equivalent key optimization, and do not use a random linear transformation S.

1.3 Organization of the Paper

In Sect. 2 we provide the necessary background on multivariate cryptography, in
particular the UOV signature scheme and the optimization choices used in MQ-
Sign. We introduce the announced attacks in Sect. 3 and 4. In more detail, we
first show in Sect. 3 that the sparse vinegar-oil polynomials in MQ-Sign-RS and
MQ-Sign-SS let us derive enough linear equations to compute the secret linear
transformation S in a matter of seconds. Section 4 demonstrates a strategy to
attack MQ-Sign-SR by first guessing a selection of variables and subsequently
solving a part of the equations for the remaining ones. Even though the cost of
the guessing part remains quite high, this shows that the remaining sparse vari-
ant slightly fails to provide the required security levels. We provide verification
scripts of the stated attacks in Sect. 5 and discuss the impact on the MQ-Sign
variants in Sect. 6. Finally, we debate about the still appealing question of using
sparse polynomials in UOV and shift attention to the public equations instead.

Practical Key-Recovery Attack on MQ-Sign and More 171

2 Preliminaries

Throughout the text, Fq will denote the finite field of q elements, and GLn(Fq)
and AGLn(Fq) will denote respectively the general linear group and the general
affine group of degree n over Fq. We will also use the notation x = (x1, . . . , xn)ᵀ

for the vector (x1, . . . , xn) ∈ Fn
q .

2.1 Multivariate Signatures

First, we recall the general principle of MQ public key cryptosystems. A typical
MQ public key cryptosystem relies on the knowledge of a trapdoor for a particu-
lar system of polynomials over the field Fq. The public key of the cryptosystem is
usually given by a multivariate quadratic map P = (P(1), . . . ,P(m)) : Fn

q → Fm
q ,

where

P(k)(x1, . . . , xn) =
∑

1≤i≤j≤n

γ
(k)
ij xixj +

n∑

i=1

β
(k)
i xi + α(k)

for some coefficients γ
(k)
ij , β

(k)
i , α(k) ∈ Fq. It is obtained by obfuscating a struc-

tured central map

F : (x1, . . . , xn) ∈ Fn
q →

(
F (1)(x1, . . . , xn), . . . ,F (m)(x1, . . . , xn)

)
∈ Fm

q ,

using two bijective affine mappings S, T ∈ AGLn(Fq) that serve as a sort of
mask to hide the structure of F . The public key is defined as

P = T ◦ F ◦ S.

The mappings S and T are part of the private key s. Besides them, the private
key may also contain other secret parameters that allow creation, but also easy
inversion of the transformation F . Without loss of generality, we can assume
that the private key is s = (F ,S, T).

Signature Generation. To generate a signature for a message d, the signer uses a
hash function H : {0, 1}� → Fm

q to compute the hash value w = H(d) ∈ Fm
q and

computes recursively x = T −1(w) ∈ Fm
q , y = F−1(x) ∈ Fn

q , and z = S−1(y).
The signature of the message d is z ∈ Fn

q . Here, F−1(x) means finding one (of
possibly many) preimages of x under the central map F .

Verification. To check if z ∈ Fn
q is indeed a valid signature for a message d, one

computes w = H(d) and w′ = P(z) ∈ Fm
q . If w′ = w holds, the signature is

accepted, otherwise it is rejected.
The standard signature generation and verification process of a multivariate

signature scheme works as shown in Fig. 1.

172 T. Aulbach et al.

Fig. 1. General workflow of multivariate signature schemes.

2.2 Unbalanced Oil and Vinegar

The Unbalanced Oil and Vinegar signature scheme is one of the oldest multi-
variate signature schemes. It was proposed by Kipnis, Patarin, and Goubin at
EUROCRYPT’99 [16] as a modification of the oil and vinegar scheme of Patarin
[22] that was broken by Kipnis and Shamir in 1998 [17].

The characteristic of the oil and vinegar construction is in the special struc-
ture of the central map in which the variables are divided in two distinct sets,
vinegar variables and oil variables. The vinegar variables are combined quadrati-
cally with all of the variables, while the oil variables are only combined quadrati-
cally with vinegar variables and not with other oil variables. Formally, the central
map is defined as F : Fn

q → Fm
q , with central polynomials

F (k)(x1, . . . , xn) =
∑

i∈V,j∈V

γ
(k)
ij xixj +

∑

i∈V,j∈O

γ
(k)
ij xixj +

n∑

i=1

β
(k)
i xi + α(k) (1)

where n = v + m, and V = {1, . . . , v} and O = {v + 1, . . . , n} denote the index
sets of the vinegar and oil variables, respectively.

It can be shown that if an oil and vinegar central map is used in the standard
MQ construction the affine mapping T does not add to the security of the
scheme and is therefore not necessary. Hence the secret key consists of a linear
transformation S and central map F , while the public key is defined as P = F◦S.
In order to sign a message, we need to find a preimage of F . This can be done
by simply fixing the vinegar variables to some random values. In this way, we
obtain a system of m linear equations in m variables, which has a solution with
probability around 1 − 1/q. If the obtained system does not have a solution, we
repeat the procedure with different values for the vinegar variables.

Key Generation. It was shown in [23] that for any instance of a UOV secret key
(F ,S), there exists an equivalent secret key (F ,S) with

S =

(
Iv×v S1

0m×v Im×m

)
. (2)

Practical Key-Recovery Attack on MQ-Sign and More 173

Furthermore, the quadratic polynomials of the central map F : Fn
q → Fm

q

can be represented using upper triangular matrices F(1), . . . ,F(m) ∈ Fn×n
q where

each nonzero coefficient (i, j) in F(k) corresponds to the nonzero coefficient of
xixj in F (k). Note that the m × m block on the bottom right of these matrices
is empty, since the polynomials of the central map have no quadratic oil terms.

Thus, these matrices contain an upper triangular block F
(k)
1 ∈ Fv×v

q and a block

F
(k)
2 ∈ Fv×m

q on the top right. In other words, the matrices are of the form:

F(k) =

(
F

(k)
1 F

(k)
2

0 0

)
.

Thus, in order to obtain a key pair, it suffices to first randomly generate
(S1,F

(1), . . . ,F(m)) and then compute (P(1), . . . ,P(m)) by evaluating P(k) =
S�F(k)S and bringing the resulting matrices to upper triangular form.

2.3 MQ-Sign

MQ-Sign is a signature scheme based on UOV. The scheme uses inhomogenous
polynomials and each polynomial of the central map can be written as

F (k) = F (k)
V + F (k)

OV + F (k)
L,C

where

F (k)
V (x1, . . . , xn) =

∑

i∈V,j∈V

γ
(k)
ij xixj , and F (k)

OV (x1, . . . , xn) =
∑

i∈V,j∈O

γ
(k)
ij xixj .

These can alternatively be referred to as the vinegar-vinegar quadratic part and

the vinegar-oil quadratic part. Finally, F (k)
L,C refers to the linear and constant

part of the polynomials. In the following, we ignore the linear and constant
parts, since our attack does not use them.

The main design goal of MQ-Sign is to reduce the size of the secret key
compared to traditional UOV. This is achieved using sparse polynomials for the

quadratic part of the central map. If sparseness is introduced in the F (k)
V part,

then it is defined as

F (k)
V,S(x1, . . . , xn) =

v∑

i=1

αk
i xix(i+k−1(mod v))+1 (3)

If, on the other hand, sparseness is introduced in the F (k)
OV part, then it is defined

as

F (k)
OV,S(x1, . . . , xn) =

v∑

i=1

βk
i xix(i+k−2(mod m))+v+1. (4)

The MQ-Sign proposal provides a parameter selection for four variants of the
scheme: MQ-Sign-SS, MQ-Sign-RS, MQ-Sign-SR and MQ-Sign-RR. The first

174 T. Aulbach et al.

S/R in the suffix specifies whether FV is defined with sparse (FV,S) or random
polynomials (FV,R). The second S/R refers to the same property, but for FOV .
Note that the variant MQ-Sign-RR corresponds to the standard UOV scheme
defined with inhomogenous polynomials.

If both FV,S and FOV,S are used, the size of the secret key is reduced to 2vm
field elements.

The authors provide an elaborate security analysis including all known rel-
evant attacks on UOV. However, they do not consider the sparseness of (parts
of) the secret polynomials in any of the attacks. Their assumption is that it is
not exploitable within the known cryptanalytic techniques. Table 1 summarizes
the parameters chosen by the authors for security levels I, III, and V.

Note that when FV,S is used, the size of the public key can also be reduced,
as, due to the equivalent keys structure of S as in (2), a part of the public key is
equivalent to a part of the secret key and thus sparse. This is however not taken
into consideration in the implementation of MQ-Sign or in the public key sizes
reported in Table 1.

Table 1. The parameter selection for security category I, III and V for the variants
SS, RS, SR and RR of MQ-Sign with key sizes in bytes.

Sec. level Parameters (q, v, m) sig PK SK (SS) SK (RS) SK (SR) SK (RR)

I (28, 72, 46) 134 328 441 15 561 133 137 164 601 282 177

III (28, 112, 72) 200 1 238 761 37 729 485 281 610 273 1 057 825

V (28, 148, 96) 260 2 892 961 66 421 1 110 709 1 416 181 2 460 469

3 An Efficient Key-Recovery Attack on Variants Using
Sparse FOV

In the following, we consider C to be the class of polynomials defined by FV,R +
FOV,S , denoting that only FOV needs to be defined as in (4), i.e. with sparse
polynomials. This corresponds to the MQ-Sign-SS and MQ-Sign-RS variants.

In this section we show that the usage of FOV,S introduces weaknesses that
enable a practical key-recovery attack that takes merely seconds to mount. In
the attack, we essentially solve the Extended Isomorphism of Polynomials (EIP)
problem as defined in [9] (see also [27]). We recall here its definition.

EIP(n,m,P, C):
Input: An m-tuple of multivariate polynomials P = (P(1),P(2), . . . ,P(m)) ∈
Fq[x1, . . . , xn]m and a special class of m-tuples of multivariate polynomials C ⊆
Fq[x1, . . . , xn]m.
Question: Find – if any – S ∈ GLn(q) and F = (F (1),F (2), . . . ,F (m)) ∈ C such
that P = F ◦ S.

Practical Key-Recovery Attack on MQ-Sign and More 175

Solving this problem is in general not easy. In fact, the security of ad-hoc
multivariate schemes is based on the hardness on this problem. However, if F
exhibits enough structure, then the problem can become easy to solve.

We next show that the sparse structure present in MQ-Sign-SS and MQ-Sign-
RS is enough to solve the corresponding EIP problem very efficiently. In order
to see this, note that the computation of the public key for UOV-like signature
schemes can be written in matrix form as:

(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
=

(
I 0

S�
1 I

)(
F

(k)
1 F

(k)
2

0 0

)(
I S1

0 I

)
,

for all k ∈ {1, . . . ,m}. From this we deduce

(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
=

(
F

(k)
1 (F

(k)
1 + F

(k)�
1)S1 + F

(k)
2

0 Upper(S�
1 F

(k)
1 S1 + S�

1 F
(k)
2)

)
, (5)

where Upper(M) denotes the unique upper triangular matrix M̃ such that the
difference M̃ − M is skew-symmetric. Equation (5) shows how different blocks
of the public key are obtained from the blocks of the secret key, and having
these relations allows us to mount an algebraic attack that will recover all of the
entries of the secret key. We first model this correspondence between the public
and the secret key as a system of equations where the variables are the entries of

S1 and F
(k)
1 . From the two upper blocks we obtain the following two equations

P
(k)
1 = F

(k)
1

P
(k)
2 = (F

(k)
1 + F

(k)�
1)S1 + F

(k)
2 .

From these, we infer that

P
(k)
2 = (P

(k)
1 + P

(k)�
1)S1 + F

(k)
2 . (6)

Ignoring the sparseness at first, from (6) we can derive a linear system of vm2

equations in v(m2 + m) variables (vm that correspond to the entries of the
unknown block of the linear transformation S, and vm2 from the entries of

F
(k)
2). Even though the system is linear, a solution cannot be extracted easily as

it is highly underdetermined. But considering the sparseness in the MQ-Sign-SS
and MQ-Sign-RS instances, the following key observation allows us to solve the
system easily in practice.

The matrices F
(k)
2 are part of the secret key, but we know that they are sparse.

From the description of FOV in (4) we can see that the value of F
(k)
2 is known on

(vm − v) entries. Since F
(k)
2 appears linearly in (6), we can extract constraints

from the entries where the value of F
(k)
2 is zero and obtain a system that is only

in the S1 variables. Let P̃
(k)
1 = P

(k)
1 + P

(k)�
1 . We obtain the following system of

176 T. Aulbach et al.

equations, where we denote by p̃
(k)
i,j the entries of P̃

(k)
1 , by si,j the entries of S1,

by p
(k)
i,j the entries of P

(k)
2 , and by f

(k)
i,j the entries of F

(k)
2 .1

∑

1�p�v

p̃
(k)
i,p sp,j − p

(k)
i,j = 0, ∀(i, j, k) s.t. f

(k)
i,j = 0. (7)

This is a linear system in vm variables. The number of equations that we can
obtain if we use all of the m quadratic maps from the public key is mv(m − 1).
Hence, the system has vm linearly independent equations with overwhelming
probability. As such, it can be solved efficiently through Gaussian Elimination.
This is under the assumption that the system behaves as a random system and
has no specific structure that results in non-trivial dependencies between the
equations, which will be argued below as part of the complexity analysis. We
conclude that, ignoring some of the equations from (6), specifically those where

f
(k)
i,j is not zero, allowed us to derive a linear system that is only in variables

from S1. Once we recover the secret map S, computing F is easy, as we just
need to apply the inverse linear transformation on P.

We further refine our modeling to obtain a more efficient attack, using the
following strategy. Note from (7) that each equation in the system contains
variables from only one column of S1. This observation allows us to optimize the
attack by solving for one column at a time. This is more evident when we look
at the matrix representation of our linear system. Let us define a matrix A′ as

⎛
⎜⎜⎜⎜⎝

P̃
(1)
1

P̃
(2)
1
...

P̃
(m)
1

⎞
⎟⎟⎟⎟⎠

,

i.e. a block matrix obtained by concatenating vertically the quadratic maps P̃
(k)
1 .

Then, let A be a block matrix that has copies of A′ on the main diagonal and
zeros everywhere else

A =

⎛
⎜⎜⎜⎝

A′ 0 · · · 0
0 A′ · · · 0
...

. . .

0 0 · · · A′

⎞
⎟⎟⎟⎠ .

Now, let x� = (x1,x2, . . . ,xm) be a vector obtained by concatenating the
columns of S1. Finally, let b� = b1,b2, . . . ,bm, be a vector that is obtained

by concatenating the first column of each quadratic map P
(k)
2 , followed by the

second column of each map, etc.

1 Here, and in the following, the submatrix indices are ommited where there is no
ambiguity.

Practical Key-Recovery Attack on MQ-Sign and More 177

We can then rewrite P̃
(k)
1 S1 = P

(k)
2 , for all k ∈ {1, . . . , m}, as Ax = b.

Indeed, we have

⎛
⎜⎜⎜⎝

A′ 0 · · · 0
0 A′ · · · 0
...

. . .

0 0 · · · A′

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

x1

x2

...
xm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

...

bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̃
(1)
1,1 ... p̃

(1)
1,v

p̃
(1)
2,1 ... p̃

(1)
2,v

...

p̃
(1)
v,1 ... p̃

(1)
v,v

...

p̃
(m)
1,1 ... p̃

(m)
1,v

p̃
(m)
2,1 ... p̃

(m)
2,v

...

p̃
(m)
v,1 ... p̃

(m)
v,v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, xi =

⎛
⎜⎜⎜⎝

s1,i

s2,i

...
sv,i

⎞
⎟⎟⎟⎠ , and bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
(1)
1,i

p
(1)
2,i
...

p
(1)
v,i

...

p
(m)
1,i

p
(m)
2,i
...

p
(m)
v,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Looking at where the zero entries lie in A, we can now split the problem. We
solve A′xi = bi for all i ∈ {1, . . . , m}, and for every system that we solve, we
reveal one column of S1.

3.1 Complexity Analysis

Using this strategy, instead of solving one linear system in vm variables, we
solve m linear systems in v variables. Thus, our attack has only O(mvω) time
complexity, where ω is the linear algebra constant. A strong requirement for
the success of the attack is that all of the linear subsystems that we need to
solve are determined. Since we are combining solutions of subsystems to recover
the entire solution, having even a small nonzero number of solutions to the
subsystems would rapidly increase the complexity of the attack. However, in the
following, we argue that we can rely on the assumption that all subsystems have
exactly one solution.

178 T. Aulbach et al.

Table 2. Theoretical complexity of our attack against the MQ-Sign-SS and MQ-Sign-
RS variants.

Security level Parameters (q, v, m) Attack complexity

I (28, 72, 46) 224

III (28, 112, 72) 227

V (28, 148, 96) 229

As per the analysis in the previous section, the ith subset of equations is
obtained from

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̃
(1)
1,1 ... p̃

(1)
1,v

p̃
(1)
2,1 ... p̃

(1)
2,v

...

p̃
(1)
v,1 ... p̃

(1)
v,v

...

p̃
(m)
1,1 ... p̃

(m)
1,v

p̃
(m)
2,1 ... p̃

(m)
2,v

...

p̃
(m)
v,1 ... p̃

(m)
v,v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

s1,i

s2,i

...
sv,i

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
(1)
1,1

p
(1)
2,1
...

p
(1)
v,1

...

p
(m)
1,1

p
(m)
2,1
...

p
(m)
v,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

From this equality, we extract v(m−1) equations. That is, one equation for each

entry from bi, ignoring entries (i, j) where f
(k)
i,j is not zero. We are interested in

how many of these equations are linearly independent. From (8) we can see that
each equation can be viewed as a linear combination of the s ,i variables where

the coefficients come from a row of P̃
(k)
1 , plus a constant that corresponds to an

entry of P
(k)
2 . Hence, the number of linearly independent equations is exactly

determined by the rank of A′. It is actually the rank of
(
A′ bi

)
, but we can ignore

the constant in our case. Indeed, if the rank of A′ is smaller than the rank of(
A′ bi

)
, this would result in the system derived from (8) being inconsistent. This

case cannot happen when we model a coherent instance of UOV key generation.
Now, recall that public key in UOV-based schemes is generated randomly (or
derived from a randomly generated central map) and thus it is comprised of
matrices of full rank with high probability. Hence, a concatenation of several such
matrices is also full rank, which is v in this case (the dimension of the column
space being v) – equal to the number of variables. We have also performed
experiments to verify this claim, and out of 500 runs of the attack on MQ-Sign-
SS with level I parameters, not once did the attack fail for not having enough
independent equations in any of the subsystems. Table 2 summarizes the effect
of the attack on the different MQ-Sign parameters.

Practical Key-Recovery Attack on MQ-Sign and More 179

4 A Forgery Attack on Variants Using Sparse FV

In this section we show a forgery attack on the MQ-Sign-SR variant, where the
polynomials of FV are defined as in Eq. (3). A forgery attack on a multivariate
signature scheme aims at finding a signature z ∈ Fn

q for a given target value
t ∈ Fm

q , such that P(z) = t is fulfilled. We show that in the case of MQ-Sign-
SR, a forgery is directly possible using only the public key.

Recall from Sect. 3, that, when the linear transformation S is given as in

Eq. (2), it holds that P
(k)
1 = F

(k)
1 . This means that the sparsity of the secret

coefficient matrices gets transferred to the public system. In more detail, an
attacker faces the task of finding (zv, zo) ∈ Fn

q such that

(zv, zo)

(
P

(k)
1 P

(k)
2

0 P
(k)
4

)(
zv

zo

)
= zvP

(k)
1 zv + zvP

(k)
2 zo + zoP

(k)
4 zo = tk (9)

holds for all k ∈ {1, . . . , m}, where P
(k)
1 are sparse as in Eq. (3). The parameters

n ≈ 2.5m allow us to fix the m entries of zo ∈ Fm
q and thereby remove the

non-sparse submatrices P
(k)
2 and P

(k)
4 from the quadratic part of this system of

equations. This leads us to equations of the form

zvP
(k)
1 zv + lin(zv) =

v∑

i=1

αk
i ziz(i+k−1(mod v))+1 + lin(zv) = tk. (10)

The term lin(zv) summarizes the linear and constant terms emerging from Eq.
(9) after fixing the entries of zo. Note that the resulting system is a system of
m equations in v variables, and since v is greater than m, we can fix another
(v − m) variables and still expect to have a solution.

At the core of this attack is the observation that, due to the sparsity in P
(k)
1 ,

the resulting system has subsets of equations that are bilinear in some subsets
of variables. Specifically, upon closer examination of the indices in Eq. (10), one
notices that for odd k, the quadratic monomials appearing in the polynomial
equation each consist of a variable with an odd and an even index. This implies
that these m

2 equations are bilinear in the sets of variables {z1, z3, . . . , zm−1}
and {z2, z4, . . . , zm}, where we denote by zi the variables in vector zv. Hence,
randomly guessing e.g., the v

2 odd-indexed variables gives us a v−m
2 -dimensional

linear solution space for the even-indexed variables in the m
2 bilinear equations.

Let us denote by z̃v the vector comprised of the vinegar variables that have
not yet been assigned, i.e. the even-indexed vinegar variables. At this point, the
overall system is of the following form

v
2 −1∑

i=0

αk
2i+1z((2i+1)+k−1(mod v))+1 + αk

2i+2z2i+2 + lin(z̃v) = tk, if k odd

v
2∑

i=1

αk
2iz2iz(2i+k−1(mod v))+1 + lin(z̃v) = tk, if k even.

180 T. Aulbach et al.

The probability that there exists a solution to the complete system - including
the remaining m

2 quadratic (non-bilinear) equations - with the previously guessed

odd variables is around q−(v
2 −(v−m)), since we can only fix v − m variables in

a quadratic system with v variables in m equations and still expect to find
a solution. An alternative view is that, to obtain the v−m

2 -dimensional linear
solution space, we can fix (v − m) variables and enumerate the rest with the
usual cost of enumeration. This is the first step of our attack and its cost will
be denoted by Cenum(q, v

2 −(v−m)).
In the second step, we need to find an assignment to the even-indexed vari-

ables that also validate the remaining m
2 equations. Using the description of the

linear solution space obtained from the bilinear equations, this step boils down
to solving a quadratic system of m

2 equations in v−m
2 variables. We denote the

complexity of this step by CMQ(q, v−m
2 , m

2).

4.1 Complexity Analysis

The cost of the first step of the algorithm corresponds to the usual cost of
enumeration over Fq. In the second step, the complexity is dominated by the
algorithm for solving the quadratic systems of equations. For the choice of q = 28,
as per the MQ-Sign parameters, the best strategy would be to solve the system
with a Gröbner-based algorithm (such as F4 or F5 [10,11]), without the use of
hybridization. Assuming that the quadratic systems we obtain behave as semi-
regular non-boolean systems of s equations in n variables, the complexity [2] of
the solving algorithm is approximated by

O
(

sD

(
n + D − 1

D

)ω)
,

where D denotes the degree of regularity and is computed as the power of the
first non-positive coefficient in the expansion of

(1 − t2)s

(1 − t)n
.

Then, the complexity of the whole attack is given by

Cenum(q, v
2 −(v−m)) · CMQ(q, v−m

2 , m
2),

since the second step has to be repeated until the odd variables are guessed
correctly in the first step. In Table 3 we present an overview of the approximate
costs for the parameter sets of MQ-Sign. We conclude that because of this attack,
the proposed parameters of the MQ-Sign-SR variant slightly fail to provide the
required security levels. Note that the algorithm described here uses the most
straighforward approach to exploit the bilinearity of the subsystems, but more
advanced techniques can potentially result in attacks with lower complexity.

Practical Key-Recovery Attack on MQ-Sign and More 181

Table 3. Theoretical complexity of our direct attack using the bilinear structure of
the odd equations.

Security level Parameters (q, v, m) Cenum(q, v
2

−(v−m)) CMQ(q, v−m
2

, m
2

) Complexity

I (28, 72, 46) 280 231 2111

III (28, 112, 72) 2128 242 2170

V (28, 148, 96) 2176 252 2228

Our attack again relies on the sparseness property of the vinegar-vinegar
quadratic part and the specific structure of the linear transformation S, as per
the equivalent keys key generation technique.

5 Implementation

5.1 Sparse FOV

To confirm the practicality of our attack in Sect. 3, we provide a verification script
in MAGMA [5] where we implement the key generation of MQ-Sign-{S/R}S and
then run the main algorithm for recovering the secret key from the public key
as input. The running time of the attack on a laptop is 0.6 s for the proposed
parameters for security level I, 2.3 s for security level III and 6.9 s for security
level V. We also provide an equivalent SageMath [29] script that is slower.

5.2 Sparse FV

Complexity estimates in Sect. 4 show that MQ-Sign-SR falls below the required
security level, but the attack is not practical for the chosen parameter sizes. We
nevertheless implemented the attack as a proof-of-concept and to confirm prac-
tically our complexity estimations. The cost of enumeration is straightforward,
but the second part of the attack involves Gröbner-based algorithms, whose com-
plexity rely on heuristic assumptions of semi-regularity. Hence, our primary goal
in this experimental work was to verify that the degree of regularity reached by
the F4/F5 algorithm is estimated correctly. The verification script for this attack
consists of generating the polynomial system in (9), fixing all variables in zo and
in the odd-indexed subset, and finally, solving the resulting system using the
F4 algorithm implemented in MAGMA. When fixing the variables, we experi-
mented both with a correct assignment that subsequently leads to a solution,
and a random assignment that leads to an inconsistent system. As expected,
there is no difference in the solving running times between the two cases.

182 T. Aulbach et al.

Table 4. Experimental results of the direct attack.

Security level Parameters (q, v, m) D estimated D reached Runtime (s) Memory (MB)

I (28, 72, 46) 4 4 0.6 32

III (28, 112, 72) 5 5 90.2 534

V (28, 148, 96) 6 >32000

The results of our experiments are in Table 4. Most notably, we confirm that
the degree of regularity reached during the execution of the algorithm matches
the theoretical estimation. This holds for both security level I and III. For secu-
rity level V, the degree of regularity is expected to be six, hence we could not
perform the verification due to the high memory requirements. For further assur-
ance, we verified our complexity estimation on other parameter sets that are not
part of the MQ-Sign specification, but follow the usual UOV ratios. We conclude
that the MQ instances that need to be solved in the second part of the algorithm
behave as semi-regular instances and the complexity of finding a solution can
reliably be estimated using the analysis in [2].

Verification scripts for both attacks outlined in this paper can be found at

https://github.com/mtrimoska/MQ-Sign-attack.

6 Impact on the MQ-Sign Variants

Both attacks presented in this paper rely on the specific structure of the linear
transformation S, as per the equivalent keys key generation technique. This
technique is used in most modern UOV-based signature schemes, including MQ-
Sign. If the equivalent keys structure is removed and S is a random affine map2,
this change of representation comes with additional memory cost. Specifically,
Table 5 shows the impact of this modification on the secret key sizes, compared
to the sizes reported in the MQ-Sign specification. The comparison is shown
for the three MQ-Sign variants that are concerned by the two attacks proposed
in this paper. The fourth variant, MQ-Sign-RR, is equivalent to the traditional
UOV scheme and is not affected by our attacks. For this variant, the use of the
equivalent keys structure of S is still a concern for side-channel attacks [1,21].

2 This was suggested by the authors of MQ-Sign as a countermeasure when the attack
in Sect. 3 was first announced.

Practical Key-Recovery Attack on MQ-Sign and More 183

Table 5. Size (in Bytes) of the secret key of MQ-Sign with and without the equivalent
keys structure of S.

Variant Security Level

I III V

equivalent keys S random S equivalent keys S random S equivalent keys S random S

MQ-Sign-SS 15 561 26 173 37 729 63 521 66 421 111 749

MQ-Sign-RS 133 137 143 749 485 281 511 073 1 110 709 1 156 037

MQ-Sign-SR 164 601 175 213 610 273 636 065 1 416 181 1 461 509

Furthermore, this countermeasure was shown to be insufficient for the vari-
ants where the vinegar-oil space is sparse. In subsequent work, Ikematsu, Jo, and
Yasuda [15] propose an attack that does not rely on the equivalent structure of
S and remains practical: it runs in no more than 30 min for all security levels.

For the MQ-Sign-SR variant, further research is needed to determine whether
the sparseness of FV can still be exploited in a similar manner when S is random.

7 Discussion on Using Sparse Matrices

MQ-Sign follows the UOV construction that is widely believed to be solid. Yet, as
we have demonstrated, bad choices for optimization have significantly damaged
its security. The aforementioned attacks were possible due to mainly two reasons.
First, the secret polynomials were chosen sparse. Thus, we could derive more
equations from the public key entries and their computation in Eq. (6) than
there are secret key entries to obscure them. Second, the secret key polynomials
were chosen so sparse, that half of the public key equations turned bilinear after
fixing certain variables. The question that remains is whether we can still make
use of sparseness to reduce the size of the (expanded) keys.

As an alternative, we could, instead of choosing sparse secret submatrices

F
(k)
1 and F

(k)
2 , choose the public P

(k)
1 and P

(k)
2 sparse. Our key-recovery attack

does not work anymore, but, we would need to add more coefficients to the
matrices, so that the strategy in Sect. 4 does not apply anymore.

The approach complements current UOV instantiations [4] which use key

compression techniques. The authors of [4] expand the matrices P
(k)
1 and P

(k)
2

from a seed seedpk and only store cpk = (seedpk,P
(k)
3). Therefore, making these

two matrices sparse will not result in a smaller compressed public key, but the
size of the expanded secret key and the expanded public key would be reduced,
which implies a lower overall storage requirement.

However, caution should be put into the choice of the sparse public matrices.
The strategy of using “rotating diagonals” seems to work well with regards to
the standard attacks against UOV analyzed in the specs. However, the sparse
equations introduce enough structure to make a direct attack cheaper than in
the no-sparse case. An option could be to slightly increase the number of non-

zero coefficients in P
(k)
1 and P

(k)
2 , enough to increase the cost of our attack or

184 T. Aulbach et al.

a similar direct attack. This is of course an ad-hoc solution, and more scrutiny
is required in order to determine whether a secure balance can be found that is
a better solution than simply increasing the parameters. We leave this question
as future work.

References

1. Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., Stöttinger, M.: Separating
oil and vinegar with a single trace side-channel assisted Kipnis-Shamir attack on
UOV. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(3), 221–245 (2023)

2. Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. Ph.D. thesis, Université de Paris VI (2004)

3. Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 464–479. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15979-4 16

4. Beullens, W., et al.: Oil and vinegar: modern parameters and implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 321–365, 2023 (2023)

5. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. I. The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra
and number theory (London, 1993)

6. Casanova, A., Faugère, J.-C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem,
J.: GeMSS. Technical report, National Institute of Standards and Technology
(2020)

7. Chinese Association for Cryptologic Research (CACR). CACR post-quantum com-
petition (2018)

8. Ding, J., et al.: Rainbow. Technical report, National Institute of Standards and
Technology (2020)

9. Ding, J., Hu, L., Yang, B.-Y., Chen, J.-M.: Note on design criteria for rainbow-type
multivariates. Cryptology ePrint Archive, Report 2006/307 (2006)

10. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra 139, 61–88 (1999)

11. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC, pp. 75–83. ACM Press (2002)

12. I. O. for Standardization ISO/IEC JTC 1/SC 27 (WG2). Information security,
cybersecurity and privacy protection: ISO/IEC WD 14888-4 Information technol-
ogy - Security techniques - Digital signatures with appendix - Part 4: Stateful
hash-based mechanisms. https://www.iso.org/standard/80492.html

13. Hulsing, A., et al.: SPHINCS+. NIST PQC Submission (2020)
14. Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., Mohaisen, A.: XMSS: extended

hash-based signatures. RFC 8391 (2018)
15. Ikematsu, Y., Jo, H., Yasuda, T.: A security analysis on MQ-Sign. In: Kim, H.,

Youn, J. (eds.) WISA 2023. LNCS, vol. 14402, pp. 40–51. Springer, Singapore
(2024). https://doi.org/10.1007/978-981-99-8024-6 4

16. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

17. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055733

Practical Key-Recovery Attack on MQ-Sign and More 185

18. Lyubashevsky, V., et al.: Crystals-dilithium. NIST PQC Submission (2020)
19. Mosca, M., Piani, M.: 2021 quantum threat timeline report (2022)
20. National Institute for Standards and Technology. Post-Quantum Cryptography

Standardization (2017)
21. Park, A., Shim, K.-A., Koo, N., Han, D.-G.: Side-channel attacks on post-quantum

signature schemes based on multivariate quadratic equations 2018(3), 500–523
(2018). https://tches.iacr.org/index.php/TCHES/article/view/7284

22. Patarin, J.: The oil and vinegar signature scheme (1997)
23. Petzoldt, A.: Selecting and reducing key sizes for multivariate cryptography. Ph.D.

thesis, Darmstadt University of Technology, Germany (2013)
24. Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow - a multivariate signature

scheme with a partially cyclic public key based on rainbow. Cryptology ePrint
Archive, Report 2010/424 (2010)

25. Prest, T., et al.: FALCON. NIST PQC Submission (2020)
26. Quantum Resistant Cryptography Research Center. Korean post-quantum cryp-

tographic competition (2022)
27. Shim, K.-A., Kim, J., An, Y.: MQ-Sign: a new post-quantum signature scheme

based on multivariate quadratic equations: shorter and faster (2022). https://www.
kpqc.or.kr/images/pdf/MQ-Sign.pdf

28. Tao, C., Petzoldt, A., Ding, J.: Efficient key recovery for all HFE signature variants.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 70–93.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 4

29. The Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.5) (2022). https://www.sagemath.org

30. Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: high-speed signatures on a low-cost
smart card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp.
371–385. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-
5 27

228 Analyzing Security Features

Hash Your Keys Before Signing
BUFF Security of the Additional NIST PQC Signatures

Thomas Aulbach1, Samed Düzlü1(B), Michael Meyer1, Patrick Struck2,
and Maximiliane Weishäupl1

1 Universität Regensburg, Regensburg, Germany
{thomas.aulbach,samed.duzlu,maximiliane.weishaeupl}@ur.de,

michael@random-oracles.org
2 Universität Konstanz, Konstanz, Germany

patrick.struck@uni-konstanz.de

Abstract. In this work, we analyze the so-called Beyond UnForgeabil-
ity Features (BUFF) security of the submissions to the current standard-
ization process of additional signatures by NIST. The BUFF notions
formalize security against maliciously generated keys and have various
real-world use cases, where security can be guaranteed despite misuse
potential on a protocol level. Consequently, NIST declared the security
against the BUFF notions as desirable features. Despite NIST’s interest,
only 6 out of 40 schemes consider BUFF security at all, but none give
a detailed analysis. We close this gap by analyzing the schemes based
on codes, isogenies, lattices, and multivariate equations. The results vary
from schemes that achieve neither notion (e.g., Wave) to schemes that
achieve all notions (e.g., Prov). In particular, we dispute certain claims
by Squirrels and Vox regarding their BUFF security. Resulting from
our analysis, we observe that three schemes (Cross, Hawk and Prov)
achieve BUFF security without having the hash of public key and mes-
sage as part of the signature, as BUFF transformed schemes would have.
Hawk and Prov essentially use the lighter PS-3 transform by Pornin and
Stern (ACNS’05). We further point out whether this transform suffices
for the other schemes to achieve the BUFF notions, with both positive
and negative results.

Keywords: Signature Schemes · BUFF · Additional Security
Properties

1 Introduction
Nowadays, digital signature schemes are fundamental cryptographic primitives.
They allow a signer Alice to generate a signature sig of a message msg, using
her private key sk, such that anybody, using Alice’s public key pk, can verify
the validity of the signature. Existential unforgeability under chosen message
attacks (EUF-CMA) has become the standard security notion for digital signa-
ture schemes. EUF-CMA secure schemes come with the guarantee that an adver-
sary, seeing several message-signature pairs generated by Alice, cannot generate
a new message-signature pair that is accepted as a signature by Alice.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M.-J. Saarinen and D. Smith-Tone (Eds.): PQCrypto 2024, LNCS 14772, pp. 301–335, 2024.
https://doi.org/10.1007/978-3-031-62746-0_13

302 T. Aulbach et al.

Unforgeability is essential for digital signature schemes and in most use cases
also sufficient. However, the EUF-CMA security notion only covers scenarios
where Alice’s key pair is honestly generated. Depending on the use case of a
digital signature scheme, other attacks are possible which are not ruled out
by using a signature scheme that is unforgeable. This led to the development
of additional security notions: exclusive ownership, message-bound signatures,
and non-resignability. In the following, we give high-level descriptions of these
notions, covering the gist of each.

The first security notion, exclusive ownership, provides the adversary with
a valid message-signature pair (msg, sig) under a public key pk and asks it to
find a different public key pk under which (msg, sig) remains a valid message-
signature pair. The lack of exclusive ownership allows an adversary to “claim”
signatures as its own by providing pk. The relevance can be seen by the real-
world attack against the Let’s Encrypt protocol, where an adversary can exploit
such claimed signatures to obtain certificates for domains despite not owning
them [1]. The notion comes in two flavors: the one just described, which is called
conservative exclusive ownership (S-CEO), and destructive exclusive ownership
(S-DEO), where the adversary needs to find a different message.

The second security notion, message-bound signatures (MBS), asks the adver-
sary to come up with two messages msg �= msg, a signature sig, and a public key
pk, such that both (msg, sig) and (msg, sig) are valid message-signature pairs
under pk. Absence of this property allows adversaries to bypass non-repudiation:
when the adversary is accused of having signed msg, it can claim to have signed
msg instead. At the first glance, it seems that this should already be covered by
standard EUF-CMA—finding msg immediately yields a forged signature. The
difference is that EUF-CMA is limited to honestly generated keys whereas the
notion we describe here is more permissive by letting the adversary output an
arbitrary public key, in particular, not constrained to be the outcome of the key
generation algorithm.

The third security notion, non-resignability (NR), provides the adversary
with a signature sig of an unknown message msg under some public key pk and
asks the adversary for a different public key pk and signature sig, such that sig
verifies correctly under pk for the unknown1 message msg. Jackson et al. [24]
showed that a resignable signature scheme, i.e., one for which the adversary can
find pk and sig as described above, allows for attacks against the “Dynamically
Recreatable Key” (DRKey) protocol [25]. Here, the adversary has to re-sign a
message which contains a—to the adversary unknown—symmetric key.

The additional security properties exclusive ownership, message-bound signa-
tures, and non-resignability were formalized in [14], which also provides a generic
transformation—called the BUFF transform—to achieve them. Furthermore, the
authors of [14] analyzed the signature schemes selected to be standardized by
NIST: Dilithium [27], Falcon [33], and Sphincs+ [23]. Dilithium was shown
to achieve the notions and while Falcon does not, the authors of Falcon

1 This part is crucial. If the adversary was to know the message msg, it could generate
a new key pair (sk, pk) and sign msg using sk to obtain sig and output (pk, sig).

Hash Your Keys Before Signing 303

announced to deploy the BUFF transform in the next update. For Sphincs+ it
is informally argued that it achieves the additional security properties. While the
notions are not a requirement in the ongoing NIST standardization process for
digital signature schemes [29], the call-for-algorithms mentions them as “addi-
tional desirable security properties beyond standard unforgeability”. Despite this,
only six out of 40 submissions mention these security properties at all, but none
give a detailed analysis. Thus, there is a gap with respect to the security achieved
by the signature schemes submitted to the NIST standardization process. A gap
that we (partially) close in this work.

A Note on Non-resignability. Note that the initial definition of non-resignability
in [14] was identified to be flawed in [17]. The problem lies in the auxiliary
information which allowed for an (arguably artificial) attack. New proposals for
the definition of non-resignability are given in [17] and an updated version of [14].
However, it is unclear which definition will ultimately define non-resignability,
and if the BUFF transform achieves either notion. Given these problems, we
opt for a weaker form of non-resignability (wNR) in which there is no auxiliary
information—thus considering a weaker notion than the one introduced in [17].
Nevertheless, we provide concrete attacks against most schemes. Thus, they are
also vulnerable to any stronger form of non-resignability, in particular, to the
existing ones [14,17].

1.1 Our Contribution

We analyze the submissions to the NIST standardization process for post-quan-
tum signatures [29]. We focus on the submissions that are based on either codes,
isogenies, lattices, or multivariate equations—excluding those for which attacks
against EUF-CMA have been identified. More precisely, we analyze four code-
based schemes (Cross [3], Less [2], Meds [12], Wave [4]), the sole isogeny-
based scheme (SQIsign [10]), five lattice-based schemes (Haetae [11], Hawk [9],
HuFu [35], Raccoon [15], Squirrels [19]), and seven multivariate schemes
(Mayo [6], Prov [22], Qr-Uov [20], Snova [34], Tuov [16], Uov [7], Vox [31]).
The results are summarized in Table 1.

In the following, we describe the main results. First, we remark that MBS
is almost always satisfied and the security can be traced back to the security
of the hash function. In the two cases of Squirrels and Wave, where MBS is
not satisfied, the reason is the scheme-dependent construction of a public key
that allows multiple messages to verify under the same signature. Note that the
specification of Squirrels claims MBS security, which our analysis refutes.

Secondly, we note that all schemes—except for SQIsign, Meds and Less—
satisfy either both S-CEO and S-DEO, or neither. Despite the general separation
by [14], our results indicate that in practice, these two notions often behave
similarly. In fact, both proofs and attacks usually use the same idea for S-CEO
and S-DEO, where for S-DEO, one needs to be slightly more careful in the choices.
One group among the schemes that satisfy these exclusive ownership notions
achieves them by hashing the public key, together with the message, to generate

304 T. Aulbach et al.

a target (resp. challenge), which the signature of the message corresponding
to the given public key solves. In this way, any modification of the public key
uncontrollably changes the target in a random manner. Then, the signature,
which is required to be the same as the given one, cannot solve the new target,
hence rendering the scheme secure. All schemes that do not satisfy exclusive
ownership security are attacked by explicitly constructing new public keys which
are compatible with the target generated independently of the public key, and
the given signature. Differences between S-CEO and S-DEO can arise, when the
message, but not the public key, is used to derive the target. Then it depends on
the inherent properties of the scheme if different public keys can be constructed
for the same (S-CEO) or a new (S-DEO) target value. An exception to the above
rule is Cross, where the security reduces to solving an underdetermined system
of linear equations.

Finally, we consider non-resignability. All schemes that satisfy wNR are also
secure with respect to both exclusive ownership and MBS. However, there are
schemes (SQIsign, Meds and Less), that satify S-DEO but not wNR. Indeed,
we see a relationship to their exclusive ownership security: While fixing a signa-
ture fixes the public key in a certain sense, one can attack non-resignability by
modifying both in a compatible manner, which does not require any knowledge
about the message being signed. For the schemes that satisfy wNR, we see a
similar argument as for exclusive ownership, namely that producing the target
using a hash of the public key and the message, makes the target untraceable,
even if one can control the signature. The exception, again, is Cross, where the
security results from the Merkle tree structure and an underdetermined system
of linear equations. The other schemes that do not satisfy wNR are attacked,
as in the case of exclusive ownership, by explicit constructions. Neither of those
attacks rely on any auxiliary information about the unknown message, which an
adversary is provided in stronger versions of non-resignability.

From our results, we can deduce the following interesting conjecture. Even
though [14] shows that in general the BUFF transform is necessary to achieve
full BUFF security, it turns out that in practice, it is most often sufficient to use
the PS-3 transform as suggested in [32]. That means, instead of using a mere
hash-and-sign paradigm, one needs to hash the message and the public key, and
then sign the hash value. The PS-3 transform is more lightweight than the BUFF
transform as the latter requires to also append the hash value to the signature.
One important caveat in this regard is that it is often not sufficient to hash only
a part of the public key. Important examples where such an approach does not
help to satisfy BUFF security are given by various multivariate schemes, e.g.,
Vox, where this approach is used explicitly to gain BUFF security, but is not
sufficient.

Structure of the Analyses. The analyses presented in this work follow a common
structure, which we explain briefly. To analyze the BUFF security, the relevant
information is the structure of the public key and signature, and the verifica-
tion algorithm. Those are introduced at the beginning of each section, followed
by the analysis of S-CEO, S-DEO, MBS, and wNR. In Sect. 6 on multivariate

Hash Your Keys Before Signing 305

schemes, we give a more detailed general outline and give a generic proof of MBS
and a generic attack on wNR, as the schemes allow such an all-encompassing
formulation. The remaining analyses in the section follow the same structure.

Table 1. Overview of our results. A ✓ indicates that a signature scheme achieves a
security notion, while a ✗ indicates that there is an attack. A ✦ indicates that we
identified an attack that seems not to be relevant in practice. A superscript † indicates
that the result disproves a claim made for the scheme. For Less and Meds, the results
for S-CEO depend on the parameter sets.

Scheme S-CEO S-DEO MBS wNR Type

Cross [3] ✓ ✓ ✓ ✓

Code
(Sect. 3)

Less [2] ✓ | ✗ ✓ ✓ ✗

Meds [12] ✓ | ✗ ✓ ✓ ✗

Wave [4] ✗ ✗ ✗ ✗

SQIsign [10] ✦ ✓ ✓ ✗ Isogeny (Sect. 4)

Haetae [11] ✓ ✓ ✓ ✓

Lattice
(Sect. 5)

Hawk [9] ✓ ✓ ✓ ✓

HuFu [35] ✗ ✗ ✓ ✗

Raccoon [15] ✓ ✓ ✓ ✓

Squirrels [19] ✗ ✗ ✗† ✗

Mayo [6] ✗ ✗ ✓ ✗

Multivariate
(Sect. 6)

Prov [22] ✓ ✓ ✓ ✓

Qr-Uov [20] ✗ ✗ ✓ ✗

Snova [34] ✗ ✗ ✓ ✗

Tuov [16] ✗ ✗ ✓ ✗

Uov [7] ✗ ✗ ✓ ✗

Vox [31] ✗† ✗† ✓ ✗†

1.2 Related Work

Unforgeability notions can be traced back to [21]. Exclusive ownership originates
from [8,28], which introduces a specialized version under the name Duplicate-
Signature Key Selection. A generalized version was developed in [32] which also
coins the term exclusive ownership. Non-resignability was first mentioned in [24]
though without a formal definition. Eventually, formal definitions of all beyond
unforgeability properties (exclusive ownership, message-bound signatures, and
non-resignability) were developed in [14], which also gives two generic transfor-
mations to achieve them.

306 T. Aulbach et al.

2 Preliminaries

2.1 Notation

For integers m,n with m < n, we write [m] and [m,n] for the sets {1, 2, . . . ,m}
and {m,m + 1, . . . , n}, respectively. Throughout this work, H will denote a hash
function (optionally with a subscript if multiple hash functions are used) which
is often modeled as a random oracle [5]. For a matrix M , we denote the entries
by mij . Similarly, for a vector xi, its entries are denoted by xi,j . We use ϑ to
denote a generic bound (used for the lattice-based schemes).

2.2 Signature Schemes and Security Notions

A signature scheme Σ consists of three efficient algorithms:

KGen: the key generation gets a security parameter 1λ as input and outputs a
secret key sk along with a public key pk.

Sign: the signing algorithm gets a secret key sk and a message msg as input and
outputs a signature sig.

Verify: the verification algorithm takes as input a public key pk, a message msg,
and a signature sig, and it outputs a bit v.

A signature scheme is correct if, for any key pair (sk, pk) = KGen(1λ), we have
Verify(pk, msg, Sign(sk, msg)) = 1 with overwhelming probability in the secu-
rity parameter 1λ.

In this work, we are using the security notions conservative/destructive exclu-
sive ownership and message-bound signatures as formalized in [14], as well as a
weaker form of non-resignability. Below we give the definitions. The correspond-
ing security games S-CEO, S-DEO, MBS, and wNR, are shown in Fig. 1.

For conservative exclusive ownership, the adversary can obtain signatures for
arbitrary messages and is then challenged to find a different public key that veri-
fies one of the received message-signature pairs. Destructive exclusive ownership
is similar to conservative exclusive ownership. The difference is that the adver-
sary needs to find not just a different public key but also a different message
that verify using one of the received signatures. The message-bound signature
property guarantees that it is hard to find a signature that verifies two different
messages under the same public key.

Definition 1. A signature scheme Σ = (KGen, Sign, Verify) is said to have
conservative exclusive ownership, destructive exclusive ownership, and message-
bound signatures if for any efficient adversary A, its probability in winning game
S-CEO, S-DEO, and MBS, respectively, is negligible.

Non-resignability provides the adversary with a signature of an unknown
message and asks to find a different public key and (not necessarily different)
signature that verify the unknown message. We consider a slightly weaker form
of non-resignability, which we call weak NR (wNR), which does not grant the
adversary auxiliary information about the message. Note that for the majority

Hash Your Keys Before Signing 307

Fig. 1. Security games S-CEO, S-DEO, MBS, and wNR, for signature schemes.

of signature schemes we give attacks against wNR which are also valid attacks
against any stronger form of non-resignability, in particular, those including
auxiliary information for the adversary.

Definition 2. A signature scheme Σ = (KGen, Sign, Verify) is said to have
non-resignability if for any efficient adversary (A0,A1), where A0 outputs uni-
formly random message, its probability in winning game wNR is negligible.

We say that a signature scheme Σ has full BUFF security, if it satisfies
S-CEO, S-DEO, MBS, and wNR.

2.3 Transformations

There are several generic transformations that turn a signature scheme and a
hash function into a signature scheme that achieves the aforementioned BUFF
notions. For this work, we mainly need two: The BUFF transform [14] (cf. Fig. 3)
and the PS-3 transform [32] (cf. Fig. 2). The former was shown to achieve all the
BUFF notions—based on the assumptions on the used hash function. The latter
was shown to not achieve all notions, due to a property that [14] calls weak keys,
i.e., public keys that verify multiple messages. Both transformations work by
first computing the hash of the public key and message. This hash value is then

308 T. Aulbach et al.

Fig. 2. The signature scheme PS-3[H, Σ] = (KGen∗, Sign∗, Verify∗) constructed from a
hash function H and a signature scheme Σ = (KGen, Sign, Verify).

Fig. 3. The signature scheme Buff[H, Σ] = (KGen∗, Sign∗, Verify∗) constructed from a
hash function H and a signature scheme Σ = (KGen, Sign, Verify).

signed2 by the signature scheme. The difference is that the BUFF transform
additionally appends this hash value to the signature (which PS-3 does not).

3 Code-Based Schemes

In this section, we analyze the code-based signature schemes. They rely on two
distinct code-related problems: the more classical syndrome decoding problem
(Cross and Wave), and the fairly new code equivalence problem (Meds and
Less). Although they are based on the same underlying problem, Cross and
Wave are still very different, and while Cross satisfies all BUFF properties, we
show that Wave is vulnerable with respect to each of the notions. Wave fails
to satisfy full BUFF security even after the PS-3 transform. We analyze Cross
in Sect. 3.1 and Wave in Sect. 3.4. The two schemes based on code equivalences
(Meds and Less) are very similar. We therefore only present Meds in full detail
(in Sect. 3.2), as the analysis of Less (in Sect. 3.3) is almost verbatim the same. A
surprising result of this analysis is that exclusive ownership notions are satisfied
due to the inherent structure of the code equivalence problem. Indeed, for a
given signature, there can essentially only be a single public key that verifies the
message correctly. As this does not suffice to satisfy wNR, we show that using
the PS-3 transform ensures full BUFF security for Meds and Less. Moreover,
we note that PS-3-transformed Meds and Less can be considered to implement
the full BUFF transform.

2 Typically, the signature scheme itself first hashes the message. It is understood that
in this case, the transformed scheme would in fact replace this hash operation, i.e.,
it signs H(msg, pk) instead of H(H(msg, pk)).

Hash Your Keys Before Signing 309

3.1 CROSS

Cross is a code-based signature scheme based on a zero-knowledge identifi-
cation protocol, the security of which relies on the NP-complete restricted syn-
drome decoding problem. To increase the soundness of the Fiat-Shamir transform,
Cross incorporates Merkle trees into its signature definition. There are two vari-
ants of Cross, R-SDP and R-SDP(G), where the latter restricts the problem to
a subgroup G, to achieve shorter signature sizes. As the analysis regarding BUFF
security is the same for both versions, we will only consider Cross-R-SDP(G).

The protocol uses integers k,m, n, t, w, λ, prime numbers p and z, and an
element g ∈ F∗

p of order z. The cyclic subgroup generated by g is denoted by
E ⊆ F∗

p and G denotes a subgroup of En. Further, a pseudorandom number
generator PRNG is used, which we assume to be ideal throughout our analysis,
i.e., the outputs are random.

Key Pair. The public key consists of a tuple (seedpk, s) for seedpk ∈ {0, 1}λ and
s ∈ Fn−k

p . The secret key is given by seedsk ∈ {0, 1}λ.

Signature. The signature of a message msg consists of

salt||d01||db||MerkleProofs||SeedPath||rsp0||rsp1

for d01, db ∈ {0, 1}λ, MerkleProofs ∈ {0, 1}lm , SeedPath ∈ {0, 1}ls with

lm = 2λ
(

1 + (t − w) log2

(
t

t − w

))
, ls = λ(t − w) log2

(
t

t − w

)
,

rsp0 ∈ (Fn
p × Fm

z)t−w, and rsp1 ∈ ({0, 1}λ)t−w.

Verify. Given a public key pk = (seedpk, s), a message msg, and a signa-
ture sig = (salt||d01||db||MerkleProofs||SeedPath||rsp0||rsp1), the verifica-
tion algorithm is shown in Fig. 4.

S-CEO. Given a public key pk = (seedpk, s), a message msg, and a signature
sig such that Verify(pk, msg, sig) = 1, we need to find a different public key
pk = (seedpk, s) such that Verify(pk, msg, sig) = 1. Note that for b[i] = 0, the
values ti are computed as xiH

� − β[i]s, then hashed to cmt0[i].
First, one sees that a change in the ti leads to a change of cmt0[i], conse-

quently a change in d′
0 and d′

01, hence finally an invalid signature. Here, we use
that changing the values in the Merkle tree results in another root, as long as
the hash function is collision-resistant. Thus, any change of the public key that
results in a change in any of the ti will not be accepted in the verification.

310 T. Aulbach et al.

Fig. 4. The verification algorithm of Cross. Note that the PRNG generation
of H, MG, ui and ξi is depicted in a simplified fashion; further observe that
RecomputeMerkleRoot only needs the subset {cmt0[i] | i s.t. b[i] = 0} of commitments.
We do not provide definitions for functions that are not relevant for the BUFF analysis.

Hence, we have to find pk = (seedpk, s) �= (seedpk, s) = pk such that ti = ti
holds for all i with b[i] = 0. Note that we can assume that b has roughly t/2
bits equal to 0 as it is generated with the PRNG. Then the problem corresponds
to solving the system ti = xiH

� − β[i]s of t/2 random equations in the single

Hash Your Keys Before Signing 311

indeterminate s. If we choose seedpk = seedpk, we have H = H and xi = xi,
thus there is no other solution than s. If we choose seedpk �= seedpk, we obtain
a different pseudorandom matrix H �= H and vector xi �= xi and the probability
that the resulting system is solvable is

(
1/pn−k

)t/2. For all parameter sets of
Cross, this is less than 2−20 000. Therefore, Cross fulfills S-CEO security.

S-DEO. Given a public key pk, a message msg, and a signature sig such that
Verify(pk, msg, sig) = 1, we need to find a second public key pk �= pk and a
second message msg �= msg such that Verify(pk, msg, sig) = 1. Here, the same
argument as in the S-CEO analysis is applicable. Even though the message can
be changed, this brings no advantage to an adversary as it is directly hashed,
so that the value of β cannot be controlled. Thus, the situation is again that s

needs to be chosen such that s = (xiH
� − ti) ·β[i]−1 holds for all i with b[i] = 0.

With the same argument as above, this implies that Cross is S-DEO-secure.

MBS. One needs to find a public key pk, two distinct messages msg �= msg, and a
signature sig, such that Verify(pk, msg, sig) = 1 and Verify(pk, msg, sig) = 1.
For different messages, but the same signature and public key, only the values
for β differ in the computation of ti for i such that b[i] = 0. This implies ti �= ti
and hence the verification fails, as long as the hash function is collision-resistant.
Therefore, MBS security is given.

wNR. Given a public key pk and a signature sig to an unknown message
msg, one has to find another public key pk �= pk, and a signature sig such
that Verify(pk, msg, sig) = 1. For unknown messages, the values of β are also
unknown. Thus, even though the public key and signature can be chosen freely,
an attacker cannot know what to set them to, making this problem as hard as
a random search of two hash values, each of size at least 256 bits, depending on
the security level. Hence, the success probability is at most 2−512. We conclude
that Cross is wNR-secure.

3.2 MEDS

Meds is a signature scheme based on the difficulty of finding equivalences of
matrix codes in the rank metric. It is constructed from a zero-knowledge identi-
fication protocol and involves a technique to increase the soundness and thereby
reduce the signature size. The protocol uses integers m,n, s, t, a prime power
q, and the field Fq with q elements. The hash function H maps to {0, . . . , s}t,
its entries are denoted hi. The standard form of a code is the unique generator
matrix in row-reduced echelon form.

Key Pair. The public key consists of matrices G0, . . . , Gs ∈ Fk×nm
q , all in stan-

dard form. For i = 0, . . . , s, let Ci denote the code generated by Gi. The secret
key consists of code equivalence maps πAi,Bi

: C0 → Ci for i = 1, . . . , s, where
Ai and Bi are square matrices of the appropriate sizes. It holds that Gi is the
standard form of AiG0Bi.

312 T. Aulbach et al.

Signature. The signature of a message msg to a public key (G0, . . . , Gs) consists
of (h, πi,hi

), where h = H(G̃0, . . . , G̃t, msg) ∈ {0, 1}t, and πi,hi
: Ghi

→ G̃i are
code equivalences, for i = 1, . . . , t. The matrices G̃i are constructed as ÃiG0B̃i

using random matrices Ãi and B̃i, for i = 1, . . . , t.

Verify. The verification algorithm computes G̃i using πi,hi
Ghi

and checks if
h = H(G̃1, . . . , G̃t, msg) holds.

S-CEO. Let (Gj)j be a public key and msg be a message with signature sig =
(h, πi,hi

). Fix an index i and set j = hi. Then, πi,hi
Gj and G̃i define the same

code. Thus, if (G′
j)j would be another public key accepting the same signature

for the message msg, we find that π−1
i,hi

G̃i and G′
j both define the same code as

Gj . Hence, Gj = G′
j by normalization. Thus, a message-signature pair cannot

be attacked if the following assumption holds: For each j there is an index i such
that hi = j. Conversely, suppose j∗ is an index such that hi �= j∗ for all i. Then
we may pick an arbitrary G′

j∗ different from Gj∗ , while setting G′
j = Gj for all

j �= j∗. As Gj∗ or G′
j∗ are not used, the verification succeeds. If an index j∗

exists, the new public key is constructed in constant time.
We conclude that a message-signature pair is vulnerable to an S-CEO attack,

if and only if for the corresponding h there is such an index j which is not one
of the components of h. Assuming that h is uniformly random, this translates
to picking uniformly maps {1, . . . , t} → {0, . . . , s − 1} which are non-surjective.

As any such choice depends on a query to a signature oracle, we bound the
number of queries by 264, cf. [29, Section 4.B.2]. We say a parameter set is vulner-
able against an S-CEO attacker if, with less than 264 queries, the probability of
finding a non-surjective mapping exceeds 50%. Conversely, we declare a parame-
ter set to be secure if, after 264 queries, the probability of finding a non-surjective
map is still negligible.

To compute these probabilities, we define A� as the event that after � queries,
no non-surjective map has been found. It is easy to see that

1 −
(

1 −
(

s − 1
s

)t
)�

≤ P(A�) ≤ 1 −
(

1 − s

(
s − 1

s

)t
)�

.

Using standard formulas and approximations for logarithm, we find that for

q ≈ log(2)
(

s−1
s

)t ,

the probability of finding non-surjective maps exceeds 1
2 . As can be seen in

Table 2, this shows that all but two parameter sets of Meds are vulnerable to
attacks. For the remaining two parameter sets, we can use the upper bound

P(A2λ) ≤ 2λs

(
s − 1

s

)t

,

which is valid if s
(

s−1
s

)t is sufficiently small. The bounds are given in the final
row of Table 2.

Hash Your Keys Before Signing 313

Table 2. The third row denotes the number of queries q such that the attack probability
is above 50%. The probability in the final row denotes the chance of finding a message-
signature pair that is vulnerable after 264 queries.

Security Level I I III III V V
s 4 5 4 5 5 6
t 1152 192 608 160 192 112
Lower bound log2(q) 477 61 251 50 61 28
Success probability after 264 queries 2−412 ≈ 1 2−186 ≈ 1 ≈ 1 ≈ 1

S-DEO. Meds satisfies S-DEO as any change in the message yields a change in
the hash h that is part of the signature, unless a collision of the hash is found.

MBS. Meds satisfies MBS security trivially, if the hash function is collision-
resistant, as distinct messages yield distinct hashes, contained in the signature.

wNR. Meds does not satisfy wNR security. Indeed, given a public key (Gi)i

and a signature (h, (πi,hi
)) that verify an unknown message msg, we can adapt

the public key and the signature as follows. Pick arbitrary matrices A,B of
the correct size, apply to G1 the transformation πA,B , and update this new
generator matrix G1 as the first component in the public key. For each i such
that hi = 1, modify the function πi,1 to πi,1 ◦π−1

A,B
. The verification will succeed,

as by construction, πi,1 ◦ π−1
A,B

G1 = πi,1G1 = G̃i. Note that h in the signature is
unchanged.

Remark 3. The signature scheme Meds would additionally satisfy wNR, if in
the signing process, h would be redefined as h := H(G̃1, . . . , G̃t, msg, pk), which
corresponds to an application of PS-3. Indeed, as h itself is part of the signature,
this change can be viewed as applying the BUFF transform to Meds, making it
secure against all BUFF notions.

3.3 LESS

Less is, like Meds, a signature scheme that relies on the code-equivalence prob-
lem and is based on a zero-knowledge identification protocol. Due to the strong
similarity with Meds, we do not provide all details. In short, Less does not
satisfy wNR, but satisfies S-DEO and MBS. Like in the analysis of Meds, S-
CEO security depends on the parameter set. The detailed results can be found
in Table 3. Note that the second parameter set requires fewer queries than the
security parameter and after 264 queries, the success probability of an attack is
2−35. While 2100 signature queries are too many, this parameter set seems to
be an edge case which we cannot safely declare to be secure. Adding the public
key in the hash computation makes Less BUFF secure, as this is essentially the
BUFF transform.

314 T. Aulbach et al.

Table 3. The third row denotes the number of queries q such that the attack prob-
ability is above 50%. The probability in the final row denotes the chance of finding a
message-signature pair that is vulnerable after 264 queries.

Security Level I I I III III V V
s 2 4 8 2 3 2 3
t 247 244 198 759 895 1352 907
Lower bound log2(q) 246 100 37 758 523 inf 530
Success probability after 264 queries 2−182 2−35 ≈ 1 2−694 2−457 ≈ 0 2−464

3.4 WAVE

Wave is a code-based signature scheme using the Hamming weight over the
field F3. The security of Wave relies on the syndrome decoding problem and a
scheme-specific problem regarding the indistinguishability of the public key.

The Hamming weight of a vector over F3 is denoted |_|. Wave uses integer
parameters n and k, which are the length and dimension of the codes, and ω, a
target Hamming weight.

Key Pair. The public key is a matrix M = M(R) ∈ Fk×(n−k)
3 , where R ∈

F(n−k)×k
3 is a matrix and M(R) is defined row-wise by

row(M, 2i) = col(R, 2i) + col(R, 2i + 1)
row(M, 2i + 1) = col(R, 2i) − col(R, 2i + 1),

for 0 ≤ i < k−1
2 , and if k is odd, then row(M,k − 1) = −col(R, k − 1).

Signature. A signature sig = (salt, s) consists of an element s ∈ Fk
3 and a

random value salt. It defines a valid signature for a message msg and the public
key M = M(R), if and only if

|s| + |H(msg||salt) + Rs| = ω, (1)

where H is a hash function that maps to Fn−k
3 .

Verify. The verification algorithm checks whether Eq. (1) holds.

S-CEO. Given a public key M = M(R), any message msg, and a signature
sig = (salt, s), we pick a matrix R such that Rs = Rs but R �= R, for instance
by extending s to a basis and defining R on the other basis vectors randomly.
Then, Eq. (1) holds trivially with R. Setting M = M(R) yields the new public
key.

Hash Your Keys Before Signing 315

S-DEO. Given a public key M = M(R), any message msg, and a signature
sig = (salt, s), we randomly pick a new message msg �= msg and compute
h := H(msg||salt). We pick a vector t ∈ Fn−k

3 such that |h − t| = ω − |s| =: ωs,
which can be done by choosing a random t′ with hamming weight ωs and setting
t = h− t′. Then we choose R such that Rs = t and set M = M(R). We find that
Eq. (1) is satisfied, indeed, |s| + |h − Rs| = |s| + |t′| = ω.

MBS. The MBS security of Wave can be attacked as follows. First, we pick
random messages msg �= msg, and a random salt. We compute h = H(msg||salt)
and h = H(msg||salt). Then we need to find t ∈ Fn−k

3 , such that

ω′ := |h − t| = |h − t| < ω.

Indeed, if we have found such a t, we define s such that |s| = ω − ω′ and R such
that Rs = t. Then, both messages are verified with the signature sig = (salt, s)
under the public key M = M(R), as Eq. (1) is satisfied for both.

A simple but tedious combinatorial construction shows that such a t can be
found in almost all cases.3

wNR. The attack against the S-CEO security of Wave applies to wNR, as no
information about the message is required.

Remark 4. For Wave, we can show that applying the PS-3 transform does not
suffice to achieve full BUFF security. Let us suppose that the value h in the signa-
ture is set to H(msg||pk||salt), and a signature (salt, s) is valid, if Eq. (1) holds
with this h. Then, the resulting signature scheme is not MBS secure. Indeed, we
begin by picking a matrix R from which pk is deduced and for which we know an
efficient decoding algorithm G. We set salt randomly. We pick random messages
msg and msg and compute h = H(msg||pk||salt) and h(msg||pk||salt). As in the
attack against MBS security for the original Wave scheme, we can find t such
that ω′ := |h − t| = |h − t|. We set d = ω − ω′ and run G with target vector t
and Hamming weight d to obtain s. Then, sig = (salt, s) is a valid signature
for both msg and msg under the public key pk.

Despite this, the PS-3-transformed version of Wave does satisfy S-CEO,
S-DEO, and wNR.

4 Isogeny-Based Schemes

In this section, we analyze the BUFF security of SQIsign [10], the sole isogeny-
based signature scheme submitted to the NIST standardization process. We first
give some background and notation that we require for the analysis.

3 A Python script is provided online.

316 T. Aulbach et al.

Fig. 5. The SQIsign protocol with three phases: commitment ϕcom, challenge ϕchall,
and response ϕresp.

Background and Notation. For elliptic curves E,E′ over a finite field Fq, an
isogeny is a non-constant morphism ϕ : E → E′ such that ϕ(∞E) = ∞E′ for the
respective points at infinity on E resp. E′. A subgroup G of order m uniquely
(up to composition with isomorphisms) determines an isogeny ϕ : E → E/G,
where the kernel ker(ϕ) = G and the degree of ϕ is m. Such a subgroup can be
described by a single point K ∈ E of order m, i.e., G = 〈K〉. SQIsign uses a
compressed representation of subgroups: Given a deterministic basis (P,Q) of
the m-torsion subgroup E[m], we can represent a suitable point as K = P +[s]Q
or K = [s]P + Q for an s ∈ Z/mZ. Hence, given s and a decision bit b ∈ {0, 1},
we can compute K = P + [s]Q, where b indicates whether P and Q need to
swapped prior to computing K. All occurring values s and b (with indices) will
be of this form, and we refer to this computation as DecompressP,Q(s, b), where
b can be omitted if no point swap is necessary. Each isogeny ϕ : E → E′ has
a unique dual isogeny ϕ̂ : E′ → E such that the composition ϕ̂ ◦ ϕ resp. ϕ ◦ ϕ̂
is the multiplication-by-m map on E resp. E′. We will only use supersingular
curves E over Fp2 for a large prime p.

4.1 SQIsign

SQIsign applies the Fiat-Shamir transform to an identification protocol based
on isogenies. Following Fig. 5, we define a public starting curve E0, and the
prover computes a secret isogeny ϕA : E0 → EA, where EA is published. The
prover commits to the codomain E1 of the commitment isogeny ϕcom : E0 → E1,
followed by the challenger providing a challenge isogeny ϕchall : E1 → E2. The
prover answers with an isogeny ϕresp : EA → E2. For the computation and
the zero-knowledge property of ϕresp we refer to the SQIsign specification [10].
The standard Fiat-Shamir transform turns this protocol into a non-interactive
signature scheme. We note that, due to the exponentially large challenge space,
a single round of the protocol suffices.

Key Pair. For a fixed supersingular curve E0 over Fp2 of known endomorphism
ring, a secret key is an isogeny ϕA : E0 → EA. The public key is given by EA.

Signature. A signature consists of compressed descriptions of the isogenies ϕresp
and ϕchall. For fixed positive integers e, f, g, n with e = nf it is of the form

sig = (b, s(1), . . . , s(n), r, b2, s2, b3, s3),

Hash Your Keys Before Signing 317

Fig. 6. Verification algorithm of SQIsign.

where b, b2, b3 ∈ {0, 1}, s(j), s2 ∈ Z/2fZ, s3 ∈ Z/3gZ, and r ∈ Z/2f3gZ, following
the notation from [13].

Verify. The verification algorithm, described in Fig. 6, consists of three parts.
The most relevant part for the following discussion is the recomputation of
ϕresp : EA → E2 through a chain of n isogenies ϕ(j) of degree 2f . Each isogeny
ϕ(j) is determined by a kernel generator K(j). We compute these K(j) by deter-
ministically sampling a basis (P (j), Q(j)) of E(j)[2f] through FindBasis if no
point is given resp. CompleteBasis if Q(j) is given, and running Decompress
with input s(j) (and b for j = 1). In particular, for j > 1, only P (j) is sampled,
while we get Q(j) = ϕ(j−1)(Q(j−1)), such that Q(j) generates the kernel of the
dual isogenies ϕ̂(j−1). Therefore, we compute ϕresp through the following chain:

EA = E(1) E(2) E(3) · · · E(n+1) = E2
ϕ(1) ϕ(2) ϕ(3) ϕ(n)

In the second step, summarized in DecompressChallenge, we recompute the
dual ϕ̂chall : E2 → E1 of order Dchall = 2f3g using FindBasis and Decompress
with input (b2, s2, b3, s3). For a deterministically sampled point Q′′ ∈ E2 of order
Dchall that is linearly independent of ker(ϕ̂chall), it computes Q′ ← ϕ̂chall(Q′′).
Furthermore, this function verifies that the composition ϕ̂chall ◦ ϕresp is cyclic.

The final step verifies that [r]Q′ corresponds to the kernel generator of the
challenge isogeny, i.e. [r]Q′ = H(msg, E1). The function H is defined to first
compute a = H(msg, j(E1)) ∈ Z/DchallZ for a hash function H and the j-invariant
j(E1), and output R1 + [a]S1 with a deterministic basis (R1, S1) of E1[Dchall].

S-CEO. Let sig be a valid signature for pk = EA and msg, i.e., Verify(pk, msg,
sig) = 1. Our aim is to construct a public key pk = EA′ �= EA such that
Verify(pk, msg, sig) = 1. This amounts to finding EA′ for which the compression
in sig describes an isogeny ψresp : EA′ → E2 that has the same codomain E2.

318 T. Aulbach et al.

In this case, the second and third step of the verification are the same as when
running Verify(pk, msg, sig).

A naive way to find such a EA′ is to compute random 2e-isogenies ψ′ : E2 →
EA′ and check if (b, s(1), . . . , s(n)) generates an isogeny ψresp : EA′ → E2 mapping
to the correct E2. However, the fact that we know several curves on the path
between EA and E2 from sig allows for an easier S-CEO attack as follows:

1. Find ψ̃(1) : E(2) → EA′ of degree 2f with FindBasis and Decompress(s(1), b)
generating the 2f -isogeny ψ(1) : EA′ → E(2) with the desired codomain.

2. Ensure that the following 2f -isogenies satisfy ψ(j) = ϕ(j) for j > 1, and hence
ψresp maps to E2.

Explicitly generating EA′ in the first step seems infeasible, hence we resort to
a search approach, going through all 2f suitable isogenies ψ̃. We require that
the deterministic basis (P̃ , Q̃) of EA′ [2f] and b, s(1) ∈ sig construct a suitable
kernel generator K̃ such that ψ(1) : EA′ → EA′/〈K̃〉 = E(2). Since there are
3 · 2f−1 isogenies of degree 2f starting from EA′ and sig determines exactly one
of these, the success probability for this step, given sig, is 1/(3 · 2f−1). Thus,
we can expect to find a suitable curve EA′ with a probability of roughly 50%.

Assuming we found a suitable EA′ , we obtain a basis (P (2), Q̃(2)) of E(2)[2f],
where Q̃(2) = ψ(1)(Q̃). In contrast, a verification starting from EA obtains the
basis (P (2), Q(2)) with the same sampled point P (2), but Q(2) = ϕ(1)(Q(1)). Since
the dual isogenies of ϕ(1) and ψ(1) are not equal, we have Q̃(2) /∈ 〈Q(2)〉. For the
second attack step, we require for j > 1 that

〈P (j) + [s(j)]Q(j)〉 = 〈P (j) + [s(j)]Q̃(j)〉.

All following steps trivially succeed if s(j) = 0 for all j > 1. Furthermore, if
[2k]Q(2) = [2k]Q̃(2) for 0 < k < f , we succeed if s(j) ≡ 0 mod 2k for all j > 1.
Even though the attack can only succeed if the signature values s(j) for j > 1
have a very special shape, it appears infeasible to enumerate all such possibilities,
and compute an explicit success probability.

Instead, we implemented this attack using the AprèsSQI software [13], which
closely follows the NIST submission of SQIsign.4 For reduced parameters that
allow feasible running times, i.e., a 36-bit prime p and f ∈ {7, 8, 9, 10}, our
implementation suggests that the probability of a given (s(1), . . . , s(n)) to be
vulnerable to this attack is below 2−f . If we conjecture that this behavior scales
to the SQIsign parameter sizes featuring f = 75, 97, 145 for NIST-I/III/V, this
means that for each given sig, the S-CEO attack has a search complexity of
O(2f) and success probability of 2−f . Although we can conjecture that this
attack does not break S-CEO security, we emphasize that better attack avenues
might exist, and our probability estimations can only be viewed as a lower bound.

Remark 5. The probability and effort for a possible attack depend on the size
of f . E.g., the SQIsign variant AprèsSQI [13] proposes much larger values of f ,
which push the success probability below the probability of breaking EUF-CMA.
4 The implementation is available online.

Hash Your Keys Before Signing 319

S-DEO. In contrast to S-CEO, we additionally need to find a message msg �= msg
such that Verify(pk, msg, sig) = 1. Thus, we can only repeat the S-CEO attack
above if the challenge curves E2 resp. E′

2 when signing msg with pk resp. msg
with pk are equal, requiring H(msg, E1) = H(msg, E1), and therefore a hash
collision of H modulo Dchall.

If H(msg, E1) �= H(msg, E1), i.e. E′
2 �= E2, this attack is not available, hence

we can only pick a random public key pk. During verification, after recomputing
ψresp and running DecompressChallenge, we end up at E′

1 �= E1, such that
the check [r]Q′ = H(msg, E′

1) only succeeds with negligible probability 1/Dchall.
Therefore SQIsign is S-DEO-secure.

MBS. Assume that we have a valid signature sig for pk and msg, i.e., Verify(pk,
msg, sig) = 1, and a message msg �= msg such that Verify(pk, msg, sig) = 1. In
both verification runs, the first and second step that recompute ϕresp and ϕ̂chall
are equal. In the last step, both runs compute Q′ ← ϕ̂chall(Q′′) and verify that
[r]Q′ = H(msg, E1) resp. [r]Q′ = H(msg, E1). However, if verification for msg and
msg succeeds, we have H(msg, j(E1)) = H(msg, j(E1)), yielding a hash collision of
H modulo Dchall. Since this probability is negligible, SQIsign is MBS-secure.

wNR. Given a public key pk and a signature sig for an unknown message msg,
an attacker has to find a public key pk �= pk and a signature sig such that
Verify(pk, msg, sig) = 1. To construct pk and sig, we run the first step of
Verify(pk, msg, sig) to obtain the curve E2. We choose a random 2f -isogeny
ψ̂(n) : E2 → Ẽ(n) such that the composition ϕchall ◦ ψ̂(n) is cyclic. Starting
from j = n − 1 in decreasing order, we then construct random 2f -isogenies
ψ̂(j) : Ẽ(j+1) → Ẽ(j) such that the composition ψ̂ = ψ̂(1) ◦ · · · ◦ ψ̂(n) is cyclic. For
each of the ψ̂(j), we pick a point R ∈ Ẽ(j+1) of order 2f such that R is linearly
independent of ker(ψ̂(j)). Therefore, K(j) = ψ̂(j)(R) generates the kernel of the
dual isogeny ψ(j) of ψ̂(j).

For the signature sig we use ψresp = ψ(n) ◦ · · · ◦ ψ(1) and the public key
pk = EA′ = Ẽ(1). For a valid signature the kernel generator points K(j) have to
be represented in a compressed form. To compute this representation, we follow
the approach of SQIsign. For the deterministic basis (P̃ (1), Q̃(1)) this allows us
to find s̃(1) to get a suitable kernel generator P̃ (1)+[s̃(1)]Q̃(1)) for ψ(1), potentially
swapping P̃ (1) and Q̃(1) by setting b̃ = 1, and b̃ = 0 otherwise. The following
steps proceed analogously, computing s̃(j) through discrete logarithms without
requiring to swap points.

Since E2 is the codomain of ψ and ϕ̂chall ◦ψ is cyclic by construction, we can
reuse the values r, b2, s2, b3, s3 for the second and third step of the verification of
sig. Hence, we have constructed a public key pk �= pk and signature sig �= sig of
the form sig = (̃b, s̃(1), . . . , s̃(n), r, b2, s2, b3, s3) such that Verify(pk, msg, sig) =
1 without requiring knowledge of msg.

Remark 6. For SQIsign, the PS-3 transform suffices to achieve full BUFF
security. In this case, the signer computes the challenge generator through

320 T. Aulbach et al.

H(msg, pk, E1), which uses the hash value a = H(msg, pk, j(E1)) ∈ Z/DchallZ as
described above. This means that r ∈ sig, which satisfies [r]Q′ = H(msg, pk, E1)
for a deterministic point Q′, can be viewed as an encoding of the hash value
H(msg, pk, j(E1)), resembling the BUFF transform.

In this case, the problem to solve S-CEO is equivalent to the description
of C-DEO above. For wNR, the PS-3 transform implies that the curve E2
in Verify(pk, msg, sig) is not a valid challenge curve in Verify(pk, msg, sig).
Attacking wNR thus requires to pick pk, sig and hope for [r]Q′ = H(msg, E′

1)
to hold for the chosen r, which has negligible success probability.

5 Lattice-Based Schemes

The lattice-based schemes we deal with in this section can be divided into two
groups: Raccoon and Haetae, which are closely related to Dilithium; Hawk,
HuFu, and Squirrels, which follow a GPV-like approach. For Raccoon and
Haetae, we give an outline of the analysis from [14] in Sect. 5.4. The cases of
Hawk (Sect. 5.1), HuFu (Sect. 5.2), and Squirrels (Sect. 5.3) are quite differ-
ent, and we do a hands-on analysis. The results turn out to differ case by case.
While Hawk achieves full BUFF security and HuFu only lacks wNR security,
Squirrels is insecure with respect to all notions. We remark that a PS-3-
transformed HuFu would satisfy all BUFF security notions. Finally, Squirrels
is vulnerable even after the PS-3 transform and only the full BUFF transform
could achieve all notions.

5.1 HAWK

Hawk applies a GPV-like approach. It uses module lattices and its security is
based on the One More Approximate Shortest Vector problem [18].

Key Pair. Consider the number field Kn = Q[X]/(Xn+1) and its ring of integers
Rn = Z[X]/(Xn + 1) for m ∈ N and n = 2m. The secret key sk is a matrix

B =
(

f F
g G

)
∈ GL2(Rn),

and the public key pk = (q00, q01) ∈ R2
n is computed from

Q = B∗B =
(

q00 q01
q10 q11

)
.

The matrix Q induces the norm ‖·‖Q : K2
n → Q, f �→

√
1
nTr(f∗Qf). Since

Q = B∗B, this norm fulfills ‖f‖Q = ‖Bf‖ for all f ∈ K2
n.

Signature. Hawk signatures consist of sig = (salt, s1) for s1 ∈ Rn.

Hash Your Keys Before Signing 321

Fig. 7. Verification algorithm of Hawk.

Verify. Given a public key pk = (q00, q01), a message msg, and a signature
sig = (salt, s1), the verification algorithm is shown in Fig. 7.

S-CEO. Given a public key pk = (q00, q01), a message msg, and a signature
sig = (salt, s1) such that Verify(pk, msg, sig) = 1, we need to find a public
key pk �= pk with Verify(pk, msg, sig) = 1. Assuming H to be a random oracle,
choosing pk �= pk implies h1 �= h1 and hence w1 �= w1. In order for an S-CEO
attacker to be successful, ‖(0, w1)‖Q ≤ ‖(w0, w1)‖Q ≤ ϑ must hold. However,
as w1 is random in Rn, the probability for this is negligible. Indeed, for the
parameters in Hawk, a θ-ball is of size 231·3, while the space of possible values is
(much larger than) 231·256. So a random value will be in a θ-ball with probability
about 2−31·253.

S-DEO. Given a public key pk, a message msg, and a signature sig = (salt, s1)
such that Verify(pk, msg, sig) = 1, we need to find pk �= pk and msg �= msg
with Verify(pk, msg, sig) = 1. As the message is only used in the computation
of h, the analysis works completely analogously as for S-CEO.

MBS. One needs to find a public key pk, distinct messages msg �= msg, and
a signature sig = (salt, s1), s.t. Verify(pk, m, sig) = 1 for m ∈ {msg, msg}.
Assume one can find such pk, msg, msg, and sig. Then, by definition of the
verification, ‖w‖Q, ‖w‖Q ≤ ϑ and hence ‖w−w‖Q ≤ 2ϑ hold. Using the definition
of B and s0 = h0

2 − q01
q00

(
h1
2 − s1

)
+ ε for ε ∈ [− 1

2 ,
1
2) (and the analogue for s0),

we obtain

‖w − w‖Q = ‖B(w − w)‖ =
∥∥∥∥
(

f(h0 − h0 − 2s0 + 2s0) + F (h1 − h1)
g(h0 − h0 − 2s0 + 2s0) + G(h1 − h1)

)∥∥∥∥

=

∥∥∥∥∥∥

⎛
⎝(h1 − h1)

(
q01
q00

f − F
)

+ f(ε + ε)

(h1 − h1)
(

q01
q00

g − G
)

+ g(ε + ε)

⎞
⎠

∥∥∥∥∥∥
.

The probability for this to be smaller than 2ϑ is negligible as q01
q00

f − F and
q01
q00

g − G are fixed values, while h1 − h1 and ε + ε are random. Hence, the
advantage of any attacker against MBS-security of Hawk is similar to the S-
CEO advantage.

322 T. Aulbach et al.

wNR. Given a public key pk and a signature sig = (salt, s1) to an unknown
message msg, one has to find pk �= pk and a signature sig = (salt, s1) (which
may be the same as the given signature) such that Verify(pk, msg, sig) = 1.
Independent of the choice of the public key pk �= pk, the value of h is unknown
(as msg is) and as in the S-CEO analysis w1 �= w1 holds. Hence, it is infeasible
to choose s1 in a way such that w = h − 2s is small in the Q-norm. Indeed, s1
must be chosen so that 2s is in the Q-norm ball about h, which amounts to the
same probability as computed in the proof of S-CEO.

Remark 7. The Hawk specification [9] states that the design facilitates an appli-
cation of the full BUFF transform. This is the case as the Hawk signature genera-
tion already computes M = H(msg||H(pk)), which—in the full BUFF transform—
needs to be appended to the signature. In the given form, Hawk can be seen to
apply the PS-3 transform, which does not in general guarantee the BUFF prop-
erties. However, our analysis shows that in the concrete case of Hawk, BUFF
security is fulfilled for this weaker transform, i.e., an application of the full BUFF
transform is not necessary, which avoids appending the hash value to a signa-
ture. This is especially interesting given the fact that Hawk is based on Falcon.
Falcon does not use the public key to construct the target value and was proven
to be S-CEO, S-DEO and wNR-insecure.

5.2 HuFu

HuFu applies the GPV approach. It uses unstructured lattices and is based on
the short integer solution and learning with errors problems.

Key Pair. Consider a distribution χ over Z, m,n ∈ N, and Q = pq for p, q some
powers of 2. The secret key is a tuple of matrices sk = (S,E,L22, L32, L33) for
(S,E) ← χn×m × χm×m and L22 ∈ Rn×n, L32 ∈ Rm×n, and L33 ∈ Rm×m. The
public key is a pair pk = (seedÂ, B = p · I − (ÂS + E)) for Â ∈ Zm×n

Q generated
using seedÂ.

Signature. The signature sig of a message msg consists of a tuple (salt, s) for
s = Compress(x1, x2), where x1 ∈ Zn and x2 ∈ Zm.

Verify. Given a public key pk = (seedÂ, B), a message msg, and a signature
sig = (salt, s), the verification algorithm is shown in Fig. 8.

S-CEO. Given a public key pk = (seedÂ, B), a message msg and a signature
sig = (salt, s) such that Verify(pk, msg, sig) = 1, we need to find a second
public key pk = (seedÂ, B) such that Verify(pk, msg, sig) = 1. We choose
seedÂ = seedÂ, which expand to the same matrix Â. As (salt, s) is a valid
signature, we know that ||(x0, x1, x2)|| ≤ ϑ, where x0 = (u−Âx1−Bx2) mod Q.
Thus, if we find B s.t. x0 = x0, we obtain ||(x0, x1, x2)|| = ||(x0, x1, x2)|| ≤ ϑ,
which shows that S-CEO security is not given. In order to construct such a B,
first note that we can assume that there is at least one i such that x2,i �= 0, as

Hash Your Keys Before Signing 323

Fig. 8. Verification algorithm of HuFu. Note that (x0, x1, x2) denotes the vector
obtained from concatenating x0, x1, and x2 and || · || is the l2-norm.

otherwise one can trivially choose B �= B with the desired properties. Without
loss of generality, we assume x2,1 �= 0. Then we define B �= B as follows: b11 =
(b11 + x2,2), b12 = (b12 − x2,1), and bij = bij for all other i, j. It holds that
(Bx2)1 = (Bx2)1. Thus Bx2 = Bx2 as only the first row differs for B and B.
This implies x0 = x0.

S-DEO. Given a public key pk = (seedÂ, B), a message msg, and a signature
sig = (salt, s) s.t. Verify(pk, msg, sig) = 1, we need to find a second public
key pk �= pk and a second message msg �= msg s.t. Verify(pk, msg, sig) = 1.
We choose again seedÂ = seedÂ, which yield the same matrix Â. Further we
choose msg �= msg randomly and compute u and u. If we find B such that
x0 = u − Âx1 − Bx2 = 0 mod Q, we obtain ||(x0, x1, x2)|| ≤ ||(x0, x1, x2)|| ≤ ϑ.
Then, we have Verify(pk, msg, sig) = 1 for pk = (seedÂ, B), which gives an
attack against S-DEO security. A matrix B such that Bx2 = u − Âx1 can be
constructed if gcd(x2,i) = 1.5 As m ≥ 768, the coefficients of x2 ∈ Zm are
coprime with overwhelming probability given by ζ(m)−1 ≈ 1.

MBS. One needs to find a public key pk = (seedÂ, B), two distinct messages
msg �= msg, and a signature sig = (salt, s) such that Verify(pk, msg, sig) = 1
and Verify(pk, msg, sig) = 1. Assume, we have found pk, msg, msg, and sig =
(salt, s) with these properties. Then ||(x0, x1, x2)||, ||(x0, x1, x2)|| ≤ ϑ and hence
in particular ||x0||, ||x0|| ≤ ϑ. Observe that this implies ||u − u|| = ||u − (Âx1 −
Bx2) + (Âx1 − Bx2) − u|| = ||x0 − x0|| ≤ ||x0|| + ||x0|| ≤ 2ϑ. As u = H(msg, r)
and u = H(msg, r), the probability to find messages that yield u and u which are
close to each other is negligible (near-collision resistance of the hash function).6

wNR. Given a public key pk = (seedÂ, B) and a signature sig = (salt, s) to
an unknown message msg, one has to find another public key pk �= pk, and a
signature sig = (salt, s) such that Verify(pk, msg, sig) = 1. To do this, we can

5 If gcd(x2,i) = 1, then 〈x2〉 is saturated. Equivalently, Zm/〈x2〉 is free, hence x2 is
part of a basis, on which B can be defined according to the requirement.

6 Near-collision resistance is a stronger form of collision resistance, where it is even
hard to find inputs whose hash values are close (with respect to some norm).

324 T. Aulbach et al.

Fig. 9. Verification algorithm of Squirrels.

proceed exactly as we did for S-CEO. Note that for the attack it is not necessary
to know the message and we can choose sig = (salt, s) = (salt, s) = sig.
Remark 8. We showed that HuFu only achieves MBS security. We observe, how-
ever, that by applying the PS-3 transform, i.e., changing the computation of
u = H(msg, salt) to u = H(msg, pk, salt), full BUFF security can be achieved.
This is the case, as the above change prevents an attacker to control x0 by their
choice of pk—any change to pk also changes the value of u and hence h in an
uncontrollable way. Using this, S-DEO, S-CEO, and wNR security can be proven,
while the proof for MBS security given for unmodified HuFu still applies.

5.3 Squirrels
Squirrels incorporates a GPV-like approach. It is based on unstructured lat-
tices and uses lattices modulo various distinct primes simultaneously. The public
key is composed of a single vector which is used to check if a target is contained
in the lattice modulo each of the primes. r,s Let n and q be positive integers.
The target determinant is denoted by Δ =

∏
p∈PΔ

p, for PΔ a set of primes
in [230, 231]. The hash function H maps to [0, . . . , q − 1]n−1 × {0} viewed as an
element in Zn with last component being 0.

Key Pair. The Squirrels secret key consists of a matrix B ∈ Zn×n, which, by
design, has a Hermite normal form

HNF(B) =
(

In−1 vT
i

0 Δ

)
.

The resulting vector v := (vi)i=1,...,n−1 is the public key.

Signature. The signature of a message msg for a public key v consists of (salt, s)
where salt is a random string and s = Compress(s′) with s′ ∈ Zn.

Verify. Given a public key pk = v, a message msg, and a signature sig =
(salt, s), the verification algorithm is described in Fig. 9.

In the analysis below, we write c′ := (c1, . . . , cn−1)T for c = (c1, . . . , cn)T

and 〈·, ·〉 for the standard inner product. Note that in the search for elements
v ∈ Zn−1 that satisfy a certain algebraic condition modulo Δ, it suffices to give
v mod p for each p ∈ PΔ, by making use of the Chinese Remainder Theorem.
We make use of this argument, without explicitly stating it again.

Hash Your Keys Before Signing 325

S-CEO. Given a public key pk = v, a message msg and a signature sig =
(salt, s) such that Verify(pk, msg, sig) = 1, we need to find a distinct public
key pk = v such that Verify(pk, msg, sig) = 1. This translates to finding v,
which is in the kernel of 〈c′, ·〉 − cn : Fn−1

p → Fp for all p ∈ PΔ. Note that
dimFp

(ker(〈c′, ·〉) − cn) = n − 2. Hence, for each p one can find an element vp

such that 〈c′, vp〉 − cn = 0 mod p. Then, pk = v is given by the vp.

S-DEO. Given a public key pk = v, a message msg, and a signature sig =
(salt, s) such that Verify(pk, msg, sig) = 1, we need to find a second public key
pk = v �= v and a second message msg �= msg such that Verify(pk, msg, sig) = 1.
For this, we choose a random msg �= msg and compute c = s′ + H(msg||salt).
Hence it is left to find v such that 〈v, c′〉 − cn = 0 mod p holds for all p ∈ PΔ.
For this, the same argument as for the S-CEO attack applies.

MBS. One needs to find a public key pk = v, two distinct messages msg �=
msg, and a signature sig = (salt, s) such that Verify(pk, msg, sig) = 1 and
Verify(pk, msg, sig) = 1. For this, we choose s′ such that ‖s′‖2 < �ϑ2� holds
and compute s = Compress(s′). We then set sig = (salt, s) for some randomly
chosen salt. Further we consider two random messages msg �= msg and compute
c = s′ + H(msg||salt) and c = s′ + H(msg||salt). Hence it is left to find v such
that 〈v, c′〉 − cn = 0 mod p and 〈v, c′〉 − cn = 0 mod p holds for all p ∈ PΔ.
Consider for p ∈ PΔ the map

f : Fn−1
p → F2

p, x �→ (〈x, c′〉, 〈x, c′〉)

and observe that dimFp
(ker(f)) = n − 3. Hence, we can find vp with the desired

properties, which constitutes v.

Remark 9. In the Squirrels specification it is claimed that MBS security is
fulfilled, which the above disproves. While their claim is based on the similarity to
Falcon, the MBS security of Falcon still holds. The subtle differences between
Squirrels and Falcon are thus important, when it comes to BUFF security.

wNR. Given pk = v, and a signature (salt, s) which verifies an unknown
message msg, we can find a new public key pk = v and a new signature
(salt, s) that verifies msg as follows. Let s′ = Decompress(s). We can assume
that with large probability, s′

n is divisible by a prime � which is not in PΔ.
E.g., if s′

n is close to uniform, it will be even with about 0.5 probability. In
this case, we set s′

n := �−1s′
n. Further, we set vp := �−1vp for each p

and let v ∈ Zn−1 be the corresponding vector over Z. Choosing s′
i = s′

i for
i = 1, . . . , n − 1, and salt = salt yields a new public key v and signature
(salt, s), with s = Compress(s′) that verifies the unknown message. Indeed,
the hash h did not change by the procedure and for each p ∈ PΔ, we have∑n−1

i=1 vi,pci,p = �−1 ∑n−1
i=1 vi,pci,p = �−1cn,p = s′

n = cn,p using that hn = 0.
Thereby the verification succeeds.

326 T. Aulbach et al.

Remark 10. Modifying Squirrels to incorporate the PS-3 transform (i.e.,
replacing h ← H(msg||salt) by h ← H(msg||salt, pk)) does not suffice to achieve
full BUFF security. This is the case, as we can still find S-CEO/S-DEO attacks
that are successful with probability greater than 1

231 : As above we can reduce to
the case of a single p ∈ PΔ. While the above change to the scheme prevents an
attacker to choose v in the kernel of 〈c′, ·〉− cn : Fn−1

p → Fp, the probability that
this holds for a random v is equal to 1

p ≥ 1
231 (finding v by randomly hitting an

element from a subset of size pn−2 contained in a set of size pn−1).

5.4 Further Lattice Candidates

The remaining NIST candidates based on lattices are Haetae and Raccoon.
Both use the Fiat-Shamir with aborts framework and are based on the module
versions of the learning with errors and short integer solution problems. Both
schemes are similar to Dilithium and their BUFF analyses are analogous to
the Dilithium analysis in [14]. In short, Haetae signs the hash of public key
and message and appends a hash value generated (among other inputs) from
public key and message to the signature. Thus, Haetae can be considered to
use the BUFF transform, and if we assume the used hash function to be collision-
resistant and φ-non-malleable (as defined in [14]), we obtain BUFF security by
[14, Theorem 5.5]. This is also true for Raccoon, which is structurally very sim-
ilar to Dilithium and hence can be viewed to implement the BUFF transform.

6 Multivariate Schemes

In this section we analyze the signatures that belong to the family of multi-
variate (MV) schemes. After introducing the foundations and basic properties,
we will give a short generic BUFF analysis, i.e., present results that hold for
(nearly) all MV schemes under consideration. After this, we turn to the scheme-
specific analyses: Uov, which is the basis of all remaining candidates, is treated
in Sect. 6.1. This is followed by the analysis of Mayo in Sect. 6.2. While Mayo is
based on Uov, its polynomials are constructed in a way that makes the analysis
more involved. We present the details to show that despite the complex struc-
ture of the public key, Mayo dose not achieve full BUFF security. Both Uov
and Mayo—and all MV schemes considered in this paper, except Prov—fulfill
MBS as the only BUFF notion. The analysis of Prov, which achieves full BUFF
security, follows in Sect. 6.3. For the remaining schemes Qr-Uov, Snova, Tuov,
and Vox, the BUFF analyses are similar to the one given for Uov. We provide
a short outline for each scheme in Sect. 6.4.

Background and Notation of MV Schemes. The main object in multivari-
ate cryptography is a multivariate quadratic map P : Fn

q → Fm
q , which consists

of m homogeneous quadratic polynomials (p(1)(x), . . . , p(m)(x)) in n variables
x = (x1, . . . , xn). The coefficients of each of these quadratic polynomials p(k)(x)

Hash Your Keys Before Signing 327

can be stored in a matrix P (k), where the (i, j)-th entry (p(k))i,j represents the
coefficient of the monomial xixj . Thus, p(k)(x) can be evaluated as x�P (k)x.

The task of finding a preimage s ∈ Fn
q for a given target vector t ∈ Fm

q

under a given multivariate quadratic map P is hard in general, as it amounts to
solving a system of multivariate quadratic equations, known as the MQ-Problem.
Consequently, a trapdoor needs to be included in the map P, that allows to find
such s ∈ Fm

q with P(s) = t, which constitutes the signature sig. The precise
realization of this trapdoor varies from scheme to scheme.

Generic BUFF Analysis of MV Schemes. In the following, we provide
the parts of the BUFF analysis that are the same for (nearly) all multivariate
schemes under consideration—namely the MBS proof and wNR attack. The
arguments for these two notions will hence not be repeated in the scheme-specific
sections. Furthermore, we provide a generic result on the BUFF security of the
considered MV schemes using the PS-3 transform.

MBS Security for MV Schemes. Since the target vector t ∈ Fn
q is computed

as the hash of (at least) the message msg, multivariate schemes naturally satisfy
MBS. It is not possible that a single signature sig = s verifies different messages
msg �= msg, because H(msg||·) = P(s) = H(msg||·) would imply a collision of H.

wNR Attack Against MV Schemes. For an wNR attack, one is given a public
key pk, from which we derive the public map P, and a signature sig = s to
an unknown message msg, and has to find pk �= pk and sig = s such that
P(s) = H(msg||·) = P(s). Firstly, note that P(s) = t = H(msg||·) can be computed
without knowing msg, as s is a valid signature. Next, we generate a key pair
(sk, pk) with pk �= pk and use it to sign the target vector t. This results in a
signature s that fulfills P(s) = t = H(msg||·) = P(s).

Note that this attack is not applicable for Prov, as it hashes the whole
public key alongside the message, which prevents us from being able to compute
the target before choosing the second public key pk. We give a proof for wNR
security of Prov in Sect. 6.3. For all other schemes under consideration the above
attack works, however, for Vox and Snova some extra care is necessary, as both
schemes hash parts of the public key alongside the message. In Vox the public
key consists of a seed SeedPub and the quadratic map Pub, which is generated
using SeedPub. By modifying the seed for the secret key while keeping SeedPub
the same, we get a new quadratic map Pub �= Pub. The new secret key is known
to the adversary and can be used to sign to the same target. In Snova the public
key is of the form (spublic, (P 22

i)i∈[m]). Here, spublic is a seed used to generate
the remaining components of the public map P, which is done in the signing
and verification algorithm. Choosing spublic = spublic and sk �= sk guarantees
(P 22

i)i∈[m] �= (P 22
i)i∈[m] and yields a key pair (sk, pk) for which we can apply

the above attack.
BUFF Security Using PS-3 Transform. Our analysis reveals that from the family
of multivariate schemes only Prov satisfies full BUFF security. The main design
feature that contributes to this is the hashing of the public key alongside the

328 T. Aulbach et al.

message. As all multivariate schemes considered in this paper verify signatures
by comparing H(msg, ·) to P(s), we can achieve BUFF security for all of them, by
adding the complete7 public key alongside the message into the hash function. To
prove this, the same arguments as for Prov apply—note that in the analysis of
Prov, we use little scheme-specific details except for the size of the domain of P.
This approach is very similar to applying the PS-3 transform, except for the fact
that an application of PS-3 would result in an additional hash computation (see
Fig. 2) that can be avoided by modifying the existing computation of H(msg||·)
instead. In the following we write PS-3, but it is understood that the simpler
modification described above is applied if possible.

Proposition 11. For Σ ∈ {Mayo, Qr-Uov, Snova, Tuov, Uov, Vox} and H
a random oracle, the transformed scheme PS-3[H, Σ] fulfills BUFF security.

6.1 UOV

The unbalanced oil and vinegar (Uov) signature scheme is the oldest candidate
and the foundation of the remaining multivariate schemes, [26,30]. The trapdoor
information in Uov is a secret linear m-dimensional subspace, the so-called oil
space O, which is annihilated by the public key map P, i.e., P(o) = 0 for all
o ∈ O. The dimension of the oil space m needs to equal the number of quadratic
equations and the number of variables n usually satisfies n ≈ 2.5m. We introduce
the algorithms of classic Uov here, instead of the compressed versions. The
analysis holds for all variants similarly, as we argue below.

Key Pair. The public key pk = {Pi}i∈[m] consists of m matrices

Pi =
(

P
(1)
i P

(2)
i

0 P
(3)
i

)
,

where P
(1)
i ∈ Fv×v

q , P
(2)
i ∈ Fv×m

q and P
(3)
i ∈ Fm×m

q . Here, the matrices P
(1)
i and

P
(2)
i are generated randomly from a seed and P

(3)
i is computed via

P
(3)
i = −O�P

(1)
i O − O�P

(2)
i ,

with a randomly generated oil space O ∈ Fv×m
q .

The secret key sk = (seedsk, O, {P (1)
i , Si}i∈[m]) consists of a seed seedsk, the

oil space O, a part of the public key matrices {P (1)
i }i∈[m], and some auxiliary

matrices {Si}i∈[m] needed for signing, given by Si = (P (1)
i + P

(1)�
i)O + P

(2)
i .

Signature. The signature is given by sig = (s, salt), containing a vector s ∈ Fn
q

and a random salt.

Verify. Given a public key pk = (P (1)
i , P

(2)
i , P

(3)
i), a message msg, and a signature

sig = (s, salt), the verification algorithm is shown in Fig. 10.
7 Vox and Snova hash parts of the public key, which is insufficient for BUFF security.

Hash Your Keys Before Signing 329

Fig. 10. Verification algorithm of Uov, Mayo, and Prov. Recall that the public map
P consists of m homogeneous quadratic polynomials (p(1)(x), . . . , p(m)(x)), and can be
computed from P1, . . . , Pk using the relation pi(x) = x�Pix. For Mayo the larger map
P∗ is used, which can be computed from P as described in Eq. (2). Lastly, note that
E(·) is used as an abbreviation for Expand(·).

S-CEO. Given a public key pk, a message msg, and a signature sig = (s, salt)
such that Verify(pk, msg, sig) = 1, we need to find a second public key pk �=
pk such that for the corresponding public key map P it holds that P(s) =
H(msg||salt). Let p

(k)
i,j be the (i, j)-th entry of the public key matrix Pk coming

from pk. We define p
(k)
i,j , the coefficients of P k from pk as p

(k)
i,j , except for the

following adjustment. We pick an arbitrary i ∈ [v + 1, n − 1] and change p
(k)
i,i

and p
(k)
i+1,i+1 s.t. p

(k)
i,i s2

i + p
(k)
i+1,i+1s

2
i+1 = p

(k)
i,i s2

i + p
(k)
i+1,i+1s

2
i+1. Keeping all other

coefficients, we get P k(s) = Pk(s) for all k, hence verification succeeds for pk.

S-DEO. Given a public key pk, a message msg, and a signature sig = (s, salt)
such that Verify(pk, msg, sig) = 1, we need to find a second public key pk �= pk
and a second message msg �= msg such that P(s) = h = (hk) = H(msg||salt).
We take some index l ∈ [v + 1, n], with sl �= 0. For each k ∈ [m], set pk

i,i =
(hk − ∑

i<j,(i,j) �=(l,l) pk
i,jsisj)/(s2

l). Then we found P with P(s) = h.

Variants. The statements also hold for the compressed variants pkc and pkc+skc.
For these, the public key does not consist of the matrices {Pi}i∈[m], but only of
the submatrices {P (3)

i }i∈[m] and a seed that is used to generate {P (1)
i }i∈[m] and

{P (2)
i }i∈[m]. The results of our analysis only require a change of the P

(3)
i , so that

the attacks work for the compressed versions as well.

330 T. Aulbach et al.

6.2 MAYO
In Mayo, the public key map P has the same structure as in Uov, but it is
publicly whipped up to a k-fold larger map P∗ : Fkn

q → Fm
q via

P∗(s1, . . . , sk) =
k∑

i=1
EiiP(si) +

k∑

i=1

k∑

j=i+1
EijP ′(si, sj), (2)

where Eij ∈ Fm×m
q are system parameters and P ′ is the bilinear map associated

to P, i.e., component-wise P ′
l (si, sj) = s�

i (Pl + P�
l)sj , for each l. The benefit

of this approach is a smaller public key size at the expense of a slightly larger
signature and an additional security assumption: the Multi-Target Whipped MQ
problem [6, Section 5.1].

Key Pair. The secret key is given by a private seed sk = seedsk. It is used to
derive a public seed seedpk and the secret linear oil space O ∈ F(n−o)×o

q . The
public key is given by pk = (seedpk, {P (3)

i }i∈[m]), where

P
(3)
i = −O�P

(1)
i O − O�P

(2)
i ∈ Fo×o

q .

Hereby, P
(1)
i ∈ F(n−o)×(n−o)

q and P
(2)
i ∈ F(n−o)×o

q are expanded from seedpk.

Signature. The signature is given by sig = (s1, . . . , sk, salt), with si ∈ Fn
q .

Verify. Given a public key pk = (seedpk, {P (3)
i }i∈[m]), a message msg, and a

signature sig = (s1, . . . , sk, salt), the verification is shown in Fig. 10.

S-CEO. Given a public key pk = (seedpk, {P (3)
i }i∈[m]), a message msg, and a sig-

nature sig = (s1, . . . , sk, salt), such that Verify(pk, msg, sig) = 1, we need to
find a second public key pk �= pk such that P∗(s1, . . . , sk) = t = H(H(msg)||salt)
holds, where P∗ is derived from pk. The main observation to tackle this task, is
that the map P∗ is linear with respect to the entries of its corresponding public
key matrices Pi.

The strategy is now to generate various p̃ka, where we always use the same
seedpk, but randomly generated ({P (3)

i,a }i∈[m])a for a ∈ {1, 2, . . .}. Denote by P̃a

the quadratic map associated to this public key. Then, we consecutively compute
P̃∗

a(s1, . . . , sk) = xa until we gathered m linearly independent vectors xa. Thus,
we find λa ∈ Fq, such that t =

∑m
a=1 λa · xa. Now we add up the randomly

generated matrices accordingly and define pk = (seedpk, {P
(3)
i }i∈[m]), where

P
(3)
i :=

∑m
a=1 λa(P (3)

i)a for all i ∈ [m]. Due to the linearity we have

P∗(s1, . . . , sk) =
m∑

a=1
λaP̃∗

a(s1, . . . , sk) =
m∑

a=1
λaxa = t.

Thus, an attacker is able to find a different public key pk �= pk, such that
Verify(pk, msg, sig) = 1 and Mayo is not S-CEO-secure.

Hash Your Keys Before Signing 331

S-DEO. Given a public key pk = (seedpk, {P (3)
i }i∈[m]), a message msg, and

a signature sig = (s1, . . . , sk, salt) such that Verify(pk, msg, sig) = 1, we
need to find a second public key pk �= pk and message msg �= msg such that
P∗(s1, . . . , sk) = t = H(H(msg)||salt). Since the vectors xa we generated in
the S-CEO analysis give a basis for the complete vector space Fm

q , an attacker
can compute t = H(H(msg)||salt) and find λa such that t =

∑
λaxa for some

randomly chosen message msg �= msg. Thus, the same attack that was developed
to analyze S-CEO, works here and Mayo is not S-DEO-secure.

6.3 PROV
Key Pair. Let F denote the finite field F28 and δ := o − m. The public key
pk is a pair (seedpk, (P (3)

i)i∈[m]) where P
(3)
i ∈ F(m+δ)×(m+δ) for all i. From

seedpk the matrices (P (1)
i , P

(2)
i)i∈[m] with P

(1)
i ∈ F(n−m−δ)×(n−m−δ) and P

(2)
i ∈

F(n−m−δ)×(m+δ) for all i, are generated. We denote by Pi the matrix
(

P
(1)
i P

(2)
i

0 P
(3)
i

)
.

The secret key is the triple (seedpk, seedsk, H(pk)). From seedsk the matrix O ∈
F(n−m−δ)×(m+δ) is generated.

Signature. A signature is given by sig = (salt, s) for s ∈ Fn.

Verify. Given a public key pk = (seedpk, (P (3)
i)i∈[m]), a message msg, and a

signature sig = (salt, s), the verification is shown in Fig. 10.

S-CEO. Given a public key pk, a message msg, and a signature sig = (salt, s)
such that Verify(pk, msg, sig) = 1, we need to find a different public key
pk = (seedpk, (P

3
i)i∈[m]) such that (ti)i∈[m] = h and hence (s�P is)i∈[m] =

H2(H1(pk)||msg||salt). As both sides of the latter equation depend on pk and
the value on the right is random (assuming H1 and H2 to be random oracles), the
probability to find a suitable pk is 1

|Fm| = 1
28m ≤ 2−368, for all proposed variants.

S-DEO. Given a public key pk, a message msg, and a signature sig = (salt, s)
such that Verify(pk, msg, sig) = 1, we need to find a second public key pk �= pk
and a second message msg �= msg such that Verify(pk, msg, sig) = 1. This is not
feasible by the same argument that was used for S-CEO security, as changing
the message only influences the hash value h = H2(H1(pk)||msg||salt).

wNR. Given a public key pk and a signature sig to an unknown message msg,
one has to find another public key pk �= pk, and a signature sig such that
Verify(pk, msg, sig) = 1. This is not feasible as one would have to find pk such
that (ti)i∈[m] = h, where h = H2(H1(pk)||msg||salt) is unknown as msg is. Note
that we can compute h = (s�Pis)i but not msg and hence not h. Thus, the
probability for the equality (ti)i∈[m] = h to hold is 1

28m and therefore less than
2−368 for all variants.

332 T. Aulbach et al.

6.4 Further Multivariate Candidates

The remaining NIST signature candidates based on multivariate polynomials are
Qr-Uov, Snova, Tuov and Vox. For all of them, the BUFF analysis follows
the same idea as the one given for Uov in Sect. 6.1. We provide a short overview
over the main arguments in the following.

The main difference between Qr-Uov and Uov is that the public key matri-
ces P

(i)
1 , P

(i)
2 , and P

(i)
3 of Qr-Uov are block matrices, where each component

Φf
g ∈ Fl×l

q corresponds to an element g of the quotient ring Fq[x]/(f), with an
irreducible polynomial f ∈ Fq[x] of degree l. The polynomial matrices of the
subalgebra Af := {Φf

g ∈ Fl×l
q | g ∈ Fq[x]/(f)} are defined entry-wise such that

(Φf
g)ij is the coefficient of xi−1 in xj−1 · g. In the S-CEO/S-DEO analysis for

Qr-Uov we cannot modify single entries p
(k)
i,j of the matrices P

(3)
k that were

used to control the values yk = s�Pks in the analysis of Uov. Instead, we can
only alter one coefficient (or more) of the polynomials g =

∑l−1
i=0 aix

i ∈ Af that
are stored in the P

(3)
k part of the public key pk. This will change l values in the

corresponding block Φf
g ∈ Fl×l

q of P
(3)
i . However, we can still dictate the result

rk = s�
l Φf

gsl by choosing the coefficients of g accordingly. Here sl denote the l
entries of the vector s ∈ Fn that are multiplied with this block.

Snova differs from Uov in the fact that it works over the non-commutative
ring R = Fl×l

q instead of Fq. Further, Snova computes the target vector as
t = H(seedp||H(msg)||salt) for pk = (seedp, {P 22

i }i∈[m]) with P 22
i ∈ Ro×o, while

for Uov we have t = H(msg||salt). However, for neither of the BUFF secu-
rity notions, the adversary has to provide honestly generated keys, hence it can
choose two different public keys pk �= pk that have the same seed, which then
result in the same target t. Then, S-CEO and S-DEO insecurity follows by using
the concrete parameters provided in Snova to prove systems of equations solv-
able.

The Tuov analysis is completely analogous to the Uov analysis, as the
additional affine transformation S : Fm

q → Fm
q has no impact on the analysis.

Vox is a Uov-based scheme that incorporates the quotient ring technique.
Despite their claim to achieve BUFF security, Vox only satisfies MBS. S-CEO
and S-DEO can be attacked as in Uov. In short the attack proceeds as follows:
One keeps the part SeedPub of the public key pk = (SeedPub,Pub) unchanged.
The Pub part can be changed independently and is chosen as in the attack
against Uov. Note that Vox uses the quotient ring technique, however, the
problem of defining Pub is still the same as in Uov, just over the extension field.
The wNR security can be attacked as described at the beginning of this section.

7 Conclusion

In this work, we analyzed the signature schemes based on codes, isogenies, lat-
tices, and multivariate polynomials submitted to the additional NIST PQC stan-
dardization effort for signatures regarding their BUFF security. Besides the anal-
ysis of the original schemes, we included comments on the BUFF security after

Hash Your Keys Before Signing 333

a light transform, the so-called PS-3 transform. In fact, we see that often, the
PS-3 transform suffices to ensure BUFF security, despite the fact that the PS-3
transform is not sufficient for generic schemes. This gap between the general
statement and the empirical evidence on practical schemes can be analyzed fur-
ther.

In the NIST competition, there are even more signature schemes, which we
have not analyzed in this work. An interesting future work is to analyze those.
In particular, this would give a chance to assess the empirical evidence regarding
the relation of BUFF security and the PS-3 transform.

We considered a weaker form of non-resignability (wNR) as the initial defini-
tion turned out to be unachievable—the problem being the auxiliary information.
The majority of our results regarding wNR—attacks against 12 out of 17 signa-
ture schemes—remain relevant regardless of how the auxiliary information issue
gets resolved eventually. The reason is that neither attack relies on any auxil-
iary information. On the other hand, our positive results only guarantee security
against non-resignability in this restricted form. Once the matter of defining
non-resignability is completely resolved, our positive results given here should
be re-evaluated. Note, however, that for the 5 positive results, the schemes implic-
itly use either the PS-3 or the BUFF transform. Hence, if either the PS-3 or
BUFF transform can be shown to generally satisfy a new definition of NR, the
results would apply to the 5 positive results presented here.

Acknowledgements. This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG – German Research Foundation) – 505500359 and SFB 1119 – 236615297,
by the German Federal Ministry of Education and Research (BMBF) under the projects
6G-RIC (16KISK033) and Quant-ID (16KISQ111), and by the Hector Foundation II.

References

1. Ayer, A.: Duplicate signature key selection attack in let’s encrypt (2015). https://
www.agwa.name/blog/post/duplicate_signature_key_selection_attack_in_
lets_encrypt

2. Baldi, M., et al.: LESS. Technical report, National Institute of Standards and
Technology (2023)

3. Baldi, M., et al.: CROSS. Technical report, National Institute of Standards and
Technology (2023)

4. Banegas, G., et al.: Wave. Technical report, National Institute of Standards and
Technology (2023)

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press (1993)

6. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: MAYO. Technical
report, National Institute of Standards and Technology (2023)

7. Beullens, W., et al.: UOV. Technical report, National Institute of Standards and
Technology (2023)

334 T. Aulbach et al.

8. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-
7_12

9. Bos, J., et al.: HAWK. Technical report, National Institute of Standards and Tech-
nology (2023)

10. Chavez-Saab, J., et al.: SQIsign. Technical report, National Institute of Standards
and Technology (2023)

11. Cheon, J.H., et al.: HAETAE. Technical report, National Institute of Standards
and Technology (2023)

12. Chou, T., et al.: MEDS. Technical report, National Institute of Standards and
Technology (2023)

13. Corte-Real Santos, M., Eriksen, J.K., Meyer, M., Reijnders, K.: AprèsSQI: Extra
Fast Verification for SQIsign Using Extension-Field Signing. Cryptology ePrint
Archive, Paper 2023/1559 (2023)

14. Cremers, C., Düzlü, S., Fiedler, R., Fischlin, M., Janson, C.: BUFFing signature
schemes beyond unforgeability and the case of post-quantum signatures. In: 2021
IEEE Symposium on Security and Privacy, pp. 1696–1714. IEEE Computer Society
Press (2021)

15. del Pino, R., et al.: Raccoon. Technical report, National Institute of Standards and
Technology (2023)

16. Ding, J., et al.: TUOV. Technical report, National Institute of Standards and
Technology (2023)

17. Don, J., Fehr, S., Huang, Y.-H., Struck, P.: On the (in)security of the BUFF
transform. IACR Cryptology ePrint Archive 2023:1634 (2023)

18. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.: Hawk: module LIP
makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D. (eds.)
ASIACRYPT 2022. LNCS, vol. 13794, pp. 65–94. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-22972-5_3

19. Espitau, T., Niot, G., Sun, C., Tibouchi, M.: SQUIRRELS. Technical report,
National Institute of Standards and Technology (2023)

20. Furue, H., et al.: QR-UOV. Technical report, National Institute of Standards and
Technology (2023)

21. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. (1988)

22. Goubin, L., et al.: PROV. Technical report, National Institute of Standards and
Technology (2023)

23. Hülsing, A., et al.: SPHINCS+. Technical report, National Institute of Standards
and Technology (2020)

24. Jackson, D., Cremers, C., Cohn-Gordon, K., Sasse, R.: Seems legit: automated
analysis of subtle attacks on protocols that use signatures. In: Cavallaro, L., Kinder,
J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2165–2180. ACM Press (2019)

25. Kim, T.H.-J., Basescu, C., Jia, L., Lee, S.B., Hu, Y.-C., Perrig, A.: Lightweight
source authentication and path validation. In: Proceedings of the 2014 ACM Con-
ference on SIGCOMM (2015)

26. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15

27. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National
Institute of Standards and Technology (2020)

Hash Your Keys Before Signing 335

28. Menezes, A., Smart, N.: Security of signature schemes in a multi-user setting.
Des. Codes Cryptography 33, 261–274 (2004). https://doi.org/10.1023/B:DESI.
0000036250.18062.3f

29. National Institute of Standards and Technology. Call for additional digital
signature schemes for the post-quantum cryptography standardization pro-
cess (2022). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/
call-for-proposals-dig-sig-sept-2022.pdf

30. Patarin, J.: The oil and vinegar signature scheme (1997)
31. Patarin, J., et al.: VOX. Technical report, National Institute of Standards and

Technology (2023)
32. Pornin, T., Stern, J.P.: Digital signatures do not guarantee exclusive ownership.

In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
138–150. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_10

33. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2020)

34. Wang, L.-C., et al.: SNOVA. Technical report, National Institute of Standards and
Technology (2023)

35. Yu, Y., et al.: HuFu. Technical report, National Institute of Standards and Tech-
nology (2023)

264 Analyzing Security Features

	Title
	Abstract
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Acronyms
	Introduction
	Multivariate Cryptography
	Digital Signatures in Real-World Applications
	Physical Security
	Research Topics in this Thesis
	Contributions

	Background
	Signature Schemes
	Multivariate Signatures
	Physical Attacks

	Developing Physical Attacks
	Fault Injection Attacks on Multivariate Signature Schemes
	Side-channel Attacks on Multivariate Signature Schemes
	Future Research Directions

	Enhancing Implementation Security
	Overview of Vulnerabilities
	Implementation Guidelines and Implemented Countermeasures
	Future Research Directions

	Analyzing Security Features
	EUF-CMA Security of MQ-Sign
	Security Beyond Standard Notions and the Case of UOV-based Signatures
	Future Research Directions

	Conclusion
	Bibliography
	Developing Physical Attacks
	Recovering Rainbow's Secret Key with a First-Order Fault Attack
	Separating Oil and Vinegar with a Single Trace
	MAYo or MAY-not: Exploring Implementation Security of the Post-Quantum Signature Scheme MAYO Against Physical Attacks

	Enhancing Implementation Security
	SoK: On the Physical Security of UOV-based Signature Schemes
	HaMAYO: A Fault-Tolerant Reconfigurable Hardware Implementation of the MAYO Signature Scheme

	Analyzing Security Features
	Practical Key-Recovery Attack on MQ-Sign and More
	Hash your Keys before Signing: BUFF Security of the Additional NIST PQC Signatures

