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I. PARAMETRIZATION OF THE LCAO
TIGHT-BINDING MODEL

We present details regarding the multi-orbital tight-
binding calculation of the relevant low-energy bands
of 1H-NbSe2 and 1H-TaS2 shown in Fig. 2 of main
text. For the former, the bands are obtained from a
linear combination of the three atomic d-orbitals of Nb
4dz2 = 4d2,0 and 4d2,±2 = 4dx2−y2 ± i4dxy. In TaS2
the orbitals come from the next shell, and hence we
consider 5dz2 = 5d2,0 and 5d2,±2 = 5dx2−y2 ± i5dxy.
For the functional form of the orbitals we use the one
of the hydrogen atom with effective nuclear charge
Zeff from [1]. The tight-binding parametrization by He
et al. [2] is adopted for 1H-NbSe2, but similar results are
obtained from the one reported by Kim and Son [3]. For
1H-TaS2 we rely on the results by [4].

II. MATRIX ELEMENTS OF THE SCREENED
INTERACTION

In the Bloch basis the matrix elements of the screened
interaction have the form

⟨Q(k + q), σ;Q(k′ − q), σ′| V̂ |k, σ;k′, σ′⟩ = (B1)

1

NΩ

∑
G,G′

V 2D,RPA
G,G′ (q; 0+)Fσ

k+q,k(−G)Fσ′

k′−q,k′(G′) ,
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where k,k′ and q are in-plane momenta restricted to the
first Brillouin zone. Furthermore, the projector Q en-
sures that the scattered momenta are folded back into
the first Brillouin zone as well. We omit to indicate the
projector Q in the following for simplicity. The Bloch
overlaps F are defined as

Fσ
k,k′(G) =

∫
Vp

dre−iG·ru†
σ,k(r)uσ,k′(r) , (B2)

with uσ,k Bloch spinors, and the unit cell volume Vp.

The matrix elements in Eq. (B1) are in general
complex, with a strongly fluctuating phase resulting
from the product of the Bloch overlaps. This tends
to favor pairing between time-reversed states, whose
Bloch spinors obey the relation uσ̄,k̄ = u∗

σ,k, with

−k =: k̄,−σ =: σ̄, resulting in a summation of real
and positive contributions. We hence retain only the
scattering between time-reversal partners (k, σ; k̄, σ̄),
and consider the following interaction matrix elements
Vk,k′,σ := ⟨k′, σ′; k̄′, σ̄′| V̂ |k, σ; k̄, σ̄⟩.

III. EXPERIMENTAL SETUP AND METHODS

TaS2 monolayers2 were grown on highly oriented py-
rolytic graphite (HOPG) using molecular beam epitaxy
(MBE). After growth, the sample was inserted into the
low-temperature STM (Unisoku USM-1300) housed in
the same ultra-high vacuum system and subsequent ex-
periments were performed at T = 350 mK. The dI/dV
spectra were recorded by standard lock-in detection while
sweeping the sample bias in an open feedback loop con-
figuration, with a peak-to-peak bias modulation speci-
fied for each measurement and at a frequency of 911 Hz.
The dI/dV spectra were recorded on extended monolay-
ers to eliminate possible island size dependence from the
measurements. The data shown in main text Fig. 6 are
normalized by the averaged dI/dV .
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IV. COMPARISON TO EXPERIMENTAL STS
DATA

For tunneling spectroscopy with a normal metal tip,
the differential conductance is well approximated by

G(V ) ≈
∑
π

CπGπ(V ) , (D1)

Gπ(V ) =

∫ ∞

−∞
dE Dπ(E)

(
−∂f(E + eV )

∂E

)
, (D2)

where the couplings Cπ, account for the spectral func-
tion of the tip and the tunneling overlap between the
tip’s evanescent states and quasiparticle states from the
superconductor on a given Fermi surface π = K,Γ. The
tunneling to each of the Fermi surfaces represents a dis-
tinct transport channel, whose strength is given by the
sum over the local quasiparticle density of states

Dπ(E) =
∑

k∈π,σ

Dk,σ(E) . (D3)

The latter are modeled by assuming a BCS form fac-
tor modifying the local density of states ρk,σ in the nor-
mal conducting state. In order to reproduce the exper-
imentally measured critical temperature of Tc = 1 K
[5], we used a gap obtained by solving the gap equation

with the interaction potential V̂ multiplied by a factor
γ, which accounts, for example, for charge transfer from
the substrate or an additional phonon-mediated interac-
tion [6, 7], which have not been explicitly included in our
calculation.

Due to the different orbital composition of the quasi-
particle states at the K, K ′ valleys and at the Γ sur-
face [8], the coupling constant will be in general different.
In particular, since the d2,0 orbital extends farthest out
of plane and the STM favors states with small in-plane
momentum [9, 10], we expect CΓ ≫ CK . For low temper-
ature, the form of the gap on each separate Fermi surface

results in characteristic signatures in the differential con-
ductance of the respective transport channel. We use as
a fit function this superposition of the differential con-
ductance of the individual transport channels. For the
gaps on the Fermi surfaces ∆k,σ, we use the form of the
gaps as found from main text Eq. (3) at the experimen-
tal temperature Texp and allow for a fit of the amplitude
by a common rescaling of all ∆k,σ by a parameter A as
∆k,σ → A∆k,σ. The latter is introduced to take care of
the uncertainty of the actual experimentally realized Tc

and the rescaling factor γ of the interaction.

To qualitatively account for additional sources of
broadening in the experiment, we fit with an effective
temperature Teff in the calculation of the derivative
in Eq. (D2), about twice the recorded base temperature
of the STM. To account for offsets in the calibration,
we further allow for both a small constant offset G0

in the measured conductivity and V0 = 0.009 mV
in the recorded voltage. For the fitting we use the
trust region reflective algorithm as implemented in
SciPy’s ”curve fit” routine. We consider a range of
±0.5mV containing the main coherence peaks. The
resulting fit parameters are listed in Table I. The
best fits for all the solutions are obtained by consider-
ing strongly selective coupling of the tip to the Γ pockets.

Gap CK , CΓ (eV Å2) A G0 Teff/T γ

chiral 1.607, 15.041 1.110 0.173 2.175 9.298

nematic 0.000, 17.235 1.156 0.174 1.815 9.298

s+ f 1.890, 18.333 1.017 0.000 1.804 8.777

Table I. Coefficients of best fit between the theoretical pre-
diction of the differential conductance in the possible super-
conducting phases and the experiment as shown in Fig. 6 (b),
(c). The best fit for each solution is achieved by selective cou-
pling to the Γ pocket.
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