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Abstract: Out-of-Time-Ordered Commutators (OTOCs), representing a key di-

agnostic for scrambling as a facet of short-time quantum chaos, have attracted wide-

ranging interest, from many-body physics to quantum gravity. By means of a suitable

form of the Wigner-Moyal expansion, and invoking ensemble equivalence in statisti-

cal physics, we provide a consistent approach to the growth rate of the OTOC for

many-body systems with chaotic classical limit where both the classical Lyapunov

exponent and the quantum nature of the density of states enter. Applying this con-

struction to quantized high-dimensional hyperbolic motion, i.e., a quantum chaotic

system that exhibits gravity-like correlation functions in the late-time regime, we

compute the OTOC growth rate Λ as a function of the number of degrees of free-

dom, f , and inverse temperature, β. We show that the scaled growth rate, Λ/f , can

be described by a universal function of fβ and displays a cross-over from classical

to quantum behavior as we increase f and/or lower the temperature. In the deep

quantum regime of infinite f , we find maximally fast scrambling in the sense of the

Maldacena-Shenker-Stanford bound on chaos. This elucidates the non-perturbative

mechanism underlying the saturation of the bound via quantum contributions to the

mean density of states, and it provides further support for this dynamical system as

a dual to two-dimensional quantum gravity. In this way, we present first evidence of

maximally fast scrambling in a quantum chaotic system with a well-defined classi-

cal Hamiltonian limit, without invoking any external mechanism such as (disorder)

averaging.
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1 Introduction

In recent years, the study of quantum chaos [1], and in particular, of scrambling as

a manifestation thereof in systems with a large number of degrees of freedom, has

drawn interest from varied, a priori seemingly disparate fields of physics. Scrambling

in this context stems from the spreading of initially localized correlations across many

or all available degrees of freedom of a system – strongly scrambling systems are in

a sense the quantum analogs of classical systems with mixing Hamiltonian flows1.

For a recent introduction to just some of the literature about scrambling, see [2].

One important application is the study of black holes: in a by now famous thought

experiment due to Hayden and Preskill [3], quantum information falling into a black

hole is scrambled across the horizon, and then quite rapidly reemerges as Hawking

1With the important caveat that quantum scrambling originates from a unitary time evolution

and is therefore reversible, while classical mixing is not.
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radiation; the time scale for this process is given by the so-called scrambling time t∗,

roughly the time scale necessary for initial state information to propagate through

the entire system. It was conjectured by Sekino and Susskind [4] that black holes

are the fastest scramblers occurring in nature2, with a scrambling time of the order

of

t∗ = Cβ log(S), (1.1)

where β is the inverse Hawking temperature, C is some numerical constant and S

the entropy of the system. This form was later shown to be universal with C = ℏ/2π
in [7].

A more recent facet of the study of scrambling and the Hayden-Preskill protocol

in the context of black holes concerns teleportation of quantum information [8],

in particular across traversable wormholes [9–11]. There, the Sachdev-Ye-Kitaev

(SYK) model [12–14], the low-energy dual of two-dimensional Jackiw-Teitelboim

(JT) gravity [15, 16], is exploited to study signatures of the quantum chaotic nature

of the wormhole setup. Correlation functions of Hermitian operators serve as key

diagnostics for this purpose, and a particularly important one is the out-of-time

ordered commutator (OTOC).

The OTOC is a quantity of great interest in the study of quantum chaos, going

back to the work of Larkin and Ovchinnikov [17]. For a given quantum system

with a Hamiltonian H, consider Hermitian operators V,W , and denote time-evolved

operators by Wt = e
i
ℏHtWe−

i
ℏHt. Then, the OTOC reads

C(t) = −
〈
[Wt, V ]2

〉
, (1.2)

where [·, ·] is the commutator and ⟨·⟩ = tr

(
e−βH

tr(e−βH)
·
)

is the expectation value in the

thermal state at temperature T = 1/kBβ. In some of the literature, OTOC refers

to the closely related out-of-time ordered correlator F (t) = ⟨WtVWtV ⟩, but we will

mean only the commutator in this work.

In many quantum chaotic systems the OTOC is characterized by an initial

exponential growth for times shorter than the scrambling time t∗ of the system (al-

though there are exceptions, see [18] and references therein). The rate of this expo-

nential growth, Λ, defines the system’s temperature-dependent quantum Lyapunov

exponent,

C(t) ∼ eΛt. (1.3)

We should note here that there are differing conventions in the literature on whether

to call the growth exponent of C(t) Λ or 2Λ. The latter seems to be more common in

the quantum chaos community [18], while the former is more prevalent in quantum

gravity contexts [19–21], and it is also the convention we will be adopting hereinafter.

2So fast indeed that it might pose a problem for the no-cloning theorem [5, 6].
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Figure 1: The OTOC C(t) =
〈
|[n̂1(t), n̂]|2

〉
ψ
in a strongly kicked Bose-Hubbard

system with N = 10000 particles and L = 2 sites, where n̂1 is the particle number

operator on the first site and ψ is a suitably localized coherent state at energy E.

Left: early times. The nearly linear slope indicates the initial exponential growth

with a constant rate corresponding to twice the classical Lyapunov exponent. Right:

The OTOC saturates at late times. Blue solid line: numerical data. Orange opaque

line: linear fit. Taken with permission from M. Steinhuber [22].

The reason for the nomenclature becomes obvious by picking for the operators

e.g. a canonical pair X,P and corresponding classical phase-space degrees of freedom

x, p. Provided the system has a classical limit, heuristic application of canonical

quantization demands that

⟨[Xt, P ]⟩ψ ∼ iℏ{xt, p}, (1.4)

where the expectation value is defined with respect to a suitably localized state ψ

near a fixed energy E, and xt the initial coordinate x evolved for a time t. Since for

systems displaying chaotic dynamics in their classical limit,

{xt, p} =
∂xt
∂x

∼ eλt, (1.5)

where λ(E) is the Lyapunov exponent of the classical counterpart, the corresponding

OTOC, in this microcanonical framework, initially increases exponentially with a

rate 2λ, as illustrated in fig. 1. More generally, in this microcanonical situation,

the exponential OTOC growth rate has been shown to agree with twice the classical

λ(E) [18, 23, 24]. (For times longer than t∗, the OTOC saturates, as evident e.g. in

fig. 1 and predicted in [24].)

Also, eqs. (1.3) and (1.5) heuristically suggest Λ = 2λ. The key fact that

the quantum Lyapunov exponent in eq. (1.3) is defined by a canonical initial state

(and cannot be directly related to λ(E)) has been a source of confusion particularly
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within the study of quantized chaotic systems by means of semiclassical methods,

where one often works at fixed energy E and hence with microcanonical quantities.

Two notable exceptions are the work of Jalabert et al. for systems with few degrees of

freedom [23], and Hashimoto et al. for general scaling systems [25]. In the former, the

temperature-dependent exponent is calculated by applying the statistical definition of

mean energy in the canonical ensemble to the microcanonical classical exponent λ(E).

However, as we will show later, the use of the classical Thomas-Fermi approximation

for the microcanonical level density automatically renders the result classical, and

the quantum features of Λ(β) totally absent. In fact our analysis shows that the very

definition of Λ(β) in systems with few degrees of freedom (such as the ones considered

in [23] and [26, 27]) is ambiguous because the emergence of the exponential form

of the OTOC will strongly rely on the standard assumptions behind the ensemble

equivalence in statistical mechanics. Any discussion about the bound on chaos, that

emerges only for systems with large number of degrees of freedom, is therefore out

of reach unless further quantum effects and/or very non-generic features of specific

systems are included [26]. The analysis presented in [25] is closer in spirit to our

approach here, as it applies to systems with many degrees of freedom, but suffers

from the lack of precise analytical results for λ(E) and absence of quantum effects

in the many-body level density, rendering Λ(β) out of reach again.

In this work, we propose a consistent semiclassical theory of canonical quantum

Lyapunov exponents in quantum systems with large number of degrees of freedom

that admit a proper classical limit. This general approach will critically depend on

two ingredients, namely the exact energy dependence of the classical microcanonical

Lyapunov exponent, and the full quantum mechanical mean level density. These two

aspects of the classical and quantum description can be rigorously and explicitly con-

sidered for the dynamics of a particle sliding on a high-dimensional hyperbolic man-

ifold, a particular system that displays all the genuine properties of classical chaos

while admitting an exact semiclassical quantization, as we will explain in detail later.

This system has been shown in [28] to exhibit an emergent quantum-gravitational

description in the sense that, in the limit of large configuration space dimension,

i.e. large number of degrees of freedom, its spectral correlation functions are iden-

tical to that describing a consistent theory of quantum gravity in low dimensions:

Jackiw-Teitelboim (JT) gravity. We will show that this system is a fast scrambler

and, in the correct limit, indeed a maximally fast scrambler in the sense of saturating

the Maldacena-Shenker-Stanford (MSS) bound on chaos for the growth rate [19], as

expected for a system dual to JT gravity.

Since this system has a well-defined classical limit, we will follow a natural

approach for the calculation of the quantum canonical Lyapunov exponent from a

semiclassical perspective, where quantum properties of the system are appropriately

expressed through its classical phase space structures. Due to the great degree of

analytical control, afforded e.g. by the semiclassical description via the Selberg trace
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formula [29], as well as the exactly known density of states and microcanonical Lya-

punov exponent, we can not only rigorously show the saturation of the MSS bound,

but also that this saturation is a quantum effect. It stems from quantum correc-

tions to the leading power law behavior of the density of states. Moreover, for the

system at hand, we provide explicit results for the quantum Lyapunov exponent as

a function of temperature and number of degrees of freedom, beyond the limiting

cases. We will further take initial steps towards evaluating the first subleading ℏ2

correction to the OTOC, which can be systematically determined by the mechanism

of Wigner-Moyal phase space quantization, and which has to exhibit exponential

behavior with a different, likewise bounded growth exponent by the arguments of

[30].

The rest of the paper is organized as follows: in section 2, we quickly reca-

pitulate the MSS bound. In section 3, we introduce the formalism of Wigner-Moyal

quantization, and particularly a way to obtain ℏ expansions for Heisenberg opera-

tors developed in [31]. In section 4, we introduce the aforementioned system whose

Lyapunov exponent we will compute in sections 5 and 6.

2 The Maldacena-Shenker-Stanford bound

A particularly interesting facet of the study of OTOCs is the appearance of an

analytical bound on its decay rate [19]. Namely, it can be shown that f(t) = F (t)/Fd,

with Fd = ⟨V V ⟩ ⟨WW ⟩ the (constant) factorized value of the out-of-time ordered

correlator, satisfies

1. f(t+ iτ) is analytic in the half strip 0 < t, −β
4
≤ τ ≤ β

4
and real for τ = 0.

2. |f(t+ iτ)| ≤ 1 in the entire half-strip.

For such a function, then,
1

1− f

∣∣∣∣dfdt
∣∣∣∣ ≤ 2π

ℏβ
, (2.1)

which implies, upon assuming the form

F (t) = Fd − ϵeΛt, (2.2)

that the decay rate Λ must obey

Λ ≤ 2π

ℏβ
, (2.3)

which is the famous Maldacena-Shenker-Stanford (MSS) bound3. The proof of (2.3)

applies under fairly general assumptions, namely that the correlation functions fac-

torize in a long enough time regime, and that there is a strong hierarchy between the

scrambling time t∗ and the (shorter) dissipation time td, which is roughly the decay

3We emphasize for clarity that the decay rate of F (t), and thereby also the decay rate of the

OTOC C(t), is bounded by 2π
ℏβ , irrespective of whether we call this decay rate Λ or 2Λ.
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time of two-point correlators like ⟨V Vt⟩. This hierarchy is expected particularly in

systems with many degrees of freedom and Hamiltonians built from finite products

of simple operators. This is the case in many typical many-body systems, and also

in large-dimensional few- or one-body systems, which will be relevant in this work.

It is important to realize that the bound applies under the assumption that

there is a physical mechanism leading to the exponential growth of the second term

in eq. (2.2). Therefore, verifying its validity starting from a full-fledged microscopic

description of a given system automatically poses the problem of understanding

the emergence of such exponential behavior. This is in general a formidable task,

as Lyapunov exponents are emergent, non-perturbative features of the dynamics

and there are few physical systems where their existence and dependence on the

energy or temperature are known explicitly. For a type of systems satisfying certain

homogeneity conditions [32], the dependence of the classical Lyapunov exponent on

the energy can be inferred, and a theory of the quantum Lyapunov exponent, i.e.,

growth rate, starting from a given dependence on the energy, has been proposed in

[25]. In all these cases, however, the exact form of the results beyond the scaling

with the energy is lacking and therefore the closer study of the bound remains out

of reach.

So far, no system with a unitary time evolution satisfying these assumptions

has been found to violate eq. (2.3) to the best of the authors’ knowledge, and the

cases where the equality is saturated are particularly interesting4. Such systems are

usually gravitational, or dual to a gravitational system, and often involve black holes

as well5. While it is expected that systems with black holes saturate the bound,

there is no consensus on whether a black hole is necessary, or on “how gravitational”

a system has to be to saturate the bound. An example of such a system is Jackiw-

Teitelboim gravity [35] and its dual, the Sachdev-Ye-Kitaev model [36]. Independent

calculations on both sides of the duality show the saturation of the MSS bound in this

case. Interestingly, there is a class of gravitational models, the (2, 2p − 1) minimal

string theories, that limit to JT gravity as p → ∞, and for which the question of

saturation of (2.3) or not is as yet unanswered [37]. We will briefly comment on

these models in section 5.

A more careful analysis of the analytic structure of F (t) that we will touch on

in section 6 reveals that (2.2) are only the first two terms in a short-time expansion

of the out-of-time ordered correlator [30],

Fd − F (t) = ϵf1e
Λt + ϵ2f2e

Λ2t +O
(
ϵ3
)
. (2.4)

Here, ϵ is a small parameter ensuring that the corrections are subleading compared

to the leading Lyapunov growth. Note that, consequently, what is referred to in the

4Note however that in non-unitary theories, the bound can be violated [33].
5Beyond the examples already mentioned in the introduction [12–16], see e.g. [34].
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literature as quantum Lyapunov exponent is defined as the rate of growth of the

leading contribution to the correlator. In systems such as the one we will introduce

in section 4, where the scrambling time can be identified with the Ehrenfest time6

tE = λ−1 log(const./ℏ) [24, 38, 39], a natural candidate for these subleading terms

are quantum corrections, and it is sensible to set ϵ = ℏ2.

3 Wigner-Moyal quantization

3.1 Basics and definitions

Given the close, but not yet well-understood connection between classical and quan-

tum Lyapunov exponents, it is helpful to make use of the Wigner-Moyal formalism,

which makes the connection between classical (Hamiltonian) and quantum mechan-

ics particularly transparent when post-Ehrenfest time interference effects can be

neglected. Being essentially a thermodynamic object, the temperature-dependent

quantum Lyapunov exponent is expected to satisfy this condition.

A naive (and for many purposes sufficient) understanding of quantization sup-

poses that one can define a quantum theory by finding operators X i, Pi for any

phase-space degrees of freedom xi, pi and identifying commutators with the classical

Poisson algebra,

{xi, pj} = δij
Quantization−−−−−−−→ 1

iℏ
[X i, Pj] = δij, (3.1)

i.e., by taking a “reverse classical limit”. Trying to generalize this prescription to

general phase-space functions, one quickly runs into problems however: Groenewold’s

theorem states that no quantization map can be found that preserves the classical

Poisson structure for all polynomials in x = (x1, x2, . . . , xf ), p = (p1, p2, . . . , pf ) of

degree 3 or less [40].

Moyal subsequently showed that the correct phase-space algebra to represent

the quantum operator algebra is not given by Poisson brackets, but by an ℏ defor-

mation of theirs, usually referred to as the Moyal bracket [41].

To make use of this representation, we need to define the Weyl symbol WA of

an operator A,

WA(x, p) =

∫
dx′ 4
√
g(x+ x′/2)g(x− x′/2)e

i
ℏpix

i ⟨x− x′/2|A|x+ x′/2⟩ , (3.2)

with g(x) the determinant of the configuration space metric at the point x. Depend-

ing on the ordering of the operator A, Weyl symbols of different operators with the

same classical limit may differ by quantum corrections.

6When interpreted in a quantum mechanical framework in f dimensions, the dependence of the

scrambling time (1.1) on the entropy S (understood as the number of microstates of volume ℏf ) is
expected to translate into a logarithmic dependence t∗ ∼ β log(ℏ) in strong analogy with the so-

called Ehrenfest time [24, 38, 39] tE ∼ λ−1 log (const./ℏ), the characteristic time scale that signals

the dominance of interference effects in chaotic systems with classical Lyapunov exponent λ.
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Some particularly important Weyl symbols are those of phase-space polynomi-

als in the so-called Weyl ordering,

(ax+ bp)n
Weyl quantization−−−−−−−−−−→ (aX + bP )n. (3.3)

In this case, one can just reverse the arrow to find the Weyl symbol,

W(aX+bP )n = (ax+ bp)n. (3.4)

Additionally, we need the Weyl symbol of a density matrix ρ, called the Wigner

function of the state ρ,

W (x, p) ≡ Wρ(x, p) =

∫
dx′ 4
√
g(x+ x′/2)g(x− x′/2)e

i
ℏpix

i ⟨x− x′/2|ρ|x+ x′/2⟩ .
(3.5)

The Wigner function is a quasiprobability distribution on the phase space, and allows

for the computation of expectation values in the corresponding state,

⟨A⟩ρ =
∫
dxdpW (x, p)WA(x, p). (3.6)

We further introduce the (Moyal) ⋆ product,

f ⋆ g =
∞∑
n=0

1

n!

(
iℏ
2

)n
Πn(f, g), (3.7)

with the Poisson bivector Π = ∇J∇, where J =

(
0 1

−1 0

)
is the standard symplectic

form7 (on a two-dimensional phase space8):

Π0(f, g) = fg, Π1(f, g) = {f, g},

Πn(f, g) =
n∑
k=0

(−1)k
(
n

k

)(
∂k

∂pk
∂n−kf

∂xn−k

)(
∂n−k

∂pn−k
∂kg

∂xk

)
,

(3.8)

and suitably generalized in more dimensions, as well as the Moyal bracket,

{f, g}M = f ⋆ g − g ⋆ f. (3.9)

7One can easily see from this definition that Π2m+1(f, g) = −Π2m+1(g, f), and Π2m(f, g) =

Π2m(g, f).

8This holds for a phase space with a flat symplectic form J =

(
0 1

−1 0

)
. One can always choose

coordinates in which this is locally the case, i.e. for a system with configuration space X , one picks

the local trivialization X ×Rf of the phase space, and then chooses Riemannian normal coordinates

on X . If this is not desired, one has to employ the more general Kontsevich quantization formula

[42].
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Equation (3.7) also induces an ℏ expansion in the Moyal bracket,

{f, g}M =
∞∑
n=0

(−1)n(ℏ/2)2n

(2n+ 1)!
Π2n+1(f, g). (3.10)

With these definitions, we can use the following properties for Weyl symbols:

WAB = WA ⋆ WB, (3.11)

W[A,B] = iℏ{WA,WB}M . (3.12)

3.2 Heisenberg operators

In order to compute the OTOC, we need a way to find the Weyl symbols of time-

evolved (Heisenberg picture) operators. Naively, one could simply cast a Heisenberg

operator,

At = eiHt/ℏAe−itH/ℏ, (3.13)

in terms of the Weyl symbols of A and the time evolution operator e−iHt/ℏ using

eq. (3.11). However, the latter exhibits an essential singularity at ℏ = 0 and therefore

does not admit a regular Taylor expansion around that point. Since this is exactly

what we want to compute, an alternative way of determining the Weyl symbols of

operators like (3.13) is needed.

Osborn and Molzahn [31] provide such a way, which we will closely follow for

the remainder of this section. Consider Hamiltonians with a Weyl symbol of the

form

WH(t, ℏ; ζ) = hc(t; ζ) +
∞∑
r=1

ℏr

r!
hr(t; ζ), (3.14)

where ζ = (x, p) is an initial-time phase-space point, and the argument t refers to a

possible explicit time dependence of the Hamiltonian. We can define the operator Z

such that WZ = ζ, and denote the time evolution from some initial time s to t by

Z(t, s) = Γ(s, t)Z, H(t, s) = Γ(s, t)H(t). (3.15)

The time evolution is then determined by the Heisenberg equation,

iℏ
d

dt
Z(t, s) = [Z(t, s), H(t, s)] = Γ(s, t)[Z,H(t)]. (3.16)

The second equation usefully reveals the dependence of the so-called quantum trajec-

tory Z(t, s) on the commutator between the initial condition Z and the Hamiltonian.

Equation (3.16) is solved by the ansatz

WZ(t, s, ℏ; ζ) =
∞∑
r=0

ℏr

r!
zr(t, s; ζ), (3.17)

where the expansion coefficients are determined as follows:

– 9 –



The classical limit of eq. (3.16) is

d

dt
z0(t, s; ζ) = J∇hc(t, z0(t, s; ζ)), (3.18)

which is precisely Hamilton’s equation and, therefore, is solved by the classical flow

generated by the Hamiltonian hc,

z0(t, s; ·) = γ(t, s|·), (3.19)

i.e. γ(t, s|(xs, ps)) = (xt, pt), or simply, the classical solution of the equations of

motion. For higher order coefficients, we define the Jacobi operator

J (t; s, ζ) =
d

dt
− J∇∇hc(t, γ(t, s|ζ)), (3.20)

which gives equations of the form

J (t; s, ζ)zr = fr(t, s; ζ). (3.21)

In the following, we will only consider the first

J (t; s, ζ)z1(t, s; ζ) = J∇h1(t, γ(t, s|ζ)), (3.22)

and second equation9,

J (t; s, ζ)z2(t, s; ζ) =

[
(z1 · ∇)2 − 1

8
Π2(γ · ∇)2 +

1

12
Π12Π23(γ · ∇)3

]
J∇hc(t, γ(t, s|ζ))

+ 2(z1 · ∇)J∇h1(t, γ(t, s|ζ)) + J∇h2(t, γ(t, s|ζ)).
(3.23)

These equations can then be integrated using a Green’s function of the Jacobi op-

erator J , which can be chosen as a function of derivatives of the classical flow γ

[31],

zr(t; ζ) =

∫ t

0

ds∇γ(t, 0|ζ)J∇γ(s, 0|ζ)TJ−1fr(s, 0; ζ). (3.24)

A similar treatment allows for finding the Weyl symbols of more complicated opera-

tors, but in this work, we shall only be concerned with quantum trajectories Z(t, s).

A nice side effect of this method is that it does not make explicit reference to the

potentially curved configuration space: any difficulties arising in that context are

encoded in the classical flow γ, and in the Weyl symbol of the Hamiltonian (3.14).

9Expressions such as Πijf1 . . . fn are to be understood as taking derivatives w.r.t. the arguments

i and j, then evaluating at ζk = ζ for all k = 1, . . . , n.
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Figure 2: Example surface for a Hadamard-Gutzwiller-like model. The blue curve

is a possible periodic orbit of the classical dynamics. In order for the motion to be

chaotic, the surface has to have genus at least 2. Adapted from [28].

4 Particle on a high-dimensional hyperbolic manifold

In this section, we will introduce a model in which to compute the OTOC using the

formalism developed in section 3. Since we want to examine Lyapunov growth, a

sensible requirement is that the dynamical system be chaotic, and the “more chaotic”,

the better, if we want to get close to the MSS bound. An interesting possibility is

to use a Hadamard-Gutzwiller-like model (e.g. [43, 44]), that is, a particle of mass

m moving freely on a surface M of constant curvature R = −2/L2. An example

of such a system is sketched in fig. 2, together with a periodic orbit of the classical

dynamics, generated by the Hamilton function

h =
1

2m
pig

ijpj, (4.1)

where pi=1,2 are the momenta canonically conjugate to coordinates on the Poincaré

disk H2, x
i=1,2, and gij is the inverse of the metric

gij =
4L2

(1− (x1)2 − (x2)2)2
δij. (4.2)

Surfaces like the one depicted in fig. 2 can be realized as a quotient of H2 with some

discrete group of isometries Γ. After canonical quantization, the Hamiltonian of such

a system reads

H = − ℏ2

2mL2
∆, (4.3)

where ∆ is the (dimensionless10) Laplace-Beltrami operator on M, and ℏ2
2mL2 sets

the energy scale of the system.

10In two dimensions, any compact surface that is neither isomorphic to a sphere, nor a torus, can

be endowed with a metric of constant curvature R = −2 by the uniformization theorem [45]. ∆ is

the Laplace-Beltrami operator computed from this metric.
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A very special feature of this type of system is that the full quantum system

is completely equivalent to its semiclassical description, due to the presence of the

Selberg trace formula (STF) [46],

∑
n

u

(√
2mL2

ℏ2
En

)
=
L2V

4π

∫ ∞

0

dr u(r)Φ2(r) +
∑
PO

∞∑
k=1

APOũ

(
klPO
L

)
. (4.4)

Here, u(r) is a function of the spectrum of the Laplacian, En are the eigenenergies of

(4.3), L2V is the area of M, Φ2(r) is the so-called Plancherel measure of PSL(2,R)

(the isometry group of H2), the sum
∑

PO ranges over primitive classical periodic

orbits of the system, while the sum
∑

k counts their repetitions, APO is the stability

amplitude of a given periodic orbit, lPO its length, and finally ũ(l/L) is the Fourier

transform of the spectral function u(r).

Equation (4.4) is, for the system at hand, equivalent to the Gutzwiller trace

formula [47] widely used in semiclassical physics and periodic-orbit theory. Usually,

Gutzwiller’s trace formula is a small ℏ approximation to the full quantum path

integral, but eq. (4.4) is an exact mathematical identity.

For the STF to apply, the spectral function u(r) has to satisfy certain condi-

tions, one of which, interestingly, is an analyticity condition: it must be analytic in

a strip of width greater than 1 around the real axis. This condition is reminiscent of

(but not equivalent to) the condition on the analyticity of the OTOC in [19] that is

required to derive the MSS bound on the Lyapunov exponent [48].

We can also generalize this system to higher (indeed, arbitrarily high) dimen-

sions; a single particle in such a high-dimensional configuration space can represent

a many-body system with many degrees of freedom. In this setting, the classical dy-

namics (and correspondingly, any canonical quantum description) may become more

complicated, but the group theoretical construction underpinning eq. (4.4) gener-

alizes straightforwardly, and one can obtain a Selberg trace formula in arbitrary

dimension f [29, 49],

∑
n

u

(√
2mL2

ℏ2
En

)
=

LfV

(4π)f/2

∫ ∞

0

dr u(r)Φf (r) +
∑
PO

∞∑
k=1

APO ũ

(
klPO
L

)
. (4.5)

The analyticity condition mentioned above has to be modified slightly; the strip

where u is analytic now has to have a width of at least f − 1, and the manifold

on which the system lives is now M = Hd/Γ, with Γ again a discrete group of

isometries. Equation (4.5) has recently been used to reproduce correlation functions

of JT gravity [28] in the formal limit f → ∞, and as such, this kind of system makes

for an interesting candidate for the study of OTOCs, particularly as relates to the

MSS bound.

The STF is not particularly useful for the computation of the OTOC we intend

to perform (although there are examples of OTOC calculations using semiclassical
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theory, e.g. [23, 24]), but it reveals one of the ingredients needed for our computation:

the Plancherel measure Φf (r). After substituting r =
√

2mL2E
ℏ2 ,

Φf (r)dr ≡ ϱf (E)

√
2mL2

ℏ2E
dE, (4.6)

where ϱf (E) denotes the density of states, simply counts the number of states in an

energy interval. It therefore doubles as the microcanonical partition function of the

theory, which will be important in section 5. The Plancherel measure is known in

the literature (after absorbing the Jacobi determinant factor),

ϱf (E) =

√
2mL2

ℏ2E
f

(4π)f/2Γ
(
f+2
2

)
∣∣∣∣Γ(i√2mL2

ℏ2 E + (f − 1)/2

)∣∣∣∣2∣∣∣∣Γ(i√2mL2

ℏ2 E

)∣∣∣∣2

=



2mL2

ℏ2

tanh

(
π
√

2mL2

ℏ2 E

)
(2π)f/2(f − 2)!!

f−4
2∏

k=0

(
2mL2

ℏ
E +

(
k +

1

2

)2
)

f even

1

2(f−1)/2π(f+1)/2(f − 2)!!

√
2mL2

ℏ2E

f−3
2∏

k=0

(
2mL2

ℏ2
E + k2

)
f odd.

(4.7)

Most notably, in the limit f → ∞, the density of states reads [28]

ϱ∞(E) =
2mL2

ℏ2
sinh

(
π

√
2mL2

ℏ2
E

)
, (4.8)

i.e., it is (up to a rescaling) equal to the sinh or Schwarzian density of states charac-

teristic of 2d dilaton gravity [50].

As we will show in the next section, the semiclassical calculation of the quan-

tum Lyapunov exponent will critically depend not only on the precise knowledge

of the level density, eq. (4.7), but also on the specific form of the classical, micro-

canonical Lyapunov exponent. Remarkably, in our case, the latter is not only fully

independent of the dimension11, but its rigorously exact dependence on the micro-

scopic parameters of the theory and the energy is known and given by [43]

λ(E) =

√
2E

mL2
, (4.9)

where E = p2/2m. Equation (4.9) can be understood heuristically by noticing that it

is essentially a measure of the curvature pushing geodesics away from each other. This

11In generic chaotic systems with f degrees of freedom, one would expect f possibly different

positive classical Lyapunov exponents. In the system at hand however, all positive Lyapunov

exponents are equal [51].
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heuristic picture can be made rigorous by means of the solutions of the corresponding

Jacobi fields [52, 53].

Equipped with these two ingredients, the exact mean level density and the

classical microcanonical Lyapunov exponent, we can proceed to the leading order

computation of the quantum Lyapunov exponent.

5 Leading-order quantum Lyapunov exponent

5.1 General strategy

We start with the computation of the OTOC for systems with classical chaotic limit,

up to leading order in ℏ with the operator choice V = X,W = P :

C(t) = − tr
(
ρ(β)[Pt, X]2

)
, (5.1)

where ρ(β) = e−βH

Z(β)
is the thermal state, as specified in section 2. In exchange

for introducing a factor δ(E − H), we can rewrite this expression in terms of an

energy integral. The result can then be related to the microcanonical average of the

commutator under consideration:

C(t) = −
∫ ∞

0

dE tr

(
e−βH

Z(β)
[Pt, X]2δ(E −H)

)
= −

∫ ∞

0

dE
e−βE

Z(β)
Z(E)

1

Z(E)
tr
(
δ(E −H)[Pt, X]2

)
= −

∫ ∞

0

dE
Z(E)

Z(β)
e−βE

〈
[Pt, X]2

〉
mc
, (5.2)

where we used the fact that δ(E−H) is precisely the microcanonical density matrix,

and Z(E) = tr δ(E − H). We now express the microcanonical average through its

Wigner-Moyal quantization,

C(t) = −
∫ ∞

0

dE
Z(E)

Z(β)
e−βE

∫
dxdpW[Pt,X]2W (x, p), (5.3)

where (x, p) ∈ R2f are coordinates parametrizing the phase space of the system, WA

is the Weyl symbol of the operator A and W (x, p) = Wδ(E−H(X,P )) is the Wigner

function. For simplicity of notation, we will assume that the phase space is covered

by a single coordinate patch, so that there is only one region that contributes to the

phase-space integral in eq. (5.3)12.

12A further subtlety arises from the fact that on compact manifolds, momenta conjugate to

coordinates with finite range (e.g. angles) are quantized, leading to a discrete phase space. However,

after replacing the corresponding momentum integrals by sums, our arguments are still applicable.

In the semiclassical limit, the continuous phase space can be recovered.
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Directly computing the Weyl symbol of such a complicated operator is quite

hard, but we can simplify the task somewhat:

W[Pt,X]2 = W[Pt,X] ⋆ W[Pt,X]

= −ℏ2{WPt ,WX}M ⋆ {WPt ,WX}M (5.4)

The Weyl symbol of Weyl ordered initial time operators is simply given by the

direct replacement of all factors X,P → x, p, i.e. by their corresponding phase-

space functions. For time-evolved or not Weyl-ordered operators, finding the Weyl

symbol is much more involved (as we will see in section 6), but the beauty of the

Wigner-Moyal approach lies in the fact that at leading order in ℏ, we can simply

replace

1. the Weyl symbol WPt by the classical solution pt,

2. the Moyal bracket by the Poisson bracket and

3. the ⋆ product by the usual phase-space product.

Likewise, at leading order, the Wigner function is given by

WE(x, p) =
δ(E − h(x, p))

Z(h(x, p))
+O(ℏ). (5.5)

A crucial observation is that, for the OTOC understood as an expansion in a small

parameter [19] with corrections becoming important at later times [30, 54], our calcu-

lation up to this point shows that the leading order Lyapunov exponent is independent

of the regularization (i.e. choice of distribution of the density matrix factors) – a

property so far only assumed and confirmed numerically, but never rigorously shown

[55].

After the above replacements, the OTOC reads, to leading order,

C(t) ≈ ℏ2
∫ ∞

0

dE
Z(E)

Z(β)
e−βE

∫
dxdpWE(x, p)

∣∣∣∣∂pit(x, p)∂pj

∣∣∣∣2, (5.6)

where we made the dependence of pt on the initial conditions explicit, and we use

the Einstein convention to indicate summation over the indices i, j = 1, . . . , f . Since

we are only interested in the growth rate of this integral, evaluating it exactly is not

necessary. Now the classical microcanonical Lyapunov exponent λ enters, capturing

the exponential growth of the off-diagonal blocks {pit, qj},

{pit, qj} = −∂p
i
t(x, p)

∂pj
= F i

j (x, p)e
λ(x,p)t, (5.7)

of the stability matrix [56].

Up to now, our only assumption is that the system is chaotic and admits a well-

defined classical limit, with a leading-order approximation in ℏ to the OTOC given

by inserting eq. (5.7) into eq. (5.6). The canonical quantum Lyapunov exponent is
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then obtained by identifying the corresponding leading order-contribution in ℏ to the

exponential growth (if any) of the OTOC. Progress in this direction is only possible

if the specific dependences of both the thermodynamic Z(E), Z(β) and dynamical

λ(x, p) functions entering eq. (5.6) are known.

5.2 The canonical quantum Lyapunov exponent for high-dimensional hy-

perbolic motion

To apply the method above to high-dimensional hyperbolic motion, we focus on

systems where the Lyapunov exponent is constant on the classical energy shell,

namely where λ(x, p) depends on the initial conditions (x, p) only through the energy

E = h(x, p), such as the ones considered in [25] and [32, 56]. This is a special and

convenient feature, as the dependence of λ(x, p) on the initial phase space region in

general systems is expected to be complicated and, in most cases, simply not known.

F i
j (x, p) is a slowly varying phase-space function that will not be important for our

purposes13. Using eq. (5.5), we have

WE(x, p)e
2λ(h(x,p))t = WE(x, p)e

2λ(E)t +O(ℏ), (5.8)

so we can pull the exponential term out of the phase-space integral and are left with

C(t) = ℏ2
∫ ∞

0

dE
Z(E)

Z(β)
e2λ(E)t−βE ∣∣F i

j

∣∣2(E)
=

ℏ2

Z(β)

∫ ∞

0

dE e2λ(E)t−βE+logZ(E)
∣∣F i

j

∣∣2(E) (5.9)

where
∣∣F i

j

∣∣2(E) is the phase-space average of the slowly varying part of the stability

matrix, and hence is expected to only weakly depend on the energy as well.

When f = 2, this result for the leading O(ℏ2) contribution to the OTOC co-

incides with the result of [23] for the appropriate choice of operators. However, it

does not allow for an unambiguous identification of a quantum Lyapunov exponent

as there is no clear region of exponential growth. As we show below, this is because

the key ingredient for such an identification is a saddle point analysis only justified in

the regime of ensemble equivalence, f→∞, where the bound on chaos was originally

derived [19].

We will invoke the standard tools of ensemble equivalence well known in statis-

tical physics [57], that are asymptotically exact in the limit f → ∞. From eq. (5.9),

the growth rate of the integral, and thereby the Lyapunov exponent, can be estimated

(up to loop corrections) by evaluation at the stationary point E∗
β of the integrand,

C(t) ≈ ℏ2
∣∣F i

j

∣∣2(E∗
β)e

2λ(E∗
β)t, (5.10)

13Roughly, F i
j (x, p) is a function of the basis vectors of the tangent space at the phase-space point

(x, p), while the exponential behavior is captured by the stretching factor eλt [56].
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where we used that Z(β) = Z(E∗
β)e

−βE∗
β [57, 58] as dictated by the standard thermo-

dynamic relation between the entropy and the free energy. Plugging in the micro-

canonical Lyapunov exponent (4.9) of the system, the stationarity condition reads

0 = 2λ′(E∗
β)t− β +

Z ′(E∗
β)

Z(E∗
β)

≡
√
2t√

mL2E∗
β

− β +Gf (β), (5.11)

where Gf (β) = ϱ′f (E)/ϱf (E) is determined by approximating the microcanonical

partition function Z(E) by its smooth part, Z(E) ≈ ϱf (E).

We can analytically evaluate eq. (5.11) in two interesting regimes. The density

of states (4.7) of our model (we may restrict to odd f for simplicity) takes the

form of a curvature expansion [59–61]. This expansion comprises the highest-degree

monomial given by the Weyl volume law [1], as well as all quantum corrections in

the form of a lower-degree polynomial [62]. Therefore, if we want to access the

classical regime of the system, the highest-degree term in eq. (4.7) should dominate

the others [63]. We can translate this to the simple condition (see appendix A for a

short derivation),
f 2

24
≪ 2mL2

ℏ2β
≡ 4πL2

λ2th
, (5.12)

where we introduced the particle’s thermal de Broglie wavelength,

λth =

√
2πℏ2β
m

. (5.13)

If the number of degrees of freedom f is large, which is necessary for the applicability

of the saddle point approximation (5.10), the condition (5.12) simply means that their

thermal wavelength has to be small enough not to experience curvature effects. Since

curvature corrections to the density of states play the role of quantum corrections

in our system, this is consistent with the aim of studying the system in the classical

regime. Neglecting the quantum corrections then, we can solve the stationarity

condition (5.11) with

Gf (β) =
f

2E∗
β

(5.14)

and find the growth rate of the OTOC to be

2λ(E∗
β) =

√
4t2

mL2 ±
√

4t2

mL2 + 4βf√
mL2β2

, (5.15)

which is independent of ℏ, as expected. If we assume that the thermal energy per

degree of freedom is much smaller than the kinetic energy of a particle that is sensitive

to curvature effects on a timescale t,

1

β
≪ mL2

t2
, (5.16)
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we can neglect the t-dependent terms in eq. (5.15) and find

2λ(E∗
β) =

√
4f

mL2β
. (5.17)

Recalling eq. (4.9), this is simply the statement that the energy in the system is

given by the classical equipartition theorem. Usually, one would associate larger,

rather than smaller temperatures to more classical behavior, but in the system at

hand, it is known that quantum corrections to the density of states take the form

of a curvature expansion [59–61], and hence, it is sensible to stay far away from the

regime in which such corrections start mattering to observe the system at its “most

classical”.

As the thermal wavelength of the particle grows to comparable size to the cur-

vature radius, i.e. as the temperature decreases, quantum corrections become very

important, and eventually, the entire polynomial (4.7) will contribute, approximat-

ing the infinite-dimensional sinh-behavior. It is instructive to exploit the product

structure of eq. (4.7) and write the density of states (again in the f odd case for

simplicity) as the f → ∞ result up to multiplicative corrections,

ρf (E) ∝
sinh

(
π
√

2mL2

ℏ2 E

)
∏∞

k= f−1
2
k2 + 2mL2

ℏ2 E
, (5.18)

which yields

Gf (β) =

√
mL2

2ℏ2

(
π√
E∗
β

coth

(
π

√
2mL2

ℏ2
E∗
β

)
−

∞∑
k=1

1

(k + f)2/4 + 2mL2E∗
β/ℏ2

)
.

(5.19)

Using the fact that

coth x =
1 + e−2x

1− e−2x
≈ 1 for x ≳ 1, (5.20)

we can neglect the coth factor whenever

E∗
β ≳

ℏ2

2mL2

1

π2
. (5.21)

With this simplification, it remains to solve the stationarity condition (5.11) for

Gf (β) ≈
√
mL2

2ℏ2

(
π√
E∗
β

−
∞∑
k=1

1

(k + f)2/4 + 2mL2E∗
β/ℏ2

)
. (5.22)

If the dimension is sufficiently large, the sum in eq. (5.22) should only result

in a small correction to the stationarity condition (5.11),

f 2

4
≫

2mL2E∗
β

ℏ2
≈ 4L4

λ4th
, (5.23)
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where the “≈” comes from plugging in the solution

E∗
β =

mL2π2

ℏ2β2
, (5.24)

obtained from solving the saddle point equation neglecting the sum in eq. (5.22)14.

Note that this describes (roughly) the opposite extreme to the classicality condition

(5.12), i.e. at fixed dimension, the thermal wavelength needs to increase until curva-

ture (and thus quantum) effects become relevant to access it. This justifies solving

eq. (5.11) iteratively. Neglecting the last term, solving for E∗
β, see eq. (5.24), inserting

this again into the full equation, and solving a second time, results in

2λ(E∗
β) =

2(ℏt+ πmL2)

mL2ℏβ
1

1 + 2
π
Im(Ψ(1 + f − 4iℏt+πmL

2

ℏ2β ))

ℏ≪mL2

t−−−−→ 2π

ℏβ

(
1− 16πL2

λ2th

log(f + 1)

f + 1
+ . . .

)
,

(5.25)

with the digamma function Ψ(z) = Γ′(z)
Γ(z)

. The regime indicated by the arrow is

accessed if the typical action of a trajectory of the particle mL2

t
is large against ℏ,

i.e. when our initially very quantum system becomes “more classical” again15. From

here, we can see the correction coming from the sum in eq. (5.22) dying away if the

thermal wavelength increases, or alternatively, if the dimension becomes very large.

Indeed, in the infinite-dimensional limit, the sum in eq. (5.22) vanishes entirely, and

we are only left with

Gf (β) ≈
√

2mL2

ℏ2
π√
E∗
β

, f = ∞, (5.26)

which yields for the Lyapunov exponent the central result

2λ(E∗
β) =

2

ℏ

(
π

β
+

ℏ
mL2

t

β

)
ℏ≪mL2

t−−−−→ 2π

ℏβ
. (5.27)

Remarkably, our chaotic quantum system saturates the MSS bound, corre-

sponding to maximally fast scrambling, in the limit of infinite configuration space

14This energy has to be in particular consistent with eq. (5.21).
15It should be noted at this point that particularly in many-body semiclassics, there are typically

two complementary notions of the classical limit [64]: the usual classical limit ℏ → 0, as well as the

limit of a vanishing “effective” ℏ, i.e. the number of degrees of freedom of the system f → ∞. It has

been argued for bosonic systems in [24] that the limit f → ∞ produces an expansion of the OTOC

akin to the one of [19], in apparent tension with our results. A key difference between the case of [24]

and ours, however, is that the degrees of freedom described by eq. (4.3) are distinguishable, calling

into question the simple applicability of results for bosonic systems. Indeed, the limit f → ∞ is

not a natural classical limit in our case; it is rather the limit that emphasizes the quantum regime

the most, in the sense of making the system maximally chaotic at every temperature, see fig. 4.
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Figure 3: Quantum Lyapunov exponent Λ = 2λ(E∗
β) for inverse temperature β = 1,

evaluated for different dimensions f , plotted in units where ℏ = 1,m = 2, L =

1, λth = 1/2. Solid blue line: full numerical solution of the stationarity condition

(5.11). Dotted orange line: first correction to the infinite-dimensional solution for

large, finite dimension (5.25). Grey dashed line: 2π, i.e. the MSS bound, eq. (2.3).

One can see that both finite-dimensional results approach the MSS bound for (very)

large dimensionality.

dimension16. Since this is precisely the limit in which it starts to exhibit correla-

tion functions akin to the ones found in JT gravity [28], this result serves to further

support the status of this model as dual to JT gravity, where saturation of the MSS

bound has been confirmed independently [35]. The approach of the system’s quan-

16In this context, the conjecture proposed in [25] can be interpreted as a classical bound, that

is corrected by increasingly strong quantum corrections, eventually producing the quantum bound,

with a transition that happens around the f -dependent crossing point seen in fig. 4.
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tum Lyapunov exponent to the bound by increasing the dimension can be seen in

fig. 3, where we plot the full solution of the stationarity condition (5.11), as well as

the first correction to the infinite-dimensional result (5.25). In both cases, we can

see that the MSS bound is approached when increasing the dimension f .

Figure 4 shows the quantum Lyapunov exponent as a function of the rescaled

inverse temperature fβ for fixed f . From the discussion above, as well as from

fig. 4, it is also clear that our system approaches the MSS bound for fixed f , if

the temperature becomes sufficiently small. This means that we have a class of f -

dimensional quantum systems with chaotic classical limits that become maximally

fast scramblers in the low-temperature limit.

Moreover, the simple form of eq. (5.17) suggests that upon rescaling by 1/f ,

the quantum Lyapunov exponent should be described by a universal function of fβ

with no (or only very weak) additional dependence on the dimension. The slightly

opaque solid lines show (1/f)Λ(fβ), obtained from the full numerical solution of the

stationarity condition (5.11) for two representative dimensions, f=301 and f=4301,

in units where ℏ = 1,m = 2, L = 1. The two numerical curves are so close to each

other that their difference cannot be resolved in the plot. This, together with further

analysis for other f values, indeed points towards a unique curve (1/f)Λ(fβ) for

describing the quantum Lyapunov exponent for large f .

Furthermore the convergence towards the chaos bound at fixed f suggests that

even without taking the JT gravity limit, there might be relatively simple gravita-

tional duals. This notion is supported by topological gravity, also known as the Airy

model (see e.g. [65, 66]). The density of states of this theory is identical to the one

of our model in f = 3 dimensions. At intermediate finite dimensions, our model

can be seen as interpolating between topological and JT gravity by changing the

dimension, in a manner similar, but not identical, to the (2, 2p − 1) minimal string

[67, 68], which has recently been found to admit a black-hole-like geometry [37].

A somewhat similar behavior of the quantum Lyapunov exponent has been

found in the SYK model in [36]. While for simple gravitational theories such as

Einstein gravity, one expects Λ to saturate the MSS bound, stringy corrections [69]

can hinder the development of chaos and decrease the quantum Lyapunov exponent.

This effect has also been discussed explicitly for the Schwarzian theory in [70], and a

description in terms of so-called scramblon modes has been shown to be applicable

in SYK-like models [71]. The submaximal chaos apparent in the quantum Lyapunov

exponent in fig. 4, viewed in this light, therefore hints at an interesting, as yet

unexplored interpretation of the high-temperature regime of our model (at finite

dimension) in terms of a more complicated gravitational theory with stringy (or

similar) effects that disappear at low temperature, and that might even be explicable

in terms of the corrections (5.18) to the infinite-dimensional pure JT gravity density

of states (4.8).
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Figure 4: Double-log plot of the system’s rescaled leading-order quantum Lyapunov

exponent (1/f)Λ (where Λ = 2λ(E∗
β)) as a function of the rescaled inverse temper-

ature fβ. The slightly opaque solid lines show (1/f)Λ(fβ), obtained from the full

numerical solution of the stationarity condition (5.11) for two representative dimen-

sions, f =301 and f =4301, in units where ℏ = 1,m = 2, L = 1. The two numerical

curves are so close to each other that their difference cannot be resolved in the plot.

This indicates (fβ)-scale invariance in the large-f limit. Dotted orange line: classical

approximation to the Lyapunov exponent (5.17), given by the equipartition theorem.

Dashed grey line: 2π/β, i.e. the MSS bound eq. (5.27). The system saturates the

MSS bound at low (scaled) temperatures, while it is more appropriately described

by classical equipartition (eq. (5.17)) at high (scaled) temperatures.
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6 Subleading corrections

As already mentioned above, the term whose growth rate is bounded by 2π/ℏβ in

the out-of-time ordered correlator F (t) is predicted [19] to only be the first in an

expansion,

Fd − F (t) = ℏ2f1e
2π
ℏβ t +O

(
ℏ4
)
, (6.1)

where Fd is the factorized value of F (t), as introduced in section 2. Indeed, defining

moments

µJ(t) = e
4πJ
ℏβ t

∫ t+iℏβ/4

t−iℏβ/4
dt′e−

2π
ℏβ (t

′−iℏβ/4)(2J+1)(F (t′)− Fd), (6.2)

the analytic structure of F (t) imposes a set of conditions on the moments [30]:

0 < µJ(t) <
2ℏβFd

π(2J + 1)
e−

2π
ℏβ t, (6.3)

µJ+1(t) < µJ(t), (6.4)

µJ+1(t)
2 ≤ µJ(t)µJ+2(t). (6.5)

These conditions must be satisfied by the out-of-time ordered correlator, and eqs. (6.3)

and (6.4) imply that at late enough times17, corrections to the Lyapunov growth of

e.g. the form

Fd − F (t) = ℏ2f1e
2π
ℏβ t + ℏ4f2eΛ2t +O

(
ℏ6
)

(6.6)

must appear in systems with maximal Lyapunov growth Λ = 2π
ℏβ . Further accounting

for eq. (6.5) produces a bound on this new, subleading exponential growth as well,

Λ2 ≤
6π

ℏβ
. (6.7)

The saturation of this equality again forces similar late time corrections Λ3,Λ4, . . .,

which are then again bounded by 10π
ℏβ ,

14π
ℏβ , . . . and so on, by repeatedly applying

eqs. (6.3) to (6.5) [54]. Since our system, as we have shown in section 5, saturates

the MSS bound at leading order in the OTOC, and the Wigner-Moyal quantization

gives a systematic way to compute ℏ corrections to the leading result, it is natural to

examine those corrections and determine whether subleading bounds are saturated

as well. In this section, we will attempt to characterize the first nonzero correction

to the leading order OTOC in our system and estimate its growth rate. However, as

we will see, the complexity of the computation is drastically higher than at leading

order.

To recap some of the observations in section 3, we expect corrections to the

leading order in ℏ from

17A bit more precisely: the conditions eqs. (6.3) and (6.4) imply that there have to be corrections

to the maximal Lyapunov growth (6.1) of the form (6.6) with Λ2 > 2π
ℏβ . These corrections then

imply the existence of a timescale t1 ≪ t∗ where the approximation (6.1) to the OTOC breaks

down and the second term in eq. (6.6) starts to dominate [30].
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1. the Weyl symbol for the time-evolved operator Pt (though not for X),

2. the Moyal bracket and the ⋆ product,

3. and the Wigner function W (x, p).

Naively, one might also expect these corrections to be sensitive to the non-flat met-

ric of the configuration space, since Weyl symbols in configuration spaces must be

modified according to eq. (3.2), i.e. by including the determinant g(x) of the config-

uration space metric at x. Given the essential singularity at ℏ = 0 in the prescription

(3.2), tracing the influence of the metric on the small ℏ expansion of a Weyl symbol

is a highly nontrivial endeavor. Fortunately, the formalism developed by Osborn

and Molzahn [31] to determine Weyl symbols of Heisenberg operators takes care of

the metric dependence automatically via the classical flow that enters the compu-

tation. Since the Weyl symbols of initial time Weyl-ordered polynomials in X,P

remain unchanged by the curved configuration space, the only explicit modification

of the Weyl symbol computation we have to account for come from ℏ corrections to

the Hamiltonian, which we discuss in appendix B. In the notation of section 3, our

Hamiltonian’s Weyl symbol has the form [72]

hc =
1

2m
pig

ij(x)pj, (6.8)

h2 =
R

12m
, (6.9)

hr ̸=2 = 0, (6.10)

where R is the Ricci scalar of the manifold. Due to the vanishing of h1, we can

conclude from eq. (3.22) that

z1 = 0, (6.11)

and crucially, h2 is a constant in the system we consider, leading to a simplification

of eq. (3.23). We can therefore determine the first nonzero correction to the quantum

trajectory Z by integrating eq. (3.23) according to eq. (3.24), and find

z2(t; ζ) =

∫ t

0

ds∇γ(t, 0|ζ)J∇γ(s, 0|ζ)TJ−1

×
[
−1

8
Π2(γ · ∇)2 +

1

12
Π12Π23(γ · ∇)3

]
J∇hc(t, γ(t, s|ζ)).

(6.12)

We can simplify this a bit further in order to facilitate the discussion that follows,

by realizing that

∇γ(t, 0|ζ) ≡M(t) (6.13)

is simply the monodromy of the classical flow. For a Hamiltonian flow, the mon-

odromy preserves the symplectic form [73],

M(t)TJM(t) = J, (6.14)
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and hence, we can combine

M(t)JM(s)TJ−1 =M(t)M(s)−1 = ∇γ(t, s|ζ), (6.15)

since J2 = −1 and multiplying the above equation with M−1 from the right and J−1

from the left. With this rewriting, we can express the correction to the quantum

trajectory as

z2(t; ζ) =

∫ t

0

ds∇γ(t, s|ζ)
[
−1

8
Π2(γ · ∇)2 +

1

12
Π12Π23(γ · ∇)3

]
J∇hc(t, γ(t, s|ζ)).

(6.16)

To the desired order in ℏ, this accounts for all contributions to the OTOC

coming from the Weyl symbols themselves. The remaining corrections stem from

the Moyal bracket,

{·, ·}M = {·, ·} − ℏ2

12
Π3(·, ·) +O

(
ℏ4
)
, (6.17)

and the ⋆ product,

⋆ = ·+ iℏ
2
Π− ℏ2

8
Π2 +O

(
ℏ3
)
. (6.18)

Note however, that in eq. (5.4), the ⋆ product is taken between two copies of the

same object. Plugging in the ℏ expansion for the Moyal brackets, the only terms

appearing at O(ℏ) are the two “fully classical” ones, and the ⋆ product of these

vanishes, cf. footnote 7.

There may be further corrections from the Wigner function which we have

not considered. However, as we are interested only in the (exponential) growth of

the OTOC, we argue for neglecting them, since they are generic for any correlation

function of any set of operators, depending only on the state. For this reason, we do

not expect them to contribute in an interesting manner to the growth rate.

All assembled then, the first correction to eq. (5.4) is

ℏ4
(

− {p2(t), x}{pt, x}+
1

6
{pt, x}Π3(pt, x) +

1

8
Π2

(
{pt, x}, {pt, x}

))
, (6.19)

where we generalized the notation in eq. (3.17) to WPt , recalling that p0(t) = pt, and

suppressed the dependence on the initial condition ζ. At present, we do not know

how to evaluate this expression or compute Λ2 from it, although numerical estimates

for some simple manifolds might be possible.

As a very rough estimate, we could use as a guideline that

{pt, x} ∼ eλt. (6.20)

If we take this to mean that phase space derivatives acting on time-evolved quantities

produce Lyapunov growth eλt, then we can give a broad-strokes prediction for the
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time dependence of each term in eq. (6.19). Most obviously, for the middle term, we

have the following:

Π3(pt, x) =
3∑

k=0

(−1)k
(
3

k

)(
∂k

∂pk
∂3−k

∂x3−k
pt

)(
∂3−k

∂p3−k
∂k

∂xk
x

)
. (6.21)

Now in this sum, if k ̸= 3, the second term produces derivatives of initial x wrt

initial p, which vanish. But if k = 3, we have ∂3x/∂x3 = 0. Hence, this contribution

vanishes identically,

{pt, x}Π3(pt, x) = 0. (6.22)

For the third term, a superficial examination yields that each of the Poisson

brackets acted upon by Π2 already grows exponentially, so each application of the

Poisson bivector should produce a factor e2λt, giving a total growth of e6λt. Indeed,

we can evaluate this expression:

Π2({pt, x}, {pt, x}) (6.23)

=
2∑

k=0

(−1)k
(
2

k

)(
∂k

∂pk
∂2−k

∂x2−k
∂pt
∂p

)(
∂2−k

∂p2−k
∂k

∂xk
∂pt
∂p

)
(6.24)

= 2
∂3pt
∂x2∂p

∂3pt
∂p3

− 2

(
∂3pt
∂x∂2p

)2

. (6.25)

Evidently, this includes 6 total derivatives of the time-evolved momentum. A sensible

expectation is then that the term grows no more strongly than

Π2({pt, x}, {pt, x}) ∼ e6λt, (6.26)

as anticipated, and still in agreement with the bound (6.7).

Finally, eq. (6.16) is the hardest term to evaluate explicitly, since it depends in

a nontrivial manner on the classical solutions on the hyperbolic manifold M, which

are not generally known analytically. The only way to provide any estimate at the

moment is to be even more speculative.

In the simpler free particle case on Hf , the γ ·∇ derivatives act in more or less

the same way as the J∇ on the Hamiltonian, i.e. they are derivatives along the flow

direction. The Π derivatives are not directional and thus act differently. Naively

counting all derivatives, the integrand might grow as fast as 8λ. If we use the refined

assumption that only the Π derivatives produce exponential growth however, we can

bound the growth of the integrand to at most 5λ. Finally, when looking at the free

particle solutions [74], the only function of the initial coordinates that we take Π

type derivatives of that seems to be sufficiently complicated to produce exponential

growth are derivatives of the conformal factor of the metric:

gij(x) = Ω(x)δij, Ω(x) =
2

1− |x|2
. (6.27)
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Since this only depends on x, it is conceivable that only the x derivatives in Π produce

exponential growth, bounding the total exponent of the integral to 3λ, although this

is not the expected behavior in typical chaotic quantum systems.

If we then plug these estimates into the actual contribution to the OTOC, we

estimate the growth to be bounded by

−{p2(t), x}{pt, x} ∼


e10λt if all derivatives contribute,

e7λt if only Π derivatives contribute,

e5λt if only x derivatives in Π contribute.

(6.28)

In our particular system, we were able to find in section 5 that in the limit f → ∞,

the classical Lyapunov exponent is evaluated at the saddle point as π
ℏβ , which would

mean that the total growth of the ℏ4 correction to the OTOC grows with

Λ2 =


10π
ℏβ if all derivatives contribute,
7π
ℏβ if only Π derivatives contribute,
6π
ℏβ if only x derivatives in Π contribute,

, (6.29)

since in the third case, the contribution from eq. (6.26) dominates the one from

eq. (6.28). This means that only in the third case, we could guarantee the bound

(6.7) being respected at all, and our estimate would leave room for the bound to be

saturated as well. Interestingly, this saturation would, if at all, arise from the correc-

tion to the ⋆ product, not the quantum trajectory. In the other cases meanwhile, we

can not say anything definite, but it is at least encouraging that our method gives an

estimate for the growth bound that is reasonably close to eq. (6.7), and not orders

of magnitude off.

We can compare these estimates to the Schwarzian theory, which describes both

JT gravity and the SYK model. In this theory, the out-of-time ordered correlator

can be computed exactly in the limit β ≪ 1, and is found to be (in the usual natural

units for JT gravity) [54, 75]

F (t)

Fd
=

1

z2∆
U(2∆, 1, 1/z), z =

β

8π
e

2πt
β , (6.30)

for a pair of operators V,W with scaling dimension ∆. Here, U(a, b, y) is the confluent

hypergeometric function. At early enough times, it has an asymptotic expansion in

terms of the generalized hypergeometric function [76]

U(a, b, y) ∼ y−a 2F0(a, a− b+ 1; ;−1/y), (6.31)

where

2F0(a1, a2; ; z) =
1

Γ(a1)Γ(a2)

∞∑
n=0

Γ(n+ a1)Γ(n+ a2)
zn

n!
. (6.32)
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Expanding eq. (6.30) up to second order in small z, we find

F (t)

Fd
= 1− β∆2

2π
e

2πt
β +

β2∆2(2∆ + 1)2

32π2
e

4πt
β + . . . (6.33)

Clearly, the subleading correction grows with Λ2 =
4π
β
, i.e. far away from the bound

(6.7). This tension with our rough estimate (6.29) suggests that a more careful

examination of the OTOC in our system is needed. It should be noted however,

that eq. (6.33) is an expansion for small β, whereas our system’s OTOC at fixed

dimension approaches the MSS bound only for relatively large β, cf. fig. 4, meaning

that the two behaviours need not necessarily agree.

7 Summary

In this work, we have developed a method to compute the canonical quantum Lya-

punov exponent in systems with a large number of degrees of freedom, using Wigner-

Moyal phase space quantization as a tool. Since the leading order in ℏ in this formal-

ism is simply equivalent to the classical Poisson algebra on the phase space, the cal-

culation requires only two inputs: the classical microcanonical Lyapunov exponent,

and the density of states. Remarkably, for a particle sliding on a high-dimensional

hyperbolic manifold, the system that was shown in [28] to reproduce correlation

functions of JT gravity in the limit of the configuration space dimension going to

infinity, both of these quantities, including all quantum corrections to the density

of states, are known in the literature, facilitating the computation of the quantum

Lyapunov exponent via the solution of a simple saddle point condition (5.11).

We have shown that at large enough dimension, the quantum Lyapunov expo-

nent interpolates between the maximal value provided by the Maldacena-Shenker-

Stanford bound at low temperatures, and a classical regime described by the equipar-

tition theorem at high temperatures, cf. fig. 4. In the limit of the dimension f → ∞,

the Lyapunov exponent saturates the MSS bound for all β, as evident from fig. 3 and

eq. (5.27), adding to the evidence in [28] of the system being dual to JT gravity in the

f → ∞ limit, and indeed showing gravitational signatures even at finite dimension

and low temperatures. This latter point in particular opens up the interesting pos-

sibility of studying large-but-finite dimensional Hadamard-Gutzwiller like models as

potential duals of gravitational systems in the spirit of the (2, p) minimal string, with

a possible interpretation of the difference between the infinite- and finite-dimensional

spectral densities in terms of stringy corrections [69–71].

We were also able to find a fairly compact expression, eq. (6.19), for the first

subleading correction to the Weyl symbol of the OTOC using the formalism devel-

oped in [31], as well as partially estimate its growth exponent (6.29). While we were

not able to verify that the bound of [30, 54] is observed, we could nevertheless re-

strict the growth of the first correction to the OTOC to be at least not much larger
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than allowed by eq. (6.7). A more thorough evaluation is complicated by the need to

determine the solutions of the equations of motion on a high-dimensional, compact

manifold, as well as quantum corrections to the Weyl symbols of the Heisenberg oper-

ators Xt, Pt. The limit is also fairly discontinuous, requiring in principle the solution

of new equations of motion every time f is increased. Given the difficulty of finding a

reliable estimate for the growth rate of the subleading correction in section 6, a more

careful investigation using e.g. the easily generalizable solutions of the free motion

on the hyperbolic f -space, or numerical solutions on a fixed high dimension, might

provide valuable insights, especially in light of the possibility of extremal chaoticity

that we were not able to exclude, and which would be unexpected in a system dual

to JT gravity.

Acknowledgments

We thank Maximilian Kieler for valuable comments on the interpretation of higher-

order phase space derivatives and Torsten Weber, Mathias Steinhuber and Georg

Maier for useful discussions. We acknowledge financial support from the Deutsche

Forschungsgemeinschaft (German Research Foundation) through Ri681/15-1 (project

number 456449460) within the Reinhart-Koselleck Programme.

References

[1] F. Haake, Quantum signatures of chaos, Springer, Berlin [u.a.] (2010).

[2] A. Touil and S. Deffner, Information scrambling – A quantum thermodynamic

perspective, Europhysics Letters 146 (2024) 48001.

[3] P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random

subsystems, Journal of High Energy Physics 2007 (2007) 120.

[4] Y. Sekino and L. Susskind, Fast scramblers, Journal of High Energy Physics 2008

(2008) 065.

[5] W.K. Wootters and W.H. Zurek, A single quantum cannot be cloned, Nature 299

(1982) 802.

[6] D. Dieks, Communication by EPR devices, Physics Letters A 92 (1982) 271.

[7] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, Journal of High

Energy Physics 2014 (2014) 67.

[8] B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol,

1710.03363.

[9] P. Gao and D.L. Jafferis, A traversable wormhole teleportation protocol in the SYK

model, Journal of High Energy Physics 2021 (2021) 97.

– 29 –

https://doi.org/10.1209/0295-5075/ad4413
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/299802a0
https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1710.03363
https://doi.org/10.1007/JHEP07(2021)097


[10] D. Jafferis, A. Zlokapa, J.D. Lykken, D.K. Kolchmeyer, S.I. Davis, N. Lauk et al.,

Traversable wormhole dynamics on a quantum processor, Nature 612 (2022) 51.

[11] B. Kobrin, T. Schuster and N.Y. Yao, Experiments implementing small commuting

models lack gravitational features, Nature 643 (2025) E17.

[12] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum

Heisenberg magnet, Physical Review Letters 70 (1993) 3339.

[13] A. Kitaev, “Alexei Kitaev, Caltech & KITP, A simple model of quantum holography

(part 1).”

[14] A. Kitaev, “Alexei Kitaev, Caltech, A simple model of quantum holography (part

2).”

[15] R. Jackiw, Lower dimensional gravity, Nuclear Physics B 252 (1985) 343.

[16] C. Teitelboim, Gravitation and hamiltonian structure in two spacetime dimensions,

Physics Letters B 126 (1983) 41.

[17] A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical Method in the Theory of

Superconductivity, Soviet Physics JETP 28 (1969) 1200.
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A Accessing the classical regime

We consider the product

f−3
2∏

k=0

(
2mL2

ℏ2
E + k2

)
≡

M∏
k=0

(x+ k2) = xM
M∏
k=0

(
1 +

k2

x

)
. (A.1)

For this product to be dominated by the highest-degree monomial, we need

M∏
k=0

(
1 +

k2

x

)
≈ 1, (A.2)

which is true when ∣∣∣∣∣
M∏
k=0

(
1 +

k2

x

)
− 1

∣∣∣∣∣ ≤ e
∑M

k=0
k2

x − 1 ≈ 0, (A.3)

i.e.
M∑
k=0

k2

x
≪ 1. (A.4)

This sum can be evaluated exactly as

M∑
k=0

k2 =
M(M + 1)(2M + 1)

6
=

(f − 3)(f − 2)(f − 1)

24
≈ f 3

24
(A.5)

for large f . Hence, the condition to access the classical regime in our system is

f 3

24
≪ 2mL2

ℏ2
E, (A.6)

and if we assume that in the classical regime, the energy is given roughly by the

thermal energy,

E ≈ f

β
, (A.7)

we obtain the classicality condition reported in the main text,

f 2

24
≪ 2mL2

ℏ2β
=

4πL2

λ2th
. (A.8)
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B Weyl symbol of the Hamiltonian

To find the Weyl symbol for our Hamiltonian (4.3), consider

2m

ℏ2
H = −∆ = −g−1/2∂ig

1/2gij∂j

= −g−1/2(∂ig
1/2gij)∂j − gij∂i∂j

= −∂2 − g−1/2(∂ig
1/2)gij∂j − (∂ig

ij)∂j

= −∂2 − (∂ig
ij)∂j − (∂i log

√
g)gij∂j

= −∂2 − (∂ig
ij)∂j −

1

2
gij
[
(∂i log

√
g)∂j + (∂j log

√
g)∂i

]
. (B.1)

Compare this to DeWitt’s ordering [77–79],

HDeWitt =
1

2m
Pig

ij(X)Pj + ℏ2Q(X), (B.2)

with the momentum operator

Pi =
ℏ
i

(
∂i +

1

2
Γjji(x)

)
(B.3)

and the so-called quantum potential

Q(x) =
1

4m
gij
[
∂jΓ

k
ki − ΓkijΓ

l
lk −

1

2
ΓkkiΓ

l
lj

]
. (B.4)

Γkij are the standard Christoffel symbols. First, note that using

Γi = Γjji = ∂i log
√
g, (B.5)

the quantum potential can be rewritten as [72]

Q(x) =
1

4m
∂i(g

ijΓj) +
1

8m
gijΓiΓj. (B.6)

Furthermore, the Hamiltonian

2m

ℏ2
HDeWitt = 2mQ(x)−

(
∂i +

1

2
Γi(x)

)
gij(x)

(
∂j +

1

2
Γj(x)

)
= 2mQ− 1

2
(∂ig

ij)Γj −
1

4
Γig

ijΓj −
1

2
(∂iΓj)g

ij

− (∂ig
ij)∂j − ∂2 − 1

2
gijΓj∂i −

1

2
Γig

ij∂j

= −(∂ig
ij)∂j − ∂2 − 1

2
gij (Γj∂i + Γi∂j) (B.7)
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agrees with eq. (B.1). Fortuitously, the Weyl symbol for the DeWitt Hamiltonian is

reported in [79] as

WHDeWitt
(x, p) = WH(x, p) =

1

2m
pig

ij(x)pj + ℏ2Q(x) +
ℏ2

8m
∂i∂jg

ij(x). (B.8)

After changing into Riemannian normal coordinates, i.e. coordinates such that at a

point q, gij(q) = δij, ∂kgij(q) = 0, Γkij(q) = 0, but ∂lΓ
k
ij(q) ̸= 0, a somewhat tedious

calculation shows that the ℏ2 correction to the Weyl symbol of the Hamiltonian is

simply given by the Ricci scalar of the manifold,

h2 =
R

12m
. (B.9)
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