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ABSTRACT: Out-of-Time-Ordered Commutators (OTOCs), representing a key di-
agnostic for scrambling as a facet of short-time quantum chaos, have attracted wide-
ranging interest, from many-body physics to quantum gravity. By means of a suitable
form of the Wigner-Moyal expansion, and invoking ensemble equivalence in statisti-
cal physics, we provide a consistent approach to the growth rate of the OTOC for
many-body systems with chaotic classical limit where both the classical Lyapunov
exponent and the quantum nature of the density of states enter. Applying this con-
struction to quantized high-dimensional hyperbolic motion, i.e., a quantum chaotic
system that exhibits gravity-like correlation functions in the late-time regime, we
compute the OTOC growth rate A as a function of the number of degrees of free-
dom, f, and inverse temperature, 5. We show that the scaled growth rate, A/f, can
be described by a universal function of f5 and displays a cross-over from classical
to quantum behavior as we increase f and/or lower the temperature. In the deep
quantum regime of infinite f, we find maximally fast scrambling in the sense of the
Maldacena-Shenker-Stanford bound on chaos. This elucidates the non-perturbative
mechanism underlying the saturation of the bound via quantum contributions to the
mean density of states, and it provides further support for this dynamical system as
a dual to two-dimensional quantum gravity. In this way, we present first evidence of
maximally fast scrambling in a quantum chaotic system with a well-defined classi-
cal Hamiltonian limit, without invoking any external mechanism such as (disorder)
averaging.
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1 Introduction

In recent years, the study of quantum chaos [1], and in particular, of scrambling as
a manifestation thereof in systems with a large number of degrees of freedom, has
drawn interest from varied, a priori seemingly disparate fields of physics. Scrambling
in this context stems from the spreading of initially localized correlations across many
or all available degrees of freedom of a system — strongly scrambling systems are in
a sense the quantum analogs of classical systems with mixing Hamiltonian flows!.
For a recent introduction to just some of the literature about scrambling, see [2].
One important application is the study of black holes: in a by now famous thought
experiment due to Hayden and Preskill [3], quantum information falling into a black
hole is scrambled across the horizon, and then quite rapidly reemerges as Hawking

'With the important caveat that quantum scrambling originates from a unitary time evolution
and is therefore reversible, while classical mixing is not.



radiation; the time scale for this process is given by the so-called scrambling time t*,
roughly the time scale necessary for initial state information to propagate through
the entire system. It was conjectured by Sekino and Susskind [4] that black holes
are the fastest scramblers occurring in nature?, with a scrambling time of the order
of

t* = CpBlog(9), (1.1)

where [ is the inverse Hawking temperature, C' is some numerical constant and S
the entropy of the system. This form was later shown to be universal with C' = h/27
in [7].

A more recent facet of the study of scrambling and the Hayden-Preskill protocol
in the context of black holes concerns teleportation of quantum information [8],
in particular across traversable wormholes [9-11]. There, the Sachdev-Ye-Kitaev
(SYK) model [12-14], the low-energy dual of two-dimensional Jackiw-Teitelboim
(JT) gravity [15, 16], is exploited to study signatures of the quantum chaotic nature
of the wormhole setup. Correlation functions of Hermitian operators serve as key
diagnostics for this purpose, and a particularly important one is the out-of-time
ordered commutator (OTOC).

The OTOC is a quantity of great interest in the study of quantum chaos, going
back to the work of Larkin and Ovchinnikov [17]. For a given quantum system
with a Hamiltonian H, consider Hermitian operators V, W, and denote time-evolved
operators by W, = eif'We=#t. Then, the OTOC reads

Ct) = — (W, V]?), (1.2)
where [, -] is the commutator and (-) = tr(%) is the expectation value in the

thermal state at temperature 7" = 1/kgf. In some of the literature, OTOC refers
to the closely related out-of-time ordered correlator F(t) = (W,VIW,V), but we will
mean only the commutator in this work.

In many quantum chaotic systems the OTOC is characterized by an initial
exponential growth for times shorter than the scrambling time ¢* of the system (al-
though there are exceptions, see [18] and references therein). The rate of this expo-
nential growth, A, defines the system’s temperature-dependent quantum Lyapunov
exponent,

C(t) ~ M. (1.3)

We should note here that there are differing conventions in the literature on whether
to call the growth exponent of C(t) A or 2A. The latter seems to be more common in
the quantum chaos community [18], while the former is more prevalent in quantum
gravity contexts [19-21], and it is also the convention we will be adopting hereinafter.

2S0 fast indeed that it might pose a problem for the no-cloning theorem [5, 6].
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Figure 1: The OTOC C(t) = <|[ﬁ1(t),ﬁ]|2>w in a strongly kicked Bose-Hubbard
system with N = 10000 particles and L = 2 sites, where n; is the particle number
operator on the first site and 1 is a suitably localized coherent state at energy FE.
Left: early times. The nearly linear slope indicates the initial exponential growth
with a constant rate corresponding to twice the classical Lyapunov exponent. Right:
The OTOC saturates at late times. Blue solid line: numerical data. Orange opaque
line: linear fit. Taken with permission from M. Steinhuber [22].

The reason for the nomenclature becomes obvious by picking for the operators
e.g. a canonical pair X, P and corresponding classical phase-space degrees of freedom
x,p. Provided the system has a classical limit, heuristic application of canonical
quantization demands that

(X, P}y, ~ ih{ay, p}, (1.4)

where the expectation value is defined with respect to a suitably localized state 1
near a fixed energy F, and z; the initial coordinate x evolved for a time t. Since for
systems displaying chaotic dynamics in their classical limit,

al’t A

{0} = oz "¢ (1.5)

where A(E) is the Lyapunov exponent of the classical counterpart, the corresponding
OTOC, in this microcanonical framework, initially increases exponentially with a
rate 2, as illustrated in fig. 1. More generally, in this microcanonical situation,
the exponential OTOC growth rate has been shown to agree with twice the classical
A(E) [18, 23, 24]. (For times longer than t*, the OTOC saturates, as evident e.g. in
fig. 1 and predicted in [24].)

Also, egs. (1.3) and (1.5) heuristically suggest A = 2X. The key fact that
the quantum Lyapunov exponent in eq. (1.3) is defined by a canonical initial state
(and cannot be directly related to A(F)) has been a source of confusion particularly



within the study of quantized chaotic systems by means of semiclassical methods,
where one often works at fixed energy E and hence with microcanonical quantities.
Two notable exceptions are the work of Jalabert et al. for systems with few degrees of
freedom [23], and Hashimoto et al. for general scaling systems [25]. In the former, the
temperature-dependent exponent is calculated by applying the statistical definition of
mean energy in the canonical ensemble to the microcanonical classical exponent A(F).
However, as we will show later, the use of the classical Thomas-Fermi approximation
for the microcanonical level density automatically renders the result classical, and
the quantum features of A(J) totally absent. In fact our analysis shows that the very
definition of A(3) in systems with few degrees of freedom (such as the ones considered
in [23] and [26, 27]) is ambiguous because the emergence of the exponential form
of the OTOC will strongly rely on the standard assumptions behind the ensemble
equivalence in statistical mechanics. Any discussion about the bound on chaos, that
emerges only for systems with large number of degrees of freedom, is therefore out
of reach unless further quantum effects and/or very non-generic features of specific
systems are included [26]. The analysis presented in [25] is closer in spirit to our
approach here, as it applies to systems with many degrees of freedom, but suffers
from the lack of precise analytical results for A(F) and absence of quantum effects
in the many-body level density, rendering A(/3) out of reach again.

In this work, we propose a consistent semiclassical theory of canonical quantum
Lyapunov exponents in quantum systems with large number of degrees of freedom
that admit a proper classical limit. This general approach will critically depend on
two ingredients, namely the exact energy dependence of the classical microcanonical
Lyapunov exponent, and the full quantum mechanical mean level density. These two
aspects of the classical and quantum description can be rigorously and explicitly con-
sidered for the dynamics of a particle sliding on a high-dimensional hyperbolic man-
ifold, a particular system that displays all the genuine properties of classical chaos
while admitting an exact semiclassical quantization, as we will explain in detail later.
This system has been shown in [28] to exhibit an emergent quantum-gravitational
description in the sense that, in the limit of large configuration space dimension,
1.e. large number of degrees of freedom, its spectral correlation functions are iden-
tical to that describing a consistent theory of quantum gravity in low dimensions:
Jackiw-Teitelboim (JT) gravity. We will show that this system is a fast scrambler
and, in the correct limit, indeed a maximally fast scrambler in the sense of saturating
the Maldacena-Shenker-Stanford (MSS) bound on chaos for the growth rate [19], as
expected for a system dual to JT gravity.

Since this system has a well-defined classical limit, we will follow a natural
approach for the calculation of the quantum canonical Lyapunov exponent from a
semiclassical perspective, where quantum properties of the system are appropriately
expressed through its classical phase space structures. Due to the great degree of
analytical control, afforded e.g. by the semiclassical description via the Selberg trace



formula [29], as well as the exactly known density of states and microcanonical Lya-
punov exponent, we can not only rigorously show the saturation of the MSS bound,
but also that this saturation is a quantum effect. It stems from quantum correc-
tions to the leading power law behavior of the density of states. Moreover, for the
system at hand, we provide explicit results for the quantum Lyapunov exponent as
a function of temperature and number of degrees of freedom, beyond the limiting
cases. We will further take initial steps towards evaluating the first subleading h?
correction to the OTOC, which can be systematically determined by the mechanism
of Wigner-Moyal phase space quantization, and which has to exhibit exponential
behavior with a different, likewise bounded growth exponent by the arguments of
[30].

The rest of the paper is organized as follows: in section 2, we quickly reca-
pitulate the MSS bound. In section 3, we introduce the formalism of Wigner-Moyal
quantization, and particularly a way to obtain A expansions for Heisenberg opera-
tors developed in [31]. In section 4, we introduce the aforementioned system whose
Lyapunov exponent we will compute in sections 5 and 6.

2 The Maldacena-Shenker-Stanford bound

A particularly interesting facet of the study of OTOCs is the appearance of an
analytical bound on its decay rate [19]. Namely, it can be shown that f(t) = F(t)/Fy,
with Fy; = (VV) (WW) the (constant) factorized value of the out-of-time ordered
correlator, satisfies

1. f(t + i7) is analytic in the half strip 0 < t, —g <T § and real for 7 = 0.

2. |f(t+147)| < 1 in the entire half-strip.
For such a function, then,

1—f'dt _hﬂ (2.1)
which implies, upon assuming the form
F(t) = Fy — ee™, (2.2)
that the decay rate A must obey
A< 2—;, (2.3)

which is the famous Maldacena-Shenker-Stanford (MSS) bound®. The proof of (2.3)
applies under fairly general assumptions, namely that the correlation functions fac-
torize in a long enough time regime, and that there is a strong hierarchy between the
scrambling time t* and the (shorter) dissipation time t;, which is roughly the decay

3We emphasize for clarity that the decay rate of F(t), and thereby also the decay rate of the
OTOC C(t), is bounded by %—g, irrespective of whether we call this decay rate A or 2A.



time of two-point correlators like (V'V;). This hierarchy is expected particularly in
systems with many degrees of freedom and Hamiltonians built from finite products
of simple operators. This is the case in many typical many-body systems, and also
in large-dimensional few- or one-body systems, which will be relevant in this work.

It is important to realize that the bound applies under the assumption that
there is a physical mechanism leading to the exponential growth of the second term
in eq. (2.2). Therefore, verifying its validity starting from a full-fledged microscopic
description of a given system automatically poses the problem of understanding
the emergence of such exponential behavior. This is in general a formidable task,
as Lyapunov exponents are emergent, non-perturbative features of the dynamics
and there are few physical systems where their existence and dependence on the
energy or temperature are known explicitly. For a type of systems satisfying certain
homogeneity conditions [32], the dependence of the classical Lyapunov exponent on
the energy can be inferred, and a theory of the quantum Lyapunov exponent, i.e.,
growth rate, starting from a given dependence on the energy, has been proposed in
[25]. In all these cases, however, the exact form of the results beyond the scaling
with the energy is lacking and therefore the closer study of the bound remains out
of reach.

So far, no system with a unitary time evolution satisfying these assumptions
has been found to violate eq. (2.3) to the best of the authors’ knowledge, and the
cases where the equality is saturated are particularly interesting?. Such systems are
usually gravitational, or dual to a gravitational system, and often involve black holes
as well>. While it is expected that systems with black holes saturate the bound,
there is no consensus on whether a black hole is necessary, or on “how gravitational”
a system has to be to saturate the bound. An example of such a system is Jackiw-
Teitelboim gravity [35] and its dual, the Sachdev-Ye-Kitaev model [36]. Independent
calculations on both sides of the duality show the saturation of the MSS bound in this
case. Interestingly, there is a class of gravitational models, the (2,2p — 1) minimal
string theories, that limit to JT gravity as p — oo, and for which the question of
saturation of (2.3) or not is as yet unanswered [37]. We will briefly comment on
these models in section 5.

A more careful analysis of the analytic structure of F'(t) that we will touch on
in section 6 reveals that (2.2) are only the first two terms in a short-time expansion
of the out-of-time ordered correlator [30],

Fy— F(t) = efie™ + & foe™ + O(€%). (2.4)

Here, € is a small parameter ensuring that the corrections are subleading compared
to the leading Lyapunov growth. Note that, consequently, what is referred to in the

“Note however that in non-unitary theories, the bound can be violated [33].
®Beyond the examples already mentioned in the introduction [12-16], see e.g. [34].



literature as quantum Lyapunov exponent is defined as the rate of growth of the
leading contribution to the correlator. In systems such as the one we will introduce
in section 4, where the scrambling time can be identified with the Ehrenfest time®
ty = A 'log(const./h) [24, 38, 39], a natural candidate for these subleading terms
are quantum corrections, and it is sensible to set € = h2.

3 Wigner-Moyal quantization

3.1 Basics and definitions

Given the close, but not yet well-understood connection between classical and quan-
tum Lyapunov exponents, it is helpful to make use of the Wigner-Moyal formalism,
which makes the connection between classical (Hamiltonian) and quantum mechan-
ics particularly transparent when post-Ehrenfest time interference effects can be
neglected. Being essentially a thermodynamic object, the temperature-dependent
quantum Lyapunov exponent is expected to satisfy this condition.

A naive (and for many purposes sufficient) understanding of quantization sup-
poses that one can define a quantum theory by finding operators X' P, for any
phase-space degrees of freedom z°, p; and identifying commutators with the classical

Poisson algebra,
1

{af,py} = 6 T (X, P =6, (3.1)
i.e., by taking a “reverse classical limit”. Trying to generalize this prescription to
general phase-space functions, one quickly runs into problems however: Groenewold’s
theorem states that no quantization map can be found that preserves the classical
Poisson structure for all polynomials in = = (2',22,...,27), p = (p1,pa,...,ps) of
degree 3 or less [40].

Moyal subsequently showed that the correct phase-space algebra to represent
the quantum operator algebra is not given by Poisson brackets, but by an A defor-
mation of theirs, usually referred to as the Moyal bracket [41].

To make use of this representation, we need to define the Weyl symbol W, of

an operator A,

Wa(z,p) = /dx’{‘/g(a: T2/ 2)g(x — o' [2)er? (x — o' [2|Alx +2//2),  (3.2)

with g(z) the determinant of the configuration space metric at the point z. Depend-
ing on the ordering of the operator A, Weyl symbols of different operators with the
same classical limit may differ by quantum corrections.

SWhen interpreted in a quantum mechanical framework in f dimensions, the dependence of the
scrambling time (1.1) on the entropy S (understood as the number of microstates of volume A/) is
expected to translate into a logarithmic dependence t* ~ Slog(h) in strong analogy with the so-
called Ehrenfest time [24, 38, 39] tg ~ A~!log (const./h), the characteristic time scale that signals
the dominance of interference effects in chaotic systems with classical Lyapunov exponent .



Some particularly important Weyl symbols are those of phase-space polynomi-
als in the so-called Weyl ordering,

Weyl quantization

(azx + bp)" > (aX + bP)". (3.3)

In this case, one can just reverse the arrow to find the Weyl symbol,
Wiax4opyn = (az + bp)". (3.4)

Additionally, we need the Weyl symbol of a density matrix p, called the Wigner
function of the state p,

‘VwﬁﬁEW%Lp%:/ﬁbe@+w7%ﬂw—fﬂk#”7x—fﬂwv+w7%.
(3.5)
The Wigner function is a quasiprobability distribution on the phase space, and allows
for the computation of expectation values in the corresponding state,

(), = [ dedp W (. pWa(e.p) (36)

We further introduce the (Moyal) * product,

[e.o]

=Y 4 (%) mo (3.7)

n=0

with the Poisson bivector II = VJV, where J = ( 0 ]l> is the standard symplectic

—-10
form” (on a two-dimensional phase space®):

°(f,g) = fg,  TI(f,9) = {f. g},
o) (G5 (5.

k=0

and suitably generalized in more dimensions, as well as the Moyal bracket,

{f.glu=Ffrxg—g* /. (3.9)

"One can easily see from this definition that II?*™+L(f g) = —I1*"*L(g, f), and TI>™(f,g) =
1" (g, f).

8This holds for a phase space with a flat symplectic form J = <

01
-10
coordinates in which this is locally the case, i.e. for a system with configuration space X, one picks
the local trivialization X x Rf of the phase space, and then chooses Riemannian normal coordinates

> . One can always choose

on X'. If this is not desired, one has to employ the more general Kontsevich quantization formula
[42].



Equation (3.7) also induces an i expansion in the Moyal bracket,

(b = S R ), (3.10)

With these definitions, we can use the following properties for Weyl symbols:

WAB = WA*WB, (311)
Wiap = ib{Wa, Wg}ar. (3.12)

3.2 Heisenberg operators

In order to compute the OTOC, we need a way to find the Weyl symbols of time-
evolved (Heisenberg picture) operators. Naively, one could simply cast a Heisenberg
operator,

Ay = M pem I, (3.13)

in terms of the Weyl symbols of A and the time evolution operator e *Ht/"

using
eq. (3.11). However, the latter exhibits an essential singularity at & = 0 and therefore
does not admit a regular Taylor expansion around that point. Since this is exactly
what we want to compute, an alternative way of determining the Weyl symbols of
operators like (3.13) is needed.

Osborn and Molzahn [31] provide such a way, which we will closely follow for
the remainder of this section. Consider Hamiltonians with a Weyl symbol of the

form

Wit Q) = helt:Q) + 3 o (50), (3.14)
r=1 "

where ( = (x,p) is an initial-time phase-space point, and the argument ¢ refers to a
possible explicit time dependence of the Hamiltonian. We can define the operator Z
such that W = (, and denote the time evolution from some initial time s to ¢ by

Z(t,s) =T(s,0)2, H(t,s)=T(s,)H(t). (3.15)

The time evolution is then determined by the Heisenberg equation,

m%za, s) = [Z(t,s), H(t,s)] = D(s,t)[Z, H(t)]. (3.16)

The second equation usefully reveals the dependence of the so-called quantum trajec-
tory Z(t,s) on the commutator between the initial condition Z and the Hamiltonian.
Equation (3.16) is solved by the ansatz

o0

Wy(t,s,h;C) = Zg (t,s;(), (3.17)

r=0

where the expansion coefficients are determined as follows:



The classical limit of eq. (3.16) is

%zo(t,s;g) = JVh.(t, 2(t, s;Q)), (3.18)

which is precisely Hamilton’s equation and, therefore, is solved by the classical flow
generated by the Hamiltonian h,,

Zo(tv 3;') :’y(t,S’-), (319)

ie. y(t,s|(zs,ps)) = (x4, pe), or simply, the classical solution of the equations of
motion. For higher order coefficients, we define the Jacobi operator

d
j(t; S, C) = % - JVth(tu 7(267 SK))v (320)
which gives equations of the form

JI(t;5,Q)zr = fr(t, 5;C). (3.21)

In the following, we will only consider the first
Tt s,Q)z(t, s:¢) = JVha(t,7(t, s[C)), (3.22)

and second equation®,

T (t;5,()z(t, s;¢) = |(z1- V)? = %HZ(’Y -V)* + %HHH%(V V)P | JVh(t,y(t, s[C))

+2(z1 - V)JIVhy(t,7(t, sC)) + JVha(t,7(t, s|C))-
(3.23)
These equations can then be integrated using a Green’s function of the Jacobi op-

erator J, which can be chosen as a function of derivatives of the classical flow ~
[31],

2 () = /0 45V (1,01¢) TV (s, 01) 7T (5, 05C). (3.24)

A similar treatment allows for finding the Weyl symbols of more complicated opera-
tors, but in this work, we shall only be concerned with quantum trajectories Z(t, s).
A nice side effect of this method is that it does not make explicit reference to the
potentially curved configuration space: any difficulties arising in that context are
encoded in the classical flow v, and in the Weyl symbol of the Hamiltonian (3.14).

9Expressions such as IL;j f1 ... fn are to be understood as taking derivatives w.r.t. the arguments
i and j, then evaluating at (y = forall k =1,...,n.
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Figure 2: Example surface for a Hadamard-Gutzwiller-like model. The blue curve
is a possible periodic orbit of the classical dynamics. In order for the motion to be
chaotic, the surface has to have genus at least 2. Adapted from [28].

4 Particle on a high-dimensional hyperbolic manifold

In this section, we will introduce a model in which to compute the OTOC using the
formalism developed in section 3. Since we want to examine Lyapunov growth, a
sensible requirement is that the dynamical system be chaotic, and the “more chaotic”,
the better, if we want to get close to the MSS bound. An interesting possibility is
to use a Hadamard-Gutzwiller-like model (e.g. [43, 44]), that is, a particle of mass
m moving freely on a surface M of constant curvature R = —2/L%* An example
of such a system is sketched in fig. 2, together with a periodic orbit of the classical
dynamics, generated by the Hamilton function

1 .
h=—p;g“p;, 4.1
2mpg Pi ( )

where p;—; 2 are the momenta canonically conjugate to coordinates on the Poincaré
disk Hy, 2'=12, and ¢ is the inverse of the metric
B 417
WA= @ =@y

Oij- (4.2)

Surfaces like the one depicted in fig. 2 can be realized as a quotient of Hy with some
discrete group of isometries I'. After canonical quantization, the Hamiltonian of such
a system reads
h2
H = A (4.3)

ComI2T

where A is the (dimensionless'?) Laplace-Beltrami operator on M, and QTZ% sets
the energy scale of the system.

10Tn two dimensions, any compact surface that is neither isomorphic to a sphere, nor a torus, can
be endowed with a metric of constant curvature R = —2 by the uniformization theorem [45]. A is
the Laplace-Beltrami operator computed from this metric.

- 11 -



A very special feature of this type of system is that the full quantum system
is completely equivalent to its semiclassical description, due to the presence of the
Selberg trace formula (STF) [46],

Zu < QTZ_QBEn) = [:17:/ /OOO dr u(r)®y(r) + ZZAPoﬂ (klzo) - (44)

PO k=1

Here, u(r) is a function of the spectrum of the Laplacian, F,, are the eigenenergies of
(4.3), L*V is the area of M, ®,(r) is the so-called Plancherel measure of PSL(2,R)
(the isometry group of Hy), the sum ) ., ranges over primitive classical periodic
orbits of the system, while the sum ), counts their repetitions, Apg is the stability
amplitude of a given periodic orbit, lpg its length, and finally @(I/L) is the Fourier
transform of the spectral function wu(r).

Equation (4.4) is, for the system at hand, equivalent to the Gutzwiller trace
formula [47] widely used in semiclassical physics and periodic-orbit theory. Usually,
Gutzwiller’s trace formula is a small A approximation to the full quantum path
integral, but eq. (4.4) is an exact mathematical identity.

For the STF to apply, the spectral function u(r) has to satisfy certain condi-
tions, one of which, interestingly, is an analyticity condition: it must be analytic in
a strip of width greater than 1 around the real axis. This condition is reminiscent of
(but not equivalent to) the condition on the analyticity of the OTOC in [19] that is
required to derive the MSS bound on the Lyapunov exponent [48].

We can also generalize this system to higher (indeed, arbitrarily high) dimen-
sions; a single particle in such a high-dimensional configuration space can represent
a many-body system with many degrees of freedom. In this setting, the classical dy-
namics (and correspondingly, any canonical quantum description) may become more
complicated, but the group theoretical construction underpinning eq. (4.4) gener-
alizes straightforwardly, and one can obtain a Selberg trace formula in arbitrary
dimension f [29, 49],

2m L2 v [ S s
;u ( TE,Z> = W/ dru(r)®¢(r) +ZZAPOU< LO> . (4.5)

0 PO k=1

The analyticity condition mentioned above has to be modified slightly; the strip
where u is analytic now has to have a width of at least f — 1, and the manifold
on which the system lives is now M = H,/I', with [' again a discrete group of
isometries. Equation (4.5) has recently been used to reproduce correlation functions
of JT gravity [28] in the formal limit f — oo, and as such, this kind of system makes
for an interesting candidate for the study of OTOCs, particularly as relates to the
MSS bound.

The STF is not particularly useful for the computation of the OTOC we intend
to perform (although there are examples of OTOC calculations using semiclassical

- 12 —



theory, e.g. [23, 24]), but it reveals one of the ingredients needed for our computation:
the Plancherel measure ®¢(r). After substituting r = \/2"%#,

O (r)dr = o5 (E) \/2;”5055; (4.6)

where o7(E) denotes the density of states, simply counts the number of states in an
energy interval. It therefore doubles as the microcanonical partition function of the
theory, which will be important in section 5. The Plancherel measure is known in
the literature (after absorbing the Jacobi determinant factor),

2

gf(E)_\/%(%) f ‘F(\/%Hf—n/z)

f/2F (%) ‘F (Z 2mL2 E) ?

hQ

2mL?2 f—4 4.7
o2 D (W w b ) 2 (2m1? 1\’ (4.7)
H E+|k+ 3 f even

;

K2 (2n)I2(f — 2l n

2mL2 2mL>? .
2(f 1/27(f+1)/2 (f —2)! \/ h2E H( E‘i‘k) f odd.

Most notably, in the limit f — oo, the density of states reads [28]

2mL? | 2mL?
0o(E) = 72 sinh (7? 7E>, (4.8)

i.e., it is (up to a rescaling) equal to the sinh or Schwarzian density of states charac-
teristic of 2d dilaton gravity [50].

As we will show in the next section, the semiclassical calculation of the quan-
tum Lyapunov exponent will critically depend not only on the precise knowledge
of the level density, eq. (4.7), but also on the specific form of the classical, micro-
canonical Lyapunov exponent. Remarkably, in our case, the latter is not only fully
independent of the dimension!!, but its rigorously exact dependence on the micro-
scopic parameters of the theory and the energy is known and given by [43]

2F
L2
where E = p?/2m. Equation (4.9) can be understood heuristically by noticing that it
is essentially a measure of the curvature pushing geodesics away from each other. This

AE) = (4.9)

"Tn generic chaotic systems with f degrees of freedom, one would expect f possibly different
positive classical Lyapunov exponents. In the system at hand however, all positive Lyapunov
exponents are equal [51].
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heuristic picture can be made rigorous by means of the solutions of the corresponding
Jacobi fields [52, 53].

Equipped with these two ingredients, the exact mean level density and the
classical microcanonical Lyapunov exponent, we can proceed to the leading order
computation of the quantum Lyapunov exponent.

5 Leading-order quantum Lyapunov exponent

5.1 General strategy

We start with the computation of the OTOC for systems with classical chaotic limit,
up to leading order in A with the operator choice V = X, W = P:

C(t) = —tr (p(B)[P, XT*) , (5.1)

where p(5) = % is the thermal state, as specified in section 2. In exchange
for introducing a factor §(F — H), we can rewrite this expression in terms of an
energy integral. The result can then be related to the microcanonical average of the
commutator under consideration:

Ct) = — /OOO dE tr (%[Pt,)q?a(g . H))

:_/dee Z(E) -t (5(E — H)[P, X]?)

Z(B) Z(E)
[T upZE) m g
= /OdEZ(B) ([P, X] >mc, (5.2)

where we used the fact that §(F — H) is precisely the microcanonical density matrix,
and Z(F) = tr6(E — H). We now express the microcanonical average through its
Wigner-Moyal quantization,

C(t) = —/ dE@e_ﬁE/dxdp Wip, x2W (z,p), (5.3)

0 Z(p)

where (x,p) € R* are coordinates parametrizing the phase space of the system, W,
is the Weyl symbol of the operator A and W(x,p) = Wsm_nx,p) is the Wigner
function. For simplicity of notation, we will assume that the phase space is covered
by a single coordinate patch, so that there is only one region that contributes to the
phase-space integral in eq. (5.3)'%.

12A further subtlety arises from the fact that on compact manifolds, momenta conjugate to
coordinates with finite range (e.g. angles) are quantized, leading to a discrete phase space. However,
after replacing the corresponding momentum integrals by sums, our arguments are still applicable.
In the semiclassical limit, the continuous phase space can be recovered.
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Directly computing the Weyl symbol of such a complicated operator is quite
hard, but we can simplify the task somewhat:

Wip, x12 = Wip,x)x Wip, x]
= R {Wp,, Wxtu x {Wp,, Wx}u (5.4)

The Weyl symbol of Weyl ordered initial time operators is simply given by the
direct replacement of all factors X, P — x,p, i.e. by their corresponding phase-
space functions. For time-evolved or not Weyl-ordered operators, finding the Weyl
symbol is much more involved (as we will see in section 6), but the beauty of the
Wigner-Moyal approach lies in the fact that at leading order in A, we can simply
replace

1. the Weyl symbol Wp, by the classical solution p;,

2. the Moyal bracket by the Poisson bracket and

3. the x product by the usual phase-space product.
Likewise, at leading order, the Wigner function is given by

Z(h(z,p))

A crucial observation is that, for the OTOC understood as an expansion in a small

Wz, p) = +O(h). (5.5)

parameter [19] with corrections becoming important at later times [30, 54], our calcu-
lation up to this point shows that the leading order Lyapunov exponent is independent
of the regularization (i.e. choice of distribution of the density matrix factors) — a
property so far only assumed and confirmed numerically, but never rigorously shown
[55].

After the above replacements, the OTOC reads, to leading order,

2

2(E) —px , (5.6)

Z(5)"

where we made the dependence of p; on the initial conditions explicit, and we use

op;(x,p)
op’

C(t) =~ hQ/ dE /dwdeE(x,p)’
0

the Einstein convention to indicate summation over the indices ¢,7 = 1,..., f. Since
we are only interested in the growth rate of this integral, evaluating it exactly is not
necessary. Now the classical microcanonical Lyapunov exponent \ enters, capturing
the exponential growth of the off-diagonal blocks {p:, ¢;},

op;(z, p)

oy =-—55" = Fj(x, p)eX=?), (5.7)

of the stability matrix [56].

Up to now, our only assumption is that the system is chaotic and admits a well-
defined classical limit, with a leading-order approximation in & to the OTOC given
by inserting eq. (5.7) into eq. (5.6). The canonical quantum Lyapunov exponent is
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then obtained by identifying the corresponding leading order-contribution in A to the
exponential growth (if any) of the OTOC. Progress in this direction is only possible
if the specific dependences of both the thermodynamic Z(FE), Z(f) and dynamical
A(z, p) functions entering eq. (5.6) are known.

5.2 The canonical quantum Lyapunov exponent for high-dimensional hy-
perbolic motion

To apply the method above to high-dimensional hyperbolic motion, we focus on
systems where the Lyapunov exponent is constant on the classical energy shell,
namely where A(z, p) depends on the initial conditions (x, p) only through the energy
E = h(z,p), such as the ones considered in [25] and [32, 56]. This is a special and
convenient feature, as the dependence of \(x,p) on the initial phase space region in
general systems is expected to be complicated and, in most cases, simply not known.
F;(x, p) is a slowly varying phase-space function that will not be important for our
purposes’®. Using eq. (5.5), we have

W(z,p)eX Mot = Wi (z, p)e* B + O(h), (5.8)

so we can pull the exponential term out of the phase-space integral and are left with

— K2 > @ ZA(E)tfﬁET
cte) =" /0 dEZ(g)e |Fi(E)
h2

_ - dE GZA(E)t—BE—Hog Z(E)
Z(P) /0

|Fi*(E) (5.9)

where ‘F;f(E) is the phase-space average of the slowly varying part of the stability
matrix, and hence is expected to only weakly depend on the energy as well.

When f =2, this result for the leading O(h?) contribution to the OTOC co-
incides with the result of [23] for the appropriate choice of operators. However, it
does not allow for an unambiguous identification of a quantum Lyapunov exponent
as there is no clear region of exponential growth. As we show below, this is because
the key ingredient for such an identification is a saddle point analysis only justified in
the regime of ensemble equivalence, f — 0o, where the bound on chaos was originally
derived [19].

We will invoke the standard tools of ensemble equivalence well known in statis-
tical physics [57], that are asymptotically exact in the limit f — co. From eq. (5.9),
the growth rate of the integral, and thereby the Lyapunov exponent, can be estimated
(up to loop corrections) by evaluation at the stationary point E7% of the integrand,

C(t) ~ K| FI|*(E5) e E) (5.10)

3Roughly, F ;(x, p) is a function of the basis vectors of the tangent space at the phase-space point
(x,p), while the exponential behavior is captured by the stretching factor e’ [56].
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where we used that Z(f) = Z(E;)e*ﬁEE [57, 58] as dictated by the standard thermo-
dynamic relation between the entropy and the free energy. Plugging in the micro-
canonical Lyapunov exponent (4.9) of the system, the stationarity condition reads

0= 2X(Ept— g+ D = V56 (s) (5.11)

(EZ’) \ /mLzEE
where G¢(8) = 0}(F)/os(E) is determined by approximating the microcanonical
partition function Z(E) by its smooth part, Z(E) =~ o;(E).
We can analytically evaluate eq. (5.11) in two interesting regimes. The density

of states (4.7) of our model (we may restrict to odd f for simplicity) takes the
form of a curvature expansion [59-61]. This expansion comprises the highest-degree
monomial given by the Weyl volume law [1], as well as all quantum corrections in
the form of a lower-degree polynomial [62]. Therefore, if we want to access the
classical regime of the system, the highest-degree term in eq. (4.7) should dominate
the others [63]. We can translate this to the simple condition (see appendix A for a

short derivation),
2 omI?  4xl?

— = 5.12
24 S g T (5.12)
where we introduced the particle’s thermal de Broglie wavelength,
2mh?
Ny = o 28 (5.13)
m

If the number of degrees of freedom f is large, which is necessary for the applicability
of the saddle point approximation (5.10), the condition (5.12) simply means that their
thermal wavelength has to be small enough not to experience curvature effects. Since
curvature corrections to the density of states play the role of quantum corrections
in our system, this is consistent with the aim of studying the system in the classical
regime. Neglecting the quantum corrections then, we can solve the stationarity
condition (5.11) with

f
pum -].4
G116) = 5 (5.14)
and find the growth rate of the OTOC to be
e \/ M+ 4Bf
2N(Ej) = (5.15)

which is independent of A, as expected. If we assume that the thermal energy per
degree of freedom is much smaller than the kinetic energy of a particle that is sensitive
to curvature effects on a timescale ¢,

1 <<mL2
B 27

(5.16)

— 17 —



we can neglect the t-dependent terms in eq. (5.15) and find

IN(ES) = ’/%f%' (5.17)

Recalling eq. (4.9), this is simply the statement that the energy in the system is
given by the classical equipartition theorem. Usually, one would associate larger,
rather than smaller temperatures to more classical behavior, but in the system at
hand, it is known that quantum corrections to the density of states take the form
of a curvature expansion [59-61], and hence, it is sensible to stay far away from the
regime in which such corrections start mattering to observe the system at its “most
classical”.

As the thermal wavelength of the particle grows to comparable size to the cur-
vature radius, i.e. as the temperature decreases, quantum corrections become very
important, and eventually, the entire polynomial (4.7) will contribute, approximat-
ing the infinite-dimensional sinh-behavior. It is instructive to exploit the product
structure of eq. (4.7) and write the density of states (again in the f odd case for
simplicity) as the f — oo result up to multiplicative corrections,

sinh <7T ZT;L‘QLQ E)

X > s
[1e i k2 + 2°F
- 2

ps(E) (5.18)

which yields

mL? T 2mL? — 1
Crif) =\ Sp <\/E—;C°th(7r 7’35) _; (k+f)2/4+2mL2E;/h2> '

(5.19)
Using the fact that
cothz = ﬂ ~1 forx 21 (5.20)
1—e 2 ~
we can neglect the coth factor whenever
2
B> 1 (5.21)

B~ omI2n?

With this simplification, it remains to solve the stationarity condition (5.11) for

mlL? T > 1
Cr)~\ g <\/—E_ﬁ ~ G AT szzE;;/hz> - 62)

k=1

If the dimension is sufficiently large, the sum in eq. (5.22) should only result
in a small correction to the stationarity condition (5.11),

f2 S 2mL2E§ N 414

R 2
A T (5:29)
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7

where the “~” comes from plugging in the solution

., mL?r?

obtained from solving the saddle point equation neglecting the sum in eq. (5.22).

Note that this describes (roughly) the opposite extreme to the classicality condition
(5.12), i.e. at fixed dimension, the thermal wavelength needs to increase until curva-
ture (and thus quantum) effects become relevant to access it. This justifies solving
eq. (5.11) iteratively. Neglecting the last term, solving for E}, see eq. (5.24), inserting
this again into the full equation, and solving a second time, results in

o 2(ht +7mL? 1
2M(Ep) = ( 2 : 2 httrmL?
heml o (1 167 L2 log(f + 1) N ) '
h ANy f+1 A
with the digamma function ¥(z) = 1;((5)). The regime indicated by the arrow is
accessed if the typical action of a trajectory of the particle mTLQ is large against h,

i.e. when our initially very quantum system becomes “more classical” again'®. From
here, we can see the correction coming from the sum in eq. (5.22) dying away if the
thermal wavelength increases, or alternatively, if the dimension becomes very large.
Indeed, in the infinite-dimensional limit, the sum in eq. (5.22) vanishes entirely, and
we are only left with

N 2ml? 7
h? VE;

which yields for the Lyapunov exponent the central result

G¢(B) f =00, (5.26)

mL2
T h t) hmEZ o (5.27)

2
2AMES) == =+ - >y —.
(B3 =1 (5 mIL? 3 h3
Remarkably, our chaotic quantum system saturates the MSS bound, corre-
sponding to maximally fast scrambling, in the limit of infinite configuration space

1This energy has to be in particular consistent with eq. (5.21).

15Tt should be noted at this point that particularly in many-body semiclassics, there are typically
two complementary notions of the classical limit [64]: the usual classical limit & — 0, as well as the
limit of a vanishing “effective” f, i.e. the number of degrees of freedom of the system f — oo. It has
been argued for bosonic systems in [24] that the limit f — oo produces an expansion of the OTOC
akin to the one of [19], in apparent tension with our results. A key difference between the case of [24]
and ours, however, is that the degrees of freedom described by eq. (4.3) are distinguishable, calling
into question the simple applicability of results for bosonic systems. Indeed, the limit f — oo is
not a natural classical limit in our case; it is rather the limit that emphasizes the quantum regime
the most, in the sense of making the system maximally chaotic at every temperature, see fig. 4.
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Figure 3: Quantum Lyapunov exponent A = 2\(£}) for inverse temperature 3 = 1,
evaluated for different dimensions f, plotted in units where h = 1,m = 2,L =
1, An = 1/2. Solid blue line: full numerical solution of the stationarity condition
(5.11). Dotted orange line: first correction to the infinite-dimensional solution for
large, finite dimension (5.25). Grey dashed line: 27, i.e. the MSS bound, eq. (2.3).
One can see that both finite-dimensional results approach the MSS bound for (very)
large dimensionality.

dimension!.

Since this is precisely the limit in which it starts to exhibit correla-
tion functions akin to the ones found in JT gravity [28], this result serves to further
support the status of this model as dual to JT gravity, where saturation of the MSS

bound has been confirmed independently [35]. The approach of the system’s quan-

16Tn this context, the conjecture proposed in [25] can be interpreted as a classical bound, that
is corrected by increasingly strong quantum corrections, eventually producing the quantum bound,
with a transition that happens around the f-dependent crossing point seen in fig. 4.
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tum Lyapunov exponent to the bound by increasing the dimension can be seen in
fig. 3, where we plot the full solution of the stationarity condition (5.11), as well as
the first correction to the infinite-dimensional result (5.25). In both cases, we can
see that the MSS bound is approached when increasing the dimension f.

Figure 4 shows the quantum Lyapunov exponent as a function of the rescaled
inverse temperature f( for fixed f. From the discussion above, as well as from
fig. 4, it is also clear that our system approaches the MSS bound for fixed f, if
the temperature becomes sufficiently small. This means that we have a class of f-
dimensional quantum systems with chaotic classical limits that become maximally
fast scramblers in the low-temperature limit.

Moreover, the simple form of eq. (5.17) suggests that upon rescaling by 1/f,
the quantum Lyapunov exponent should be described by a universal function of /3
with no (or only very weak) additional dependence on the dimension. The slightly
opaque solid lines show (1/f)A(f/), obtained from the full numerical solution of the
stationarity condition (5.11) for two representative dimensions, f =301 and f=4301,
in units where h = 1,m = 2, L = 1. The two numerical curves are so close to each
other that their difference cannot be resolved in the plot. This, together with further
analysis for other f values, indeed points towards a unique curve (1/f)A(fpB) for
describing the quantum Lyapunov exponent for large f.

Furthermore the convergence towards the chaos bound at fixed f suggests that
even without taking the JT gravity limit, there might be relatively simple gravita-
tional duals. This notion is supported by topological gravity, also known as the Airy
model (see e.g. [65, 66]). The density of states of this theory is identical to the one
of our model in f = 3 dimensions. At intermediate finite dimensions, our model
can be seen as interpolating between topological and JT gravity by changing the
dimension, in a manner similar, but not identical, to the (2,2p — 1) minimal string
[67, 68], which has recently been found to admit a black-hole-like geometry [37].

A somewhat similar behavior of the quantum Lyapunov exponent has been
found in the SYK model in [36]. While for simple gravitational theories such as
Einstein gravity, one expects A to saturate the MSS bound, stringy corrections [69]
can hinder the development of chaos and decrease the quantum Lyapunov exponent.
This effect has also been discussed explicitly for the Schwarzian theory in [70], and a
description in terms of so-called scramblon modes has been shown to be applicable
in SYK-like models [71]. The submaximal chaos apparent in the quantum Lyapunov
exponent in fig. 4, viewed in this light, therefore hints at an interesting, as yet
unexplored interpretation of the high-temperature regime of our model (at finite
dimension) in terms of a more complicated gravitational theory with stringy (or
similar) effects that disappear at low temperature, and that might even be explicable
in terms of the corrections (5.18) to the infinite-dimensional pure JT gravity density
of states (4.8).
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Figure 4: Double-log plot of the system’s rescaled leading-order quantum Lyapunov
exponent (1/f)A (where A = 2\(E})) as a function of the rescaled inverse temper-
ature f. The slightly opaque solid lines show (1/f)A(f5), obtained from the full
numerical solution of the stationarity condition (5.11) for two representative dimen-
sions, f=301 and f=4301, in units where A = 1,m = 2, L = 1. The two numerical
curves are so close to each other that their difference cannot be resolved in the plot.
This indicates (f3)-scale invariance in the large- f limit. Dotted orange line: classical
approximation to the Lyapunov exponent (5.17), given by the equipartition theorem.
Dashed grey line: 27/, i.e. the MSS bound eq. (5.27). The system saturates the
MSS bound at low (scaled) temperatures, while it is more appropriately described
by classical equipartition (eq. (5.17)) at high (scaled) temperatures.
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6 Subleading corrections

As already mentioned above, the term whose growth rate is bounded by 27 /Af in
the out-of-time ordered correlator F'(t) is predicted [19] to only be the first in an
expansion,

Fy— F(t) = W2 fiems' + O(h), (6.1)
where F} is the factorized value of F'(t), as introduced in section 2. Indeed, defining
moments

4nJ t+lh5/4 27 (41 ihB/4)(2J+1
pa(t) = e t/ di'e” s TIINETED (R(¢) — Fy), (6.2)
t—ihB/4

the analytic structure of F'(¢) imposes a set of conditions on the moments [30]:

2hBFy — a5t

0< /LJ(t) < me , (63)
frr1(t) < p(t), (6.4)
pra(t)? < () prsa(t). (6.5)

These conditions must be satisfied by the out-of-time ordered correlator, and eqs. (6.3)
and (6.4) imply that at late enough times'”, corrections to the Lyapunov growth of
e.g. the form

Fy— F(t) = B fren + h' foe + O (k) (6.6)

must appear in systems with maximal Lyapunov growth A = ?L—g Further accounting
for eq. (6.5) produces a bound on this new, subleading exponential growth as well,

6m
Ay < % (6.7)

The saturation of this equality again forces similar late time corrections Az, Ay, .. .,
10m 14w

ﬁ’ ﬁ7 e
egs. (6.3) to (6.5) [54]. Since our system, as we have shown in section 5, saturates
the MSS bound at leading order in the OTOC, and the Wigner-Moyal quantization

gives a systematic way to compute h corrections to the leading result, it is natural to

which are then again bounded by and so on, by repeatedly applying

examine those corrections and determine whether subleading bounds are saturated
as well. In this section, we will attempt to characterize the first nonzero correction
to the leading order OTOC in our system and estimate its growth rate. However, as
we will see, the complexity of the computation is drastically higher than at leading
order.

To recap some of the observations in section 3, we expect corrections to the
leading order in A from

17A bit more precisely: the conditions eqs. (6.3) and (6.4) imply that there have to be corrections
to the maximal Lyapunov growth (6.1) of the form (6.6) with Ay > 72:72 These corrections then
imply the existence of a timescale t; < t* where the approximation (6.1) to the OTOC breaks

down and the second term in eq. (6.6) starts to dominate [30].
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1. the Weyl symbol for the time-evolved operator P; (though not for X),

2. the Moyal bracket and the x product,

3. and the Wigner function W (z, p).
Naively, one might also expect these corrections to be sensitive to the non-flat met-
ric of the configuration space, since Weyl symbols in configuration spaces must be
modified according to eq. (3.2), i.e. by including the determinant g(z) of the config-
uration space metric at x. Given the essential singularity at & = 0 in the prescription
(3.2), tracing the influence of the metric on the small & expansion of a Weyl symbol
is a highly nontrivial endeavor. Fortunately, the formalism developed by Osborn
and Molzahn [31] to determine Weyl symbols of Heisenberg operators takes care of
the metric dependence automatically via the classical flow that enters the compu-
tation. Since the Weyl symbols of initial time Weyl-ordered polynomials in X, P
remain unchanged by the curved configuration space, the only explicit modification
of the Weyl symbol computation we have to account for come from A corrections to
the Hamiltonian, which we discuss in appendix B. In the notation of section 3, our
Hamiltonian’s Weyl symbol has the form [72]

1

R
hg - %, (69)
hyss = 0, (6.10)

where R is the Ricci scalar of the manifold. Due to the vanishing of h;, we can
conclude from eq. (3.22) that
21 =0, (6.11)

and crucially, hy is a constant in the system we consider, leading to a simplification
of eq. (3.23). We can therefore determine the first nonzero correction to the quantum
trajectory Z by integrating eq. (3.23) according to eq. (3.24), and find

2:0 = [ d593(4,010)97(5, 007

0 . . (6.12)

X {_§H2(7 V)% + EH12H23(7 V)P | IV he(t, (8, 5[C)).

We can simplify this a bit further in order to facilitate the discussion that follows,
by realizing that

VA(t,0[¢) = M(t) (6.13)

is simply the monodromy of the classical flow. For a Hamiltonian flow, the mon-
odromy preserves the symplectic form [73],

M JM(t) = J, (6.14)
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and hence, we can combine
M(t)TM(s)" T~ = M(8)M(s)™" = V(t, s[), (6.15)

since J? = —1 and multiplying the above equation with M ~! from the right and J~*
from the left. With this rewriting, we can express the correction to the quantum
trajectory as

(1) = / dsV(t, 5/¢) [—§H2<wv>2+inmnm-vﬁ TV he(t, A, 510)).

12
(6.16)
To the desired order in h, this accounts for all contributions to the OTOC
coming from the Weyl symbols themselves. The remaining corrections stem from
the Moyal bracket,

h?
{ b= {3 = SIPC ) + O(RY), (6.17)
and the x product,
th n_, 3

Note however, that in eq. (5.4), the x product is taken between two copies of the
same object. Plugging in the h expansion for the Moyal brackets, the only terms
appearing at O(h) are the two “fully classical” ones, and the * product of these
vanishes, cf. footnote 7.

There may be further corrections from the Wigner function which we have
not considered. However, as we are interested only in the (exponential) growth of
the OTOC, we argue for neglecting them, since they are generic for any correlation
function of any set of operators, depending only on the state. For this reason, we do
not expect them to contribute in an interesting manner to the growth rate.

All assembled then, the first correction to eq. (5.4) is

Bt < —{p2(t), }{pe, x} + é{pt, oI (py, ) + érp <{pt,x}, {p, x})) (6.19)

where we generalized the notation in eq. (3.17) to Wp,, recalling that po(t) = p, and
suppressed the dependence on the initial condition (. At present, we do not know
how to evaluate this expression or compute Ay from it, although numerical estimates
for some simple manifolds might be possible.

As a very rough estimate, we could use as a guideline that

{p,x} ~ M. (6.20)

If we take this to mean that phase space derivatives acting on time-evolved quantities
produce Lyapunov growth e, then we can give a broad-strokes prediction for the
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time dependence of each term in eq. (6.19). Most obviously, for the middle term, we
have the following:

3
3 ak 83_k a3—kz ak
I3 = —1)k —_— — 1. 6.21
0 =30 (2) (Graeen) (Gear) - @20
Now in this sum, if £ # 3, the second term produces derivatives of initial x wrt
initial p, which vanish. But if k = 3, we have 93z/0x® = 0. Hence, this contribution
vanishes identically,

{py, 2} (py, ) = 0. (6.22)

For the third term, a superficial examination yields that each of the Poisson

brackets acted upon by II? already grows exponentially, so each application of the

Poisson bivector should produce a factor e, giving a total growth of e®. Indeed,
we can evaluate this expression:

HQ({p“x}a{ptam}) (623)
2
S (P (L0 O (0 0 O
= k:O( 1) (k‘ 8])]“3 Ox2—k dp 8p2—k Ok ap (624)
B Pp, Ppy 8%p, 2
- 23?3193_1?3 . <c‘)xa2p) ‘ (6.25)

Evidently, this includes 6 total derivatives of the time-evolved momentum. A sensible
expectation is then that the term grows no more strongly than

I ({pe, 2}, {pe, }) ~ €™, (6.26)

as anticipated, and still in agreement with the bound (6.7).

Finally, eq. (6.16) is the hardest term to evaluate explicitly, since it depends in
a nontrivial manner on the classical solutions on the hyperbolic manifold M, which
are not generally known analytically. The only way to provide any estimate at the
moment is to be even more speculative.

In the simpler free particle case on I/, the v -V derivatives act in more or less
the same way as the JV on the Hamiltonian, i.e. they are derivatives along the flow
direction. The II derivatives are not directional and thus act differently. Naively
counting all derivatives, the integrand might grow as fast as 8\. If we use the refined
assumption that only the II derivatives produce exponential growth however, we can
bound the growth of the integrand to at most 5A. Finally, when looking at the free
particle solutions [74], the only function of the initial coordinates that we take II
type derivatives of that seems to be sufficiently complicated to produce exponential
growth are derivatives of the conformal factor of the metric:

g (1) = Q)0 Q) = —

= —. 6.27
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Since this only depends on x, it is conceivable that only the x derivatives in I1 produce
exponential growth, bounding the total exponent of the integral to 3\, although this
is not the expected behavior in typical chaotic quantum systems.

If we then plug these estimates into the actual contribution to the OTOC, we
estimate the growth to be bounded by

elOM if all derivatives contribute,
—{p2(t), x}{pr, x} ~ ¢ ™ if only II derivatives contribute, (6.28)
e if only = derivatives in II contribute.

In our particular system, we were able to find in section 5 that in the limit f — oo,

.

the classical Lyapunov exponent is evaluated at the saddle point as 7 5 which would
mean that the total growth of the A* correction to the OTOC grows with

1}% if all derivatives contribute,
Ay = ;—g if only II derivatives contribute, , (6.29)
g—g if only x derivatives in II contribute,

since in the third case, the contribution from eq. (6.26) dominates the one from
eq. (6.28). This means that only in the third case, we could guarantee the bound
(6.7) being respected at all, and our estimate would leave room for the bound to be
saturated as well. Interestingly, this saturation would, if at all, arise from the correc-
tion to the x product, not the quantum trajectory. In the other cases meanwhile, we
can not say anything definite, but it is at least encouraging that our method gives an
estimate for the growth bound that is reasonably close to eq. (6.7), and not orders
of magnitude off.

We can compare these estimates to the Schwarzian theory, which describes both
JT gravity and the SYK model. In this theory, the out-of-time ordered correlator
can be computed exactly in the limit § < 1, and is found to be (in the usual natural
units for JT gravity) [54, 75]

2m
%f) = ZQLAU(QA, 1,1/2), z= S%eff, (6.30)

for a pair of operators V, W with scaling dimension A. Here, U(a, b, y) is the confluent
hypergeometric function. At early enough times, it has an asymptotic expansion in
terms of the generalized hypergeometric function [76]

Ula,b,y) ~y * oFy(a,a—b+1;;—1/y), (6.31)
where
1 > 2"
F )= — I I —. .32
2 0(a17a2;a2) F(CL1>F(G2) nZ:O (n+a1) (n+a2> n' (63 )
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Expanding eq. (6.30) up to second order in small z, we find
F t AQ Tt QAQ 2A 1 2 t
(1) |5 e PNCALIY

Fy 21 3272

(6.33)

Clearly, the subleading correction grows with Ay = %r, i.e. far away from the bound
(6.7). This tension with our rough estimate (6.29) suggests that a more careful
examination of the OTOC in our system is needed. It should be noted however,
that eq. (6.33) is an expansion for small 3, whereas our system’s OTOC at fixed
dimension approaches the MSS bound only for relatively large 3, cf. fig. 4, meaning
that the two behaviours need not necessarily agree.

7  Summary

In this work, we have developed a method to compute the canonical quantum Lya-
punov exponent in systems with a large number of degrees of freedom, using Wigner-
Moyal phase space quantization as a tool. Since the leading order in A in this formal-
ism is simply equivalent to the classical Poisson algebra on the phase space, the cal-
culation requires only two inputs: the classical microcanonical Lyapunov exponent,
and the density of states. Remarkably, for a particle sliding on a high-dimensional
hyperbolic manifold, the system that was shown in [28] to reproduce correlation
functions of JT gravity in the limit of the configuration space dimension going to
infinity, both of these quantities, including all quantum corrections to the density
of states, are known in the literature, facilitating the computation of the quantum
Lyapunov exponent via the solution of a simple saddle point condition (5.11).

We have shown that at large enough dimension, the quantum Lyapunov expo-
nent interpolates between the maximal value provided by the Maldacena-Shenker-
Stanford bound at low temperatures, and a classical regime described by the equipar-
tition theorem at high temperatures, cf. fig. 4. In the limit of the dimension f — oo,
the Lyapunov exponent saturates the MSS bound for all 3, as evident from fig. 3 and
eq. (5.27), adding to the evidence in [28] of the system being dual to JT gravity in the
f — oo limit, and indeed showing gravitational signatures even at finite dimension
and low temperatures. This latter point in particular opens up the interesting pos-
sibility of studying large-but-finite dimensional Hadamard-Gutzwiller like models as
potential duals of gravitational systems in the spirit of the (2, p) minimal string, with
a possible interpretation of the difference between the infinite- and finite-dimensional
spectral densities in terms of stringy corrections [69-71].

We were also able to find a fairly compact expression, eq. (6.19), for the first
subleading correction to the Weyl symbol of the OTOC using the formalism devel-
oped in [31], as well as partially estimate its growth exponent (6.29). While we were
not able to verify that the bound of [30, 54] is observed, we could nevertheless re-
strict the growth of the first correction to the OTOC to be at least not much larger
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than allowed by eq. (6.7). A more thorough evaluation is complicated by the need to
determine the solutions of the equations of motion on a high-dimensional, compact
manifold, as well as quantum corrections to the Weyl symbols of the Heisenberg oper-
ators Xy, P,. The limit is also fairly discontinuous, requiring in principle the solution
of new equations of motion every time f is increased. Given the difficulty of finding a
reliable estimate for the growth rate of the subleading correction in section 6, a more
careful investigation using e.g. the easily generalizable solutions of the free motion
on the hyperbolic f-space, or numerical solutions on a fixed high dimension, might
provide valuable insights, especially in light of the possibility of extremal chaoticity
that we were not able to exclude, and which would be unexpected in a system dual
to JT gravity.
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A Accessing the classical regime

We consider the product

f=3

kﬁo (277;2LQE+ k:2) = ﬁ(ﬁ k) = xM]f[O <1 + g) . (A1)

For this product to be dominated by the highest-degree monomial, we need

ﬁ (1 + g) ~ 1, (A.2)

k=0

which is true when

M k? M k2
H(1+—)—1 < Tl _1xo, (A.3)
k=0 g
ie.
Y <1 (A.4)
x
k=0
This sum can be evaluated exactly as
fikﬂ _MMADEMEY) (=300 =Y P
prd 6 24 24 '

for large f. Hence, the condition to access the classical regime in our system is

13 2m L>

57 < b (A.6)

and if we assume that in the classical regime, the energy is given roughly by the
thermal energy,

f
~ = A.
E 5 (A7)

we obtain the classicality condition reported in the main text,

f_2 2mL>? B AmL?

_ Al A8
1S Tmp T (A.8)
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B Weyl symbol of the Hamiltonian
To find the Weyl symbol for our Hamiltonian (4.3), consider
ﬁH — —A = _971/28i91/2gijaj
= —g %(8i9"9")0; — 9" 0:0;
_ _62 . g—1/2(aigl/2)gijaj . (algzj)a]
= —0" — (9ig")0; — (0ilog \/9)g" 0,
. 1 ..
= —82 - (aig”)aj - 59” (& log \/5)6] + (8] log \/5)81 .

Compare this to DeWitt’s ordering [77-79],

1 .
HDeWitt = _Plng(X>PJ + hZQ(X)7

2m
with the momentum operator
R=1 (04 5050)
and the so-called quantum potential
L k k ol |-
Q(r) = mg ! {@-FM - Fijrlk - §Fkirlj:| .

Ffj are the standard Christoffel symbols. First, note that using

[y =T, = d;log /g,

the quantum potential can be rewritten as [72]
Q) = ——0,(¢"T;) + ——giT,T
T A

Furthermore, the Hamiltonian

I CRE ) PUCT GRS

1 . 1 . 1 .
= QmQ — §(ang])F] — Zfigwfj — 5(8ZI’])9”
— (@g])(?] — 82 — §gjfjaz — §F1938J
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= — (D170 — O — g7 (T, +T10))
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agrees with eq. (B.1). Fortuitously, the Weyl symbol for the DeWitt Hamiltonian is
reported in [79] as

2

1 - h .
Wi ewie (T, 0) = Wr (2, p) = %pig” (z)p; + B*Q(x) + 8—m3i3j9” (). (B.8)

After changing into Riemannian normal coordinates, i.e. coordinates such that at a
point ¢, ¢;;(q) = 6i;, Okgij(q) = 0, Ffj(q) =0, but 8ll“fj(q) # 0, a somewhat tedious
calculation shows that the h? correction to the Weyl symbol of the Hamiltonian is
simply given by the Ricci scalar of the manifold,

R

hy = ——.
27 12m

(B.9)
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