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Abstract: We use the well established duality of topological gravity to a double scaled
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volumes of manifolds “in between”. Using the perturbative loop equations we study correlation
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analytically we give a novel way to approach it, starting with the result of β topological
gravity and compare the results to a numerical evaluation of the universal result.
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1 Introduction

The duality of Jackiw Teitelboim (JT) gravity with a specific matrix model, first described
in [1], has attracted a lot of attention in recent years and sparked a plethora of insights
into two-dimensional quantum gravity. We give a short recapitulation of the aspects of this
duality relevant for the present work in section 2.1.1

1We would like to clarify, that by “duality” of a matrix model with a gravitational theory we always mean
the order-by-order agreement of the topological (perturbative) expansions of the two theories. More details
can be found in section 2.1.
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The original version of the duality was given for a setting where the gravitational path
integral, which defines correlation functions in JT gravity, is restricted to contain only
orientable manifolds. There, the dual matrix model belongs to the unitary symmetry class.
From the seminal work [2] the full classification of symmetry classes of random matrices
is known to be tenfold. Consequently, the question was asked if the duality of the matrix
model to JT gravity in the unitary symmetry class extends to a duality for all the symmetry
classes and if so, what the dual gravitational theory is. This was answered affirmatively in [3],
where it was found that the direct generalisation of the theory by allowing also unorientable
manifolds in the path integral yields theories that are dual to the orthogonal or the symplectic
symmetry class which together with the unitary symmetry class form the so-called Wigner-
Dyson classes. The realisation of the other seven symmetry classes requires the inclusion of
supermanifolds in the gravitational theory. We shall restrict our discussion to the bosonic
case on the gravitational side, i.e. to the Wigner-Dyson classes on the matrix model side.

A particularly interesting aspect of this duality is the ability to study geometric objects
appearing in the gravitational theory, specifically moduli space volumes, with matrix model
techniques. This relation, i.e. that of the volumes of the moduli spaces of orientable hyperbolic
surfaces of genus g with finitely many geodesic boundaries of given lengths, known as the
Weil-Petersson (WP) volumes, with a unitary matrix model was known prior to the discovery
of the JT/matrix model duality [4]. The relation for unorientable surfaces was proven by
relating the perturbative expansion of the matrix model in the orthogonal symmetry class
to a generalisation of Mirzakhani’s well known recursion relation for the orientable WP
volumes [5] to the unorientable case in [6]. This is especially interesting due to the moduli
space volumes for unorientable hyperbolic surfaces suffering from problems, like being actually
divergent and in need of regularisation, not necessary for their tame orientable brothers [7, 8].
Though these problems can be overcome and the recursion for the volumes given in [6] can
be iterated for small genus and numbers of boundaries, working on the matrix model side of
the duality and inferring the WP volumes from there, the approach used here, has proven
to be the more economic way to determine these objects.

Additionally to working on the matrix model side, it is useful not to study directly the
theory of JT gravity but first a simplification of this theory, known as the Airy model or
topological gravity. This theory can be regarded as the low-energy limit of JT gravity: the
leading-order contribution to the JT gravity genus 0 density of states, ρJT

0 = 1
4π2 sinh

(
2π

√
E
)
,

corresponds to the Airy density of states 1
2π

√
E =: ρAiry

0 . Furthermore, in terms of WP
volumes, this theory gives the behaviour of the full WP volumes for large boundary lengths in
the orientable case [9, 10]. It still does so in the unorientable case where additionally it does
not have any divergences, i.e. it produces the leading-order contributions to the non-divergent
part of the full WP volumes [6]. The study of unorientable topological gravity was started
with giving the first-order genuinely unorientable contribution in [10] and extended to explicit
results to higher and structural results to all orders in [11]. Harnessing these results and the
used matrix model techniques, the general structure of the full unorientable WP volumes
was found in [12], though a proof thereof is a matter of present investigation.

Matrix models, such as the ones dual to JT and topological gravity are thus useful tools
to study moduli space volumes efficiently. In order to state the aims of this work it is useful
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to briefly recall the definition of a matrix model, a more complete review of which can be
found e.g. in [13]. A matrix model can be defined by a partition function written as an
integral over the respective class of matrices one is interested in with respect to a measure
determined by the choice of a potential V , which for our case of interest can be assumed to
be a polynomial. For the Wigner-Dyson case those classes are complex hermitian (unitary),
quaternionic hermitian (symplectic) and real symmetric (orthogonal) matrices. These classes
of matrices have the property that all their elements are diagonalisable. Consequently, if one
restricts to observables dependent only on the spectrum of the matrices one can integrate out
the diagonalising matrices2 and write the partition function as an integral over the eigenvalues
only. Then, the partition function defining the matrix model reads [3]

Z = N
∫
RN

dΛ|∆(Λ)|βe−N β
2
∑N

i=1 V (λi), (1.1)

with Λ = (λ1, . . . , λN ), the matrix size N and N being a normalisation constant not relevant
in the following. Furthermore, ∆(Λ) denotes the Vandermonde determinant defined as

∆(Λ) =
∏

1≤i<j≤N

(λj − λi). (1.2)

Interestingly, the choice of matrix ensemble has now boiled down to the value of the so-called
Dyson index β, where β = 2 corresponds to the unitary, β = 1 to the orthogonal and β = 4
to the symplectic symmetry class. However, at the level of eq. (1.1) there is no reason not to
choose a general value β ∈ R+ which enables one to interpolate between the Wigner-Dyson
classes. This generalisation beyond the Wigner-Dyson classes has been intensively studied in
the last decades; an extensive list of references can be found in [14], extending many known
results for the Wigner-Dyson classes by an interpolation in terms of the Dyson index to change
between the classes. Of most direct importance for our work here is the realisation of the
Gaussian matrix model for arbitrary β as a specific ensemble of tridiagonal matrices in [15],
enabling the numerical computations shown later. It is interesting to note, that one can further
extend the direct generalisation to arbitrary Dyson index of eq. (1.1) by choosing functions
f, g : R+ → R+ which have the property that ∀

β∈{1,2,4}
: f(β) = g(β) = β and by writing

Z = N
∫
RN

dΛ|∆(Λ)|f(β)e−N
g(β)

2
∑N

i=1 V (λi). (1.3)

This also forms a valid generalisation of the Wigner-Dyson cases depending on two arbitrary
functions. As we will see in the main text, at least for the perturbative setting which we
are interested in, it is possible to eliminate the dependence on the function g and hence
reduce the degree of ambiguity to choosing one function. Performing all computations for
the choice f(β) = β and the mapping by another choice for f(β) after the desired evaluation,
one can thus address this more general case by considering only the direct generalisation
we discussed previously.

The way we treat transitions between symmetry classes is not the only available method
to do this based on matrix models. The most well-known method uses the so-called Pandey-
Mehta model [16], which is a matrix model in its original version describing the transition

2For historic reasons the respective (compact) groups of matrices determine the names of the symme-
try classes.
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from the orthogonal to the unitary symmetry class. In this model, the considered matrix
HPM is devised as

HPM = Hα
1 +Hα

2 , (1.4)

where the matrices Hα
β are chosen from the Gaussian ensembles for the specified value of β.

They depend on a parameter α in such a way that HPM is from the orthogonal ensemble in
the case of α = 0 and in the unitary ensemble at α = 1, while being in a crossover regime
in between. The range of this model can be modified to treat the other possible transitions
between symmetry classes [17]. However, to the best of our knowledge, it is not possible to
find a variety of the model which allows for a crossover between all three Wigner-Dyson classes
by varying a single parameter. In the classic setting of using random matrix theory to describe
universal properties of a quantum chaotic system, this model has a distinct advantage over
the transitional procedure we use here. This is due to the possibility to describe a transition
from the orthogonal (presence of time-reversal symmetry) to the unitary (no time-reversal
symmetry) symmetry class by turning on e.g. a magnetic flux in a previously time-reversal
invariant system, i.e. by adding a time-reversal breaking term to the Hamiltonian. This is
essentially what is implemented in the Pandey-Mehta model. Hence it is not surprising that
in the universal regime these systems upon breaking time-reversal symmetry agree with its
prediction, as shown using semiclassical methods in [18–20] and seen in explicit examples like
in spin chains [21]. However, in our setting, this way of interpolating between the ensembles
is less appealing. This is due to the fact, that for JT/topological gravity the connection with
a matrix model does not arise via the agreement of certain universal observables but as a
precise perturbative duality. Hence, we can study, in fact define, the gravitational theory dual
to the arbitrary Dyson index generalisation of the matrix model by extending this duality.
Notably, by this we can treat all Wigner-Dyson classes and transitions between them at once.

The aim of the first part of this work now is precisely to apply this thought of interpolating
between the symmetry classes by considering a varying β to the matrix model dual to
topological gravity in the Wigner-Dyson classes. Specifically, we will generalise the method
used in [11] for the case of β = 1 to arbitrary β to compute correlation functions of the
general β matrix model perturbatively. Using these, we assume the duality to hold also for
the general β case and define general β Airy WP volumes (V β

g,n) using the matrix model
to give the, to our knowledge, only way to define moduli space volumes that interpolate
between the purely orientable and purely unorientable setting in a sensible way. Doing
this, we find and prove the general structure of the V β

g,n based on the transformation of
perturbative contributions of matrix model correlation functions under β → 4

β . By this,
and based on the explicit results we work out, we can firmly establish that the V β

g,n have
additional contributions that are vanishing in all the Wigner-Dyson classes, hence showing
that moduli space volumes defined in this way are not mere interpolations of the weights of
orientable and unorientable manifolds but rather encompass contributions that suggest the
interpretation of being neither orientable nor unorientable. Extending the Mirzakhani-like
recursion for the unorientable WP volumes of [6] to general Dyson index we give a geometric
interpretation of the general structure (which we show also to apply in the case of JT gravity)
and the non-Wigner-Dyson contributions to the moduli space volumes.
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In the second part of this work we will turn to another important aspect of the duality,
the possibility to study the implications of quantum chaos on moduli space volumes. This
connection comes about via the famous conjecture due to Bohigas, Giannoni and Schmit
(BGS) [22] that quantum chaos for a given quantum system can be classified by checking
whether the expectation value of certain “universal” observables in this system coincides
with that in the Gaussian matrix model of the system’s symmetry class in the respective
regime of universality. The observable that we shall be interested in mostly is the spectral
form factor, specifically its canonical form, being defined as

κβ(t, β) := ⟨Z(β + it)Z(β − it)⟩c,β , (1.5)

i.e. the connected correlation function of (thermal) partition functions of complex conjugate
complex temperatures in a matrix model with the Dyson index β. The matrix model in
question for the present work will be the matrix model dual to topological gravity. Importantly,
the canonical SFF, which in the following is always meant when speaking of a SFF unless
stated otherwise, is model dependent while the microcanonical SFF only depends on the
symmetry class, i.e. the Dyson index in the universal regime. However, one can show that the
late-time limit of the canonical SFF can indeed be computed from only the microcanonical SFF
for the respective symmetry class and the leading-order density of states [11]. Consequently,
agreement of the late-time SFF as computed from topological gravity/JT gravity with the
corresponding prediction of universal RMT can be seen as an indication of chaos in the
sense of the BGS conjecture. This has been successfully studied so far for the unitary [10]
and orthogonal [11, 12] symmetry classes and we give more information and details on
this in section 2.2.

The aim of this work regarding this topic is twofold. First, we close the gap in the
literature by studying the symplectic symmetry class (β = 4) for which we pursue the
established route of computing first the prediction of universal RMT for the late time SFF
and then comparing to the corresponding result from topological gravity. We find agreement
up to τ4 where we utilize the techniques used in [11] to successfully show the corresponding
statement for the orthogonal case.

Second, we study the case of arbitrary β, where the relevant correlation functions in
topological gravity have been worked out in the first part of this work. For this setting,
the established way ceases to work since, to our knowledge, the universal RMT result, i.e.
the result for the microcanonical SFF for the Gaussian matrix model with arbitrary Dyson
index, has not been fully computed analytically in the literature (the highest order results, in
the sense of an expansion of the microcanonical SFF for small times, we are aware of are
given in [23, 24]3). The alternative way we find to approach the question of chaoticity in β

topological gravity is the following: first, we study the constraints imposed on the Airy WP
volumes in the unorientable case β = 1,4 by matching to the universal RMT SFF, extending
the study started in [11]. These constraints can be seen as the imprint of quantum chaos in the
WP volumes. Remarkably, those constraints5 are obeyed by the genuinely non-Wigner-Dyson

3We thank P.J. Forrester for pointing out these references to us.
4They are the same as those for β = 4.
5With one exception that is, however, expected as explained in the main text.
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part of the WP volumes discussed above which we interpret as a strong sign for the persistence
of quantum chaos for arbitrary Dyson index. Building on this, we can now deduce information
on the putative universal microcanonical SFF for arbitrary β by computing it from the β Airy
WP volumes. In this direction, we give a novel way to do so by finding the “uplift” to the
setting of arbitrary Dyson index of the universal RMT results for the Wigner-Dyson classes.
As evidence for our results beyond our analytical arguments we compare to a numerical study
of the Gaussian microcanonical SFF for arbitrary β using the expression of this matrix model
as an ensemble of tridiagonal matrices in [15], mentioned above. We find good agreement in
the limits imposed by us not taking into account the non-Wigner-Dyson parts of the WP
volumes, establishing the feasibility of our approach to find the universal RMT result for
arbitrary β. The completion of this study, i.e. taking into account the non-Wigner-Dyson
contributions is subject of present work to be presented elsewhere [25].

The paper is structured as follows. In section 2.1 we give necessary background on
the relation of JT/topological gravity with matrix models and in section 2.2 on the role
of quantum chaos in this duality. We then give a compact overview of the main results
of this work in section 2.3. Section 3 deals with the first part of this paper as described
above, i.e. the study of topological gravity for arbitrary Dyson index. For this, we first
recapitulate the perturbative solution of the loop equations in section 3.1 which we then use
to compute the perturbative contributions to certain correlation functions in section 3.2. In
order to better understand those, we find their general structure in terms of β in section 3.3
which translates to that of the β Airy WP volumes we compute in section 3.4. To give
a better geometric understanding of β topological gravity we discuss the generalisation
of Kontsevich diagrammatics [26] to this setting and a Mirzakhani-like recursion for JT
gravity for arbitrary Dyson index in section 3.5. We then turn to the inquiries regarding
quantum chaos in arbitrary β topological gravity in section 4. To address this question
we first compute the late time SFF for β topological gravity in section 4.1. Using this
result, we discuss the presence of quantum chaos in the sense of the BGS conjecture for
the symplectic symmetry class in section 4.2 and for the case of arbitrary β in section 4.3.
We conclude in section 5. In the appendices we first give collections of some of our results
for the perturbative expansion of resolvents (section A) and Airy WP volumes (section B).
Then, we give the proofs of several statements needed for establishing the general structure
of correlation functions in terms of β in sections C and D and the proof of the general
structure itself in section E. In section F we give technical details on how to easiest bring
our results for the correlation functions into the general form we prove, while the proof of
a geometrical statement used for the geometric variety of said proof in the main text is given
in section G. In section H we derive the prediction of universal RMT for the late-time SFF
in the symplectic symmetry class. Section I gives further background for the comparison
of this result with topological gravity.
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β3

β2

β1

b3 

b2 

b1 

Figure 1. Manifold contributing at genus g = 3 to the correlation function of three partition functions
with (complex) inverse temperatures β1, β2, β3. In grey are the “trumpets”, cut off along geodesic
boundaries of lengths b1, b2, b3.

2 Background and main results

Before going into the main part of the paper, we collect some important background from
the literature to fix notation and to make the discussion more self-contained. The reader
familiar with this may continue with a summary of our main results in section 2.3.

2.1 Relation of matrix models with topological/JT gravity

The objects primarily studied in JT gravity are connected correlation function of partition
functions. These correlation functions, caused by the possibility to split the gravitational
path-integral, by which they are computed, into a sum over contributions of manifolds of
different topology, in fact different genus, have a topological expansion of the following form [3]〈

n∏
i=1

Z(βi)
〉

c

=
∑

g=0, 1
2 ,1,...

Zg,n(β1, . . . , βn)
(eS0)2g−n+2 . (2.1)

The different contributions to the correlation function at genus g are given by [1, 3]

Zg,n(β1, . . . , βn) =
[

n∏
i=i

∫ ∞

0
bi dbi Z

t(b, βi)
]
Vg,n(b1, . . . , bn), (2.2)

with the “trumpet” partition function

Zt(b, β) := 1√
4πβ

e
− b2

4β , (2.3)

and the Vg,n(b1, . . . , bn) denoting for JT gravity the Weil-Petersson volumes, i.e. the volumes
of the moduli space of hyperbolic two-manifolds of genus g and n geodesic boundaries of
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lengths b1, . . . , bn. The expression in eq. (2.2) can be thought of as “glueing” a hyperbolic
two-manifold of genus 0 with an asymptotic boundary of renormalised length βi and a geodesic
boundary of length b (the “trumpet”) to a hyperbolic manifold of potentially non-zero genus
along a geodesic boundary of the same length while doing so for each partition function in
the correlator. This is illustrated in figure 1. In this framework, the different varieties of
(bosonic) JT gravity can be constructed by allowing only orientable hyperbolic manifolds
which is dual to a matrix model of unitary symmetry class (β = 2), or also admitting
unorientable ones which will then result in a duality with a matrix model of orthogonal
(β = 1) or symplectic (β = 4) symmetry class [3]. In order to state this duality, which is
at the heart of this work, we define n-point resolvents

R(x1, . . . , xn) :=
n∏

i=1
Tr 1

x1 −H
, (2.4)

where in the following the abbreviated notation

I = {x1, . . . , xn}, (2.5)

is often used. For the type of matrix models of interest here, i.e. double-scaled matrix models,
there is a topological expansion like that for JT gravity given by

⟨R(I)⟩MM
c =

∑
g=0, 1

2 ,1,...

RMM
g (I)

e(2g+|I|−2)S0
, (2.6)

where the algorithm to actually work out the RMM
g (I) for the matrix models of interest will

be the considered in the main text. The correlation functions of resolvents are of course
also computable from the correlation functions of partition functions and vice versa, so the
statement of the duality amounts to saying that the computation of the correlation functions
of choice for a specific matrix model and for JT gravity give the same result. For our purpose,
it is best to translate this to a relation of the Weil-Petersson volumes, the prime objects of
interest on the gravitational side, to the resolvents, which are the most natural objects to
consider on the matrix model side. Doing this, one finds that the duality implies

Vg,n(b1, . . . , bn) = L−1
[
RMM

g (−z21 , . . . ,−z2n)
n∏

i=1

(−2zi

bi

)
, (b1, . . . , bn)

]
, (2.7)

where L−1 denotes the inverse Laplace transformation. This statement, for the uni-
tary/orientable case, has been shown first in [4] considering a matrix model of unitary
symmetry class with a leading-order density of states

ρJT
0 (E) = 1

4π2 sinh
(
2π

√
E
)
, (2.8)

that later was shown to be that of JT gravity [1]. Specifically, the proof worked by showing
that the recursion determining the perturbative contributions to the matrix model correlation
functions is equivalent to Mirzakhani’s well known recursion [5] enabling the computation
of the moduli space volumes.
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For the case of unorientable JT gravity, the claim of duality was first made and motivated
in [3] and extended in [6] by giving a generalisation of Mirzakhani’s recursion to the unori-
entable setting and showing, like in the orientable case, that this is equivalent to the matrix
model recursion of the matrix model determined by ρJT

0 for the orthogonal symmetry class.
The unorientable case is considerably more complicated than the orientable case, because
the moduli space volumes are divergent objects requiring regularisation. Nevertheless, it is
possible to work out explicit results for the whole volumes for low genus and numbers of
boundaries as done in [6] and extended, with a different but related regularisation in [12].

A way to avoid some of the complications of divergent volumes is to consider the
regularisation independent parts of the unorientable volumes, which can be shown to be
related to the low-energy limit of JT gravity, known as “topological gravity” or the “Airy
model”, i.e. a matrix model with the leading-order density of states

ρAiry
0 (E) = 1

2π
√
E. (2.9)

For this limit, as performed in [11], the volumes can be computed to much higher genus
and numbers of boundaries which enables a thorough study of their properties, which was
vital to the consideration and already showed many of the features found for the full JT
case. Consequently, also the generalisation to arbitrary β performed in section 3 will mainly
focus on the Airy model.

2.2 Chaos in topological/JT gravity

An important application of the explicit computations of (Airy) Weil-Petersson volumes is
the possibility to show agreement of the topological/JT gravity correlation functions with
the predictions of universal RMT for the canonical SFF, this being proof of chaoticity of
the respective theory.

The canonical spectral form factor is defined as

κβ(t, β) := ⟨Z(β + it)Z(β − it)⟩c,β ≃
∑

g=0, 1
2 ,1,...

κg
β(t, β)
(eS0)2g , (2.10)

where the topological expansion is induced by that of the two-point correlation function of
partition functions and we included indices of β to make explicit that the respective object
depends on the choice of ensemble. It was shown in [11], that for a matrix model given by the
leading-order density of states ρ0 for a Wigner-Dyson choice of β in the so-called “τ -scaled”
limit (i.e. t → ∞, eS0 → ∞ with τ := e−S0t fixed)

κs
β(τ, β) := lim

eS0 ,t→∞
τ :=e−S0 t fixed

e−S0κβ(t, β)

=
∫ ∞

0
dEe−2βEρ0(E)− 2

∫ ∞

0
dEe−2βEρ0(E)

∫ ∞

0
dx cos

(
τ

ρ0(E)x
)
Υβ(x)

=:
∫ ∞

0
dEe−2βEρ0(E)−

∫ ∞

0
dEe−2βEρ0(E)bβ

(
τ

2πρ0(E)

)
.

(2.11)
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Here Υβ and thus bβ can be determined from the Gaussian ensemble of the respective Wigner-
Dyson class and the analytical results for them are given in [17]. The cases already considered
in the literature are β = 2 [10, 27] and β = 1 [11]. For the Airy density of states one finds

κs
1(τ, β) = 2κs

2(τ, β)−
τe−8βτ2

8πβ

[
Γ(0, 2βτ2)(1− e8βτ2)

+ 16βτ2 2F2

(
1, 1; 32 , 2; 8βτ

2
)
+ πErfi

(√
8βτ2

)
− (2.12)

−
∞∑

n=1

(
n∑

m=1

(−1)n+m(2)2m

(m)!(n−m)!
(
n− m

2
))(2βτ2)n

]
,

κs
2(τ, β) =

1
4
√
π

1
(2β)3/2 Erf

(√
2βτ

)
. (2.13)

Perturbative agreement of the topological/JT gravity result for the canonical SFF with this
prediction for β = 2 has been shown in [10] with the specific properties of the orientable WP
volumes necessary for this to happen worked out and explored in [9, 28]. With perturbative
agreement we specifically mean that both sides of eq. (2.11) agree as power series in τ and β.
This is the natural form one finds (after τ scaling) for the topological/JT gravity SFF while
for the universal RMT answer one can find it by expanding the exact result. Explicitly, for
the case of β = 1 (eq. (2.12)) the first terms of this expansion can be found to be [11]

κs
1(τ, β) =

τ

2πβ − τ2√
2πβ

−
γ + log

(
2βτ2

)
+ 1

3
π

τ3 + 8
√
2πβ
3π τ4

+
β
(
4γ + 4 log

(
2βτ2

)
− 7

15

)
π

τ5 − 64(2πβ)
3
2

15π2 τ6 +O
(
τ7
)
. (2.14)

For the unorientable case, as one could expect, the reasoning is more involved, as well for
the side of the WP volumes as the universal RMT side, but agreement was shown for the
unorientable Airy model in [11] and for unorientable JT gravity in [12].

An important complication, occurring already for the Airy model,6 is the remaining
dependence on t of the coefficients of the expansion in τ and β of the canonical SFF. To
better explain this, we rewrite

κs
β(τ, β) = lim

eS0 ,t→∞

∑
g=0, 1

2 ,1,...

κg
β(t, β)τ2g+1

(eS0)2g+1τ2g+1
= lim

t→∞

∑
g=0, 1

2 ,1,...

κg
β(t, β)
t2g+1︸ ︷︷ ︸

:=κs,g
β

(t,β)

τ2g+1. (2.15)

For the orientable case, one finds that sum and limit can be interchanged and limt→∞ κs,g
2 (t, β)

is independent of t. For the unorientable Airy model, it was found in [11] that one can not
interchange sum and limit as starting from g = 3

2 all κs,g
1 (t, β) retain a t dependence that

does not vanish with the limit. It was possible to make sense of this by grouping terms with
the same β dependence and finding that by adding and subtracting certain hypergeometric

6Actually only there, in the sense that of course the part of the JT result corresponding to the Airy limit
still contains it but the rest doesn’t, see [12] for details.
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functions and using their asymptotic expansions for the limit t → ∞, it was possible to
remove the t dependence. Explicitly, for the contribution to τ3β0 one found [11]

1
π

[
−10
3 + log

(2t
β

)
−

√
2π
3

(
tτ2
)1/2

+
√
2π
30

(
tτ2
)3/2

− 2
(
tτ2
)2

45 +
√
2π

210 (τ2t)5/2 + . . .

]
,

(2.16)

where the dots indicate terms coming from higher orders in the topological expansion. Now,
one defines

f(t, τ) :=
(
tτ2
)2

45π

(
62F2

(
2, 2; 3, 72;−tτ

2
)
− 41F1

(
3
2;

7
2;

−tτ2

2

))
. (2.17)

For this function, it holds that

f(t, τ) = 2
(
τ2t
)2

45π +
(
tτ2
)2

45π

∞∑
k=1

ak(tτ2)k

︸ ︷︷ ︸
O(τ6)

(2.18)

t→∞= 1
π

(
−
√
2π
3

(
tτ2
)1/2

+ log
(
4tτ2

)
+ γ − 3

)
, (2.19)

where the first line is the definition of the hypergeometric functions as a power series with
coefficients ak, which has an infinite radius of convergence, and the second line is its asymptotic
expansion. The trick is to add f(t, τ)− f(t, τ), then write out its power series definition for
the first occurrence and finally to take the limit of t → ∞, resulting in

− 1
π

[1
3 + log

(
2βτ2

)
− γ

]
+O

(
τ3
)
, (2.20)

which is precisely the result at order τ3 from the expansion of κs
1(τ, β) obtained from universal

RMT, eq. (2.14). It can be argued that by adding and subtracting another hypergeometric
function the remaining correction terms will be cancelled, however, this function is determined
by contributions of higher genus than those computed in [11] the relevant of which are given
in eq. (2.16).

Due to these complications, it is a non-trivial question whether the symplectic (β = 4)
symmetry class, which has not been studied from this point of view, does show agreement
of the (perturbative) topological gravity canonical SFF with its RMT prediction. This is
answered affirmatively in section 4.2, thus completing the study of all Wigner-Dyson symmetry
classes/“standard” choices of manifolds in bosonic topological gravity, i.e. showing the presence
of quantum chaos, as seen through the lens of the BGS conjecture, for all (bosonic) cases.

2.3 Main results of this work

After having given the necessary background and notational conventions we give a brief
overview of the main results of this work.
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Structure of the resolvents for the general β Airy model. Solving the loop equations
for the Airy model for arbitrary Dyson index β in section 3, using the direct generalisation
i.e. f(β) = β, we find the explicit results for the resolvents up to g = 4, n = 1. Furthermore,
we show that they have the general structure

Rβ
g (I) =

1
β2g+n−1

(
R0

g(I)βg + (2− β)2
g∑

i=1
Ri

g(I)βi−1((1− β)(4− β))g−i

)
(2.21)

for integer g and

Rβ
g (I) =

1
β2g+n−1

(2− β)
g+ 1

2∑
i=1

Ri
g(I)βi−1((1− β)(4− β))g+ 1

2−i

 (2.22)

for half-integer g, where the Ri
g do not depend on β. Actually, we show this structure to

be valid for all one-cut matrix models. For topological gravity, we also give the structure
of the Ri

g to be

R0
g(I) =

P 0
g,n(I)∏n

j=1 (zj)6g+2n−3 , (2.23)

for i = 0 with P 0
g,n(I) being a polynomial with rational coefficients of combined order

2(n − 1)(3g − 3 + n) and

Ri
g(I) =

P i
g,n(I)∏n

j=1 (zj)6g+2n−3∏n
j<k (zj + zk)(2g+2) , (2.24)

for the other cases. Again, P i
g,n(I) is a polynomial with rational coefficients, now of the

combined order (n − 1)[3(n− 2) + g(n+ 6)].
Along the way we show the following interesting relation of resolvents for general β

one-cut matrix models that are crucial for the proof of the aforementioned results. First,

Rβ
0 (I) =

1
β|I|−1R

1
0(I), (2.25)

reducing the computation of contributions at genus 0 to n-point resolvents to the computation
of those for β = 2 which is a vast simplification. Second

R
4
β
g (I) = (−1)2g

(
β

2

)2(g+|I|−1)
Rβ

g (I), (2.26)

being vital for the proof of the general form of the resolvents and a crucial sanity check
for their explicit computation.

Structure of the WP volumes for arbitrary β topological gravity. We build on the
duality of the matrix model defined by the Airy spectral curve for the Wigner-Dyson classes
with topological gravity in its various bosonic incarnations discussed above by using the
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arbitrary β matrix model to define arbitrary β topological gravity. For the WP volumes of
this theory (and also those for JT gravity) we find the general structure

V β
g,n(⃗b) =

1
β2g+n−1

V0
g,n(⃗b)βg + (2− β)2

∑g
i=1 V i

g,n(⃗b)βi−1((1− β)(4− β))g−i int. g,

(2− β)
∑g+ 1

2
i=1 V i

g,n(⃗b)βi−1((1− β)(4− β))g+ 1
2−i half int. g,

(2.27)
which for g > 1 notably includes genuinely non-Wigner-Dyson terms, i.e. non-zero terms
that vanish in all the Wigner-Dyson classes. The contributions at i = 0 in the Airy case
have the form familiar from the orientable Airy WP volumes

V0
g,n(⃗b) =

∥α⃗∥1=3g−3+n∑
α⃗∈Nn

0

Cg
α⃗

n∏
i=1

b2αi
i , (2.28)

where Cg
α⃗ ∈ Q≥0 and totally symmetric. The other contributions have, for n = 2, the form

V i
g (b1, b2) = V i,>

g (b1, b2)θ(b1 − b2) + V i,>
g θ(b2 − b1), (2.29)

with
V i,>

g (b1, b2) =
∑

α1,α2∈N0
α1+α2=6g−2

Cg,i
α1,α2b

α1
1 bα2

2 , (2.30)

where the Cα1,α2 ∈ Q≥0 are not necessarily symmetric under α1 ↔ α2. This is the form
familiar from the unorientable Airy WP volumes from [11]. For n > 2 one can make a
statement about the general form of the Airy WP volumes but it is more useful to use the
general structure of resolvents shown in the previous paragraph instead.

We also give a geometric interpretation of the WP volumes for arbitrary Dyson index
by discussing the generalisation of the Kontsevich diagrammatics and the Mirzakhani-like
recursion of [6] to this setting. Using the recursion we give a geometric proof for the general
structure in terms of the Dyson index of the (Airy) WP volumes.

Universal RMT SFF for GSE. We find the τ -scaled canonical SFF from the usual
combination of universal RMT results for fixed energy and the explicit form of the leading
level density. For the symplectic symmetry class we get

κs
4(τ, β) = κs

2

(
τ

2 , β
)
− τ

8πχ (τ, β) (2.31)

with κs
2
(

τ
2 , β

)
defined in eq. (2.13) and

χ (τ, β) =− 1
4β

−γ − log
(
β
τ2

2

)
−

∞∑
n=1

(
−β τ2

2

)n

nn!


+

∞∑
n=0

1
4β

(
−2βτ2

)n
n!

(
− log 2βτ2 + ψ (n+ 1)

)
+

∞∑
n=0

1
4βΓ

(
−2n+ 1

2

)(
2βτ2

) 2n+1
2

+
∞∑

k=0

1
8β

(
−βτ

2

2

)k 1
k!

2 2F1
(
1, 2k + 1; 2k + 2; 12

)
2k + 1 ,

(2.32)
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where γ denotes the Euler-Mascheroni constant and 2F1(a, b; c, z) the Gauss Hypergeometric
function. Expanding it to the order to which we compute the contributions on the topological
gravity side we find

κs
4(τ, β) =

τ

8πβ +
√

2
π

τ2

16
√
β
−
τ3
(
3 log

(
β τ2

2

)
+ 3γ + 1

)
48π −

√
2
π

√
βτ4

12

+
βτ5

(
60 log

(
β τ2

2

)
+ 60γ − 7

)
960π +

√
2
π

β3/2τ6

15

−
β2τ7

(
1120 log

(
β τ2

2

)
+ 1120γ − 501

)
26880π −

√
2
π

4β5/2τ8

105 +O
(
τ9
)
.

(2.33)

Using the mechanism recalled in section 2.2 we show this is matched by the result we find
from topological gravity with β = 4 which up to g = 7

2 is given by

κs,Airy
4 (τ, β)

= lim
t→∞

{
τ

8πβ +
√

2
π

(
τ2

16
√
β
−

√
βτ4

12 + β3/2τ6

15 − 4β5/2τ8

105 + . . .

)

+ τ3β0

π

− 5
24 + 3

48 log
(2t
β

)
+
√
π

2

√
tτ

48 −
√
π

2

(√
tτ
)3

1920 − t2τ4

5760 −
√
π

2

(√
tτ
)5

53760 + . . .


+ τ5β

π

163960 − 1
16 log

(2t
β

)
−
√
π

2
17

√
tτ

768 +
√
π

2
3
(√

tτ
)3

5120 + . . .


+ τ7β2

π

[
− 8297
80640 + 1

24 log
(2t
β

)
+
√
π

2
881

√
tτ

61440 + . . .

]

+ . . .

}
. (2.34)

Universal microcanonical SFF for general β. Building on the agreement of the topo-
logical gravity result with the universal RMT prediction in the Wigner-Dyson classes and
other arguments, primarily its compliance to the constraints on the general β Airy WP
volumes equivalent to those fulfilled by those for β = 1 and β = 4, we conjecture the
agreement to hold also for the non-Wigner-Dyson choices of the Dyson index. Building on
this we derive an important part of the, to our knowledge not yet fully computed, universal
microcanonical SFF for general Dyson index. Specifically, we show that its “Wigner-Dyson
part” i.e. the part arising from the uplift of the Wigner-Dyson contributions to arbitrary
β in the regime of small times is given by

κs,WD
β (τ, E) = ρ0(E)

[
1− bWD

β

(
τ

2πρ0(E)

)]
, (2.35)
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with

bWD
β (x) = 1− 2

β
x+(2− β)

2β2 x

[(
2− β+

√
β
)
log

(
1 + 2x√

β

)

+
(
2− β−

√
β
)
log

(∣∣∣∣1− 2x√
β

∣∣∣∣)
]
.

(2.36)

To justify this, we compare against numerical evaluations of the microcanonical SFF for an
ensemble of general β Gaussian random matrices.

3 Topological gravity for arbitrary β

The object of this section is to study the behaviour of topological gravity for any β, not
restricted to the unitary (β = 2) or orthogonal (β = 1) cases as it was done in the previous
works on this subject. In order to perform this computation in the generality needed, we
build on the formalism used in [11] to compute correlation functions of topological gravity
for the case of β = 1. The idea there, and thus also here, is to use the duality of topological
gravity with a double-scaled matrix model with the Airy density of states at genus 0, i.e.
ρAiry
0 (E) = 1

2π

√
E. Consequently, the computation of some correlation function in the specified

matrix model suffices, to know the respective correlation function in topological gravity.
To compute the n-point correlation function of e.g. resolvents in a matrix model (which

then determine all other correlation functions by suitable integral transforms) it is necessary
to provide the spectral curve, derived from the genus g = 0 contribution to the density of
states and the symmetry class one wishes to consider. As we explained in the introduction,
this symmetry class is fully classified by the exponent β of the Vandermonde determinant
when rewriting the matrix integral as an eigenvalue integral. The generalisation beyond the
standard Wigner-Dyson classes is thus straightforward in this representation. It is given by
eq. (1.3) including the dependence on the two functions f and g. They are defined in the
introduction such that they coincide with the identity for the three Wigner-Dyson values of
β. Notably, in this representation the dependence on g can be absorbed into the potential
by defining Ṽ (x) := g(β)

f(β)V (x). Our approach to compute correlation functions will use the
so-called loop equations, which derive from the eigenvalue integral representation. In fact,
their derivation for a variable Dyson index β in the sense of eq. (1.1) has been comprehensively
reviewed in [3], i.e. we can use the results of [3] with replacements β → f(β) and V → Ṽ .
The dependence on the potential V is included into the spectral curve in the loop equations
formalism enabling the definition of the matrix model just by using this object instead of
the potential. Hence, when defining the generalised matrix integral in this way, the only
remainder of the generalisation, eq. (1.3), is the function f . Thus, one can perform all
computations using f = idR+ and then uniquely determine the result for an arbitrary choice
of f by mapping β → f(β). Therefore, we will use throughout the rest of the work f = idR+ ,
thereby keeping the possibility to introduce another choice for f(β) afterwards.

Having clarified how to generalise to arbitrary Dyson index, we will proceed with the
actual method we will use to compute the perturbative expansion of correlation functions,
the loop equations. One important step of [11], necessary for this computation, was to take
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the loop equations as derived in [3] and put them into a convenient form by transforming
to double-cover coordinates. We very briefly recall the necessary results in the following
section, details and the derivation are given in [11].

3.1 Recap: the perturbative loop equations in double-cover coordinates

The perturbative loop equations are a way to compute perturbatively the correlation functions
of n-point resolvents (cf. eq. (2.4)) of a matrix model with a given leading-order density of
states ρ0(E). By a perturbative computation of the correlation function of these objects we
mean computing the coefficients of the topological expansion of the correlations functions given
in eq. (2.6). Note, that in the following we drop the superscript indicating the resolvent to be
computed from a matrix model as this is apparent. Here, we already restricted ourselves to the
case of interest, i.e. double-scaled one-cut matrix models, meaning that the support of ρ0(E)
is [0,∞) and that the size of the matrix N usually appearing in the topological expansion of
matrix model correlation functions is replaced by eS0 by the double-scaling procedure [1, 3].

As a first step in this computation, one has to compute the spectral curve y(x) for
the matrix model using [1]

lim
ϵ→0

y(x± iϵ) = ∓iπρ0(x). (3.1)

Having found the spectral curve in “normal“ coordinates, one finds that the spectral curve
has a cut precisely coinciding with the support of the leading-order density of states. For
the structure of the cut that we required here, one can thus simplify the solution of the
loop equations by going over to double-cover coordinates z ∈ P1 defined via x = −z2. In
these coordinates, as shown in [11] based on [3], the loop equations, or rather the recursive
prescription to compute the contributions to the resolvent correlation functions arising from
them, can be written as

Rβ
g (−z2, I) =

1
2πiz

∮
[−i∞+ϵ,i∞+ϵ]

z′2dz′

z′2 − z2
1

y(−z′2)
Fβ

g (−z′2, I), (3.2)

with ϵ > 0 and

Fβ
g (−z2, I) :=

β− 2
β

1
−2z ∂zR

β

g− 1
2
(−z2, I) +Rβ

g−1(−z2,−z2, I)

+
′∑

I⊇J,h

Rβ
h(−z

2, J)Rβ
g−h(−z

2, I\J)

+ 2
n∑

k=1

[
Rβ

0 (−z2,−z2k) +
1
β

1(
z2k − z2

)2
]
Rβ

g (−z2, I\
{
−z2k

}
),

(3.3)

where
∑′ is a notation for excluding R0(−z2) and R0(−z2,−z2k) from the sum. Excluded

from this procedure are some cases where g = 0 that require special treatment (see section C
for a recursion valid for all cases). In the following, to abbreviate the notation, we denote
the dependence on e.g. −z2 by just a dependence on z, keeping in mind the true quadratic
dependence. Computing the resolvents thus boils down to evaluating a contour integral along
the closed curve [ϵ− i∞, ϵ+ i∞] ∈ P1 that can be evaluated by the residue theorem.
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3.2 Topological expansion of the β Airy model resolvents

Having recalled the procedure to compute resolvents of a matrix model of the type we are
interested in we specialize to the case of interest of this work, the Airy model. For this, we
first solve eq. (3.1) for ρAiry

0 (E) = 1
2π

√
E, finding

yAiry(x) =
√
−x
2 ,

=⇒ yAiry(z) = 1
2z.

(3.4)

Having found this, we are nearly ready to compute the topological expansion of the resolvents
for the Airy model. However, we have to treat first the special cases of g = 0.

The case of n = 2 was already considered in [3, 11] resulting in

Rβ
0 (z1, z2) =

1
2β

1
z1z2(z1 + z2)2

= 1
β
R1

0(z1, z2). (3.5)

The case of n = 3 is considered in [11] and yields

Rβ
0 (z1, z2, z3) =

1
2πiz1

∮
iR+ϵ

z′2dz′

z′2 − z21

2
y(z′)Rβ

0 (z′, z2)R
β
0 (z′, z3) +

1
β

 Rβ
0 (z′, z3)(
z22 − z′2

)2 + Rβ
0 (z′, z2)(
z23 − z′2

)2



= 1
β2R

1
0(z1, z2, z3),

(3.6)

where the second line follows by using eq. (3.5). From these two cases one can already
suspect that

Rβ
0 (I) =

1
βn−1R

1
0(I), (3.7)

which is a generalisation of the relation of the β = 1 with the β = 2 resolvents of [3]. We
prove this statement, actually the slight generalisation to the one-cut case, in section C.
This relation is very useful insofar as by the algorithm given in [29] one has a very quick
way to compute the orientable genus 0 WP volumes of n boundaries from which one can
compute the R2

0(I) that in turn determine the contributions for β = 1 and thus by the
above relation that of general β.

Having studied the special cases, we can turn to some examples for resolvents of non-
zero genus.

g = 1
2 , n = 1. For this case we find

Fβ
1
2
(z) = β− 2

β

1
−2z ∂zR

β
0 (z) →

β− 2
β

1
−2z ∂zy(z) =

2− β

β

1
4z = 2− β

β
F 1

1
2
(z), (3.8)
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where the replacement of R0(−z2) by the spectral curve is justified, as they differ only by
analytic terms, which vanish under the following contour integration. Thus, by eq. (3.2) we find

Rβ
1
2
(z) = 2− β

β

1
2πiz

∫
iR+ϵ

z′2 dz′

z′2 − z2
2
z′

1
4z′ =

2− β

β

1
2z Res

z′=−z

1
(z′ − z)(z′ + z)

= β− 2
β

1
4z2 ,

(3.9)

which reproduces the result from [11] upon setting β = 1 and vanishes when setting β = 2,
coinciding with the expectation for this symmetry class that is dual to orientable manifolds
that cannot have genus 1

2 or any non-integer genus, for that matter.

g = 1
2 , n = 2. Computing, again, first the relevant F we find

Fβ
1
2
(z′, z2) =

2− β

β

1
2z′∂z′R

β
0 (z′, z2) + 2Rβ

1
2
(z′)

Rβ
0 (z′, z2) +

1

β
(
z′2 − z22

)2


= 2− β

β2 F 1
1
2
(z′, z2),

(3.10)

which directly implies

Rβ
1
2
(z1, z2) =

2− β

β2 R1
1
2
(z1, z2) =

2− β

β2
z41 + 3z2z31 + 3z22z21 + 3z32z1 + z42

2z41z42 (z1 + z2) 3
. (3.11)

g = 1, n = 1. Here, one finds from eq. (3.3)

Fβ
1 (z′) =

2− β

β

∂z′R
β
1
2
(z′)

2z′ +Rβ
0,2(z′, z′) +Rβ

1
2
(z′)Rβ

1
2
(z′)

=
[(2− β

β

)2(1
4 + 1

16

)
+ 1

8β

]
1
z′4

=
[
(2− β)2

β2
5
4 + 1

2β

]
1

4z′4 .

(3.12)

Thus, one can compute the resolvent as

R1(z) =
[
(2− β)2

β2
5
4 + 1

2β

]
1

2πiz

∫
iR+ϵ

z′2 dz′

z′2 − z2
2
z′

1
4z′4

= −
[
(2− β)2

β2
5
2 + 1

β

]
1
4z Res

z′=z

dz′

(z′ − z)(z′ + z)z′3

= −
[
(2− β)2

β2
5
2 + 1

β

]
1
8z5 .

(3.13)

This is the first occurrence of a resolvent being split into several parts, each associated
with either the β = 2 or the other two Wigner-Dyson classes. The distinction can be made
by noticing that there is a part of the result that is vanishing upon going to the unitary
symmetry class. On the gravity side of the duality one can think of this contribution as arising

– 18 –



J
H
E
P
1
1
(
2
0
2
5
)
0
8
8

purely from orientable manifolds as those are the sole contributions to the gravitational path
integral when choosing the unitary symmetry class for the dual matrix model. Going over
to the case of unorientable manifolds in the path integral, i.e. β = 1 one can see that the
“orientable” contribution has doubled with respect to the orientable case which makes sense
geometrically as one counts every orientable manifold twice due to the two possibilities to
orient it. Thus, one can uniquely define the “orientable” contribution to the resolvent from
the general β result as the non-vanishing contribution in the case of β = 2. This would
suggest that every other contribution can be associated to a purely unorientable sector of
the gravitational path integral.

To investigate this further, we compute the resolvents up to g = 4, n = 1 which notably
involves the two-boundary resolvents up to g = 7

2 , some of which can be looked up in section A
and all of which are collected in the supplementary material. The aim of this investigation is
to find a general structure of the β dependence of the resolvents.

3.3 General structure of the β Airy model resolvents

The search for an underlying structure of correlation functions is often simplified by symmetries
of the considered theory. In the present case such a symmetry would be given by the invariance
of the contributions to the topological expansion of the multi-point resolvents under certain
transformations of β. The guiding example of how such a transformation might look like
is given by the well known fact in the study of matrix models that the contributions to
the resolvents of the orthogonal and symplectic symmetry class are directly connected by
the relation ([3])

R1
g(I) = (−1)2g22(g+n−1)R4

g(I). (3.14)

In fact, this relation is only an example of a more general invariance of the matrix models
rooted in the invariance of the integral definition of the correlation functions under (β, N) ↔(
4
β ,−

Nβ
2

)
(e.g [13] and references therein). At the level of resolvents, we show in section D

that for one-cut matrix models the relation above generalises to

R
4
β
g (I) = (−1)2g

(
β

2

)2(g+|I|−1)
Rβ

g (I). (3.15)

This relation now allows one to decompose the β dependence into invariant parts under β → 4
β .

To make this more precise, it is useful to generically decompose the genus g contribution
to the n boundary resolvent as

Rβ
g (I) =

1
β2g+n−1

k∑
i=1

Pi(β)gi(I) (3.16)

with the Pi being polynomials, the gi denoting the dependence on the z-variables that however
is of secondary importance here, and k ∈ N. This can be motivated for example by looking
at the example of a not-decomposed resolvent with more complicated β dependence than the
ones presented so far at the beginning of section A but can also be seen rather directly by
looking at the recursion eq. (3.2) used to compute the resolvents. Considering and comparing
more results for different genera and numbers of boundaries one finds that the maximal order
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of the polynomials being decomposed into the Pi is given by 2g,7 i.e. one is looking for a
choice of basis for the 2g+ 1-dimensional space of polynomials of degree 2g. Furthermore, we
observe that up to inverse powers of 2, which can be moved to the gi, the coefficients of the
polynomials are positive integers (or vanish).8 While the whole of the resolvent transforms
according to eq. (3.15) upon β → 4

β , for a generic choice of the Pi this is not true for the
individual summands. This property, that the individual summands transform according to
eq. (3.15), is now what we require for the sought for invariant decomposition.

Using this definition, one quickly finds that demanding for the decomposing polynomials
being invariant amounts to

Pi

( 4
β

)
= (−1)2g

( 2
β

)2g

Pi(β). (3.17)

To see that this is a quite restrictive property, we consider an arbitrary polynomial with integer
coefficients of degree k, i.e. given by P

b⃗
(β) :=

∑k
i=0 biβ

i with b⃗ ∈ Zk. One directly finds

P
b⃗

( 4
β

)
= (−1)2g

( 2
β

)2g 2g∑
i=2g−k

b2g−i(−1)2g22(g−i)βi. (3.18)

Thus, the polynomial is invariant iff

∀
i∈[0,k]

bi = (−1)2g22(g−i)b2g−i. (3.19)

From this, one can infer two facts. First, for the polynomial to be invariant, it has to hold
that k ≤ 2g. This is in correspondence with our observation that the maximal occurring
polynomial order is indeed 2g. Second, choosing the bi for i ∈ [0, g] in the integer genus and
i ∈

[
0, g − 1

2

]
in the half-integer genus case fixes the other bi. This implies that the space of

invariant polynomials is g + 1 dimensional in the integer genus case and g + 1
2 dimensional

in the half-integer genus case. Consequently, finding the required number of invariant basis
polynomials fixes a complete basis for the space of invariant polynomials occurring for genus g.

Starting with the most obvious option, we first try Pm
i (x) := xi for which one directly finds

Pm
i

( 4
β

)
=
( 2
β

)2i

βi. (3.20)

This implies that for half-integer genus this can’t be invariant and for integer genus it’s only
invariant if i = g. Thus, at most one element of the Pm

i (x) can contribute. A more elaborate
choice that has the chance to be invariant would be to choose a⃗ ∈ Zm, n⃗ ∈ Nm with m ∈ N
and consider

∏m
i=1

[
(ai − β)

(
4
ai

− β
)]ni . Here, the common exponent ni has been chosen

as this is the only way the expression can reproduce itself upon transforming β. Adding
a monomial dependence leads to the candidate expression

Pc
a⃗,n⃗,k(β) =: βk

m∏
i=1

[
(ai − β)

( 4
ai

− β

)]ni

. (3.21)

7This one can prove then by induction, using the explicit form of Fβ
g (z, I) in eq. (3.3). Of course, it is also

a corollary of our proof of the general structure of the resolvents in terms of β in section E.
8The emergence of factors of 2 in the denominator of the z-dependent part is expected at least for the

Wigner-Dyson cases. This is due to the representation of the resolvents in terms of ribbon graphs naturally
producing factors of 2zk in the denominator arising from propagators with sides of the same label.
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For this choice of polynomials one finds

Pc
a⃗,n⃗,k

( 4
β

)
=
( 2
β

)2(k+
∑m

i=1 ni)
Pa⃗,n⃗,k(β), (3.22)

which is invariant iff k +
∑m

i=1 ni = g for integer genus and never invariant for half-integer
genus. In fact, one can narrow down the choice of the ai to the cases of 2 and 1 since for
all other cases9 there would appear coefficients that are not integers, in contrast to our
assumption on the coefficients to be purely from N. In the case of ai = 2, (ai − β) can
already be made invariant by itself, thus we allow for it to appear without a “partner”.
This results in the polynomials

P i
a,b,c(β) := βa(2− β)b[(1− β)(4− β)]c. (3.23)

Here, we find

P i
a,b,c

( 4
β

)
= (−1)b

( 2
β

)2(a+c)+b

P i
a,b,c(β), (3.24)

which can solve the invariance condition for both the integer and half-integer case. We
further decrease the number of degrees of freedom for this choice of basis by noting that
(1− β)(4− β) = (2− β)2−β which implies that as it is chosen now, there is an overcounting.
This can be avoided by choosing b to be the minimal value compatible with the invariance
condition. Thus we set b = 1 for the case of half-integer genus, which in turn implies
a + c = g − 1

2 being equivalent to invariance. For integer genus we could set b = 0, but
for reasons that will be clear below we set b = 2, implying a + c = g − 1 for the basis
entry to be invariant.

Now one can see, that for the half-integer genus case this already yields the required
g + 1

2 basis polynomials while for integer genus one finds g from this choice which yields the
required g + 1 basis polynomials upon including Pm

g . These basis polynomials are indeed
linearly independent as they all have different degrees.

Putting everything together, we find

Rβ
g (I) =

1
β2g+n−1

(
R0

g(I)βg + (2− β)2
g∑

i=1
Ri

g(I)βi−1((1− β)(4− β))g−i

)
, (3.25)

for integer g and

Rβ
g (I) =

1
β2g+n−1

(2− β)
g+ 1

2∑
i=1

Ri
g(I)βi−1((1− β)(4− β))g+ 1

2−i

 , (3.26)

for half-integer g, where the Ri
g do not depend on β.

Before interpreting this structure, we present a few examples of resolvents being decom-
posed in the manner we propose to illustrate less abstractly that it works. For the method

9Except, of course, for ai = 4 which however yields the same basis polynomial as 1 and is thus excluded.
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we use to decompose the expressions, see section F. Starting with n = 1 we find

Rβ
1/2(z) =− 2− β

4z2β , (3.27)

Rβ
1 (z) =− 5(2− β)2

16β2z5
− 1

8βz5 , (3.28)

Rβ
3/2(z) =− 15(1− β)(4− β)(2− β)

16β3z8
− 2(2− β)

β2z8
, (3.29)

Rβ
2 (z) =− 1105(1− β)(4− β)(2− β)2

256β4z11
− 3465(2− β)2

256β3z11
− 105

64β2z11
, (3.30)

Rβ
5/2(z) =− 1695(1− β)2(2− β)(4− β)2

64β5z14
− 9067(1− β)(2− β)(4− β)

64β4z14

− 160(2− β)
β3z14

, (3.31)

from which we can clearly see that the decomposition works. Going to n = 2 we present
the three lowest genus cases where the decomposition contains more than one term, i.e.
g ∈ {1, 32 , 2}.

Rβ
1 (z1,z2)=

5z41+3z21z22+5z42
8β2z71z

7
2

+ (2−β)2

16β3z71z
7
2(z1+z2)4

×
(
25z81+100z71z2

+165z61z22+176z51z32+184z41z42+176z31z52+165z21z62+100z1z72+25z82
)
,

(3.32)

Rβ
3
2
(z1, z2) =

(2− β)
16β3z101 z

10
2 (z1 + z2) 5

×
(
256z121 + 1280z2z111 + 2752z22z101 + 3590z32z91

+3710z42z81 + 3739z52z71 + 3750z62z61 + (z1 ↔ z2)
)

+ (1− β)(2− β)(4− β)
16β4z101 z

10
2 (z1 + z2) 5

×
(
120z121 + 600z2z111 + 1290z22z101 + 1700z32z91

+1810z42z81 + 1865z52z71 + 1866z62z61 + (z1 ↔ z2)
)
,

(3.33)

Rβ
2 (z1, z2) =

35
(
33z101 + 27z81z22 + 29z61z42 + 29z41z62 + 27z21z82 + 33z102

)
64β3z131 z

13
2

+ 5(1− β)(2− β)2(4− β)
256β5z131 z

13
2 (z1 + z2)6

×
(
2431z161 + 14586z151 z2 + 38454z141 z22 + 61322z131 z32

+ 72455z121 z42 + 76032z111 z52 + 77730z101 z62 + 78412z91z72
+78756z81z82 + (z1 ↔ z2)

)
+ (2− β)2

256β4z131 z
13
2 (z1 + z2)6

× (38115z161 + 228690z151 z2 + 602910z141 z22 + 957602z131 z32
+ 1115707z121 z42 + 1146816z111 z52 + 1157346z101 z62 + 1160588z91z72
+ 1161156z81z82 + (z1 ↔ z2)).

(3.34)

– 22 –



J
H
E
P
1
1
(
2
0
2
5
)
0
8
8

Again, as it should be due to our above reasoning, the decomposition works and for these
examples its usefulness is apparent when comparing to the non-decomposed resolvent presented
in section A. To give another justification for the decomposition to be generic, we show in
section E that it is a “fixed point” of the loop equations in the sense of it being reproduced for
all contributions to the topological expansion of n-boundary resolvents if present for the input
to the loop equations. As this is the case, as seen from eq. (3.7), this shows the structure to
be general. In fact, we show a more general statement than the presence of the structure in
resolvents for topological gravity. Indeed, our proof, like the ones before, applies to the whole
set of one-cut matrix models and thus shows our general structure to appear there as well.

Having thus found the sought general structure, we can study its implications for the
interpretation of the general β resolvents. The first thing to note is that the three Wigner-
Dyson values for the Dyson index, given by β = 1 for the orthogonal, β = 2 for the unitary
and β = 4 for the symplectic case, are special as seen from the vanishing of several terms
of the general β result upon β being one of them.

Specifically for the unitary case of β = 2 we find that, as expected, all half-integer
contributions vanish and for integer genus the only contribution arises from R0

g. The second
observation is the reason why we chose the minimal number of occurrences of (2 − β) in
the non-monomial basis elements to be two. Had we not, which would have been a possible
choice of invariant basis as well, this would not have led to the nice interpretation of the term
arising from R0

g being the only contribution at β = 2, i.e. in the case where the resolvents
are related to orientable manifolds on the gravity side of the duality.

Having done so, however makes the general structure a direct generalisation of the
structure we had observed for the lowest genus resolvents in the preceding section. This
specifically means that for integer genus R0

g (multiplied with a known power of β) can be
thought of as being the part of the resolvent stemming, on the side of the gravitational path
integral, from the orientable part of moduli space while the other Wigner-Dyson contribution,
the i = g term of the sum, arises from the purely unorientable part of moduli space.

Beginning with the contributions to the two-point correlation function of resolvents10

one can (not surprisingly) also see this split from the z dependence of the Ri
g. This is due to

the terms from i = 0 having the dependence one is accustomed to from the unitary resolvents,
i.e. no terms of the form (zk − zl)m in the denominator, as we prove at the end of section E,
while those terms appear in all the other cases, clearly showing how they necessarily originate
from the unorientable part of moduli space.

For half-integer genus, there is of course no orientable contribution as it vanishes in the
unitary case and the i = g + 1

2 summand in eq. (3.26) is the only contribution in the other
Wigner-Dyson classes making this directly connected to the moduli space of unorientable
surfaces. However, the structure is a clear extension of this simple observations as there
manifestly are non-Wigner-Dyson terms which shows that a β matrix model is not just an
interpolation between the Wigner-Dyson classes but has genuine “general β” contributions
not present for the standard ensembles.

10This is due to the one-point contributions all depending on the one variable z as 1
z6g−1 , leaving no room

for distinction between orientable/unorientable from this dependence.
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Having now completely explored the structure of the contributions to the resolvents, we
conclude this section by considering in more detail their dependence on the zi. It is best to
start with the part of the result for which the most is known, i.e. the orientable parts R0

g(I).
As we discussed in section 2, there is a direct link between the contributions to the topological
expansion of resolvents in the Airy model with the Airy WP volumes, given by eq. (2.7). In
the orientable case, their structure is known to be given by a polynomial in the boundary
lengths of combined order11 2(3g + n− 3) (cf. eq. (3.40)). Inverting the relation eq. (2.7), we
find that this results in the following structure for the orientable part of the resolvent:

R0
g(I) =

P 0
g,n(I)∏n

i=1 (zi)6g+2n−3 , (3.35)

with the combined order of the polynomial P 0
g,n given by 2(n − 1)(3g − 3 + n).

For the “unorientable” contributions, i.e. the Ri
g(I) with i ≥ 1, the structure of the

volumes is more complicated, as it is discussed in the next section. However, we can make
some statements about these objects based on the results we found. Indeed, as it was
expected already from the study of the β = 1 case, in addition to the factors of zi one
had in the orientable case, there are now also powers of sums of the zi in the denominator.
As the individual contributions to the Rg(I) have to be symmetric under permutation of
the arguments to preserve the symmetry of their combination, in fact all possible linearly
independent sums of two arguments for the given number of arguments have to appear
with the same power. For the case of n = 2, for the β = 1 model this power was found
to be 2g + n which we can see from our results to be reproduced by the general β results
for n = 2 as well as for all other considered values of n. Thus, it is reasonable (and in
agreement with all our results) to suspect

Ri
g(I) =

P i
g,n(I)∏n

j=1 (zj)6g+2n−3∏n
j<k (zj + zk)(2g+2) , (3.36)

where P i
g,n is again a polynomial. The combined order of P i

g,n can be motivated by observing
that before the decomposition the whole of Rg(I) has the structure given by eq. (3.36).
Thus, for the orientable part to obtain the form of eq. (3.35), the sums have to cancel out,
meaning that for the unorientable part, their presence has to be accounted for by P i

g,n having
a combined order that is precisely increased by the combined order of the product of sums.
Since there are n

2 (n− 1) distinct unordered pairs, and thus distinct linearly independent
sums of two arguments, to be chosen from the n arguments, one finds

comb. order(P i
g,n) = 2(n− 1)(3g − 3 + n) + n

2 (n− 1)(2g + 2)

= (n− 1)[3(n− 2) + g(n+ 6)],
(3.37)

which is in agreement with all the resolvents we have computed.

11By this, we mean that for each monomial constituting the polynomial the sum of powers of the individual
arguments is given by this number.
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3.4 The β Airy Weil-Petersson volumes

Having computed the resolvent for the general β matrix model with the Airy spectral curve,
we can now compute the objects of interest on the geometric side of the duality. The duality
is given by eq. (2.7), expressing the Airy WP Volume at genus g of n geodesic boundaries
of lengths b1, . . . , bn, V β

g(,n), by the contribution to the topological expansion of the n-point
resolvent at genus g. For the Wigner-Dyson classes this statement is actually the way
to prove the duality by relating the recursion that is used on the matrix model side to
Mirzakhani’s recursion [5] for the orientable volumes [1, 4] or a Mirazkhani-like recursion for
the unorientable volumes [6]. For the general β-case, as we pointed out in the introduction,
there is no geometric definition of “intermediate” (Airy) WP volumes in terms of intersection
numbers or a moduli space integral, as far as we know. Thus, the relation can be viewed as
the definition of the general β Airy WP volumes and we can study their properties through
the matrix model results. Explicitly put, collecting the boundary lengths in b⃗ ∈ Rn

≥0

V β
g(,n)(⃗b) := L−1

[
Rβ

g (z1, . . . , zn)
n∏

i=1

(−2zi

bi

)
, b⃗

]
. (3.38)

The general structure of the resolvents, eqs. (3.25) and (3.26), of course, induces a structure
of the same kind in the volumes i.e.

V β
g(,n)(⃗b) =

1
β2g+n−1

V0
g,n(⃗b)βg + (2− β)2

∑g
i=1 V i

g,n(⃗b)βi−1((1− β)(4− β))g−i int. g,

(2− β)
∑g+ 1

2
i=1 V i

g,n(⃗b)βi−1((1− β)(4− β))g+ 1
2−i half int. g.

(3.39)

The structure of the constituting V i
g,n, not surprisingly, derives from the Ri

g. Specifically, we
thus have to distinguish between the V0

g,n, only occurring for integer genus, and the other
V i

g,n. This, as we remarked above, is due to the R0
g,n being the only contributions surviving

in the unitary/orientable case of β = 2, thus demanding them to have the form expected for
the unitary setting, while the other Ri

g,n have the structure one is accustomed to from the
generic form found for the case of β = 1 in [11]. Consequently, we find for the “orientable”
part of the volumes which can be nicely written for n boundaries [5]

V0
g,n(⃗b) =

∥α⃗∥1=3g−3+n∑
α⃗∈Nn

0

Cg
α⃗

n∏
i=1

b2αi
i , (3.40)

with Cg
α⃗ ∈ Q≥0 and totally symmetric. The coefficients are indeed determined by the results

for the orientable Airy WP volumes in the literature since the volume should reduce to them
in the case of β = 2 and thus they differ only by a (known) power of two.

For the “unorientable” part, i.e. the rest of the contributions, this is not the case due
to the emergence of Heaviside θ-functions of sums of lengths complicating matters. The
case easiest to present and also most relevant for the purpose of computing the SFF is that
of two boundaries, where one finds [11]

V i
g (b1, b2) = V i,>

g (b1, b2)θ(b1 − b2) + V i,>
g (b2, b1)θ(b2 − b1), (3.41)
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with
V i,>

g (b1, b2) =
∑

α1,α2∈N0
α1+α2=6g−2

Cg,i
α1,α2b

α1
1 bα2

2 , (3.42)

where the Cα1,α2 ∈ Q≥0 are not necessarily symmetric under α1 ↔ α2. This seems confusing
at first since the resolvents are symmetric under exchanges of the arguments. However, this is
taken care of by the θ-functions as explained in [11]. We give the results for low genera here
and refer the reader for a more complete list to appendix B and the supplementary material.

V1,>
1/2 (b1, b2) = b1 (3.43)

V0
1 (b1, b2) =

(
b21 + b22

)2
48 (3.44)

V1,>
1 (b1, b2) =

5b41 + 10b22b21 + 8b32b1 + b42
96 (3.45)

V1,>
3/2 (b1, b2) =

30b71 + 210b22b51 + 175b32b41 + 210b42b31 + 105b52b21 + 91b62b1 + 5b72
40320 (3.46)

V2,>
3/2 (b1, b2) =

(
64b71 + 448b22b51 + 245b32b41 + 560b42b31 + 147b52b21 + 175b62b1 + 23b72

)
40320 (3.47)

As a consistency check for these results one can compare the V0
g,n(⃗b) to the results in the

literature, which we did for all the cases we computed. For the V i,>
g,n (⃗b) a consistency check

is only possible for i = g in the integer and i = g + 1
2 in the half-integer genus case, where

the result for β = 1 (with the “orientable” part, i.e. V0
g,n(⃗b), subtracted for integer genus)

should be reproduced, which we checked for all the considered cases. Those contributions
for lower i are purely non-Wigner-Dyson and consequently so far only accessible by the
method discussed here.

For higher numbers of boundaries the amount of θ-functions, necessary to preserve the
permutation symmetry of boundaries, increases. Specifically, now also products of θ-functions
of sums of different numbers of boundary lengths appear, as one can see exemplary in the
case of (g, n) =

(
1
2 , 3
)

we give in section B. The computation of these volumes is of course
possible and for the cases for which we computed the resolvents they can be found in the
supplementary material. However, a discussion of their general structure is quite more tedious
and less illuminating than the discussion for the case of two boundaries, while the structure
at the level of resolvents, which we discuss above, is an immediate generalisation of the
discussion for two boundaries. Consequently, we leave the implication of our findings for the
n ≥ 3 resolvents on the corresponding Airy WP volumes for future work.

3.5 Geometrical construction of arbitrary β topological gravity/JT gravity

In order to get an idea, what the geometric interpretation of the arbitrary Dyson index
“moduli space” volumes is, it is worthwhile to consider their computation in a way inspired
by Mirzakhani’s recursion for orientable moduli space volumes. Talking about this, amounts
to briefly leaving topological gravity and going to JT gravity. Returning is easier than going
there, since the topological gravity behaviour is always given by the non-divergent leading-
order contribution of the full WP volumes appearing in JT gravity [6, 10, 12]. Geometrically,
one can understand this by thinking of a surface of some genus g with n boundaries and
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enlarging its boundary lengths. Doing this, since the area of the surface is constrained by
the Gauss-Bonnet theorem, the surface will increasingly look like a connection of thin strips,
yielding exactly the ribbon graphs appearing in a diagrammatic discussion of the Airy model
in terms of Kontsevich graphs [9, 26]. Fortunately, as for topological gravity, the duality
between a specific double-scaled matrix model and JT gravity is well established for the
orientable as well as the unorientable case ([3, 6, 12]) and consequently it is reasonable to
perform the generalisation to arbitrary Dyson index, already performed above for topological
gravity, also for the matrix model dual to JT gravity. In fact, since it is still a one-cut double-
scaled matrix model, the recursion for the resolvents eq. (3.2) and the following expression
for Fβ

g (eq. (3.3)) remain valid while, of course, one has to insert now the JT gravity spectral
curve yJT(z) = sin (2πz)

4π . For our purpose the most interesting result, regarding the duality
in the unorientable case, is the discovery and proof of a Mirzakhani-like recursion for the
unorientable moduli space volumes, equivalent to the loop equations, in [6]. Plugging now
the additional factors needed for the generalisation to arbitrary Dyson index of the loop
equations and translating them to the Mirzakhani like relation along the lines of [6] one finds

b1V
β,JT

g (b1, B) =
|B|∑
k=2

2
β

∫ ∞

0
b′ db′

[
b1 − T(b1 → b′; bk)

]
V β,JT

g (b′, B\bk) (3.48)

+ 1
2

∫ ∞

0
b′ db′

∫ ∞

0
b′′ db′′ D(b1, b′, b′′)

×

V β,JT
g−1 (b′, b′′, B) +

′∑
h+h′=g

B1∪B2=B

V β,JT
h1

(b′, B1)V β,JT
h2

(b′′, B2)

 (3.49)

+ 1
2
(2− β)

β

∫ ∞

0
b′ db′ c

(
b1; b′

)
V β,JT

g− 1
2
(b′, B), (3.50)

where we denote by
′∑

the sum excluding the appearance of V β,JT
0 (b′, b′′), V β,JT

0 (b′). Fur-
thermore, we use the notation of [6] for the functions T,D and c and refer the interested
reader there for their definition. It has to be noted, that the recursion needs as an input
the results for V β,JT

0,3 , V β,JT
0,2 , V β,JT

1
2 ,1 which can be computed (for β = 1) from considerations

on the JT gravity side [6] or also from the loop equations on the matrix model side which
as an input still require only the spectral curve/leading-order density of states. Taking the
second route for the arbitrary β case, we first note that

Rβ,JT
0 (z1, z2, z3) =

1
β2R

1,JT
0 (z1, z2, z3), (3.51)

by our reasoning of eq. (3.6), which continues to hold due to being at the level before doing
the contour integral. For the same reason, here based on eq. (3.8), it holds that

Rβ,JT
1
2

(z1) =
2− β

β
R1,JT

1
2

(z1). (3.52)

Furthermore, it was already shown in [3] that for all one-cut double-scaled matrix models
it holds that

Rβ
0 (z1, z2) =

1
β
R1

0(z1, z2). (3.53)
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Li

L1

X

(a) Glueing corresponding to eq. (3.48). X has
genus g with n− 1 boundaries.

Y
L1

(b) Glueing corresponding to eq. (3.50). Y has
genus g − 1

2 and n boundaries. The surface
attached to the other boundary is a crosscap.

X2

X1

L1

(c) Glueing corresponding to eq. (3.49) (Dis-
connected part). X1/X2 have genera h1/h2
and n1/n2 boundaries with h1 + h2 = g

and n1 + n2 = n− 1.

L1

X

(d) Glueing corresponding to eq. (3.49) (Con-
nected part). X has genus g − 1 and n +
1 boundaries.

Figure 2. Depiction of the different “glueings” i.e. the separation of a surface of constant negative
curvature of genus g and n geodesic boundaries of lengths L1, . . . , Ln into a 3-holed sphere and another
such surface. These separations are the same as for the case of unorientable surfaces in [6]. The only
difference for our setting, eqs. (3.48)–(3.50), is, that there is an additional factor of 1

β
for the glueing

in case a) and an additional factor of (2−β)
β

for case b).

Since the integral transformation from resolvents to WP volumes is linear, these relations
translates to the WP volumes and hence all input to the recursion for the arbitrary β

case is known.

At this point we could iterate the matrix model recursion to find, along the lines of [12],
results for some of the general β WP volumes. Since the main focus of this work is, however,
on topological gravity and our excursion to the JT setting is rather intended to give a
geometrical understanding of the results there, it is worthwhile to focus on the geometrical
interpretation of the Mirzakhani-like recursion eqs. (3.48)–(3.50).
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For this purpose, it is useful to recall that the several integrals in this recursion (of course,
also in the “traditional” one, found by setting β = 2) represent certain ways to attach a
3-holed sphere (a pair of pants) to a surface of a specific genus and number of boundaries
to build the desired surface. In figure 2, we collect all 4 ways that are possible where the
option a) corresponds to eq. (3.48), b) to eq. (3.50), d) to the sole volume and c) to the sum
over the product of two volumes in eq. (3.49). Going from the setting of β = 1, discussed
in [6], to that of arbitrary Dyson index, the only change is in the cases a) and b), where an
additional factor of 1

β in case a) and (2−β)
β in case b) is introduced. Both of these factors

can be understood intuitively. In case b) the factor can be thought of as arising from the
attachment of the crosscap which, as seen from eq. (3.52), has a dependence on the Dyson
index as (2−β)

β . To understand the factor in the case a) it is useful to recall from [6], that
the additional factor 2 in eq. (3.48) in the β = 1 case as compared to the orientable setting
occurred due to the possibility, in the unorientable case, to glue the 3-holed sphere with or
without a change of orientation for a geodesic going from the boundary of length L1 to that
of length Li. Since there is only one possibility in the case of β = 2, this factor has to be
cancelled, which suggests that the additional factor is 1

β .
Iterating the β dependence as determined by the recursion yields precisely the general

structure of the WP volumes proven above. This is not surprising, since the arbitrary β

Mirzakhani-like recursion is equivalent to the loop equations used to determine the general
structure. In order to get a geometric intuition for the structure, it is however instructive
to look at an example, for which we choose the case of g = 3

2 , n = 1. We find the following
decomposition, decomposing also the manifolds glued to the 3-holed sphere, to build a surface
of genus 3

2 and one boundary in the Mirzakhani-like recursion

V β,JT
3
2 ,1

∼= +

+ .

(3.54)

For the first line we can read off the dependence on β to be 2−β
β

1
β , while for the second line

we find
(
2−β
β

)3
. The terms arising from the first line are thus of the general form already,

while the second is not. However, we can use (2− β)2 = (1− β)(4− β) + β to rewrite it as
a sum of a term of the form of the first line and one of the form as in the contribution to
the general structure apart from it. From this example it is now apparent that the general
structure we have proven, in a sense chosen, above does not correspond to the decomposition
of the volumes equivalent to that of the glueings of the Mirzakhani-like recursion. It is thus
interesting to note that its distinct advantage, being the decomposition into Wigner-Dyson
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and non-Wigner-Dyson contributions, is consequently not a property immediately seen from
the glueing construction inherent to the Mirzakhani-like recursion.

However, due to it being the general structure of the matrix model correlation functions,
one can use it to derive a structure corresponding to this decomposition. This can be done by
transforming the manifestly non-Wigner-Dyson parts of the general structure of the volumes
to a structure that reflects the number of inserted crosscaps via (1−β)(4−β) = (2−β)2−β.
Doing this, one finds for the integer genus case

V β
g,n =

g∑
m=0

1
βg+n−m−1

(2− β

β

)2m

V̄m
g,n, (3.55)

with

V̄m
g,n := (−1)m+g+1

g−m+1∑
i=1

(−1)i

(
g − i

m− 1

)
V i

g,n, (3.56)

for m > 0 and V̄0
g,n := V0

g,n. For the half-integer genus case these considerations yield

V β
g,n =

g− 1
2∑

m=0

1
βg− 1

2+n−m−1

(2− β

β

)2m+1
V̄m

g,n, (3.57)

with

V̄m
g,n := (−1)m+g+ 1

2

g+ 1
2−m∑

i=1
(−1)i

(
g + 1

2 − i

m

)
V i

g,n. (3.58)

Of course, one could also go the inverse way of taking this structure to arrive at the one
proven above, giving a geometric argument justifying this structure is thus also one for the
one proven above. We proceed by giving such a geometric argument.

Before we go into the geometric proof of eqs. (3.55) and (3.57), we would like to remark
that after this paper was accepted for publication, we became aware of [30], which actually
provides the equivalent statement for resolvents. However, they have a quite different proof,
do not investigate the implications for moduli space volumes and do not provide the structure,
split into Wigner-Dyson and non-Wigner-Dyson parts (eqs. (3.25) and (3.26)), whose precise
form is of highest relevance for most of this work. Consequently, our discussion above is
not “just” a different proof for a known statement but rather an interesting statement on
its own which happens to imply, after the rewriting we performed to find eqs. (3.55) and
(3.57), the statement already given in [30].

For the geometric proof we start by explicitly constructing a surface of genus g and n

geodesic boundaries from 3-holed spheres and crosscaps by the general β Mirzakhani-like
construction pictured in figure 2. We start by constructing the surface with the maximum
number of crosscaps, given by 2g. A particularly nice way to do this is depicted in figure 3,
where the surface is decomposed into two parts, one containing the boundaries and one
containing the crosscaps. The part containing the boundaries is built from n − 1 3-holed
spheres, glued in the depicted way as to yield a surface of genus 0 with n external boundaries
and one “internal” boundary to glue the genus carrying part. This is in turn constructed
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.....

.....

n-1 2g-2

Figure 3. Possible decomposition of a surface of genus g and n geodesic boundaries into 3-holed
spheres and crosscaps with the maximal number of crosscaps possible. The numbers below the first
and second part of this construction indicate how many 3-holed spheres/3-holed spheres with an
attached crosscap are needed.

from two parts, first 2g − 2 copies of the depicted glueing of a 3-holed sphere and a crosscap
such that the number of internal glueing boundaries is conserved, second the glueing of a
final 3-holed sphere capped off by two crosscaps. This construction evidently yields a surface
with n geodesic boundaries and 2g crosscaps, hence genus g. It is now an easy task to read
off the β dependence of this surface, which is built from n− 1 glueings à la figure 2(a), 2g− 2
à la figure 2(b) and two additional crosscaps, hence yielding the total dependence

( 1
β

)n−1(2− β

β

)2g−2+2
, (3.59)

which is precisely the dependence obtained in eq. (3.55) and eq. (3.57) upon taking the
maximal value for the summation index. It is useful to note here, that the summation
index due to it increasing the number of “crosscap” factors in the general structures can
be interpreted as determining the number of crosscaps in the respective contribution to the
volumes as 2m in the case of integer genus and 2m+ 1 in the case of half-integer genus.

To find the contributions with a lower number of crosscaps geometrically one can
substitute two of the crosscaps at a time by a “hole”, hence keeping the total genus constant.
In the case of the final part one can do this by taking out the two crosscaps and glueing the
remaining two boundaries directly to one another. In the case of the other parts one takes
out two of the constituting blocks and replaces them with two 3-holed spheres as

→ . (3.60)

To obtain a surface with k crosscaps one obviously has to do a replacement of two crosscaps
1
2(kmax − k) times, where kmax denotes the maximal number of crosscaps possible which
is given by 2g. In terms of the β dependence this replacement cancels out two crosscap
factors and adds one 1

β in both cases, hence the dependence on β of the contribution of
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the surface with k crosscaps is given by( 1
β

)n−1(2− β

β

)2g−2g+k( 1
β

)g− 1
2 k

=


1

βg−m+n−1

(
2−β
β

)2m
int. g

1
βg−m− 1

2 +n−1

(
2−β
β

)2m+1
half int. g

, (3.61)

where in the last step we put, for reason of comparing with the general result, the number of
crosscaps k to be given by 2m in the integer genus and 2m+ 1 in the half-integer genus case.
Comparing this dependence with the general structure put as in eq. (3.55) and eq. (3.57) shows
agreement, and consequently we have geometrically shown that all of the terms appearing
in the structure arise. To show that this is all the structures that are possible we show in
section G that all decompositions of the surfaces into the components found in the recursion
can be reorganised as to give the decomposition we have chosen above and thus can produce
no other structure in terms of dependence on β than the already discussed ones.

Hence, one can justify the “Mirzakhani-like” version of the general structure of the
WP volumes geometrically and thus also our other, Wigner-Dyson/non-Wigner-Dyson split,
version. In particular this implies, by the reduction of JT gravity to topological gravity/Airy
model in the large length limit, the general structure for topological gravity we had shown
already above and thus provides a deep geometric reason for it. For JT gravity itself, the
computation of the arbitrary β volumes would extend beyond the scope of this work and is
left for future study. A particularly interesting aspect of this study would be to observe the
dependence on β of the divergent parts of the WP volumes which due to their existence for
all unorientable incarnations will persist also in the theory for arbitrary Dyson index. This
is due to the fact that the divergent moduli space volume of the crosscaps is the ultimate
reason for these divergences and it would be interesting to study the interplay of this with
the splitting of the volume into contributions with well defined numbers of crosscaps as
induced by the general structure in terms of β.

Regarding the geometric interpretation of our results in topological gravity, it is worthwhile
to consider the generalisation of the aforementioned Kontsevich diagrammatics, recalled e.g.
in [9–11]. This is an equivalent, though quite more tedious, way of computing correlation
functions in the matrix model dual to topological gravity. In essence, it is a diagrammatic
prescription that allows the computation of the (Laplace transformed) Airy WP volumes
of genus g and n boundaries by finding double-line diagrams (ribbons) with three-valent
vertices having the same Euler characteristic and number of boundaries. Here, a boundary
is defined by giving labels to both edges of all propagators and identifying those that are
connected via a vertex. This gives rise to a partition of the set of edges of propagators into a
finite number of subsets each of which is denoted as a boundary. In this language, one can
introduce unorientable contributions by allowing the propagators to “twist”, for an example
of this cf. the diagrams in figure 4. Specifically, it holds that12

L
[
V Airy

g,n (L1, . . . , Ln); (z1, . . . , zn)
]
=

∑
γ∈Γg,n

22g−2+n

|Aut(γ)|

6g−6+3n∏
k=1

1
zl(k) + zr(k)

. (3.62)

12Note, that the proof of this statement requires Kontsevich’s theorem relating intersection numbers with
ribbon graphs (cf. [26]) which is unproven in the unorientable case. Hence, the generalisation of this statement
to the unorientable case and beyond it is non-trivial. Regarding the functional dependence of the left and
right hand side of the equation, we are however not aware of discrepancies.
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Here, Γg,n is the set of all ribbon graphs (with labelled edges) of Euler characteristic 2−2g−n
and n boundaries containing only 3-valent vertices, |Aut(γ)| is the order of the automorphism
group of the graph γ and l(k) and r(k) denote the labels of the left and right edge of the
kth propagator.

As the loop equations, the matrix model diagrammatics can be conveniently generalised to
the setting of arbitrary Dyson index. This is done, following [13], by defining a β propagator as

= + (2− β)
β

, (3.63)

which is a result valid for all Wigner-Dyson classes that is readily generalised to the setting of
arbitrary Dyson index. Fron another perspective, this generalised propagator can be perceived
as giving an additional factor of (2−β)

β for each twisted propagator within a diagram.
As for the definition of the matrix model using the eigenvalue integral eq. (1.3), there

is an ambiguity in generalising the propagator to arbitrary Dyson index here, i.e. the
function of the Dyson index multiplying the twisted propagator could be any function
b(β) : R+ → R+ coinciding with 2−β

β at the Wigner-Dyson values of β, and there could be
a function a(β) : R+ → R+ multiplying the untwisted propagator that assumes the value
1 at those values. Hence, the most general way to write an extension to arbitrary Dyson
index of eq. (3.63) would be

= a(β) + b(β) . (3.64)

To reduce this to an ambiguity dependent on only one function, we can factor out a(β) and
absorb it into a redefinition of N due to it appearing now in front of every diagram with
a power #Edges = 6g − 6 + 3n = −3χg,n. The ambiguity remains in the prefactor of the
twisted propagator b(β)

a(β) . It is convenient to rewrite this function as

2− h(β)
h(β) , (3.65)

which exemplifies that one can perform all computations with choosing h as the identity
and then reintroduce an arbitrary function h afterwards. This is precisely our procedure of
dealing with the ambiguity when using the loop equations to compute correlation functions.
One might expect intuitively that the choice of h = idR+ coincides with the choice f = idR+

in the eigenvalue integral. This is supported by noting that the twisting of the propagator in
a graph is equivalent to inserting a crosscap in the surface dual to the graph. For f = idR+

the dependence of this on the Dyson index is given by multiplying the result for β = 1 by 2−β
β

(eq. (3.8)), coinciding precisely with the factor of the twisted propagator for h = idR+ . In this
way one can also justify not adding any β dependence to the prefactor of the non-twisted
propagator, since it corresponds to inserting nothing additional in the dual surface. Hence,
the two ambiguities are inter-related. To get coinciding results from the diagrammatics with
the loop equations one has to choose h = f . As above, we continue by setting h = idR+ ,
keeping the ambiguity in mind.

To illustrate the idea on an example, we consider the case of g = 1
2 and n = 2, for which

the Kontsevich diagrams for the β = 1 case have been studied in [10]. In general, one can
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Figure 4. Diagrams contributing to V 1
2 ,2, i.e. the elements of Γ 1

2 ,2.

show the graphs relevant for genus g and n boundaries to consist of 4g+2n−4 vertices, which
for the present case motivates us to consider the graphs with two vertices. In figure 4, we
give all the ribbon graphs with two boundaries one can build from two three-valent vertices
and twisted/untwisted propagators.

Here we note, that the graph in the first column and the graph in the first line of the
second column are those given in [10], while the others do not appear there. There is a good
reason why not to include them, for the case of β = 1, being that the graph in the third
column has the same contribution to the Laplace transformed Airy WP volume as that in
the first column, while that in the second line and column has the same contribution as that
above it. Consequently, they only contribute an additional factor of 2 which is captured by
the reasoning of [10]. For our case, however, it is vital to include these additional diagrams
since in the general β setting their contribution differs by an additional factor of (2−β)

β from
the respective related graph. However, by this reasoning one can see directly that it holds that

L
[
V β

1
2 ,2(L1, L2); (z1, z2)

]
= 1

2

(
2− β

β
+ (2− β)2

β2

)
L
[
V 1

1
2 ,2(L1, L2); (z1, z2)

]
= (2− β)

β2 L
[
V 1

1
2 ,2(L1, L2); (z1, z2)

]
.

(3.66)

This, by the linearity of the Laplace transform implies

V β
1
2 ,2(L1, L2) =

(2− β)
β2 V 1

1
2 ,2(L1, L2), (3.67)

which is precisely what we obtained using the loop equations.13 This gives already a good
intuition, on what the generalisation to arbitrary Dyson index means geometrically. In
fact, the diagrammatics suggest, that the individual contributions are still distinct ori-
entable/unorientable objects while their relative weights differ as determined by the way
the vertices are connected.

For now, however, this concludes our discussion of how to compute correlation functions
in one-cut double-scaled matrix models with arbitrary Dyson index and what their generic
dependence on the Dyson index is. The remainder of this work will now focus on leveraging
this new knowledge to investigate quantum chaoticity of arbitrary β topological gravity.

13Of course, one would also get the same result counting the diagrams multiplicities and computing the
orders of the respective automorphism groups, e.g. by inferring them from the orientable diagrams of the
same structure.
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4 Quantum chaos in topological gravity for arbitrary β?

As we explained in section 2, the presence of chaos, according to the BGS conjecture, manifests
itself in the spectral properties of a quantum system by rendering the spectral two-point
function to be, for small differences of the correlated energies, of a form that depends only
on the spectral density and the system’s symmetry class. This form is computed from the
Gaussian matrix model for the respective symmetry class and will in the following be referred
to as the RMT or “universal” prediction. For JT gravity, and thus also topological gravity, it
is more convenient to study correlation functions of partition functions. Consequently, the
probe for spectral statistics is a two-point function of partition functions, specifically with
complex conjugate complex inverse temperatures (cf. eq. (2.10)), the SFF. This quantity, for
large times, is related to the spectral two-point function, in fact its Fourier transform, via
eq. (2.11). Thus, a proof of quantum chaos in a variety of JT gravity/topological gravity,
can be performed by showing that its late time SFF matches the predictions of RMT that
is known for the Wigner-Dyson cases.

For the non-Wigner-Dyson cases however, this strategy has the problem that the RMT
prediction for the spectral two-point function is not fully available and, as far as we know,
is quite difficult to compute by the standard approach.14 Our approach provides a novel
way to study the spectral two-point function analytically, albeit perturbatively, through the
lens of the canonical SFF. In the following section we will begin this study by computing
the late time canonical spectral form factor for arbitrary β.

4.1 The canonical spectral form factor

The contribution to the spectral form factor for a given genus g and a Dyson index β is

κg
β(t, β) =

∫ ∞

0
db1 b1

∫ ∞

0
db2 b2Zt(β1, b1)Zt(β2, b2)V β

g (b1, b2), (4.1)

with the trumpet partition function Zt(β, b) given in eq. (2.3), β1 = β + it and β2 = β∗1 .
Using this, one can compute the κg

β(t, β) from the volumes stated above which then naturally
inherit their structure regarding the β dependence. We are interested in the “universal” part
of the form factor which means the behaviour at large time, i.e. times of order eS0 . The
large t behaviour15 of the contributions to the spectral form factor, split up according to
the structure in β found for the resolvents/volumes, is given by16

κ0β(t,β)→
t

2πββ , (4.2)

κ
1/2
β (t,β)→− 2−β

β2
t2√
2π

√
β
, (4.3)

14By this, we mean the computation using orthonormal polynomials, given e.g. in [17].
15By this, we mean collecting only terms that after including the factors of eS0 from the genus expansion,

expanding square-roots as power series and introducing τ are not vanishing upon eS0 → ∞, i.e. all polynomial
terms of minimal order 2g + 1. For the non-polynomial terms, more care is needed and the limit is performed
as in [11], where more details can be found.

16To avoid confusion, we remark that in this equation the Dyson index β and the inverse temperature β

both appear and should not be confused.
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κ1β(t,β)→
t3(2−β)2

(
3log

(
2t
β

)
−8
)

3πβ3 − 2t3

3πβ2 , (4.4)

κ
3/2
β (t,β)→ (1−β)(2−β)(4−β)

β4

(
− 59t9/2

60
√
2π

+2
√

2
π

√
βt4
)

+(2−β)
3β3

(
−
√

2
π
t9/2+8

√
2
π

√
βt4
)
, (4.5)

κ2β(t,β)→
3t6(4−β)(2−β)2(1−β)

32β5

−
βt5(1−β)(2−β)2(4−β)

(
1890log

(
2t
β

)
−3371

)
945πβ5

−
βt5(2−β)2

(
60log

(
2t
β

)
−151

)
15πβ4 + 4βt5

5πβ3 , (4.6)

κ
5/2
β (t,β)→−

t6(1−β)2(2−β)(4−β)2
(
2838528β3/2+31282t3/2−966955β

√
t
)

532224
√
2πβ6

+
t6(1−β)(2−β)(4−β)

(
−55824384β3/2+43966t3/2+14101571β

√
t
)

2661120
√
2πβ5

+
t6(2−β)

(
−512β3/2+2t3/2+85β

√
t
)

30
√
2πβ4 , (4.7)

κ3β(t,β)→− 16β2t7

21πβ4

+ t7(4−β)2(2−β)2(1−β)2

145297152πβ7

×
(
−419374208β2+2338048t2+290594304β2 log

(2t
β

)
−22891869πβt

)
− t7(4−β)(2−β)2(1−β)

3632428800πβ6

×
(
68734274048β2+164049920t2−36808611840β2 log

(2t
β

)
+1378872495πβt

)

−
t7(2−β)2

(
1151β2+2t2−480β2 log

(
2t
β

))
45πβ5 , (4.8)
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κ
7/2
β (t,β)→− t8(4−β)3(2−β)(1−β)3

28229160960
√
2πβ8

×
(
−120444420096β5/2−2521705676βt3/2+61149640t5/2+47197373065β2

√
t
)

+ t8(4−β)2(2−β)(1−β)2

2258332876800
√
2πβ7

×
(
70798377222144β5/2+435487934100βt3/2

+38265437192t5/2−22916260990543β2
√
t
)

+ t8(4−β)(2−β)(1−β)
2258332876800

√
2πβ6

×
(
146506298425344β5/2−486701235820βt3/2

+64361951752t5/2−37542514725263β2
√
t
)

+
t8(2−β)

(
32768β5/2−252βt3/2+8t5/2−6167β2

√
t
)

840
√
2πβ5 . (4.9)

One can perform a quick cross-check of these results by comparing to the results for the
unitary (e.g. [10]) and orthogonal symmetry class ([11]) by plugging the corresponding values
of the Dyson index and finding agreement.17 This is, of course, expected as the resolvents
already agreed. However, at the level of the resolvents, there was no structural difference
between the contributions occurring for β = 1 and the purely non-Wigner-Dyson ones. For
the late time SFF there is a differences as one can see from the contribution at g = 2.
There, a term is found that contributes at t6 for non-Wigner-Dyson β while vanishing in the
Wigner-Dyson classes, where the contribution of largest order is t2g+1 = t5. Already from
this, one can see that while the comparison to the prediction of universal random matrix
theory is involved already in the case of the unorientable (β = 1) incarnation of the Airy
model as compared to the orientable case, the task will be even more complex for the case of
general β. Before going into this discussion however, we will use the result to give evidence
for its agreement with the predictions of universal random matrix theory in the remaining,
symplectic, symmetry class (β = 4) not yet studied in the literature.

4.2 The case of β = 4 (The symplectic class)

To compare to the prediction of universal RMT, we first have to compute this for the
present case of the Airy model and β = 4. We recall from section 2 that the τ -scaled
SFF, κs

β(τ, β), is given by

κs
β(τ, β) =

∫ ∞

0
dEe−2βEρ0(E)−

∫ ∞

0
dEe−2βEρ0(E)bβ

(
τ

2πρ0(E)

)
(4.10)

where for GSE, i.e. β = 4 one finds [17]

b4

(
τ

2πρ0(E)

)
=
{
1− τ

4πρ0(E) +
τ

8πρ0(E) log
(∣∣∣1− τ

2πρ0(E)

∣∣∣) if τ
4π ≤ ρ0(E)

0 if τ
4π ≥ ρ0(E).

. (4.11)

17Note, that there was a typo in [11] in the results for κ 5
2

and κ3 which is corrected in the arxiv version.
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The full calculation of κs
4(τ, β) can be found in appendix H, which results in an exact

expression. However, the expressions for the contributions to the SFF we found above from
the topological expansion are of the form of an expansion in powers of τ which requires the
RMT result to be expanded in τ in order to compare. The first orders are:

κs
4(τ, β) =

τ

8πβ +
√

2
π

τ2

16
√
β
−
τ3
(
3 log

(
β τ2

2

)
+ 3γ + 1

)
48π −

√
2
π

√
βτ4

12

+
βτ5

(
60 log

(
β τ2

2

)
+ 60γ − 7

)
960π +

√
2
π

β3/2τ6

15

−
β2τ7

(
1120 log

(
β τ2

2

)
+ 1120γ − 501

)
26880π −

√
2
π

4β5/2τ8

105 +O
(
τ9
)
,

(4.12)

where γ denotes the Euler-Mascheroni constant and we went up to the maximal order where
we can compare our results from the loop equations. Having found now the universal RMT
result we can compare to the results found from the loop equations. For this, we plug β = 4
into the results obtained in section 4.1. Furthermore, we recall from section 2 the definition

κs
β(τ, β) = lim

t→∞

∑
g=0, 1

2 ,1,...

κg
β(t, β)
t2g+1︸ ︷︷ ︸

:=κs,g
β

(t,β)

τ2g+1, (4.13)

and read off the κs,g
β (t, β) to find

κs,0
4 (t, β) → 1

8πβ , (4.14)

κ
s, 1

2
4 (t, β) → 1

8
√
2π

√
β
, (4.15)

κs,1
4 (t, β) → −

−3 log
(
2t
β

)
+ 10

48π , (4.16)

κ
s, 3

2
4 (t, β) →

√
t

48
√
2π

−
√
β

6
√
2π
, (4.17)

κs,2
4 (t, β) →

β
(
−60 log

(
2t
β

)
+ 163

)
960π (4.18)

κ
s, 5

2
4 (t, β) → 1

15

√
2
π
β3/2 − 17β

√
t

768
√
2π

−

(√
t
)3

1920
√
2π

(4.19)

κs,3
4 (t, β) → −

(√
t
)4

5760π −
β2
(
−3360 log

(
2t
β

)
+ 8297

)
80640π (4.20)

κ
s, 7

2
4 (t, β) → − 4

105

√
2
π
β5/2 + 881β2

√
t

61440
√
2π

+
3β
(√

t
)3

5120
√
2π

−

(√
t
)5

53760
√
2π
, (4.21)

where → denotes that we only consider terms that are not vanishing upon t→ ∞. Like for
the orthogonal case, which we recalled in section 2, we see that there are remaining instances
of t. They remain either as powers, if before τ -scaling the term was of higher order than
2g+1 in t, or in the logarithms, where they have remained for reasons apparent momentarily.
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As for the orthogonal case, we now group terms having the same dependence on β in their
prefactor. This is motivated by the observation that the contributions at given order in τ

to the universal RMT result have a common dependence of their prefactor on β and thus
contributions of different such prefactors do not mix. Consequently, we find

κs
4(τ,β)= lim

t→∞

{
τ

8πβ+
√

2
π

(
τ2

16
√
β
−
√
βτ4

12 +β3/2τ6

15 − 4β5/2τ8

105 +. . .
)

+ τ3β0

π

− 5
24+

3
48 log

(2t
β

)
+
√
π

2

√
tτ

48 −
√
π

2

(√
tτ
)3

1920 − t2τ4

5760−
√
π

2

(√
tτ
)5

53760 +. . .


+ τ5β

π

163960−
1
16 log

(2t
β

)
−
√
π

2
17
√
tτ

768 +
√
π

2
3
(√

tτ
)3

5120 +. . .


+ τ7β2

π

[
− 8297
80640+

1
24 log

(2t
β

)
+
√
π

2
881

√
tτ

61440 +. . .
]

+. . .
}
, (4.22)

where the dots indicate contributions that arise at higher order in the topological expansion
than we consider here.

This is now the expression that has to coincide with eq. (4.12) to show that the variety
of topological gravity corresponding to β = 4 is chaotic. Considering first the terms in the
first line, which are independent on t, the limit of t is trivial and we see full agreement with
the corresponding terms in eq. (4.12), as it was the case in [11] for β = 1. Things become
more interesting when considering the terms that retain a dependence on t, which one has
to consider independently, as suggested by what happens in the β = 1 case. Before going
into this discussion however, we note that the coefficients of the logarithmic terms here
coincide precisely to the coefficients of the logarithmic terms found from universal RMT,
giving already a strong indication that full coincidence can be achieved as the computations
are totally independent.

We start with the terms of order τ3β0, which can be slightly simplified to

κs
4 (τ, β) ⊃

τ3

48π

−(−3 log
(2t
β

)
+ 10

)
+
√
π

2
√
tτ −

√
π

2

(√
tτ
)3

40 −
(
tτ2
)2

120 −
√
π

2

(
τ
√
t
)5

1120

.
(4.23)

We see three types of terms:

1. The term containing the logarithm and constants,

2. terms of the structure c ·
(√

tτ
)2n+1

for some18 c ∈ R and n ∈ N0 and

3. terms of the structure19 c ·
(
tτ2
)2 · (tτ2)n for some c ∈ R and n ∈ N0.

18It may be noteworthy that the denominators of the c are the sequence OEIS A283433, which might suggest
that there is only one more term of this type at g = 9/2.

19In our case, we actually only see the term for n = 0 and would expect the next one to appear at g = 4.
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We argue in the following that, as for the case of β = 1, the terms of the last type form the
defining expansion of a certain function, which in the limit t→ ∞, where it can be written
as its asymptotic expansion, cancels the terms of the second type and combines with the
first term to give the result expected from universal RMT.

Specifically, as by construction we only know finitely many terms of the second and
third type, one has to build up the “cancelling” function order by order. In section I we
give a method how to do so generically, whose results we use in the following. Specifically,
it leads us to consider the two functions

f1(t, τ, β) :=
1
240

(
tτ2
)2

2F2

(
2, 2; 52 ,

7
2;−

1
16 tτ

2
)
, (4.24)

f2(t, τ, β) :=
1
240

(
tτ2
)2

1F1

(3
2;

5
2;−

1
8 3√50

tτ2
)
. (4.25)

The asymptotic expansions of these functions20 is given by

f1(t, τ, β)
t→∞−→ 3 log

(
tτ2
)
+ 3γ − 9, (4.26)

f2(t, τ, β)
t→∞−→

√
π

2
√
tτ, (4.27)

and their definitions as a power series with infinite radius of convergence, are given by

f1(t, τ, β) =
(
tτ2
)2( 1

240 − tτ2

8400 +O
(
τ4
))

, (4.28)

f2(t, τ, β) =
(
tτ2
)2( 1

240 − tτ2

3200 3√100
+O

(
τ4
))

. (4.29)

As done for the case of β = 1, we add and subtract the sum of both functions in the bracket
of eq. (4.23). Writing now the added sum as its defining series, we see that the term of the
third type we found to the order to which we considered the expansion is cancelled. Now we
take the large t limit, where the asymptotic expansion of the subtracted sum can be used.
Subtracting (4.26) from the logarithmic term of (4.23) we find

3 log
(2t
β

)
− 10− 3 log

(
tτ2
)
− 3γ + 9 = −

(
3 log

(
β
τ2

2

)
+ 3γ + 1

)
, (4.30)

which is exactly the term obtained from the universal prediction. Subtracting the asymptotic
expansion of f2(t, τ, β) cancels the first term of the second type. Thus, by the present
manipulation we have shown the agreement of the result from topological gravity and the
universal RMT prediction up to O

(
τ3
)
, in fact to O

(
τ4
)
.

To go to higher orders, one has to cancel the additional terms of the second type. A
function that has a form useful for this would be(

tτ2
)2 (

tτ2
)n

1F1

(
3
2;

5
2;−

3
2
3

2 tτ
2
)

t→∞−→
√
π

2
(√

tτ
)2n+1

, (4.31)

=
(
tτ2
)n
[(
tτ2
)2

− 3
103

2/3
(
tτ2
)3

+O
(
t4
)]
. (4.32)

20The notation f
t→∞−→ g does not only mean limt→∞

f
g

= 1, but the stronger (in the case g ̸→ 0)
limt→∞ (f − g) = 0.
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However, for example, to cancel the next occurring term of second type, i.e. that of order(√
tτ
)3

one would need to know the term of third type of order (tτ2)3 which will appear
only at genus 4 which would thus have to be computed to go an order higher.

Going to higher orders in the expansion of the universal result, one has to consider the
terms grouped with the prefactor τ5β, τ7β2 etc. in eq. (4.22). As noted above already, the
prefactor of the logarithm matches perfectly with those of the universal result, making it
highly plausible that one can find cancelling functions like f1 that yield correspondence.
However, as we would need higher order terms to fix these, we can’t do this with the results
computed in this work.

4.3 Outlook: the general case

Coming back to the general case, we would first like to recall and compare recent results
from the literature on (Gaussian) general β matrix models.

The microcanonical SFF. These discussions mostly focus on the microcanonical SFF
κβ(t, E), not to be mistaken for the canonical SFF κβ(t, β) studied up to here. The two
quantities are related via

κβ(t, E) = L−1[κβ(t, β), 2β,E]. (4.33)

Consequently, one can speak of a topological expansion of κβ(t, E) as induced by that of
the canonical SFF. We are interested in the τ -scaled limit, where the universal prediction
for the microcanonical SFF, using eq. (2.11), is found as

κs
β(τ, E) = ρ0(E)

[
1− bβ

(
τ

2πρ0(E)

)]
. (4.34)

The dependence on time and energy of this object is, up to a prefactor of ρ0(E), purely
via the specific combination found in the argument of the function bβ and consequently we
will use in the following x := τ

2πρ0(E) to abbreviate the notation. For later use, we define
the normalised τ -scaled microcanonical SFF as

κ̄β(x) :=
1

ρ0(E)κ
s
β(τ, E) = 1− bβ(x). (4.35)

As we have seen in the discussion of section 4.2 for β = 4 and in [11] for β = 1, starting with
O
(
τ3β

)
one has to be careful as taking the universal limit involves finding certain cancelling

functions. Consequently, we first restrict our discussion to the terms of lower order, which
can be transformed directly to yield

κs
β(τ, E) = τ

πβ
− 2− β

β2
τ2

π
√
E

+O
(
τ3
)
. (4.36)

This can be used to find the expansion of bβ for small arguments as

bβ(x) = 1− 2
β
x+ 22− β

β2 x2 +O
(
x3
)
. (4.37)
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An important thing to note here is, that each of the contributions to bβ except that at
O
(
x0
)

stems from a contribution to a two-point correlation function at a specific order in the
topological expansion. Consequently, each order has to transform according to eq. (3.15) under
β → 4

β and our result does so by construction. Explicitly, writing bg
β for the coefficient of x2g

which originates from the genus g contribution to the SFF, this requirement can be put as

bg
β = (−1)2g

( 2
β

)2(g+1)
bg

4
β

. (4.38)

For the genus 0 contribution, alternatively, one can use the result eq. (3.7), fixing the general
β dependence by just knowing the β = 1 contribution. Interestingly, for g = 1

2 one can do
the same.21 This is due to the dependence on β being fixed by the general structure for
resolvents eq. (3.26), translated to bβ. This leaves only one unknown constant which can
be fixed to be b

1
2
1 by realising that the product of β dependent factors is one for β = 1.

Consequently, the general structure in terms of β in combination with the requirement to
give the correct limit in the case of β = 1 fixes the whole result up to O

(
x2
)
. Before going

into the comparison with the literature, we recall, for convenience, the expressions of bβ
for the three Wigner-Dyson classes to be [17]

b1(x) =

1− 2x+ x log (1 + 2x) if x ≤ 1
−1 + x log

(
2x+1
2x−1

)
if x ≥ 1

, (4.39)

b2(x) =

1− x if x ≤ 1
0 if x ≥ 1

, (4.40)

b4(x) =

1− x
2 + x

4 log (|1− x|) if x ≤ 2
0 if x ≥ 2

, (4.41)

which near x = 0 can be expanded as

b1(x) = 1− 2x+ 2x2 +O
(
x4
)
, (4.42)

b2(x) = 1− x, (4.43)

b4(x) = 1− x

2 − x2

4 +O
(
x4
)
. (4.44)

This, as expected, is reproduced by our result.

Numerical evaluation of the microcanonical SFF. For the general β models, there
has been recent (numerical) work on the microcanonical SFF for the arbitrary β Gaussian
matrix model in [31]. For the numerical computation the authors used the implementation
of the general β Gaussian matrix model as an ensemble of certain tridiagonal matrices
found in [15]. Using this implementation, the matrix model result for the microcanonical
SFF can be computed as an average of the microcanonical SFFs of individual draws from
the ensemble that can be directly evaluated from the eigenvalues of the drawn matrices.
As it is customary for this sort of computation they use spectral unfolding, i.e. perform

21Actually for all contributions originating from the Wigner-Dyson part of the volumes, as it is shown later.
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a mapping of the spectrum (details can be found in [31]) such that after the mapping its
density of states is constant, meaning ρ0 = 1

Nm
, with Nm denoting the number of rows of the

chosen random matrix, prior to the computation of the microcanonical SFF for individual
realisations. This is done to ease the comparison with the analytical predictions that exist for
the Wigner-Dyson cases (eq. (4.34)) but depend on the density of states. By performing the
unfolding one can compare to this prediction if it is known and also compute the function
bβ for the cases for which it is not known.

Based on good agreement with the numerical results evaluated in this way, [31] provides
an ansatz for the whole of bβ in the region of β ∈ [1, 2] as

bA,1
β (x) :=

1− 2
βx+ 2−β

β x log (1 + 2x) if x < 1
1− 2

β + 2−β
β x log

(
2x+1
2x−1

)
if x ≥ 1

= 2− β

β
b1(x) + 2β− 1

β
b2(x),

(4.45)

and for x ≤ 1 in the region of β ∈ [2, 4] as

bA,2
β (x) = 1− 2

β
x+ β− 2

2β x log (|1− x|). (4.46)

Both ansätze coincide (in the range of their validity) with the analytical results for the
Wigner-Dyson cases as it is obvious for eq. (4.45) and can be seen directly upon putting
β ∈ {2, 4} for eq. (4.46) furthermore, they can be expanded at x = 0 to yield

bA,1
β (x) = 1− 2

β
x+ 22− β

β
x2 +O

(
x3
)
, (4.47)

bA,2
β (x) = 1− 2

β
x+ 2− β

2β x2 +O
(
x3
)
. (4.48)

We first note that the O(x) term agrees with our result and thus we give an analytical argument
for this numerical finding. For the next order our result nearly, but not completely, agrees. In
fact, the difference is an additional factor of β−1 in our result compared to the ansätze bA,i

β .
At this point, it is interesting to consider the behaviour of the ansatz, specifically the

second order coefficient bA,i, 1
2

β , under β → 4
β . To study this, we choose β ∈ [1, 2], the range of

validity of bA,1
β . Now, under the mapping this is sent to 4

β ∈ [2, 4], i.e. the range of validity of
bA,2
β . Consequently, using eq. (4.38), we infer that it has to hold that

b
A,1, 1

2
β

!= (−1)
( 2
β

)3
b

A,2, 1
2

4
β

. (4.49)

However, one finds

(−1)
( 2
β

)2( 1
2+1)

b
A,2, 1

2
4
β

= − 8
β3

2− 4
β

2 4
β

= −2β− 2
β3 ̸= b

A,1, 1
2

β , (4.50)

which shows that the bA,i
β are not compatible with each other (and also not with itself, but

that was expected) if each order in the expansion for small τ of the microcanonical SFF
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given by the ansätze is determined from the contributions to the topological expansion of
this object as determined from the loop equations.

A possible explanation for this would of course be that while for the Wigner-Dyson cases
the perturbative expansion does reproduce the microcanonical SFF order-by-order in the
expansion for small times, this ceases to be the case for the general β case, i.e. implying
that the general β model as determined by the loop equations is either not quantum chaotic
in the sense of the BGS conjecture or requires non-perturbative contributions that are not
accessible by our present approach. To put this to the test, we implemented the numerical
evaluation of the microcanonical SFF for the general β Gaussian matrix model as it was done
in [31] and compared it to our result bβ and the ansätze bA,i

β . This comparison, for various
values of β ∈ [1, 4] can be found in figure 5, where the numerical result for the (connected
part of) the (normalised) microcanonical SFF22 is plotted as the blue line and our prediction
for it in green.23 The whole ansätze of [31] are plotted as the orange line and their expansion
up to second order, which is what can be compared to our result, is plotted in red. We
observe, that the orange curve for all values of β we consider here nicely follows the numerical
line. However, we also see for all considered values of β that our prediction is following the
numerical line with a smaller error than the ansatz appropriate for the respective regime
expanded to second order. Notably, we do not have to change from one ansatz to another
when switching from β ∈ [1, 2] to β ∈ [2, 4]. From this we conclude that our result for the
microcanonical SFF is a viable approximation to the microcanonical SFF for small times
over the whole regime of β ∈ [1, 4] which, as expected, requires extension to higher orders
in order to achieve the accuracy of the full bA,i

β .
Before going into this discussion, we give some further comments pointing at the potential

of this study to yield an analytic result for the (universal) microcanonical SFF for the whole
range of β ∈ R+. We will do this by studying the extension of the constraints imposed by RMT
universality on the (Airy) WP volumes in the Wigner-Dyson classes to arbitrary Dyson index.

Constraints on the β WP volumes. First, to recall these, we consider the constraints
that the fidelity to the universal RMT predictions imposed on the β = 1 Airy WP volumes
of integer genus, as it was found in [11] and those on the β = 2 (Airy) WP volumes as found
in [9, 28]. For the case of general β we suspect the volumes to be constrained by analogous
relations if the fidelity to universal RMT is preserved.

The constraints discussed in [28] for β = 1 were given by

∀
0≤l<(g−1)

Kβ=1
g (l) = 0, (4.51)

with

Kβ=1
g (l) :=

∑
α+γ=6g−2

α,γ odd

Cα,γ
Γ
(
1 + α

2
)
Γ
(
1 + γ

2
)

π
(−1)

γ+1
2

∑
n+m=l

(
α+1
2
n

)(
γ+1
2
m

)
(−1)m, (4.52)

22We always plot the normalised SFF in the following, so when referring to the plots we always mean this,
leaving stating that it’s “normalised” implicit, unless indicated otherwise.

23Numerically, we compute the whole microcanonical SFF and subtract the disconnected part which, for
the unfolded spectrum, was evaluated in [31]. Analytically, our correlation functions are defined to be the
connected ones from the beginning.
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Figure 5. Comparison of the numerical evaluation of the normalised microcanonical SFF (cf.eq. (4.35))
for the general β Gaussian matrix model (blue line) with our prediction up to second order (green
line), the prediction of [31] to all orders (orange line) and up to second order (red line) for different
values of β ∈ [1, 4]. We used matrices of size Nm = 200, averaging over Nr = 8000 realisations.
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where the Cα,γ are the coefficients of the β = 1 Airy WP volumes for b1 > b2, i.e. of the
V 1,>

g (b1, b2). Notably, these exactly coincide with the coefficients of the Vg,>
g for the general

β case, thus this part of the volumes fulfils the constraints by the fidelity to universal RMT
in the β = 1 case. Consequently, this part of the volumes fulfils the constraints for general
β. In the same manner, the constraints imposed by fidelity to the universal result in the
unitary, i.e. β = 2 case that can be found in [28] are fulfilled by the V0

g,2, being the only
part of the general volumes surviving in this case. Thus, we can infer that the part of the
general β volumes being directly related to the Wigner-Dyson result also in the general β
case fulfils certain constraints. These have the implication of those parts of the volumes not
contributing terms to the canonical SFF that are of higher order in t than expected from
fidelity to universal RMT, i.e. of no higher order than eS0 after τ -scaling. However, fidelity
in the Wigner-Dyson cases does not have any implications on non-Wigner-Dyson terms. Still,
we can check the constraints also for the non-Wigner-Dyson terms. The specific constraints
we can consider are those for g = 2 and g = 3 which are given by

Kβ=1
2 (0) ∝ 21C1,9 − 7C3,7 + 5C5,5 − 7C7,3 + 21C9,1, (4.53)

and

Kβ=1
3 (0)∝ 715C1,15−143C3,13+55C5,11−35C7,9+35C9,7−55C11,5+143C13,3−715C15,1,

(4.54)

Kβ=1
3 (1)∝ 1001C1,15−143C3,13+33C5,11−7C7,9−7C9,7+33C11,5−143C13,3+1001C15,1.

(4.55)

Checking now the one constraint for g = 2 with the only non-Wigner-Dyson contribution in
this case, V1,>

2 we find that it is not fulfilled. Interestingly, when checking the constraints for
g = 3 with the two non-Wigner-Dyson terms there, i.e. V1,>

3 and V2,>
3 we find that Kβ=1

3 (0)
is fulfilled while Kβ=1

3 (1) is not. We recall from [11] that the contributions arising from the
volumes that had to vanish for the β = 1 case and thus gave rise to the constraints were an
additional logarithmic term24 contributing at higher order than eS0 for the constraints Kβ=1

g (l)
for which 3g− l was odd while in the case where it was even the contribution was polynomial
in t, although without dependence on π, which is distinct from all other terms contributing to
the large time limit of the canonical SFF. Consequently, since 3× 2− 0 = 6 and 3× 3− 1 = 8
are even and 3× 3− 0 = 9 is odd we infer that the additional logarithmic terms cancel while
the polynomial term seems to survive. Presently we don’t have a good explanation for the
non-vanishing of the polynomial type of terms, though it is reasonable to assume that it is
involved in the cancellation of terms of remaining t dependence of lower genus non-Wigner-
Dyson terms. For example, for the term arising from g = 2, there is a non-Wigner-Dyson
term arising at g = 3

2 that, assuming that the terms directly deriving from the Wigner-Dyson
contributions still cancel among themselves, can only be taken care of by this term (with
additional higher order terms, as expected). The cancellation of the logarithmic term however
can be understood as a good sign for fidelity of the canonical SFF to the predictions of

24Actually with additional subleading corrections which a posteriori are however not of relevance for the
present discussion since these constraints are fulfilled.
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universal RMT since its presence would give a term that even by the mechanism of cancelling
terms of larger than expected order applied for the unorientable Wigner-Dyson cases could
not be cancelled, hence indicating disagreement with the universal RMT prediction that,
regardless of the specific form of the microcanonical SFF, is always O

(
eS0
)
.

Adding to this discussion we note that these constraints on the unorientable volumes,
as it was already pointed out in [11], are only a subset of the full set of constraints fulfilled
by the Airy WP volumes to achieve fidelity to universal RMT in the Wigner-Dyson cases.
Going beyond that subset one has to consider all the contributions to the Airy WP volumes,
not only the contributions where both powers of the lengths are odd as it was done in [11]
in order to focus on the logarithmic terms. To assess whether such constraints even exist,
it is useful to study the contribution of the term bα

1 b
γ
2θ(b1 − b2), in the WP volume to the

two-point correlation function of partition functions, denoted as I(α, γ). This can, for even
α be evaluated as25

I(α, γ) =
2α+γ+1β

1
2 (α+γ+3)
1 β

1
2 (α+γ+1)
2 Γ

(
1
2(α+ γ + 4)

)
π(γ + 2) (β1 + β2) (

α+γ
2 +1)

α
2∑

k=0

α
2 !
(

β1
β2

)k
Γ
(γ
2 + 2

)(
α
2 − k

)
!Γ
(
k + γ

2 + 2
) , (4.56)

from which one can directly see that if one computes the contribution to the canonical SFF
from this, i.e. β1 = β + it, β2 = β⋆

1 the leading-order contribution is proportional to

(β1β2)
α+γ+1

2 β1 =
(
β2 + t2

) 6g−2+1
2 (β + it). (4.57)

For the full contribution to the canonical SFF one has to take into account also the comple-
mentary term, i.e. bγ

1b
α
2 θ(b2 − b1), which can be computed directly by exchanging β1 ↔ β2

in I(α, γ). Consequently, the full contribution to the canonical SFF from this part of the
WP volume is proportional to

(
β2 + t2

) 6g−1
2 ∝ t6g−1, (4.58)

which for g ≥ 1 is of higher order than the maximal order compatible with universal RMT,
i.e. 2g + 1. For odd α the same statements follows from the expression for I(α, γ) for this
case, given in [11]. The vanishing of the naive leading-order can also be explained by the
requirement on the canonical SFF to be a real quantity. Employing this reasoning one is led
to conjecture that there generically is a contribution to every odd power k ∈ [2g + 2, 6g − 1]
of t for the integer genus and to every even power k ∈ [2g + 2, 6g − 1] for the half-integer
case. To achieve agreement with universal RMT those contributions have to vanish. To
probe this, we evaluated the canonical SFF with an arbitrary choice of coefficients for the
contributions to the WP volume for β = 1 or β = 4, i.e.

V >
g (b1, b2) =

∑
α1,α2∈N0

α1+α2=6g−2

Cα1,α2b
α1
1 bα2

2 , (4.59)

25For details see appendix D of [11].
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and found exactly the structure we conjectured. The constraints arising from this for
g ∈

[
1, 52

]
are given by

g = 1 : 0 =2C0,4 + C1,3 − C3,1 − 2C4,0, (4.60)

g = 3
2 : 0 =7C0,7 + 5C1,6 + 3C2,5 + C3,4 − C4,3 − 3C5,2 − 5C6,1 − 7C7,0, (4.61)

0 = 35C0,7 + 35C1,6 + 25C2,5 + 9C3,4

− 9C4,3 − 25C5,2 − 35C6,1 − 35C7,0, (4.62)
g = 2 : 0 =5C0,10 + 4C1,9 + 3C2,8 + 2C3,7 + C4,6

− C6,4 − 2C7,3 − 3C8,2 − 4C9,1 − 5C10,0, (4.63)
0 =55C0,10 + 50C1,9 + 41C2,8 + 29C3,7 + 15C4,6

− 15C6,4 − 29C7,3 − 41C8,2 − 50C9,1 − 55C10,0, (4.64)
0 =495C0,10 + 420C1,9 + 441C2,8 + 394C3,7 + 235C4,6

− 235C6,4 − 394C7,3 − 441C8,2 − 420C9,1 − 495C10,0, (4.65)

g = 5
2 : 0 =13C0,13 + 11C1,12 + 9C2,11 + 7C3,10 + 5C4,9 + 3C5,8 + C6,7

− C7,6 − 3C8,5 − 5C9,4 − 7C10,3 − 9C11,2 − 11C12,1 − 13C13,0, (4.66)
0 =3003C0,13 + 2717C1,12 + 2343C2,11 + 1897C3,10 + 1395C4,9

+ 853C5,8 + 287C6,7 − 287C7,6 − 853C8,5 − 1395C9,4

− 1897C10,3 − 2343C11,2 − 2717C12,1 − 3003C13,0, (4.67)
0 =63063C0,13 + 59345C1,12 + 54747C2,11 + 47509C3,10 + 37023C4,9

+ 23577C5,8 + 8099C6,7 − 8099C7,6 − 23577C8,5 − 37023C9,4

− 47509C10,3 − 54747C11,2 − 59345C12,1 − 63063C13,0, (4.68)
0 =105105C0,13 + 145431C1,12 + 100485C2,11 + 80619C3,10 + 79065C4,9

+ 64863C5,8 + 25613C6,7 − 25613C7,6 − 64863C8,5 − 79065C9,4

− 80619C10,3 − 100485C11,2 − 145431C12,1 − 105105C13,0. (4.69)

These constraints have to be fulfilled by all the contributions to the general β WP volume
for a given genus, i.e. all the V i,>

g with i > 0.26 Remarkably, this is also the case for all
the non-Wigner-Dyson contributions to the Airy WP volumes we computed.27 This gives a
strong sign for the agreement of arbitrary β topological gravity with universal RMT.

Partial resummation. Building on this, we give the first step how to obtain the arbitrary
β universal microcanonical SFF from our results for the canonical SFF. For this first step,
we will harness mainly the understanding of the canonical SFF as arising for the Wigner-
Dyson classes, where it suffices to restrict to the cases of β ∈ {1, 2}. For these cases, the
canonical SFF is obviously determined solely from the Wigner-Dyson part of the Airy WP

26The cancellations for the V0
g have been explored above.

27In [32] this is discussed up to g = 7
2 , finding the arising constraints to be fulfilled by all contributions to

the β Airy WP volumes, likewise.
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volumes. As we remarked already above, this part of the general β Airy WP volumes is
fully determined by knowing the volumes for the unitary and orthogonal symmetry class.
Specifically, distinguishing the cases of integer and half-integer genus and using the general
structure of the Airy WP volumes eq. (3.39), we see that the Wigner-Dyson part of the
volume is given by

V β,WD
g,n (⃗b) = 2g+n−1

βg+n−1V
2

g,n(⃗b) +
(2− β)2

βg+n

(
V 1

g,n(⃗b)− 2g+|I|−1V 2
g,n(⃗b)

)
, (4.70)

for integer genus and

V β,WD
g,n (⃗b) = (2− β)

βg+n− 1
2
V 1

g,n(⃗b), (4.71)

for half-integer genus. For the case of n = 2, these volumes give rise to the canonical SFF
which matches the behaviour of universal RMT in the Wigner-Dyson cases. This is equivalent
to saying that the microcanonical SFF arising from these volumes is that of universal RMT for
the Wigner-Dyson classes. This connection is what we will use to compute the “Wigner-Dyson
part” of the universal microcanonical SFF for arbitrary β.

For the present work we shall restrict our study in this direction to the regime before the
point of non-analyticity present in all Wigner-Dyson classes, i.e. to x = τ

2πρ0(E) ≤ 1, leaving
the study of the full object for [25].28 For this regime we know from the study for the unitary
symmetry class that only the genus 0 contribution from the orientable part of the volumes is
relevant, while we know from section 4.2 and [11] that all of the unorientable part is relevant.
The orientable contribution to the Wigner-Dyson part of the microcanonical SFF or, directly
related, the contribution to the Wigner-Dyson part of the arbitrary β b(x), which we denote
as bWD

β , we have already included in eq. (4.37). The unorientable contributions we can find
by noticing that for β = 1 the Airy WP volumes lead to b1(x) and consequently, since every
term of its expansion is thus linked to one and only one term in the topological expansion,
i.e. one Airy WP volume, we can uplift the result to arbitrary Dyson index by making use of
our knowledge of the generalisation of the Airy WP volumes to this setting (eq. (4.70) or
eq. (4.71)) and the linearity of the Laplace transform. Explicitly, we find

bWD
β (x) = 1− 2

β
x+ (2− β)2

∑
g∈N+

1
βg+2 b

1
g(x) + (2− β)

∑
g∈N+

2

1
βg+ 3

2
b1g(x), (4.72)

where b1,g(x) denotes the term in the series expansion of b1(x) originating from the genus
g WP volume and N+

2 the set of positive half-integers. To evaluate this, we expand b1(x),
given in eq. (4.39), to find

b1g(x) =
(−1)2g+122g

2g x2g+1. (4.73)

28Note that for all except the symplectic symmetry class this is the point where bβ(x) changes domain in its
piecewise definition while for β = 4 at this point the function diverges.
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Figure 6. In a): the connected part of the (normalised) microcanonical SFF for values of the Dyson
index between β = 1 and β = 6, computed from the tridiagonal matrix ensemble of [15]. The black
line is the analytical result for β = 2, the colour of the other lines corresponds to the size of the
matrices Nm, averaged over Nr realisations. Blue corresponds to Nm = 200, Nr = 5000, green to
Nm = 400 Nr = 1000 and orange to Nm = 1000, Nr = 200. The plotted microcanonical SFFs are
naturally ordered in the regime before intersecting the β = 2 curve, where a larger SFF corresponds
to a smaller value of β. As one can see clearly for all β > 2, a divergence like that for the GSE case
appears at x = 1 while for all β < 2 the transition to the plateau is smooth. In b): comparison of the
connected part of the normalised microcanonical SFF for the values of β = 1.4 and β = 3 from the
ensemble as in a) with Nm = 1000, Nr = 200 (green lines), with the various predictions, the black
solid line ours (eq. (4.74)), the black broken one that from [31] (eqs. (4.45) and (4.46)).

Using this, one can write

bWD
β (x)= 1− 2

β
x+(2−β)2

2β2 x
∞∑

g=1

(−1)g+1

g

(
−4x2

β

)g

+(2−β)
√
β
3 x

∞∑
k=0

1
2k+1

( 2x√
β

)2k+1

=1− 2
β
x+(2−β)2

2β2 x log
(
1− 4x2

β

)
+(2−β)

√
β
3 xartanh

( 2x√
β

)

=1− 2
β
x+(2−β)

2β2 x

[(
2−β+

√
β
)
log
(
1+ 2x√

β

)

+
(
2−β−

√
β
)
log
(∣∣∣∣1− 2x√

β

∣∣∣∣)
]
,

(4.74)

where, in principle, we have to restrict ourselves to the region of convergence of the two
series, i.e. |x| ≤ 1

2
√
β. However, one can continue the result analytically beyond this region

using the logarithm, as we have already rewritten the result in the last line. As a first sanity
check one can put β = 1 which yields the expected result. Secondly, plugging β = 4 the GSE
result is reproduced up to x = 1, which is the regime in which we are interested. This is
of course expected, but nevertheless one can note here that the combination of the GOE
result with the dependence on β for the individual terms we have explored here leads to
this result directly and no additional considerations are necessary.

Having found this result, it remains to compare it to a numerical evaluation of the
microcanonical SFF for the Gaussian matrix model for arbitrary β and the predictions of [31].
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Figure 7. Comparison of the numerical results at a specific point xref for the (normalised) micro-
canonical SFF subtracting the “ramp” with our analytical result eq. (4.74) and the ansatz of [31]. In
the main plot, the numerical results are put as the coloured dots with error bars, where the colours
correspond to the same choices of Nm and Nr as in figure 6(a). Furthermore, our prediction is put as
the solid black line, while that of [31] is put as the solid grey line. In the inset, all three results are
scaled by β2

(β−2) , where we only put the best converged numerical results, i.e. that for Nm = 1000, and
retain their and the predictions’ depiction from the main plot.

We present the results for the (connected part of the) microcanonical SFFs, computed in the
way outlined above, for various choices of the matrix size Nm and numbers of realisations
averaged over (Nr) in figure 6(a). It is interesting to note here that we observe a divergence
at x = 1 for all results with β > 2, while for all other values we observe a transition to the
plateau without divergences. This feature is not reproduced by our result (eq. (4.74)) which
for all cases except β ∈ {1, 2} diverges logarithmically at x = 1

2
√
β. This can be seen directly

in figure 6(b), where the numerical results for the values of β = 1.4 and β = 3 are depicted in
green while our prediction is put as the black solid line. These lines diverge at the expected
points, indicating that at this point latest, the effects from the non-Wigner-Dyson parts of
the Airy WP volumes are crucial. Consequently, we can only expect good results from our
prediction for all values of β > 1 if we restrict to a range of values of x smaller than x = 1

2 .
Looking at the numerical curve we can, however, see very good agreement of our result with
the numerical data before the onset of the divergence. In fact, the agreement in this range is
better than that with the predictions of [31], put as the black broken line, which however
give a good approximation to the result over the whole range of x considered.

To better compare the two predictions with the numerical results, we do so in figure 7
for fixed values of x while varying β from β = 1 to β = 6. Here, we chose two examples for
the reference values xref which exemplify the behaviour we observe generically and decided
to present not the full microcanonical SFF but to subtract the arbitrary β generalisation of
the “ramp” which is identical in our prediction and in that of [31], as discussed above. We
plot, for the respective xref, as dots with error bars the numerical results for the choices of
the matrix and ensemble sizes Nm and Nr where the colours represent the choice of these
in the same way as in figure 6(a). Furthermore, we put our analytical prediction as the
black and that of [31] as the grey solid line. In the inset, we plot the numerical result with
Nm = 1000 and the analytical predictions, all scaled by β2

β−2 , which is a scaling suggested by
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our analytical result. Considering first figure 7(a), where we set xref = 0.25, we note that
over the whole considered range of β our result agrees very well, nearly perfectly within
the error bars, with the numerical result, while the prediction of [31] shows clear deviations.
This becomes even more apparent when looking at the inset. In figure 7(b), where we put
xref = 0.5, we can make the same observation, i.e. our predictions fitting nearly perfectly to
the numerical results, for β ≥ 2. Going to smaller values of β, we see that the numerics is
increasingly well described by the prediction of [31]. This, we attribute to the increasing
impact of the divergence at x = 1

2
√
β which for this range of β is progressively near to xref.

From the inset, we can observe the described behaviour even better.
Consequently, we find in the range where it is applicable, i.e. for values of x not influenced

by the divergence, better agreement of our analytical prediction (eq. (4.74)) with the numerical
results as compared to that of the predictions of [31] (cf. eqs. (4.45) and (4.46)). This gives
rise to the reasonable expectation, that the extension of our prediction for bβ(x) by the
non-Wigner-Dyson contributions will lead to an even better approximation of the numerical
result and possibly a full analytical result for the microcanonical SFF. What one can already
say for certain about this extension is, that it has to encompass the cancellation of the
divergence present in eq. (4.74) and replacing it by one at x = 1. This could potentially
result in the final result of computing the universal microcanonical SFF from β topological
gravity being actually of close similarity to that of [31]. As a final comment, let us briefly
remark that the series expansion of eq. (4.74) fully agrees with the Wigner-Dyson parts of the
analytic results for the series expansion of the microcanonical SFF for small x in [23, 24] (In
fact, with some additional work that is presented in [32], one can see that these results can
be reproduced up to O

(
x8
)

by our results for the topological expansion of the β topological
gravity SFF (eq. (4.2) to eq. (4.9)).

In conclusion, we can summarise that we find strong indicators pointing to the presence of
quantum chaos, in the guise of universal RMT behaviour, in topological gravity for arbitrary
Dyson index. First, the persistence of the constraints fulfilled by the Airy WP volumes
for β = 1 (and β = 4) in their non-Wigner-Dyson contributions indicates the possibility
of extension of the mechanism of cancellations necessary to find universal behaviour in the
GOE variety of topological gravity to the arbitrary β case. Secondly, building on this, we
could produce an analytical result for an important part of the universal microcanonical
SFF, based solely on the general structure of the Airy WP volumes we found in section 3.4.
The good agreement of this result, which notably is an expression valid for all values of β
without necessitating the inclusion of several cases, with a numerical evaluation of the full
microcanonical SFF for arbitrary β Gaussian matrix models in its regime of validity gives
another strong sign for the presence of universal RMT behaviour. Furthermore, it opens up
the interesting possibility of a new way to study the whole universal microcanonical SFF
for arbitrary Dyson index analytically, a program for which the considerations presented
here may represent an important first step.
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5 Conclusion

In this paper we have successfully implemented the extension to arbitrary Dyson index of
the duality between topological gravity and the Airy matrix model in order to define the
general β Airy WP volumes that determine the perturbative expansions of the gravitational
correlation functions. The study of the general structure of these volumes in terms of β

revealed that they are not mere interpolations between the orientable and unorientable Airy
WP volumes but rather entail contributions that are genuinely non-Wigner-Dyson. From the
geometric side, this observation is challenging insofar as, to our knowledge, the distinction
between orientable and unorientable is a dichotomy for surfaces. Consequently, geometrically
the naive idea of interpolating between orientable and unorientable by scaling the weights
of their contributions in the gravitational path integral would be tempting. Our study now
shows that the persistence of the duality to this setting implies that this is not the correct
way of defining moduli space volumes in between orientability and unorientability.

We gain further insight into this behaviour by our study of a generalisation of the
Mirzakhani-like recursion for the unorientable WP volumes to the setting of arbitrary Dyson
index. There, we first find an alternative, albeit equivalent, structure of the volumes in
terms of β. In this alternative structure there is a one-to-one correspondence between the β

dependence of a specific term in the volume and a particular decomposition of the respective
surface into 3-holed spheres (pairs of pants) and crosscaps, i.e. a particular contribution to
the volume for β = 1 (or equivalently β = 4). From this point of view, the WP volumes are
indeed a superposition of orientable and unorientable contributions, resolving the tension of
the general structure of the volumes with the existence of only orientable and unorientable
surfaces. However, the weight of a specific surface depends on its properties beyond just
orientability/unorientability, like e.g. the number of crosscaps it contains. This structure
can thus be understood as the individual prefactors, which are generically non vanishing
for the Wigner-Dyson classes (though, of course, all unorientable contributions drop in the
unitary class), containing the Wigner-Dyson as well as the non-Wigner-Dyson behaviour.
Our original structure can be computed from this by essentially splitting up the contributions
into their Wigner-Dyson and non-Wigner-Dyson contributions and combining those that
now have the same dependence on the Dyson index.

This decomposition is preferential in the considerations of the second part of our work
where we investigated the question whether, in the sense of the BGS conjecture applied for
the SFF, arbitrary β topological gravity is quantum chaotic. While this goes along the same
lines as for GOE (β = 1) in the case of β = 4, for general Dyson index there is the immediate
problem that there is no full analytic result for the microcanonical SFF in this setting. In
the absence of this, we study the question of chaoticity of the theory by investigating the
constraints imposed on the Wigner-Dyson part of the Airy WP volumes by the fidelity to
the universal predictions of random matrix theory in these cases, actually extending the
discussion of [11]. Interestingly, we observe that almost all of the constraints are also fulfilled
by the non-Wigner-Dyson part of the Airy WP volumes for arbitrary Dyson index. This we
interpret as a strong sign for the fidelity of β topological gravity to a universal result, yet
to be determined analytically. We extend this discussion by comparing our (perturbative)
results for the microcanonical SFF in the universal regime for times before the plateau to
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the results of a numerical study of the Gaussian matrix model with arbitrary Dyson index
and an ansatz for the SFF proposed in the literature [31]. The comparison indicates good
agreement of our results with the numerics in the studied regime which is also present in
the proposed ansatz that is however at tension with certain symmetries of the perturbative
expansion of the SFF. Motivated by this agreement and to better compare with the ansatz,
we compute an important contribution to the general β universal microcanonical SFF, namely
the contribution of the Wigner-Dyson part of the theory, by putting together the general
structure in terms of β, proven in the first part, and the known universal result for β = 1.
Comparison of this result with the numerics shows improved agreement. This is especially
pronounced when scaling the SFF in a particular β dependent way which also highlights
certain deviations of the proposed ansatz from the numerical result. However, our result is not
in full agreement with the numerical result due to the β dependent position of the divergence
of the microcanonical SFF, which from the numerics is to be expected at a time independent
of β. This we believe to be corrected upon including the contributions of non-Wigner-Dyson
origin which is under present scrutiny [25].

Alternatively, it would be interesting to find the microcanonical SFF of the Gaussian
matrix model and arbitrary Dyson index by different means. One way to do this would, of
course, be to revisit the derivation of the “traditional” results given e.g. in [17] and find a
way to generalise the discussion to arbitrary β. Apart from this, it is possible to consider any
derivation of the Wigner-Dyson results and examine its extendability. One example of such a
method could be the application of nonlinear σ-model techniques (cf. e.g. [33]) to compute
the matrix integral for arbitrary Dyson index, potentially by rewriting the matrix model
of [15] as a superintegral. Another method, more inspired by geometry, would be to extend
the computation of correlation functions of branes in [1, 34], yielding the unitary version of
the universal two-point function of level densities, first to the unorientable setting and then
to that of arbitrary Dyson index. Along this line of thinking, it would be very interesting to
find an extension of the universe field theory (providing also access to the non-perturbative
regime of the theory) introduced in [35] to the unorientable/arbitrary Dyson index setting
which would also enable an analytical approach.

Beyond this interesting direction of research, there are several other things that would be
worth considering. First of all, there is the obvious question for the actual computation of the
WP volumes in JT gravity with arbitrary Dyson index. Of course, we have already studied
their general structure in the main text but it would nevertheless be interesting to study
the full results, in order to assess the correlation of their expected form as discussed in [12]
with the dependence on the Dyson index. Furthermore, this computation would enable the
study of the interplay of the dependence of the logarithmic divergences of the WP volumes,
regulated for example by the ϵ-description of [6] or by using the matrix model dual to the
minimal string as in [12], with the Dyson index. One reason why this is interesting is rooted in
the observation, made in section 3.5, that there is a way to write the arbitrary β WP volumes
in a form from which they manifestly are a sum of contributions arising from decompositions
of the surface with different numbers of crosscaps. Thus, one can speak of certain parts of a
volume as corresponding to a sector of moduli space with a well-defined number of crosscaps.
On the other hand, since the volumes’ divergences are purely a result of the divergence of the
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moduli space volume of the crosscap one is led to associate the decomposition of the volume
into parts of different degrees of divergence with a decomposition into parts of different
numbers of crosscaps. Performing the computation to find the arbitrary β WP volumes
for some examples, easiest along the lines of [12], would shed light on the interplay of this
intuition with the geometrically motivated one in terms of the Dyson index and would be an
important step in the study of the moduli space volumes of unorientable surfaces.

Furthermore, it would be interesting to go beyond the bosonic variations of JT/topological
gravity between all of which we can now tune by varying the Dyson index β and go to the
variety of the theory including supermanifolds in the gravitational path integral. For these
varieties of JT gravity the duality to a double-scaled matrix model, now with the super JT
spectral curve ySJT(z) = −

√
2

z cos (2πz), persists as shown in [3]. Taking also these varieties
of JT gravity into account the dual matrix models exhaust the full ten-fold classification
of random matrices [2]. As explained in [3], the considerations of the additional ensembles
require the inclusion of the additional parameter α into the definition of the matrix models via
a partition function (cf. eq. (1.1) in the bosonic setting). For these models, as for the bosonic
varieties, the loop equations enabling the computation of the perturbative expansion of matrix
model correlation functions can be written down not only for the values of (α,β) corresponding
to actual ensembles in the Altland/Zirnbauer classification but also for intermediate values.
This opens up the possibility to perform similar considerations as in this work for these
matrix models and study their behaviour for arbitrary values of the two parameters α and β.
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A Collection of β resolvents

Here we collect a list of the lower genus and boundary resolvents for arbitrary β we computed,
referring for a complete list to the supplementary material. Before we start the list, for which
we use the invariant decomposition we have motivated in the main text, we present here
an example for the non-decomposed form of a resolvent

Rβ
1 (z1,z2)=

1
16β3z71z

7
2 (z1+z2)4

[
5(β(5β−18)+20)(z81+z82)

+20(β(5β−18)+20)
(
z2z

7
1+z1z72

)
+33(β(5β−18)+20)

(
z22z

6
1+z21z62

)
+16(β(11β−40)+44)

(
z32z

5
1+z31z52

)
+8(β(23β−85)+92)z42z41

]
,

(A.1)

whose β dependence is rather spurious compared to the decomposed version presented below.
In order to make the resolvents’ presentation more compact, we define

f(z1, z2; a0, . . . , an) := a0z
2n
1 + a1z

2n−1
1 z2 + . . . an−1z

n+1
1 zn−1

2 + anz
n
1 z

n
2 + an−1z

n−1
1 zn+1

2 . . .
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n = 1.

R0(z1) =
z1
2 (A.2)

Rβ
1/2(z) =− 2− β

4z2β (A.3)

Rβ
1 (z) =− 5(2− β)2

16β2z5
− 1

8βz5 (A.4)

Rβ
3/2(z) =− 15(1− β)(4− β)(2− β)

16β3z8
− 2(2− β)

β2z8
(A.5)

Rβ
2 (z) =− 1105(1− β)(4− β)(2− β)2

256β4z11
− 3465(2− β)2

256β3z11
− 105

64β2z11
(A.6)

Rβ
5/2(z) =− 1695(1− β)2(2− β)(4− β)2

64β5z14
− 9067(1− β)(2− β)(4− β)

64β4z14

− 160(2− β)
β3z14

(A.7)

Rβ
3 (z) =− 414125(1− β)2(4− β)2(2− β)2

2048β6z17

− 696205(1− β)(4− β)(2− β)2

512β5z17

− 4239235(2− β)2

2048β4z17
− 25025

256β3z17
(A.8)

Rβ
7/2(z) =− 59025(1− β)3(2− β)(4− β)3

32β7z20

− 8709175(1− β)2(2− β)(4− β)2

512β6z20

− 23421111(1− β)(2− β)(4− β)
512β5z20

− 35840(2− β)
β4z20

(A.9)

Rβ
4 (z) =− 1282031525(1− β)3(2− β)2(4− β)3

65536β8z23

− 13859296175(1− β)2(2− β)2(4− β)2

65536β7z23

− 45213403895(1− β)(2− β)2(4− β)
65536β6z23

− 44972612685(2− β)2

65536β5z23
− 56581525

4096β4z23
(A.10)

n = 2.

R0(z1, z2) =
1

2βz1z2 (z1 + z2)2
(A.11)

R1/2(z1, z2) = −(β− 2)
(
z41 + 3z31z2 + 3z21z22 + 3z1z32 + z42

)
2β2z41z

4
2 (z1 + z2)3

(A.12)

R1(z1, z2) = (2− β)2 f (z1, z2; 25, 100, 165, 176, 184)
16β3z71z

7
2 (z1 + z2) 4

+ 5z41 + 3z22z21 + 5z42
8β2z71z

7
2

(A.13)
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R3/2(z1, z2) =
(1− β)(2− β)(4− β)f (z1, z2; 120, 600, 1290, 1700, 1810, 1865, 1866)

16β4z101 z
10
2 (z1 + z2) 5

+ (2− β)f (z1, z2; 256, 1280, 2752, 3590, 3710, 3739, 3750)
16β3z101 z

10
2 (z1 + z2) 5

(A.14)

B Collection of β Airy WP volumes

Here we collect some of the results for the Airy WP volumes at low genus and number of
boundaries. For a complete list we refer to the supplementary material.

For the two-boundary case, making use of the symmetry of the Airy WP volumes
under b1 ↔ b2, we can focus on V >

g(,2)(b1, b2), defined by Vg(b1, b2) =: V >
g (b1, b2)θ(b1 − b2) +

V >
g (b2, b1)θ(b2 − b1), which is a more convenient way of writing the volumes than writing

out the individual V i
g,2(b1, b2)

V1/2(b1) =
2− β

2b1β
, (B.1)

V1(b1) =
5b21(2− β)2

48β2 + b21
24β (B.2)

V3/2(b1) =
b51(1− β)(2− β)(4− β)

384β3 + b51(2− β)
180β2 , (B.3)

V0(b1, b2) =
2δ(−b1 + b2)

b2β
, (B.4)

V >
1/2(b1, b2) =

b1(2− β)
β2 , (B.5)

V >
1 (b1, b2) =

(
5b41 + 10b22b21 + 8b32b1 + b42

)
(2− β)2

96β3 +
(
b21 + b22

)2
48β2 , (B.6)

V >
3/2(b1, b2) = (4− β)(2− β)(1− β)

×
(
30b71 + 210b22b51 + 175b32b41 + 210b42b31 + 105b52b21 + 91b62b1 + 5b72

)
40320β4

(2− β)

×
(
64b71 + 448b22b51 + 245b32b41 + 560b42b31 + 147b52b21 + 175b62b1 + 23b72

)
40320β3 , (B.7)

V >
2 (b1, b2) =

(1− β)(2− β)2(4− β)
46448640β5 (221b101 + 3315b22b81 + 2880b32b71 + 9282b42b61

+ 6048b52b51 + 10290b62b41 + 2880b72b31 + 2235b82b21 + 768b92b1 + 53b102 )

+ (2− β)2

232243200β4 (3465b
10
1 + 51975b22b81 + 30720b32b71 + 162330b42b61

+ 64512b52b51 + 158970b62b41 + 46080b72b31 + 32535b82b21 + 10240b92b1 + 1465b102 )

+ b101 + 15b22b81 + 58b42b61 + 58b62b41 + 15b82b21 + b102
552960β3 , (B.8)

V0(b1, b2, b3) =
4
β2 , (B.9)
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V1
1
2
(b1, b2, b3) =

b31
6
[
− θ (−b1 − b2 + b3)− θ (−b1 + b2 + b3)

+ θ (b2 − b1) (θ (b1 − b2 + b3) + θ (−b1 + b2 + b3)− 2) + 4
]

+ 1
2b

2
1

[
(b2 − b3) θ (−b1 − b2 + b3)− (b2 + b3) θ (−b1 + b2 + b3)

+ θ (b2 − b1) (b2 (θ (b1 − b2 + b3) + θ (−b1 + b2 + b3)− 2))

+ b3 (θ (−b1 + b2 + b3)− θ (b1 − b2 + b3))
]

+ 1
2b1

{
b22

[
− θ (−b1 − b2 + b3)− θ (−b1 + b2 + b3)

+ θ (b2 − b1) (θ (b1 − b2 + b3) + θ (−b1 + b2 + b3)− 2) + 2
]

+ 2b3b2
[
θ (−b1 − b2 + b3)− θ (−b1 + b2 + b3)

+ θ (b2 − b1) (θ (−b1 + b2 + b3)− θ (b1 − b2 + b3))
]

(B.10)

+ b23

[
− θ (−b1 − b2 + b3)− θ (−b1 + b2 + b3)

+ θ (b2 − b1) (θ (b1 − b2 + b3) + θ (−b1 + b2 + b3)− 2) + 2
]}

+ b3b
2
2

2
[
θ (b2 − b1, b1 − b2 + b3) + θ (−b1 − b2 + b3)

− θ (b1 − b2) θ (−b1 + b2 + b3)
]
+ b33

6
[
θ (b2 − b1, b1 − b2 + b3)

+ θ (−b1 − b2 + b3)− θ (b1 − b2) θ (−b1 + b2 + b3) + 2
]

+ b32
6
[
− θ (−b1 − b2 + b3) + θ (−b1 + b2 + b3)

− θ (b2 − b1) (θ (b1 − b2 + b3) + θ (−b1 + b2 + b3)− 2) + 2
]

− b23b2
2
[
θ (−b1 − b2 + b3)− θ (−b1 + b2 + b3)

+ θ (b2 − b1) (θ (b1 − b2 + b3) + θ (−b1 + b2 + b3)− 2)
]
.

C Proof of the relation of resolvents of the β ensembles for g = 0

In this appendix we prove the relation eq. (3.7) of the genus 0 resolvents for arbitrary β,
claimed in the main text. For convenience we recall that this relation was given by

Rβ
0 (I) =

1
βn−1R

1
0(I). (C.1)

For the proof we will go along the lines of the derivation of the perturbative loop equations
in [3]. The starting point there are the loop equations for resolvents derived for a β matrix
model determined by a potential V (x). Inserting the perturbative expansion of the resolvents
into these it is shown that for x near the cut one finds

2y(x)Rβ
0 (x, I) + Fβ

0 (x, I) = (analytic in x), (C.2)
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which then by a dispersion relation argument yields the relations recalled in section 3.1. It
is important to note that while for the discussion in the main text it is sufficient to focus
on the case of double-scaled matrix models, i.e. the support of ρ0 being R+, the dispersion
relation argument is possible in the general one-cut case as well. From eq. (C.2) we can
already see that for a proof of our claim it suffices to show

Fβ
0 (x, I) =

1
βn
F 1
0 (x, I), (C.3)

since a multiplicative factor carries through the dispersion relation computation for the
double-scaled as well as the one-cut case.

However, as we remarked in the main text there, the expressions for Fβ
g (x, I) for the

case g = 0 are different from the general. The first task we have to perform though is
to derive this expressions.

Starting with the loop equations given by [3]29

−N ⟨P (x, I)⟩c =
(
1− 2

β

)
∂x ⟨R(x, I)⟩c + ⟨R(x, x, I)⟩c +

∑
J⊇I

⟨R(x, J)⟩c ⟨R(x, I\J)⟩c

−NV ′(x) ⟨R(x, I)⟩c +
2
β

n∑
k=2

∂xk

[⟨R(x, I\ {xk})⟩c − ⟨R(I)⟩c

x− xk

]
,

(C.4)

we insert the perturbative expansion of the correlation functions of resolvents and collect
the r.h.s. in one sum. This yields

(analytic)=
∞∑

g=0

1
N2g+|I|−2

[(
1− 2

β

)
∂xR

β

g− 1
2
(x,I)+Rβ

g−1(x,x,I)

+
∑
J⊆I

h+h′=g

Rβ
h(x,J)R

β
h′(x,I\J)−V ′(x)Rβ

g (x,I)+
2
β

n∑
k=1

∂xk

Rβ
g (x,I\xk)−Rβ

g (I)
x−xk

]
,

(C.5)

where by analytic we mean analytic in x near the cut. From this one finds one equation for
every order in N−1, labelled by g. The relevant case here is g = 0, plugging this we find

(analytic) =
∑
J⊆I

Rβ
0 (x, J)R

β
0 (x, I\J)− V ′(x)Rβ

0 (x, I) +
2
β

n∑
k=1

∂xk

Rβ
0 (x, I\xk)−Rβ

0 (I)
x− xk

.

(C.6)

Analogously to [3], we pull the terms containing R0(x) out of the sum and, assuming the
xk are away from the cut, move all terms from the sum over derivatives to the l.h.s. that
are analytic near the cut. Thus we find

(analytic) =
[
2Rβ

0 (x)− V ′(x)
]

︸ ︷︷ ︸
2y(x)

Rβ
0 (x, I) +

∑
J⊆I
J ̸=∅
J ̸=I

Rβ
0 (x, J)R

β
0 (x, I\J) +

2
β

n∑
k=1

Rβ
0 (x, I\xk)
(x− xk)2

,

(C.7)
29Note, that the dependence on β is tacitly given here by the average only and thus there is no superscript

β put on the observables.
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where we used the relation of the spectral curve y(x) with the potential defining the matrix
model. Thus we see that Fβ

g (x, I) for g = 0 is given by30

Fβ
0 (x, I) =

∑
J⊆I
J ̸=∅
J ̸=I

Rβ
0 (x, J)R

β
0 (x, I\J) +

2
β

n∑
k=1

Rβ
0 (x, I\xk)
(x− xk)2

. (C.8)

Having found this we conclude our proof by showing eq. (C.3) by induction. The base clause
is given by the case I = {x1} for which one finds

Fβ
0 (x, I) =

2
β

R0(x)
(x− x1)2

, (C.9)

which evidently fulfils the statement we would like to proof. Now we assume eq. (C.3) for
all lengths of I, k ∈ N smaller than a given n ∈ N. This implies eq. (C.1) for all k ≤ n.31

For |I| = n we find

Fβ
0 (x, I) =

∑
J⊆I
J ̸=∅
J ̸=I

Rβ
0 (x, J)R

β
0 (x, I\J) +

2
β

n∑
k=1

Rβ
g (x, I\xk)
(x− xk)2

=
∑
J⊆I
J ̸=∅
J ̸=I

R1
0(x, J)R1

0(x, I\J)
β|J |+|I\J | + 2

β

n∑
k=1

R1
g(x, I\xk)

β|I|−1(x− xk)2

= 1
βn
F 1
0 (x, I),

(C.10)

which completes the induction step and thus our proof.

D Relation of Rβ with R
4
β

It is a well known fact in the study of matrix models that the resolvents of the orthogonal
and symplectic symmetry class are directly connected by the relation [3]

R1
g(I) = (−1)2g22(g+n−1)R4

g(I). (D.1)

This relation follows directly from the loop equations and thus serves as a good sanity check
for our general expressions for the resolvents in dependence on β given in eq. (3.25) and
eq. (3.26). In fact, this relation is only an example of a more general invariance of the
matrix model given by the invariance of the integral definition of the correlation functions
under (β, N) ↔

(
4
β ,−

Nβ
2

)
(e.g [13] and references therein). At the level of resolvents this

leads us to conjecture

R
4
β
g (I) = (−1)2g

(
β

2

)2(g+|I|−1)
Rβ

g (I), (D.2)

which we prove in the following by showing the relation to arise from the loop equations.
30Note, that this yields the results for Fβ

0 (x, I) in the special cases |I| = 1, 2 given in the main text and
agrees with the general result in the other cases, where it’s applicable.

31Note, that the I appearing on eq. (C.1) has one element less than the I appearing in eq. (C.3).

– 60 –



J
H
E
P
1
1
(
2
0
2
5
)
0
8
8

Let the Rβ
g (I) be the solutions to the loop equations for β. First, for g = 0 by eq. (3.7)

one has

R
4
β
g (I) = β|I|−1

22(|I|−1)R
1
g(I) =

(
β

2

)2(|I|−1) 1
β2(|I|−1)R

1
g(I)

=
(
β

2

)2(|I|−1)
Rβ

g (I),
(D.3)

where we used eq. (3.7) to get to the last line. This shows our claim for the case of g = 0.
For g > 0 it is easiest to use the expression of the respective contribution to the n-boundary
resolvent as a contour integral, eq. (3.2), as arising from the loop equations. For convenience
we recall this expression to be

Rβ
g (−z2, I) =

1
2πiz

∮
[−i∞+ϵ,i∞+ϵ]

z′2dz′

z′2 − z2
1

y(−z′2)
Fβ

g (−z′2, I), (D.4)

with ϵ > 0 and

Fβ
g (−z2, I) :=

(
1− 2

β

) 1
−2z ∂zR

β

g− 1
2
(−z2, I)︸ ︷︷ ︸

I

+Rβ
g−1(−z2,−z2, I)︸ ︷︷ ︸

II

+
′∑

I⊇J,h

Rβ
h(−z

2, J)Rβ
g−h(−z

2, I\J)

︸ ︷︷ ︸
III

+ 2
n∑

k=1

[
Rβ

0 (−z2,−z2k) +
1
β

1(
z2k − z2

)2
]
Rβ

g (−z2, I\
{
−z2k

}
)︸ ︷︷ ︸

IV

,

(D.5)

where
′∑

is a notation for excluding R0(z) and R0(z, zk) from the sum. For the sake of
brevity we will use z in the arguments of the contributions to the resolvents in the following.
Due to the recursive nature of this way of computing the topological expansion we use
the cases of g = 0, which we have shown above, as base clauses and perform the proof
by induction. Assuming thus that for all resolvents necessary to compute Rβ

g (z, I), with
|I| =: n, our claim holds, it remains to show that this implies our claim for Rβ

g (z, I). To
do this, due to eq. (D.4), it suffices to show32

Fβ
g (z, I) = (−1)2g

( 2
β

)2(g+n)
F

4
β

g (z, I), (D.6)

32Note that Rβ
g (z, I) has n + 1 arguments.
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which we shall prove by considering each line of eq. (D.5) separately and plugging our base
assumption that the relation between β and 4

β holds.

I =
(
1− 2

β

)
(−1)2g−1

( 2
β

)2g+2n−1 1
−2z ∂zR

4
β

g− 1
2
(z, I)

= (−1)2g
( 2
β

)2(g+n)(
1− β

2

) 1
−2z ∂zR

4
β

g− 1
2
(z, I)

= (−1)2g
( 2
β

)2(g+n)
I

(
β ↔ 4

β

)
.

(D.7)

II = (−1)2g−2
( 2
β

)2(g−1+n+2−1)
R

4
β

g−1(z, z, I) = (−1)2g
( 2
β

)2(g+n)
R

4
β

g−1(z, z, I)

= (−1)2g
( 2
β

)2(g+n)
II

(
β ↔ 4

β

)
.

(D.8)

III =
′∑

I⊇J,h

(−1)2h+2g−2h
( 2
β

)2(h+|J |+g−h+n−|J |)
R

4
β

h (z, J)R
4
β

g−h(z, I\J)

= (−1)2g
( 2
β

)2(g+n) ′∑
I⊇J,h

R
4
β

h (z, J)R
4
β

g−h(z, I\J)

= (−1)2g
( 2
β

)2(g+n)
III

(
β ↔ 4

β

)
.

(D.9)

IV =
n∑

k=1

[( 2
β

)2
R

4
β

0 (z, zk) +
1
β

1(
z2k − z2

)2
]
(−1)2g

( 2
β

)2(g+n−1)
R

4
β
g (z, I\{zk})

= (−1)2g
( 2
β

)2(g+n) n∑
k=1

[
R

4
β

0 (z, zk) +
β

4
1(

z2k − z2
)2
]
R

4
β
g (z, I\{zk})

= (−1)2g
( 2
β

)2(g+n)
IV

(
β ↔ 4

β

)
.

(D.10)

Another way of performing the proof would of course be to use the general form of
the resolvents proven in section E and to show by an explicit computation that these obey
the relation eq. (D.2).

As a final comment, we note that our proof generalises directly to the general one-cut
case since it is purely based on the behaviour of Fβ

g under the transformation of β and this
does not change upon going to the general one-cut case. The only modification occurs in
the necessity to modify eq. (D.4), which however doesn’t affect our argument.

E Proof of the general structure

Here we prove the statement made in the main text that the general form of the resolvents,
in terms of their β dependence, is given by eqs. (3.25) and (3.26), i.e.

Rβ
g (I) =

1
β2g+n−1

(
R0

g(I)βg + (2− β)2
g∑

i=1
Ri

g(I)βi−1((1− β)(4− β))g−i

)
, (E.1)
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for integer g and

Rβ
g (I) =

1
β2g+n−1

(2− β)
g+ 1

2∑
i=1

Ri
g(I)βi−1((1− β)(4− β))g+ 1

2−i

 , (E.2)

for half-integer g.
We will perform the proof by means of induction, where the base clause, due to recursive

nature of the computation of resolvents by means of the loop equations, is given already by
the form of Rβ

0 (z1, z2) but can of course be thought of to be provided by the set of examples
computed in the main text that are in correspondence with the claimed structure. To be
more precise, we use the expression of the n+ 1 boundary and genus g resolvent in terms of
a contour integral, eq. (3.2), which we recall here for convenience:

Rβ
g (−z2, I) =

1
2πiz

∮
[−i∞+ϵ,i∞+ϵ]

z′2dz′

z′2 − z2
1

y(−z′2)
Fg(−z′2, I), (E.3)

with ϵ > 0 and

Fβ
g (−z2, I) :=

β− 2
β

1
−2z ∂zR

β

g− 1
2
(−z2, I)︸ ︷︷ ︸

I

+Rβ
g−1(−z2,−z2, I)︸ ︷︷ ︸

II

+
′∑

I⊇J,h

Rβ
h(−z

2, J)Rβ
g−h(−z

2, I\J)

︸ ︷︷ ︸
III

+ 2
n∑

k=1

[
Rβ

0 (−z2,−z2k) +
1
β

1(
z2k − z2

)2
]
Rβ

g (−z2, I\
{
−z2k

}
)︸ ︷︷ ︸

IV

,

(E.4)

where
∑′ is a notation for excluding R0(−z2) and R0(−z2,−z2k) from the sum. Notably, this

excludes the cases of g = 0 where the claimed structure can however be seen already from
eq. (3.7), proven in section D. An important thing to be noted at this point is that the contour
integration doesn’t yield any additional β dependence which implies that the induction step
is already concluded if the claimed structure, i.e. that for genus g and n + 1 boundaries,
can be observed in Fβ

g (−z2, I). Additionally, as already remarked above in section D, this
shows the applicability of our proof for the more general case of one cut and not necessarily
double-scaled matrix models since the dependence on the spectral curve and hence the precise
shape of the cut only enters upon contour integration.

We will thus consider each line of eq. (E.4) separately and show that the claimed general
form is present. Due to the general form being split into the case of integer and half-integer
genus we treat these as two cases for each line. To abbreviate the following discussion we use
the shorthand notation of writing a dependence on −z2 just as a dependence on z.
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I. For the case of integer g, g − 1
2 is half-integer and combining factors one finds that

I = (2− β)2

β2g+n

g∑
i=1

βi−1[(1− β)(4− β)]g−i 1
2z ∂zRi

g− 1
2
(z, I), (E.5)

reproducing the claimed structure, eq. (E.1).
For half-integer g, g − 1

2 is integer. For this case, as for many of the following, it is
convenient to use the rewriting

(2− β)2 = (1− β)(4− β) + β. (E.6)

By use of this and shifting the summation index, one finds

I = (2− β)
β2g+n

1
2z ∂z

[ g+ 1
2∑

i=1
Ri

g− 1
2
(z, I)βi−1[(1− β)(4− β)]g+

1
2−i

+
g+ 1

2∑
i=2

Ri−1
g− 1

2
(z, I)βi−1[(1− β)(4− β)]g+

1
2−i

]
,

(E.7)

where in the first line we set Rg+ 1
2

g− 1
2
= R0

g− 1
2

which is possible as Rg+ 1
2

g− 1
2

was not defined before.
Taking the derivative inside the bracket and combining the two sums it is apparent that
the structure of eq. (E.2) is reproduced.

II. For the case of integer g, g − 1 is integer as well and by combining factors and shifting
the index one finds

II = 1
β2g+n

[
R0

g−1(z, z, I)βg + (2− β)2
g∑

i=2
βi−1[(1− β)(4− β)]g−iRi−1

g (z, z, I)
]
, (E.8)

reproducing the expected structure. For half-integer g, g − 1 is half-integer and in a similar
fashion as for the integer case one finds

II = (2− β)
β2g+n

g+ 1
2∑

i=2
βi−1[(1− β)(4− β)]g+

1
2−iRi−1

g (z, z, I), (E.9)

being in correspondence with the expected structure for half-integer g.

III. For the case of half-integer genus, there is the possibility of h being an integer, then
g − h is half-integer and of h being half-integer which then implies g − h to be integer. For
the determination of the structure in terms of β it suffices, however, to consider the case of
half-integer h as for every integer h the case of h′ (half-integer) such that g − h′ = h has
already been considered. Keeping in mind the sum over J ⊆ I, for a fixed half-integer h
one has to evaluate Rβ

h(z, J)R
β
g−h(z, I\J) := ⋆. To abbreviate the following discussion we

will drop the arguments of the resolvents, as they are uniquely reconstructible by the lower
index. For the evaluation of ⋆ is will be useful to recall the form of the Cauchy product
for finite sums, given by

m∑
i=1

k∑
j=1

aibjx
i+j =

m+k∑
l=2

xl
min (m,l)∑

n=max (1,l−k)
anbl−n. (E.10)
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Using this and eq. (E.6), one can evaluate the product of the respective general expres-
sions to find

⋆ = (2− β)
β2g+n

g+ 1
2∑

i=1+g−h

R0
hR

i−g+h
g−h βi−1[(1− β)(4− β)]g+

1
2−l

− (2− β)
β2g+n

g+ 1
2∑

l=2
βl−1[(1− β)(4− β)]g+

1
2−l

min (g+ 1
2 ,l)∑

a=max (1,l−g+h)
Ra

hRl−a
g−h

+ (2− β)
β2g+n

g− 1
2∑

l=1
βl−1[(1− β)(4− β)]g+

1
2−l

min (g+ 1
2 ,l+1)∑

a=max (1,l+1−g+h)
Ra

hRl+1−a
g−h ,

(E.11)

which is of the form claimed for half-integer g, showing the claim for this case. Coming now
to the case of integer genus g, we have to consider two cases, as now this can be split into an
integer h and consequently an integer g − h or a half-integer h which also implies g − h to be
half-integer. Considering again the case of half-integer h first, one can evaluate

⋆ = (2− β)2

β2g+n

g∑
l=1

βl−1[(1− β)(4− β)]g−l

min (h+ 1
2 ,l+1)∑

a=max (1,l+ 1
2−g+h)

Ra
hRl+1−a

g−h , (E.12)

which is of the claimed form. Coming now to the case of integer h, the expansion yields

⋆ = 1
β2g+n

R0
hR0

g−h

+ (2− β)2
g∑

i=1+g−h

Ri+h−g
h R0

hβ
i−1[(1− β)(4− β)]g−i

+ (2− β)2
g∑

i=1+h

Rj−h
h R0

hβ
i−1[(1− β)(4− β)]g−i

− (2− β)2
g∑

l=2
βl−1[(1− β)(4− β)]g−l

min (g,l)∑
a=max (1,l−g+h)

Ra
hRl−a

g−h

+ (2− β)2
g−1∑
l=1

βl−1[(1− β)(4− β)]g−l
min (g,l+1)∑

a=max (1,l+1−g+h)
Ra

hRl+1−a
g−h .

(E.13)

This result is of the claimed form, showing the statement also for the case of integer g,
concluding the consideration of contribution III.

IV. Finally, this contribution is dealt with rather quickly. First, we note that the appearing
resolvent Rβ

g (z, I\{z}) already is of genus g. Consequently, as it is one for n boundaries it
only lacks a factor of 1

β to acquire the expected form eq. (E.2) or eq. (E.1) which is provided
by the terms in bracket of contribution IV after noting (cf. eq. (3.5))

Rβ
0 (z1, z2) =

1
β
R1

0(z1, z2). (E.14)
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With the last argument we have thus shown that for the two cases of integer and half-
integer genus g Fβ

g (z, I) indeed is of the form claimed for the respective case. As stated
above, this structure is not modified upon computing the actual resolvent from this and thus
also Rβ

g (z, I) is of the claimed form. This concludes the induction step.
Apart from the usefulness for the proof, the knowledge of Fβ

g in terms of the Ri
g enables

one to trace the origin of the Ri
g+1 to the combination of Ri

g from which it is computed. This,
for example, opens up a possibility to simplify the computation of higher genus resolvents
by parallelization of the computation of the individual Ri

g+1.
A more direct application, however, is found by observing the R0

g terms to originate
solely in R0

g′ of lower genus and higher number of arguments or products of these of lower
genus and less arguments. Combining this with the basic fact that the R0

g appear only for
integer genus, one can see directly that the recursion for these terms is just a rescaled version
of the recursion for the β = 2 matrix model. Now, one observes that the examples of lower
genus and number of arguments (in fact it suffices to consider the case of g = 1, n = 2) don’t
have a dependence on sums of arguments in the denominator, a property which is found for
all the terms for the β = 2 resolvents, and consequently, using that the recursion is a rescaled
β = 2 recursion, contributions at higher genus and numbers of arguments likewise don’t.

F Splitting of the β dependence

In this appendix we explain how to separate the expressions for the contribution to the
n-boundary resolvent at genus g ≥ 1

2 into the invariant basis.
As a first step, the resolvents have to be multiplied by β2g+n−1 in order to remove β

from the denominator, i.e. we define the scaled resolvent R̃β
g (I) := β2g+n−1Rβ

g (I). This leaves
only a polynomial dependence on β of maximal order 2g, which is to be decomposed into
the invariant basis. As first step towards this we choose an orthonormal basis for the vector
space of polynomials of order 2g, e.g. the Laguerre polynomials B1 = (Li(β)|i = 0, . . . , 2g)
orthonormal with respect to the scalar product

⟨f, g⟩ :=
∫ ∞

0
e−xf(x)g(x)dx. (F.1)

Using this, one can decompose

R̃β
g (I) =

2g∑
i=0

⟨Li, R̃
β
g (I)⟩︸ ︷︷ ︸

:=ai(I)

Li(β), (F.2)

where the coefficients ai(I) carry the dependence on the resolvent’s arguments I = {z1, . . . , zn}.
Having done this decomposition, which is an explicit example for the generic decomposition
of the resolvent claimed in the main text (eq. (3.16)), going over to a desired basis B2 =
(b0, . . . , b2g) only amounts to computing the change of basis for the Laguerre polynomials,
i.e. to use

Li(β) =
2g∑

j=0
(MB2,B1)ij bj(β), (F.3)
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with

MB2,B1 =M−1
B1,B2

, (F.4)

(MB1,B2)ij = ⟨Li, bj⟩. (F.5)

This is always possible for any basis B2. Motivated by the discussion in the main text
we choose the bases

B2 =
(
β0, . . . ,βg, (2− β)2((1− β)(4− β))0βg−1, . . . , (2− β)2((1− β)(4− β))g−1β0

)
,

(F.6)
for integer g and

B2 =
(
β0, . . . ,βg−1/2, (2− β)((1− β)(4− β))0βg−1/2, . . . , (2− β)((1− β)(4− β))g−1/2β0

)
,

(F.7)
for half-integer g. In fact, we take the invariant “basis”, which is of course only a basis for the
space of invariant polynomials, discussed in the main text and fill up to 2g+ 1 basis elements
by adding the monomial of the orders not contained in the invariant “basis”. Putting things
together, the decomposition of the resolvent in our desired basis is given by

Rβ
g (I) =

1
β2g+n−1

2g∑
i=0

2g∑
i=0

ai(I) (MB2,B1)ij︸ ︷︷ ︸
αj(I)

bj(β). (F.8)

The effect of us carefully choosing an invariant basis is now, that the αj should always vanish
in this decomposition for i ≤ g − 1 (integer genus) or i ≤ g − 1

2 (half-integer genus). This is
what we see for all the computed examples and what we could indeed prove in section E.

G Proof of the generality of the surface decomposition

In this appendix we show that any decomposition of a surface of genus g and n geodesic
boundaries into the parts prescribed by the arbitrary β Mirzakhani-like recursion, pictorially
represented in figure 2, can be “reshuffled” to yield either directly the decomposition in
figure 3 or one deriving from it by adding holes as discussed in the main text. In the following,
we refer to such a decomposition as an ordered decomposition. By “reshuffling” we mean
moving the constituent parts of the surface around in a way that does not change the β

dependence of the whole decomposition.
To do this, we start with an arbitrary decomposition into the allowed building blocks.

We will now transform this to one of the ordered cases in two steps. First, we will move all
parts containing external boundaries to the left, recreating the first part of figure 3. Second,
we will reshuffle the parts building up the remaining, genus carrying, part as to reproduce
one of the ordered decompositions.

For the first part, if n = 1 we choose the external boundary as the starting point of
the genus carrying part and have achieved our goal for the boundary part already since
it’s empty in this case. If n ≥ 2 there can be at most one 3-holed sphere containing two
external boundaries.
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If it is there, choose the boundary to which it is attached as the starting point for the
genus carrying part and take out the 3-holed sphere. Then, there are still n − 2 3-holed
spheres that contain an external boundary and are glued in an orientation as in case a)
(Here and in the following, cases x) refer to the ones discussed in figure 2) at two of their
boundaries. We take out these 3-holed spheres, glueing the structures attached to the two
formerly glued boundaries to one another.

If it is not there, there is one 3-holed sphere containing an external boundary to which
something is glued in the way prescribe by a case that is not a). Choose this external boundary
as the starting point for the genus carrying part. Similar to the other case, there are now
n− 1 3-holed spheres that contain an external boundary and are glued in an orientation as
in case a) at two of their boundaries. Proceed with them as in the other case.

In both cases, we have taken out a total of n− 1 3-holed spheres and have designated a
starting boundary for the genus carrying part. We now can assemble the 3-holed spheres
in the way done in the first part of figure 3 and attach them to the designated starting
boundary, by which we have achieved the separation aimed at.

Having done this, we are left with a decomposition of a surface with one geodesic boundary
to the left and genus g. We will bring it into one of the discussed forms by starting with the
3-holed sphere that contains this boundary and, potentially moving structures attached to it,
render the objects attached to it into a form appearing in the “ordered” decomposition. We
then proceed with the next attached 3-holed sphere in the same way. In order to do this,
additionally to the cases a), b), c) and d) discussed in figure 2 we introduce the additional
cases i): like case b) with Y being a crosscap and ii): like d) with X being the surface of
genus 0 with two boundaries, i.e. the boundaries are glued to one another. Having introduced
these cases we can state our procedure. First, we note that case a) cannot appear with an
unglued boundary since we already removed all external boundaries. It can only appear
after a glueing of case d). Consequently, we can define for every appearing 3-holed sphere,
apart from these cases a, “left” boundary in the obvious way and choose an upper and lower
boundary, where we take the convention that if a crosscap is glued to a 3-holed sphere, it
is always glued to the lower boundary. The starting point for every step will be a 3-holed
sphere S identified by its left boundary, while the starting point for the whole procedure is
given by the unique 3-holed sphere containing the remaining external geodesic boundary.

Given S, the glueing is as in case

b) Then, the part is in the ordered form. Continue by setting S as the first 3-holed sphere
of Y

c) Proceed along the lower boundaries of the glued 3-holed spheres forming X1, until either
case i) or ii) are assumed (They are the only possibility for terminating the glueing).

i) Attach a crosscap to the lower boundary of S, attach a 3-holed sphere (that from
the end of X1) to the upper boundary. Attach to the lower boundary of this
another crosscap and to its upper boundary the rest of X1 (i.e. with the final
3-holed sphere removed). Then attach X2 to the remaining, now unglued boundary
of X1. Set S as the first 3-holed sphere of X1.
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ii) Attach a 3-holed sphere in the a) way to S, attach X1 (with the final 3-holed
sphere removed) to it. Finally, glue X2 to the unglued boundary of X1 and proceed
by setting S as the first 3-holed sphere of X1.

d) Then, the part is in the ordered form. Continue by setting S as the 3-holed sphere
attached to the type a) 3-holed sphere being glued to the present 3-holed sphere

i)/ii) Terminate, the decomposition is in one of the “ordered” forms.

All of these transformations do not change the β dependence of the decomposition since
either the constituent parts are only moved around or in the case c),ii) the factor of 1

β from
the self glueing of the final 3-holed sphere is replaced by that from the a)-type glueing after
the prescribed modification. Furthermore, it is important to note, that in the reactions
to the cases that don’t terminate the procedure the genus of the (ordered) decomposition
left of the new S is increased. Hence, the procedure is guaranteed to terminate since the
genus of the decomposed surface is finite. Thus, since we have given all the possible cases
how something can be glued to a given S the procedure is complete and yields an ordered
decomposition which shows our claim.

H Derivation of the SFF from universal RMT for GSE

The integral to evaluate is recalled from the main text to be

κs
4(τ, β) =

∫ ∞

0
dEe−2βEρ0(E)−

∫ ∞

0
dEe−2βEρ0(E)b4

(
τ

2πρ0(E)

)
, (H.1)

with

b4

(
τ

2πρ0(E)

)
=

1− τ
4πρ0(E) +

τ
8πρ0(E) log

(∣∣∣1− τ
2πρ0(E)

∣∣∣) if τ
4π ≤ ρ0(E)

0 if τ
4π ≥ ρ0(E).

. (H.2)

This motivates to define E⋆ as the solution of ρ0(E⋆) = τ
4π using which one can write the

integral as

κs
4(τ, β) =

[∫ E⋆

0
dE e−2βEρ0(E) +

∫ ∞

E⋆

dE e−2βE
(
τ

4π − τ

8π log
(∣∣∣∣1− τ

2πρ0(E)

∣∣∣∣))
]

=
[∫ E⋆

0
dE e−2βEρ0(E) +

∫ ∞

E⋆

dE e−2βE τ

4π

−
∫ ∞

E⋆

dE e−2βE τ

8π log
(∣∣∣∣1− τ

2πρ0(E)

∣∣∣∣)]
=
∫ ∞

0
dE e−2βE min

(
ρ0(E), τ4π

)
−
∫ ∞

E⋆

dE e−2βE τ

8π log
(∣∣∣∣1− τ

2πρ0(E)

∣∣∣∣)
=: κs

2

(
τ

2 , β
)
− τ

8πχ (τ, β) ,

(H.3)

where we can use the known result for the Airy model (eq. (2.13))

κs
2 (τ, β) =

1
2
√
π

1
2

5
2β3/2

Erf
(√

2βτ
)
. (H.4)
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What is left to evaluate is

χ (τ, β) =
∫ ∞

E⋆

dE e−2βE log
(∣∣∣∣1− τ

2πρ0(E)

∣∣∣∣)
=
∫ 4E⋆

E⋆

e−2βE log
(

τ√
E

− 1
)

dE +
∫ ∞

4E⋆

e−2βE log
(
1− τ√

E

)
dE,

(H.5)

where we now explicitly put ρ0 to be the Airy model density of states, i.e. ρ0(E) = 1
2π

√
E.

This results in E⋆ =
(

τ
2
)2. Integrating by parts yields:

χ (τ, β) =
[ 1
−2β e

−2βE log
(

τ√
E

− 1
)]E=4E⋆

E=E⋆

−
∫ 4E⋆

E⋆

1
−2β e

−2βE τ

2E
3
2 − 2Eτ

dE

+
[ 1
−2β e

−2βE log
(
1− τ√

E

)]∞
E=4E⋆

−
∫ ∞

4E⋆

1
−2β e

−2βE τ

2E
3
2 − 2Eτ

dE

= 1
2β e

−2βE⋆ log
(

τ√
E⋆

− 1
)

︸ ︷︷ ︸
0

+ 1
2β

∫ ∞

E⋆

e−2βE τ

2E
3
2 − 2Eτ

dE

= 1
2β

∫ ∞

E⋆

e−2βE

− 1
2
√
E
(
τ −

√
E
) − 1

2E

 dE.

(H.6)

Now we note that the integral
∫∞

E⋆

(
−e−2βE 1

2E

)
dE is related to the incomplete Gamma func-

tion as −1
2Γ (0, 2βE⋆). The remaining integral is solved by substituting x =

√
E, dx = 1

2
√

E
dE:

−
∫ ∞

E⋆

e−2βE 1
2
√
E
(
τ −

√
E
)dE. = −

∫ ∞

x⋆

e−2βx2 1
τ − x

dx, (H.7)

(note that x⋆ = τ
2 ). Now we shift the fraction using the shift operator. Doing this one

has to be careful since one has to split the integral in a way such that the different series
converge in each domain. Explicitly:

−
∫ ∞

τ
2

e−2βx2 1
τ − x

dx = −
∫ τ

τ
2

e−2βx2 1
τ − x

dx+
∫ ∞

τ
e−2βx2

e−τ d
dx

1
x

dx

= −
∫ τ

τ
2

e−2βx2
∞∑

n=0

xn

τn+1dx+
∫ ∞

τ
e−2βx2

∞∑
n=0

(−τ)n

n!
dn

dxn

1
x

dx

= −
∫ τ

τ
2

e−2βx2
∞∑

n=0

xn

τn+1dx+
∫ ∞

τ
e−2βx2

∞∑
n=0

(−τ)n

n! (−1)n n!
xn+1dx

=
∞∑

n=0

(∫ ∞

τ
e−2βx2 τn

xn+1dx−
∫ τ

τ
2

e−2βx2 xn

τn+1dx
)

=
∞∑

n=0

1
2E

n
2 +1

(
2βτ2

)
− 1

4

(
2−nE 1

2−
n
2

(
βτ2

2

)
− 2E 1

2−
n
2

(
2βτ2

))
,

(H.8)

where En(x) denotes the exponential integral.
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Putting all together, we find

χ(τ,β)= 1
2β

∫ ∞

E⋆

e−2βE

− πc
√
E
(
τ−

√
E
)− 1

2E

dE

= 1
2β

(
−1
2Γ
(
0,β τ

2

2

)
+

∞∑
n=0

(
1
2E

n
2 +1

(
2βτ2

)
− 1
4

(
2−nE 1

2−
n
2

(
βτ2

2

)
−2E 1

2−
n
2

(
2βτ2

))))

=− 1
4βΓ

(
0,β τ

2

2

)
+

∞∑
n=0

1
4βE

n
2 +1

(
2βτ2

)
−

∞∑
n=0

1
8β

(
2−nE 1

2−
n
2

(
βτ2

2

)
−2E 1

2−
n
2

(
2βτ2

))
.

(H.9)

We are interested in a series expansion in τ , so we have to expand the occurring special
functions. For this, we use [36]

Γ
(
0, β τ

2

2

)
= −γ − log

(
β
τ2

2

)
−

∞∑
n=1

(
−β τ2

2

)n

nn! , (H.10)

En (z) = (−z)n−1

(n− 1)! (− log z + ψ (n))−
∑
m=0

m ̸=n−1

(−z)m

(m− n+ 1)m! n ∈ N+, (H.11)

where γ denotes the Euler-Mascheroni constant and ψ the Digamma function. The latter
can be represented as

ψ (n) = −γ +
n−1∑
m=1

1
m
. (H.12)

Additionally, we use

En (z) = zn−1Γ (1− n, z) , (H.13)

Γ (a, x) = Γ (a)−
∞∑

k=0

(−1)k xa+k

k! (a+ k) a /∈ −N0, (H.14)

which can be combined to find

En (z) = zn−1Γ (1− n, z) (H.15)

= zn−1Γ (1− n)− zn−1
∞∑

k=0

(−1)k z1−n+k

k! (1− n+ k) (H.16)

= Γ (1− n) zn−1 −
∞∑

k=0

(−z)k

k! (k − n+ 1) n /∈ N+. (H.17)

This can be used to rewrite the latter two occurences of the Exponential integral in χ(τ, β) as

E 1
2−

n
2

(
βτ2

2

)
= Γ

(
n+ 1
2

)(
βτ2

2

)−n+1
2

−
∞∑

k=0

(−1)k
(

βτ2

2

)k(
k + n+1

2

)
k!

(H.18)

E 1
2−

n
2

(
2βτ2

)
= Γ

(
n+ 1
2

)(
2βτ2

)−n+1
2 −

∞∑
k=0

(−1)k (2βτ2)k(
k + n+1

2

)
k!
. (H.19)
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The treatment of the first occurence is a more complicated, since we have to distinguish
two cases:

En
2 +1

(
2βτ2

)
=


Γ
(
−n

2
) (

2βτ2
)n

2 −
∑∞

k=0
(−1)k(2βτ2)k

(k−n
2 )k! n /∈ 2N0

(−2βτ2)
n
2

(n
2 )!

(
− log 2βτ2 + ψ

(
n
2 + 1

))
−
∑∞

k=0
k ̸=n

2

(−2βτ2)k

(k−n
2 )k! n ∈ 2N0.

(H.20)

In total we find

χ (τ, β) =− 1
4β

−γ − log
(
β
τ2

2

)
−

∞∑
n=1

(
−β τ2

2

)n

nn!

 (H.21a)

+
∞∑

n=0

1
4β


(
−2βτ2

)n
n!

(
− log 2βτ2 + ψ (n+ 1)

)
−

∞∑
k=0
k ̸=n

(
−2βτ2

)k
(k − n) k!

 (H.21b)

+
∞∑

n=0

1
4β

Γ(−2n+ 1
2

)(
2βτ2

) 2n+1
2 −

∞∑
k=0

(
−2βτ2

)k(
k − 2n+1

2

)
k!

 (H.21c)

−
∞∑

n=0

1
8β 2

−n

Γ(n+ 1
2

)(
βτ2

2

)−n+1
2

−
∞∑

k=0

(
−βτ2

2

)k(
k + n+1

2

)
k!

 (H.21d)

+
∞∑

n=0

1
4β

Γ(n+ 1
2

)(
2βτ2

)−n+1
2 −

∞∑
k=0

(
−2βτ2

)k(
k + n+1

2

)
k!

 . (H.21e)

This simplifies considerably as the 1st, 2nd and 4th sum over k can be combined to find:

−
∞∑

n=0

∞∑
k=0
k ̸=n

(
−2βτ2

)k
(k − n) k! −

∞∑
n=0

∞∑
k=0

(
−2βτ2

)k(
k − 2n+1

2

)
k!

−
∞∑

n=0

∞∑
k=0

(
−2βτ2

)k(
k + n+1

2

)
k!

= −
∞∑

k=0

(
−2βτ2

)k
∞∑

n=0

(1− δn,2k)(
k − n

2
)
k! +

1(
k + n+1

2

)
k!


=

∞∑
k=0

(
−2βτ2

)k
k!

 1
2k + 1

2
+
(
2k + 1

2

) ∞∑
n=0,n ̸=2k

1(
k − n

2
)(
k + n+1

2

)


=
∞∑

k=0

(
−2βτ2

)k
k!

 1
2k + 1

2
+2H4k − 2H4k+1︸ ︷︷ ︸

=− 2
4k+1


= 0,

(H.22)
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where we denoted the n-th harmonic number as Hn. This implies

χ (τ, β) = − 1
4β

−γ − log
(
β
τ2

2

)
−

∞∑
n=1

(
−β τ2

2

)n

nn!

 (H.23a)

+
∞∑

n=0

1
4β

(
−2βτ2

)n
n!

(
− log 2βτ2 + ψ (n+ 1)

)
(H.23b)

+
∞∑

n=0

1
4βΓ

(
−2n+ 1

2

)(
2βτ2

) 2n+1
2 (H.23c)

−
∞∑

n=0

1
8β 2

−nΓ
(
n+ 1
2

)(
βτ2

2

)−n+1
2

(H.23d)

+
∞∑

k=0

1
8β

(
−βτ

2

2

)k 1
k!

2 2F1
(
1, 2k + 1; 2k + 2; 12

)
2k + 1 (H.23e)

+
∞∑

n=0

1
4βΓ

(
n+ 1
2

)(
2βτ2

)−n+1
2 . (H.23f)

This expansion looks like it contains negative powers of τ , however, as can easily be
checked, (H.23d) and (H.23f) perfectly cancel each other, so our final result for χ(τ, β) is

χ (τ, β) =− 1
4β

−γ − log
(
β
τ2

2

)
−

∞∑
n=1

(
−β τ2

2

)n

nn!


+

∞∑
n=0

1
4β

(
−2βτ2

)n
n!

(
− log 2βτ2 + ψ (n+ 1)

)
+

∞∑
n=0

1
4βΓ

(
−2n+ 1

2

)(
2βτ2

) 2n+1
2

+
∞∑

k=0

1
8β

(
−βτ

2

2

)k 1
k!

2 2F1
(
1, 2k + 1; 2k + 2; 12

)
2k + 1 .

(H.24)

Combining this with the well-known expansion of κs
2(τ, β), using eq. (H.3), yields the

expansion of κs
2(τ, β) as a power series in τ and β that is presented in the main text.

For completeness, we give a comparison of this result (summed up to n = 50) with a
numerical evaluation of the integral that defines χ(τ, β) in figure 8. Here, we choose an
exemplary value β = 1 and show values of τ beyond which the function vanishes. As one
would expect, the two curves cannot be distinguished.

I Determination of the “cancelling” functions

Here we illustrate our method how to find the “cancelling” functions for the logarithmic
term and the first terms of second and third type for the τ3β0 contribution to the β = 4
τ -scaled SFF.

What we are looking for generically is a function that asymptotically behaves as

a
(
log

(
btτ2

)
+ γ − 3

)
+ c

√
tτ, (I.1)
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χ (τ, β)

Figure 8. Comparison of a numerical evaluation of the integral definition of χ(τ, β) at and β = 1
with the analytical result eq. (H.24) summed up to n = 50.

with a, b, c ∈ R chosen such that subtracting this term cancels the term of the second type
and yields the logarithm expected from the universal result. Furthermore, it should have
the defining series expansion

d
(
tτ2
)2

+O
((
tτ2
)3)

, (I.2)

with d ∈ R chosen such that upon adding this expansion the first term of the third type is
cancelled. Specifically, for the case of β = 4, these values can be read off to be

a = 3, b = 1, c =
√
π

2 , d = 1
120 . (I.3)

We make an ansatz for the logarithmic part, using 2F2

A
(
tτ2
)2

2F2

(
2, 2; 52 ,

7
2;−Btτ

2
)

t→∞−→ 45A
16B2

(
log

(
16Btτ2

)
+ γ − 3

)
. (I.4)

By comparison this fixes B = b
16 and A = ab2

720 . Now we look at the defining expansion for this
function which, plugging already the found values for A and B, is given to the first orders as

A
(
tτ2
)2

2F2

(
2, 2; 52 ,

7
2;−Btτ

2
)
= ab2

720 t
2τ4 − ab2

25200 t
3τ6 + . . . . (I.5)

Next we concern ourselves with taking care of the second type term. Generically, for all
type 2 terms we could choose the ansatz

C
(
tτ2
)2 (

tτ2
)n

1F1

(3
2;

5
2;−Dtτ

2
)

t→∞−→
(√

tτ
)2n 3

√
πC

√
D

4D2 τt, (I.6)

iff Re (D) > 0. Using n = 0 to reproduce the present term of order
√
tτ we have

C
(
tτ2
)2

1F1

(3
2;

5
2;−Dtτ

2
)

t→∞−→ C
√
D

4D2 3
√
πτ

√
t. (I.7)
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In order to match our expectations, it would thus have to hold that

C
√
D

4D2 3
√
π = c =⇒ C2

16D3 9π = c2 =⇒ D = 3

√
9πC2

16c2 . (I.8)

We have to be careful, squaring in the second step means we apparently find solutions for
c < 0, which, upon closer inspection, do not work out, so we constrain ourselves to c > 0.
If we consider the defining series for this function we find

C
(
tτ2
)2

1F1

(3
2;

5
2;−Dtτ

2
)
= C

(
tτ2
)2

− 3
5CD

(
tτ2
)3

+ 3
14CD

2
(
tτ2
)4
. . . . (I.9)

Consequently, we find that for the series expansion to conform to our requirement, it has
to hold that

A+ C = d =⇒ C = d− ab2

720 =⇒ D =
3

√√√√9π
(
d− ab2

720

)2
16c2 , (I.10)

so we find

A = 1
240 , B = 1

16 , C = 1
240 , D = 1

8 3√100
. (I.11)

Putting these into our ansatz, we arrive at the expressions for f1 and f2 in the main text.

Data Availability Statement. This article has data included as electronic supplementary
material. Available at: https://doi.org/10.1007/JHEP11(2025)088.

Code Availability Statement. This article has code included as electronic supplementary
material. Available at: https://doi.org/10.1007/JHEP11(2025)088.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References

[1] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115
[INSPIRE].

[2] A. Altland and M.R. Zirnbauer, Nonstandard symmetry classes in mesoscopic
normal-superconducting hybrid structures, Phys. Rev. B 55 (1997) 1142 [cond-mat/9602137]
[INSPIRE].

[3] D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory, Adv. Theor.
Math. Phys. 24 (2020) 1475 [arXiv:1907.03363] [INSPIRE].

[4] B. Eynard and N. Orantin, Weil-Petersson volume of moduli spaces, Mirzakhani’s recursion and
matrix models, arXiv:0705.3600 [INSPIRE].

[5] M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered
Riemann surfaces, Invent. Math. 167 (2006) 179 [INSPIRE].

– 75 –

https://doi.org/10.1007/JHEP11(2025)088
https://doi.org/10.1007/JHEP11(2025)088
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.1903.11115
https://inspirehep.net/literature/1726905
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.48550/arXiv.cond-mat/9602137
https://inspirehep.net/literature/465680
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://doi.org/10.48550/arXiv.1907.03363
https://inspirehep.net/literature/1742818
https://doi.org/10.48550/arXiv.0705.3600
https://inspirehep.net/literature/751371
https://doi.org/10.1007/s00222-006-0013-2
https://inspirehep.net/literature/1336275


J
H
E
P
1
1
(
2
0
2
5
)
0
8
8

[6] D. Stanford, A Mirzakhani recursion for non-orientable surfaces, arXiv:2303.04049 [INSPIRE].

[7] P. Norbury, Lengths of geodesics on non-orientable hyperbolic surfaces, Geom. Dedicata 134
(2008) 153.

[8] M. Gendulphe, What’s wrong with the growth of simple closed geodesics on nonorientable
hyperbolic surfaces, arXiv:1706.08798.

[9] A. Blommaert, J. Kruthoff and S. Yao, An integrable road to a perturbative plateau, JHEP 04
(2023) 048 [arXiv:2208.13795] [INSPIRE].

[10] P. Saad, D. Stanford, Z. Yang and S. Yao, A convergent genus expansion for the plateau, JHEP
09 (2024) 033 [arXiv:2210.11565] [INSPIRE].

[11] T. Weber et al., Unorientable topological gravity and orthogonal random matrix universality,
JHEP 07 (2024) 267 [Erratum ibid. 11 (2024) 160] [arXiv:2405.17177] [INSPIRE].

[12] J. Tall, T. Weber, J.D. Urbina and K. Richter, Chaos and moduli space volumes in unorientable
JT gravity, JHEP 07 (2025) 046 [arXiv:2411.08129] [INSPIRE].

[13] B. Eynard, T. Kimura and S. Ribault, Random matrices, arXiv:1510.04430 [INSPIRE].

[14] P.J. Forrester, Log-Gases and Random Matrices (LMS-34), Princeton University Press (2010)
[DOI:10.1515/9781400835416].

[15] I. Dumitriu and A. Edelman, Matrix models for beta ensembles, J. Math. Phys. 43 (2002) 5830
[math-ph/0206043] [INSPIRE].

[16] A. Pandey and M.L. Mehta, Gaussian Ensembles of Random Hermitian Matrices Intermediate
Between Orthogonal and Unitary Ones, Commun. Math. Phys. 87 (1983) 449 [INSPIRE].

[17] M.L. Mehta, Random Matrices, Elsevier Science (2004).

[18] O. Bohigas, M.-J. Giannoni, A.M.O. Almeida and C. Schmit, Chaotic dynamics and the
GOE-GUE transition, Nonlinearity 8 (1995) 203.

[19] M. Turek and K. Richter, Leading off-diagonal contribution to the spectral form factor of chaotic
quantum systems, J. Phys. A 36 (2003) L455.

[20] K. Saito and T. Nagao, Spectral form factor for chaotic dynamics in a weak magnetic field, Phys.
Lett. A 352 (2006) 380.

[21] D. Kundu, S. Kumar and S.S. Gupta, Spectral Crossovers and Universality in Quantum
Spin-chains Coupled to Random Fields, Phys. Rev. B 105 (2022) 014205 [arXiv:2309.14076]
[INSPIRE].

[22] O. Bohigas, M.J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and
universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1 [INSPIRE].

[23] P.J. Forrester, B. Jancovici and D.S. McAnally, Analytic Properties of the Structure Function for
the One-Dimensional One-Component Log–Gas, J. Statist. Phys. 102 (2001) 737.

[24] P.J. Forrester, Differential identities for the structure function of some random matrix ensembles,
J. Statist. Phys. 183 (2021) 33 [arXiv:2006.00668] [INSPIRE].

[25] T. Weber, J.D. Urbina and K. Richter, Topological gravity for arbitrary Dyson index: The
microcanonical story, in preparation.

[26] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function,
Commun. Math. Phys. 147 (1992) 1 [INSPIRE].

– 76 –

https://doi.org/10.48550/arXiv.2303.04049
https://inspirehep.net/literature/2639059
https://doi.org/10.1007/s10711-008-9251-3
https://doi.org/10.1007/s10711-008-9251-3
https://doi.org/10.48550/arXiv.1706.08798
https://doi.org/10.1007/JHEP04(2023)048
https://doi.org/10.1007/JHEP04(2023)048
https://doi.org/10.48550/arXiv.2208.13795
https://inspirehep.net/literature/2143698
https://doi.org/10.1007/JHEP09(2024)033
https://doi.org/10.1007/JHEP09(2024)033
https://doi.org/10.48550/arXiv.2210.11565
https://inspirehep.net/literature/2169090
https://doi.org/10.1007/JHEP07(2024)267
https://doi.org/10.48550/arXiv.2405.17177
https://inspirehep.net/literature/2790375
https://doi.org/10.1007/JHEP07(2025)046
https://doi.org/10.48550/arXiv.2411.08129
https://inspirehep.net/literature/2848044
https://doi.org/10.48550/arXiv.1510.04430
https://inspirehep.net/literature/1398072
https://doi.org/10.1515/9781400835416
https://doi.org/10.1063/1.1507823
https://doi.org/10.48550/arXiv.math-ph/0206043
https://inspirehep.net/literature/2948807
https://doi.org/10.1007/BF01208259
https://inspirehep.net/literature/178614
https://doi.org/10.1088/0951-7715/8/2/005
https://doi.org/10.1088/0305-4470/36/30/101
https://doi.org/10.1016/j.physleta.2005.12.027
https://doi.org/10.1016/j.physleta.2005.12.027
https://doi.org/10.1103/PhysRevB.105.014205
https://doi.org/10.48550/arXiv.2309.14076
https://inspirehep.net/literature/2702707
https://doi.org/10.1103/PhysRevLett.52.1
https://inspirehep.net/literature/194582
https://doi.org/10.1023/a:1004846818738
https://doi.org/10.1007/s10955-021-02767-5
https://doi.org/10.48550/arXiv.2006.00668
https://inspirehep.net/literature/1798774
https://doi.org/10.1007/BF02099526
https://inspirehep.net/literature/342444


J
H
E
P
1
1
(
2
0
2
5
)
0
8
8

[27] K. Okuyama and K. Sakai, ’t Hooft expansion of multi-boundary correlators in 2D topological
gravity, PTEP 2021 (2021) 083B03 [arXiv:2101.10584] [INSPIRE].

[28] T. Weber, F. Haneder, K. Richter and J.D. Urbina, Constraining Weil-Petersson volumes by
universal random matrix correlations in low-dimensional quantum gravity, J. Phys. A 56 (2023)
205206 [arXiv:2208.13802] [INSPIRE].

[29] N. Do and P. Norbury, Weil-Petersson volumes and cone surfaces, Geom. Dedicata 141 (2008)
93.

[30] G. Borot and A. Guionnet, Asymptotic expansion of β matrix models in the one-cut regime,
Commun. Math. Phys. 317 (2013) 447 [arXiv:1107.1167] [INSPIRE].

[31] M. Bianchi, M. Firrotta, J. Sonnenschein and D. Weissman, From spectral to scattering form
factor, JHEP 06 (2024) 189 [arXiv:2403.00713] [INSPIRE].

[32] T. Weber, Random matrix universality as a tool in two-dimensional quantum gravity, PhD thesis,
University of Regensburg, Germany, October (2025).

[33] K. Efetov, Supersymmetry in disorder and chaos, Cambridge Univ. Press, Cambridge, U.K.
(2012) [INSPIRE].

[34] A. Blommaert, T.G. Mertens and H. Verschelde, Eigenbranes in Jackiw-Teitelboim gravity,
JHEP 02 (2021) 168 [arXiv:1911.11603] [INSPIRE].

[35] B. Post, J. van der Heijden and E. Verlinde, A universe field theory for JT gravity, JHEP 05
(2022) 118 [arXiv:2201.08859] [INSPIRE].

[36] I.S. Gradshteyn, I.M. Ryzhik, A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and
Products, Sixth Edition, Academic Press (2000).

– 77 –

https://doi.org/10.1093/ptep/ptab090
https://doi.org/10.48550/arXiv.2101.10584
https://inspirehep.net/literature/1842871
https://doi.org/10.1088/1751-8121/acc8a5
https://doi.org/10.1088/1751-8121/acc8a5
https://doi.org/10.48550/arXiv.2208.13802
https://inspirehep.net/literature/2143699
https://doi.org/10.1007/s10711-008-9345-y
https://doi.org/10.1007/s10711-008-9345-y
https://doi.org/10.1007/s00220-012-1619-4
https://doi.org/10.48550/arXiv.1107.1167
https://inspirehep.net/literature/1215515
https://doi.org/10.1007/JHEP06(2024)189
https://doi.org/10.48550/arXiv.2403.00713
https://inspirehep.net/literature/2764014
https://inspirehep.net/literature/460245
https://doi.org/10.1007/JHEP02(2021)168
https://doi.org/10.48550/arXiv.1911.11603
https://inspirehep.net/literature/1767186
https://doi.org/10.1007/JHEP05(2022)118
https://doi.org/10.1007/JHEP05(2022)118
https://doi.org/10.48550/arXiv.2201.08859
https://inspirehep.net/literature/2016677

	Introduction
	Background and main results
	Relation of matrix models with topological/JT gravity
	Chaos in topological/JT gravity
	Main results of this work

	Topological gravity for arbitrary beta
	Recap: the perturbative loop equations in double-cover coordinates
	Topological expansion of the beta Airy model resolvents
	General structure of the beta Airy model resolvents
	The beta Airy Weil-Petersson volumes
	Geometrical construction of arbitrary beta topological gravity/JT gravity

	Quantum chaos in topological gravity for arbitrary beta?
	The canonical spectral form factor
	The case of beta = 4 (The symplectic class)
	Outlook: the general case

	Conclusion
	Collection of beta resolvents
	Collection of beta Airy WP volumes
	Proof of the relation of resolvents of the beta ensembles for g = 0
	Relation of R**(beta) with R**(4/beta)
	Proof of the general structure
	Splitting of the beta dependence
	Proof of the generality of the surface decomposition
	Derivation of the SFF from universal RMT for GSE
	Determination of the ``cancelling'' functions

