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Introduction

To understand the dualities one obtains from a fixed cohomology theory it turns out
that, instead of considering just the cohomology theory, one should directly build a
whole coefficient theory and build/understand duality on the level of this coefficient
theory. This was first embraced by Pierre Deligne, using étale cohomology in his
proof of the Weil conjectures, and runs under the name six-functor formalism.
Fix a prime p. In this text, we construct such a coefficient theory for syntomic
cohomology of p-adic formal schemes as invented by Bhatt-Morrow-Scholze [BMS16]
[BMS18] and Bhatt-Scholze [BS19]. The main theorem can be summarized as
follows (see 4.1.1.2):

Theorem (A). There exists a six-functor formalism

X 7→ F-Gauge��(X)

on the category of derived p-adic formal schemes satisfying the following:

(A) For any derived p-adic formal scheme X,

F-Gauge��(X)

is a stable presentable ∞-category1. Furthermore, the full subcategory of
dualizable objects identifies with the category of perfect F -gauges as defined
in [Bha22][6.1.]. In particular, there is an identification

RΓsyn(X,Zp(n)) ' HomF-Gauge�� (X)(1X ,1X(n))

functorial in X, where the left-hand side is the syntomic cohomology as
defined in [BL22a][7.4.] and the twist is given by the Breuil-Kisin twist.

(B) The functor F-Gauge��(_)∗ is an étale sheaf and the functor F-Gauge��(_)!

and étale cosheaf.
(C) Any map which locally in the étale topology factors as an integral map

followed by a map of finite type is !-able. Proper maps are cohomologically
proper, and étale maps are cohomologically étale.

(D) For any derived p-adic formal scheme X, the object

1X(−1) := cof(1X → f∗1P1
X

)

is ⊗-invertible and identifies with the ⊗-inverse of the Breuil-Kisin twist.
Furthermore, any smooth morphism f : X → S is cohomologically smooth,
and there is a canonical identification

ωf := f !(1S) ' 1X(d)

of the dualizing sheaf, where d is given by the relative dimension of f .

1For the rest of this text we will refer to ∞-categories as categories.

v
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The starting idea to prove, or rather construct, the above theorem is the combination
of two developments.
On one hand Bhatt-Lurie [BL22a] [BL22b] and Drinfeld [Dri20] introduced a
formal stack Xsyn, one can associate to a p-adic formal scheme X, together with a
line bundle OXsyn{1} on this stack. From this data, one can recover the syntomic
cohomology of X in weight n as the mapping spectrum

Hom(OXsyn ,OXsyn{n})

in the category of quasi-coherent sheaves on Xsyn. This gives a good theory of
coefficients, which has one downside, though. Namely, how to define compactly
supported cohomology for quasi-coherent cohomology of algebraic geometric stacks
or schemes is a subtle question, and for example, it can not be obtained as a functor
acting on quasi-coherent sheaves.
Here, the second development comes in. To understand compactly supported quasi-
coherent cohomology as a functor acting on a category of quasi-coherent sheaves,
Clausen-Scholze enlarge the latter category and also consider certain completed
topological modules [CS19b]. Their theory of compactly supported quasi-coherent
cohomology not only works for algebraic geometric stacks, but also for stacks of a
more analytic nature. The objects they consider are called analytic stacks [CS24],
and the content of the above theorem then becomes answering the question of how
one should interpret the syntomification as an analytic stack.
The syntomification can be constructed as a pushout

X� ∐
X� XN

X� Xsyn

can

where the upper vertical map is given by two disjoint open immersions. In particular
to interpret this stack as an analytic stack, it is enough to interpret each term in the
defining cospan. Here X� denotes the Prismatisation of X, which is a stack whose
quasi-coherent sheaves recover the prismatic cohomology of X and the stack XN
represents the prismatic cohomology of X together with its Nygaard filtration in the
same way. One way to understand those stacks is to descend them from so-called
quasi-regular semiperfectoid rings. Those are p-complete ring S who’s prismatic
cohomology �S becomes a static ring, such that one can define

S� ' Spf(�S).

Similar the Nygaard filtration on �S becomes static and the stack SN is then given
by the Rees construction of this Nygaard filtration. In order to capture all derived
p-adic formal schemes, we weaken the notion of a quasi-regular semiperfectoid.

Definition. An animated ring is called semiperfectoid, if it is derived p-complete
and admits a π0-surjection from an integral perfectoid ring.

On those semiperfectoid rings, the prismatic cohomology and its Nygaard filtration
are connective, such that the above constructions still make sense if one interprets
them in the world of derived formal schemes. We can then associate an analytic
stack with these derived affine formal schemes.
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One then glues these stacks using the so-called quasi-syntomic topology. In order to
make the so obtained surjections stay surjections in the world of analytic stacks, we
also weaken this notion slightly:

Definition. A morphism of derived p-complete animated rings is called a naive
syntomic cover, if it can be refined by a map, which lives in the smallest class stable
under pushouts along arbitrary maps and composition generated by maps of the
form

Zp〈xi|i ∈ I〉 → Zp〈x
1
p∞

i |i ∈ I〉
for some set I.

Using the naive syntomic topology, one can still cover any derived p-complete
animated ring by a semiperfectoid, and the main point of making the construction
of the above stacks work is the following (see 3.2.1.8 and 3.3.2.10):

Proposition. Given a naive syntomic cover S → S′ of semiperfectoids, we have
the following:

• The map �S → �S′ is descendable in the category D(p,I)-comp(�S) of derived
(p, I)-complete �S-modules.
• The map Fil•N�S → Fil•N�S′ is descendable in the category DF (I,p)-comp(Fil•N�S)
of (I, p)-complete objects in filtered modules over the Nygaard filtered pris-
matic cohomology of S.

Here we write Fil•N�S for the Nygaard filtration and the notion of descendability is
a strong descent assertion [Mat16] which is closely related to the notion of coverings
used in the formalism of analytic stacks.
After having the construction, the remaining part is to prove Poincaré duality.
Here we give a general strategy slightly extending results from [Zav23]. Given a
six-functor formalism D on a category C, where we write CE for the subcategory gen-
erated by morphisms for which one has defined the compactly supported cohomology.
Then one can assume that there exists a finite limit preserving functor

Smsep
B → CE

from the category of separated smooth schemes over a fixed scheme B, which
preserved étale and proper maps. Then one can make sense of the Tate twist

1X(1) ∈ D(X)

for any X ∈ C and further ask for the existence of a theory of first Chern classes. A
way to formulate this is to ask for a natural transformation

RΓdét(_,Gm)[1]→ Hom(_)(1(_),1(_)(1))

where there dét-topology is generated by those cohomologically étale morphism for
which D∗ satisfies descent. Using these first Chern classes, one can construct a
morphism

d⊕
i=0

C∗(B)(d− i)→ C∗(PdB)(d)

which we assume to be an isomorphism. This is referred to as the Projective bundle
formula and essentially the only assertion we use to prove Poincaré duality. Let us
call the above data an additive orientation of the six-functor formalism D, then we
prove the following (see 1.2.4.8 and 1.2.5.13):
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Theorem (B). Given an additively oriented six-functor formalism. Then any map,
which locally in the dét-topology factors as a cohomologically étale morphism followed
by a projection An

S → S is cohomologically smooth. Furthermore, if we assume the
existence of the deformation to the normal bundle for sections of smooth morphisms2,
for any smooth morphism3 f : X → S in C, we obtain a canonical identification

ωf := f !(1S) ' 1X(d)

where d denotes the relative dimension of f .

Leitfaden. In section 1.1 of Chapter 1 we recall the notion of a six-functor
formalism and in section 1.2 we explain the proof of the second theorem stated
above.
In section 2.1, 2.2, and 2.3 of Chapter 2, we recall the notion of an analytic stack
and discuss how to understand Huber pairs as such. Most of the material is a
recollection from [CS24], and the reader familiar with this theory can easily skip
these sections. In the sections 2.4 of Chapter 2, we recall some notions of derived
formal schemes, and in section 2.5 we explain two ways to understand derived formal
schemes as analytic stacks. In the end, we discuss the compatibility of the notions
of properness in the two worlds 2.5.4.5. Here, the generality in which this is done is
not strictly necessary to deduce the main theorem, but it might be of independent
interest.
In section 3.1 of Chapter 3, we recall a bit about the theory around prismatic
cohomology. Most importantly for this text, we define the naive syntomic topology
on p-adic formal schemes 3.1.2 and Tate p-adic spaces 3.1.6. In section 3.2, we prove
one half of the above descendability result 3.2.1.8 and define the solid Prismatisation
3.2.6. Finally, in section 3.3 we prove the other half of the above descendability
assertion 3.3.2.10 and construct the solid Nygaard filtered Prismatisation 3.3.3 and
the solid syntomification 3.3.4.
In the last Chapter 4 we deduce the main theorem.

Conventions. Any ring is commutative, and p always denotes a prime number.
Essentially all categories in this text are honest ∞-categories. In order to avoid so
many “∞′s′′ we decided to refer to those just as categories. Sometimes we will use
the term ∞-topos to highlight that we use an assertion, which needs the ∞. Still,
by a topos we mean an ∞-topos.
We often consider “big topoi” like sheaves on a non-small category. Here the
convention is that we consider the respective κ small versions for κ a strong limit
cardinal, and then take the colimit over all strong limit cardinals. Note that this
way, all exactness properties of a topos involving finite limits and small colimits
survive.
We often refer to an effective epimorphism in a topos as a surjection.

2Note that this existence is a property.
3We give assertions that the class of smooth morphisms has to satisfy, which essentially follow

from a Jacobi criterion.
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CHAPTER 1

Remarks on Six-Functor Formalisms

In the following chapter, we will first recall some elementary notions concerning
six-functor formalisms.
Afterwards, we will explain a general strategy to prove cohomologically smoothness
for smooth morphisms, reducing the problem to an often-satisfied computation of
the cohomology of projective space (normally referred to as the Projective bundle
formula). This is strongly motivated and a slight generalization of [Zav23] using
also ideas from [AI22] [AHI24] [AHI25] and a construction due to Longke Tang.

1



2 1. REMARKS ON SIX-FUNCTOR FORMALISMS

1.1. Recollections on Six-Functor Formalisms

1.1.1. The Definition. First, let us clarify what we mean by a six-functor
formalism. There are many discussions on what a six-functor formalism is supposed
to capture [HM24] [GR17] [CD09] [Sch23]. In particular, we will focus on the
formal definition we will use. The definition is taken from [HM24].

1.1.1.1. Consider a pair (C, CE) where C is a category and CE ⊂ C a wide subcategory
satisfying the following:

(a) Morphisms in CE are closed under pullbacks along morphisms in C.
(b) CE admits pullbacks and the inclusion CE ⊂ C preserves those.

Such data is called a geometric setup and given such data we can construct the
category

Span(C, CE)

which informally can be described as follows (see [HM24][2.2] for an honest con-
struction):

• Objects are given by the objects in C.
• A morphism from X to Y is given by a span

Z

X Y

where the right leg lives in CE . To compose such spans, one takes fibre
products of the inner cospan.

Assuming that C admits finite products, the category Span(C, CE) can be equipped
with a symmetric monoidal structure induced by the cartesian product in C.

Definition 1.1.1.2. Given a geometric setup (C, CE), such that C admits finite
products. The a six-functor formalism on (C, CE) is given by a lax symmetric
monoidal functor

D : Span(C, CE)→ PrL.
Where PrL denotes the category of presentable categories with colimit-preserving
functors as morphisms and equipped with the Lurie-tensor product.

1.1.2. Constructing six-functor formalisms. We now recall the most com-
mon strategy to construct six-functor formalisms.

1.1.2.1. Consider a geometric setup (C, CE). Then, often the subcategory CE often
can be controlled by two further wide subcategories

CI , CP ⊂ CE
satisfying the following:

(a) Morphisms in CI as well as morphisms in CP are closed under base change
along morphisms in C. Furthermore, both of those classes are left can-
cellable1.

1This means that if a composition g ◦ f and g are in this class, then f is in this class as well.
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(b) For any morphism f in CE , there exists a factorization j ◦ p ' f , such that
j lives in CI and p lives in CP .

(c) Any morphism in CI ∩ CP is n-truncated for some n ≥ −2 (possibly
depending on the morphism).

For the rest of the subsection, we will assume that such wide subcategories are
given.

Remark 1.1.2.2. If C is some category of geometric objects, morphisms in CI will
often be open immersions and morphisms in CP proper morphisms. Morphisms in
CE are then given by those maps for which one can find a compactification. This
will be the situation for all examples in this text.

1.1.2.3. Let us assume we have given a functor

D∗ : Cop → Cat

such that for any morphism f : X → S the functor f∗ : D(S) → D(X) admits a
right adjoint f∗. Then to obtain the !-functors one normally asks for the following.

• For any morphism j : U → X in CI the functor

j∗ : D(X)→ D(U)

also admits a left adjoint j!.
• For any morphism p : X → S in CP the functor

p∗ : D(X)→ D(S)

admits a right adjoint p!.

Having this, for any morphism f ' j ◦ p in CE , on then sets

f! ' j! ◦ p∗

which is supposed to be independent of the choice of compactification and admits a
right adjoint f !. Let us make this more accurate.

1.1.2.4. Consider a functor
D∗ : Cop → PrL.

Note that this in particular means that for any morphism f : X → S the functor f∗
admits a right adjoint f∗. Then we will require the following:

(1) For any morphism j : U → X, the functor j∗ admits a left adjoint j!.
Furthermore, for any Cartesian square

U ′ U

X ′ X

f ′

j′ j

f

with j in CI the Beck–Chevalley transformation

BC! : j
′
!(f
′)∗ → j′!(f

′)∗j∗j! ' j′!(j′)∗f∗j! → f∗j!

is an isomorphism.
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(2) For any morphism p : X → S in CP , the right adjoint p∗ of the functor p∗
preserves colimits. Furthermore for any Cartesian square

X ′ X

S′ S

f ′

p′ p

f

with p in CP the Beck-Chevalley transformation

BC∗ : f∗p∗ → p′∗(p
′)∗f∗p∗ ' p′∗(f ′)∗p∗p∗ → p′∗(f

′)∗

is an isomorphism.
(3) For any cartesian square

X ′ X

S′ S

j′

p′ p

j

with j in CI and p in CP , by (1), we obtain a commutative square

D(S′) D(S)

D(X ′) D(X).

j!

(p′)∗ p∗

j′!

From this, we obtain a double Beck-Chevalley map

BC!,∗ : j!p
′
∗ → p∗p

∗j!p
′
∗ ' p∗j′!(p′)∗p′∗ → p∗j

′
!

and we will ask this map to be an isomorphism.

Recall that, to obtain a full six-functor formalism, the categories D(X) should be
equipped with a symmetric monoidal structure compatible with the other functors.
To capture this, let us first, recall that PrL admits a symmetric monoidal structure
by restricting the tensor product on cocomplete categories to presentable categories
[Lur17].

1.1.2.5. Let us now assume our functor can be enhanced to a lax symmetric monoidal
functor

D : (Cop)⊗ → (PrL)⊗.

Then we will say D is lax symmetric monoidal (I, P )-biadjointable, if the underlying
functor is (I, P )-biadjointable and the following assertions hold:

(A) For any morphism j : U → X in CI the natural transformation2

j!(j
∗ ⊗ id)→ id⊗ j!

is an isomorphism.
(B) For any morphism p : X → S in CP the natural transformation3

id⊗ p∗ → p∗(p
∗ ⊗ id)

is an isomorphism.

2This is adjoint to the natural transformation j∗ ⊗ id→ j∗ ⊗ j∗j! induced by the unit.
3This is adjoint to the natural transformation p∗ ⊗ p∗p∗ → p∗ ⊗ id induced by the counit.
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1.1.2.6. Given a lax monoidal functor

D∗ : Cop → PrL

satisfying the assertions from 1.1.2.4 and 1.1.2.5 using [Man22][A.5] or [CLL25]
we can extend this functor to a six functor formalism on the geometric setup (C, CE).
All six functor formalisms in this text will arise in this way, and we want to point out
that we thus have pre-specified cohomologically proper as well as cohomologically
étale morphisms.

1.1.3. Extending to stacks. Let us fix a six-functor formalism, which has
been constructed as recalled in the last section. Then, following [HM24][3.4], we
will now recall a way to extend the six-functor formalism to certain sheaves on C.

Definition 1.1.3.1. We make the following definitions:

(a) A sieve on C is called a universal ∗-cover, if the functor D∗ universally
descends along it.

(b) A sieve on C is called a universal !-cover, if it is generated by a small family
of !-able maps and D! universally descends along it.

We will call the topology generated by universal ∗-covers and universal !-covers the
D-topology.

Remark 1.1.3.2. Assuming the six functor formalism

D : Span(C, CE)→ PrL

is monoidal, any !-cover is automatically a universal. That is if D! descends along a
covering it automatically descends along any pullback. Furthermore any !-cover is
automatically a ∗-cover, such that in that case theD-topology is generated by !-covers.
If this is the case, we will refer to the D-topology also as !-topology [CS24][Lecture
17].

1.1.3.3. Let us assume that theD-topology is sub-canonical, then by [HM24][3.4.2.+3.4.11.]
there exists a wide subcategory

ShD(C)E′ ⊂ ShD(C)

spanned by a minimal class of morphisms such that:

(a) The right Kan-extension of D gives a unique extension to a six-functor
formalism on (ShD(C),ShD(C)E′).

(b) A map who’s pullback to any object in C lives in ShD(C)E′ , lives in
ShD(C)E′ .

(c) A map who !-locally on source and target lives in ShD(C)E, lives in
ShD(C)E′ .

(d) Any map f : X → S in ShD(C)E′ with S ∈ C is !-locally on X in CE .

We will denote the six-functor formalism on ShD(C) obtained in this way also by D.
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Construction 1.1.3.4. Given a morphism f : X → S in ShD(C), then we can
consider the diagram

X

X ×S X X

X S.

∆

p

q f

f

• Assuming we have an identification ∆∗
∼−→ ∆!, then we obtain a natural

transformation

f∗f! ' q!p
∗p∗∆∗ → q!∆∗ ' id

coming from the co-unit. This map is adjoint to a map

f! → f∗.

• Assuming we have an identification ∆! ∼−→ ∆∗. Then the co-unit gives us
a natural transformation

p!q
∗f ! ' f∗f!f

! → f∗.

Then, using the above identification and the map adjoint to the latter map,
we get a natural transformation

f ! ' ∆∗q∗f ! → ∆∗p!f∗ ' ∆!p!f∗ ' f∗.

Definition 1.1.3.5. A morphism f : X → S in ShD(C) is called:

(a) cohomologically 0-proper, if it D-locally on the target lives in CP .
(b) cohomologically n-proper for some n ≥ 1, if ∆f is cohomologically n− 1-

proper and the natural transformation

f! → f∗

constructed in 1.1.3.4 is an isomorphism.
(c) cohomologically proper, if it is cohomologically n-proper for some n ≥ 0.
(d) cohomologically 0-étale, if it D-locally in the target lives in CI .
(e) cohomologically n-étale for some n ≥ 1, if ∆f is cohomologically n−1-étale

and the natural transformation

f ! → f∗

constructed in 1.1.3.4 is an isomorphism.
(f) cohomologically étale, if it is cohomologically n-étale for some n ≥ 0.

Remark 1.1.3.6. It is easy to check that cohomologically proper morphisms, as well
as cohomologically étale morphisms are stable under base change and composition.

Remark 1.1.3.7. Being cohomologically proper as well as being cohomologically étale
is local on the target in the D-topology. This follows as in the proof of [HM24][4.6.3].

Remark 1.1.3.8. To check that the natural transformations appearing in the definition
of cohomologically proper and étale are isomorphisms, it is enough to check that
they are isomorphisms after applying the symmetric monoidal unit [HM24][4.6.4].
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1.2. Additively oriented six-functor formalisms

In the following, we will understand a geometric setup as honestly coming from
geometry and explain how to deduce that a six-functor formalism acts on smooth
morphisms in this geometry, as expected from the so-called Projective Bundle
formula. The discussion is highly inspired and will use results from [Zav23] and
the paper series [AI22] [AHI25] [AHI24].

1.2.1. Cohomologically smoothness. Let us fix a geometric setup (C, CE)
and a six-functor formalism D on it. Then recall the following definition.

Definition 1.2.1.1. A morphism f : X → S in CE is called weakly cohomologically
smooth, if the following holds:

(a) The natural transformation4

f !(1S)⊗ f∗ → f !

is an isomorphism.
(b) The dualizing complex ωf := f !(1S) is ⊗-invertible and commutes with

arbitrary base change. That is for any Cartesian square

X ′ X

S′ S

g′

f ′ f

g

the canonical morphism (g′)∗f !(1S)→ (f ′)!(1S′) is an isomorphism.

A morphism in CE is called cohomologically smooth if any base change of this
morphism is weakly cohomologically smooth.

Remark 1.2.1.2. For a cohomologically smooth morphism f : X → S the induced
isomorphism

HomX(1X , ωf ⊗ 1X) ' HomS(f!(1X),1S)

in examples recovers Poincaré Duality isomorphisms. Note that if the morphism is
also cohomologically proper, the right-hand side recovers homology.

Being cohomologically smooth is local on the source and target with respect to the
following topology.

Definition 1.2.1.3. We will say a morphism U → X in C is a dét-cover, if it is a
cohomologically étale !-cover (with respect to D).

We now want to implement some classical geometric objects into our geometric
setup.

Definition 1.2.1.4. We will say a geometric setup (C, CE) is geometrized, if it comes
with finite limit preserving functor

Smsep
B → CE

from the category of separated smooth schemes over some (possibly derived) scheme
B.

4This is adjoint to the natural transformation f!(f !(1S)⊗ f∗) ' f!f !(1S)⊗ id→ id induced
by the counit.
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Furthermore, a six-functor formalism D on a geometrized geometric setup is called
geometric, if:

• For any object S ∈ C the category D(S) is stable.
• Any étale morphism in SmB is cohomologically étale with respect to D.
• Any proper morphism in SmB is cohomologically proper with respect to
D.

• Any Nisnevich covering gets sent to a dét-cover.

Remark 1.2.1.5. We will normally not write the functor SmB → C. That is, for
example, we will write An for the n-dimensional affine space seen as an object in C
via this functor. We can also define the affine space over an arbitrary object X ∈ C
via base change.

Remark 1.2.1.6. The Nisnevich topology is famously used in motivic homotopy
theory and sits in between the Zariski and the étale topology. The étale topology
would be enough for all applications in this text. We just chose this definition for
the sake of generality.

Definition 1.2.1.7. We will say a morphism X → S in C is smooth, if locally on
X and S in the dét-topology, it factors as

X → An
S → S

where the first map is cohomologically étale.

How to check if any smooth map becomes cohomologically smooth was answered
elegantly in [Zav23]. To recall this, let us fix some notations.
Consider a morphism f : X → S in CE . Then we consider the commutative diagram

X

X ×S X X

X S.

∆

id

id

p2

p1 f

f

Definition 1.2.1.8. A trace-cycle theory on a morphism f : X → S in CE consists
of a triple (ωf , trf , cl∆) of:

(a) A ⊗-invertible object ωf in D(X).
(b) A trace morphism trf : f!ωf → 1S in D(S).
(c) A cycle morphism cl∆ : ∆!1X → (p2)∗ωf in D(X ×S X).

Such that the following hold:

(1) The composition

1X (p1)!∆!1X (p1)!(p2)∗ωf 1X
' (p1)!(cl∆) trp1

is the identity. Where we write trp1
' f∗(trf ).

(2) The composition

ωf (p2)!(p
∗
1ωf ⊗∆!1X) (p2)!(p

∗
1ωf ⊗ p∗2ωf ) ' (p2)!p

∗
2ωf ⊗ ωf id⊗ ωf ' ωf' (p2)!(id⊗cl∆) trf⊗id
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is the identity.

Then section 3 in [Zav23] implies the following.

Theorem 1.2.1.9. Consider a geometrized geometric setup (C, CE) and a geometric
six-functor formalism D on it. Then a morphism f : X → S in CE is cohomologically
smooth, if and only if it admits a trace-cycle theory, and in that case, we can compute
the dualizing sheaf as

f !1S ' ωf
. Furthermore the following are equivalent:

(a) Any smooth morphism is cohomologically smooth.
(b) The morphism A1 → B is cohomologically smooth.
(c) The morphism P1 → B is cohomologically smooth.

1.2.2. Additive orientations and the Projective Bundle formula. Let
us fix a geometrized geometric setup (C, C0) and a geometric six-functor formalism
D on it.

Definition 1.2.2.1. Let us write f : P1 → B for the projection. We say D admits
a Tate twists, if the object

1B(−1) := cof(1B → f∗1P1
B

)

is ⊗-invertible. In that case, we will write

1B(1)

for it’s ⊗-inverse and call it the Tate twist.

Remark 1.2.2.2. Using proper base change, the Tate twist defines a cartesian section
for D∗. That is, we can define

1S(1)

for an arbitrary S ∈ C, either the same way or via base change.

The following definition is taken from [Zav23][5.2.4].

Definition 1.2.2.3. We will say that D admits a theory of first chern classes, if it
admits Tate twists, and it comes with a natural transformation

c1 : RΓdét(_,Gm)[1]→ Hom(1(_),1(_)(1))

of sheaves of spectra on C.
Remark 1.2.2.4. Note that there is a natural transformation

RΓNis(_,Gm)[1]→ RΓdét(_,Gm)[1]

of sheaves of spectra on Smsep
B . Furthermore, π0 of the left-hand side computes the

Picard group. In particular, any line bundle L on a smooth separated scheme S
over B gives rise to a map

c1(L) : 1S → 1S(1).

In practice, π0 of the right-hand side will essentially compute the group of line
bundles on an object S ∈ C.
Remark 1.2.2.5. The assignment of first Chern classes is compatible with base change
and we have the formula

c1(L1 ⊗ L2) ' c1(L1) + c1(L2).
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Construction 1.2.2.6. Consider a morphism f : X → S of separated smooth
schemes over B and a line bundle L on X. Then, by adjunction, the morphism
c1(L) induces a morphism

c1(L) : 1S → f∗1X(1)

which we will denote the same way. Furthermore, taking iteratively ⊗-powers of
this morphism with itself, we obtain a map

c1(L)d : 1S → f∗1X(d).

Now, if we specialize to f : PS(E)→ S being the projection from the projective space
associated to a vector bundle E of rank d+ 1 on S, we can use these constructions
to obtain a morphism

d∑
i=0

c1(O(1))i(d− i) :

d⊕
i=0

1S(d− i)→ f∗1PS(E)(d)

where O(1) denotes the universal line bundle and c1(O(1))0 by adjunction corre-
sponds to the identity.

The following definition is taken from [Zav23][5.2.8].

Definition 1.2.2.7. We will say that a theory of first Chern classes for D is an
additive orientation, if for each d ≥ 1 the map

d∑
i=0

c1(O(1))i(d− i) :

d⊕
i=0

1B(d− i)→ f∗1PdB
(d)

is an isomorphism.

Remark 1.2.2.8. We will often refer to this isomorphism or versions thereof as the
Projective Bundle formula.

Remark 1.2.2.9. Note that the Projective bundle formula isomorphism base changes
to its counterpart over an arbitrary object S ∈ C. In particular, the Projective
Bundle formula holds over any object in C if we have an additive orientation. As we
can check isomorphisms locally, we also obtain a Projective Bundle formula for an
arbitrary projective bundle over a smooth separated scheme over S.

Remark 1.2.2.10. For any object S ∈ C and any sheaf E ∈ D(S) we obtain an
isomorphism

d∑
i=0

c1(O(1))i(d− i) :

d⊕
i=0

E(d− i)→ f∗f
∗E(d)

by tensoring the sheaf on the Projective Bundle formula isomorphism.

Example 1.2.2.11. Consider the diagram

S P1
S P2

S P3
S . . .

S

p1 p2
p3
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over some separated smooth scheme S over B. We can compute the homology of
P∞S by the formula

colimn(pn)!(pn)!1S '
∞⊕
i=0

1S(i) ∈ D(S).

And dually, we can compute the cohomology as

limn(pn)∗(pn)∗1S '
∞∏
i=0

1S(−i) ∈ D(S).

We now have enough structure to construct the trace morphism for the morphism
f : P1

B → B. For this, we follow [Zav23][5.6.1].

Construction 1.2.2.12. As a dualizing sheaf, we want to consider the Tate twist.
That is, we have to construct a morphism

trf : f∗1P1
B

(1)→ 1B .

Such a morphism is given by the composition

f∗1P1
B

(1)→ 1B ⊕ 1B(1)→ 1B .

The first map is the inverse of the Projective Bundle formula isomorphism, and the
second is the projection to the first factor.

1.2.3. The Motivic realization. In the following, we also want to construct
the cycle class map for the morphism P1

B → B. To explain the idea, let us make a
little detour.

1.2.3.1. In the paper series [AI22] [AHI25] [AHI24] the authors present a category
called motivic spectra together with a symmetric monoidal functor

Smsep
B →MS(B).

In this category, one is meant to present all reasonable cohomology theories on Smsep
B .

Formally, this functor is the initial symmetric monoidal functor to a presentable
stable category satisfying the following:

• (Nisnevich descent) The functor is a cosheaf for the Nisnevich topology5.
• (Elementary Blow-up excision) For any separated smooth scheme S over
B and any d ≥ 1 the Blow-up square

Pd−1
S VPd−1

S
(O(1))

{0} Ad
S

gets sent to a pushout square by this functor.
• (Tate-twist) The cofibre of the zero section B → P1

B becomes ⊗-invertible.

Remark 1.2.3.2. The relation to what we have done earlier comes from the fact that
for those motivic spectra, which admit a theory of first Chern classes (so called
oriented motivic spectra), satisfying Elementary Blow-up Excision is equivalent to
the Projective Bundle formula morphism to be an isomorphism.

5Again, for this text the reader can replace this topology by the étale topology.



12 1. REMARKS ON SIX-FUNCTOR FORMALISMS

Now, one can construct the needed duality data for the morphism P1
B → B already

in MS(B) [AHI24] [Tan]. Furthermore, there should be a functor induced by
taking homology

MS(B)→ D(B), (f : S → B) 7→ f!f
!(1B)

which transports the duality data we need to our setting. Unfortunately, it is a priori
not clear that homology produces a symmetric monoidal functor6, and thus that
we have such a functor. A posteriori, we will have such a functor as all the maps
in question will be cohomologically smooth, and thus, homology will be symmetric
monoidal. In any case, this idea will still be our guiding principle.
To start, let us now assume that our geometric six-functor formalism admits an
additive orientation.

1.2.3.3. Given a separated smooth scheme S over B, we will write

SchB-sm
S

for the category of those S-schemes, which are smooth and separated over B. Then
for any object ES ∈ D(S), homology induces a functor

C∗(_,ES) : SchB-sm
S → D(S)

assigning to a morphism f : X → S the object f!f
!(ES). Furthermore, we will write

C∗(_,ES) : (SchB-sm
S )op → D(S)

for the given by cohomology. That is the functor which assigns to a scheme f : X → S
over S the object f∗f∗(ES).

1.2.3.4. We will call a blow-up square

E BlX(Z)

Z X

associated to a closed immersion Z → X in Smsep
B a smooth blowup square. We

obtain the following crucial corollary.

Proposition 1.2.3.5. For any separated smooth scheme S over B and any object
ES ∈ D(S), the functor

C∗(_,ES) : SchB-smS → D(S)

as well as the functor

C∗(_,ES) : (SchB-smS )op → D(S)

sent smooth blow-up squares to pushout and pullback squares.

6This is at least not formal: As an example, one can consider the six-functor formalism which
assigns to a locally compact Hausdorff space the category of postikov complete sheaves of (derived)
abelian groups. Then, assuming that the assignment (f : S → ∗) 7→ f!f

!Z from profinite sets to
abelian groups is symmetric monoidal, which would imply that the global sections of the solid
tensor product in the abstract tensor product.
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Proof. We first prove the claim for cohomology. As we assume that cohomology
is a Nisnevich sheaf, by [AHI25][2.2] it suffices to check that for any S-scheme Z
smooth over B Blow-up squares of the form

Pd−1
Z VPd−1

Z
(O(1))

Z Ad
Z0

get send to (co)cartesian squares by ES-cohomology. Now consider the commutative
diagram

Pd−1
Z VPd−1

Z
(O(1)) W

Pd−1
Z PPd−1

Z
(O(1)⊕O) U

Z Ad
Z W

Z PdZ U

where we write U and W for the respective complements of the zero sections. Now,
by Zariski descent, the upper and lower squares in the right cube get send to
(co)cartesian squares by ES-cohomology. From this one sees that on ES-cohomology
the square in the back of the left cube becomes (co)cartesian if and only if the
square in the front of the left cube becomes (co)cartesian. Thus, it suffices to check
the claim for squares of the form

Pd−1
Z PPd−1

Z
(O(1)⊕O)

Z PdZ .

h
f

0

For the proof, let us refer to such squares as a projective Blow-up squares. Then we
first claim the following:

(∗) The proposition holds for projective Blow-up squares with Z = S.

Let us write p : PdS → S for the projection. Then we have to check that the square

p∗p
∗ES p∗0∗0

∗p∗ES

p∗f∗f
∗p∗ES p∗h∗h

∗p∗ES

is (co)cartesian. Using the Projective Bundle formula, we see that this square
identifies with the square

⊕di=0ES(−i) ES

⊕d−1
i=0 ES(−i)⊕⊕di=1ES(−i) ⊕d−1

i=0 ES(−i)
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which is easily seen to be (co)cartesian. To see that the map induced on the fibres
is the identity one uses that

f∗O(1) ' O(1).

Now, for a general projective Blow-up square, let us write g : Z → S for the structure
map. Then applying ∗ for Z = S with coefficients in g∗ES and using that g∗ preserves
(co)cartesian squares, we win. This finishes the argument for cohomology. To see
the claim for homology, we reduce the claim to projective Blow-up squares over the
base in the same way, and for those, one uses that for a proper map f : X → S, we
have an identification

f!f
!ES ' HomS(f∗1X ,ES)

such that the claim follows from the case of cohomology applied to the unit. �

1.2.3.6. For any separated smooth scheme S over B let us write

Pebu(S)∗ := Pebu(SchB-sm
S )∗

for the localization of pointed Nisnevich sheaves obtained by forcing Elementary
Blow-up squares to become pushouts. Then by 1.2.3.5, we obtain colimit resp. limit
preserving functors

C∗(_/S) : Pebu(S)∗ → D(S)

and
C∗(_/S) : Pebu(S)op∗ → D(S)

induced by taking homology resp. cohomology. Furthermore for any vector bundle
E on S we can consider the Thom space

ThS(E) := cof(PS(E)+ → PS(E ⊕ O)+) ∈ Pebu(S)∗.

This construction contravariant functorial along surjections of vector bundles and
by [AHI25][3] can be promoted to a symmetric monoidal functor. In particular, we
have the formula

ThS(E1 ⊕ E2) ' ThS(E1)⊗ThS(E2).

Proposition 1.2.3.7. For any separated smooth scheme S over B and any vector
bundle E on S the Thom space and its dual

C∗(ThS(E)/S),C∗(ThS(E)/S) ∈ D(S)

are ⊗-invertible.

Proof. By adjunction, we have an identification

C∗(ThS(E)/S) ' (C∗(ThS(E)/S))∨

and as taking duals preserves ⊗-invertible objects, it is enough to show the claim for
the cohomology. But restricted to proper schemes over S cohomology is symmetric
monoidal, so by Zariski descent and symmetric monoidality of the Thom space, we
can assume E ' O. But then

C∗(ThS(O)/S) ' 1S(−1)

which is ⊗-invertible by assumption. �

Remark 1.2.3.8. Using our orientation, one can construct Thom isomorphism for
any vector bundle in the classical way (see, for example [AHI25][6]). That is, we
have isomorphisms

C∗(ThS(E)/S) ' 1S(rk(E)).
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Remark 1.2.3.9. We will now start just writing things out in the case of homology.
The dual concepts exist, and the dual statements hold.

Corollary 1.2.3.10. Consider a separated smooth scheme S over B together with
a vector bundle E on S and a linear map σ : E → O. Then there exists a canonical
homotopy h(σ) in D(S) between the induced map

σ : C∗(S/S)→ C∗(VS(E)/S)→ C∗(PS(E ⊕ O)/S)

and the analogous map induced by the zero section. Furthermore, this homotopy is
functorial in (E , σ) and is the identity if σ is the zero section.

Proof. The author does not see how to formally apply [AHI25][4.1], but one
can now do the same proof using 1.2.3.5 and 1.2.3.7. �

Definition 1.2.3.11. We will say aP1
S-homotopy between two morphisms f, g : E→

E′ in D(S) is a morphism h : ⊗ C∗(P
1
S/S)⊗E→ E′ making the following diagram

commute

E

E⊗ C∗(P
1
S/S) E′

E.

0

f

h

1

g

We will say two morphisms are P1
S-homotopic, if they are related by a zigzag of

P1
S-homotopies. Furthermore, we will say a morphism in D(S) is a homotopy

equivalence if it admits an inverse up to P1
S-homotopies.

Corollary 1.2.3.12. Consider a separated smooth scheme S over B. Then P1
S-

homotopy equivalences are isomorphisms in D(S).

Proof. This easily follows from 1.2.3.10. �

This is quite useful to justify that certain maps are isomorphisms in D(S). Let us
record some examples.

Example 1.2.3.13. Note that there is a map of bi-pointed objects P1
S → A1/Gm,

where on the right we consider the action coming from the multiplication on A1.
From this one deduces that also Gm-equivariant A1-homotopies (with non-trivial
action!) are isomorphisms in D(S). One example of such a map is

C∗((A
n
S/Gm)/S)→ C∗(BGm/S)

coming from the projection.

Example 1.2.3.14. Consider a vector bundle E on S for which we can find a sur-
jective map E → O. The using 1.2.3.12 and 1.2.3.5 one proves the same way as
in [AHI25][5.3] that the projection

C∗(Grd(E∞)/S)→ C∗(BGLd/S)

from the infinite Grassmannian is an isomorphism in D(S).
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Example 1.2.3.15. A special case of the last example is the map

C∗(P
∞
S /S)→ C∗(BGm/S).

Thus, using 1.2.2.11, we see that we have an isomorphism
∞⊕
i=0

1S(i) ' C∗(BGm/S).

To end the section, let us give an alternative construction of the first Chern classes
following the classical strategy.

Construction 1.2.3.16. Consider a separated smooth scheme S over B and a line
bundle L on S. Then L corresponds to a section

iL : S → BGm

and we can consider the composition

c′1(L) : 1S →
∞∏
i=0

1S(1− i) ' C∗(BGm/S)(1)→ 1S(1)

where the first map is the inclusion into the first factor, and the second map is
induced by iL on cohomology.

Proposition 1.2.3.17. For any separated smooth scheme S over B and any line
bundle L on S the map c′1(L) constructed in 1.2.3.16 identifies with the first Chern
class associated to L.

Proof. We will implicitly use the identification

C∗(BGm/S)
∼−→ C∗(P∞S /S).

Using proper base change, one sees that the construction of the map c′1(L) is
stable under base change. In particular it suffices to identify the construction
for the universal line bundle on BGm. This easily follows the Projective Bundle
formula. �

1.2.4. Cycle classes. Let us now come to the construction of the cycle class
map. For this, we will use a construction of Gysin maps by Longke Tang [Tan]. All
geometric objects in the following will be considered in Pebu(S)∗.
Let us start with a well-known construction. The so-called deformation to the
normal bundle.

Proposition 1.2.4.1. Consider a closed immersion i : Z → S of smooth separated
schemes over B. Then there exists a closed immersion of stacks

(A1/Gm)Z → DZ/S

over (A1/Gm)S. Furthermore, this construction satisfies the following:

(a) It is contravariant functorial along cartesian maps of closed immersions.
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(b) If i is given by the zero section into a vector bundle V , then there is a
cartesian square

DZ/S (V/−1Gm)S

(A1/Gm)S (BGm)S

where we use the action of weight −1 on V .
(c) The fibre over 1: S ' (Gm/Gm)S → (A1/Gm)S recovers the closed im-

mersion i.
(d) The fibre over 0: (BGm)S → (A1/Gm)S is given by the zero section

0: (BGm)Z → NZ/X/−1(Gm)Z

into the normal bundle. Where in the normal bundle, we use the action of
weight −1.

(e) If i : D → S is given by an effective cartier divisor, the inclusion of the
fibre at 0 factors as

ND/S/−1(Gm)D DD/S

VS(O(−D))/−1(Gm)S .

Where the first map is the canonical inclusion, and, if we restrict the second
map to the 1-section, it identifies the composition of the 1-section in DD/S
with the structure map to (BGm)S with the map

O(D) : S → (BGm)S

corresponding to the line bundle O(D).

Proof. The construction is quite standard. See, for example, [KR25]. Note
that (a) and (b) determine the construction locally. For the last claim, note that
there is an identification

VS(O(−D))∗/−1(Gm)S ' VS(O(D))∗/(Gm)S

over (BGm)S . �

1.2.4.2. Given a closed immersion i : Z → S of separated smooth schemes over B,
let us write D = DZ/S ,A = (A1/Gm)Z and D0,A0 for the respective fibres over 0.
Then we have a map

D0/(D0 −A0)→ D/(D −A)

in Pebu(S).

Proposition 1.2.4.3. Given a closed immersion i : Z → S of separated smooth
schemes over B, the map

D0/(D0 −A0)→ D/(D −A)

constructed in 1.2.4.2 induces an isomorphism on homology and cohomology.

Proof. The argument is exactly the same as given in [Tan][5] using 1.2.3.5
and 1.2.3.12. �
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Construction 1.2.4.4. Now let us consider a closed immersion i : Z → S of sepa-
rated smooth schemes over B. Note that the map

D0/(D0 −A0)→ (BGm)Z/PZ(NZ/S)

is Zariski locally a P1-homotopy equivalence. In particular, we obtain an isomor-
phism

C∗((BGm)Z/PZ(NZ/S)/S)
∼−→ C∗((D0/(D0 −A0))/S)

in D(S). Furthermore, using the isomorphism observed in 1.2.3.15 we see that

C∗((BGm)Z/PZ(NZ/S)/S) '
∞∏
i=d

i∗i
∗1S(−i)

where d is given by the rank of the normal bundle of i. Including in the first factor,
we obtain a map

i∗1Z → C∗((D0/(D0 −A0))/S)(d).

Using this map, we consider the composition

i∗1Z C∗((D0/(D0 −A0))/S)(d) C∗((D/(D −A))/S)(d) 1S(d)' 1

where the last map is induced on cohomology by the 1-section and the second map
uses the isomorphism from 1.2.4.3.

Definition 1.2.4.5. We will call the map

cli : i∗1Z → 1S(d)

constructed in 1.2.4.4 the cycle class map associated to i : Z → S.

Remark 1.2.4.6. Using proper base change, one sees that the construction of cycle
classes is stable under base change.

The following says that our theory of first Chern classes underlies our theory of
cycle class maps in the sense of [Zav23][5.3.3].

Proposition 1.2.4.7. Consider an effective cartier divisor i : D → S of separated
smooth schemes over B. Then the triangle

1S 1S(1)

i!1D

c1(O(D))

ad∗ cli

commutes.

Proof. Unwinding what we have to do, we arrive at the diagram, which is
induced on cohomology by

D0 (BGm)D

VS(O(−D))/−1Gm D (BGm)S

D0/(D0 −A0) (BGm)D/P(N )

S D/(D −A) (BGm)S/P(−D)

1
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where we indicate the cohomology isomorphisms as equal. Now note that there
are sections on cohomology as indicated by dotted arrows, and as we just have to
check commutativity after precomposing with the inclusion into the first factor, we
are free to insert the idempotents induced by these sections as often as we want.
Furthermore, there exists a dotted arrow, making the right square commute up to
this idempotency, as indicated. Now it suffices to check that the large square in the
front commutes (up to idempotency), which easily follows by diagram chase from
1.2.4.1. �

We now arrive at the following:

Theorem 1.2.4.8. Consider a geometrized geometric setup (C, C0) together with a
geometric six-functor formalism on it, which admits an additive orientation. Then
any smooth morphism is cohomologically smooth. Furthermore, for any smooth
morphism, which globally admits a factorization

f : U → An
S → S

where the first map is cohomologically étale and the second map is the projection,
we have an identification

ωf ' 1U (1).

Proof. By 1.2.1.9, to deduce the first claim, it suffices to check the following:

(∗) The triple (1P1
B

(1), trf , cl∆) constructed in 1.2.2.12 and 1.2.4.5 gives a
trace-cycle theory for the projection f : P1

B → B.

But by 1.2.4.7 we see that our theory of Chern classes underlie our theory of cycle
classes so that we can apply [Zav23][5.6.6]. The computation of the dualizing sheaf
now easily follows by base change and the fact that for a cohomologically étale
morphism f : U → S, we have

f∗ ' f !.

�

Remark 1.2.4.9. In practice, the computation of the dualizing sheaf will hold for
general smooth morphisms. The obstruction to arguing for this lies in finding a
global comparison map. We will find this by using the deformation to the normal
bundle in the respective geometric setting.

1.2.5. Computing the dualizing sheaf. To finish the section, we want to
explain how to compute the dualizing complex of a smooth morphism in an additively
oriented six-functor formalism.
We will continue to fix a geometric six functor formalism D, which admits an
additive orientation. Now we will need to assume the existence of certain geometric
constructions. Let us start with the following definition:

Definition 1.2.5.1. A subclass of smooth morphisms is called geometrically smooth
if it satisfies the following:

(a) The class is stable under base change along arbitrary morphisms.
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(b) For a morphism e : U → X, which is geometrically smooth and cohomolog-
ically étale, the diagonal morphism factors

U V U ×X U.i j

where i is a Zariski closed immersion and j a cohomological étale monomor-
phism. We will call such morphisms geometrically étale.

(c) For any geometrically smooth morphism f : X → S, there exists a D-cover
of X consisting of geometrically étale morphism, such that restricted to
this covering the morphism factors as

X An
S S.e p

where e is a geometrically étale morphism and p the projection.
(d) Given a geometrically smooth morphism f : X → S then any section

s : S → X factors as

S U X.i j

where j is a cohomologically étale monomorphism and i locally in the
dét-topology arises as a cartesian square

S U

{0} An
B

.
(e) Assume we have a commutative triangle

Z X

S

i

g
f

where g and f are geometrically smooth and i locally in the dét-topology
arises as the pullback of some zero section. Then we can find an open
covering {Ui}I of X, such that the restriction of i sits in a cartesian square

Z ∩ Ui Ui

A
d(Z)
B A

d(X)
B

i

where the vertical maps are cohomologically étale and the lower horizontal
map is given by

(a1, . . . , ad(Z)) 7→ (a1, . . . , ad(Z), 0, . . . , 0).

(d) For any commutative triangle

Z X

S

i

g
f
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where g and f are geometrically smooth and i locally in the dét-topology
arises as the pullback of a zero section. Locally on X in the dét topology,
we can find cartesian squares

Z Z Z

X U An
Z

i t 0

with the horizontal morphisms étale.

Remark 1.2.5.2. In practice, assertion (c) in the definition of geometrically smooth
morphisms follows from the Jacobian criterion.

Remark 1.2.5.3. Assertion (d) in the definition of geometrically smooth morphisms,
in practice follows from assertion (d) together with the fact that the diagonal of an
étale morphism is an open embedding and that the image of the complement of an
open along a Zariski closed immersion (a map locally arising as the pullback of a
zero section) has an open complement [MV99][Section 3. Lemma 2.28].

Remark 1.2.5.4. Given a Zariski closed immersion Z → X then locally on X Z
admits a complement by pulling back the complement of the zero section. As these
are monomorphisms we can glue those local complements to a global complement
U ⊂ X. Furthermore for any etale morphism V → X, such that the square

Z V

Z X

is Cartesian, we see that the pair

V q U → X

is a dét covering, as this is true locally. Note also that as U ⊂ X is a monomorphism,
satisfying descent for this dét cover, is equivalent to sending the square

U ×X V V

U X

to a pullback.

Remark 1.2.5.5. Assume that we have a square

E BlX(Z)

Z X

of geometrically smooth objects over S ∈ C, which locally on X comes as the
pullback of an Elementary Blow up square. Then as in the proof of 1.2.3.5 we can
use assertion (d) in 1.2.5.1 and 1.2.5.4 to see that cohomology as well as homology
of this square becomes a (co)cartesian square in D(S).
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1.2.5.6. We will now write

(A1/Gm)X := (A1/Gm)B ×X

for the quotient stack in the dét-topology on X and similar for (BGm)X . Note that
by 1.2.4.8 we already know that the maps

A1
X → (A1/Gm)X and X → (BGm)X

are cohomologically smooth. As they have local sections, it is easy to see that the
from !-covers 1.1.3.1.

We will now assume that in the geometry C, we can construct the deformation to
the normal bundle. Let us formulate this in the following way.

1.2.5.7 (Existence of the deformation to the normal bundle). Given a ge-
ometrically smooth morphism f : X → S in C which admits a section s : S → X,
there exists a commutative diagram

X Ds Ns/−1Gm Ns

S (A1/Gm)S (BGm)S S

f f̃ f0 prs

1

s̃ s0

0

0

which on the locus on X, where s : S → X comes as the pullback of a zero section
{0} → An

B is comes from pulling back the deformation to the normal bundle 1.2.4.1
of this zero section along the map X → An

B .

Construction 1.2.5.8. Consider a Zariski closed immersion i : Z → X and let us
assume we can associate the deformation to the normal bundle to it. Then let us
write again D = Di,A = (A1/Gm)Z and D0,A0 for the fibres over 0. Then the
induced map

D0/(D0 −A0)→ D/(D −A)

will induce an isomorphism on homology as well as cohomology.
To see this, one does the same argument as in 1.2.4.3 using 1.2.5.5 and 1.2.5.4
together with the fact that one can pullback the identifications of P1-homotopies
from B 1.2.3.10.
In particular, as in 1.2.4.4, we can associate to i a cycle class map

cli : i∗1Z → 1X(d)

where d denotes the rank of the normal bundle.

Remark 1.2.5.9. Consider the composition of two Zariski closed immersions

h ' g ◦ i : Z → X → Y

then the triangle

h!1Z 1Y (d+ d′)

g!1X(d)

clh

g!(cli) clg⊗id(d)

commutes, where d and d′ denote the respective codimensions [Tan22][5.29].
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Remark 1.2.5.10. Using proper base and that the deformation to the normal bundle
construction is stable under base change, we see that given a Cartesian square

Z ′ X ′

Z X

i′

f

i

where i is a closed immersion, we have an identification

f∗(cli) ' cli′ .

Construction 1.2.5.11. Let us consider a geometrically smooth morphism f : X →
S, then we can produce the following diagram:

X

X ×S X X

X S.

∆

p

q f

f

Furthermore by assertion (a) in 1.2.5.1, there is a factorization

∆ ' j ◦ ∆̃ : X → U → X ×S X
into a Zariski closed immersion followed by an open immersion. Thus, using 1.2.5.8,
we obtain a cycle class map

cl∆̃ : ∆̃!1X → 1U (d).

Furthermore, applying j! and using the counit, we obtain a map

cl∆ : ∆!1X → 1X×SX(d)

which we will also refer to as cycle class map.

Theorem 1.2.5.12. Given a geometrically smooth morphism f : X → S in CE,
then we have an adjunction

f! : D(X) D(S) : f∗(_)⊗ 1X(d)

where d denotes the relative dimension.

Proof. Applying q! to the cycle class map cl∆ 1.2.5.11, we obtain a map
1X → f∗f!(1X(d)) and tensoring with this map gives a natural transformation

id→ f∗(f!(_))⊗ 1X(d).

We claim that this map is the unit of the claimed adjunction. That, for any two
objects ES ∈ D(S) and EX ∈ D(X), the induced map

HomS(f!EX ,ES)→ HomX(f∗f!EX(d), f∗ES(d))→ HomX(EX , f
∗ES(d))

is an isomorphism. This can be checked geometrically étale locally on X, thus we
can assume that f factors as a geometrically étale map e : X → An

S followed by the
projection. Using 1.2.5.10 and (the proof of) [Zav23][3.2.8], it suffices to check that
in this case, the map

cl∆ : ∆!1X → 1X×SX(d)
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is part of a trace-cycle theory. We can pull pack such a trace-cycle theory along e so
using 1.2.5.10 and 1.2.5.9 we reduce to check this to the case where f is given by a
projection p : An

S → S. Using 1.2.5.10 and 1.2.5.9 again we reduce to the case where
n = 1 and thus to the case where f is the projection P1

S → S. This was explained
in 1.2.4.8. �

Corollary 1.2.5.13. For a geometrically smooth morphism f : X → S, there is a
canonical identification

ωf := f !(1S) ' 1X(d)

where d denotes the relative dimension.

Proof. As both functors are right adjoint to f! by 1.2.5.12, we obtain a
canonical identification

f ! ' f∗(_)(d).

Applying this to the unit gives what we want. �



CHAPTER 2

Adic stacks

The main part of this chapter is to recall some aspects of the theory of analytic
stacks (mainly in the adic setting), developed by Clausen-Scholze. In particular, the
only originality we claim is for suboptimal exposition and mistakes. The other part
is to recall some notions of derived formal schemes, most crucially the construction
of the deformation to the normal bundle. In the end, we explain that understanding
a formal scheme as an analytic stack is compatible with proper maps.

25
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2.1. Recollections on Analytic stacks

2.1.1. Analytic rings.

2.1.1.1. Recall that the weight of a profinite set S ' limI Si is given by the cardi-
nality of the set of continuous functions

Cont(S,F2) ' colimI F
Si
2

from S to F2. We will say a profinite set is light if its weight is countable and write

ProN(Fin)

for the category of light profinite sets. This category can also be described as the full
subcategory of those profinite sets whose indexing category is given by the natural
numbers.

2.1.1.2. We equip ProN(Fin) with a pretopology, where coverings are generated
by disjoint unions and surjective maps. Now a light condensed object in a category
D is a presheaf

X : ProN(Fin)op → D
such that for any hypercovering U• → S the induced map

X(S)
∼−→ lim∆X(U•)

is an isomorphism. We will write Cond(D) for the category of condensed objects in
D.

Example 2.1.1.3. Any topological space X gives rise to a light condensed anima via
the assignment

S 7→ Cont(S,X).

This construction is fully faithful on metrizable compactly generated topological
spaces [CS24][Lecture 2]. Note that this construction preserves products, so any
topological algebraic object (like topological abelian group, topological ring, etc.)
gives us a condensed algebraic object.

Example 2.1.1.4. The light condensed objects appearing in this text will be either

Condlgt(Z)

which is our notation for the category of light condensed objects in the derived
category of Z. Or

Condlgt(Ring)

which is our notation for light condensed animated rings. Note that any topological
abelian group gives rise to a light condensed derived abelian group, as any derived
abelian group. Similar for light condensed animated rings.
Note also that to any light condensed animated ring A, we can associate the category
of modules over the underlying light condensed E∞-ring

Condlgt(A) :=ModA(Condlgt(Z)).

2.1.1.5. The category
Condlgt(Z)

admits a t-structure whose heart is given by light condensed abelian groups
[Lur18][1.3.2.7.]. Furthermore, as we consider hypersheaves, one can describe
the connective part Condlgt(Z)≥0 (resp. the coconnevtive part Condlgt(Z)≤0)



2.1. RECOLLECTIONS ON ANALYTIC STACKS 27

as those objects N whose homotopy sheaves πnN ' 0 vanish for n < 0 (resp.
n > 0) [Lur18][1.3.3.3.]. This induces a t-structure on

Condlgt(A)

for any light condensed animated ring A.

Remark 2.1.1.6. The category of light condensed abelian groups is not just a
Grothendieck abelian category. It behaves even better than that, similar to the
classical category of abelian groups itself. For example, arbitrary products and sums
are exact and filtered colimits distribute over products [CS19b].

Definition 2.1.1.7 ((Clausen-Scholze)). An analytic ring A is a pair (A.,D(A)),
where A. is a light condensed animated ring and

D(A) ⊂ Condlgt(A.)

is a full subcategory, such that:

(1) D(A) is closed under limits and colimits.
(2) For N ∈ D(A) and M ∈ Condlgt(A.) we have

HomA.(M,N) ∈ D(A).

(3) The left adjoint to the inclusion

(̂_) : Condlgt(A.)→ D(A)

seen as an endofunctor on the domain preserves connective objects.
(4) A. ∈ D(A).

A morphism of analytic rings A→ B is a morphism of light condensed animated
rings

A. → B.

such that the induced restriction of scalars functor

Condlgt(B.) Condlgt(A.)

D(B) D(A)

restricts to a functor on the derived categories.

Remark 2.1.1.8. Note that the existence of the localization functor in (3) is automatic
by [RS22].

2.1.1.9. Let us reformulate these conditions to describe the category of analytic
rings more honestly. Note first of all that as Condlgt(A.) is the stabilization of
Condlgt(A.)≥0 (which implies the analogous statement for D(A)), we could have
dropped condition (3) and formulate the other conditions using the respective
connective parts. Now for any light condensed animated ring A. the category
Condlgt(A.)≥0 is a commutative algebra in the category of compactly generated
categories1. In this language condition (1) exactly means that D(A)≥0 is compactly

1More concretely, it is compactly generated and admits a symmetric monoidal structure, such
that the tensor product preserves filtered colimits in each variable, and the tensor product of two
compact objects is again compact
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generated and the completion functor

(̂_) : Condlgt(A.)≥0 → D(A)≥0

is a localization which preserves compact objects (i.e., a morphism of compactly
generated categories which is a localization) and condition (3) exactly boils down to
the assertion that this completion functor induces a (unique) symmetric monoidal
structure on D(A)≥0 making the functor symmetric monoidal. The category of such
objects is presentable and comes with a colimit-preserving functor

s : Loc(Catcptgen,⊗)→ Catcptgen,⊗

to commutative algebras in compactly generated categories, which picks out the
source of the localization.
Now let us call the category of objects like in 2.1.1.7, but without assuming condition
(4), the category of pre-analytic rings. We have just explained that this category
sits in a Cartesian square

AnRingpre Loc(Catcptgen⊗ )

Condlgt(Ring) Catcptgen⊗

s

where the lower horizontal functor is given by A 7→ Condlgt(A). In particular, the
category is presentable, and to deduce the same for analytic rings, one observes that
there is a localization

(̂_) : AnRingpre → AnRing
given by the formula (A.,D(A)) 7→ (Â..D(A)), which admits a fully faithful right
adjoint preserving filtered colimits.

2.1.1.10. Many interesting analytic rings are constructed using the following con-
struction. Consider the profinite set

N ∪ {∞} := limn{0, . . . , n,∞}

where the transition maps sent the highest number to ∞. To this we can associate
its free (light) condensed derived abelian group Z[N ∪ {∞}] and we will write P for
the cofibre

Z[{∞}]→ Z[N ∪ {∞}]→ P

of the canonical inclusion. Note that this is a split exact sequence.

Remark 2.1.1.11. Understanding N ∪ {∞} as a topological space via the limit
topology, a continuous map

N ∪ {∞} → X

to a topological space exactly corresponds to a sequence (xi)i∈N of points in X
together with a limit point x∞ ∈ X, such that the sequence converges to x∞. In
particular P parameterizes null sequences in condensed derived abelian groups.

Proposition 2.1.1.12. The object P is internally compact in Condlgt(Z). That is
the endofunctor

HomZ(P,_) : Condlgt(Z)→ Condlgt(Z)

preserves colimits.
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Proof. This is explained in [CS24][Lecture 3]. �

2.1.1.13. One can use P to construct new analytic rings out of old ones. Namely, if
we consider an analytic ring A 2.1.1.12 formally implies that

PA := P⊗Z A ∈ D(A)

is internally compact as well. Furthermore if we have given any collection W of
endomorphisms of PA and write

(̂_) : D(A)→ D(A)[W−1]

for the Bousfield localization obtained by inverting maps in W . Then it is easy to
check that

(Â.,D(A)[W−1])

defines a new analytic ring. All analytic rings in this text will arise in this way.

2.1.2. Analytic stacks.

Definition 2.1.2.1. We define the category of affine analytic stacks to be

AnStackaff := AnRingop

the opposite category of analytic rings. For an object corresponding to an analytic
ring A, we will write AnSpec(A).

Proposition 2.1.2.2. Consider a map f : AnSpec(B)→ AnSpec(A) of affine ana-
lytic rings. Then the following are equivalent:

• The induced map f∗ : D(B)→ D(A) satisfies the projection formula. That
is for M ∈ D(A) and N ∈ D(B) we have

f∗(f
∗(M)⊗B N) 'M ⊗A f∗(N) ∈ D(A).

• The analytic ring structure on B is induced from A via f . That is, we
have the canonical functor

ModB.(D(A))
∼−→ D(B)

is an equivalence.

Proof. This is explained in [CS24][Lecture 16]. �

Definition 2.1.2.3. A map of affine analytic stacks is called proper if it satisfies
the equivalent conditions from 2.1.2.2.

Using the second definition, one easily obtains the following:

Corollary 2.1.2.4. Proper morphisms of affine analytic stacks are stable under
composition and base change. Furthermore, for any pair

g ◦ f : X → Y → Z

of composable morphisms, if g and g ◦ f are proper f is proper as well.
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Definition 2.1.2.5. A map j : AnSpec(B)→ AnSpec(A) of affine analytic stacks
is called an open immersion, if the functors

j∗ : D(A)→ D(B)

admits a fully faithful left adjoint j! which satisfies the projection formula. That is
for M ∈ D(A) and N ∈ D(B) we have

j!(j
∗(M)⊗B N) 'M ⊗A j!(N) ∈ D(A).

2.1.2.6. Given an open immersion j : U → X of affine analytic stacks, one obtains
a recollement

Dqc(U) Dqc(X) Dqc(Z).

j!

j∗

j∗

i∗

i!

i∗

That is a diagram as indicated, where Dqc(Z) is constructed as the cofibre of
the functor j!, every functor above is left adjoint to the functor below, and the
functors indicated as injective are fully faithful. Having the projection formula in
this situation exactly boils down to Dqc(Z) being the category of modules over an
idempotent algebra

OZ := i∗i
∗OX ∈ Dqc(X).

On the other hand, if we have such an idempotent given, we can produce the
recollement by taking the fibre. Asking (OU ,Dqc(U)) to be an analytic ring can be
phrased by asking

HomX(OZ ,_)[−1]

to preserve colimits and connective objects. This explains the following.

Proposition 2.1.2.7. Associating to an open immersion j : AnSpec(B)→AnSpec(A)
the object

cof(j!B
. → A.) ∈ D(A)

induces a bijection between the poset of affine open immersions into AnSpec(A) and
idempotent algebras C ∈ D(A) such that HomA(C,_)[−1] preserves all colimits and
connective objects.

Corollary 2.1.2.8. Open immersions of affine analytic stacks are stable under
composition and base change. Furthermore, for any pair

g ◦ f : X → Y → Z

of composable morphisms, if g and g◦f are open immersions, f is an open immersion
as well.

Example 2.1.2.9. In most cases, we will produce open immersions by starting with
the idempotent algebra

OZ ∈ Dqc(X).

Let us point out that in this situation, one can compute the functors appearing
in the recollement 2.1.2.6 quite explicitly. Via the functor j∗ the category Dqc(U)
identifies as with the full subcategory of those objects M such that

Hom(OZ ,M) ' 0.

Now, if we write F ' fib(OX → OZ) for the fibre of (the only) ring map , then it
is not hard to check that the formula

j∗ ' Hom(F,_) : Dqc(X)→ Dqc(U)
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localizes to this full subcategory. But now j∗ has an obvious left adjoint given by
j! ' F ⊗_.

Definition 2.1.2.10. A morphism of affine analytic stacks is called !-able if one
can factor it as an open immersion followed by a proper map.

Remark 2.1.2.11. Note that for any map of affine analytic stacks f : AnSpec(C)→
AnSpec(A) there is a canonical factorization

AnSpec(C) AnSpec(A⊗A. C.)

AnSpec(A)

j

f
p

where the complete modules for A⊗A. C. are given byModC.(D(A)). In particular,
the map p is proper. We claim that j is an open immersion if and only if f is !-able.
To see this let us consider a factorization AnSpec(C)→ AnSpec(B)→ AnSpec(A)
of f into an open immersion followed by a proper map. Then we can produce the
following Cartesian square

AnSpec(C ⊗B A⊗A. C.) AnSpec(A⊗A. C.)

AnSpec(C) AnSpec(B)

j

where all maps are −1-truncated and the horizontal maps are open immersions. So
the left vertical map is a −1-truncated map which admits a section and thus an
isomorphism.

Proposition 2.1.2.12. !-able morphisms of affine analytic stacks are stable under
base change and composition. Furthermore, for any pair

g ◦ f : X → Y → Z

of composable morphisms, if g and g ◦ f are !-able, f is !-able as well.

Proof. Stability by base change easily follows from 2.1.2.8 and 2.1.2.4. For
stability by composition, note that for any composable pair of maps of affine analytic
stacks AnSpec(C)→ AnSpec(B)→ AnSpec(A) the square

AnSpec(B ⊗B. C.) AnSpec(A⊗A. C.)

AnSpec(B) AnSpec(A⊗A. B.)

is Cartesian. So we can use 2.1.2.11 2.1.2.8 and 2.1.2.4. Also, the last claim easily
follows using the functorial compactifications from 2.1.2.11. �

Construction 2.1.2.13. As explained in 1.1.2, we can extend the functor which
assigns to an affine analytic stack AnSpec(A) its category of quasi-coherent sheaves

Dqc(AnSpec(A)) := D(A)

to a six-functor formalism. Here we choose open immersions as the class CI , proper
morphisms as the class CP , and !-able maps as the class CE . The assertions needed
to do this were just explained.
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Remark 2.1.2.14. Note that the six-functor formalism 2.1.2.13 is monoidal, such that
the D-topology identifies with the !-topology 1.1.3.2.

Definition 2.1.2.15. An analytic stack X is a sheaf

X : (AnStackaff)op → Ani
for the !-topology2.

Remark 2.1.2.16. The official definition of the category of analytic stacks is a further
localization of what we defined here as analytic stacks. At no point in this text will
we need these further identifications, so we chose this slightly simplified definition.

Construction 2.1.2.17. The !-topology on affine analytic stacks is sub-canonical
[CS24][Lecture 17]. So, as explained in 1.1.3, we can extend the six-functor formal-
ism from analytic rings to analytic stacks. We will write

Dqc

for this six-functor formalism.

2.1.3. Proper maps of analytic stacks.

Definition 2.1.3.1. Consider a map of analytic stacks f : X → S. We will say f is:

• affine proper, if it is locally on the target, affine and proper.
• proper, if it is cohomologically proper 1.1.3.5 in the six-functor formalism
2.1.2.17.
• locally proper, if there exists a proper surjection g : Y → X, such that the

composition f ◦ g is affine proper.

Remark 2.1.3.2. It is easy to check that proper and locally proper morphisms are
stable under pullbacks and composition.

Remark 2.1.3.3. Being proper is local on the target in analytic stacks, which follows
as in the proof of [HM24][4.6.3].

We will use the following criterion for properness.

Proposition 2.1.3.4. Consider a locally proper map f : X → AnSpec(A) to an
affine analytic stack, such that the diagonal ∆f : X → X ×A X is proper. Then f is
proper if and only if OX ∈ Dqc(X) is compact.

Proof. If f is proper, then f∗ is a left adjoint and thus preserves colimits. So
the claim follows as A. ∈ D(A) is compact.
To see the other implication, recall that we have a natural transformation

f! → f∗

and it suffices to check that this natural transformation becomes an isomorphism, if
we apply it to the unit 1.1.3.8. Now choose a proper surjection g : AnSpec(B)→ X,
such that f ◦ g is proper. Then the full subcategory of those objects in Dqc(X) for
which the above natural transformation is an isomorphism is stable under retracts
and contains all objects in the image of the functor g∗. As g is a surjection, we can
write

OX ' colim•∈∆ g(•)∗g(•)!OX ' colimn∈N colim•∈∆≤n g(•)∗g(•)!OX

2This is just a topos up to size issues. See the Conventions
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where g(•) denote the respective maps in the Čech nerve. So, as OX is compact, it
also lives in this subcategory. �

Definition 2.1.3.5. If it is proper and a monomorphism, we will say a morphism
Z → X is a closed immersion.

2.1.3.6. Consider an analytic stack X that admits a surjection

U1 q U2 → X

where both Ui → X are monomorphisms3. Then one easily checks that the square

U1 ∩ U2 U1

U2 X

is a pushout square of analytic stacks4. In particular the The induced square on
quasi-coherent sheaves becomes a pullback.

The following argument will be used several times in this text, so let us record it in
a corollary.

Corollary 2.1.3.7. Consider a locally proper map X → AnSpec(A) to an affine
analytic stack, such that the diagonal of f is proper. Assume there exists a surjection

q1≤i≤nZi → X

such that each Zi → X is a closed immersion and OZi ∈ Dqc(Zi) is compact for all
1 ≤ i ≤ n. Then f is proper.

Proof. By 2.1.3.4 we just have to check that OX ∈ Dqc(X) is compact. Not
as we consider closed immersions the restriction of OX to any finite intersection of
the Zi becomes compact as well. Now the claim follows by induction on n using the
Cartesian squares

Dqc(X) Dqc(V )

Dqc(Zn) Dqc(V ∩ Zn)

2.1.3.6 where V = ∩1≤i≤n−1Zi. �

2.1.4. Examples of surjections. Let us collect some examples of surjections
of analytic stacks for later use. We start with the case of proper maps.

2.1.4.1. Given a stable presentable symmetric monoidal category C, recall from
[BS17][11.2] that an E∞-algebra A in C is called descendable, if the multiplication
map

fib(1C → A)⊗n → 1C

for some n identifies with the 0-map. This is equivalent to the assertion that the
functor which assigns to an algebra B the category

ModModB(C)(PrLst)

3In most cases both Ui will be either closed immersions or open immersions. Finding a
surjection from a mixture of such might be hard.

4For example by pulling back to the Zi.
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descends along the morphism 1C → A [Mat16][3.3].

Example 2.1.4.2. A affine proper map AnSpec(B)→ AnSpec(A) of analytic stacks,
is a surjection, iff B. is a descendable algebra in D(A) [CS24][Lecture 18].

2.1.4.3. We will call a map j : U → X of analytic stacks an open immersion, if it
is cohomologically étale and a monomorphism. This implies that there exists an
idempotent algebra

OZ ∈ Dqc(X)

such that the category Dqc(U) via the functor j! identifies with the kernel of the
functor (_)⊗OX OZ .
Given a finite collection of open substacks {Ui → X}, then the map

qIUi → X

is a surjection of analytic stacks, if and only if

OZ1
⊗OX · · · ⊗OX OZn ' 0.

This is explained in [CS24][Lecture 18].

Example 2.1.4.4. Given an analytic stack X let us write S(X) for the locale of
idempotent algebras in Dqc(X) [CS22][5]. For any map of locales S(X)→ T and
any open U ⊂ T , we obtain an open substack of X given by the complement of the
idempotent algebra obtained by pulling back U . Furthermore, if a finite collection
of opens covers T , then the obtained open substack will be jointly surjective in
analytic stacks.

Example 2.1.4.5. Given a cohomologically etale morphism j : U → X of analytic
stacks, it is a surjection if and only if the functor

j∗ : Dqc(X)→ Dqc(U)

is conservative [HM24][4.7.1].
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2.2. Derived Huber pairs

2.2.1. Affine derived adic spaces.

2.2.1.1. Recall that there is an endomorphism

shift : N ∪ {∞} → N ∪ {∞}

which shifts the points in N one up and is the identity on the limit point. In
particular, we can consider the endomorphism

1� := id− shift : P→ P

and using 2.1.1.13 we can invert 1� in light condensed derived abelian groups to
obtain an analytic ring

Z�

which we will call the solid integers. Note that for an analytic stack it is a property
to live over the corresponding affine analytic stack

Spa(Z)

which we will call solid. We will restrict our attention from now on to solid analytic
stacks.

Example 2.2.1.2. Concretely, a light condensed derived abelian group M is solid if
the map

1∗� : Hom(P,M)
∼−→ Hom(P,M)

is an isomorphism. The inverse of this map should be thought of as the assignment
taking a null sequence (m0,m1. . . . ) to the sequence

(

∞∑
i≥0

mi,

∞∑
i≥1

mi, . . . ).

This condition states that we can sum null sequences in solid modules. One example
where these sums become finite is discrete derived abelian groups, in particular,
those are solid.

Example 2.2.1.3. As solid modules are stable under limits and cofibers, for any solid
condensed ring A. and any function (or finite collection of functions) f ∈ A.(∗), the
derived f -adic completion

Mf̂ ' limnM/(fn)

of a solid A.-module is again solid.

2.2.1.4. Recall that the one-point compactification, as an assignment from locally
compact Hausdorff spaces to pointed compact Hausdorff spaces is a functor for
proper maps and symmetric monoidal (i.e., sends finite products to smash products)
[Jam84][Chapter 3. Prop 3.7]. As the addition map on the natural numbers is
proper (it has finite fibres), we can use this to understand

N ∪ {∞}

as a commutative monoid in pointed topological spaces and thus as a condensed
object in monoids in pointed sets. In formulas, we mean

∗ ∧∞ =∞ =∞∧ ∗ and n ∧m = n+m.
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As a pointed object, the free condensed abelian group on N ∪ {∞} is given by P,
which, using the above, can be seen as a condensed ring. As such, it comes with a
ring map

Z[x]→ P

by choosing 1.

2.2.1.5. The solidification (that is the localization to D(Z�)) of a free condensed
derived abelian group on a light profinite set S = limI Si can be identified with

Z[S]� ' limI Z[Si] '
∏
N

Z

[CS24][Lecture 5]. Using this, one checks that the ring map from 2.2.1.4 after
solidification becomes the canonical map

Z[x]→ Z[[x]].

Via these computations, one also obtains the most important formula in the solid
setting

Z[[x]]⊗Z�
Z[[y]] := (Z[[x]]⊗ Z[[y]])� ' Z[[x, y]].

2.2.1.6. Let us write A1
� for the affine analytic stack corresponding to the solid

analytic ring
(Z[y],ModZ[Y ](D(Z�))).

This admits an affine open substack D1
� ⊂ A1

� which we will now construct. The
underlying condensed ring is given by Z[y] itself, and to obtain its category of
complete modules, we invert the morphism

y� := id− y · shift : Z[[x]][y]→ Z[[x]][y]

inModZ[y](D(Z�)). Note that the cofibre of this map is given by

Z((y−1)) := Z[[y−1]]⊗Z[y−1] Z[y−1, y],

which is an idempotent algebra by 2.2.1.5 and this localization is obtained by killing
this idempotent algebra as in 2.1.2.9. In particular, we can describe the localization
to the complete modules by the functor

j∗ ' HomA1
�

(Z((y−1))/Z[y][−1],_).

Using the already mentioned fibre sequence one checks that Hom(Z((y−1)),_)[−1]
preserves colimits and connective objects, so we have produced an affine open
immersion by 2.1.2.7.

Remark 2.2.1.7. Note that as an analytic stack, the affine line A1
� is proper and not

smooth over Spa(Z). The unit disc D1
� in contrast becomes smooth [CS19b][Lecture

XI]. In particular, the pullback functor

f∗ : Dqc(Spa(Z))→ Dqc(D
1
�)

admits a left adjoint and thus commutes with all limits (and also colimits). This
fact can be seen more directly on its own. Namely, one can compute this pullback
functor as

f∗ ' HomZ�
(xZ[[x]],_)

where the Z[x] action is induced by xn 7→ xn−1 [CS24][Lecture 7].
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Definition 2.2.1.8. Any analytic ring A has an underlying animated ring A.(∗)
and if A is solid an element f ∈ A.(∗) precisely corresponds to a map of analytic
stacks

AnSpec(A)

D1
� A1

�

f

and we say a function is bounded by 1, if this map factors through D1
�. We will

write
A+ ⊂ π0A

.(∗)
for the subset of functions bounded by 1.

Remark 2.2.1.9. The subset A+ forms an integrally closed subring [CS24][Lecture 8].
Furthermore, by pulling it back to A., we will also understand it as a sub-animated
ring of A. [Cam24][2.6].

2.2.1.10. Consider a solid analytic ring A then we can construct a new solid analytic
ring (A., A+)� together with a map

(A., A+)� → A.

As an underlying condensed ring, we take A., and to obtain the complete modules,
we invert the maps

f� := id− f · shift : PA. → PA.

inModA.(D(Z�)) for all f ∈ A+.

Now we can recall the following definition from [Cam24][2.6.6].

Definition 2.2.1.11. A solid analytic ring A is called solid affinoid, if the map

(A., A+)�

∼−→ A

is an isomorphism. We will write AffRing� for the full subcategory of solid affinoid
analytic rings. Furthermore, we will write Spa(A., A+) for the corresponding
analytic stack of a solid affinoid analytic.

Remark 2.2.1.12. The category AffRing� is compactly generated and stable under
colimits and finite products in all analytic rings [Cam24][2.6.8].

Example 2.2.1.13. Any Huber pair (A,A+) in the sense of [Hub96] gives rise to a
solid affinoid analytic ring by considering the topological ring A as a condensed
ring and A+ as the subring of functions bounded by 1. This defines a fully faithful
functor from Huber pairs to solid affinoid analytic rings [And21][3.34].

Before we start gluing affine derived adic spaces, let us record the following simple
but useful characterization of proper maps between affine derived adic spaces.

Proposition 2.2.1.14. A map f : Spa(B., B+) → Spa(A., A+) of affine derived
adic spaces is proper if the map

f+ : A+ → B+

is integral.
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Proof. The map is proper ifD((B., B+)�) can be obtained fromModB.(D(A., A+))
by inverting the maps

f+(a)� : PB. → PB.

for a ∈ A+. The set of elements b ∈ π0B
.(∗) such that b� is an isomorphism in

D(B., B+) is integrally closed in π0B
.(∗) and is given by B+ 2.2.1.9. �

2.2.2. Valuation spectra of affine derived adic spaces.

2.2.2.1. Let us write S(A) for the locale of idempotent algebras in D(A) the category
of quasi-coherent sheaves on a solid affinoid ring A. In this section, we will produce
maps

S(A)→ X

to topological spaces. By 2.1.4.4, this will produce coverings of analytic stacks by
open substacks by pulling back open coverings from X.

2.2.2.2. Given a solid affinoid algebra A, we will write

|Spv(A., A+)| := {x : π0A
.(∗)→ Γx s.t. |f(x)| ≤ 1 for all f ∈ A+}/ '

for the set of those valuations which understand elements in A+ as ≤ 1 and equip it
with the coarsest topology where the subsets

|U(
f

g
)| := {x ∈ |Spv(A., A+)| s.t. |f(x)| ≤ |g(x)| 6= 0|}

are open for all f, g ∈ π0A
.(∗). This defines a quasi-compact spectral topological

space [Wed19][4.7] and it is easy to check that it admits a basis by the rational
opens

|U(
f1, . . . , fn

g
)| := {|f1(x)|, . . . , |fn(x)| ≤ |g(x)| 6= 0}

for f1, . . . , fn, g ∈ π0A
.(∗), which are quasi-compact and stable under intersections.

Example 2.2.2.3. We will call the rational opens of the form

|U(
f1, . . . , fn

g
)|

such that f1, . . . , fn, g generated the unit ideal standard rational opens. Note that a
collection of standard rational opens that cover is given by

{|U(
f1, . . . , fn

fi
)|}1≤i≤n

where f1, . . . , fn are functions generating the unit ideal. We will call such a covering
standard rational cover.

Let us summarize how to understand these topological spaces in terms of sheaves in
the following proposition.

Proposition 2.2.2.4. Consider the topological space X = |Spv(A,A+)| associated
to a solid affinoid analytic ring. Then the standard rational opens form a basis of
X which is stable under intersections. Furthermore, a presheaf E on X is a sheaf if
and only if one of the following equivalent assertions holds.

(1) We have
(a) E(∅) ' ∗
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(b) For any Mayer-Vietoris square consisting of standard rational opens
the square

E(V ∪ U) E(U)

E(V ) E(V ∩ U)

is Cartesian.
(2) For any standard rational open U and any standard rational cover {Vi →

U}I tha canonical map

E(U)
∼−→ limn∈∆

∏
In

E(V1i ∩ · · · ∩ Vni)

is an isomorphism.

(3) We have

(a) E(∅) ' ∗
(b) For any standard rational open U and any function f ∈ π0A

.(∗) the squares

E(U) E(U( 1
f )) E(U) E(U( 1

f ))

E(U( 1
1−f )) E(U( 1

1−f ) ∩ U( 1
f )) E(U( f1 )) E(U( f1 ) ∩ U( 1

f ))

are Cartesian.

Proof. The fact that standard rational opens form a basis which is stable
under intersections is [Hub93a][2.6]. Using this “unfolding” tells that a sheaf is
determined on its values on these standard rational opens5.
The characterization (2) follows as any covering of rational opens admits a refinement
by a standard rational cover [Hub94][2.6].
To see (1) and (2) note first that both types of Mayer-Vietoris squares appearing
there form cd-structures. So by [AHW15][3.2.5], to finish the proof, we have to
check that any standard rational cover admits a refinement by a composition of
covers appearing in (3).
For this, let us first prove the following claim:

(∗1) For any rational open U and any collection of rational functions f1, . . . , fn ∈
π0A

.(∗) such that f1 + · · ·+ fn = 1 on U the covering

{U(
1

fi
)}1≤i≤n

admits a refinement of a composition of coverings appearing in (3).

We prove this by induction on n. The case n = 2 holds by assumption. To see the
induction step, note that by assumption we have a covering of U given by

{U(
1

fn
), U(

1

f1 + · · ·+ fn−1
) ∩ U(

fn
1

) := V }.

5Note that this also tells us what to do with infinite unions of open subsets
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The pullback of the original covering to U( 1
fn

) becomes split so we just have to
argue for V . On V the function f1 + · · ·+ fn−1 becomes invertible, let us write x
for the inverse. Then

{U(
1

xfi
)}1≤i≤n−1

as open on V refines the original cover and can be refined by the covers appearing
in (3) by the inductive hypothesis.
For the rest of the argument, we closely follow [CS19b][10.3]. We have already seen
that a standard rational covering can refine any covering

{U(
f1, . . . , fn

fi
)}1≤i≤n

so we have to refine such a covering. Thus we can find functions xi such that
x1f1 + · · · + xnfn = 1 and by (∗1) it suffices to check the assertion after pulling
back to the U( 1

xkfk
). Over such a rational open, we get

U(
xkfkf1, . . . , xkfkfn

xkfkfi
) = U(

f−1
k f1, . . . , 1, . . . , f

−1
k fn

f−1
k fi

)

for all i. So it suffices to check the following:

(∗2) For any rational open U and any collection of rational functions f1, . . . , fn ∈
π0A

.(∗), such that 1 = f1 on U , the standard rational cover

{U(
f1, . . . , fn

fi
)}1≤i≤n

admits a refinement by a composition of coverings appearing in (3).

We again prove the statement by induction on n, the case n = 2 holding by
assumption. For the induction step note that the assumption tells us that we can
prove the assertion after pulling back to U( 1

fn
) and U( fn1 ), that is we can assume

that either f−1
n ≤ 1 or fn ≤ 1. In the first case, the collection

U(
1, . . . , fn

fi
) = U(

1, . . . , fn−1

fi
)

for 1 ≤ i ≤ n− 1 gives a refinement. So we can apply the inductive hypothesis. In
the second case, the collection

U(
1, . . . , fn

fi
) = U(

f−1
n f2, . . . , f

−1
n fn−1, 1

f−1
n fi

)

for 2 ≤ i ≤ n gives a refinement, we can again apply the inductive hypothesis. �

Example 2.2.2.5. The universal case of a rational open of the form U( 1
f ) is given by

U(
1

x
) ⊂ A1

�.

We claim that the corresponding solid affinoid ring is obtained by killing the
idempotent algebra Z[[x]] in Dqc(A

1
�) as in 2.1.2.9.

For this it suffices to see that for any M such that HomZ[x](Z[[x]],M) ' 0 the map

M →M [x−1]
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is an isomorphism. But note that the fibre is x-torsion and any x-torsion module is
a module over Z[[x]]. As the latter is an idempotent algebra, this implies that for
any such x-torsion module Ntors we have

HomZ[x](Z[[x]], Ntors)
∼−→ Ntors.

This easily implies what we want.

2.2.2.6. To transport the rational open topology on adic spaces to the world of
analytic stacks, we have to determine open substacks of the affine line. These open
substacks can be summarized in the following Cartesian square

(Gan
m )� U( 1

x )

D1
� A1

�.

Here, the right vertical immersion was just discussed in 2.2.2.5 and the lower
horizontal immersion in 2.2.1.6.

2.2.2.7. Consider a solid affinoid analytic ring A = (A., A+). Then, to any collection
of functions defining a standard rational open

U := |U(
f1, . . . , fn

g
)| ⊂ |Spv(A)|

we can associate and affine open substack of U ⊂ Spa(A) which is represented by a
solid affinoid analytic ring OU (U). An inducing pre-analytic ring can be described
as follows:
The underlying condensed ring is given by

OU (U). ' A.[ 1
g

]

and we obtain the category of complete modules Dqc(U) by inverting the endomor-
phisms

fi
g �

: PA[
1

g
]→ PA[

1

g
]

for all fi inModA.[ 1
g ](D(A)).

Let us recall the argument why this gives an open immersion of analytic stacks
from [MW24][5.3]. Note first that the defining functions of the rational open
generate the unit ideal by assumption. So the function g becomes invertible in the
algebra

A.[x1, . . . , xn]/(gx1 − f1, . . . , gxn − fn).

From this, one sees that we can compute OU (U) also using this ring and then solidify
the functions xi. Using what we know, how to compute the pullback functor to the
unit disc 2.2.1.7, we see that the pullback to OU (U) then is given by HomA(Q,_)
where

Q ' ⊗n1=i((xiZ[[xi]]⊗Z A)/(gxi − fi)[−1])

which has a left adjoint given by Q⊗A _. To check the projection formula, one first
observes that Q is a module over A.[ 1

g ] so one can check the projection formula in
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ModA.(D(A)) but from this category Dqc(U) is obtained by successfully killing the
idempotent algebras

Z((x−1
i ))⊗Z[xi] A[

1

g
]

where on the right we use the ring map induced by xi 7→ fi
g 2.2.1.5. So the projection

formula holds for formal reasons 2.1.2.6 and 2.1.2.9.

The following is a version of [Hub94][1.3]. It gives a universal property of the
just-constructed solid affinoid, which in particular says that this construction relative
to A just depends on the rational open and not on the defining functions.

Proposition 2.2.2.8. Consider the situation in 2.2.2.7. Then the solid affinoid
A-algebra OU (U) is initial among those solid affinoid A-algebras B for which the
induced map

|Spv(B)| |Spv(A)|

U

factors through U .

Proof. Note first that there is a map |Spv(OU (U))| → U . Now the A-algebra
OU (U) has an obvious universal property. Namely if we consider an A-algebra B we
have to check that g becomes invertible on B. and then that fi

g lands in B+ for all i.
Both of these conditions can be checked on π0B

.(∗). Now note that (π0B
.(∗), B+)

is a discrete Huber pair, so the rest is standard. The first condition can be checked
using trivial valuations for maximal ideals, and the second condition follows as
B+ consists exactly of those elements which have value ≤ 1 on all valuations in
|Spv(B)| [Hub93a][3.3]. �

We can now prove the central proposition of this section.

Proposition 2.2.2.9. For a solid affinoid A assigning a standard rational open
U ⊂ |Spv(A)| to the solid affinoid OU (U) induces a continuos map of locals

S(A)→ |Spv(A)|
where S(A) denotes the locale of idempotent algebras un D(A). This construction
is functorial in A (i.e., it produces a functor from solid affinoid analytic rings to
categorified locales).
In particular the induced functor

U 7→ Dqc(U)

defines a sheaf on the topological space |Spv(A)|.

Proof. The in particular part follows from [CS22][5.5]. Recall that taking
sheaves defines a fully faithful functor from locales to topoi, so to produce the
continuous map in the statement, we can produce a morphism of topoi

f∗ : Sh(|Spv(A)|)→ Sh(S(A)).

That is, we have to produce a cosheaf Op(|Spv(A)|)→ Sh(S(A)). Using 2.2.2.4 we
have to define the functor on standard rational opens, where we use 2.2.2.8. Now,
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by 2.2.2.4(3), to check that we have produced a cosheaf boils down to the following
computations, where we write OZ( 1

f ) respectively for the corresponding idempotent:

(1) O(|Spv(A)|) ' A.
(2) OZ( 1

f ) ⊗OZ( 1
1−f ) ' 0 on U for a local function f .

(3) OZ( 1
f ) ⊗OZ( f1 ) ' 0 on U for a local function f .

The first isomorphism is obvious. For (2) and (3), it suffices to check these iso-
morphisms in the universal cases. For (2), by 2.2.2.5, this means we have to check
that

Z[[x]]⊗Z[x] Z[[1− x]] ' Z[[x, y]]/(1− (x+ y)) ' 0

where the first isomorphism follows using 2.2.1.5 and the second as the geometric
series

∞∑
n

(x+ y)n

gives an inverse for 1− (x+ y). Similarly, one checks that

Z[[x]]⊗Z[x] Z((x−1)) ' Z[[x, y]]/(1− yx) ' 0

which shows (3) by 2.2.1.6.
The functoriality becomes clear as soon as we see that a map of solid affinoid analytic
rings A→ B gives rise to a map of categorified locales. That is, we have to check
that the diagram

S(B) S(A)

|Spv(B)| |Spv(A)|

commutes. Similar to the above argument, we have to check this on standard
rational opens, where it easily follows using the respective universal properties. �

We want to consider certain subspaces of these valuation spectra following Huber to
get topological spaces that know something about the “topology” of the solid affinoid.
For this, we make the following definitions, which are taken from [CS24][Lecture 8].

Definition 2.2.2.10. Consider a solid condensed animated ring A.. Then a function
f. : Z[x]→ A. is called

(1) topologically nilpotent if f. factors as

Z[x] A.

Z[[x]].

f.

(2) power-bounded if A. ∈ Dqc(D
1
�) via the induced map f. : Z[x]→ A..

We will write A◦◦ ⊂ A.(∗) for the subset of topological nilpotent elements and
A◦ ⊂ A.(∗) for the subset of power-bounded elements.

Remark 2.2.2.11. A◦ forms an integrally closed subring of A.(∗) and A◦◦ a radical
ideal in A◦ [CS24][Lecture 8].
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Example 2.2.2.12. In a discrete animated ring, the topologically nilpotent elements
are exactly the nilpotent elements.

2.2.2.13. For a solid affinoid A, let us consider the closed subspace

|Spv(A,A◦◦)| ⊂ |Spv(A)|

of those valuations x such that |f(x)| < 1 for all f ∈ A◦◦. Then the first observation
is that the map from 2.2.2.9 factors as

S(A) |Spv(A)|

|Spv(A,A◦◦)|.

To see this, note that we can cover the complement by standard rational opens U( 1
f )

for f ∈ A◦◦. Now, by 2.2.2.5, we obtain the open substack corresponding to this
rational open by looking at thoseM ∈ D(A) such that HomA(Z[[x]]⊗Z[x]A,M) ' 0.
But we have

0 ' HomA(Z[[x]]⊗Z[x] A,M) ' HomA(Z[[x]]⊗Z[[x]] A,M) 'M

as f is topologically nilpotent. This open Substack is the empty stack.

Definition 2.2.2.14. Given a solid affinoid A, we define

|Spa(A)| ⊂ |Spv(A,A◦◦)|

as the subspace of continuous valuations. That is those valuations x ∈ |Spv(A,A◦◦)|,
such that for all f ∈ A◦◦ and any γ ∈ Γx there exists some natural number N such
that

|f(x)N | < γ

.

Remark 2.2.2.15. The space |Spa(A)| is a spectral space but the inclusion |Spa(A)| ⊂
|Spv(A,A◦◦)| is not spectral. To still make use of this space, we will use the fact
that, in certain situations, Huber has constructed a retraction in the other direction.
For this, we need to move slightly closer to his theory.

Definition 2.2.2.16. Consider a solid condensed animated ring A.. Then we say a
subring

A◦◦ ⊂ A0 ⊂ A◦

is a ring of definition, if it admits a finitely generated ideal I ⊂ A0 such that
√
I = A◦◦.

If it admits a ring of definition, we will say a solid affinoid A is adic. Furthermore, a
map of solid affinoids A→ B is called adic, if there exist rings of definition A0, B0

for A and B together with an ideal of definition I ⊂ A0, such that

f. : π0A
.(∗)→ π0B

.(∗)

maps A0 into B0 and IB0 ⊂ B0 defines an ideal of definition.
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Remark 2.2.2.17. The main reason we introduce this definition is to obtain the
retraction

r : |Spv(A,A◦◦)| → |Spa(A)|

for a solid affinoid. For this, Huber’s proof uses the fact that A◦◦ is the radical
of a finitely generated ideal. Also, this retraction will just be functorial for adic
morphisms.

2.2.2.18. To obtain opens in the space |Spa(A)| which behave well with respect to
the already mentioned retraction, we have to add a condition. We will say an open
U ⊂ |Spa(A)| is a basic rational open, if it is of the form

U = U(
f1, . . . , fn

g
)

where f1, . . . , fn, g ∈ A.(∗) are functions such that

A◦◦ · π0A
.(∗) ⊂

√
(f1, . . . , fn)

.

Let us now summarize Huber’s construction in the following proposition.

Proposition 2.2.2.19. Consider an adic solid affinoid analytic ring A. Then we
have the following:

(1) The basic rational opens form a basis for the topology on |Spa(A)|, which
is stable under intersections.

(2) There exists a spectral quasi-compact retraction

r : |Spv(A,A◦◦)| → |Spa(A)|

of the inclusion.
(3) For a basic rational open U = U( f1,...,fn

g ) ⊂ |Spa(A)| we have that

r−1(U) = U(
f1, . . . , fn

g
) ⊂ |Spv(A,A◦◦)|.

Proof. This is [Hub93a][2.6 + 3.1]. �

Now we can deduce that for an adic solid affinoid A, the category also localizes over
|Spa(A)|.

Proposition 2.2.2.20. Assigning to an adic solid affinoid A the composition

S(A)→ |Spv(A,A◦◦)| → |Spa(A)|

where the second map is the retraction from 2.2.2.19, induces a functor from adic
solid affinoid analytic rings with adic maps as morphisms to categorified locales.
In particular any open U ⊂ |Spa(A)| (resp. open covering) induces an open substack

U ↪→ Spa(A)

(resp. open covering of substacks).
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Proof. By 2.2.2.9, it suffices to check that for any adic morphism A→ B of
adic solid affinoids, the diagram of locales

|Spv(B,B◦◦)| |Spv(A,A◦◦)|

|Spa(B)| |Spa(A)|

r r

commutes. By 2.2.2.19(1), it suffices to check this on basic rational opens in |Spa(A)|.
Now, as the map is adic, the pre-image of a basic rational open along the map

|Spa(B)| → |Spa(A)|

is a basic rational. So the claim easily follows from 2.2.2.19(3). �

2.2.3. Derived adic spaces and their compactifications. We can now
define derived adic spaces.

Definition 2.2.3.1. An open immersion of analytic stacks U → Spa(A,A+) into
an adic solid affinoid is called basic rational, if U admits a open covering of adic
solid affinoids Spa(B,B+) such that each map

Spa(B,B+)→ Spa(A,A+)

arises from construction 2.2.2.20. An open immersion of analytic stacks is called
basic rational if it is representable by basic rational opens. A derived adic space is
an analytic stack X which admits a surjection

qISpa(A,A+)i → X

such that each map Spa(A,A+)→ X is a basic rational open immersion.
A morphism of derived adic spaces is a morphism of analytic stacks, which locally
on the source and target comes from an adic map of adic solid affinoids.

Example 2.2.3.2. A derived discrete adic space is a derived adic space that locally is
of the form

Spa(A,A+)

where A is a (discrete) animated ring. Note that for a standard rational open

U ⊂ |Spa(A,A+)|

the ring OU (U). := A[ 1
g ] considered in 2.2.2.7 is discrete as well. For this one easily

sees that
OU (U). ∈ Dqc(U)

2.2.1.2. In particular, we see that

U ' |Spa(OU (U))|.

This tells us that one can associate a well-defined underlying topological space with
a derived discrete adic space.

Example 2.2.3.3. Let us consider those derived adic spaces, which are glued along
adic maps from affine derived adic spaces of the form

Spa(A,A+)
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where A is the derived I-adic completion along some finitely generated ideal in a
discrete animated ring. Then, using the formula for the functor

f∗ : Dqc(Spa(A,A+))→ Dqc(D
1
Spa(A,A+))

given in 2.2.1.7, one sees that this functor sends A. to

(A[x])Î

the derived I-adic completion of the polynomial ring. In particular, for a basic
rational open U( f1,...,fn

g ) ⊂ |Spa(A,A+)|, we see that

OU (U). ' (A[x1, . . . , xn]/(gx1 − f1, . . . , gxn − fn))Î

(note that the solid tensor product of the I-adically complete objects here stays
I-adically complete [Bos23][A.3]). This ring, though, lives in Dqc(U), such that we
obtain an isomorphism

U ' |Spa(OU (U))|
as the right-hand side just depends on the Hausdorff quotient of the completion
[Hub93a][3.9]. This tells us we get a well-defined underlying topological space of
such derived adic spaces. This discussion, for example, applies to the derived adic
spaces coming from derived formal schemes via 2.5.1.1 or 2.5.2.

Definition 2.2.3.4. We make the following definitions:

• A derived adic space is called quasi-compact if any covering of basic rational
opens admits a finite subcovering.

• A derived adic space is called quasi-separated if any intersection of two
quasi-compact opens is quasi-compact.

• A morphism of derived adic spaces is called quasi-compact if the preimage
of any quasi-compact open is quasi-compact.

• A morphism of derived adic spaces is called quasi-separated if the diagonal
is quasi-compact.

We will now construct compactifications of derived adic spaces.

Definition 2.2.3.5. A map of solid affinoids A→ B is called an elementary closed
immersion, if it sits in a cartesian square

Spa(B) Spa(A)

Spa(Z[x±],Z) Spa(Z[x],Z)

f

for some function f ∈ A.(∗). We will say a collection of such maps is an elementary
closed covering, if the corresponding functions generate the unit ideal.

Remark 2.2.3.6. Note that an elementary closed covering gives a closed covering of
analytic stacks.

Remark 2.2.3.7. Note that an elementary closed covering

{Spa(A[
1

fi
], Ã+)→ Spa(A,A+)}I

is refined by the rational open covering

{Spa(A[
1

fi
],

˜
A+[

1

fi
])→ Spa(A,A+)}I .
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2.2.3.8. Consider the functor

(_) : AdicSpaff → AnStack

which assigns to a adic solid affinoid (A., A+)� the analytic stack

Spa(A, Z̃)

.

Proposition 2.2.3.9. The functor

(_) : AdicSpaff → AnStack

sends rational open coverings to elementary closed coverings.

Proof. By 2.2.2.4, we just have to check that squares of the form

U( 1
1−f ) ∩ U( 1

f ) U( 1
f ) U( f1 ) ∩ U( 1

f ) U( 1
f )

U( 1
1−f ) U U( f1 ) U

get sent to pushouts coming from elementary closed coverings. Write U ' AnSpec(A)
then the fist square gets send to

Spa(A[ 1
(1−f)f ], Z̃) Spa(A[ 1

f ], Z̃)

Spa(A[ 1
1−f ], Z̃) Spa(A, Z̃)

and the second square to

Spa(A[ 1
f ], Z̃) Spa(A[ 1

f ], Z̃)

Spa(A, Z̃) Spa(A, Z̃).

'

'

Both of these squares are easily seen to be such pushouts of analytic stacks. �

2.2.3.10. Using 2.2.3.9, we obtain a functor

(_) : AdicSp→ AnStack

and by 2.2.3.7 we see that this functor lands in derived adic spaces.
Now, for a morphism of derived adic spaces f : X → S, we define a derived adic
space X

/S
by the cartesian square

X
/S

X

S S.
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Note that we have a factorization of the original morphism

X X
/S

S.

j

f
p

Example 2.2.3.11. Given a morphism Spa(B,B+)→ AnSpec(A,A+) of affine derived
adic spaces, the factorization constructed in 2.2.3.10 is given by

Spa(B,B+)→ Spa(B, Ã+)→ Spa(A,A+)

.

Definition 2.2.3.12. A morphism X → S of derived adic spaces is called locally
proper, if the map

X → X
/S

is an isomorphism. It is called proper if it is locally proper and quasi-compact.

Remark 2.2.3.13. A morphism of classical derived Tate adic spaces is proper if and
only if it is proper as a map of analytic stacks.

Definition 2.2.3.14. Amap Spa(B,B+)→ Spa(A,A+) of affine derived adic spaces
is called of +finite type, if there exist finitely many functions

fi : Spa(B,B+)→ D�

bounded by 1, such that the induced map

A+[f1, . . . , fn]→ B+

is integral.
A map X → S of classical derived adic spaces is called locally of +finite type, if it is
locally on X and S in the rational open topology of +finite type.

Proposition 2.2.3.15. Consider a map f : X → S of derived adic spaces, which is
locally of +finite type. Then the map

X → X/S

is a rational open immersion.

Proof. The question is local onX andX/S in the rational open topology. So we
can assume that f is a map of +finite type between affines Spa(B,B+)→ Spa(A,A+).
Then the map in question is given by

Spa(B,B+)→ Spa(B, Ã+)

which is the intersection of the finitely many opens

U( fi1 ) Spa(B, Ã+)

D1
� A1

�

and thus open. �
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2.2.4. Discrete adic spaces. We now collect some results from the literature
in the case that the functions on our adic spaces do not carry a topology. These
results will be used later.

2.2.4.1. To an affine derived scheme Spec(A), we can associate the derived discrete
adic space

Spa(A).

One observes that an affine Zariski covering {U(fi)→ Spec(A)} via this assignment
gets mapped to the rational cover

{U(
1

fi
)→ Spa(A)}.

So by 2.2.2.20 we obtain a functor

(_)an : Sch→ AnStack

from schemes to analytic stacks, which preserves open immersions and lands in
derived discrete adic spaces.

Proposition 2.2.4.2. The functor

(_)an : Sch→ AnStack

preserves étale morphisms (resp. étale covers).

Proof. The preservation of étale morphisms is explained in [CS19b][XI]. Now,
to show that it preserves étale coverings, by 2.1.4.5, we have to check that the
assignment

Spec(A) 7→ Dqc(Spa(A))

is an étale sheaf (where we use the upper-∗-functoriality). This follows from
[Man22][2.10.6+2.6.3]. �

2.2.4.3. For an affine derived discrete adic space X ' Spa(A,A+), any rational
open becomes a basic rational open. Furthermore, it is not hard to see that for a
standard rational open

U(
f1, . . . , fn

g
) = U ⊂ X

the underlying condensed animated ring of the analytic ring OU (U) is given by the
ring A[ 1

g ]. That is, the localization to Dqc(U) does not affect the unit. In particular,
one sees that the map

|Spv(OU (U))| → U

from 2.2.2.8 is an isomorphism. As any map of affine derived discrete adic spaces is
adic, we also get the analogous statement for |Spa(OU (U))|.
In total, we have argued that the assignment

Spa(A,A+) 7→ |Spa(A,A+)|

gives a well-defined functor from affine derived discrete adic spaces to topological
spaces which preserves open immersions, such that for any derived discrete adic
spaces X, we obtain an underlying topological space |X|. A more detailed discussion
of this fact can also be found in [Man22][2.9.20].
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2.2.4.4. Recall from [Man22][2.9.25] or 2.2.3.10, that for any map f : X → S of
discrete adic spaces, we have a canonical “compactification”

X X
/S

S

j

f
p

where X
/S

is a discrete adic spaces. If X = Spa(B,B+) and S = Spa(A,A+) then
X
/S

= Spa(B, Ã+).

Let us recall the following from [Man22][2.9.29].

Proposition 2.2.4.5. Consider a map f : X → S of discrete adic spaces together
with the factorization

X X
/S

S

j

f
p

from 2.2.4.4. Then we have the following:

(a) If f is quasi-compact p is proper.
(b) If f is of +finite type then j is an open immersion.

In the case (b) holds the following are equivalent:

• j is an isomorphism.
• For any valuation ring V with fraction field K and any solid diagram

Spa(K) X

Spa(K,V ) S

there exists a unique dashed arrow making the diagram commute.

In particular, if f is also quasi-compact, it is proper.

Proof. To see (a) we can assume S ' Spa(A,A+), then recall [Man22][2.9.25]
that for an open covering

{Spa(B,B+)i → X}I
we get a covering {Spa(B, Ã+)i → X

/S} which in the sense of analytic Stacks give
a closed covering. Besides the last “in particular” statement, which follows using
2.1.3.7, the rest follows from [Man22][2.9.29]. �
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2.3. Classical Tate p-adic spaces

We will now filter out the type of (derived) Tate adic spaces, we want to use later.

2.3.1. Bounded solid affinoids.

2.3.1.1. Note that any topological nilpotent unit π ∈ A in a solid affinoid algebra
induces a map of analytic rings

Z((π))� = (Z((π)),Z[[π]])� → A.

2.3.1.2. Recall from [Cam24][2.6.10] that a solid affinoid Z((q))�-algebra A =
(A., A+) is called bounded, if the canonical map

Ab = (A◦[
1

π
], A+)→ A

is an isomorphism.

2.3.1.3. Recall that an object x in a compactly generated symmetric monoidal
category C is called nuclear, if for any compact object c ∈ C the canonical map

Hom(1,Hom(c,1)⊗ x)
∼−→ Hom(c, x)

is an isomorphism [CS22][8] [CS19a][13].

Example 2.3.1.4. Given a discrete animated ring R then for any integrally closed
subring R+ the nuclear objects in Dqc(Spa(R,R+)) identify with the classical derived
category D(R) of R.

Definition 2.3.1.5. We will say a bounded solid affinoid Z((π))�-algebra A is
classical, if it is nuclear as a Z((π))�-module.
Furthermore we will say a classical bounded solid affinoid A is called p-adic if it
admits a topologically nilpotent unit π′ ∈ A◦, which divides p in A◦ and A admits
a ring of definition, which is derived π′-adically complete.
A derived adic space is called classical p-adic Tate, if it locally is represented by
classical p-adic bounded solid affinoids.

Remark 2.3.1.6. The category of nuclear Z((π))�-modules is generated by the objects

Cont(S,Z((π)))

for S a (light) profinite set. In particular, for a classical p-adic bounded solid affinoid,
we can find a ring of definition, which is the derived π′-adic completion of a discrete
animated ring.

Remark 2.3.1.7. Given a classical bounded solid affinoid algebra A and a topological
nilpotent unit π′ ∈ A. Then A is bounded with respect to the induced map

Z((π′))� → A.

To see this, take a pseudouniformizer π ∈ A justifying A to be bounded. Then π′ is
nilpotent in A◦/π and invertible in A◦[ 1

π ]. From this, one sees that

A. ' A◦[ 1

π
] ' A◦[ 1

π′
].

Remark 2.3.1.8. Classical bounded solid affinoid rings are stable under colimits in
solid affinoid rings [Cam24][2.6.14].
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Example 2.3.1.9. For a Tate Huber pair (A,A+) the topology on A◦ is given by
the π-adic topology for some pseudouniformizer π. In particular, the associated
bounded solid affinoid ring is classical.

2.3.1.10. Combining the last example with 2.2.1.13, we see that the category of
Tate Huber pairs sits fully faithful in the category of classical bounded solid affinoid
rings. The latter category will be denoted by

Bndcl� .

Furthermore we will write Bndcl(Zp)�/
for the category of p-adic classical bounded

solid affinoid algebras.

Remark 2.3.1.11. Given a ring of definition A0 for a classical bounded solid affinoid
A with pseudouniformizer π ∈ A0, we can compute

A. ' A◦[ 1

π
] ' A0[

1

π
]

.

2.3.2. Étale morphisms of Tate adic spaces. In the following, we want
to compare two natural notions of étale morphisms of classical derived Tate adic
spaces. In this section any classical derived Tate adic space will be p-adic.

2.3.2.1. Recall from [Cam24][3.4], that to any map f : X → S of classical derived
Tate adic spaces, we can associate the cotangent complex

Lf ∈ Dqc(X).

Following [Cam24][3.5], we now make the following definition.

Definition 2.3.2.2. We will say a morphism f : X → S of classical derived Tate
adic spaces is étale, if it is locally of finite presentation and

Lf ' 0.

Remark 2.3.2.3. Often in Tate adic geometry, one says a morphism is étale if it
locally on source and target factors as a rational open, followed by a finite étale
map. At least in favorable situations, this will also be true for us.

Definition 2.3.2.4. An étale map f : Spa(B,B+)→ Spa(A,A+) of affine classical
derived Tate adic spaces is called finite étale, is B is a finite projective A-module
and B+ the integral closure of A+ is B.
Furthermore, a morphism of classical derived Tate adic spaces is called finite étale,
if it is affine and locally on the target given by a finite étale morphism of affine
classical derived Tate adic spaces.

2.3.2.5. To formulate what we want, it will be convenient to use sous-perfectoid
adic spaces following [HK20][7.] [SW20][6.3]. Recall that a Tate algebra A is called
sous-perfectoid if it admits a split injection

A→ Ã

of topological A-modules into a perfectoid Tate algebra. Huber pairs coming from
sous-perfectoid Tate algebras are sheafy, and we will call an adic space sous-perfectoid
if it admits a rational covering by affines coming from sous-perfectoid Tate algebras.
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Example 2.3.2.6. For a sous-perfectoid Tate algebra A, the Tate algebra

A〈xi|i ∈ I〉
in arbitrary many variables is again a sous-perfectoid Tate algebra.

Example 2.3.2.7. A rational open in a sous-perfectoid Tate adic space is again a
sous-perfectoid Tate adic space.

Example 2.3.2.8. A classical derived Tate adic space, finite étale over a sous-perfectoid
Tate adic space, is a sous-perfectoid Tate adic space [HK20][7.5.].

Proposition 2.3.2.9. Consider a map f : X → S of classical derived Tate adic
spaces, such that locally in the rational open topology on S, one can find a map
S → S′ to a sous-perfectoid Tate adic space. Then if f is étale, it locally on X and
S factors as an open immersion followed by a finite étale map.

Proof. As the question is local, we can assume that we have a map S → S′ to
a sous-perfectoid. Now by [Cam24][3.5.6] locally on X and S we can find functions
g1, . . . , gn on Dn

�, such that the square

X (Dn
�)S′

S (Dn
�)S′

f (g1,...,gn)

0

is cartesian and ∆ := det(( ∂gi∂xj
)1≤i,j≤n) becomes invertible on X. Now locally on

X, we can assume that either |∆| ≤ 1 or |∆−1| ≤ 1, so after possibly shrinking X
we find a cartesian square

X U( 1
∆ )

S (Dn
�)S′

f (g1,...,gn)

0

where the right upper corner denotes the rational open in (Dn
�)S′ . But now the

map on the right is a map between sous-perfectoid adic spaces and thus admits
a local factorization as wanted by [FS21][IV.4.15] and the claim follows by base
change. �

Corollary 2.3.2.10. Consider an étale map f : X → S of classical derived Tate adic
spaces, such that S is sous-perfectoid (resp. perfectoid). Then X is sous-perfectoid
(resp. perfectoid) as well.

Proof. For sous-perfectoids, this now follows from 2.3.2.9, 2.3.2.6 and 2.3.2.7
and for the case of perfectoids, this is explained in [Sch12][6.3] and [KL16][3.3.18].

�
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2.4. Derived formal schemes

The following two sections will discuss some aspects of the relationship between
(derived) formal schemes and analytic stacks. Our main issue is that the fibre
products in the respective worlds are not generally compatible. To resolve this issue,
we will work with affine formal schemes, which are adic over some fixed formal stack,
and then define appropriate topologies on those. The concrete goal is to construct
“analytification” functors for formal stacks.

2.4.1. Completely descendable morphisms. For the definition of (derived)
formal schemes, we will follow [Lur18][II.8] with the difference that we work with
animated rings instead of E∞-rings. Concretely, that means our ambient category
at first will be the category of functors6 from animated rings to anima. We often
refer to such an object as presheaf on affine derived schemes.

Definition 2.4.1.1. Any ideal I in a ring A determines a topology where a basis
of open neighborhoods of 0 is given by the subsets In for n ≥ 0. We will call this
topology the I-adic topology.
For a topological ring A, we say an ideal I ⊂ A is an ideal of definition, if the
topology coincides with the I-adic topology.
An adic ring is a ring A equipped with a topology that admits a finitely generated
ideal of definition. Furthermore, a morphism of adic rings is a continuous ring
morphism.
An adic animated ring is an animated ring A, such that π0A is an adic ring. More
concretely, we define the category of adic animated rings as the limit of the cospan

Ringadic Ring Ani(Ring)
π0

where the functor on the left forgets the topology.

2.4.1.2. Any adic animated ring A gives rise to a presheaf on affine derived schemes
by the formula

Spf(A)(B) := HomAni(Ring)adic(B,A)

where we equip B with the discrete topology. These presheaves build the building
blocks for (derived) formal schemes and can be described more concretely as follows.
Choose an ideal of definition I of A and a finite family of generators f1, . . . , fn of I.
Then

Spf(A) ' colimm Spec(A/(fm1 , . . . , f
m
n ))

where the quotients are defined as the pushouts

Z[x1, . . . , xn] Z

A A/(fm1 , . . . , f
m
n )

xi 7→0

xi 7→fmi

Note that from this description one also observes that Spf(A) just depends on the
(derived) I-adic completion

AÎ ' lim
m
A/(fm1 , . . . , f

m
n )

6By convention, we consider those which are small colimits of affine schemes.
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.

2.4.1.3. Right Kan extending the assignment A 7→ D(A) from affine derived schemes
to presheaves on those, one obtains

D(Spf(A)) ' limmD(A/(fm1 . . . , fmn )) ' DI-comp(A) ⊂ D(A)

the full subcategory of derived I-complete A-modules. That is the full subcategory
of those objects for which the canonical map

M →MÎ ' limmM/(fm1 , . . . , f
m
n )

is an isomorphism. Alternatively, one can describe I-complete objects in the following
way. Let us write D(A)Loc(I) ⊂ D(A) for the full subcategory of those modules for
which the canonical map M → M [x−1] is an isomorphism for some x ∈ I. These
objects are called I-local objects, and one obtains I-complete objects by killing
those. That is, there is an exact sequence of stable categories

D(A)Loc(I) → D(A)→ DI-comp(A)

.

We need to extend some standard notations for adic rings to more general (pre)sheaves.
There will be several topologies on the category of animated rings considered later,
and the following definitions make sense for all of them.

Definition 2.4.1.4. A morphism between adic animated rings f : A→ B is called
adic if there exists some finitely generated ideal of definition I ⊂ π0A such that
f(I)π0B ⊂ π0B defines an ideal of definition.
A morphism of f : X → S (pre)sheaves on affine derived schemes is called repre-
sentable by affine schemes if for any map Spec(A)→ S the fibre product Spec(A)×S
X is representable by an affine scheme.
A morphism f : X → S of (pre)sheaf on affine derived schemes is called adic if f as
well as the diagonal of f ∆f : X → X ×S X are representable by affine schemes.

Lemma 2.4.1.5. A morphism of adic animated rings f : A→ B with B being com-
plete is adic, if and only if the induced morphism Spf(B)→ Spf(A) is representable
by affine schemes. Furthermore, for any adic morphism of adic animated rings, the
morphism Spf(B)→ Spf(A) as well as the diagonal Spf(B)→ Spf(B)×Spf(A) Spf(B)
are representable by affine schemes.

Proof. We start with the first claim. Let us assume we have given finitely
generated ideals of definition I and J for A and B such that Iπ0B ⊂ J (note
that π0A→ π0B is continuous). We show that the ideal J/Iπ0B ⊂ π0B/Iπ0B is
nilpotent and thus Iπ0B sandwiches in between two ideals of definition. As J is
finitely generated, we have to show that it is nilpotent for any element x ∈ J/Iπ0B.
Let us write A/LI for the derived quotient computed by choosing a family of
generators and then take the derived quotient with respect to those (any such choice
of generators will make the following work. Then, we consider the Cartesian square

Spf(B/LIB) Spf(B)

Spec(A/LI) Spf(A).
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As Spf(B/LIB) is an affine scheme the global sections functor

Γ: D(Spf(B/LIB))→ D(A/LI)

commutes with colimits. In particular, we have

(B/LIB)[x−1] ' Γ(B/LIB)[x−1] ' Γ(B/LIB[x−1]) ' 0

which shows what we want. For the second and third claim, observe that for an
adic map A→ B, we have cartesian squares

Spf(B) Spec(B) Spf(B) Spf(B)×Spf(A) Spf(B)

Spf(A) Spec(A) Spec(B) Spec(B)×Spec(A) Spec(B).

From this, it is easy to obtain the claims. �

Lemma 2.4.1.6. Consider a commutative triangle of (pre)sheaves on affine derived
schemes

Spf(B) Spf(A)

S.

h

f
g

If f and g are adic, then h is also adic.

Proof. Using 2.4.1.5, we have to show that h is representable by affine schemes.
This is a standard trick: We factor h via the graph, followed by the projection. In
this factorization, both maps are pulled back from maps representable by affine
schemes. �

The following is the primary definition of this section.

Definition 2.4.1.7. A adic map f : A→ B of adic animated rings is called com-
pletely descendable if

BÎ ∈ DI-comp(A)

defines a descendable algebra.

Example 2.4.1.8. Any faithfully flat étale map of animated rings is descendable as
it is finitely presented and faithfully flat [Mat16][3.33]. We will see later that any
map Spf(B) → Spf(A), which is representable by affine étale covers, comes as a
pullback of such a descendable map 2.4.2.11 and thus is completely descendable.

Example 2.4.1.9. Recall that the presheaf Ga seen as a spectrum valued functor on
animated rings can be written as7

A 7→ HomD(A)(A,A).

As associating the category of modules already admits descent for descendable
maps [Mat16][3.22], we see that this also defines a sheaf.

7We can, of course, even remember the E∞-structure
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Example 2.4.1.10. An example we will use in this text is freely adjoining p-th roots
of elements8. By this, we mean pushouts of maps of the form

Z[xi|i ∈ I]→ Z[x
1
p∞

i |i ∈ I]

for some set I. To see that such a map is descendable, one observes that the fiber
of this map F is a free module over the domain sitting in homological degree −1.
In particular any map F → Z[xi] vanishes and one can apply [BS17][11.20].

We want to generate a (Grothendieck) topology on the category of adic animated
rings. So, for convenience, let us recall the following stability properties.

Lemma 2.4.1.11. Completely descendable morphisms of adic animated rings are
stable under composition and base change. Furthermore, for any composable pair
of (adic) morphisms of adic animated rings

f ◦ g : A→ B → C.

If f ◦ g is completely descendable, then g is also completely descendable.

Proof. See for example [Mat16][3.24]. �

Construction 2.4.1.12. We will often consider the following situation. Fix a
(pre)sheaf S on affine schemes, and let us write

fSchaff/S
for the full subcategory of presheaves over S of the form

Spf(A)→ S

where the structure morphism is adic. We equip this category with the (Grothendieck)
topology generated by adic descendable morphisms 2.4.1.7 and write

Sfdesc

for the induced topos9.

2.4.2. Open immersions and étale morphisms. For this section, we fix a
presheaf S on animated rings and write

fSchaffS
for the category of affine formal schemes adic over S.

Definition 2.4.2.1. A morphism Spf(B)→ Spf(A) in fSchaffS is called a principal
open immersion if it sits in a Cartesian square

Spf(B) Spf(A)

Gm A1

f

of presheaves on affine derived schemes. We will denote such an open by U(f).

8One can adjoin arbitrary functions, which are annihilated by monic polynomials.
9By convention, this is just a topos up to size issues.
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Construction 2.4.2.2. It is easy to see that principal open immersions are stable
under composition and pullbacks. Thus, by declaring a finite collection

{U(fi)→ Spf(A)}I
to be a covering if the ideal (fi) generates the ring π0A we produce a pretopology.
The induced topos will be denoted by

SZar

and called the (big) Zariski topos of S. We can now use this to define a derived
formal scheme.

Definition 2.4.2.3. Given an affine formal scheme X over S, a morphism U → X
from a Zariski sheaf is called an open immersion if it is a monomorphism and there
exists an effective epimorphism

qIVi → U

in SZar such that each of the induced maps Ui → X is a principal open immersion.
If X is a Zariski sheaf, a map U → X is called an open immersion if for any
affine formal scheme Spf(A) over S and any map Spf(A) → X the pullback map
U ×X Spf(A)→ Spf(A) is an open immersion.
A Zariski sheaf X over S is called a derived formal scheme over S, if there exists an
effective epimorphism

qIUi → X

such that each of the maps Ui → X is an open immersion and Ui affine formal
schemes over S for all i ∈ I.
We will write fSchS for the category of derived formal schemes over S.

Definition 2.4.2.4. A formal scheme X over S is called quasi-compact if any Zariski
covering admits a finite sub-covering. Furthermore, it is called quasi-separated if
the intersection of two quasi-compact opens is again quasi-compact. A morphism of
formal schemes is called quasi-compact if the preimage of a quasi-compact open is
quasi-compact.

Let us continue with étale morphisms.

Definition 2.4.2.5. Recall that a map of animated rings A → B is étale, if it is
flat and the underlying map π0A→ π0B is an étale map of static rings.
A map of affine formal schemes Spf(B)→ Spf(A) is called étale if for any morphism
Spec(C)→ Spf(A) from an affine scheme the pullback

Spf(B)×Spf(A) Spec(C)→ Spec(C)

is an étale map of affine schemes.
A morphism of derived formal schemes is étale if it is Zariski locally on the domain
and the target is an étale morphism of affine formal schemes.

Remark 2.4.2.6. Note that for an étale map A→ B of animated rings, there is an
idempotent e ∈ B ⊗A B such that

B ⊗A B[
1

e
] ' B.

From this, we see that the diagonal of an étale map of formal schemes is an open
immersion, and a standard argument shows that the cotangent complex of an étale
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morphism vanishes [Sta, Tag 08R2]. This is the main property of an étale morphism
we will use.

Example 2.4.2.7. As in non-derived algebraic geometry, there is a generic example of
an étale R-algebra map of animated rings g : A→ B (see [Lur18][B.1.1.3] for the
case of E∞-rings). That is, any such map can be written as a pushout of a map

g : R[x1, . . . , xn]→ R[y1, . . . , yn][
1

M
]

where M denotes the determinant of the Jacobian matrix of the functions g(xi).

2.4.2.8. Using the vanishing of the cotangent complex 2.4.2.6 and the structure
theory of étale maps 2.4.2.7, one can prove the following classical fact from defor-
mation theory (see [Lur18][17.1.35] for the case of E∞-rings). For any square zero
extension Ā→ A, taking pushouts induces an equivalence

Āét
∼−→ Aét

of categories of étale algebras over the respective rings. There are two fundamental
examples of this phenomenon regarding derived formal algebraic geometry.

Example 2.4.2.9. In derived algebraic geometry, fundamental examples of square
zero extensions are the maps in the Postnikov tower of an animated ring

A→ · · · → τ≤nA→ . . . τ≤1A→ π0A

(see [Lur17][7.4.1.28] for the case of E∞-rings).
Note that, as in the category of anima, Postnikov towers converge, and the trunca-
tions preserve finite products, we have an equivalence

Ani(Ring)A ' limn τ≤nAni(Ring)τ≤nA

of categories where the transition functors are given by truncating. Further observing
that for a flat map, these truncations can be identified with scalar extending along
τ≤n+1A→ τ≤nA, we can use 2.4.2.8 to see that we have a chain of equivalences

Aét
∼−→ . . .

∼−→ τ≤nAét
∼−→ . . .

∼−→ τ≤1Aét
∼−→ π0Aét

of étale algebras over the respective rings.

Example 2.4.2.10. Any surjective map Ā→ A of static, animated rings with nilpotent
kernel gives a square zero extension and thus induces an equivalence of étale algebras
over the respective rings.

2.4.2.11. Let us summarize how one can understand an affine formal scheme étale
over an affine formal scheme. So let Spf(A) be an affine formal scheme and Spf(A)ét
the category of affine formal schemes étale over Spf(A). As in 2.4.1.2, we can choose
a presentation

Spf(A) ' colimn Spec(A/(fni ))

where (fi) generates some ideal of definition for π0A. Thus, using, for example,
descent for ∞-topoi, we see that there is an equivalence

fSchaffSpf(A) ' limnAni(Ring)A/(fni )

https://stacks.math.columbia.edu/tag/08R2
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and restricting this equivalence to étale algebras, we obtain the following diagram:

Aét Spf(A)ét · · · A/(fni )ét · · · A/(fi)ét

π0Aét Spf(A)clét · · · π0A/(f
n
i )ét · · · π0A/(fi)ét

∼

∼

∼

∼ ∼

∼

∼

∼

∼ ∼ ∼ ∼

where the vertical equivalences come from 2.4.2.9 and the lower horizontal equiva-
lences from 2.4.2.10. This shows that the upper horizontal functors are equivalences
as indicated. Furthermore we claim that the horizontal functors on the left are
essentially surjective. This for example follows from [Sta, Tag 0AN8] for the lower
one and thus also for the upper one. Alternatively one directly uses the structure
theory of étale morphisms 2.4.2.7.

2.4.3. The deformation to the normal bundle. In the following, we ex-
plain how to construct the deformation to the normal bundle for derived formal
schemes.
Let us fix an affine derived formal scheme Spf(A). Any formal scheme in this section
will implicitly assumed to be adic over Spf(A).

Definition 2.4.3.1. We will call a morphism Z → X of derived formal schemes a
regular closed immersion, if it Zariski locally on X sits in a cartesian square

Z X

{0} An
Spf(A)

where the lower horizontal map is the zero-section.

Construction 2.4.3.2. Consider a regular closed immersion i : Z → X of derived
schemes, which arises as the pullback of a zero-section and let us write I for the
fibre of the map

OX → i∗OZ .
Then as explain in [Tan22][5.1], we can associate to I its Rees algebra

R(I•) :=
⊕
n∈Z

I−ntn

which is a generated animated ring. In particular, its associated derived scheme
comes with a Gm-action and we will write

R(I•) := R(I•)/Gm

for the quotient stack of this action. Furthermore, the base change along the map
Spf(A)→ Spec(A) defined a formal stack, which we will denote by

DZ/X .

The above construction is functorial in I. In particular given a general regular
closed immersion of formal schemes i : Z → X, the quasi-coherent sheaf

fib(OX → i∗OZ)

https://stacks.math.columbia.edu/tag/0AN8
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provides the gluing data to globalize the above construction to obtain the deformation
to the normal bundle

DZ/X

for i.

The structure of the above construction can be summarized as follows:

Proposition 2.4.3.3. Consider a regular closed immersion i : Z → X of formal
schemes adic over Spf(A). Then there exists a regular closed immersion of stacks

(A1/Gm)Z → DZ/X

over (A1/Gm)X . Furthermore, this construction satisfies the following:

(a) It is contravariant functorial along cartesian maps of regular closed im-
mersions.

(b) If i is given by the zero section into a vector bundle V , then there is a
cartesian square

DZ/X (V/−1Gm)X

(A1/Gm)X (BGm)X

where we use the action of weight −1 on V .
(c) The fibre over 1: S ' (Gm/Gm)X → (A1/Gm)X recovers the closed

immersion i.
(d) The fibre over 0: (BGm)X → (A1/Gm)X is given by the zero section

0: (BGm)Z → NZ/X/−1(Gm)Z

into the normal bundle. Where in the normal bundle, we use the action of
weight −1.

(e) If i : D → X is given by an effective cartier divisor, the inclusion of the
fibre at 0 factors as

ND/X/−1(Gm)D DD/X

VX(O(−D))/−1(Gm)X .

Where the first map is the canonical inclusion, and, if we restrict the second
map to the 1-section, it identifies the composition of the 1-section in DD/X

with the structure map to (BGm)X with the map

O(D) : S → (BGm)X

corresponding to the line bundle O(D).

Proof. This follows the same way as in [Tan22][5.1] and [KR25][4.1.13]. �
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2.5. Formal schemes as analytic stacks

2.5.1. Locally proper analytification.

Construction 2.5.1.1. To any affine formal scheme Spf(A), we can associate the
adic solid affinoid analytic stack Spa(A, Z̃). That is: The underlying condensed ring
is given by the (derived) I-adic completion of A for some (and thus all) ideal of
definition [AM24][2.2].

AÎ ' lim
n
A/(fn1 , . . . , f

n
m)

where (f1, . . . , fn) = I is some generating set.
The ring of integral elements is given by the integral closure of Z in AÎ . Or in other
words, the category of complete modules of this analytic ring is given by

ModAÎ (D(Z�))

This construction is functorial and thus, for any presheaf on affine schemes S,
produces a functor

(_)lp : fSchaff/S → AnStack

.
The following proposition tells us that this functor induces a functor

Sfdesc → AnStack

which preserves fiber products. In particular, if there exists an adic descendable
cover

Spf(A)→ S

we obtain a finite limit preserving functor to AnStackSlp .

Proposition 2.5.1.2. The functor (_)lp preserves fiber products and sends com-
pletely descendable morphisms to proper surjections (i.e., effective epimorphisms of
the associated analytic stacks).

Proof. Note first that any map of adic animated rings gets mapped to a
proper morphism of analytic rings 2.1.2.2. The first claim boils down to the
following: involving 2.4.1.6, to see that all maps considered are adic. For any cospan
C ← A→ B of adic rings and I ⊂ π0A an ideal of definition, the canonical map

CÎ ⊗
�
AÎ
BÎ

∼−→ (C ⊗�
A B)Î

is an isomorphism. This is explained in [Bos23][A.3].
For the second claim, consider a descendable map A→ B of adic animated rings
and I an ideal of definition for A. By 2.1.4.2 we have to see that BÎ is a descendable
algebra in D((A,Z)�) =ModÂ(D(Z�)). But the map AÎ → BÎ lies in the essential
image of the lax monoidal functor

DI-comp(A)→ D((A,Z)�)Î ⊂ D((A,Z�))

where the middle term denotes the full subcategory of I-complete objects. The
claim now follows from [BS17][11.20]. �
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2.5.1.3. As already mentioned 2.5.1.2 gives us a functor (_)lp : Sfdesc → AnStack
which preserves fibre products. Not that by 2.4.1.8 we also have a functor

(_)lp : fSchS → Sfdesc

through which we will understand formal schemes in the following.

Proposition 2.5.1.4. The functor (_)lp : Sfdesc → AnStack respects the following
types of morphisms:

(a) Affine formal schemes get sent to adic solid affinoids. Furthermore, any
map between affine formal schemes becomes adic and proper.

(b) Zariski open immersions (resp. coverings) get mapped to closed immersions
(resp. coverings) of analytic stacks.

(c) Quasi-compact and quasi-separated morphisms get mapped to proper mor-
phisms of analytic stacks.

Proof. For the first claim, note that for an affine formal scheme Spf(A) with
ideal of definition I, the topologically nilpotent elements in AÎ are exactly the
radical of I. An element in I is topologically nilpotent, and a topologically nilpotent
element becomes nilpotent modulo I 2.2.2.12.
The second claim follows from 2.5.1.2 as any map of affine formal schemes becomes
proper 2.1.2.2 and Zariski open immersions are monomorphisms.
To see (c), let us consider a quasi-compact and quasi-separated map of formal schemes
f : X → Y and argue that X lp → Y lp is proper. We first prove the following

(∗) For any separated morphism f : X → Y the map X lp → Y lp is proper.

By (b) and 2.1.3.3 The problem is local on the target, so we can assume Y ' Spf(A).
As the map is separated, its diagonal is a closed immersion and thus, in particular,
affine. So the diagonal becomes proper by (a). Now we can find a finite Zariski cover
of X by affines, and on each affine analytic stack, the structure sheaf is compact.
So the claim follows from (b) and 2.1.3.7.
For a general quasi-compact quasi-separated map, we can again assume Y to be
affine, such that X becomes quasi-compact quasi-separated. Now the diagonal is
proper by (∗) and the claim again follows from (b) and 2.1.3.7 as we can choose a
finite cover by affines. �

2.5.2. Geometric analytification.

Construction 2.5.2.1. To any affine formal scheme X = Spf(B), we can associate
an affine adic solid affinoid analytic stack

Spa(B).

The condensed ring is given by BÎ where I is an ideal of definition and the completion
is interpreted derived and in the condensed world 2.4.1.2 (in particular the “topology”
is nontrivial).
As a ring of integral elements, we take BÎ . That is the category of complete modules
D((B,B)�) is given by the localization ofModBÎ (D(Z�)) at morphisms of the form

f� := id-f · shift : PBÎ → PBÎ

for all f ∈ π0BÎ 2.1.1.13.
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Using this construction, we obtain a functor

(_)an : fSchaffS → AnStack

and the goal of this section is to understand what geometric structures and properties
it preserves.

Proposition 2.5.2.2. The functor

(_)an : fSchaffS → AnStack

preserves fiber products and open immersions. Furthermore, a Zariski covering gets
sent to an open covering of analytic stacks.

Proof. We start with the claim on pullbacks. Let us consider a Cartesian
square

Spf(D) Spf(C)

Spf(B) Spf(A)

in the domain. Then, in 2.5.1.2, we have already seen that the statement is true on
underlying solid condensed rings. That is, we have to check that

D((D,D)�) ' D((B,B)� ⊗(A,A)� (C,C)�).

Both of these categories are full subcategories ofMod(B⊗�
AC)Î

(D(Z�)). The one on
the left is the localization along morphisms of the form

f� := id-f · shift : PDÎ → PDÎ

with f ∈ π0DÎ and the one on the right by morphisms of the same form, but with
f = 1⊗ g for g ∈ CÎ or f = g ⊗ 1 for g ∈ BÎ . Thus, the claim follows as the set of
functions bounded by 1 in a solid analytic ring is integrally closed 2.2.1.9/. Note
also that the completions here do not affect the complete modules for the same
reason, and Mittag-Leffler methods.
For the claim on open immersions, let us write D1

� ' Spa(Z[x]) and (Gan
m )� '

Spa(Z[x±]) then the map j : (Gan
m )� → D1

� is an open immersion by 2.2.2.6. We
claim that for any affine open immersion U(f)→ Spf(A) the square

U(f)an Spf(A)an

(Gan
m )� D1

�

f

is Cartesian, which implies the claim 2.1.2.8. Note that as j is an open immersion
j∗ preserves limits such that

j∗(AÎ) ' limn(A/In[
1

f
]) ∈ Dqc((G

an
m )�).

This shows the identification of underlying condensed rings as soon as we identify
the categories of complete modules as subcategories of Modj∗(AÎ)(Dqc((G

an
m )�)).

This now works as in the first part of the proposition.
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For the last statement note that a Zariski cover {U(fi)→ Spf(A)}I becomes the
rational covering

{U(
1

fi
)→ Spa(A)}

so the claim follows from 2.2.2.20. �

2.5.2.3. By 2.5.2.2, we obtain a functor

(_)an : fSchS → SZar → AnStack

which preserves fibre products and open immersions (resp. coverings). It also
preserves etale morphisms, as we are checking now.

Proposition 2.5.2.4. The functor

(_)an : fSchS → AnStack

from 2.5.2.3 preserves étale morphisms as well as étale coverings (i.e., morphisms
which are represented by surjective étale morphisms of schemes, get sent to étale
effective epimorphisms).

Proof. Using 2.5.2.3, we have to check the claim for an affine étale map
Spf(B)→ Spf(A). Now using 2.4.2.11 we can find an étale A-algebra B̃ which pulls
back to Spf(B). Note also that we can assume the induced map on spectra to be
surjective if the original map was, by adding the complement of Spec(A/I)→ Spf(A)
to the cover, where I is some ideal of definition. We claim that there is a Cartesian
square

Spf(B)an Spf(A)an

Spa(B̃) Spa(A)
j

where the lower line is equipped with the discrete topology. The claim then follows
from 2.2.4.2. To see this note that the vertical maps are proper, such that the
pullback is given by

Modj∗(AÎ)(D((B̃, B̃)�))

with underlying condensed ring given by the unit. But j is étale 2.2.4.2 such that
j∗ commutes with limits and we have

j∗(AÎ) ' B̃Î ' BÎ .

This shows what we want as completions are integral on π0. �

2.5.3. The generic fibre via admissible blowups. When defining formal
schemes as specific stacks on rings, a proper map is typically defined as a map
represented by proper maps of schemes. In particular, if we look at the induced
map of adic spaces, it is not directly clear (at least to the author) why this map
stays proper (say in the sense of analytic stacks). The main issue is that on the
adic spaces we can localize towards Tate-points (also called analytic points). In the
following, we argue why such a map remains proper. The intuition should be that a
“generic fiber functor” in the sense of Reynauld should preserve proper maps, and
the concrete input is a construction of Bhargav Bhatt [Bha17][8.1].
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Construction 2.5.3.1. For an affine derived formal scheme Spf(A) with ideal of
definition I ⊂ π0A, we will call a proper morphism

X → Spf(A)

a local admissible blowup, if it sits in a cartesian square

X X̃

Spf(A) Spec(A)

p

where p : X̃ → Spec(A) is a proper morphism of schemes, which becomes an isomor-
phism over Spec(A)− V (I).

Definition 2.5.3.2. A morphism of derived formal schemes

X → S

is called an admissible blowup, if it locally on S is a local admissible blow up 2.5.3.1.

Remark 2.5.3.3. This notion of admissible blowup might sound more general than
needed. We choose this notion because we will need possibly non-finite type closed
immersions in our construction. A restriction one could make for our purpose is
that we could work with projective ones instead of considering arbitrary proper
morphisms.

Remark 2.5.3.4. Note that for a formal schemeX, the categoryAdm(X) of admissible
blowups over X admits fibre products and a terminal object. In particular, it is
cofiltered.

2.5.3.5. From now on, let us consider the following situation. We fix a microbial
valuation ring10 V with fraction field K and pseudouniformizer π. Furthermore,
let us fix an adic quasi-compact and quasi-separated morphism of derived formal
schemes

X → Spf(V )

where the target is equipped with the π-adic topology. Then we can associate two
invariances with this situation.
On one hand, using 2.5.2, the map induces a map of derived adic spaces. So we can
consider the generic fiber as an derived adic space

Xη X

Spa(K,V ) Spa(V ).

This is a classical derived Tate adic spaces and thus admits an underlying topological
space |Xη|.
On the other hand, let us consider the category Adm(X) of admissible blowups
over X. Now for each such admissible blowup Yi → X we write Ȳi for the reduction

10By this we mean a valuation ring which contains a non-zero element π, which is contained
in a height one prime. Such an element is called a pseudouniformizer.
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modulo π
Ȳi Yi

Spec(V/π) Spf(V )

which we understand as a derived scheme.

The goal for the rest of the section is to prove the following, which is a global version
of [Bha17][8.1].

Theorem 2.5.3.6. Consider the situation described in 2.5.3.5. Then there is a
canonical isomorphism of topological spaces

|Xη| ' limAdm(X) |Ȳi|
functorial in X.

Corollary 2.5.3.7. Consider a universally closed morphism X → S of quasi-
compact, quasi-separated derived formal schemes adic over Spf(V ). Then the induced
morphism

|Xη| → |Sη|
is closed.

Proof. Using 2.5.3.6, we can write this map as an inverse limit of closed
morphisms of spectral spaces. Such a map is closed [FK13][2.2.13]. �

To describe the maps involved, let us first recall how to understand points in the
topological space |Xη|.

2.5.3.8. Recall that we can understand points in the underlying topological spaces
|X| of a adic space as maps

Spa(K,V )→ X

of adic spaces where Spa(K,V ) is a valued field. That is, V is a valuation ring
together with its fraction field V ⊂ K, and the adic space is understood in one of
the following ways

• The topology on V is the π-adic topology for a pseudouniformizer π and
K ' V [ 1

π ]. That is V is microbial.
• V and K are discrete.

The first type of point is called analytic or Tate, and the second type just non-
analytic or non-Tate. Here, two maps are identified if they build a commutative
triangle and the square

Ṽ K̃

V K

is Cartesian. In the case that the adic space is Tate, just Tate points will appear.

Construction 2.5.3.9. Let us describe the map φ : |Xη| → limAdm(X) |Ȳi|. For
this, let us be given a point

Spa(E,W )→ Xη
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then we can find an affine open Spf(A)→X, such that this point lives in |Spa(A[ 1
π ], A)| ⊂

|Xη|. Now, any admissible blowup Yi → X can be pulled back to Spf(A) and, by
refining Spec(A) around the closed point of Spec(W ) if necessary, we can assume
that this pullback is a local admissible blow-up. No we obtain a commutative
diagram

Spec(K) Yi

Spec(W ) Spec(A)

!

where we can find a unique dashed lift using the valuative criterion for properness.
Now the closed point in Spec(V ) lands in |Ȳi| and and if we vary Yi, we obtain a
compatible collection of points. That is a point in limAdm(X) |Ȳi|.

To describe the inverse map, let us consider the spaces

Y := limAdm(X) Yi and Ȳ := limAdm(X) Ȳi

as locally ringed spaces. Then the crucial input is the following, a version of
[Bha17][8.1.3].

Proposition 2.5.3.10. For any point y ∈ Ȳ the Hausdorff quotient

Sy := π0OY,y/ ∩n πnπ0OY,y
is a microbial valuation ring with pseudouniformizer π.

Before doing the proof, let us recall some examples of admissible blowups, we want
to use.

2.5.3.11. Recall from [KR25] that a closed immersion of derived schemes Z → X
is called a quasi-regular of finite type11, if it locally on X sits in a cartesian square

Z X

{0} An.

(f1,...,fn)

Any such closed immersion can be blown up. That is, there is a projective morphism
of derived schemes

BlZ(X)→ X

which becomes an isomorphism over the complement of Z. The derived scheme
BlZ(X) is called the blowup of Z in X and locally on X can be constructed as the
fibre product

BlZ(X) Bl{0}(A
n)

X An
(f1,...,fn)

where we use the classical blowup in the right upper corner. One then globalizes
this construction for general quasi-regular closed immersions.

11In the given reference, these maps are called quasi-smooth closed immersions. We decided
to change The name is used in order to avoid confusion with the notion of quasi-regular closed
immersions used in the theory of prismatic cohomology. The relation is that for now we just stick
to those quasi-regular closed immersions which are also of finite type.
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Construction 2.5.3.12. For an affine derived formal scheme Spf(A), we will call a
finitely generated ideal I ⊂ π0A admissible, if it contains an ideal of definition. Let
us consider functions (f1, . . . , fn) = I generating such an admissible ideal and write

A/LI

for the derived quotient with respect to the functions (f1, . . . , fn). In this situation,
the pullback

Spf(A)I BlSpec(A/LI)(Spec(A))

Spf(A) Spec(A).

πI

gives an example of an admissible blowup. Note the formal scheme Spf(A)I just
depends on the ideal and not on the choice of generating functions. In particular, any
admissible quasi-coherent ideal sheaf on a formal scheme gives rise to an admissible
blow-up.

2.5.3.13. We will use these blowups in the following way. Note that the blow up

Bl{0}(A
2)

admits affine charts given by the schemes

Spec(Z[x,
y

x
]) and Spec(Z[

x

y
, y]).

In particular, if we cut out two functions Z = Spec(A/(f, g))→ Spec(A) = X then
on the blow up BlZ(X), we have either f |g or g|f .

Proof of 2.5.3.10. Note that we can write

Ty := π0OY,y ' colimYi∈Adm(X) colimU⊂Yi π0OYi(U)

where the second colimit runs over opens. Then the first observation we do is that we
can assume OY to be π-torsion free. This follows as the system of those admissible
blow-ups with π-torsion-free functions is limit cofinal in all admissible blowups as in
an admissible blow-up, we can kill the π-torsion to obtain a new admissible blowup.
We now claim:

(∗1) Sy 6= 0.

Assuming the statement would imply that 1 ∈ πTy, but this is impossible as Ty is a
filtered colimit of local rings (with local transition maps), such that in each term π
is contained in the maximal ideal (as y ∈ Ȳ ).
Now we claim the following, which in particular tells us that π is topological nilpotent
and thus will be a pseudouniformizer.

∗2 For f̄ ∈ Sy we have either f̄ = 0 or f̄ |πn for large n.

Let us lift f̄ to f ∈ Ty and fix n. Then we claim that either f |πn or πn|f . We can
represent f ∈ OYi(U) and consider the ideal

(f, πn) ⊂ OYi(U).

This ideal can be lifted to a quais-coherent ideal sheaf I on Yi which contains πn (we
can add it if necessary). In particular, using 2.5.3.12 we obtain a blow up YI → Yi
which is admissible as πn is contained in I. Now using 2.5.3.13 we see that in YI
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around the point corresponding to y, we either have f |πn or πn|f . To get ∗2, we
are done in the first case, and in the second, we increase n by one and redo the
argument.
Now we claim the following, which is one part of being a valuation ring.

(∗3) For each f̄ , ḡ ∈ Sy, we have either f̄ |ḡ or ḡ|f̄ .

We can assume both are non-zero. Thus by ∗2, if we choose lifts f, g ∈ Ty, we can
find n such that f |πn and similar for g. In particular, we can find some open in
some admissible blowup U ⊂ Yi, such that the ideal

(f, g) ⊂ OYi(U)

contains πn for some n. We now use the same argument as in the proof of ∗2 to get
the claim.
To finish the proposition, we are left to show the following, which is the other half
of being a valuation ring.

(∗4) The ring Sy is a domain.

Let us take two non-zero functions f̄ , ḡ ∈ Sy, such that f̄ ḡ = 0. We will derive a
contradiction. Using ∗2, we can find n and m such that f̄ |πn and ḡ|πm. Now, if we
choose lifts f, g ∈ Ty, the same holds for those as the kernel of the map Ty → Sy is
π-divisible. This means we obtain a chain of inclusions

(πn+m) ⊂ (f, g) ⊂ ∩kπkTy.

So as π is a non zero-divisor, we see that 1 ∈ ∩kπkTy, which implies Sy ' 0 and
thus contradicts ∗1. �

Construction 2.5.3.14. As a result of 2.5.3.10, we obtain a map

ψ : limAdm(X) |Ȳi| → |Xη|,

which we construct now. Given a point y in the left-hand side, we can find an affine
cover on Spf(A)→ X such that

y ∈ limAdm(X) |ȲiSpec(A/π)|.

On functions, this gives us a map A→ Sy, where Sy denotes the ring from 2.5.3.10.
This map is continuos for the π-adic topology, and inverting π gives a map

Spa(Sy[
1

π
], S̃y)→ Spa(A[

1

π
], Ã)→ Xη

which produces a point in |Xη| as Sy is a microbial valuation ring 2.5.3.10.

Let us now come to the proof.

Proof of 2.5.3.6. Using the valuative criterion for properness, it is easy to
see that φ ◦ ψ = id. To check that these two maps are mutually inverse to one
another, we make the following claim (see [Bha17][8.1.4]). This claim implies that
we have ψ ◦ φ = id.

(∗1) For any point x ∈ |Xη| we have a canonical isomorphism κ(x)+ ' Sψ(x),
where Spa(κ(x), κ(x)+) denotes the terminal representative of the point x.
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Consider a point x ∈ |Xη|. Then we can find an affine open Spf(A) → X, such
that x ∈ |Spf(A)η|. We did define φ(x) by taking compatible lifts of the map
Spf(κ(x)+)→ Spf(A) using the valuative criterion for properness. These lifts give
us a compatible family of maps of local rings OYi,φ(x) → κ(x)+ and thus a map of
local rings OY,φ(x) → κ(x)+. As the target is static and Hausdorff, this map induces
a map

Sφ(x) → κ(x)+.

This map is injective, as the kernel is a prime ideal and thus would contain π if
it were not zero. Thus, using 2.5.3.10, we see that this map is an injective local
map between valuation rings. Such maps are faithfully flat. Now consider the
composition

A[
1

π
]→ Sφ(x)[

1

π
]→ κ(x).

Using the faithful flatness, we see that the kernel of the first map is the same as the
kernel of the composition, which is given by the support of x. Thus, we obtain a
factorization

κ(x)→ Sφ(x)[
1

π
]→ κ(x)

where the composition is identity. As all terms are fields, this shows that the second
map is an isomorphism. But then Sφ(x) → κ(x) is a local inclusion of valuation
rings with the same field of fractions and thus an isomorphism.
We now prove that ψ is continuous and spectral by identifying basic rational opens
in |Xη| with quasi-compact opens in Y via this map. Note that we can do this
locally on X, so let us take some affine open Spf(A)→ X, and some basic rational
open

U(
f1, . . . , fn

g
) ⊂ |Spa(A[

1

π
], Ã)|.

That is we have we can assume g, f1, . . . , fn ∈ A and πN ∈ (f1, . . . , fn) for some
large N [Bha17][7.4.3]. Now consider the ideal

I = (g, f1, . . . , fn) ⊂ A.

Extending this ideal to an ideal sheaf I on X containing πN , we can use 2.5.3.12 to
obtain an admissible blowup XI → X. Furthermore, note that we have an open
immersion

BlI(Spf(A))→ XI .

Now, by construction of the blowup, we have a closed immersion

BlI(Spf(A))→ Bl{0}(A
n+1) ' PnSpf(A)

mapping g to some homogenous coordinate xk. Let U ⊂BlI(Spf(A)) be the pullback
along this closed immersion of the complement of the hyperplane xk 6= 0 and consider
the preimage

W Ȳ

|U/π| |BlI(Spec(A/π))| |X̄I |

Then we claim (see [Bha17][8.1.5]):

(∗2) ψ−1(U( f1,...,fn
g )) = W .
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We first check the inclusion ⊃. Note as in 2.5.3.13 we see that by the choice of U ,
we have the relation g|fi on OXI (U) for all i. In particular, for any y ∈ Y lying
over |U |, we have the same relation in OY,y and thus also in Sy. But then the point

Spa(Sy[
1

π
], S̃y)→ Xη

lives in U( f1,...,fn
g ). Now, to see the inclusion ⊂, we note that for a point y ∈ Ȳ , the

condition that the point corresponding to the map

Spa(Sy[
1

π
], S̃y)→ Spa(A[

1

π
], Ã)

lands in U( f1,...,fn
g ), tells us that we have the relations g|fi for all i in Sy. Using the

valuative criterion for properness and the closed immersion from above, we obtain a
map

BlI(Spf(A)) PnSpf(A)

Spf(Sy) Spf(A)

corresponding to the line bundle (x0 = f1, . . . , xk = g, . . . , xn = fn) with chosen
sections as indicated. But using the relations g|fi, we see that as a point in projective
space, this is equivalent to the line bundle

(x0 =
f1

g
, . . . , xk = 1, . . . , xn =

fn
g

)

with chosen sections as indicated. But this point clearly lands in U , which shows
what we want.
We have now seen that ψ is a bijective spectral map between spectral spaces. So
by [Sta, Tag 09XU], to check that it is a homeomorphism, it suffices to see that
generalizations lift along ψ. This can be done locally on X and then the same way
as in [Bha17][8.1.6]. �

2.5.4. Proper maps of formal schemes. To conclude the section, we will
analyze proper morphisms of formal schemes. Let us start with the definition. The
following notion of finite type is strongly inspired by [Man22][2.9.28].

Definition 2.5.4.1. An (adic) morphism of affine formal schemes Spf(B)→ Spf(A)
is called:

• of +finite type if there exists finitely many functions fi ∈ B such that the
induced map

A[x1, . . . , xn]→ B

is integral on π0.
• of finite type if it is representable by finite type morphisms of animated

rings.

An (adic) morphism of formal schemes is called:

• locally of +finite type if it is so locally on source and target.
• locally of finite type if it is so locally on the source and target.
• +proper if it is locally of +finite type, quasi-compact, and represented by

separated and universally closed morphisms of schemes.

https://stacks.math.columbia.edu/tag/09XU
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• proper if it is +proper and of locally of finite type.

Example 2.5.4.2. Any integral map of animated rings is a +proper map. A handy
example will be that of naive syntomic covers 3.1.2.1.

Construction 2.5.4.3. Note that for any affine formal scheme Spf(A) over S there
is a map

Spa(A)→ Spa(A, Z̃)

natural in Spf(A). Thus, using the functors 2.5.2.3 and 2.5.1.1 for any formal scheme
X we obtain a map

Xan → X lp

natural in X.
Furthermore, if we consider an adic morphism X → Y of formal schemes over S, we
can define Xan/Y

an

:= Y an ×Y lp X lp and obtain a factorization

Xan → Xan/Y
an

→ Y an.

As before, this construction should be thought of as a “compactification”. The
following proposition tells us in which cases it actually is a compactification.

2.5.4.4. In the following argument, we will deal with specializations in derived
Tate adic spaces. For such a Tate adic space X and a point x ∈ X, the set of
specializations is given by the set of valuation rings V ⊂ κ(x)+κ(x) with fractions
field κ(x), which are contained in κ(x)+ [Wed19][4.12].
From this one sees that a map of Tate adic spaces is universally specializing, if and
only if for any commutative square

Spa(K,V ) X

Spa(K,W ) S,

where on the left we have valued fields, there exists a dashed arrow as indicated.

Proposition 2.5.4.5. Consider an adic morphism f : X → S of formal schemes
and write

p ◦ j : Xan → Xan/S
an

→ San

for the factorization constructed in 2.5.4.3. Then we have:

(a) If f is quasi-compact, p is proper.
(b) If f is locally of +finite type. Then j is an open immersion.
(c) If f is +proper. Then, j is an isomorphism.

Proof. Note that all assertions are local on San, so by 2.5.2.4 we can assume
S ' Spa(A) to be affine with ideal of definition I. Now by 2.5.1.4 any Zariski
covering of X induces a closed covering of Xan/S

an

. For (a), we first show the claim
in the case X is separated. Then the diagonal is affine and thus becomes proper, so
we can use 2.1.3.7. In the general case, we do the same argument now using the
fact that the diagonal is separated.
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Note that by 2.5.1.4 and 2.5.2.4, the assertion in (b) is local on X as well. That is,
we can assume a factorization

Spa(B,B+)→ Spa(B, Ã+)→ Spa(A,A+)

such that we have finitely many fi ∈B+ inducing an integral map A+[xi, i ∈ I]→B+.
But then Spa(B,B+) is given by the intersection of the pullbacks

U(|fi| ≤ 1) Spa(B, Ã+)

D1
� A1

�

fi

which is a finite intersection of opens and thus open.
We now check (c). We first claim:

(∗1) The map |Xan| → |Xan/S
an

| is surjective.

As the adic fiber product surjects onto the topological fibre product (see for example
[Hub93b][3.9.1] [Hub94][3.10.4]), we can check this fibered over a valued field

x : Spa(K,V )→ San.

Now, there are two cases. Let us first assume x corresponds to a non-Tate point.
Then K and V are discrete, such that any ideal of definition in A vanishes on V
and the fibered triangle lives in discrete adic spaces. Then the claim follows using
2.2.4.5 and the valuative criterion for properness in algebraic geometry.
In the case x corresponds to a Tate point, the fibered triangle

Xan
η Xan/S

an

η

Spa(K,V )

j

f
p

lives in Tate adic spaces. At any point in the target of j is a specialization of a point
in the domain [Wed19][7.41+7.42], it suffices to check that the map is specializing.
For this, we first claim:

(∗2) The map Xan
η → Spa(K,V ) is universally specializing.

Note that to see this, it suffices to check that for any map of valued fields
Spa(E,W )→ Spa(K,V ) the induced map

|Xan
η ×Spa(K,V ) Spa(E,W )| → |Spa(E,W )|

is closed. This fibre product can be computed by first taking the pullback

XW XV

Spf(W ) Spf(V )

in formal schemes, taking the analytification and then the generic fibre. So the
claimed closedness of the above map and thus also the claim ∗2 follows from 2.5.3.7.
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Let us consider a square

Spa(K,W ) Xan
η

Spa(K,V ) Xan/S
an

η .

We can find a dashed arrow as indicated, making the upper left triangle commute,
by further mapping down to Spa(K,V ) and using ∗2. Now the lower right tri-
angle commutes, as the diagonal of the map Xan/S

an

η → Spa(K,V ) is universally
specializing.
Let us now finish the argument. By (b), we know that j is an open immersion and
thus corresponds to an idempotent algebra in

Dqc(Xan/S
an

).

We claim that this idempotent algebra is 0. Using ∗1 and 2.2.2.20 we can check this
after pulling back to Dqc(X

an) where it is true by construction. �

Corollary 2.5.4.6. Consider a map of formal schemes f : X → S. Then we have:

(a) If f is of +finite type then

Xan → San

is !-able.
(b) If f is +proper then

Xan → San

is proper. Furthermore, in that case, the square

Xan X lp

San Slp

is Cartesian.



CHAPTER 3

The Prismatisation and its friends as analytic
stacks

The goal of this chapter is to construct a six-functor formalism for prismatic
cohomology and its variants. The strategy we want to follow is to produce analytic
stacks out of a p-adic formal scheme (or more honestly it’s Prismatisation, etc.), such
that the categories involved in these formalisms come as categories of quasi-coherent
sheaves on these stacks.

fSchopSpf(Zp) AnStackop Cat
(_)�,� Dqc

Such stacks have been defined by Bhatt-Lurie and Drinfeld (see, for example,
[BL22a] [BL22b] [Dri20]) using the language of formal geometry. So, the first
thing to consider is understanding formal stacks as analytic stacks. At least two
options are coming to mind:
Option one comes from associating with an affine formal scheme Spf(A) the analytic
stack

Spa(A, Z̃)

as discussed in 2.5.1. This will produce a six-functor formalism where nearly any map
is cohomologically proper, similar to the situation in “classical” algebraic geometry.
In particular, the amount of, for example, cohomologically étale maps will be very
restrictive. So this will not produce what we want.
Option two might be a less naive guess. Here, we associate with Spf(A) the analytic
stack

Spa(A)

as discussed in 2.5.2. This will produce a six-functor formalism on formal stacks,
which behaves way more “geometric” than option one. We will see that one can
obtain a formalism for quasi-coherent cohomology of formal schemes with the correct
amount of cohomologically proper and smooth maps.
As pointed out in the addendum, at the point in time where this text is written,
it is not clear to the author why, using the second variant, one obtains the correct
amount of cohomologically proper morphisms.
This means that in this text, we want to find an option between one and two.
Here, the general philosophy will be that on integral perfectoids, we want to use
option two, and for quasiregular semiperfectoids, we want to use a relative (over a
perfectoid) version of option one. As the reader familiar with these objects knows,
this should determine everything.

77
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3.1. Preliminaries

3.1.1. Recollections on integral perfectoids. In the following, we will
recall the notion of integral perfectoid rings from [BMS16][3]. The main point of
this section is that Fontaine’s ring still makes sense if we work in the animated
setting.

3.1.1.1. In the following, we will make extensive use of the ring of (p-typical) Witt
Vectors of an animated ring [BL22b][A] and [Hub24]. That is, we will consider
the functor, which assigns to an animated ring S over Z(p) its ring of Witt Vectors
W(S). This functor is represented by the scheme

Spec(Z(p){x}) = Spec(Z(p)[x, δ(x), δ2(x), . . . ])

corresponding to the free δ-ring on one generator, thus defining a (derived) ring
scheme.
There also exists n-truncated versions Wn such that

W ' limnWn

and all the classical operations on the Witt vectors give rise to W-linear natural
transformations, see [BL22b][A], [Bha22][2.6] and [Dri20][3]:

• There are projections R : Wn →Wn−1. Furthermore W1 ' Ga.
• There is the Witt vector Frobenius F : Wn → F∗Wn−1 which gives the

Frobenius after base change to Fp.
• There are the Verschiebung maps V : Wn−1 →Wn. Furthermore, there

are fibre sequences Wn−1→Wn→Ga where the first map is Verschiebung
and the second projection.

• We have the equation FV ' p and in characteristic p the equation V F ' p.

Remark 3.1.1.2. Note that there is an isomorphism of schemes

Wn ' An

for each n. In particular, we see that

π0Wn(S) 'Wn(π0S).

Remark 3.1.1.3. For any derived p-complete animated ring S, the ring of Witt
vectors W(S) is derived p-complete. To see this, note that p-complete objects are
stable under limits, so as the Witt vectors commute with limits, we can check the
claim where p is nilpotent in S. But then W(S) ' limRWn(S) and p is nilpotent
in each of the rings Wn(S) [BMS16][3.2] which implies the claim.

Remark 3.1.1.4. The Frobenius morphisms give rise to a Frobenius endomorphism

F : W→W

on the whole, Witt vectors. This endomorphism can also be understood in the
following way. As a functor on (animated) rings, taking the Witt vectors gives
a right adjoint to the forget functor from δ-rings to rings [Joy85] [Hub24]. In
particular W(S) carries a δ-structure given by

(s0, s1, s2, . . . ) 7→ (s1, s2, . . . )

and the induced Frobenius endomorphism gives the above Frobenius [Haz78][17].
This also means we recover the classical Frobenius on W(S)/p.
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3.1.1.5. Recall from (the proof of) [BS17][11.6], that on an animated rings S of
characteristic p the Frobenius acts as the 0-map on πnS for all n ≥ 1.

We now come to the main observation of this section, which says that Fontaine’s
ring still makes sense for certain animated rings. We follow [BMS16][3].

3.1.1.6. We fix an animated ring S, which is derived π-adically complete for some
function, such that πp divides p. We will write ϕ : S/p→ S/p for the Frobenius and

S[ ' limϕ S/p

for the inverse limit perfection of S/p. Then we can consider the following.

Definition 3.1.1.7. We will write

Ainf(S) := W(S[)

for Fontaine’s ring, which comes with a Frobenius automorphism ϕ.

We now have the following:

Proposition 3.1.1.8. Consider an animated ring S as in 3.1.1.6. Then we have
the following isomorphisms:

(a) The morphism
S[
∼−→ (π0S)[

is an isomorphism.
(b) For T ' S or T ' S/πn the morphism

limF Wn(T )
∼−→ limF Wn(π0T )

is an isomorphism.
(c) The morphism

ϕ∞ : limF Wn(S[)
∼−→ limRWn(S[)

induced by the morphisms ϕn : Wn(S[)→Wn(S[) coming from the Frobe-
nius on S[ for n ≥ 1, is an isomorphism.

(d) The morphism

limF Wn(S[)
∼−→ limF Wn(S/π)

induced by the canonical morphism S[ → S/π, is an isomorphism.
(e) The morphism

limF Wn(S)
∼−→ limF Wn(S/π)

induced by the canonical morphism S → S/p, is an isomorphism.

Proof. To see (a) note that by 3.1.1.5 both rings are static, so the only
obstruction is a lim1-term. But using 3.1.1.5 again, one sees that the map∏

n

πiS/p→
∏
n

πiS/p

used to produced the lim1 is the identity (for i ≥ 1). So this obstruction vanishes.
To see (b) note that both sides are (derived) p-complete 3.1.1.3 so we can check the
claim modulo p. Now, using the isomorphism

limF Wn(T ) ' limF W(T )
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respectively, both rings are perfect of characteristic p 3.1.1.4 and thus static 3.1.1.5.
That means again, the obstruction is a lim1-term. Using the same isomorphism
again, we see that we can compute this lim1-term using the map∏

n

πiW(T )/p→
∏
n

πiW(T )/p

(for i = 1) which again is the identity by 3.1.1.5.
Using (a) and (b), we can now replace S by π0S respectively in all claims, so they
follow the same way as in [BMS16][3.2]. �

3.1.1.9. Consider an animated ring S as in 3.1.1.6. Then by 3.1.1.8 we obtain
isomorphisms

Ainf(S) limF Wn(S[) limF Wn(S/π) limF Wn(S).' ' '

Precomposing this composition with the Frobenius automorphism ϕ : Ainf(S) →
Ainf(S) and then using the projection, we obtain Fontaine’s map

θ : Ainf(S)→ S.

We can now recall the definition of integral perfectoid rings from [BMS16][3.5] and
record some needed examples.

Definition 3.1.1.10. We will say an animated ring S is integral perfectoid, if it is
derived π-adically complete for some function, such that πp divides p and the fibre
of Fontaine’s map

θ : Ainf(S)→ S

is static and generated by one element.

Remark 3.1.1.11. Note that asking the Frobenius ϕ : S/p→ S/p to be a π0-surjection
is equivalent to asking Fontaine’s map Ainf(S) → S to be a π0-surjection. In
particular, the above definition recovers the definition from [BMS16][3.5].

Remark 3.1.1.12. By 3.1.1.8, any integral perfectoid is static, so the definition does
not give more examples than [BMS16][3.5]. This is how it should be, as perfect
prisms are also static [BL22b][2.16].

3.1.1.13. We will recall the notion of a prism [BS19] [BL22b] later on. Let us use
it for now. Recall that the construction

R 7→ (Ainf(R), ker(θ))

gives an equivalence of categories

{Integral perfectoids} ' {perfect prisms}
[BS19][3.10] [BL22b][2.16].

Example 3.1.1.14. Integral perfectoids of characteristic p are exactly perfect rings.

Example 3.1.1.15. The (derived) p-completion of the cyclotomic numbers

R = Zcyc
p := Zp〈µp∞〉

give an integral perfectoid. If we choose a multiplicative lift ε of a compatible system
(1, ξp, ξp2 , . . . ) ∈ R[ ' Fp[[x

1
p∞ ]] of roots of unity with ξp primitive, then one can

compute
Ainf(R) ' Zp〈ε

1
p∞ 〉, ker(θ) ' (1 + ε

1
p + ε

2
p + · · ·+ ε

p−1
p ).
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Example 3.1.1.16. The ring

R = Zp〈p
1
p∞ 〉

is integral perfectoid. Choosing a compatible system of p-th roots of p π[ =

(p
1
p , p

1
p2 , . . . ) ∈ R[1, one can compute

Ainf(R) ' Zp〈[π[]
1
p∞ 〉, ker(θ) ' (p+ [π[]p).

Example 3.1.1.17. For any span of integral perfectoids, the pushout

R0 R1

R2 R2⊗̂R0
R1

is integral perfectoid. That follows from [BS19][8.13].

Example 3.1.1.18. For any étale map of affine p-adic formal schemes

Spf(S)→ Spf(R)

we have that if R is integral perfectoid, then S is integral perfectoid as well. To
see this, note that by 2.4.2.8 there exists a unique etale map Spf(S̃)→ Spf(Ainf(R))
fitting into a cartesian square

Spf(S) Spf(R)

Spf(S̃) Spf(Ainf(R)).

Now by [BS19][2.18] the δ-structure on Ainf(R) extends uniquely to a δ-structure
on S̃, thus by [BL22b][2.10] S̃ carries a unique structure of a Prism compatible
with the étale map. This prism is perfect as the Frobenius becomes an isomorphism
modulo p and thus is an isomorphism. This shows what we want by 3.1.1.13.

Example 3.1.1.19. Given an integral perfectoid R, the ring

R〈x
1
p∞ 〉

is an integral perfectoid with

Ainf(R〈x
1
p∞ 〉) ' Ainf(R)〈x

1
p∞ 〉.

To see this equip S = Ainf(R)[〈x
1
p∞ 〉 with the trivial δ-structure at x, then there

exists a unique Prism structure on S making the map Ainf(R) → S a map of
prisms [BL22b][2.10]. But this prism is perfect, which shows the claim by 3.1.1.13.
Note that this also works in multiple variables.

Later on, we will be interested in the generic fibres of integral perfectoids. For this
it will be useful to systematical neglect R◦◦-torsion, where R◦◦ denotes the ideal of
topological nilpotent elements in an integral perfectoid R.

1Here we write R[ ' limr 7→rp R as monoid.
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3.1.1.20. Recall from [GR02] that an ideal I ⊂ R in a ring is called an almost ideal,
if it is flat and the canonical map I ⊗R I

∼−→ I is an isomorphism. In this situation,
the algebra R/I is idempotent over R, and if we kill this idempotent algebra 2.1.2.9,
we obtain a localization

ModR →ModRa

of the category of R-modules, which we will call almost Ra-modules. The right
adjoint of this localization is given by the formula

M∗ ' HomR(I,M)

and this adjunction induces an adjunction on algebra objects. We will say a
morphism is an almost isomorphism if it becomes an isomorphism inModRa .

The example of the above situation we will care about is the following.

Lemma 3.1.1.21. Consider an integral perfectoid R, then the ideal R◦◦ of topo-
logical nilpotent elements in R defines a (derived p-completed) almost ideal.

Proof. By [BMS16][3.9] we can assume that π admits a compatible system
of p-power roots. Then (π

1
p∞ ) = R◦◦ and one easily sees that R◦◦ ⊗R R◦◦ ' R◦◦.

To see the (p-complete) flatness, we write M for the p-completed colimits of the
diagram

R R R . . . .π
1− 1

p π
1
p
− 1
p2 π

1
p2 −

1
p3

There is a map M → R◦◦ induced by the elements π
1
pn and we claim that this map

is an isomorphism. To see this, recall that we have a commutative triangle

W(R[) R

R[
]

where the upper horizontal map is given by Fontaine’s map, the left vertical map is
given by quotienting modulo p, and the dashed arrow is a map of (multiplicative)
monoids. Now note that R/(π

1
p∞ ) is an integral perfectoid with a perfect prism

given by

W(R[/(ω
1
p∞ ))

with ω] = π and the Hodge-Tate ideal induced from the Hodge-Tate ideal (d) ⊂
W(R[). In particular (d) acts as a non-zero divisor on the latter quotient. Thus to
check the claimed isomorphism, we can check that the sequence

M̃ →W(R[)→W(R[/(ω
1
p∞ ))

is a fibre sequence, where M̃ denotes the p-completed colimit of the sequence

W(R[) W(R[) W(R[) . . . .ω
1− 1

p ω
1
p
− 1
p2 ω

1
p2 −

1
p3

This we can check modulo p, where it follows as in [Bha17][4.1.3]. �
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Proposition 3.1.1.22. Consider an integral perfectoid R with tilt R[, then there
is an equivalence of categories

PerfdintR[/ ' Perfd
int
R/

between the category of integral perfectoid R[-algebras and the category of integral
perfectoid R-algebras. The functor in one direction assigns to an R-algebra, its tilt,
and the functor in the other direction assigns to a R[-algebra T the R-algebra

W(T )⊗W(R[) R

. Furthermore, this equivalence preserves almost isomorphisms, where we do almost
mathematics with respect to the ideals of topological nilpotent elements 3.1.1.21.

Proof. The category of integral perfectoids over R is equivalent to the category
of perfect prisms over W(R[) [BS19][3.10]. This category is equivalent to the
category of perfect δ-rings over W(R[) [BL22b][2.10+2.16], which is equivalent to
the category of integral perfectoid rings over R[ [BS19][2.31].
To see that the equivalence respects almost isomorphisms, recall first that we can
assume that π ∈ R admits a compatible system of p-th roots and thus can be lifted
to an element ω = π[ ∈ R[ [BMS16][3.9]. Now R◦◦ = (π

1
p∞ ) and (R[)◦◦ = (ω

1
p∞ ).

Let us take a map S → T of integral perfectoid R algebras, then we have to
show that the map (π

1
p∞ )S → (π

1
p∞ )T is an isomorphism if and only if the map

(ω
1
p∞ )S[ → (ω

1
p∞ )T [ is an isomorphism. But the proof of 3.1.1.21 shows that, by

derived Nakayama, both are equivalent to the assertion that the map

([ω]
1
p∞ )W(S[)→ ([ω]

1
p∞ )W(T [)

is an isomorphism. �

3.1.2. The naive syntomic topology. A crucial input in the theory of
prismatic cohomology is the so-called syntomic topology. On the other hand, we
would like to use the descendable topology, as this topology is compatible with the
theory of analytic stacks. The author does not know if the syntomic topology is
coarser than the descendable topology so we will work with a coarser topology. This
topology will be called the naive syntomic topology.
In the following, we work with the category

fSchaffZp
of affine p-adic formal schemes. In the end, all outputs will satisfy Zariski or even
étale descent, so there is no harm in restricting to affine objects.

Definition 3.1.2.1. An (adic) map X → S of affine derived p-adic formal schemes
is called a naive syntomic cover, if it can be refined by a map living in the smallest
class, which is stable under base change and composition, and contains maps of the
form

Spf(Z〈x
1
p∞

i |i ∈ I〉)→ Spf(Z〈xi|i ∈ I〉)
with I some set.

Remark 3.1.2.2. It is not clear how to characterize all naive syntomic covers. This
makes it hard to verify that a functor is a sheaf for the naive syntomic topology in
general. We will only need to verify this in particular easy situations, where this
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problem reduces to the generic examples. One is defining a functor of topoi, that
is, a left exact left adjoint. The other will be associating a cohomology ring, which
satisfies the Künneth formula, sends naive syntomic covers to a type of map that is
stable under refining, base change, and composition.

Example 3.1.2.3. Any naive syntomic cover is a (derived version) of a syntomic
cover [BMS18][4.2]. In particular, any naive syntomic cover is a (p-completely)
faithfully flat cover. Note that the situation is even slightly better, namely, any
naive syntomic cover is pulled back from a faithfully flat map of (derived) schemes.

Example 3.1.2.4. Any naive syntomic cover is a p-completely descendable cover
2.4.1.10.

3.1.2.5. By construction, naive syntomic covers build a pretopology2 on fSchaffZp
and we will write

(Zp)nsyn

for the induces topos3.

The main goal of this section is now to explain why the “unfolding” idea in
[BMS18][4.31] still goes through using the naive symmetric topology. For this, we
will make the following definition, which uses the concept of integral perfectoid rings
from [BMS16][3]. We will also recall this notion in more detail in the next section.

Definition 3.1.2.6. A (derived) p-complete animated ring S is called semiperfectoid,
if it admits a map

R→ S

from an integral perfectoid ring and the Frobenius ϕ : S/p→ S/p is a π0-surjection.

Remark 3.1.2.7. A derived p-complete animated ring S is semiperfectoid, if and only
if it admits a π0-surjection from an integral perfectoid. To see this note that, if we
have some map R→ S from an integral perfectoid, the map

Ainf(R)→ Ainf(S)

induces a perfect Prism structure on Ainf(S). If the Frobenius on S/p is surjective,
the corresponding integral perfectoid surjects onto S.

The following should be thought of as a version of [BMS18][4.31] in the animated
setting.

Proposition 3.1.2.8. Any p-complete animated ring S̃ admits a naive syntomic
covering by a semiperfectoid S, such that each term in the Čech nerve

S̃ → S ⇒ S⊗̂S̃S · · ·
is semiperfectoid as well. In particular, the inclusion of semiperfectoids into affine
p-adic formal schemes induces an isomorphism of categories of naive syntomic
sheaves. The inverse of this equivalence is given by right Kan extension.

Proof. The argument for the first claim is just the same as in [BMS18][4.28+4.30]
and the second claim is standard (see, for example [BMS18][4.31]). �

2Do not forget to also add the map from the empty presheaf to the empty scheme as a cover.
3By convention, this is just a topos up to size issues.
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3.1.3. Prisms and the Prismatisation of Zp. Let us recall the notion of an
(animated) prism introduced in [BL22b]. See also [BS19] for the original definition
of a Prism.

Construction 3.1.3.1. Recall that the moduli of generalized Cartier divisors is
given by the quotient stack A1/Gm. That is a map Spec(A) → A1/Gm can for
example be understood in the following ways:

• An A-linear map α : I → A where I is given by an invertible A-module.
• A map of animated rings A→ A with fibre given by an invertible A-module.

Here one obtains Spec(Ā) by pulling back along the map BGm →A1/Gm.

Note that for a generalized Cartier divisor Spec(A)→ A1/Gm we can equip A with
the I-adic topology by pulling back along the completion at the origin

Â1/Gm ⊂ A1/Gm.

In what follows, if we refer to a generalized Cartier divisor, we refer to the produced
map

Spf(A)→ Â1/Gm.

Definition 3.1.3.2. An animated prism is an animated δ-ring in the sense of
[BL22b][A.11] [Hub24][2.4] together with a generalized Cartier divisor A → A
such that:

(i) A is (p, I)-complete.
(ii) For any perfect field k of characteristic p and any map A→ k of animated

rings which annihilates I, we have

W(k)⊗A A ' k.

Here W(k) is understood as an A-algebra via the adjoint map of δ-rings.

3.1.3.3. Recall that an animated δ-algebra is given by an animated ring A together
with an endomorphism

ϕ : A→ A

which identifies with the Frobenius modulo p. The category of those objects admits
all colimits, and the forgetful functor to animated rings preserves those [Hub24][2.8].

Example 3.1.3.4. An animated prism A→ A is called perfect if the Frobenius lift

ϕ : A
∼−→ A

is an isomorphism. As already mentioned, these prisms are exactly the ones that
are of the form

θ : Ainf(R)→ R

for R an integral perfectoid ring.

3.1.3.5. One can prove [BL22b][2.10] that a map of animated prisms is just a map
of δ-algebras. That is, for an animated prism A → A, the category of animated
prisms over A→ A is equivalent to the category of derived (p, I)-complete δ-algebras
over A. This observation has the following Corollary.

Corollary 3.1.3.6. The category of animated prisms has nonempty coproducts and
pushouts.



86 3. THE PRISMATISATION AND ITS FRIENDS AS ANALYTIC STACKS

3.1.3.7. Instead of giving a formal proof, let us explain how to compute them. Using
3.1.3.5 we can compute the pushout as the pushout of δ-algebras, induce the Cartier
divisor, and then complete. Note that the underlying ring is just the completed
pushout of the underlying Rings.
Given two animated prisms I → A and I ′ → A′, we can consider the pushout

A⊗δZ A′

in δ-rings, whose underlying ring is just given by the coproduct of animated rings.
Then we take the Cartier divisor I ⊗A′ → A⊗Z A and complete to this divisor and
p. This computes the coproduct.

The moduli of animated prisms gives the Prismatisation of Zp.

Definition 3.1.3.8. Let us fix a p-nilpotent animated ring R and W(R) the associ-
ated (animated) ring of Witt Vectors. A Cartier-Witt divisor on R is an animated
prism W(R)→W(R) (where we use the canonical δ-structure on W(R)), such that
the composition

π0(I)→ π0W(R)→ π0R

has a nilpotent image. The second map is given by taking the 1-th Witt component.
We write

Z�
p (R)

for the groupoid of Cartier Witt divisors on R. Note that this construction is
functorial in R and thus defines an object in Spf(Zp)fdesc which we refer to as the
prismatisation of Spf(Zp).

Construction 3.1.3.9. For any animated prism I → A, there is a map

ρA : Spf(A)→ Z�
p .

This map comes as follows. As A admits a δ-structure any map A → R to a
p-nilpotent ring factors by adjunction as

A→W(R)→ R

where the first map is a map of δ-rings. Now

I ⊗A W(R)→W(R)

gives a Cartier-Witt divisor on R.

Example 3.1.3.10. An important example of a prism is the universal oriented prism.
For an animated p-nilpotent ring R we write W0(R) ⊂W(R) for the subspace of
those Verschiebung expansions

∑
n≥0 V

n[an] for which a0 is nilpotent and a1 is a
unit. Note that, as a functor, this assignment is represented by an affine formal
scheme

Spf(Zp〈a0, a
±1
1 , a2, . . . 〉)

where we also complete to (a0), and that the Frobenius on the Witt Vectors restricts
to this subspace, such that we obtain a δ-structure on the representing ring. Thus
choosing (a0) as an ideal we have produced a prism and using 3.1.3.9 we get a map

W0 → Z�
p .

By (the proof of) [BL22a][3.2.3] (see also [BL22b][8.5]), this map identifies the
target as the quotient, in the Zariski topology, of the domain by the canonical action
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of the affine group scheme representing the functor R 7→W(R)×. Where we write
W(R)× for the units in the Witt Vectors. This group scheme is represented by the
free delta ring on a unit Zp{u±}.
In particular, using 2.4.1.8, we see that we have found a presentation of

Z�
p ∈ (Z�

p )fdesc.

The following proposition is a slight generalization of [BL22a][3.2.8]. It was essen-
tially pointed out there that it holds in this generality.

Proposition 3.1.3.11. Consider two animated prisms I → A and J → B. Fur-
thermore let K → C be their coproduct in the category of prisms. Then the square

Spf(C) Spf(B)

Spf(A) Z�
p

ρB

ρA

is Cartesian.

Proof. We can prove the assertion Zariski locally, so that we can assume I
and J correspond to functions dA and dB . Then we can factor the square as

Spf(C) Spf(B{u±}) Spf(B)

Spf(A{u±}) W× ×W0 W0

Spf(A) W0 Z�
p .

By [BL22a][3.2.8], the lower right square is Cartesian and corresponds to a coproduct
of prisms. Now the upper right square is Cartesian. Thus, it corresponds to a
pushout of prisms (as all maps are maps of prisms). From this we see that B{u±}
gives the coproduct of B and the prism representing W0. So the whole square on
the left corresponds to a pushout of prisms and thus is cartesian 3.1.3.6. �

Corollary 3.1.3.12. Consider two integral perfectoids R1 and R2, then the pullback

Spf(Ainf(R̃)) Spf(Ainf(R1))

Spf(Ainf(R2)) Z�
p

is represented by Ainf(R̃) of an integral perfectoid R̃ (i.e. corresponds to a perfect
prism).

Proof. Using the equivalence between perfect prisms and integral perfectoids
3.1.3.4, this follows from 3.1.3.11 as a coproduct of perfect prisms is perfect. �
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3.1.4. Prismatic cohomology of semiperfectoids. The upcoming propo-
sition will be crucial when defining the prismatisation as an analytic stack.

3.1.4.1. Recall that we called a derived p-complete animated ring S semiperfectoid
if there exists a map R→ S from an integral perfectoid and the Frobenius ϕ : S/p→
S/p is a π0-surjection.

Example 3.1.4.2. A useful fact is that any étale algebra

S → S̃

over a semiperfectoid is semiperfectoid as well. Let us point out for later use that
for such a map, the map

Spf(Ainf(S̃))→ Spf(Ainf(S))

is an étale map of formal schemes. This follows, for example, using 3.1.1.8 and the
fact that the maps Wn(S)→Wn(S̃) are étale [Bor10][15.2]. If the original map is
a surjection, the map on Ainf(_) is as well [Bor10][16.11].

3.1.4.3. Recall that to a semiperfectoid S we can associate the (derived) absolute
prismatic cohomology

�S
[BS19] [BL22a]. We stick to semiperfectoids for now because, in this case, this
object can be understood as an (completed) animated ring. We will recall the
argument for this fact later on 3.2.1.15.
Even better, �S carries the structure of an animated prism. One way to see this is
that, as it is prismatic cohomology, it carries a δ-structure [Hol24] and to obtain
the Cartier divisor, we can choose an integral perfectoid R mapping to S and induce
the divisor via the map

Ainf(R) ' �R → �S .
It is easy to check that this construction does not depend on the chosen integral
perfectoid. In particular, as in 3.1.3.9, we obtain a map

ρ�S : Spf(�S)→ Z�
p .

Remark 3.1.4.4. In the following argument, we will also use the prismatisation of a
general p-adic formal scheme. This is a stack whose construction we will recall in
the next section. The one thing we will need here is that, as a functor from p-adic
formal schemes to stacks, it preserves fibre products.

Proposition 3.1.4.5. For a semiperfectoid ring S, there exists a map of δ-rings

Ainf(S)→ �S
uniquely determined by the following requirements:

(a) It is functorial in maps between semiperfectoids.
(b) For any perfectoid R mapping to S, the square

�R �S

Ainf(R) Ainf(S)

'

commutes.
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Proof. If we show the existence, the uniqueness is clear from 3.1.3.5. Consider
a map R→ S from an integral perfectoid. Then, by 3.1.3.5 and 3.1.3.4, the induced
map

Ainf(R)→ Ainf(S)

induces a perfect prism structure on Ainf(S). Let us write S̃ for the corresponding
integral perfectoid. Using Fontaine’s map θ : Ainf(S)→ S 3.1.1.9, we obtain a map

S̃ → S.

Now, the map in the proposition is given by the composition

Ainf(S) ' Ainf(Ainf(S))→ Ainf(S̃) ' �S̃ → �S
and we are done, if we check that the prism structure on Ainf(S) does not depend
on R.
For this let us consider two integral perfectoids R1 and R2 mapping to S. Then we
have a Cartesian square

Spf(Ainf(S))

(R1⊗̂ZpR2)� Spf(Ainf(R2))

Spf(Ainf(R1)) Z�
p .

ρAinf(R2)

ρAinf(R1)

Now, by 3.1.3.11, the pullback can be computed via the pushout of δ-rings, so that
there exists a dashed arrow making the diagram commute as indicated. By 3.1.3.12
we have

(R1⊗̂ZpR2)� ' Spf(Ainf(R̃))

for some integral perfectoid R̃. In particular, the prism structure on Ainf(S) induced
by Ainf(R1) is the same as the prism structure induced by Ainf(R̃) which is the same
as the one induced by Ainf(R2). �

Remark 3.1.4.6. As the reader probably has observed, the argument for 3.1.4.5 could
have been written in more elementary terms. The reason we choose this formulation
is that, for the author, the reason this argument works is that Z�

p should be thought
of as the “initial prism”.

3.1.5. Perfectoidisation of Tate algebras.

3.1.5.1. Recall from that a uniform Tate Huber pair (A,A+) is called perfectoid
if there exists a topological nilpotent unit π ∈ A◦ such that πp divides p and the
absolute Frobenius

ϕ : A◦/π → A◦/πp

is surjective.

3.1.5.2. From 2.3.1.10, we obtain a fully faithful functor

Perfd→ Bndcl(Zp)�/

from the category of perfectoid Tate Huber pairs to classical bounded solid affinoids.
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Definition 3.1.5.3. We will say a bounded solid affinoid algebra A is perfectoid if
it lies in the essential image of the above functor.

Example 3.1.5.4. Given a perfectoid Tate algebra (A,A+), then A+ is integral
perfectoid. This is explained in [BMS16][3.20].

Perfectoid Tate algebras are controlled by Perfectoid Tate algebras of characteristic
p in the following way (see [SW20] [KL13]).

3.1.5.5. Let us write FF for the category of triples

(R,R+, I ⊂W(R+))

where (R,R+) defines a perfectoid Tate Huber pair of characteristic p and I ⊂W(R+)
a perfect prism. Note that this makes sense by 3.1.5.4.

Theorem 3.1.5.6 (Scholze, Kedlaya-Liu). There is an equivalence of categories

Perfd ' FF
where one assigns to a perfectoid Tate algebra (R,R+) the triple

(R[, (R+)[, I ⊂ Ainf(R
+))

where the prism is the one corresponding to R+. The inverse assigns to a triple
(S, S+, I) the Tate algebra

(W(S+)/I[
1

ω
],W(S+)/I)

.

Proof. Given an integral perfectoid R, which is complete for some non-zero
divisor π such that πp divides p, the ring R[ 1

π ] is a perfectoid Tate algebra and the
map R→ (R[ 1

π ])◦ is an almost isomorphism of integral perfectoids [BMS16][3.21].
In particular, we can write the category Perfd as the category of those integral
perfectoid rings R, such that R is π-adically complete for some non-zero divisor
as above and R is integrally closed in (R[ 1

π ])◦. Both of these conditions are
preserved under the Tilting equivalence 3.1.1.22. For the non-zero divisor condition
see [Mor17][1.7] and and the integral closedness follows from [Mor17][2.5] as

(R[)◦ ' (R◦)[

. The claim now follows from the equivalence between integral perfectoids and
perfect prisms [BS19][3.10]. �

Corollary 3.1.5.7. Consider an integral perfectoid R with topologically nilpotent
element π, such that πp divides p. Then the Huber pair

(R[
1

π
], R+)

is a perfectoid Tate algebra for any ring of integral elements R+.

Proof. Recall first that the statement just depends on R[ 1
π ] and not on the

ring of integral elements. Let us assume that π ∈ R admits a compatible system of
p-th roots and choose a lift ω = π[ ∈ R[. Then we claim

(∗) The ring (R[)∗ is integral perfectoid and ω-torsion free. Where (_)∗
denotes the right adjoint of the almostification.
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We argue first for the ω-torsion freeness. For this we claim that the power ω-torsion
ideal R[[ω∞] ⊂ R[ is almost zero. Consider some element r ∈ R[ such that ωcr = 0
for large enough c. Then ωcrp

n

= 0 for all n as well and by perfectness we see that
ω

c
pn t = 0 for all n, which shows the almost vanishing. To prove that the ring is

integral perfectoid by [BMS16][3.10], we just have to check that the frobenius

(R[)∗/ω → (R[)∗/ω
p

is an isomorphism. For this, we argue as in [Sch12][5.6].
Now by the claim and [BMS16][3.21] the pair

((R[)∗[
1

ω
], (̃R[)∗)

defines a perfectoid Tate algebra such thatR[→ (̃R[)∗ := T is an almost isomorphism.
Using 3.1.1.22, we obtain an almost isomorphism R → S of integral perfectoid
algebras, such that

S 'W(T )⊗W(R[) R

. In particular, inducing a prism structure on W(T ) from the prism structure on
W(R[), we obtain a triple as in 3.1.5.6 corresponding to the perfectoid Tate algebra

(S[
1

π
], S̃) ' (R[

1

π
], S̃)

. This shows what we want. �

Remark 3.1.5.8. Perfectoid bounded solid affinoids are stable under pushouts in
solid affinoids. affinoid rings. This follows, for example, by combining the fact that
A◦ of a perfectoid algebra is integral perfectoid [BMS16][3.20] with the fact that
integral perfectoids are stable under pushouts [BS19][8.13] and the compatibility of
the solid tensor-product with the completed tensor product [Bos23][A.3].

Definition 3.1.5.9. A classical bounded solid affinoid algebra (A,A+) is called
semiperfectoid if there exists ring of definition A0 ⊂ A and a topologically nilpotent
element π ∈ A0, such that the derived π-adic completion of A0 is an integral
semiperfectoid ring.

Example 3.1.5.10. Consider an integral semiperfectoid S. Then, for any topological
nilpotent element π ∈ S, the ring

S[
1

π
]

defined a semiperfectoid Tate algebra. This follows as killing the π-power torsion
S/S[π∞] produces an integral semiperfectoid.

Proposition 3.1.5.11. The inclusion Perfd ⊂ SemiPerfd admits a left adjoint

(_)perfd : SemiPerfd→ Perfd

called perfectoidisation. Furthermore, as a functor

(_)perfd : SemiPerfd→ Bndcl�
it preserves pushouts.
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Proof. Given a semiperfectoid Tate algebra B, we have to construct a map

B → Bperfd

to a perfectoid Tate algebra, such that for any other perfectoid algebra C the map

HomBnd�(Bperfd, C)→ HomBnd�(B,C)

is an isomorphism.
Consider a semiperfectoid (B,B+) with semiperfectoid ring of definition B0 and
topologically nilpotent element π as in the definition. Then the derived π-adic
completion of B0 admits an integral perfectoidisation (B0)perfd by [BS19][8.14] and
by 3.1.5.7 the Tate algebra

Bperfd := ((B0)perfd[
1

π
], B̃+)

is perfectoid.
To see that the map B → Bperfd induces an isomorphism on hom anima, it is enough
to observe that for a perfectoid algebra C the map C ∼−→ Cperfd is an isomorphism
3.1.5.4 and that for a semiperfectoid B, we have the formula

(Bperfd ⊗B Bperfd)perfd ' Bperfd

which follows from [BS19][8.13] and [Bos23][A.3].
The second claim follows as perfectoid algebras are stable under pushouts in Bndcl�
3.1.5.8. �

Remark 3.1.5.12. Note that for a semiperfectoid B, the map B → Bperfd is proper
by construction. With the notation of the above proof, the ring B̃+ can also be
presented as the integral closure of (B0)perfd in Bperfd as the map B0 → (B0)perfd is
surjective [BS19][7.4].

Remark 3.1.5.13. Note that the Proposition in particular says that the perfectoidisa-
tion does not depend on the chosen ring of definition in the construction.

3.1.6. The naive syntomic topology on Tate algebras. We now want to
define a version of the naive syntomic topology on p-adic classical bounded solid
affinoids. This topology will be defined on the category

(Bndcl)(Qp)�/

of those p-adic classical bounded solid affinoids which admit a (Qp)�-algebra struc-
ture. Note that the latter algebra is idempotent over Z�, such that this category
forms a full subcategory of all classical bounded solid affinoids.

Definition 3.1.6.1. We will say a map A → B of p-adic classical bounded solid
affinoid rings is a naive syntomic cover, if it can be refined by a map which lives in
the smallest class stable under composition and pullbacks generated by maps of the
form

Qp〈xi|i ∈ I〉 → Qp〈x
1
p∞

i |i ∈ I〉
for some set I.

We now equip (Bndcl)(Qp)�/ with the naive syntomic topology.
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Proposition 3.1.6.2. The subcategory

SemiPerfd(Qp)�/ ⊂ (Bndcl)(Qp)�/

forms a basis for the naive syntomic topology.

Proof. Consider a p-adic classical bounded solid affinoid A. Then we need to
produce a naive syntomic cover

A→ B

such that all terms ⊗nAB in the Čech nerve are semiperfectoid. This can be done
the same way as in the integral case: Consider a π0-surjection

Qp〈xi|i ∈ I〉 → A

and produce the pushout

Qp〈xi|i ∈ I〉 A

Qp〈p
1
p∞ , x

1
p∞

i |i ∈ I〉 B.

Then the right vertical map in the square defines such a cover. �
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3.2. Analytifying the Prismatisation

In [Dri20] [BL22a] [BL22b], Drinfeld and Bhatt-Lurie define stacks whose quasi-
coherent cohomology computes prismatic cohomology in the sense of [BS19]. The
goal of this section is to produce an analytic stack out of their construction in such
a way that one obtains the expected geometric behavior.
The idea will first be to consider a “compact” version of this analytic stack. Here,
essentially any map obtained will be cohomologically proper, which, for example,
simplifies the question of Dqc-covers, and we define a “decompactification” afterward
whose geometry will behave more as we would like.

3.2.1. Recollections on the prismatisation. We start by recalling the pris-
matisation as constructed in [BL22b].

Construction 3.2.1.1. For a (derived) p-adic formal scheme, the prismatisation is
defined as an object of

(Z�
p )fdesc

via so-called transmutation. That is, for the affine line Ga, we define the ringed
stack G�

a , which takes a point Spec(R) → Z�
p corresponding to a Cartier-Witt

divisor I →W(R) to the animated ring W(R)/I.

Now for general X, we define X� via the assignment

R 7→ HomSpf(Zp)(Spec(G�
a (R)), X).

Remark 3.2.1.2. Note that Z�
p is not just p-adically complete but also “I-adically”.

As can, for example, be seen by observing that the map

Z�
p → A1/Gm

coming from point wise scalar extending along the projection W(R)→ R, factors
through Â1/Gm. Actually, the reader should think of the prismatisation of Zp as
the initial prism, which gives an intuitional reason to work in the ambient category
(Z�

p ). The necessity of doing this manifests in the fact that the fiber products in
this category will be compatible with the fiber products we take in the category of
analytic stacks.

Definition 3.2.1.3. Let us write O(−1)→ O for the universal generalized Cartier
divisor on A1/Gm. Then pulling back the line bundle O(−1) via the map

Z�
p → A1/Gm

defines a line bundle on Z�
p which we will denote by O{1} an call the Breuil-Kisin

twist. We will denote several pullbacks of this line bundle in the same way.

Let us fix a derived affine p-adic formal scheme Spf(S) and understand the following
objects in the category

Dfdesc(Spf(S),W(S))

of sheaves in the formally descendable topology on this affine formal scheme with
values in W(S)-modules. The following lemma will also be used later on.
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Lemma 3.2.1.4. Given an affine p-adic formal scheme Spf(S) and a finite projective
W(S)-module P we have

RΓfdesc(S, P ⊗W(S) W) ∈ D(W(S))≥0

and the same holds for the truncated Witt vectors.

Proof. Writing P as a summand of a finite free W(S)-module this reduces
to showing RΓ(S,W) ∈ D(W(S))≥0. Furthermore writing W as a limit of the
truncated Witt Vectors and observing that the transition maps are surjective, the
Milnor sequence tells us that this reduces to the claim

RΓ(S,Wn) ∈ D(W(S))≥0.

This follows by induction on n using the fiber sequences Wn−1 →Wn →Ga coming
from the Verschiebung and the corresponding claim for Ga 2.4.1.9. �

Corollary 3.2.1.5. For a Cartier-Witt divisor I →W(S), we have

RΓfdesc(S,G
�
a ) ∈ D(W(S))≥0

and the latter admits the structure of an animated ring.

Proof. The first claim follows from 3.2.1.4 and the cofiber sequence

I ⊗W(S) W→W→W

of sheaves on (S)fdesc with values in D(W(S)). For the second claim, note that the
Cartier-Witt divisor can be seen as a map Spec(W(S))→ A1/Gm and we can pull
back this map to BGm. �

Construction 3.2.1.6. Given a derived p-adic formal scheme X together with
an animated prism I → A and a map Spf(A) → X (i.e. an object in the derived
prismatic site of X), there is a map

Spf(A)→ X�

where we equip A with the (p, I)-adic topology. Let us recall how to obtain this
map following [BL22a][3.2.4] and [BL22b][3.10]. Given a p-nilpotent animated
ring R then any map f : A → R factors as pr ◦ f̃ : A →W(R) → R, where f̃ is a
map of δ-rings. Thus the base change along f̃

I ⊗A W(R)→W(R)

defines a generalized Cartier divisor, which gives a Cartier-Witt divisor on R as the
image of I + (p) becomes nilpotent in R by assumption. Furthermore we also have
a map Spf(W(R))→ Spf(A)→ X.

Example 3.2.1.7. Given a integral perfectoid R with corresponding perfect prism
(A, I), then 3.2.1.6 gives a map

Spf(A)→ R�.

As explained in [BL22b][3.12], this map is an isomorphism of functors.
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Proposition 3.2.1.8. The functor

(_)� : fSchSpf(Zp) → (Z�
p )fdesc

preserves finite limits and sends the following types of covers to completely descend-
able covers.

• Étale covers.
• Naive syntomic covers.

Proof. For the case of étale covers, we consult [BL22b][3.9] to see that the
prismatisation preserves étale covers. Then the claim follows from 2.4.1.8.
Note that the assertion is stable under pullbacks and compositions, so we have
to check the claim for a universal naive syntomic cover. Now we closely follow
[BL22b][6.3]. Let us write g : Spf(B)→ Spf(A) for such a cover. We will use two
facts about this cover:

• The cofibre of the map A→ B is a free A module.
• The p-completed cotangent complex LB/A[1] is a free B-module.

Note that both of these conditions are stable under base change, so we have to check
them for a cover of the form

Spf(Z[x
1
p∞

i |i ∈ I]
(̂p)

)→ Spf(Z[xi|i ∈ I]
(̂p)

).

Then the first claim is clear, and the second follows, as mod p, we have a (co)fiber
sequence

LFp[xi]/Fp ⊗Fp[i] Fp[xi]perf → LFp[xi]perf/Fp → LFp[xi]perf/Fp[xi]

where the left term is free in the set I, and the middle term vanishes by perfectness,
from the derived Nakayama.
Let us now use these facts to prove what we want. For this we take a point
f : Spec(R)→ A� and want to lift it to a point Spec(T )→ B� along a completely
descendable cover Spec(T )→ Spec(R). The point f corresponds to a Cartier-Witt
divisor α : I →W(R) and a map f̃ : R→W(R). Now pushing out g along f gives
a map g′ : W(R)→ C and the proof of [BL22b][2.17] shows that the map

W(R)→ �C/W(R)

is a map of δ-rings which mod I factors as W(R)→ C → �C/W(R). To obtain T ,
we now take the pushout

W(R) �C/W(R)

R T

and note that, by adjunction, the right vertical map factors through a map of
δ-rings �C/W(R) → W(T ) → T such that the composition W(R) → W(T ) is the
induced map on Witt Vectors. Putting all the data together, we have produced a
Cartier-Witt divisor α : I ⊗W(R) W(T )→W(T ) and a map B →W(T ). This gives
the desired lift Spec(T )→ B� and we are left to show that the map

W(R)→ �C/W(R)
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is a completely descendable cover.
This we can prove Zariski locally on W(R) by the first part, and can thus assume
that I is a free module. Let us write F for the fiber of the map; then we will check
that

Hom(F,W(R)) ∈ DI-comp(W(R))≥1.

By completeness, we can check this mod I, where the map in question factors as

W(R)→ C → �C/W(R).

Now the target can be written as the colimit of its conjugate filtration [BL22a][4.1.7]

C → Filconj1 �C/W(R) → Filconj2 �C/W(R) → Filconj3 �C/W(R) → . . .

and the second map can be seen as the structure map into this colimit. This
filtration has graded pieces given by

grconji �C/W(R) ' ∧iLC/W(R)[i]

Based on the second of the abovementioned observations, these are free C-modules.
Using this, one computes that the cofibre of the second map is given by⊕

i≥1

∧iLC/W(R)[i]

which is a free C-module. In particular, �C/W(R) is a free C-module, and the algebra
map picks out a basis element. By the first of the two observations made in the
beginning, the same also holds for the map W(R)→ C, such that in total, we get
that the fiber of the composition has the form⊕

J

W(R)[1]

for some set J . The claim now follows as W(R) is connective. �

Construction 3.2.1.9. Consider an animated prism I → A, then as in 3.2.1.6 we

can construct a map Spf(A)→ A
�
. Using this, for any p-adic formal scheme X over

Spf(A), we define the relative Prismatisation as the fibre product

(X/A)� X�

Spf(A) A
�

where the right vertical map comes from the structure map X → Spf(A).

Example 3.2.1.10. Given an integral perfectoid R with corresponding perfect prism
(A, I). Then for any derived p-adic formal scheme X over Spf(R), using 3.2.1.7 we
see that the map

(X/A)� → X�

is an isomorphism of functors.
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3.2.1.11. In the upcoming statement, we will make use of the notion of derived
algebras in the sense of Bhatt-Mathew. These objects form a category DAlg, which
should be understood as a generalization of animated rings to the non-connective
setting [Rak20][4]. That is, any derived algebra has an underlying object in D(Z)
and animated rings identify with those derived algebras whose underlying derived
abelian group is connective. Furthermore, any derived algebra has an underlying
E∞-ring in D(Z), and this forgetful functor commutes with all limits and colimits.
The example of such an object we have in mind is the relative prismatic cohomology

�S/A

of an animated A-algebra where I → A is an animated prism. This forms a derived
A-algebra.

Definition 3.2.1.12. Given an animated prism I → A and an animated A-algebra
S, we write

Spf(�S/A) := HomDAlgA(�S/A,_)

seen as an object in Spf(A)fdesc.

Let us recall the following theorem from [Hol24][3.3.14+3.3.7].

Theorem 3.2.1.13. (Holeman) Given a prism (A, I) and a derived affine p-adic
formal scheme Spf(S)→ Spf(A). Then, there is a canonical isomorphism

Spf(�S/A) ' (S/A)�

of functors on affine derived formal schemes adic over Spf(A).

Remark 3.2.1.14. In [BL22b][7.17], the authors obtain a similar statement. Their
argument would work in our setting as well using a descendability result from
[BS19][8.6] but would give a minimal weaker statement. We would get the stated
isomorphism in Spf(A)fdesc.

Corollary 3.2.1.15. Consider a prism (A, I) and an affine p-adic formal scheme
Spf(S) such that Ω1

(π0S/p)/(Ā/p)
' 0. Then �S/A is an animated A-algebra and

corepresents (S/A)� as an object of Spf(A)fdesc.

Proof. As in [BL22b][7.18] this follows from 3.2.1.13 and the Hodge-Tate
comparison. �

Example 3.2.1.16. Let S be a semiperfectoid animated ring. Then the frobenius on
π0(S/p) is surjective and thus induces a surjective map on Ω1

π0(S/p)/Fp
. As it also

induces the 0-map we see that Ω1
π0(S/p)/Fp

' 0 and as this module surjects onto

Ω1
π0(S/p)/R/p ' 0

we see that also the latter vanishes.
Now applying 3.2.1.15 we obtain an animated algebra �S := �S/A (where A de-
notes any perfect prism with corresponding integral perfectoid R mapping to
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S [BL22a][4.4.12]). By comparing fibers and applying the other part of 3.2.1.15 we
see that there is a cartesian square

Spf(�S) S�

Spf(A) R�

in (Z�
p )fdesc. As the lower horizontal map is an iso 3.2.1.10, the upper horizontal

map is an iso as well. This shows that the Prismatisation of a semiperfectoid is
affine and represented by its prismatic cohomology.

3.2.2. Recollections on the Hodge-Tate locus.

Construction 3.2.2.1. Recall from 3.2.1.2 that there is a map

Z�
p → Â1/Gm

and we will denote by ZHTp the fibre of this map over BGm. For a general derived
p-adic formal scheme X, we define the so-called Hodge-Tate stack of X via the
cartesian square

XHT X�

ZHTp Z�
p .

Note that these stacks no longer carry the “I-adic” topology and thus should be seen
as “just” p-adic formal stacks. Concretely, we mean that we will most of the time
understand them as objects in Spf(Zp)fdesc.

One can understand the geometry of the Hodge-Tate stack quite well. In order
to make use of this later, we need to recall some aspects of these stacks. For this,
we will essentially copy [BL22b][5], but taking care that we work in a slightly
different topology. More concretely, note that the Hodge-Tate stacks are defined via
transmutation using the ring stack

G�
a → Z�

p

restricted to the Hodge-Tate locus, and understanding the Hodge-Tate stacks means
understanding this ring stack better.

3.2.2.2. Let G]
a be the PD-hull of the origin in Ga over Z. Concretely we have

G]
a ' Spec(Z[x,

x2

2!
,
x3

3!
, . . . ]).

Note that there is a map G]
a → Ga and that the equalities

• (x+y)n

n! =
∑
i+j=n

xi

i!
yj

j!

• (xy)n

n! = xn

n! · y
n

show that the additive group action on Ga induces an action on G]
a and the the

multiplicative group action on Ga induces via the above map an action on G]
a
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which makes it into a Ga-module scheme. In particular we can understand G]
a as a

W-module scheme via the projection W→ Ga and thus as an object in

Dfdesc(Spf(S),W(S)).

Lemma 3.2.2.3. [Dri20][3.4] [Bha22][2.6.1] [BL22a][3.4.11] The Frobenius F : W→
F ∗W is a π0 surjection in the completely descendable topology. Furthermore, if we
write W[F ] for the fibre of the Frobenius, the composition W[F ] ⊂W→ Ga of the
inclusion with the projection lifts uniquely to an isomorphism

W[F ] ' G]
a.

In particular, there is a fiber sequence

G]
a →W→ F∗W

in Dfdesc(Spf(S),W(S)) where the second map is given by the Frobenius.

Proof. The proof of [Bha22][2.6.1] shows that the Frobenius is faithfully flat;
thus it is descendable by [Mat16][3.31] as the domain is countable. This shows
π0-surjectivity.
For the rest, note that the ordinary scheme represents W[F ] also on derived schemes

Spec(Z(p)[x0, x1, x2, . . . ]/(x
p
0 + px1, x

p
1 + px2, . . . ))

and the proof of [Bha22][2.6.1] gives an isomorphism W[F ] ' G]
a of representing

objects. �

Lemma 3.2.2.4. [BL22b][5.7] For any affine p-adic formal scheme Spf(S) and any
finite projective W(S)-module P there are fibre sequences

• RΓfdesc(Spf(S), P ⊗WWn[F ])→ P ⊗WWn(S)→ P ⊗W F∗Wn−1(S) (n ≥
2).
• RΓfdesc(Spf(S), P ⊗W W[F ])→ P ⊗W W(S)→ P ⊗W F∗W(S)

in D(W(S)).

Proof. We claim that these fiber sequences arise as the global sections of the
fiber sequence

W[F ]→W→ F∗W

tensored with P (and the analog fiber sequence with the truncated Witt Vectors).
That is the essential claim is that RΓ(Spf(S), P ⊗W(S) W) ∈ D(W(S))≥0. This was
explained in 3.2.1.4. �

3.2.2.5. Let us write
G]
a{1} ∈ (ZHTp )fdesc

for the sheaf which takes a Hodge-Tate divisor I →W(S) on Spec(S) to G]
a(R){1}

where the Breuil-Kisin twist was defined in 3.2.1.3. This defines a group object
and we will write BG]

a{1} for the sheaf of torsors on it. Not that using 3.2.2.4 and
3.2.2.3 we obtain an identification

BG]
a{1} ' RΓ(_,W[F ]{1}[1])

where the twist {1} on the right is defined analogously.
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3.2.2.6. In the following argument, we will use the fact that there exists a basis in
the descendable topology on static rings (we can also assume flatness), for with the
Frobenius maps

F : Wn(S)→ F∗Wn−1(S)

are surjective for all n ≥ 2. Let us explain here why this is true. In [DK14][3.2] the
authors explain that for this surjectivity to hold it is enough that the Frobenius
F : W(S) → F∗W(S) on the whole, Witt Vectors hit all multiplicative lifts [r] of
elements s ∈ S. As we have the formula F ([r]) = [rp] this is true for any ring
admitting all p-th roots of its elements, such that our claim follows from 2.4.1.10.

Let us write GHT
a for the ring stack over ZHTp obtained by pulling back G�

a . The
following, then, is an absolute version of [BL22b][5.10] with the same proof.

Proposition 3.2.2.7. The ring stacks GHT
a is a square-zero extension of Ga by

BG]
a{1}[−1]. That is there exists a natural W-linear derivation ∂ : Ga → Ga ⊕

BG]
a{1} fitting into a cartesian square

GHT
a Ga

Ga Ga ⊕BG]
a{1}

πHT ∂

∂triv

of ring stacks over ZHTp .

Proof. First, all ring stacks in the square define sheaves for the completely
descendable topology. For the lower right corner, this follows from the identification
3.2.2.5, for the left upper corner from the same argument as 3.2.1.5, and for Ga from
2.4.1.9. That means to show the claim for the values on an animated Hodge-Tate
divisor α : I → W(S), we can resolve ZHTp by (ordinary) prisms and show the
claim on the induced cover of Spec(S). Concretely, we can, for example, take the
covering from 3.1.3.10 then all objects appearing in the Čech nerve are represented
by (ordinary) prisms [BL22a][3.2.8+3.2.10]. This reduces the claim to the situation
relative to a prism, in which case the argument is given in [BL22b][5.10]. For the
convenience of the reader, we recall this argument now.
We fix a prism (A, I). Using 3.2.2.5 we can replace BG]

a{1} by RΓ(_,W[F ]{1}[1])
and by taking limits it suffices to prove the corresponding claim forRΓ(_,Wn[F ]{1}[1])
functorial in n.
We first prove this claim evaluated at an discrete A-algebra S for which the Frobenius
maps

F : Wn(S)→ F∗Wn−1(S)

are surjective for all n ≥ 2. To see this, we first claim:

(∗) The map α : I ⊗W(S) Wn(S)→Wn(S) maps surjectivity onto VWn(S).

Using this claim, we can compute

π0Wn(S) 'Wn(S)/VWn(S) ' S

and
π1Wn(S) ' ker(I ⊗W(S) Wn(S)→Wn(S)) ' I ⊗W(S) Wn[F ](S).
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So the claim of the proposition, in this case, follows as any 1-truncated animated
ring is naturally a square zero extension of its π0 by its π1[1] 2.4.2.9. To see (∗) we
can work zariski locally on W(S) and thus assume α corresponds to a distinguished
element d = (x0, x1, . . . ) ∈ W(S). The assumption that the Cartier-Witt divisor
lives in the Hodge-Tate stack tells us that x0 = 0, such that d = V (u) where u is
a unit as d is distinguished. Thus the formula V (u) · x = V (u · F (x)) shows that
α maps into the image of the Verschiebung. On the other hand, as the Frobenius
is surjective, we can write any y ∈ Wn+1(S) as y = u · F (x) for some x and the
surjectivity follows from the equality

V (y) = V (u · F (x)) = V (u) · x.

To deduce the claim of the proposition, we first deduce the claim for polynomial
algebras over A by descent 3.2.2.6 using what we have done above, and that
all functors in question are sheaves for the descendable topology. For a general
animated A-algebra, we observe that all functors in question are left Kan extended
from polynomial algebras (for RΓ(_,Wn[F ]{1})[1] use 3.2.2.4). �

3.2.2.8. For any morphism f : X → S of p-adic formal schemes precomposing with
the map πHT : GHT

a → Ga induces a map

πHTf : XHT → X ×S SHT

which we will call the Hodge-Tate structure map of f . Using 3.2.2.7, we can
understand the geometry of this map in terms of the cotangent complex of f .

3.2.2.9. Given a square zero extension B̃ → B along a connective B-module N .
Then, for any morphism X → S of (derived formal) schemes and any point η ∈
X(B)×S(B) S(B̃) the fibre at η of the map

X(B̃)→ X(B)×S(B) S(B̃)

gives a torsor over HomX(Lf , N). Let us informally4 describe the action. The
point η corresponds to a commutative square like the outer square in the following
diagram

OS OX ×B B̃ B̃

OX OX B.

Thus, the fiber is given by the anima of dashed lifts in the square. This anima
is equivalent to the dashed lifts in the left square, but now choosing such a lift
gives an identification of OX ×B B̃ with the trivial square zero extension. Via this
identification, the anima of lifts, by definition, becomes the anima of OS-linear
derivations in N , which is isomorphic to HomX(Lf , N).

Notation 3.2.2.10. Consider a morphism f : X → S of p-adic formal schemes. Then,
we will write

V(Lf{1})] → X ×S SHT

for the bundle which takes a point Spec(R)→ X ×S SHT to

HomR(η∗XLf ,G
]
a{1}(R))

4To make this coherent, we have to specify a point in BHomX(Lf , N) ' HomX(Lf , N [−1]).
But the trivial map does the job.
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where η corresponds to the point in X and the Breuil-Kisin twist is defined via the
point in SHT . Note that this defines a group object. The following proposition is
just a reformulation of [BL22b][5.12] in its natural generality.

Proposition 3.2.2.11. Given a map f : X → S of derived p-adic formal schemes,
the associated Hodge-Tate structure map

πHTf : XHT → X ×S SHT

defined a gerbe baned by V(Lf{1})].

Proof. We claim that for any point η : Spec(R)→ X ×S SHT the fibre of the
map

XHT (R)→ X(R)×S(R) S
HT (R)

at η defines a torsor over

BV(Lf )](R) ' HomR(η∗XLf ,BG]
a(R)).

This follows by combining 3.2.2.9 and 3.2.2.7. �

Corollary 3.2.2.12. For any map f : X → S of p-adic formal schemes, which has
vanishing cotangent complex the square

XHT SHT

X S

πHT πHT

f

is Cartesian.

3.2.3. Locally proper prismatisation. We now come to the definition of
the prismatisation as a locally proper analytic stack.

Construction 3.2.3.1. Using 2.5.1.1 and 3.1.3.10, we obtain a colimit and finite
limit preserving functor

(_)lp : (Z�
p )fdesc → AnStackZ�,lp

p
.

Furthermore, we can precompose with the construction given in 3.2.1.1 and then
base changing along the map

colimn∈N Spa(Z/pn)→ Spa(Zp)

to obtain a finite limit preserving functor

(_)�,lp : fSchSpf(Zp) → AnStackZ�,lp
p

.

Definition 3.2.3.2. For a derived p-adic formal scheme X, we call the analytic
stack

X�,lp

the locally proper prismatisation of X.

We have already proven the following.
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Proposition 3.2.3.3. The functor

(_)�,lp : fSchSpf(Zp) → AnStackZ�,lp
p

from 3.2.3.1 preserves finite limits and sends étale covers, as well as naive syntomic
covers, to locally proper surjections.

Proof. Combine 3.2.1.8 and 2.5.1.2. �

Let us unwind how to access these stacks.

3.2.3.4. For a derived p-adic formal scheme X, we want to find a presentation of
the analytic stack

X�,lp.

By 3.2.3.3, we can find a presentation of X by affines using a Zariski cover. So let us
assume X ' Spf(T ) is affine. Now we choose a π0 surjection to T from a polynomial
ring and consider the pushout

Zp〈xI〉 T

Zp〈x
1
p∞

I , p
1
p∞ 〉 S

f

to obtain a naive syntomic cover of T . Thus, by the other part of 3.2.3.3, we see
that the map

S�,lp → T�,lp

gives us a (locally proper) surjection of analytic stacks. That is, to compute the
target, we want to compute the Čech nerve of this map. To do this note that all the
tensor products ⊗nTS are semiperfectoid and thus fit into 3.2.1.16 which shows that

(⊗nTS)� ' Spf(�⊗nTS).

So, unwinding the definitions, we have found a presentation

colim•∈∆ Spf(�⊗•TS , Z̃p) ' T
�,lp

where we write
Spf(A,A+) := colimn Spa(A/pn, Ã+/pn).

Let us record the following easy consequences.

Corollary 3.2.3.5. The functor

(_)�,lp : fSchSpf(Zp) → AnStackZ�,lp
p

respects the following geometries:

(a) Zariski open immersions (resp. covers) get sent to closed immersions (resp.
covers).

(b) Zariski closed immersions get sent to affine maps of analytic stacks.
(c) Naive syntomic covers get sent to affine proper surjections.
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Proof. (a) directly follows from 3.2.3.3. To see (b) we take a closed immersion
Z → X. Now by 3.2.3.3 we can assume X ' Spf(T ) and thus also Z ' Spf(T ′) to
be affine. But now, if we construct a naive syntomic cover as in 3.2.3.4 and consider
the pushout

T T ′

S S′,

f f ′

f ′ gives a naive syntomic cover as well and S′ is semiperfect (i.e fits into 3.2.1.16).
As we can check the claim after pulling back to S 3.2.3.3 we win by 3.2.1.16.
It suffices to check (c) in the universal case. Now by 3.2.3.3 we can check the claim
after pulling back the cover along it selfs. If we do this in the pushout

T S

S S ⊗T S

f

f

for f a universal naive syntomic cover, it is easy to see that S⊗T S is semiperfectoid.
So the claim follows from 3.2.1.16. �

3.2.3.6. Consider a morphism of f : X → S of p-adic formal schemes. Then

f∗OX�,lp ∈ Dqc(S
�,lp)

defines an E∞-algebra. Furthermore, we have a canonical symmetric monoidal
functor

Modf∗O
X�,lp

(Dqc(S
�,lp))→ Dqc(X

�,lp).

Example 3.2.3.7. Consider a prism (A, I) and a p-adic formal scheme f : X →
Spf(A/I), then we claim that

f∗O(X/A)�,lp ∈ Dqc(Spf(A)lp)

can be identified with the relative prismatic cohomology of X over A, understood as
an E∞-algebra. Note that both of these algebras arise as limits from Zariski descent
and descent via naive syntomic covers, and the only subtlety is that classically this
limit is taken in the (p, I)-complete category. But (p, I)-complete objects are stable
under limits, and locally both algebras are (p, I)-complete as f∗ commutes with
limits.

3.2.3.8. Consider a semiperfectoid S and let us write T = S[x1, . . . , xn] for a

polynomial ring over S and T∞ = S[x
1
p∞

1 , . . . , x
1
p∞
n ] for the naive perfection. Then

the map
f∗OT�,lp → f∞∗ OT�,lp

∞
∈ Dqc(S

�,lp)

is descendable. In the (p, I)-completed category this easily follows from [BS19][8.6]
but as the inclusion of (p, I)-complete objects is lax monoidal this is enough
[BS17][11.20].

Proposition 3.2.3.9. Consider a finite type map of affine p-adic formal schemes
Spf(T )→ Spf(S). Then the canonical functor

Modf∗O
T�,lp

(Dqc)(S�,lp)
∼−→ Dqc(T�,lp)
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is an isomorphism.

Proof. Choosing a naive syntomic cover of Spf(S) and using 3.2.3.5 with
proper base change, we can assume S to be semiperfectoid. Furthermore, using
3.2.3.5[(b)], we can assume that T = S[x1, . . . , xn] is a finite polynomial ring. But
in this case we can resolve T → T∞ by the naive perfection and get

Dqc(T
�,lp) ' lim∆Dqc((T

⊗•T∞ )�,lp).

But using 3.2.3.8 we see that the same limit computesModf∗O
T�,lp

(Dqc)(S
�,lp). �

This has the following Corollary.

Corollary 3.2.3.10. The functor

(_)�,lp : fSchSpf(Zp) → AnStackZ�,lp
p

sends maps of p-adic formal schemes, which are quasi-compact and locally of finite
type, to proper morphisms of analytic stacks.

Proof. Let us write f : X → S for such a morphism. We first assume that f is
separated. Note that the problem is local on the target, so by 3.2.3.5 we can assume
S to be affine and then semiperfectoid. Now the diagonal is a closed immersion
and becomes proper by 3.2.3.5, so by 2.1.3.7 we have to find a finite cover of closed
substacks of X�,lp such that the restriction of the structure sheaf becomes compact.
As f is quasi-compact and locally of finite type, we can find a finite Zariski cover of
X such that the composition to S becomes finite type and affine. This cover does
the job by 3.2.3.5 and 3.2.3.9. For a general morphism, we do the same argument
again, now using that the diagonal is separated. �

3.2.4. The Hodge-Tate locus.

Construction 3.2.4.1. Given an derived p-adic formal scheme X, choosing a
presentation of X� as in 3.2.3.4 gives by base change a presentation of XHT . In the
case where X ' Spf(T ) is affine one sees that the objects in the Čech nerve take
the form

(⊗nTS)HT ' Spf(�⊗nTS)

and using the locally proper analytification

(_)lp : (Spf(Zp))fdesc → AnStack(Zp)�

we get a presentation

colim•∈∆ Spa(�⊗nTS , Z̃p) ' T
HT,lp

in analytic stacks.
Note also that from this, it is easy to see that for any derived p-adic formal scheme
X, there is a cartesian square

XHT,lp X�,lp

ZHT,lpp Z�,lp
p

of analytic stacks.
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Definition 3.2.4.2. For a derived p-adic formal scheme X, we will call the analytic
stack

XHT,lp

the locally proper Hodge-Tate stack.

Remark 3.2.4.3. The results for the Hodge-Tate locus work without completing into
the p-direction. That is why we work with this version of the Hodge-Tate stack.
This is not necessary for the proof of the main theorem.

Construction 3.2.4.4. Recall from 2.5.4.3 that for any p-adic formal scheme X,
we have a map

Xan → X lp

natural in X. Using the Hodge-Tate structure map, we can build the Cartesian
square

XHT,� XHT,lp

Xan X lp.

πHT

This produces a functor

(_)HT,� : fSchSpf(Zp) → AnStackZHT,�p
.

Definition 3.2.4.5. For a p-adic formal scheme X, we will call the analytic stack

XHT,�

the solid Hodge-Tate stack associated to X.

Proposition 3.2.4.6. The functor from 3.2.4.4 preserves finite limits. Furthermore
for a map f : X → S of p-adic formal schemes we have the following cases:
If f is étale, then we have a cartesian square

XHT,� SHT,�

Xan San

of analytic stacks. In particular, assigning the Hodge-Tate stack preserves open
immersion (resp. open coverings) as well as étale morphisms (resp. étale coverings).
If f is either proper or affine integral, then we have a Cartesian square

XHT,� XHT,lp

SHT,� SHT,lp

of analytic stacks. In particular, assigning the Hodge-Tate stack preserves proper
morphisms, and any naive syntomic cover becomes a proper covering.

Proof. For the preservation of finite limits, note that all three corners in the
defining cospan preserve fibre products 2.5.2.3 2.5.1.2 3.2.4.1.
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For the two Cartesian squares, consider the cube

XHT,� XHT,lp

Xan X lp

SHT,� SHT,lp

San Slp

where the upper and the lower squares are Cartesian by definition.
Now, in the case of f being étale, the square on the right is cartesian by 3.2.2.12
and 2.5.1.2. Thus, the square on the left is Cartesian as well.
In the case of f being proper, the square in the front is Cartesian by 2.5.4.6, which
shows that the square in the back is Cartesian as well.
The “in particular” part for the first square now follows from 2.5.2.3 and 2.5.2.4.
For the second square, we use 3.2.3.10 and 3.2.3.5. �

Example 3.2.4.7. Let us be given an integral perfectoid R with corresponding prism
(A, I). Then, the Hodge-Tate structure map

R→ A/I ' R
is the identity. In particular, using 3.2.4.1 we see that

RHT,� ' Spa(R).

Furthermore, if S is a semiperfectoid, then using 3.2.1.16 and 3.2.4.1 we see that
SHT,� is represented by an analytic ring whose underlying condensed rings is given
by �S (with it’s p-adic topology). Now we can choose a map R→ S from an integral
perfectoid, which is surjective on π0. Thus the integral elements just depend on the
later 2.2.1.9, we further deduce that

Dqc(S
HT,�) 'Mod�S

(Dqc(Spa(R))).

3.2.5. The étale locus. Recall from [BS19][9.1] the prismatic cohomology of
a p-adic formal scheme recovers the étale cohomology of the generic fibre. In the
following, we will give an interpretation of this étale part on the level of stacks.

Construction 3.2.5.1. Consider a semiperfectoid bounded solid affinoid (Qp)�-
algebra A. Then by 3.1.5.11 this algebra admits a perfectoidisation Aperfd, which
by 3.1.5.6 corresponds to a triple

(R,R+, I ⊂W(R+))

consisting of an affinoid perfectoid in characteristic p and a (perfect) prism structure.
To this data, we can associate the analytic stack

XA := colimn Spa((W(R+)[
1

I
])/pn, ˜W(R+)/pn).

Note that the frobenius ϕ : W(R+)→W(R+) modulo p sends I to Ip. From this,
one sees that it induces an endomorphism of the just constructed analytic stack,
and we set

Aét := XA/ϕZ
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to be the quotient stack of this action.
In total, we have produced a functor

(_)ét : (SemiPerfd(Qp)�/)
op → AnStack.

Remark 3.2.5.2. The category of quasi-coherent sheaves of Aét is given by the full
subcategory of derived p-complete objects in the equalizer of the diagram

Dqc(Spa(W(R+)[ 1
I ], W̃(R+))) Dqc(Spa(W(R+)[ 1

I ], W̃(R+))).
id

ϕ∗

In particular as explained in [BS21][3.7] the endomorphisms of the unit compute
the p-adic étale cohomology of A.

Remark 3.2.5.3. Consider a semiperfectoid bounded solid affinoid (Qp)�-algebra A
with integral semiperfectoid A0 ring of definition. Then we can understand

XA ' colimn Spa((�A0
)perf[

1

I
]/pn, ˜(�A0

)perf/pn)

where we write (�A0
)perf for the (completed) colimit over taking the Frobenius

iteratively.

Remark 3.2.5.4. Consider an affinoid perfectoid (Qp)�-algebra (A,A+). Then the
kernel of Fontaine’s map

W((A+)[) := W(R+)→ A+

is generated by an element ξ = p + [π[] with π ∈ A a topological nilpotent unit,
such that πp = p. From this, we learn that

Spa((W(R+)[
1

I
])/p, ˜W(R+)/p) ' Spa(A,A+)[.

3.2.5.5. We also need a locally proper version of the étale locus. In the same way
as above, we can associate to a semiperfectoid bounded solid affinoid (Qp)�-algebra
A a triple

(R,R+, I ⊂W(R+))

corresponding to its perfectoidisation Aperfd. Now we will write

X lpA := colimn Spa((W(R+)[
1

I
])/pn, Z̃p)

and
Aét,lp := X lpA /ϕ

Z

for the locally proper versions.

3.2.5.6. We will often use the following observation. Consider a map

Bét → Aét

induced by a map of perfectoid bounded solid affinoids, and assume we want to
verify a property, stable under base change and local on the target in the topos of
analytic stacks, for any base change along a map

AnSpec(C)→ Aét.

First of all, it is enough to show this property for any base change along a map

AnSpec(C)→ XA
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and by definition such a map factors through some Spa((W(R+)[ 1
I ])/pn, ˜W(R+)/pn).

Now by descent for ∞-topoi, we have cartesian squares

Spa(W((B+)[)[ 1
IB

]/pn, ˜W((B+)[/pn) XB

Spa(W((A+)[)[ 1
IA

]/pn, ˜W((A+)[/pn) XA

for all n. In particular, we have to check our property for the left vertical map. For
this note, for any n, the map

Spa(A[, (A+)[)→ Spa((W(R+)[
1

I
])/pn, ˜W(R+)/pn)

is a surjection of analytic stacks, as it is proper and on algebras given by a nilpotent
extension (and thus descendable [Mat16][3.35]). In total, we have reduced the
problem to checking the property in question for the map

Spa(B[, (B+)[)→ Spa(A[, (A+)[).

The analog trick also works for the locally proper version.

Remark 3.2.5.7. Using 3.1.5.11 and 3.2.5.6 one deduces that the functor (_)ét, as
well as its locally proper version, preserve fibre products.

Proposition 3.2.5.8. The functors

X lp(_),X(_), (_)ét,lp, (_)ét : (SemiPerfd(Qp)�/)
op → AnStack

sends naive syntomic covers to proper surjections of analytic stacks.

Proof. Note first that for a naive syntomic cover A→ B, the ring of integral
elements B+ for B is given by the integral closure of A+ in B. So by 3.1.5.12, the
same also holds for the map

Aperfd → Bperfd.

But then the same also holds for the map

(Aperfd)[ → (Bperfd)[

by [Mor17][2.5]. From here, we see that to prove the proposition, it suffices to
prove descendability for the map on underlying rings. As the functors preserve fibre
products 3.2.5.7, we just have to check the descendability for a generic example.
That is, we can assume that our naive syntomic cover A→ B comes from a naive
syntomic cover

A◦ → B0

of integral semiperfectoids, where B0 is some ring of definition for B. Now, using
3.2.5.3, we see that it is enough to see that the map

(�A◦)perf[
1

I
]→ (�B0)perf[

1

I
]

is descendable. So by [BS17][11.22] it suffices to check that the map on prismatic
cohomology is descendable, which follows from 3.2.1.8. �
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3.2.5.9. Using 3.2.5.8 and 3.1.6.2 we obtain functors

(_)ét,lp, (_)ét : (Bndcl(Qp)�/
)op → AnStack

by Kan extension, which preserves fibre products and sends naive syntomic covers
to proper surjections of analytic stacks.

Proposition 3.2.5.10. The functors

X(_), (_)ét : (Bndcl(Qp)�/
)op → AnStack

respect the following maps:

• It sends rational opens (resp. covers) to open immersions (resp. covers).
• It sends elementary closed immersions (resp. covers) to closed immersions
(resp. covers).
• It sends étale morphisms (resp. covers) to étale morphisms (resp. covers).

Furthermore the functors

X lp(_), (_)ét,lp : (Bndcl(Qp)�/
)op → AnStack

send rational opens (resp. covers), as well as elementary closed immersions (resp.
covers), to closed immersions (resp. covers).

Proof. Consider a map in question A→ B. Then, as the statements are local
on the target 1.1.3.7 by using naive syntomic descent, we can assume that A is
semiperfectoid, and thus admits perfectoidisation Aperfd. Now the base change

Bperfd := B ⊗A Aperfd

in all three cases is already perfectoid. For open immersions, this is [Sch12][6.3],
for elementary closed immersion, this follows from the case of open immersions and
the fact that being perfectoid only depends on the underlying ring, and for étale
morphism this is 3.1.1.18. Now using 3.2.5.6, we see that we have to check that
tilting preserves the maps in question, which is [Sch12][7.12] [KL13][3.6.21]. �

3.2.5.11. Using 3.2.5.10 we obtain functors

X lp(_),X(_), (_)ét,lp, (_)ét : T aAdicSpcl/Spa(Qp) → AnStack

such that the locally proper versions send rational covers to closed covers of analytic
stacks and the "decompactified" versions preserve étale coverings.

Definition 3.2.5.12. For a p-adic classical derived Tate adic space X, we call the
analytic stacks

Xét, Xét,lp

the étale locus and the locally proper étale locus.

Let us now come to the discussion of proper morphisms.

Proposition 3.2.5.13. Consider a map f : X → S of classical derived Tate adic
spaces over Spa(Zp). Then we have the following:

(a) If f is locally of finite type and quasi compact, quasi separated, then the
induced maps

X lpX → X
lp
S , X

ét,lp → Sét,lp

are proper.
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(b) If f is locally proper, we have cartesian squares

XX X lpX Xét Xét,lp

XS X lpS Sét Sét,lp.

(c) If f is proper, the induced maps

XX → XS , Xét → Sét

are proper.
(d) If f is locally of +finite type, then the maps

XX → XS , Xét → Sét

are !-able.

Proof. Note first that (c) is implied by (a) and (b) and as a map locally of
+finite type locally can be factored as an open immersion followed by a locally
proper map (d) is implied by (b) and 3.2.5.10. So we have to prove (a) and (b).
Note also that both assertions are local on the target, so we will always implicitly
make the following reduction steps without further mentioning them. First, we have
to check the claims of the functor X(_) and its locally proper version. Furthermore
we can assume S = Spa(A) to be affine by 3.2.5.10 and perfectoid by 3.2.5.8. The
last reduction we are going to make is that, as explained in 3.2.5.6, we can check
the claims modulo p.
To prove (a) we first claim:

(∗1) Assume f is a Zariski-closed immersion. Then (a) holds.

In this case, X ' Spa(B) is affine and thus semiperfectoid. In particular, we see
that

X lpX /p ' Spa((Bperfd)[, Z̃p)

from which one easily deduces the claim.
Now we claim:

(∗2) Assume f is separated. Then (a) holds.

To see this note first, that by ∗1 the diagonal induces a proper morphism. Further-
more, using the quasi-compactness and 3.2.5.10, we can use a finite cover by affine
rational opens Spa(Bi) ' Ui ⊂ X to obtain a closed cover

{X lpUi/p ⊂ X
lp
X /p}I

such that the compositions fi : Ui ⊂ X → S factor as

A→ A〈x1, . . . , xn〉 → Bi

where the second map is a Zariski closed immersion. So by 2.1.3.4 we have to check
that

OX lpUi/p
∈ Dqc(X lpUi/p)
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is compact. As X lpS /p is affine, this follows from the next lemma. To prove (a) for a
general map, we do the same argument as for (∗2), now using that the diagonal is
separated.
We now prove (b). As f is locally proper, we can find a covering by elementary closed
subspaces of X which are affine. Thus, using 3.2.5.10 we can assume Spa(B) ' X to
be affine. Furthermore, using 3.2.5.8 we can assume B to be perfectoid by choosing
a naive syntomic cover. But then B+ is given by the integral closure of A+ in B so
(B[)+ is given by the integral closure of (A[)+ in B[ by [Mor17][2.5]. From this
one easily sees the claim. �

Lemma 3.2.5.14. We use notation as in the proof of 3.2.5.13. The canonical
functor induces an equivalence

Dqc(X lpUi/p) 'Mod(fi)∗OX lp
Ui
/p

(Dqc(X lpS /p)).

Proof. We note that the statement is stable under compositions, and we have
already seen that it holds for Zariski-closed immersions while proving (∗1) in 3.2.5.13.
So we can assume that fi := g : A→ A〈x1, . . . , xn〉 is given by the projection from
the unit ball. In this case, we have a naive syntomic cover

Ũ := Spa(A〈x
1
p∞

1 , . . . , x
1
p∞
n 〉)→ U := Spa(A〈x1, . . . , xn〉)

by a perfectoid. Using the Čech nerve of this cover to compute the left side of the
equivalence, we see that it suffices to observe that the map

g∗OX lpU /p → g̃∗OX lp
Ũ
/p

is descendable. This follows as in 3.2.3.10 using 3.2.5.3. �

3.2.6. The Prismatisation. We now want to “decompactify” the locally
proper prismatisation. We will do this using naive syntomic descent.

Construction 3.2.6.1. Let us write fSchaff,sperfZp
for the category of affine p-adic

formal schemes, whose ring of functions gives a semiperfectoid ring.
Now we consider the functor, which we will refer to as the Prismatisation,

(_)�,� : fSchaff,sperfZp
→ AnStack

which assigns to a semiperfectoid S the analytic stack

colimn Spa(�S/pn, ˜Ainf(S)/pn)

where the map Ainf(S)→ �S comes from 3.1.4.5. Similarly, we will write

S�,lp := colimn Spa(�S/pn, Z̃/pn)

for its locally proper variant. Then we have a map

S�,� → S�,lp

natural in S.

Example 3.2.6.2. For an integral perfectoid R the map Ainf(R)
∼−→ �S is an isomor-

phism. In particular, we see that

R�,� ' Spa(Ainf(R)).
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To start, we want to relate the Prismatisation of a semiperfectoid to the étale locus
of its generic fiber. For this, we will consider the following construction.

Construction 3.2.6.3. Given an integral semiperfectoid S, we will write

U(SHT ) ⊂ S�,�

for the closed substack given by the closure of the open complement of the Hodge-
Tate locus. In formulas, this means

U(SHT ) ' colimn Spa(�S [
1

I
]/pn, ˜Ainf(S)/pn).

where we write I for the Hodge-Tate ideal. Similarly, we will denote by

U(SHT )
lp

its locally proper counterpart.

Remark 3.2.6.4. Note that ϕ(I) = Ip mod p. In particular the frobenius on S�,�

restricts to an endomorphism on U(SHT ).

The following corollary can be explained most transparently using the Nygaard
filtered Prismatisation, which we will discuss later in the text 3.3.3.4. That is why
we will state it for now and explain the argument later.

Corollary 3.2.6.5. Given an integral semiperfectoid S, the Frobenius acts as an
automorphism on

U(SHT ) and U(SHT )
lp
.

3.2.6.6. Using 3.2.6.5, it makes sense to consider the quotient stack

U(SHT )/ϕZ

and similar to its locally proper variant.

Corollary 3.2.6.7. Given an integral semiperfectoid S, we have identifications

• U(SHT ) ' X(S[ 1
p ],S)�

.

• U(SHT )
lp
' X lp

(S[ 1
p ],S)�

.

• U(SHT )/ϕZ ' Spa(S[ 1
p ], S̃)ét

• U(SHT )
lp
/ϕZ ' Spa(S[ 1

p ], S̃)ét,lp

functorial in S.

Proof. Using 3.2.5.3 we see that the difference lies in the perfection. So the
claims follow from 3.2.6.5. �

Corollary 3.2.6.8. Consider an integral map S → T of integral semiperfectoids.
Then the square

T�,� T�,lp

S�,� S�,lp

is Cartesian.
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Proof. We can check the claim on a stratification. That is, it suffices to prove
the analogous claim for the Hodge-Tate locus and for the closure of its complement.
More precisely, note that the category of quasi-coherent sheaves on the open com-
plement of the substack

U(SHT ) ⊂ S�,�

is given by the full subcategory of Dqc(S
�,�) consisting of the I-adically complete

objects. To reduce to the Hodge-Tate locus, one can thus use the derived Nakayama
lemma and the fact that associating quasi-coherent sheaves is a conservative operation
on affines.
Now, for the Hodge-Tate locus, the claim follows from 3.2.4.6 together with 3.2.4.7.
The case of the closure of its complement was explained in 3.2.5.13 using the
identification 3.2.6.7. �

Proposition 3.2.6.9. The functor

(_)�,� : fSchaff,sperfZp
→ AnStack

from 3.2.6.1 preserve fibre products and sends naive syntomic covers to proper
surjections. In particular it is a cosheaf for the naive syntomic topology.

Proof. The claim on fibre products can be checked on a stratification. Thus,
as in the proof of 3.2.6.8 the claim reduced to the analogous claim for the Hodge-Tate
locus and the analogous claim for the closure of its complement. For the former,
this was explained in 3.2.4.6, and for the latter, this follows from 3.2.6.7 and 3.2.5.7.
The claim of being a cosheaf follows from 3.2.6.8 and the analogous claim for the
locally proper version 3.2.3.10. �

3.2.6.10. Using 3.2.6.9 and 3.1.2.8 we see that there exists a unique cosheaf

(_)�,� : fSchaffZp → AnStack
on the naive syntomic site, which on a semiperfectoid is given by 3.2.6.1. We now
extend this construction to all (derived) p-adic formal schemes.
Note that the proof also shows that there is a map

(_)�,� → (_)�,lp

of cosheaves.

Proposition 3.2.6.11. The functor

(_)�,� : fSchaffZp → AnStack

preserves open immersion (resp. covers) and étale morphisms (resp. covers).

Proof. We first claim:

(∗1) For any (affine) etale map U → An
Zp

the induced map U�,� → (An
Zp

)�,�

is an étale map of analytic stacks.

The assertion is local on the target, so we are allowed to pull back along a naive
syntomic cover Spf(R)→ An

Zp
3.2.6.9. Using 3.1.1.16 and 3.1.1.19 we see that we

can choose R to be an integral perfectoid. But then

U ×An
Zp

Spf(R) ' Spf(R̃)
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for an integral perfectoid R̃ 3.1.1.18 and we have to check that the map

Spa(Ainf(R̃))→ Spa(Ainf(R))

is an étale map of analytic stacks 3.2.6.2. This follows from 3.1.4.2 and 2.5.2.4.
Now we claim:

(∗2) For any etale cover Spf(S̃)→ Spf(S), the induced map S̃�,� → S�,� is a
surjection of analytic stacks.

Again, the assertion is local on the target, so we can assume S to be semiperfectoid
3.2.6.9. Thus by 3.1.4.2 we can assume S̃ to be semiperfectoid as well. Then we
have to check that the map

Spa(�S̃ , Ãinf(S̃))→ Spa(�S , Ãinf(S))

is surjective. This map is refined by

Spa(Ainf(S̃)⊗̂Ainf(S)�S̃ , Ãinf(S̃))→ Spa(�S̃ , Ãinf(S̃))→ Spa(�S , Ãinf(S)).

So it suffices to check that on one hand, the map

Spa(Ainf(S̃))→ Spa(Ainf(S))

is surjective, which follows from 3.1.4.2 and 2.5.2.4. And on the other hand, that

Spa(�S̃ , Ãinf(S))→ Spa(�S , Ãinf(S))

is surjective, which follows as �S → �S̃ is descendable as a (p, I)-completely faithfully
flat etale map of animated rings [BL22b][3.9].
Now (∗1) and (∗2) together with 2.4.2.7 and the fact that the prismatisation preserves
fibre products 3.2.6.9 imply all claims. �

3.2.6.12. Using 3.2.6.11, we see that there exists a unique cosheaf

(_)�,� : fSchZp → AnStack
which on affines is given by 3.2.6.10. Furthermore, this extension preserves open
immersions (resp. covers) and étale morphisms of p-adic formal schemes (resp.
covers).

Definition 3.2.6.13. For a p-adic formal scheme X, we call the analytic stack

X�,�

the Prismatiastion.

3.2.6.14. Let us explain that this construction matches the construction of the
(completed) Hodge-Tate stack. That is, we claim that for any p-adic formal scheme
X, the square

XHT,� X�,�

ZHT,�p Z�,�
p

is cartesian. Using 3.2.6.11, 3.2.4.6 and naive syntomic descent, this assertion can
be checked locally on X, and we can assume X ' Spf(S) for a semiperfectoid. But
then the claim follows from 3.2.4.7.
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3.2.6.15. Using naive syntomic descent 3.2.5.8 3.2.6.9, we can use the identification
3.2.6.7 to obtain an isomorphism

U(ZHTp ) ' X(Qp)� .

Furthermore also involving Zariski descent 3.2.6.11 and 3.2.5.10, we see that for any
p-adic formal scheme X, there is a cartesian square

XXη X�,�

X(Qp)� Z�,�
p

functorial in X. Where Xη denotes the generic fibre understood as a classical derived
Tate adic space.

Let us now come to the case of proper maps.

Proposition 3.2.6.16. Consider a map of p-adic formal schemes f : X → S and
let us write f�,� : X�,� → S�,� for the induced map. Then we have the following:

(a) If f is +proper, the square

X�,� X�,lp

S�,� S�,lp

is cartesian.
(b) If f is locally of +finite type, f�,� is !-able.
(c) If f is +proper, f�,� is locally proper.
(d) If f is proper, f�,� is proper.

Proof. Note that (c) is implied by (a) and (d) is implied by (a) together with
3.2.3.10.
Now we prove (a). As explained in the proof of 3.2.6.8 we can check the assertion
on a stratification given by the Hodge-Tate locus and the closure of its complement.
For the Hodge-Tate locus, the claim follows from 3.2.4.6. On the other hand, we
can use 3.2.6.15 to reduce the claim now to the analogous claim for the stack X(_)

applied to the generic fibre of f . As f is +proper the generic fibre is locally proper
2.5.4.6, so the claim follows from 3.2.5.13.
The (b) assertion is local on the source and target. So using 3.2.6.11 and naive
syntomic descent we can assume X ' Spf(S̃) and S ' Spf(S) with S semiperfectoid
and that the map factors as

S → S〈x1, . . . , xn〉 → S̃

where the second map is integral. So by (a), we just have to check the assertion for
the completed polynomial algebra, and using base change stability, we can assume
S ' R is an integral perfectoid. But now using 3.1.1.19 we have a naive syntomic
cover

R〈x1, . . . , xn〉 → R〈x
1
p∞

1 , . . . , x
1
p∞
n 〉
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by an integral perfectoid with

Ainf(R〈x
1
p∞

1 , . . . , x
1
p∞
n 〉) ' Ainf(R)〈x

1
p∞

1 , . . . , x
1
p∞
n 〉 := Ã.

So we have reduced the question to

Spa(Ã)→ Spa(Ainf(R))

being !-able. But the domain is the intersection of the pullbacks

U( 1
xi

) Spa(Ã, Ãinf(R))

D1
� A1

�

xi

which is a finite intersection of opens and thus open in Spa(A,Ainf(R)). This implies
the claim. �
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3.3. Analytifying the syntomification

3.3.1. Recollections on filtered objects. Let us collect some facts on fil-
tered objects.

Definition 3.3.1.1. Given an animated ring R, we will write

DF(R) := Fun(Zop,D(R))

for the category of filtered objects in D(R). Here we understand Zop as a poset.

Remark 3.3.1.2. We often work with the full subcategory of derived I-complete
objects in DF(R) for some ideal in R. But it will be obvious how to adopt everything
we say about this category.

3.3.1.3. Taking the colimit and taking the cofiber of each map in the filtration
induces functors

D(R) DF(R) Fun(Z,D(R))colim gr•

where we understand Z as a discrete category. We will refer to the category
Fun(Z,D(R)) as graded objects in D(R).

3.3.1.4. Given two filtered objects F•, E• ∈ DF(R), the mapping spectrum

HomDF(R)(F•, E•)

can be computed as the equalizer of the two maps∏
i∈Zop HomD(R)(F i, E i)

∏
j∈Zop HomD(R)(F j , Ej−1)

one coming from postcomposing along the target filtration and one from precom-
posing along the source filtration. This follows as one can write the category Zop as
the Segal completion of the simplicial anima

. . .∆1
∐
∆0

∆1
∐
∆0

∆1 . . . .

3.3.1.5. Day-convolution equips the category DF(R) with a symmetric monoidal
structure. That is, we obtain the formula

(F• ⊗ E•)n ' colimi+j≥n F i ⊗ Ej .

Furthermore, this monoidal structure is closed, so we have an internal hom. Note
also that the colimit functor from 3.3.1.3 is symmetric monoidal.
Day-convolution also equips the category Fun(Z,D(R)) of graded objects with a
symmetric monoidal structure. For two graded objects F•, E• this produces the
formula

(F• ⊗ E•)n ' colimi+j=n F i ⊗ Ej '
⊕
j+i=n

F i ⊗ Ej .

Furthermore, the associated graded functor from 3.3.1.3 is symmetric monoidal
for these structures. Also, the symmetric monoidal structure on graded objects is
closed. Unwinding the formula for the internal hom, one gets

HomFun(Z,D(R))(F•, E•)n '
∏
m∈Z

HomD(R)(Fm, Em−n).



120 3. THE PRISMATISATION AND ITS FRIENDS AS ANALYTIC STACKS

The associated graded functor is also compatible with the internal homs [GP16][2.28],
that is, we have the formula

gr•HomDF(R)(F•, E•) ' HomFun(Z,D(R))(gr(F•), gr(E•)).

3.3.1.6. A filtered object F• in D(R) is called complete, if

limn∈Zop Fn ' 0.

The full subcategory D̂F(R) ⊂ DF(R) of complete filtered objects admits a symmet-
ric monoidal left adjoint [GP16][2.25]. Furthermore, the associated grade functor
is conservative when restricted to complete objects.

3.3.1.7. There is a t-structure on DF(R), called the standard t-structure. The
connective objects are given by those filtered objects F•, for which each F i is
connective in the standard t-structure on D(R).

3.3.1.8. Recall from [Mou19] that there is also the following geometric viewpoint
on the category DF(R). There are symmetric monoidal equivalences

• Fun(Z,D(R)) ' Dqc((BGm)R)
• DF(R) ' Dqc((A

1/Gm)R).

Under those equivalences, the associated graded functor corresponds to the pullback
along the zero-section BGm → A1/Gm and the colimit functor corresponds to the
pullback along the one-section Gm/Gm → A1/Gm.

3.3.2. Recollections on the Nygaard filtration. The absolute prismatic
complex �S of an animated ring comes equipped with a filtration called the Nygaard
filtration. In the following, we will recollect some facts about this filtration. Let us
start with the construction following [BS19] [BL22a].

3.3.2.1. Given a bounded (static) prism (A, I) and a (static) quasi-regular semiper-
fectoid A-algebra S, the relative prismatic complex �S/A is static and comes with a
relative Frobenius

ϕ : F ∗�S/A := �S/A ⊗A,ϕ A→ �S/A.
In particular we can equip F ∗�S/A with a filtration by considering the ideals

FiliNF
∗�S/A := {x|ϕ(x) ∈ Ii} ⊂ F ∗�S/A.

Now a polynomial ring over A, can be resolved by a (static) quasi-regular semiper-
fectoid, such that each term in the Čech nerve stays quasi-regular semiperfectoid.
Thus, to obtain the Nygaard filtration on

F ∗�A[x1,...,xn]/A

we can descend the above filtration from the Čech nerve. For a general animated A-
algebra, one then left Kan-extends the above construction from polynomial algebras.
This is well defined and comes with a map of filtered complexes

ϕ : Fil•NF
∗�S/A → I•

called the filtered frobenius. Using the filtered Frobenius, one can characterize the
Nygaard filtration uniquely in the following way [BL22a][5.1.1]:
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(a) The functor

Fil•NF
∗�(_)/A : Ani(Ring)A/ → DF (I,p)-comp(A)

preserves sifted colimits.
(b) For every integer i, the induced map on graded pieces

griNF
∗�S/A → �S/A{i}

identifies with the inclusion of the i-piece of the conjugate filtration.

Filconji �S/A{i} → �S/A{i}
functorially in S.

3.3.2.2. Using the fact that the construction of the Nygaard filtration is stable
under base change along prisms and thus defines a filtered quasi-coherent sheaf on
Z�
p , on obtains a Nygaard filtration

ϕ : Fil•N�S → I•

together with a filtered Frobenius on the absolute prismatic cohomology of an
animated ring (see [BL22a][5.5.] for details). In the case the prism (A, I) is perfect,
the identification �S

∼−→ �S/A can be extended to an isomorphism

Fil•N�S
∼−→ Fil•NF

∗�S/A
in CAlg(DF (I,p)-comp(A)) [BL22a][5.6.2].

Example 3.3.2.3. Given an integral perfectoid R, the frobenius on Ainf(R) induces
an isomorphism between the Nygaard filtration and the filtration, which in positive
degrees is given by

FiliNAinf(R) ' (di) ⊂ Ainf(R)

and in negative degrees by Ainf(R) sitting in the respective degree.

3.3.2.4. Given a semiperfectoid S, the filtered frobenius

Fil•N�S → I•

is a (I, p)-complete Zariski localization. To see this, one uses the identifications made
recalled in 3.3.2.1 (see [Bha22][5.5.1]). That is we can understand the situation
relative to a perfectoid R. Then multiplication by a generator of

g ∈ Fil1N�R ' ϕ−1(d)Ainf(R)

on graded pieces, it induces the morphism

Filconji �S{i} Filconji �S{i+ 1} Filconji+1 �S{i+ 1}e

coming from the conjugate filtration. So we can invert this generator to obtain the
claim as the conjugate filtration is exhaustive.

We want to consider the Rees algebra associated with the Nygaard filtration of a
semiperfectoid. We will need the following for this to still live in the connective
setting.

Proposition 3.3.2.5. For an animated integral semiperfectoid S, each piece of the
Nygaard filtration

FiliN�S → �S
is connective, which lives in homological degrees ≥ 0.
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Proof. Let us choose an integral perfectoid R with a surjective map R→ S
and identify the absolute Nygaard filtration with the relative Nygaard filtration
over R. Then as the Kähler differentials of S over R vanish, we see that each graded
piece in the conjugate filtration lives in homological degree ≥ 0. By induction, this
implies that each filtered piece in the conjugate filtration and thus each graded piece
in the Nygaard filtration lives in the same degrees. This implies that each filtered
piece in the Nygaard filtration lives in homological degrees ≥ −1, and to prove the
proposition, we have to check that for each i, the map

FiliN�S → griN�S

induces a surjection on π0. This statement is stable under sifted colimits, so by
3.3.2.6 it suffices to observe this in the case

S ' A/(f1, . . . , fn)

being a derived quotient by finitely many functions. By Andre’s flatness lemma
[BS19][7.14] we can find a faithfully flat extension R → R̃ of integral perfectoid
such that R̃ is absolutely integrally closed. Thus, by base change, we can assume
that the functions f1, . . . , fn admit compatible systems of p-th roots and R contains
all p-th roots of unity. The claim follows by base change from the universal case
discussed in [BS19][12.3]. �

For an animated ring A, let us write

Closed(A)

for the full subcategory of those animated A-algebras A→ S, for which the structure
map induces a surjection on π0. Then we used the following lemma.

Lemma 3.3.2.6. For an animated ring A, the category Closed(A) is projectively
generated under sifted colimits by pushouts of the form

A[x1, . . . , xn] A

A A/(f1, . . . , fn)

0

(f1,...,fn)

for finitely many functions f1, . . . , fn ∈ π0A. That is, it is the animation of those
A-algebras.

Proof. First, observe that the category Closed(A) has all colimits, and they
are computed in A-algebras. So it suffices to check that the algebras A/(f1, . . . , fn)
are stable under coproducts, projective, and mapping out of them is conservative.
The first assertion is obvious.
We check that the A-algebra A/(f1, . . . , fn) is projective, that is mapping out of it
preserves sifted colimits. Consider such a sifted colimit

colimI Si ∈ Closed(A)
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then, as polynomial A-algebras are projective, the assertion boils down to observing
that the square

colimI HomA(A/(f1, . . . , fn), Si) colimI HomA(A,Si)

colimI HomA(A,Si) colimI HomA(A[x1, . . . , xn, Si])

is Cartesian. This follows from descent for ∞-topoi.
Let us check the conservativity. For this, we consider a map S → S̃, which becomes
an isomorphism when mapping all algebras of the form A/(f) into it. First of all, it
suffices to check that the map S → S̃ is an isomorphism of A-modules. By stability,
to observe this, it suffices that the fibre of the map A→ S is isomorphic to the fibre
of the map A→ S̃ via the canonical map. As both of these fibres live in homological
degree ≥ 0, we can check this on the underlying anima, which can be checked fibered
over A. But the fibre at a point f ∈ A of the map fib(A→ S)→ A is computed by

HomA(A/(f), S)

and similar for the map A→ S̃, which shows what we want. �

For the following, let us fix an integral perfectoid R with corresponding perfect
prism (A, I). Furthermore let us write T = R[x1, . . . , xd] for a finitely generated

polynomial ring over R and T∞ = R[x
1
p∞

1 , . . . , x
1
p∞

d ] for its naive perfection. Then
we have the following:

Proposition 3.3.2.7. The map

Fil•NF
∗�T/A → Fil•NF

∗�T∞/A
is descendable in DF (I,p)-comp(A).

Proof. Let us write F • for the fibre of the map in question, then by [BS17][11.20]
it suffices to check that

π0 HomDF ((F •)⊗d+3, F il•NF
∗�T/A) ' 0

where the tensor product is taken over the Nygaard filtration on F ∗�T/A. To check
this, let us first make some reduction steps. First of all, we can take the tensor
product over A. Also as the Hodge filtration on the De Rham cohomology of a
finite polynomial ring is complete, by [BL22a][5.2.10], the Nygaard filtration on the
latter is complete as well, so we can take the completed tensor product and thus
assume that both sides are complete. Now to see the above, by 3.3.1.4, it suffices to
check that

HomDF ((F •)⊗d+3, F il•NF
∗�T/A) ∈ DF>1

where we use the standard t-structure. As both sides are (assumed to be) complete,
we can use 3.3.1.6 and the compatibility of taking associated graded with the internal
Hom 3.3.1.5, to reduce this to showing that

HomDgraded
(gr•(F •)⊗d+3, gr•NF

∗�T/A) ∈ (Dgraded)>2.

Unwinding the internal Hom 3.3.1.5 and the definition of the t-structure, this boils
down to showing that for each pair of integers i, j, we have

HomD(gri(F •)⊗d+3, grjNF
∗�T/A) ∈ D>2.
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For this, we now claim the following:

(∗) The fibre of the map

grnNF
∗�T/A → grnNF

∗�T∞/A
takes the form

n⊕
i=1

⊕
S(i)

T [−i]

for some sets S(i) if n ≥ 0 and vanishes otherwise.

First, note that using the identification of the graded pieces on the Nygaard filtration
with the filtered pieces of the conjugate filtration and the fact that the cohomology
of the later vanishes above the (relative) dimension of T , we see that (∗) implies
what we want (note also that T is a free R-module).
To observe (∗), we identify the graded pieces with the filtered pieces of the conjugate
filtration. Now note that in positive degrees

Filconjn �T∞/A ' T∞

by relative perfectness. Using this we inductively observe that there are pushout
squares

Filconjn−1�T/A 0

Filconjn �T/A
⊕

S′(n) T [−n] 0

Filconjn �T∞/A M
⊕n−1

i=0

⊕
S(n) T [−i]

0

and the map Filconjn−1�T/A → Filconjn �T∞/A identifies with the map

T ⊕
n⊕
i=1

⊕
S′(i)

T [−i]→ T∞

which includes the first factor and maps everything else to 0. Here, the upper
pushout square comes from the identification of the graded pieces in the conjugate
filtration with (shifts) of exterior powers of the cotangent complex. This shows what
we want. �

Given a prism (A, I), let us write DF (I,p)-comp(Fil•NA) for the category of modules
over the Nygaard filtration on A in the filtered derived category of A.

3.3.2.8. Given a semiperfectoid S living over an integral perfectoid R, we can
consider the Rees algebra

Rees(Fil•N�S) :=
⊕
i∈Z

FiliN�St−i

which is an animated S-algebra coming with a Gm-action. In particular, we can
consider the quotient stack

R(Fil•N�S) := Spf(Rees(Fil•N�S))/Gm.
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For this stack, one obtains an equivalence

Dqc(R(Fil•N�S)) ' DF (I,p)-comp(Fil•N�S)

and it is explained in [Bha22][5.5.10] that in the case S is quasi-regular semiperfec-
toid it can be defined via transmutation over R(Fil•NAinf(R)). In particular, given
two quasi-regular semiperfectoids S and S̃ over R, we obtain a cartesian square

R(Fil•N�S⊗RS̃) R(Fil•N�S)

R(Fil•N�S̃) R(Fil•NAinf(R)).

On the level of functions, this translates into the formula

Fil•N�S ⊗ Fil•N�S̃ ' Fil
•
N�S⊗RS̃

in DF (I,p)comp(Fil•NAinf(R)). From this and the last proposition we obtain the
following corollary.

Corollary 3.3.2.9. Given an integral perfectoid R with corresponding perfect prism
(A, I), the functor

Fil•NF
∗�(_)/A : Ani(Ring)R/ → CAlg(DF (I,p)-comp(Fil•NA))

commutes with colimits.

Proof. By construction, it preserves sifted colimits, so by the universal property
of the animation, it suffices to check that the restriction to finite polynomial R-
algebras preserves coproducts.
Let us write T1, T2 for two such polynomial R-algebras and

F •Ti := Fil•NF
∗�Ti/A

respectively. Then, using 3.3.2.7 twice, we obtain an equivalence

ModF•T1⊗F•T2(DF) ' limn∈∆Mod
F•(T∞1 )

⊗T1
n⊗F•(T∞2 )

⊗T2
n(DF)

where we write DF := DF(Fil•NA). Furthermore, using 3.3.2.8, we see that the
limit gives the right-hand side of this equivalence

limn∈∆Mod
F•((T1⊗T2)∞)

⊗T1⊗T2
n(DF)

so running through this equivalence once gives the claim. �

We will also need the following.

Proposition 3.3.2.10. Given a naive syntomic cover S → S̃ between semiperfec-
toids. Then the algebra

Fil•N�S̃ ∈ DF (I,p)-comp(Fil•N�S)

is descendable.

Proof. We choose an integral perfectoid R mapping to S, then we can identify
the absolute Nygaard filtrations with the relative Nygaard filtrations over R 3.3.2.2.
Furthermore, using 3.3.2.9, we can assume that the map S → S̃ comes as a base
change from a universal naive syntomic cover. But then, using 3.3.2.9 again, we can
assume S = R. From now on, we will write S for S̃.
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Now let us write F • for the fibre of the map

Fil•N�R → Fil•N�S
and we claim that

π0 HomDF ((F •)⊗3, F il•N�R) ' 0.

This will finish the proof by 3.3.2.7. As in the proof of 3.3.2.7, to observe the above,
it suffices to observe that

HomD(R)(gr
i(F •)⊗3, grjN�R) ∈ D>2

for all i, j. For this, we recall the following two observations from the proof of
3.2.1.8:

(a) The cofibre of the map R→ S is a free R-module.
(b) LS/R[−1] is a free S-module.

Now, let us identify the graded pieces with the filtered pieces in the conjugate
filtration. Then using (b), we observe that the conjugate filtration on �S takes the
form

S →
⊕
I1

S →
⊕
I2

S →
⊕
I3

S → . . .

where each map is an inclusion of a direct summand. In particular using (b), we
learn that

gri(F •) '
⊕
K

R[−1]

for some set K for all i. From this, one can easily observe what we want. �

3.3.3. The Nygaard filtered Prismatisation. Let us now explain how we
want to understand the Nygaard filtered Prismatisation as an analytic stack.

Construction 3.3.3.1. Consider an integral semiperfectoid S then the Nygaard
filtration on �S gives us a filtration on the solid analytic ring

Fil•N (�S , Ãinf(S))� → (�S , Ãinf(S))�.

Furthermore, let us write

Rees(Fil•N (�S , Ãinf(S))�) := ((
⊕
i∈Z

FiliN�Sx−i)Î , Ãinf(S))x�

for the graded (�S , Ãinf(S))-algebra obtained by I-adically completing the Rees
algebras associated with the Nygaard filtration, and then solidify along the variable,
remembering the grading. Out of this algebra, we can produce the analytic stack

Spf(Rees(Fil•N (�S , Ãinf(S))�)) := colimn Spa(Rees(Fil•N (�S/pn, ˜Ainf(S)/pn)�)).

Now the grading provides an (Gan
m )�-action on this analytic stack, where we interpret

(Gan
m )� living over Spf((Zp)�) := colimn Spa(Z/pn). Now we set

SN ,� := Spf(Rees(Fil•N (�S , Ãinf(S))�))/(Gan
m )�

and refer to this stack as the Nygaard filtered Prismatisation of S.

3.3.3.2. Let us unwind a bit on how this stack looks.
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(a) We have a structure morphism

π : SN ,� → S�,�

coming from the inclusion into degree zero.
(b) There is a Cartesian square

S�,� SN ,�

Spf((Zp)�) D1
�/(G

an
m )�

where the right vertical map comes from the graded structure and the
lower horizontal map from the identification

Spf((Zp)�) ' (Gan
m )�/(G

an
m )�.

One way to see that this square is Cartesian is that the fibre product is a
(Gan

m )�-torsor over S�,�, which admits a section. In particular, the upper
horizontal map gives an open immersion

jdR : S�,� → SN ,�

which, composed with the structure map, recovers the identity of the
Prismatisation.

(c) Observe that the Rees stack of the I-adic filtration identifies with the
Prismatisation. In particular using 3.3.2.4, we see that the filtered frobenius
gives an open immersion

jHT : S�,� → SN ,�

for any semiperfectoid S. Furthermore, the composition

S�,� SN ,� S�,�jHT π

identifies with the Frobenius on the prismatisation.
(d) Note that if we invert I in the Nygaard filtration, it becomes a filtration

with structure maps isomorphisms. In particular, we see that there is a
Cartesian square

U(SHT) SN ,�

U(SHT) S�,�

' π

for any semiperfectoid S.

3.3.3.3. Doing the same construction as in 3.3.3.1, but starting with the analytic
ring

(�S , Z̃p)�

instead, we obtain a locally proper version of the Nygaard filtered Prismatisation.
We will write

SN ,lp

for this analytic stack and call it the locally proper Nygaard filtered Prismatisation.
The analogous statements of 3.3.3.2 hold as well.
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We now obtain the following, which was partially used in the last section already
3.2.6.5.

Proposition 3.3.3.4. Consider a map S → S̃ of semiperfectoids, then we have the
following:

(1) The squares

S̃�,� S̃N ,� S̃�,lp S̃N ,lp

S�,� SN ,� S�,lp SN ,lp

jdR jdR

jdR jdR

are Cartesian.
(2) The squares

S̃�,� S̃N ,� S̃�,lp S̃N ,lp

S�,� SN ,� S�,lp SN ,lp

jHT jHT

jHT jHT

are Cartesian.
(3) The frobenius acts as an isomorphism on U(SHT ) and U(SHT )

lp
.

Proof. (1) is obvious as jdR is defined via global pullback. To see (2) choose an
integral perfectoid R mapping to S. Then as explained in 3.3.2.4 we can construct
jHT for S as well as for S̃ by inverting a generator in

Fil1N�R.

This shows the claim.
Let us proof (3) for U(SHT ), the other case goes the same. Recall from 3.3.3.2, that
we can factor the Frobenius on the Prismatisation as

S�,� SN ,� S�,�.
jHT π

Thus pulling back to U(SHT ) and using 3.3.3.2(d), we see that by (2), for any map
of semiperfectoids S → S̃, the square

U(S̃HT ) U(S̃HT )

U(SHT ) U(SHT )

ϕ

ϕ

is Cartesian. But now for a semiperfectoid S, we can find an integral perfectoid
R together with a map R→ S. In this situation, the lower horizontal map in the
square will be an isomorphism, and thus the upper horizontal map will also be. �

We now extend the construction to affine formal schemes.

Proposition 3.3.3.5. The functors

(_)N ,�, (_)N ,lp : fSchaff,sperfZp
→ AnStack
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preserve pullbacks and define cosheaves for the naive syntomic topology. Furthermore
for an integral map of semiperfectoids S → S̃ the square

S̃N ,� S̃N ,lp

SN ,� SN ,lp

is Cartesian.

Proof. Recall the compatibility of the solid tensor product with the completed
tensor product for connective objects [Bos23][A.3] and that the Rees algebra of the
Nygaard filtration on the prismatic cohomology of a semiperfectoid is connective
3.3.2.5. So that we can make use of the first fact. We will use those assertions
implicitly.
Now, for the claim on preservation of pullbacks, consider a pushout

S0 S1

S2 S3

of semiperfectoids. Then we can choose an integral perfectoid R mapping to S0 and
identify the absolute Nygaard filtrations on �Si with the relative Nygaard filtrations
over Ainf(R) 3.3.2.2. Now the claim for (_)N ,lp follows from 3.3.2.9 and to deduce
the claim for (_)N ,� we additionally argue in the same way as for the Prismatisation
3.2.6.9.
We now prove the claimed Cartesian square. For this, let us be given an integral
map S → S̃ of semiperfectoids. Then we consider the following cube:

S̃N ,� S̃N ,lp

S̃�,� S̃�,lp

SN ,� SN ,lp

S�,� S�,lp

π π

π π

In this cube, the horizontal squares above and below are Cartesian by construction,
and the square in the front is Cartesian by 3.2.6.16, so the square in the back is
Cartesian as well.
To prove the statement about cosheaves, it is enough to check that both functors
send naive syntomic covers to cohomologically proper surjections of analytic stacks.
By the already proven Cartesian square, it is enough to check this for the locally
proper version. This boils down to the assertion that, for a naive syntomic cover
S → S̃, the map of filtrations

Fil•N�S → Fil•N�S̃
induces a descendable map on Rees algebras. This follows from 3.3.2.10. �



130 3. THE PRISMATISATION AND ITS FRIENDS AS ANALYTIC STACKS

3.3.3.6. Using 3.3.3.5 and 3.1.2.8 we obtain preserving functors

(_)N ,�, (_)N ,lp : fSchaffZp → AnStack.
To extend them to all p-adic formal schemes, we need to observe compatibility with
etale morphisms. For this, we prove the following.

Proposition 3.3.3.7. For any étale morphism S → S̃ of p-adic formal schemes,
the squares

S̃N ,� S̃�,� S̃N ,lp S̃N ,lp

SN ,� S�,� SN ,lp SN ,lp

π π

π π

are Cartesian. Furthermore, we have the following:

• The functor (_)N ,� sends open immersions (resp. covers) to open immer-
sions (resp. covers) and étale morphisms (resp. covers) to étale morphisms
(resp. covers).
• The functor (_)N ,lp sends open immersions (resp. covers) to closed im-
mersions (resp. covers) and étale covers to proper surjections.

Proof. Using descent for ∞-topoi and 1.1.3.7, we see that all assertions in the
statement are local on S. So by naive syntomic descent, we can assume S to be
semiperfectoid.
We now prove the claimed pullback squares in the case S → S̃ is an open immersion.
In that case we can choose an integral perfectoid R and a surjection R→ S, but
then the map in question comes as a pushout of an open immersion R→ R̃ so that,
as all functors preserve pullbacks 3.3.3.5, it is enough to check the assertion for the
later map. Now R̃ is also perfectoid 3.1.1.18 and the Nygaard filtration identifies
with the I-adic filtration 3.3.2.3, which makes this case an easy computation.
Using that, we have the claimed cartesian squares for open immersions now, the
assertions about preservation of those follow from the case of the Prismatisation
3.2.6.11.
As we have proven the proposition for open covers now, the assertions about étale
morphisms can be checked Zariski locally. But Zariski locally any étale morphism
S → S̃ from a semiperfectoid comes as a pushout of an étale morphism R→ R̃ from
an integral perfectoid 2.4.2.7. Again, R̃ is integral perfectoid as well 3.1.1.18 and
we can run the argument above again. The assertions about preservation of étale
morphisms then follow from the case of the Prismatisation 3.2.6.11 using the proven
cartesian squares. �

Using 3.3.3.7, we can extend the Nygaard filtered prismatisation to all p-adic formal
schemes.

Definition 3.3.3.8. For a p-adic formal scheme X, we will call the analytic stack

XN ,�

the Nygaard filtered Prismatisation. The analytic stack

XN ,lp

will be called the locally proper Nygaard filtered Prismatisation.
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To finish the section, let us discuss proper morphisms.

Proposition 3.3.3.9. Consider a map of p-adic formal schemes f : X → S and let

fN ,� : XN ,� → SN ,�

be the induced map on the solid Nygaard filtered prismatisation. Then we have the
following:

(a) If f is +proper, the square

XN ,� XN ,lp

SN ,� SN ,lp

is Cartesian.
(b) If f is of +finite type, fN ,� is !-able.
(c) If f is +proper, fN ,� is locally proper.
(d) If f is proper, fN ,� is proper.

Proof. (a) follows the same way as in 3.3.3.5 using 3.2.6.16 and (c) follows
from (a).
For (b) and (d) one argues the same way as for the solid Prismatisation 3.2.6.16
using 3.3.2.7. �

3.3.4. The Syntomification. We now come to the solid syntomification.

Definition 3.3.4.1. Given a derived p-adic formal scheme X, we write Xsyn,� for
the pushout

X�,� ∐
X�,� XN ,�

X�,� Xsyn,�

can

where the upper horizontal map is induced by the two open immersions jdR and
jHT . We will refer to this analytic stack as the solid Syntomification.

3.3.4.2. Using that the open immersions jdR and jHT are stable under base change
3.3.3.4 and descent for ∞-topoi, we see that for any morphism f : X → S of derived
p-adic formal schemes, the induced square

XN ,� SN ,�

Xsyn,� Ssyn,�

is Cartesian. Furthermore for any derived p-adic formal scheme X the map

XN ,� → Xsyn,�

is an étale surjection. Combining these two observations, one can deduce most prop-
erties for the solid syntomification from the solid Nygaard filtered Prismatisation.
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Proposition 3.3.4.3. Consider a morphism f : X → S of derived p-adic formal
schemes and write

f syn,� : Xsyn,� → Ssyn,�

for the induced morphism. Then we have the following:

(a) If f is a naive syntomic cover, then f syn,� is a locally proper surjection of
analytic stacks.

(b) If f is étale (resp. a étale cover), then f syn,� is étale (resp. a étale
surjection).

(c) If f is of +finite type, then f syn,� is !-able.
(d) If f is +proper, then f syn,� is locally proper.
(e) If f is proper, then f syn,� is proper.

Proof. All the assertions are local on the target, so using 3.3.4.2, all statements
follow from the analogous statements for the solid Nygaard filtered Prismatisation.
For (a) this is 3.3.3.5, for (b) this is 3.3.3.7 and for (c),(d) and (e) this is 3.3.3.9. �



CHAPTER 4

Six functors for syntomic cohomology

4.1. The six-functor formalism

In this section, we will apply what we have done so far to obtain well-behaved
categorifications of syntomic cohomology.

4.1.1. The Construction.

Definition 4.1.1.1. Given a p-adic formal scheme X, will write

F-Gauge��(X) := Dqc(X
syn,�)

for the category of quasi-coherent sheaves on the syntomification of X and refer to
it as solid prismatic F-gauges on X.

The aim of this subsection is now to prove the following:

Theorem 4.1.1.2. The functor

F-Gauge��(_) : fSchopSpf(Zp) → Pr
L
st

can be extended to a six-functor formalism on the category of (derived) p-adic formal
schemes satisfying the following:

(A) Morphisms locally of +finite type are !-able.
(B) Étale morphisms are cohomologically étale.
(C) Proper morphisms are cohomologically proper.
(D) The functor F-Gauge��(_)∗ is an étale sheaf and the functor F-Gauge��(_)!

an étale cosheaf.
(E) It admits Tate twists. That is for any p-adic formal scheme X the object

1X(−1) := cof(1X → f∗1P1)

is ⊗-invertible. Furthermore the inverse 1X(1) understood as a line bundle
on Xsyn,� identifies with the Breuil-Kisin twist.

(F) Any smooth morphism is cohomologically smooth. Furthermore, for such a
smooth morphism f : X → S, we have an identification

f !1S := ωf ' 1X(d)

of the dualizing sheaf, where d is the relative dimension of f .
(G) There is a functorial identification

RΓBMS
syn (_,Zp(n)) ' Hom(_)(1(_),1(_)(n))

of the mapping spectrum with the syntomic cohomology of p-adic formal
schemes as defined in [BL22a].

133
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Construction 4.1.1.3. Precomposing the six-functor formalism Dqc on analytic
stacks 2.1.2.17 with the solid syntomification (_)syn,�, we obtain the six-functor
formalism

F-Gauge��.

Proof of 4.1.1.2(A)(B)(C)(D). This follows from 3.3.4.3. �

4.1.2. The additive orientation. In order to prove the rest, we will construct
an additive orientation.

4.1.2.1. For a p-adic formal scheme X, we can compute the category of solid
prismatic F-gauges as the equalizer

F-Gauge��(X) Dqc(X
N ,�) Dqc(X

�,�).
j∗dR

j∗HT

As dualizable considering dualizable objects preserves limits [Lur17][4.6.1.11] and
the dualizable object in quasi-coherent sheaves on an affine derived adic space are
given by perfect complexes on the underlying ring, we see that the dualizable object
in solid F-gauges on X recover perfect F-gauges as defined in [Bha22][6.1].

4.1.2.2. Recall from [BL22a][2.2.11+3.3.8] that there is a line bundle

OZ�
p
{1} ∈ Perf(Z�

p )

called the Breuil-Kisin twist, which comes together with a frobenius automorphism
[BL22a][2.2.14]

ϕ : F ∗OZ�
p
{1} ' I−1 ⊗OZ�

p
{1}

where I denotes the Hode-Tate ideal. Heuristically, this line bundle should be
thought of as

⊗k≥0(F k)∗I
where the Frobenius isomorphism is the evident one. Using 4.1.2.1, we can under-
stand this object as a line bundle on Z�,�

p .
Recall that we had two maps

Z�,�
p ZN ,�p D1

�/(Gm)an�
π t

where π is the structure map and t comes from the construction as a Rees stack.
Using these maps, the Nygaard filtered Breuil-Kisin twist can be defined via

OZNp
{1} := π∗OZ�

p
{1} ⊗ t∗O(−1).

We will understand this line bundle on ZN ,�p .
Note that on the one hand we have

j∗dROZNp
{1} ' OZ�

p
{1}

as composing jdR with the structure map gives the identity, and the composition
t ◦ jdR factors over (Gm)an� /(Gm)an� . On the other hand, we have

j∗HTOZNp
{1} ' F ∗OZ�

p
{1} ⊗ I ' OZ�

p
{1}.
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Where, for the first isomorphism, we use that composing jHT with the structure
map recovers the frobenius and that the composition t ◦ jHT classifies the Hodge-
Tate locus ZHTp ⊂ Z�

p . And the second Isomorphism comes from the Frobenius
automorphism on the Breuil-Kisin twist recalled above. In particular, using this
identification, we obtain a line bundle

OZsyn
p
{1}

on Zsyn,�
p which we will refer to as the syntomic Breuil-Kisin twist.

By base change, we also obtain line bundles

OX�{1},OXN {1},OXsyn{1}
for an arbitrary derived p-adic formal scheme X.

4.1.2.3. Given a p-adic formal scheme X, then the mapping spectrum

HomXsyn,�(OXsyn,� ,OXsyn,�{n})
via the presentation given in 4.1.2.1 become the fibre of the map

ϕ{n} − can : FilnN�X{n} → �X{n}
where ϕ{n} is the twisted filtered frobenius and "can" comes from the inclusion of
the filtration. In particular, this mapping spectrum identifies with the syntomic
cohomology

RΓsyn(X,Zp(n))

for p-adic formal schemes as defined in [BL22a][7.4]. This is statement (G) in
4.1.1.2.

4.1.2.4. Using 4.1.2.3, we recall that there is a map

csyn1 : RΓét(X,Gm)[1]→ HomXsyn,�(OXsyn,� ,OXsyn,�{1})
coming from the prismatic logarithm [BL22a][7.5.2]. This map is natural in X and
identifies the target with the derived p-completion of the source [BL22a][7.5.6]. In
particular, this gives us a theory of first Chern classes.

Construction 4.1.2.5. Using the first Chern classes from 4.1.2.4, as in 1.2.2.6 we
can construct a morphism

d∑
i=0

csyn1 (O(1))i{d− i} :

d⊕
i=0

O
Zsyn,�
p
{d− i} → f∗O(Pd)syn,�{d}

where we write f : Pd → Spf(Zp) for the projection.

Proposition 4.1.2.6. The morphism
d∑
i=0

csyn1 (O(1))i{d− i} :

d⊕
i=0

O
Zsyn,�
p
{d− i} → f∗O(Pd)syn,�{d}

is an isomorphism.

Proof. First, note that by naive syntomic descent and proper base change, we
can assume that Zp = R for R a semiperfectoid (even perfectoid).
As a proper push forward preserves limits, all objects appearing in the statement
are (p, I)-complete. So we can check the assertion modulo (I, p). Now all objects
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are discrete and the proper push forward restricts to the push forward from classical
quasi-coherent sheaves. This shows that we can check the assertion in Dqc(R

syn).
Using the formula of mapping spectra recalled in 4.1.2.1, it suffices to check that
the maps

(a)
⊕d

i=0OR�{d− i} → f∗O(Pd)�{d} in Dqc(R
�)

(b)
⊕d

i=0ORN {d− i} → f∗O(Pd)N {d} in Dqc(R
N )

are isomorphism. Now (a) follows from [BL22a][9.1.4.(4)] as mapping out of the
unit is conservative on the category Dqc(R

�) and (b) follows from [BL22a][9.1.4.(5)]
as considering the filtered pieces is jointly conservative on Dqc(R

N ). �

Proof of 4.1.1.2(E)(F). (E) easily follows from the Projective bundle for-
mula 4.1.2.6.
By p-completing, we obtain a finite limit preserving functor

Smsep
Z → fSchZp .

Thus using (A), (B), (C), (D) of 4.1.1.2, we see that the six-functor formalism
F-Gauge�� is a geometrized geometric six-functor formalism. Furthermore, by
4.1.2.6 the map given in 4.1.2.4 gives us an additive orientation. Thus to prove (F )
we can apply 1.2.4.8 and 1.2.5.13 using the deformation to the normal bundle for
formal schemes 2.4.3.3. �

This finishes the proof of 4.1.1.2.
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