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High-harmonic generation in solids by intense laser pulses provides a fascinating platform for
studying material properties and ultra-fast electron dynamics, where its coherent character is a cen-
tral aspect. Using the semiconductor Bloch equations, we uncover a mechanism suppressing the high
harmonic spectrum arising from the coherent superposition of intra- vs. inter-band contributions.
We provide evidence for the generality of this phenomenon by extensive numerical simulations ex-
ploring the parameter space in gapped systems with both linear dispersion, such as for massive Dirac
Fermions, and with quadratic dispersion, as e.g. for bilayer graphene. Moreover, we demonstrate
that, upon increasing dephasing, destructive interference between intra- and inter-band contribu-
tions is lifted. This leads to reentrant behavior of suppressed high harmonics, i.e. a crossover from
the characteristic spectral ”shoulder” to a slowly decaying signal involving much higher harmonics.
We supplement our numerical observations with analytical results for the one-dimensional case.

I. INTRODUCTION

High-harmonic generation (HHG) from solids has at-
tracted considerable attention in recent years due to its
potential to probe and manipulate electron dynamics on
ultrafast timescales and with sub-wavelength spatial res-
olution [1, 2], as well as a promising platform for compact
light sources in the ultraviolet or soft X-ray wavelength-
regime [3-5]. The generation of high harmonics in solids
is driven by the strong interaction of intense laser pulses
with the material’s electronic structure, leading to the
emission of photons with energies corresponding to multi-
ples of the driving laser frequency. The first experimental
realization of HHG from solids in 2011 [6] paved the way
for understanding and controlling HHG in various mate-
rials such as wide-gap dielectrics [1, 2, 7], unstrained [8—
10] and strained graphene [11], twisted bilayer graphene
[12-14], topological insulators [15-18], strained TMDs
[19], monolayer WS, [20] and semi-Dirac and Weyl ma-
terials [21-23].

In atomic gases, the three-step recollision model [24—
26] provides a well-established theoretical framework to
understand the underlying mechanisms of HHG. Solid-
state HHG is more subtle due to the periodic crystal
lattice and (multiple) electronic bands. Its microscopic
mechanism can be understood as the interplay between
coherent inter-band polarization and intra-band dynam-
ics that is central to this work (see Fig. 1). Both pro-
cesses originate from the injection of a valence electron
into an unoccupied state in the conduction band during a
fraction of an optical cycle. The intra-band contribution
arises from population dynamics and does not depend
on phase coherence between bands, whereas the inter-
band current depends explicitly on electron-hole coher-
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FIG. 1. Top: Destructive interference between the inter-
and intra-band contributions to the HHG emission causes the
total signal to be drastically reduced. Bottom left: Quan-
tifying the degree of reduction of the total HHG signal by
R=(I™/1T mera) | we observe that coherent suppression is
most efficient for small multi-photon numbers, M, and large
strong-field parameters ¢, i.e., in the regime of small gaps and
strong driving fields (parameters defined in Eq. (3)). Mark-
ers refer to example spectra in the top panel and in Fig. 2.
Bottom right: Schematic illustration of gapped Dirac band
structure +4/v% k2 + A2 (solid purple lines) and diabatic en-
ergies +vpk, (dashed) .

ence. Ghimire et al. [6] suggested the intra-band current
to be the primary source of HHG, whereas Schubert et
al. [1] consider the combined action of dynamical intra-
band Bloch oscillations and coherent inter-band excita-
tions as the physical origin. Studies with graphene have
shown that intra-band [27] or inter-band [28] can dom-
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inate under certain conditions, strongly depending on
laser parameters. The three-step model was adapted to
solid-state HHG in [29, 30], which has since been applied
to various scenarios with different modifications [31-35].
However, it relies on various assumptions like low valence
band depletion and inter-band dominance in its current
form.

Here we systematically elaborate on the interplay of
intra- and inter-band dynamics in HHG. We show that
and explain why, in relevant parameter regimes, intra-
and inter-band contributions cancel coherently due to
destructive interference, leading to a suppressed HHG
signal, cf. Fig. 1. We demonstrate the generality of
our findings by comparing two model systems: mas-
sive Dirac fermions, a prototypical model for topolog-
ically non-trivial matter, and a model with quadratic
dispersion. Similar results were numerically observed in
gapped graphene [36], and [37] suggested this cancella-
tion as a hallmark of linear dispersions. We present ex-
tensive numerical HHG data based on the Semiconductor
Bloch Equations (SBE) and provide a microscopic under-
standing using analytical perturbation theory. The latter
presents a new approach in a regime where the three-step
model is not applicable.

We further demonstrate that dephasing counteracts
the suppression effect. Notably, we find a re-entrant in-
creased HHG signal at large frequencies for decreasing
dephasing times 75 and show that the high harmonics
intensity results from a power law ~ (w75)~! in the rel-
ative inter- and intra-band phase. This manifests as a
characteristic dependence of re-entrant harmonics on de-
phasing strength, which may provide an experimentally
accessible signature.

II. THEORETICAL FRAMEWORK

We study a two-dimensional massive Dirac Hamilto-
nian

fID(n) = g (K0g + KyOy) + %62, (1)

in dimensionless form driven by a linearly polarized elec-
tric field,

. E
E{t)=—A(t) , A(t)=e,— cos(wot)e /27" | (2)
wo
with standard deviation o, peak field strength E, central
angular frequency wp, Pauli matrices 6, , ., and scaled
wave-vector k = wg k/E. The multi-photon number and
the strong-field parameter,

M =AJwy and (=2vpE/wi, (3)

in terms of the bandgap A and the Fermi velocity v
characterize the dynamics of the system [38, 39]. All
physical quantities above and throughout this work are
given in atomic units unless stated otherwise. The Hamil-
tonian above and equations of motion below were brought

into dimensionless form by introducing a characteristic
time scale t. = 1/wy and length scale I, = wo/E (for
details see appendix A). We note that the massive Dirac
model describes the qualitative behavior of a large class
of materials. However, it cannot capture more specific
details e.g. six-fold polarization dependence in graphene
[8] or population asymmetries in Weyl-semimetals [40].
The evolution in dimensionless time 7 = t/t. = wot is
governed by the well-established SBE [37, 41-45],

l:i 87 + i(12_ 5mn) + emn(K'T) pmn(”v T) = (4)
T T
F(r)- Z [pmr (8, T)drp (Kr) — dimy (K7 ) prn (K, 7)),
ref{e,v}

in the adiabatic Houston basis with phenomenological de-
phasing time 7 = Ty /t., scaled field F(7) = E(7/wo)/E
and kinematic ~wavenumber Kk, =k —a(r) with
a(r) = %9 A(7/wp). Indices r,m and n can take the
values ¢ and v for conduction and valence band states.
We adopt the initial condition pm, (T — —00) = dmndny
of a completely filled valence band.  The dipoles
dmn(K) = i (mK|Ok|nk) and energies e, (k) are defined
in terms of eigenstates |nk) of any Hamiltonian H(k),

H(k)|nk) = en(k) Ink) ()

and €, (K) = em(K)
ences between bands.

We note that a single calculation in our dimension-
less formalism corresponds to an ensemble of physi-
cal realizations. For example, choosing a Fermi ve-
locity of vp =5.0x 10°m/s and a driving frequency
of 52 =10THz determines all other quantities via
Eq. 3. Using this choice, the data shown in the
top panel of Fig. 1 corresponds to a bandgap of
A =84x10"%au =23meV, a peak field strength of
E=29x10"%au=0.15MV/cm, and a peak intensity
I=44x10"%au =28 MW /cm? of the driving field.

We are interested in the frequency-resolved emission
intensity calculated via Larmor’s formula [46],

I(w) = Tw’[(w)|%, (6)

which is given here in terms of the natural intensity scale
Iy =173¢73t;2/3 = E3/3c3wy. Furthermore, the Fourier
transform j(w) of the dimensionless current density is
given by

— en(K) denotes the energy differ-

dk o
~ [ s Tlits a0, (0
Bz (2m)
where the current operator j, = %—’Z is employed. The
total current can be decomposed into intra- and inter-
band contributions,

i) = () + (), 0
jmra(r) = /BZ (2d:)2 ann(” +a(7),7) jnn(K),

3(7)

jinter(T) _ /BZ (2(1:32 Z pmn(n—l—a(T),T)jnm(R);
m#n
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FIG. 2. Total frequency-resolved emission intensity I(w) (Eq. (9), shaded blue) compared to intra-band (solid green line)
and inter-band (dashed orange line) contributions for different multi-photon numbers, M, and strong-field parameters, ¢,

defined in Eq. (3).

Here, we drive a massive Dirac model, Eq. (1), by the electric field in Eq. (2) with o = 37/wg. Top row

panels show intensities with different M for ¢ = 3.2, demonstrating coherent suppression (CS) due to the interference term
in Eq. (9) (not shown) for small M and inter-band dominance for large M. Bottom row panels depict results for various
values of ¢ at M = 0.18, indicating appearance of CS for a wide range of (. Markers refer to position in parameter space in
Fig. 1. For a driving frequency of wo/2m = 10 THz, the multi-photon numbers M € {0.18,3.2,7.5} correspond to bandgaps
of A € {7.5meV,130meV,310meV}. At a Fermi velocity of vp = 5.0 x 10° m/s, strong-field parameters ¢ € {0.56,3.2,7.5}
correspond to peak field strengths of E € {0.015MV /cm,0.083 MV /cm,0.19MV /em}.

with jmn(k) = (mk|j.|nk). Correspondingly, this de-
composition carries over to the spectral intensity,

I(w) _ Iintra (w) +Iintcr(w) +Iintcrfcrcnce(w)’ (9)

. . 2
jlntra/mter(w)‘ ,
Iinterference(w) _ Iow2 Re ([jintra(w)]*jinter(w))

— 2\/Iinter(w)lintra(w) cos(¢), (11)

where the phase difference ¢ between inter- and intra-
band currents in frequency space was defined. We note
that this choice of decomposition is not unique; for dif-
ferent options and discussions, see [37, 47, 48]. While
only the total current and intensity are physical observ-
ables, a sensible decomposition allows to interpret the
underlying microscopics and generally depends on the
physical regime. We assume that the basis of the un-
perturbed Hamiltonian, i.e. the system’s band structure
at rest, provides the natural decomposition framework in
our case.

Iintra/inter(

w) = I()u)2 (10)

III. COHERENT SUPPRESSION OF HIGH

HARMONICS

To study the interplay of intra- and inter-band dy-
namics in the HHG signal systematically, we compute
the frequency-resolved total emission, Eq. (6), and its

decomposition, Egs. (9, 10, 11), over an extensive pa-
rameter range[49] spanned by M and (. We start by
discussing results without dephasing, 7 =oc. The total
emission is highest for low frequencies and decays on the
whole with increasing frequency showing the character-
istic HHG peaks [6, 26, 47, 50], see Fig. 1, top panel,
and Fig. 2. Most notably, in spectral regions where
the intra- and inter-band signals contribute equally, es-
pecially at large frequencies (cf. Fig. 1, top panel), we
observe a particularly rapid decline of the total emitted
intensity with frequency. We attribute this suppression
effect to inter- and intra-band contributions cancelling
coherently, leading to small or vanishing total emitted
signal. To quantify the extent to which intra- and inter-
band signals contribute equally, we compute their ratio
R = ([mer/[intra) where (.),, denotes the average over

all frequencies with contributions I'™er/intra ahove the

numerical noise threshold. The lower panel of Fig. 1
demonstrates that R is closest to unity, and hence en-
ables coherent suppression (CS) of the total signal, for
small M or large (. We illustrate the different shapes
of the HHG emission in different parameter regimes and
their decomposition into inter- and intra-band contribu-
tions in the exemplary spectra in Fig. 2. For moderate
and large M, the inter-band contribution dominates the
total HHG emission (see Fig. 2(b,c)).

For small M, inter- and intra-band signals contribute
equally and cancel coherently at larger w, suppressing the
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FIG. 3. Spectral yields from one-dimensional slices through the Brillouin zone (see Eq. 12) for a massive Dirac model with

¢ = 7.5 and M = 0.18 (all parameters as in Fig. 2f ).

(a)-(c) show the decomposition of the total (blue shaded) emission

spectrum into intra-band (solid green line) and inter-band (dashed orange line) for three different locations of the cut, x, = 0.6
(a), ky =0 (b) and k, = —1.7 (c). Panel (d) displays the color-coded and frequency-resolved total emission intensity obtained

from several horizontal, one-dimensional slices of the Brillouin zone integral for different x,.

(e) shows the k,-dependence of

the 5th, 11th, and 17th harmonic. All intensities are normalized to the first harmonic of the x, = 0 slice for easier comparison.

total HHG signal at frequencies greater than a certain
threshold value, often referred to as harmonic cutoff [26,
29, 30, 33, 34]. Such a cutoff is absent in the inter- and
intra-band contributions taken separately, each decaying
smoothly down to the numerical noise level (cf. appendix
B). This plateau depends linearly on ¢ for small M (see
appendix D, which is in line with previous theoretical
studies [10, 36] and the three-step model of HHG [51].

However, the three-step model assumes a low depletion
of the valence band and a dominant inter-band current
[29, 33], which seems to contradict our finding. A detailed
investigation of the spectral emission for different parts
of the Brillouin zone integral, cf. Eq. (7), provides clar-
ity: consider the ry-resolved spectral content obtained
by performing the Brillouin zone integral (Eq. (7)) along
kg for different fixed x,. This results in x,-dependent
spectral yields,

Se(w, “y) = w2|jac(wa “y)|27

2
int intre 2
Slzn er/in 1&1(0‘)7 "iy) = w

~inter/intra(w P )
s Ry )l

x

(12)

of an ensemble of one-dimensional systems, which are
slices in the BZ along the laser field direction. The nota-
tion in Egs. 12 is intended to differentiate these theoreti-
cal quantities from the intensities in Eqs. 9. The spectral

yields are defined in terms of current densities,

Ja (T K’U) = J;ntra(T, ’{y) + jﬂicnter(T’ Hy)’
dk .
dk :
J;ntcr 7_ ’fy / z Z pmn n+a ) 7') jx,nm(fﬁ")

m;ﬁn

with jg.mn = (MK aH |nk). Figure 3a-c show three ex-
ample spectra taken at different wavenumbers &, and a
heatmap of intensies I(w, ) over the full BZ in panel d.
There, the total spectrum stemming from the 1D-line at
ky = 0 (panel b) does not exhibit a plateau-like struc-
ture, but instead features CS already beginning at the
third harmonic (see Fig. 3b,d). With increasing |x,| the
total emission spectra from these 1D slices begin to hold
a plateau which is dominated by the inter-band contri-
bution, as it can be seen from panels (a) and (c). This is
precisely the plateau region visible in Figs. 1 and 2(f).
Physically, this can be explained in the following way:
all k-modes are accelerated exclusively in x-direction,

\/ M2+ (K2
at k, = 0. Consequently, the one-dimensional slices ex-
perience a crossover from the small-gap/CS regime to

recollision- /three step model-behavior with increasing ef-
fective gap. This also explains, why, the low harmonics

such that they encounter an effective gap of



(up to third order) persist in all samples of x, shown
in Fig. 3: for increasing gaps there is a transition to
the regime perturbative in the field strength. The r,-
dependence of the 5th, 11th and 17th harmonic are shown
in Fig. 3e, where the dip at x, = 0 due to CS is also vis-
ible. Furthermore, it illustrates that the yield slightly
‘spreads’ with increasing harmonic, e.g. the 11th har-
monic is more pronounced in slices with |s,| > 1.

The preceding considerations motivate us to restrict
the SBE to one dimension to unravel the mechanism be-
hind CS for small multi-photon numbers M = A/wy.
Setting x, = 0 and performing a unitary rotation of
Eq. (1) yields the effective 1D Hamiltonian,

Hiq(ke) = Chpo./2+ Moy, /2. (13)

To facilitate an expansion of the SBE solution around
M = 0 we employ the diabatic basis, i.e. the eigenstates
of Eq. (13) for M =0. Then the equations of motion re-
main well-defined, whereas the adiabatic Houston basis
is not differentiable at kK = 0 for vanishing M and thus
the dipoles are ill-defined in this limit. In physical terms,
these are decoupled left- and right-movers instead of con-
duction/valence band charge carriers, cf. the dashed and
solid lines in the lower right panel of Fig. 1.

A change of basis of the SBE (4) yields the equations of
motion for pyy (ke 7) = (Eke|p(T)|E£Ke). Tt is sufficient
to consider the dynamics of the coherence p4_ (K, T) and
the imbalance 0(kz,7) = 3 (p44+ — p——). All matrix ele-
ments p+4 then follow from tr p = 1 and the unitarity of
the density matrix.

We expand coherence and imbalance for M < 1,

O(KgyT) ~ i S o M6 (kg 7)),
pi (o) ~ 5= Yo Mo (kay7),  (14)

with e = ec(K)lk=(x.,0)- Solving the equa-
tions of motion yields for the total current den-
sity jz14(7) = [, d;: Tr [aaHHld PKg + ax(T), T):| the ap-
proximation

.(0) dkg ¢
]$71d(7) :—/BZ o ;65(0)(/<;m+a1(7'),7')

= o au(r) + O(M). (15)

See (Fig. 8(b)) for a comparison with corresponding
numerical calculations showing quantitative agreement.
Equation (15) allows a qualitative explanation of CS:
the current jg(;)i 4(7) is a Gaussian multiplied by a co-
sine, see Eq. (2), yielding a power spectrum with only
one peak at wg. Therefore high-frequency components
are absent from the total emission intensity for small M.
Since the current operator j,, is diagonal in the diabatic
basis |tk;), no off-diagonal contribution exists. High
frequencies in the individual inter- and intra-band con-
tributions (see bottom row panels in Fig. 2), which are
orders of magnitude above the total signal, result from

the pronounced peaks of dipoles and current matrix ele-
ments in the complementary adiabatic basis. Altogether
we conclude that primarily a small multi-photon number
M is responsible for CS in the Dirac system.

IV. DEPHASING AND RE-ENTRANT HHG

We now include dephasing by means of the dephasing
time 79 = woTs /27 in the SBE (4). To study its effect on
CS we first consider the relevant one-dimensional model
introduced above. Figure 4(a) shows the emission inten-
sity for different 7 in the parameter regime of CS. We
observe a re-entrance of high harmonics at w > wq for
finite 7. This counterintuitive behavior can be traced
back to the m5-dependence of the relative phase ¢ of the
spectral inter- and intra-band currents (see Eq. (11)). As
shown in Fig. 4(b), for dephasing times far beyond the
laser cycle (72 > 1) the relative phase is ¢(w) =~ 7 as
expected for destructive interference and leading to CS.
However, for a dephasing comparable to the laser cycle,
we find ¢p(w)—7 = 1/wTy = 1/[(w/wo)Te] (cf. Fig. 4(b)).
As a result, the destructive interference is disturbed and
a total HHG signal emerges for higher frequencies.

Intra- and inter-band contributions obey Iinter a Jintra
for w > wg both for short and long dephasing times.
Combining this fact with cos ¢(w>>wp) ~—1+1/2(wT3)?
in Eq. (11) reveals that total emission intensity follows
(wT)~2 '™ (w). This is demonstrated numerically in
Fig. 4(a).

In the following, we examine whether the re-entrance
mechanism governs the full 2D dynamics. Figure 5 shows
the total intensity of HHG emission for different values of
the dephasing time, indicating two opposite trends: the
pronounced HHG plateau originating from the x-modes
with k, # 0 gradually disappears with increasing de-
phasing strength. This behavior is comparable to [52],
where inter-band-dominated harmonics weaken with in-
creasing dephasing[53]. At the same time, higher har-
monics emerge beyond the plateau in Fig. 5, which are
created via the re-entrance mechanism described above.
They are particularly pronounced and survive even for
strong dephasing. The inset in Fig. 5 shows the variation
of the 33rd harmonic with dephasing strength. It clearly
follows the fit oc 1/73 for weak dephasing with 75 > 2.0,
but for shorter 5 we observe deviations. Therefore, the
influence of dephasing goes beyond affecting solely the
relative phase ¢(w) of inter- and intra-band emission. Us-
ing techniques like resonant photo-doping, it is possible
to vary the dephasing strength [52], which could allow a
distinction between inter-band dominated and re-entrant
harmonics or an extraction of dephasing time.

Note that 79 = 0.2 corresponds to 20fs at a driving
frequency of 10 THz, comparable to simulations, e.g., in
[2, 15, 29, 34, 54, 55]. The model used to describe dephas-
ing in the SBE (4) is applicable to a wide range of sys-
tems: it can mimic propagation-induced decoherence in
the bulk [54, 56] as well as various many-body effects such
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FIG. 4. Dephasing-induced HHG — (a) Emission intensity
I(w) (Eq. (9)) and (b) deviation from 7 of relative phase ¢
between inter- and intra-band intensities (Eq. (11)) for dif-
ferent dephasing strengths in the one-dimensional massive
Dirac model, Eq. (13). Colors correspond to scaled dephasing
times 72 — 0o (blue), 72 = 2.0 (orange) and 72 = 0.2 (green).
The total emission (a) coincides with 1™ (w)/[(w/wo)T2]?
(dotted lines) for w > wo.  This follows directly from
¢—m ~ 1/[(w/wo)Tz] (dashed lines in (b)). Parameters used
are ( = 7.5,M = 0.18 and ¢ = 37/wo as in Figs. 2(f),
5 and marked by B in Fig. 1. For a driving frequency of
wo/2m = 10THz, the scaled dephasing times 7 € {0.2,2}
correspond to Th € {20fs, 200 fs}.

as electron-electron or polarization-polarization scatter-

ing [2, 37].

V. COHERENT SUPPRESSION FOR BILAYER
GRAPHENE MODEL

It was hypothesized [37] that a linear dispersion is key
for CS. To investigate this we study a toy model of bilayer
graphene (BLG),

. M,
Hpig(k) = CBQLG [(ﬁi — K)o, — 2 KypkyOy] + %G&z,
(16)

driven by the pulse defined in Eq. (2). The multi-photon
number and strong-field parameter,

Mgprg = Apra/wo,  (erg = B*/mwy, (17)
are expressed in terms of bandgap Aprg and effective
mass m. This model describes massive chiral electrons
with an added momentum-independent gap [57]. Simi-
larly to the massive Dirac Hamiltonian, CS is present for
small multi-photon numbers, even if not as pronounced
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FIG. 5. Effect of dephasing on high harmonic emission inten-
sity I(w) for the driven two-dimensional massive Dirac model
for dephasing times 72 — oo (blue), 72 = 20.0 (purple),72 =
2.0 (orange), and 72 = 0.2 (green) in units of the laser cycle
27 wo. Re-entrance of high harmonics beyond the plateau
is clearly visible, but less pronounced compared to the one-
dimensional model (see Fig. 4). Parameters are ( = 7.5,
M = 0.18, and 0 = 37/wo as in Figs. 2f), 4 and marked
by B in Fig. 1). The inset shows the dependence of the 33rd
harmonic as a function of dephasing time 72, normalized by
the 33rd harmonic for 72 = 10. For a driving frequency of
wo /27 = 10 THz, the scaled dephasing times 72 € {0.2, 2,20}
correspond to 1> € {20fs,200 fs, 2 ps}.

(see Fig. 6): for high frequencies inter- and intra-band
contributions, '™ (w) and I'™"?(w), are orders of mag-
nitude larger than the total emission intensity I(w) (nu-
merically zero). In comparison to the Dirac model this
difference is smaller and inter- and intra-band contribu-
tions decay faster. The qualitative explanation for CS is
analogous to the Dirac model: k-modes around k, = 0
are responsible for large intra- and inter-band current of
same magnitude and opposite phase for large frequencies.
These contributions origin from rapidly changing current
matrix elements around x = 0, which are smoother in
case of the BLG model as compared to the massive Dirac
system. Thus the interference effect is less pronounced
overall.

VI. CONCLUSIONS

We have demonstrated that the high-harmonic emis-
sion signal of driven massive Dirac fermions is strongly
suppressed due to destructive interference of intra- and
inter-band contributions. We could separate the modes
in the BZ responsible for the HHG plateau from those
close to the band gap causing CS. Based on an effective
one-dimensional model the underlying suppression mech-
anism can be straightforwardly understood analytically
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parameters, (BLG, defined in Eq. (3). Here, we drive a toy model of bilayer graphene, Eq. (16), by the electric field in Eq. (2)
with o = 37 /wo. We show different Mgrc for (grLe = 10 in the top row panels and for (grc = 1 in the bottom row panels. The
emission intensity behaves qualitatively similar to the Dirac model (cf. Fig. 2): panels (a), (b), (d) and (e) with Mprc € {0.1,1}
exhibit coherent suppression which is less pronounced. For a driving frequency of wo/27m = 10 THz, the multi-photon numbers
Msgrc € {0.1,1,10} correspond band gaps of Agrg € {4.2meV,42meV,420meV}. Additionally setting the effective mass as

m = 0.032m., the strong-field parameters ¢ € {1, 10} correspond to field strengths of E € {0.054 MV /cm,0.17 MV /cm}.

by invoking diabatic left- and right-movers to describe
the dynamics.

This coherent suppression effect and its sensitivity to
dephasing primarily requires a small gap i.e. a small
multi-photon number M = A/wgy. Generalizing previ-
ous numerical observations [36, 37] we then expect CS
to be apparent in a large number of materials that can
be described by a weakly gapped massive Dirac model,
such as graphene and topological insulator surface states
[15, 18, 36, 58]. Moreover, our extensive numerical sim-
ulations for a BLG model provide further evidence that
the mechanism of CS is qualitatively independent of the
band shape. The latter may however have quantitative
consequences on the high harmonic signals.

While inter-band processes are often considered dom-
inant in HHG from solids and 2D materials [29-31, 33—
35], several studies highlight the relevance of both intra-
and inter-band contributions [1, 2, 15, 36, 37]. Our re-
sults show that CS —by its nature— rules out inter-band
dominance (for small gaps) and indicates that the multi-
photon number M plays a key role in setting the relative
weight of intra- and inter-band contributions.

Counterintuitively, the HHG signal is recovered in the
presence of dephasing. This can be traced back to a fun-
damental power-law behavior of the relative phase be-
tween intra- and inter-band currents in frequency space.
We demonstrated that these re-entrant harmonics behave
opposite to those in the inter-band dominated plateau,
following a characteristic 1/wT5-dependence, which may

be accessed via photodoping experiments.
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Appendix A: Dimensionless Hamiltoninan and SBE

In atomic units, the SBE take the form

. '1_5mn
|:Zat+Z(TZ)

E(t) : Z[er(kvt)DT’n(kt) - Dm?”(kt)grn(kat)] )

T

+ Emn(kt) an(k7 t) = (Al)

where E(t) is the electric field, k; = k — A(t) the kine-
matic wavenumber in terms of the vector potential A(t),
and T the phenomenological dephasing time.

The indices m,r,n label the system’s bands, which re-
main unspecified as the rescaling applies to an arbitrary



number of bands. The dipoles,

D,...(k) = i (mk|Og|nk) ,
and density matrix elements,

omn (K, t) = (mk|p(t)|nk) ,

are defined via the Bloch eigenstates |nk), which
solve  Hp(k)|nk) = E,(k)|nk). Additionally,
Epn(k) = En (k) — E,(k) denotes the band energy
difference. Here H p(k) refers to any Bloch-type
Hamiltonian form in atomic units.

To transform Eq. Al and the Hamiltonian, we intro-
duce characteristic time and length scales, t. and [, with
the scaled wavevector k = kl.. Applying 0, = iaﬂ
Eq. Al retains its form in the scaled variables,

i(l — 6mn)
T2

P@+ (A2)

+ €mn (K"r) pmn(K/a T) =

F(T) : Z[pmr(nv T)drn(""r) - dmr("%—)prn("% T)] ,

T

where we introduced the scaled quantities,

pmn(""«;'r) = an(n/lca"_tc)a T2 = T2/tca
emn(K) = Epn(K/l)/te, kr =k —a(T),
F(r) =t.l.E(tt.), a(rt)=I1.A(rt.). (A3)

Any Hamiltonian H(k) transforms according to

H(k) = H(k/l)/te. (A4)
The Eqgs. A3 and A4 are valid for general ¢, and [, but
throughout this work we use t. = 1/wp and . = wy/FE
Hence, the massive Dirac model,

ﬁ(k) = UF(szm + kyay) + moy, (A5)

transforms to Eq. 1 from the main text.

Appendix B: High-frequency behavior of massive
Dirac HHG

For completeness, we show higher frequencies of the
data from Fig. 2a.e, and f in Fig. 7. This shows the lack
of any sharp cutoff in the inter- and intra-band contri-
butions, which decay smoothly down to the numerical
noise threshold. The extended frequency range in Fig. 7
also reveals that larger strong-field parameters ¢ lead to
slower decay of inter- and intra-band emission, which is
not clearly visible in Fig. 2.

Appendix C: Details of asymptotic expansion

The SBE for the massive Dirac model in the diabatic
basis, i.e., the eigenstates of Hy = (k,0,/2, for 75 — 00

B total: [(w) == interband: I'"*T(w)

= intraband: [P (w)
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FIG. 7. High-frequency HHG of massive Dirac model:
frequency-resolved emission intensity I(w) (Eq. (9), shaded
blue), along with its intra-band (solid green line) and inter-
band (dashed orange line) components, shown for various
multi-photon numbers M and strong-field parameters ¢ de-
fined in Eq. (3). The system is a massive Dirac model [Eq. (1)]
driven by the electric field of Eq. (2) with ¢ = 37/wg. The
same data as in Fig. 2a,e, and f are shown for larger frequen-
cies. Markers indicate the corresponding points in parameter
space shown in Fig. 1.

and k, = 0 are given by
pio(r) = =2iClka — aa(P]ps—(r) +2iM (),
§(r) = =M Imp,_ (7). (c1)
with initial conditions

er,(t — —OO) = _M/zgc("{a:em)a
5(t — 700) = *Cﬁz/25c(’izez)-

(C2)
(C3)

For clarity, the explicit momentum dependence,
pi—(Kz,7) = py—(7) and (K, T) = 6(7), is suppressed.
The expansions in Egs. 13 of the main text share the
same denominator as these initial conditions, incorporat-
ing M non-perturbatively. This ensures exact matching
conditions,

— ifn=0
M (r — — _ ] Ok c4
(r = —o0) {0 otherwise (C4)
(n) -1 ifn=1 C
_ — 5
pr= (7= =) {O otherwise, (C5)



and preserves a well-ordered expansion in M for each k.
The solutions to Egs. C1 and C4,

5(0)(7_) = —(ky, 5(1)(7-) = pEE)_ (1) =0,
P (r) = —ei {1 + 2iC kg / dTlei¢(T/):|(CG)
sty = _/ d7’ Im pgfl (), (C7)
—o0
Pt = 9jeie™) / dr'st (7)) (C8)

for n > 1 can be expressed in terms of the diabatic phase,

o =< [ (ke — an(r))dr". (C9)

Formally, matching at 7 — —oo makes the divergent.
However, in practice this is irrelevant, because one simply
matches at some time 7 — 79 < 0 for which the driving
field is negligible e.g. 79 = 50. Physically, ¢(7) the phase
accumulated by a state traveling along a diabatic branch
(dashed lines in Fig. 1 of the main text), i.e. the phase
of right- and left-movers.

The expansion above correctly reproduces the trivial
exact solution for M = 0 in the one-dimensional massive
Dirac system. Furthermore it reduces to conventional
perturbation theory for x, = 0, whereas for k, # 0 the
non-perturbative nature of the prefactor is important,
which is illustrated by a comparison in the end matter.
Using the current operator j,, = (o,/2 in the diabatic
basis we recover the approximation given in Eq. (14) of
the main text. This approximation is valid up to O(M),
because p4_ does not contribute to j, and (1), vanishes,
leaving only 6(9).

Here we numerically demonstrate the validity of the
asymptotic expansion, Eq. (14) in Fig. 8. There, we show
a comparison of single-mode currents,

(n) _ N )
]z,mI(T) 807;)M 6 (HII?7T)7 (C]'O)

and their integral over the BZ (see Eq. (15)) for different
orders in M.

Physically, due to the small gap M, valence electrons
tunnel with probability close to one, hence are approxi-
mated well by decoupled left- and right movers (diabats,
see Fig. 1 bottom right). The single mode at the Dirac
point (Fig. 8a) requires second order to be sensibly ap-
proximated, whereas for x, = 0.5 (Fig. 8b) the leading
order is sufficient. The reason is that the latter mode is
further away from the gap and thus is only weakly af-
fected by it. Upon integration, the oscillations captured
by the second order play little role, which is demonstrated
in Fig. 8b: the current density is approximated very well
already at leading order, only the HHG spectrum reveals
small higher order contributions (see Fig. 4b).

0.1
cﬁ (a) = Jz,ke T Jz,1d
8 - S (0 (0
< 00 for e = 30,
A —. ;2@
—0.1 1 Jz, ke
2 374 4(b)
,
i»
.8
&
—3.75 T
-5 0
Time 7/27 Time 7/27

FIG. 8. Comparison of asymptotic expansion (dashed lines)
from Eq. (14) to numerics (solid lines) for the massive Dirac
model with ¢ = 7.5, M = 0.18 and 0 = 37/wy. Time-resolved
currents jg ., for the mode kK, = 0 and k; = 0.5 shown in
panels (a) and (b), respectively, and current density jg 14 for
the 1D system in (c). Superscripts indicate the order in M
consistent with Egs. (14) and (C10). First order is omitted,
because it coincides with the leading order.

Appendix D: Large Strong-field parameters

With experiments having access to field-strengths of
several to several tens of MV/em [15, 17], strong-field
parameters of well beyond ¢ = 10 are possible. This mo-
tivates an investigation of coherent suppression in that
regime. Fig. 9 shows HHG emission spectra for the mas-
sive Dirac model with ¢ € [20, 30, 40,50], M = 0.18. Co-
herent suppression is present in all four examples, how-
ever, we observe a shifting plateau of the total emission
which is linear in (.
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FIG. 9. Decomposition of frequency-resolved emission intensity I(w) (blue shaded) into intra-band (solid green line) and inter-
band (dashed orange line) according to Eq. 8 in the main text for different values of the strong-field parameter ¢. Multiphoton
number M = 0.18 and driving field of Eq. 2 in the main text with o = 37/wq is used everywhere. (a) ¢ = 20. (b) ¢ = 30. (c)
¢ =40. (d) ¢ =50. For a driving frequency of wo/2m = 10 THz, the multi-photon numbers M = 0.18 corresponds to bandgaps
of A = 7.5meV. Additionally setting v = 5.0 x 10° m/s, strong-field parameters ¢ € {20, 30,40} correspond to peak field
strengths of E € {0.52MV/cm,0.78 MV /cm, 1.0 MV /cm}.
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