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In commensurate twisted homobilayers, purely radial Rashba spin-orbit fields can emerge. We employ
first-principles calculations to investigate the band structures and the spin-orbit fields close to the high-symmetry
points K and � of several commensurate twisted transition-metal dichalcogenide homobilayers: WSe2, NbSe2,
and WTe2. The observed in-plane spin textures are mostly radial, and the main features are successfully
reproduced using a model Hamiltonian based on two effective-mass models, including spin-orbit coupling, and
a general (spin-conserving) interlayer coupling. Extracting the model Hamiltonian parameters through fitting of
several twisted supercells, we find a twist angle dependency of the magnitude of the radial Rashba field, which is
symmetric not only around the untwisted cases (� = 0◦ and � = 60◦), but also around � = 30◦. Furthermore,
we observe that the interlayer coupling between the K (or K′) points of the two layers decreases with the increase
of the size of the commensurate supercells. Hence, peaks of high interlayer coupling can occur only for twist
angles, where small commensurate supercells are possible. Exploring different lateral displacements between
the layers, we confirm that the relevant symmetry protecting the radial Rashba is an in-plane 180◦ rotation
axis. We additionally investigate the effects of atomic relaxation and modulation of the interlayer distance. Our
calculations on WTe2 bilayers show that their lack of C3 symmetry results in spin textures that are neither radial
nor tangential. Our results offer fundamental microscopic insights that are particularly relevant to engineering
spin-charge conversion schemes based on twisted layered materials.

DOI: 10.1103/jyfh-q2r7

I. INTRODUCTION

Transition-metal dichalcogenides (TMDCs) are a class of
layered van der Waals materials that have a variety of ap-
plications including valleytronics [1–4], straintronics [5–7],
optoelectronics [8,9], and spintronics [10,11]. Especially their
two-dimensional (2D) forms as mono- or bilayers exhibit
interesting, versatile physics. They often come in a 2H config-
uration with a hexagonal unit cell, featuring parabolic bands
both at the � and K points. For the monolayer, the bands at K
are usually split by a strong spin-orbit coupling (SOC) of the
valley-Zeeman type with strong out-of-plane polarized spins.
Nevertheless, when the horizontal mirror symmetry is broken,
Rashba SOC [12] can also arise in these bands, introducing
an in-plane spin texture. This breaking of symmetry can occur
both externally (through an interface or an external electric
field) or internally (through a lateral shift between the layers
or a twisting of the layers). The in-plane spin texture induced
by the Rashba SOC can be used for spin manipulation and
relaxation in spintronics [10,11]. One major application uti-
lizing the Rashba SOC is charge-to-spin conversion through
the Rashba Edelstein effect [13].

The breaking of vertical mirror symmetry that naturally
occurs in twisted multilayer systems can introduce a radial
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component to the (usually purely tangential) in-plane Rashba
spin texture. Such “radial Rashba” spin-orbit fields are in-
teresting to the field of spintronics because they can enable
unconventional charge-to-spin conversion [14–18]. Further-
more, it can be used in Josephson junctions in combination
with an external magnetic field to enable the radial super-
conducting diode effect [19–22]. The first density functional
theory (DFT) calculations observing such radial Rashba were
performed on graphene-based heterostructures [23–27] and
usually find only rather small deviations from the tangen-
tial pattern. Further investigations of commensurate twisted
graphene homobilayers and proximitized graphene structures
[28], however, revealed a purely radial Rashba spin-orbit field
[17,28–34], which arises due to the coupling between the
“hidden Rashba” spin-orbit fields of the two layers.

In this paper, we systematically explore the emergence of
the radial Rashba SOC in twisted TMDC homobilayers. We
perform first principles calculations for several homobilayer
supercells, exploring different materials (WSe2, NbSe2, and
WTe2), shifting configurations, twist angles, and interlayer
distances. Since the commonly used models of twisted TMDC
homobilayers [35] are designed for small twist angles, here we
employ an effective model Hamiltonian, similar to Ref. [28],
but replacing graphene with (an effective-mass model of)
TMDC. This model is designed to work for generic twist
angles as long as the underlying supercell is commensurate,
which is naturally satisfied in first-principles calculations due
to periodic boundary conditions. We extract the spin-orbit
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fields around both K and � and draw conclusions about the
twist-angle dependencies of the parameters. Additionally, we
establish that an in-plane 180◦ rotation symmetry is crucial
for the emergence of the purely radial Rashba.

The paper is structured in the following way: Sections II–
IV discuss hexagonal homobilayer structures (WSe2 and
NbSe2). In Sec. II, we explore the different possible com-
mensurate DFT supercells and the three different types of
band backfoldings that can occur. Section III introduces the
model Hamiltonian we use for describing these cases. A
more detailed look at the spin-orbit fields derived from DFT,
as well as the parameters extracted from the model Hamil-
tonian fits, can be found in Sec. IV. Finally, Sec. V is
dedicated to a discussion of WTe2, which—due to its rectan-
gular supercell and lack of C3 symmetry—cannot be properly
described by our model Hamiltonian. In Appendix A, we
discuss how the interlayer coupling can be described as a
continuous function of the twist angle. Appendix B presents a
study on the effects of varying interlayer distance. Computa-
tional details of the DFT calculations and fitting are given in
Appendix C.

II. GLOBAL BAND STRUCTURES AND BACKFOLDING

To calculate the properties of twisted structures using DFT,
we need to construct commensurate supercells that satisfy
in-plane periodic boundary conditions. For homobilayers of
materials with hexagonal unit cells (WSe2 and NbSe2), there
are twist angles where this can easily be done without the
introduction of strain for moderate supercell sizes [36]. A
comprehensive scatter plot showing feasible supercells and
some specific structures used throughout the paper is shown in
Fig. 1. For each supercell, there is a partner supercell, which
can be obtained by twisting one of the layers by 60◦. The
two partner angles with the smallest corresponding supercells
are 21.8◦ and −38.2◦. Supercells with negative twist angles
can easily be related to their counterparts (i.e., −38.2◦ to
38.2◦). They exhibit Rashba fields with the same magnitude
but opposite sign because they are related by an in-plane mir-
ror symmetry (z → −z). Additionally, their K and K′ points
are swapped. If not mentioned otherwise, we twist the layers
around a common twisting axis going through the "hollow"
position (i.e., in the middle of the hexagon formed by the
metal and chalcogen atoms) of both layers. We define the
supercell size of a certain supercell as s = as/a, where as is
the lattice constant of the supercell and a is the lattice constant
of the primitive monolayer unit cell.The band structures and
spin textures are calculated using DFT with the computational
details given in Appendix C. In Figs. 2 and 3(b), we present
the band structures along high-symmetry lines and spin tex-
tures around K and � of the ±38.2◦ twisted WSe2/WSe2 and
NbSe2/NbSe2 band structures, respectively. For the case of
NbSe2, we additionally show the band structures of the un-
twisted structure in Fig. 3(a) and further twisted structures in
Figs. 3(c) and 3(d). At the � point, the bands of the two layers
are strongly hybridized, as also observed, e.g., in Ref. [37]
for MoSe2 homobilayer systems. Naturally, there is no valley-
Zeeman splitting to be observed at �. The bands show no
out-of-plane spins; the splitting between them is rather caused

(a) 21.8° (b) -32.2°

(d) 13.2°(c) -38.2° 

(e)

[deg]

FIG. 1. (a)–(d) Top view of exemplary investigated commensu-
rate supercells. In panel (e), possible twisted commensurate bilayer
supercell sizes Nat (number of atoms) are indicated for different
twist angles �. For each supercell data point, we color-code where
the K (or K′) points of the layers fold back to: For red downward-
pointing triangles, the K points of both layers fold back to the same
point in the supercell’s FBZ (K ↔ K). For blue upward-pointing
triangles, K of layer 1 and K′ of layer 2 fold on top of each other,
and vice versa (K ↔ K′). For green dots, all K and K′ points of both
layers fold to �. The last cases are not discussed in this paper and are
only listed for completeness.

WSe2/WSe2 38.2° CB1/2 CB3/4

VB1/2VBG3/4 VB3/4

FIG. 2. Band structure along high-symmetry points and in-plane
spin textures around K and � of the 38.2◦ twisted WSe2 homobilayer,
which shows a K ↔ K backfolding. Out-of-plane spin is color-coded
from blue (spin down) to gray to red (spin up).

045417-2



RADIAL RASHBA SPIN-ORBIT FIELDS IN … PHYSICAL REVIEW B 113, 045417 (2026)

(c) NbSe2 27.8° (d) NbSe2 -46.8°

(b) NbSe2/NbSe2 -38.2°(a) NbSe2/NbSe2 0°

VBG1/2

VB3/4

VB1/2

FIG. 3. Band structures along high-symmetry points of exemplary NbSe2 homobilayers, all of which exhibit a K ↔ K backfolding. Panel
(a) shows the untwisted case with a lateral shifting position, in which a metal atom of one layer resides on top of a chalcogen atom of the other
layer. The split bands are layer polarized due to the breaking of the in-plane mirror symmetry. In panel (b), we additionally show the in-plane
spin textures around K and � for the −38.2◦ case. Panels (c) and (d) show the band structures of 27.8◦ and −46.8◦ cases. Out-of-plane spin is
color-coded from blue (spin down) to gray to red (spin up).

by the interaction between the layers. This is illustrated by the
fact that the splitting scales with the interlayer distance.

The key to understanding the bands at the K point of
the supercell’s first Brillouin zone (FBZ) is the backfolding
of the bands of the two layers. For the commensurate struc-
tures we investigate, there are three options [38], which
we color code for all possible commensurable supercells in
Fig. 1(d):

(1) K ↔ K (red downward triangles). The K point of layer
1 folds on top of the K point of layer 2 (and the same for
K′). In this case, the spin-up (and spin-down) bands of both
layers are always at the same energy. Hence, their out-of-plane
spin-polarization is kept intact.

(2) K ↔ K′ (blue upward triangles). The K point of layer
1 folds on top of the K′ point of layer 2 and vice versa. In this
case, the spin-up band of layer 1 and the spin-down band of
layer 2 can easily interact, which can lead to a suppression of
the out-of-plane spins.

(3) � ↔ � (green dots). The K and K′ points of both lay-
ers fold to the � point. Although this option is technically
possible, it is always a “supercell of a supercell,” i.e., there
is always a smaller supercell (which can be categorized in one
of the former categories) at the same twist angle, representing
the same physics. In this case, the bands would fold on top
of each other, but only those already connected in the smaller
supercell could interact.

In this paper, we are only considering supercells of the first
two cases. As the used supercells are furthermore the small-
est possible supercells at the specific angle, we can be sure
that the backfolded bands are also coupled to each other via

generalized Umklapp processes [38,39]. For the bands stem-
ming from the � point, we do not need such an argumentation
because they are always directly coupled. Two partner angles
will always exhibit opposing backfolding cases, e.g., 21.8◦
has K ↔ K′, while −38.2◦ has K ↔ K backfolding.

III. MODEL HAMILTONIAN

In all commensurate supercells we employ, we find nearly
parabolic bands (from K or �) of the individual layers’ FBZs
folding back on top of each other and interacting with each
other. To describe these interacting parabolic bands we em-
ploy a model Hamiltonian. It consists of two effective-mass
models for the two layers (including SOC terms), which are
interacting by a general (spin-conserving) interlayer coupling.
This might be viewed as an SOC-including version of the
moiré Hamiltonians used in Refs. [35,40–42], just without the
Moire potential. However, these models additionally describe
a shift in k space between the layers’ bands, which comes
from a small twist between the layers. Our model Hamilto-
nian, on the other hand, aims to describe the case where the
two layers’ bands are lying directly on top of each other, as
happens in all commensurate supercells. This is the same as
the Hamiltonian in Ref. [28] does for graphene Dirac cones.
Although in principle our model can also describe cases of
commensurate supercells with small twist angles, in these
cases, the supercells will be large, and hence the interaction
between the directly overlapping bands will be small (see
Appendix A). Rather, the physics of these small-angle cases

045417-3



NAIMER, FARIA JUNIOR, ZOLLNER, AND FABIAN PHYSICAL REVIEW B 113, 045417 (2026)

will be dominated by the interaction between the slightly
mismatched K points (mini Brillouin zone).

The model Hamiltonian consists of an orbital part and two
SOC terms:

H (k) = Horb(k) ⊗ s0 + HV Z + HR(k). (1)

Here, ⊗ is the Kronecker product and s0 is the zeroth Pauli
matrix (identity matrix) for the spin degree of freedom, as the
orbital part does not include SOC; k is measured either from
K or from �, depending on which bands are to be described.
The orbital part of the Hamiltonian

Horb(k) =
(

h̄2(k)2

2meff
w

w h̄2(k)2

2meff

)
(2)

includes the parabolic bands (with effective mass meff < 0 for
valence or meff > 0 for conduction bands) of the two layers
in the diagonals. The interlayer coupling is parametrized by
w taken to be real (we checked that adding a phase does not
change any relevant physics).

When adding SOC, two SOC terms need to be considered:
the Rashba and valley-Zeeman type SOC. The latter one is
given as

HV Z = HV Z,K↔K = λV Zσ0 ⊗ sz = λV Z ⊗
(

sz 0
0 sz

)
, (3)

or

HV Z = HV Z,K↔K′ = λV Zσz ⊗ sz = λV Z ⊗
(

sz 0
0 −sz

)
, (4)

depending on the backfolding case. Here, the Pauli matrices
si describe the spin degree of freedom, while σi describe the
layer degree of freedom. Equation (3) corresponds to the case
K ↔ K, where the valley-Zeeman splittings of the two layers
have the same sign. Equation (4) corresponds to the case
K ↔ K′, where the valley-Zeeman splittings of the two layers
have the opposite sign.

For a single layer, the Rashba SOC can be described with
the typical semiconductor Rashba Hamiltonian [43]. To de-
scribe the effect of the hidden Rashba of the twisted layers, we
need to implement a twisted spin texture. To this end, the spin
texture of each layer is twisted by � in opposite directions,
where � is the Rashba angle, similar to the Rashba angle of
graphene/TMDC heterostructures [17,23,44]:

HR,mono(k,�)=exp

(
i�sz

2

)
[λR(sykx − sxky)] exp

(
− i�sz

2

)
.

(5)

A Rashba angle of zero (� = 0) corresponds to the case
of conventional Rashba (with spins tangential to the mo-
mentum), while � = ±90◦ corresponds to an unconventional
Rashba with purely radial in-plane spins. The total Rashba
SOC of the system is then described by two monolayer Hamil-
tonians with opposite signs and opposite �:

HR(k,�) =
(

HR,mono(k,�) 0
0 −HR,mono(k,−�)

)
. (6)

Note that in Ref. [28] it is assumed that � can be ex-
pressed via the twist angle as � = �/2. Such an assumption
is reasonable if the focus is on the qualitative emergence of

a radial spin texture and not on a quantitative evaluation of
the magnitude of the radial Rashba. There are symmetry rules
for the mapping between the twist angle � and the Rashba
angle �, which are similar to those valid for graphene/TMDC
heterostructures:

�(� + 120◦) = �(�), (7)

�(−�) = −�(�). (8)

As a consequence �(� = 0◦) = �(� = 60◦) = 0 + nπ for
n ∈ Z.

Let us now briefly discuss which spin textures this model
Hamiltonian displays for different ranges of parameters.
Within the model, a system with twisted (� �= 0,� �= 0),
interacting (w �= 0) layers, which can provide Rashba SOC
(λR �= 0), the resulting spin texture is always radial, as the
tangential parts of the spin textures of the two layers cancel
out. This is the same principle as for twisted bilayer graphene
structures [28]. The magnitude and sign of this emerging
radial in-plane spin texture, the splittings of the bands, as well
as the spin-z and layer hybridization, are, however, dependent
on the specific case and parameter range. The typical cases we
find are the following:

(1) K ↔ K backfolding with dominant valley-Zeeman
SOC λV Z 	 λR: states of the two layers with the same spin-z
fold on top of each other, keeping the strong spin-z polar-
ization (caused by the strong λV Z ) and the layer polarization
intact. The two adjacent bands with the same spin form a band
pair, which is split by a uniform splitting of 2w. Within this
band pair, the sign of the radial Rashba (whether it is pointing
inward or outward) is always uniform. The magnitude of the
radial in-plane structure [i.e., the in-plane spin expectation
value (〈sx〉2 + 〈sy〉2)1/2] scales with λRk

2λV Z
sin(�).

(2) K ↔ K′ backfolding with dominant valley-Zeeman
SOC λV Z 	 λR: states of the two layers with opposite spin-z
fold on top of each other. Hence, the spin-z and layer polar-
ization are mostly lifted. The splitting within the band pairs
is 2 λRk

λV Z
w sin(�). Regarding the sign of the radial Rashba, two

subregimes arise. For small interlayer couplings (w � λRk) or
large k radii, the two adjacent bands are aligned. With rising
w, one of the bands of each band pair exhibits linearly de-
creasing magnitude of the radial spin texture until it switches
sign at w = sin(�)λRk. After this point (w 	 λRk), the two
adjacent bands exhibit opposite signs of their radial Rashba.
The magnitude of the radial in-plane structure scales with

w
2λV Z

± λRk sin(�)
2λV Z

.
(3) Dominant interlayer coupling w > λRk and absent

valley-Zeeman SOC λV Z (describing the bands at �): Here,
the two band pairs are separated by the interlayer coupling
w rather than the valley-Zeeman SOC. The splitting within
each band pair is 2λRk sin(�). The radial Rashbas of the two
adjacent bands of one band pair always show opposite signs.

We illustrate the three cases in Fig. 4.

IV. SPIN-ORBIT FIELDS FROM FIRST PRINCIPLES

Let us now examine the spin-orbit fields close to the
relevant high-symmetry points. We show these spin-orbit
fields for different supercells (� = 21.8◦, � = −38.2◦, � =
−32.2◦, � = 27.8◦, � = −46.8◦, and � = 13.2◦), different
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FIG. 4. Schematic depiction of the bands of the twisted model
Hamiltonian for different cases: backfolding of both K points of the
layers on top of each other (K ↔ K), backfolding of the K point of
layer 1 on top of K′ of layer 2 (K ↔ K′), and when describing the �

bands. In the latter case, the backfolding is irrelevant. We depict for
all cases the parabolic (valence) bands and their color-coded spin-z
expectation values with analytical expressions of the splittings (with
assumption λV Z 	 w for the first two cases and λV Z � w for the
third case). Finally, we also depict the in-plane spin textures of the
four bands ordered by energy.

lateral shifts, different materials (WSe2 and NbSe2), different
bands (valence and conduction bands), and around different
high-symmetry points (K and �) in Fig. 5. In most of the
cases, the observed spin textures match well with the predic-
tions by the model Hamiltonian. Especially the alignment of
the spins when moving from small k radii (w 	 λRk) to large
ones (w � λRk) in the K ↔ K′ case can be observed in the
DFT data [see Fig. 5(b)]. It is apparent that, when going to
larger k radii, the spin texture is no longer perfectly isotropic,
as assumed in the model. Rather, the spin texture here is often
defined by the nodal lines arising from the combination of the
180◦ rotational symmetry and the C3 symmetry. However, also
for small k radii there are cases where the model Hamiltonian
fails to describe the spin textures properly. This, for example,
is the case for the conduction bands of ±38.2◦ twisted WSe2

bilayers. Here, the smaller value of λV Z in combination with
a perturbation from nearby bands might be responsible for the
deviation from the model. Generally, we also observe in DFT
the splittings within the band pairs predicted by the model
Hamiltonian (especially their dependence on the backfolding
scenario, see Fig. 4). Only the magnitude of the splittings for
the K ↔ K′ case is larger in DFT than the one predicted by
the model (see Fig. 10 in Appendix C).

For WSe2, we performed calculations on multiple shifting
configurations, while for NbSe2 we utilized supercells with
multiple different twist angles. Hence, we split the discussion
into two parts:

(1) Discussion of the shifting degree of freedom and rele-
vant symmetries using WSe2 [Fig. 5(a)].

(2) Discussion of the twist-angle dependency of the ex-
tracted parameters using NbSe2 [Figs. 5(b) and 6].

Nevertheless, the arguments are general and not restricted
to the particular TMDC.

A. Relevance of the in-plane 180◦ rotational symmetry

One degree of freedom that has so far not been discussed
is the lateral shifting between the two layers. This is equiva-
lent to considering different axes around which the twisting
occurs. Examining twisted supercells with different lateral
shiftings [Fig. 5(a)], we consistently find that the purely radial
Rashba spin textures can only be maintained in systems with
an intact in-plane 180◦-rotation axis. This can be understood
in the following way: The 180◦-rotation operation can be
considered as a combination of a vertical mirror operation
and a horizontal mirror operation. The former one is the
same as preludes radial Rashba components in untwisted or
30◦ twisted graphene/TMDC heterostructures [23,26,45]. The
latter one switches the sign of the in-plane spin components.
Therefore, the combination of both is forbidding the emer-
gence of a tangential (conventional) in-plane spin texture. If
the 180◦-rotation symmetry is broken, both tangential and ra-
dial components are allowed. In the investigated materials, we
find that this leads to mostly tangential spin textures at K and
mostly radial spin textures at �. The relevance of symmetries
for the emergence of radial Rashba fields has been discussed
in Refs. [33,46] and this symmetry in particular in Ref. [34].

One question that arises is the following: How can the
occurrence of nonradial spin-orbit fields be described by our
model Hamiltonian? This can be done by adding a layer-
dependent potential Hpot = uσzs0. As we do not assume any
external breaking of the symmetry (i.e., by an electric field),
the source of it is the moiré potential induced by the twist
[35]. However, this Moire potential is explicitly independent
of the lateral shifting and also averages to zero. In supercells
with 180◦-rotation symmetry, the averaged spin textures we
can observe with DFT therefore show no sign of this moiré
potential and can hence be described with a model Hamilto-
nian without the additional Hpot. For supercells without this
crucial symmetry, the asymmetry in the wave functions causes
the moiré potential to not average out and result in a nonzero
average effective potential difference.

B. Twist-angle dependency of the extracted parameters

For the NbSe2 bilayers, we calculated a total of six
different twist angles, in pairs of two, which are always part-
ner angles. From their spin-orbit fields [see Fig. 5(b)], we
extract parameters using the model Hamiltonian from Eq. (1).
The results are listed in Table I and shown in Fig. 6. The rel-
evant parameters to extract are the interlayer coupling w, the
Rashba phase angle �, and the magnitude of the total (hidden)
Rashba λR. However, � and λR cannot easily be extracted
separately from each other but only together in the form of
λR sin(�). Henceforth, we call this the magnitude of the radial
Rashba, which is not to be confused with the magnitude of
the in-plane spin texture, although the two mostly overlap.
Moreover, we cannot reliably extract the sign of λR sin(�),
due to deviations of the DFT data from the model predictions.
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FIG. 5. DFT extracted spin-orbit fields around K and � for (a) twisted WSe2 and (b) twisted NbSe2 homobilayers. In panel (a), the maximal
range of the rings is at a k radius of 0.3×10−3 2π

as
, where as is the supercell lattice constant. In panel (b), one additional ring (with a k radius

of 0.1 2π

as
) extends this range significantly. At each k point, two arrows are plotted for two adjacent bands, i.e., VB1 and VB2. Direction (not

magnitude) of the in-plane spin textures is represented by the arrows. The out-of-plane spins are color-coded from red to gray to blue. In panel
(a), we additionally show a top view of the supercell (with the 180◦ rotation axis, if present) for each different lateral shifting. Twist angles,
backfolding scenarios, and lateral shifts are defining the columns. The rows are defined by the band pairs (sorted by energy) and the relevant
close k point (K or �). VB1 and VB2 are omitted in panel (a) due to problems with determining spin expectation values unambiguously, due
to a near-degeneracy of the bands.

045417-6



RADIAL RASHBA SPIN-ORBIT FIELDS IN … PHYSICAL REVIEW B 113, 045417 (2026)

FIG. 6. Model Hamiltonian parameters extracted from the K and
� bands from the DFT calculations on twisted NbSe2 bilayers.
(a) Radial Rashba magnitude |λ sin(�)| for K bands (red) and �

bands (blue) as a function of the twist angle �. The lines are merely a
guide to the eyes. The values of the � bands are enhanced by a factor
of 10 for better visibility. (b) Interlayer coupling w as a function of
supercell size (or Nat of the supercell). The black line shows a fit,
which is described in more detail in Appendix A. Only interlayer
interactions drawn from the K bands are shown, as those from the
� bands have a fixed value of w = 210 meV (for a fixed interlayer
distance). (c) Twist angle dependency of w in the K bands with the
two backfolding scenarios color-coded in blue (K ↔ K′) and red
(K ↔ K). The inset shows a enlargement to show another small peak
at � ≈ 18◦. The big peaks of interaction around the untwisted cases
� = 0◦ and � = ±60◦ are omitted in order to focus on the twisted
cases.

To be more precise, the model would predict the same order-
ing of the in-plane spins for band pairs VB1, VB2 and VB3,

TABLE I. Model Hamiltonian parameters extracted from the K
and � bands from the DFT calculations on twisted NbSe2 bilay-
ers. We list the twist angle �, backfolding case (relevant for K
bands), interlayer coupling w, and the magnitude of the radial Rashba
|λR sin(�)|.

NbSe2/NbSe2 Bands K bands � bands

w |λR sin(�)| w |λR sin(�)|
�[◦] Case [meV] [meV Å] [meV] [meV Å]

0 K ↔ K 27.457 0.000 243.250 0.000
21.8 K ↔ K′ 0.532 0.600 209.972 0.036

−38.2 K ↔ K 0.551 0.648 210.038 0.035
−32.2 K ↔ K′ 0.011 0.177 210.148 0.033

27.8 K ↔ K 0.022 0.146 210.086 0.039
−46.8 K ↔ K 0.007 1.103 210.102 0.043

13.2 K ↔ K′ 0.006 1.033 210.119 0.042

VB4 for the case K ↔ K′, w > sin(�)λRk (see Fig. 4, second
column), i.e., the lower-energy band (VB2 and VB4) should
show the same direction of in-plane spin. However, in our
DFT calculations, this is not the case. The reason for this is
likely the fact that the splittings are very small and prone to
influence by nearby bands. Conversely, the data for large k
radii [w < sin(�)λRk] agrees with the model for most cases
and would hence allow an extraction of the sign. However, for
the � = −32.2◦ case, these data are also very noisy and do
not represent a clear radial structure. Furthermore, for larger
k radii the model is naturally less applicable. Therefore, we
refer simply to |λR sin(�)|.

In Fig. 6(a), we show the twist-angle dependence of the
radial Rashba magnitude |λR sin(�)|. At � = 0◦ and � = 60◦
(untwisted cases), the radial Rashba vanishes by symmetry.
Within the range 0◦ < � < 60◦ it should show a unique be-
havior that can be expanded to the whole range of 360◦ using
the symmetry relations in Eqs. (7) and (8). However, there ap-
pears to be an additional approximate symmetry around � =
30◦, connecting the partner angles, i.e., ±21.8◦ and ±38.2◦.
If one were to use the large k radii in order to determine
the sign of λR sin(�), this would show an odd behavior of
λR sin(�) with respect to this symmetry axis. The � bands
show a significantly smaller magnitude of the radial Rashba.

Now, let us discuss the interlayer coupling w as extracted
from the model Hamiltonian fit. The extracted w for the �

bands all have nearly the same value of w ≈ 210 meV. The w

extracted from the K bands can be found in Fig. 6(b). Here, we
plot w not against the twist angle �, but rather against the size
of the used supercell and find that with increasing size of the
supercell, the interaction between the K bands decays expo-
nentially. The explanation for this consists of two steps: First,
the condition for finding a small supercell in real space for a
certain twist angle is the same as the condition for finding a
point close to � in extended k space, where K (or K′) of layer
1 and K (or K′) of layer 2 overlap. Second, the closer this
overlapping point is to �, the stronger the interlayer coupling
between these two points [39]. The latter can also be seen as
the reason why the w extracted from the � bands is always a
fixed large value (irrespective of the twist angle or supercell
size), because here the interaction always occurs directly at
�. We stress that this is not a dependence on the system size
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per se; rather it is a dependence on the size of the smallest
commensurate supercell that can be built at a certain twist
angle. Hence, considering a continuous change of the twist
angle, the interlayer coupling w will peak at certain angles,
where small commensurate supercells (like those we use in
DFT) are possible, as shown in Fig. 6(c). This argumentation
is laid out in more detail in Appendix A.

V. WTe2

In addition to WSe2 and NbSe2, we investigate the prop-
erties of bilayers of 1T’-WTe2 [47–49]. This case requires a
separate discussion because it is different from the previously
discussed ones in two major ways: First, its monolayer’s unit
cell is not hexagonal, but orthorhombic. This complicates
the formation of a commensurate twisted supercell, which
requires some uniaxial strain. Contrary to its hexagonal coun-
terparts, it does not have a K point with parabolic bands.
Instead, its main features close to the Fermi level and hence
relevant for our discussion are the states directly around �

and the Fermi pockets located further along the kx direction
[see Fig. 7(a)]. Furthermore, WTe2 is generally less symmet-
ric than the other discussed TMDCs, especially lacking the
typical C3 symmetry.

As the monolayer of 1T’-WTe2 is inversion-symmetric
[47], we instead use the 1Td phase to illustrate the monolayer
properties [see Figs. 7(a)–7(c)]. Monolayer 1Td−WTe2 has a
vertical mirror plane and will hence not support a radial in-
plane spin texture. Our calculations show that its spin texture
close to the Fermi level is roughly tangential around � and
approximately uniform in the nearby pockets [see Fig. 7(c)].

Moving along to the twisted bilayer, we used one super-
cell with a twist angle of � = 31.14◦ and a small strain of
ε < 0.1% [see Fig. 7(d)]. Our DFT calculations find multi-
ple bands close to the Fermi level at � [Fig. 7(e)]. When
analyzing the spin-orbit fields of these bands, they are all
symmetrical around the k1 axis, which is defined by the twist
angle between the layers [dotted lines in Fig. 7(f)]. This is the
consequence of the in-plane 180◦ rotation symmetry. As for
the in-plane spin textures, a variety of different forms emerge.
Some are approximately uniform, others are a mixture of uni-
form and radial spin textures, and some are a Dresselhaus-like
(radial tangential) form. The emergence of a radial tangential
spin texture due to a lack of C3 symmetry has been predicted
in Ref. [34]. An analytical description of the spin textures is
beyond the simple model that we used for 2H structures.

VI. SUMMARY

We performed first principles calculations on different
twisted TMDC homobilayers, covering different materials
(NbSe2, WSe2, and WTe2), twist angles, lateral shifts, and
interlayer distances. Our calculations reveal that purely ra-
dial in-plane spin textures appear both around the K and �

bands. They can be explained using a model Hamiltonian
designed to describe commensurate supercells at large twist
angles. We find the twist-angle dependency of the relevant
model parameters, interlayer coupling w, and radial Rashba
magnitude |λR sin(�)| by fitting the model to the DFT data for
different twist angles. Furthermore, we identify an in-plane

180◦ rotation symmetry as the crucial symmetry for upholding
the purely radial spin textures. The investigations on non C3-
symmetric 1T’ WTe2 bilayers reveal novel spin-orbit fields,
which are characterized by a vertical mirror symmetry, which
is the sole symmetry of the system.
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APPENDIX A: RELATION TO CONTINUOUS
TWIST ANGLE

In our DFT calculations, we are restricted to using com-
mensurate homobilayer supercells. The construction of such
commensurate supercells is only possible for discrete values
of the twist angle � [see Fig. 1(e)]. We have demonstrated
that the results of these calculations (in particular the radial
in-plane spin textures) can be fairly described by the model
Hamiltonian we introduce in Sec. III. Hence, the question
arises of whether a radial Rashba spin texture will also arise
when we vary the twist angle continuously instead of choosing
certain special discrete twist angles. In principle, for every
twist angle (except � = 30◦), one can find a commensu-
rate supercell representing the twisted homobilayer. However,
these supercells can be very large and hence might not fulfill
the necessary conditions for the occurrence of radial Rashba.
The two necessary ingredients for the radial Rashba are a fi-
nite radial Rashba magnitude λR sin(�) and a finite interlayer
coupling w between the parabolic bands. While the former
one seems to be ubiquitous for all twisted structures, the latter
one might not be present throughout a continuous twist angle
range. For the � bands, we find a stable w ≈ 210 meV, more
than enough to sustain a radial Rashba, throughout all twist
angles. Hence, radial Rashba spin textures are expected to
arise near � for all nonzero twist angles. For the K bands,
however, we observed a decaying trend of w with supercell
size. Let us analyze this unintuitive relation. The argumenta-
tion consists of two parts:

(1) the relation between supercell size and the k-space
distance |k| between � and the overlapping K (or K′) points;

(2) the relation between |k| and the interlayer coupling w.
First, let us discuss the first relation: Commensurate

twisted supercells are generated by twisting two aligned
untwisted layers around a common lattice point, until (coinci-
dentally) two lattice points of the two layers (other than those
at the twisting axis) overlap somewhere. The edge points of
the new twisted supercell are set by the twisting axis and the
overlapping lattice points, defining the size of the supercell.
If we twist the extended k spaces of the two layers around
the � point by the same twist angle, we necessarily also
find a repeating pattern with the same size as the one in real
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FIG. 7. Real-space structures, band structures, and spin-orbit fields of (a)–(c) 1Td−WTe2 monolayer and (d)–(f) twisted 1T’-WTe2 bilayer.
(a) Band structure (with color-coded spin-z expectation values) of 1Td−WTe2 monolayer with FBZ as inset. (b) Side view of 1Td−WTe2

monolayer. (c) Spin-orbit fields of the 1Td−WTe2 monolayer around the �-point hole and nearby electron pockets. (d) Top view of the twisted
1T’-WTe2 bilayer with monolayer unit cells of the two layers shown as purple and blue rectangles. W atoms of the two layers are also shown in
different colors (also blue and purple) for better distinction. (e) Band structure (with color-coded spin-z expectation values) around � of bands
(ε1 to ε12) close to the Fermi level of the twisted 1T’-WTe2 bilayer with FBZ zone as inset. (f) Spin-orbit fields of some of the bands shown in
panel (e). Again, spin-z expectation values are color-coded. The mirror-symmetry axis is shown as a dotted line. In contrast with Fig. 5, here
spin-orbit fields are shown using only one band per plot and also with in-plane magnitude of the spins encoded in the length of the arrows.
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(f)(e) (g)

(d) 13.2°(c) 27.8°(b) 38.2°(a) 21.8°

FIG. 8. Establishing a realistic twist-angle dependence of the interlayer coupling w for a continuous twist angle. (a)–(d) For four different
twist angles, we show the supercell and the corresponding overlapping extended Brillouin zones of the two layers. The red ring shows the k
radius |k| at which the overlap of K (or K′) points (black dots) of the two layers occurs. (e) Distance |k| of the overlapping K points to � for
differently sized supercells following a linear trend. (f) Extracted interlayer coupling w as a function of the supercell size (or Nat). Similar to
Fig. 6(b), but with an additional data point at the imaginary supercell size 0 with w = 210 meV, coming from the extracted w at the � bands.
The fit is modeled with the function given in Eq. (A2). (g) Twist-angle dependence of w. Each peak stems from a possible small commensurate
supercell; the smaller the supercell, the larger the peak. We additionally differentiate between peaks coming from K ↔ K (red) and K ↔ K′

(blue) backfolding. The inset shows a enlargement to show another small peak at � ≈ 18◦. The big peaks of interaction around the untwisted
cases � = 0◦ and � = ±60◦ are omitted in order to focus on the twisted cases.

space. Additionally, an overlap between the K (or K′) points
of the two layers will occur at a fixed ratio of this repeating
pattern. This is illustrated in Figs. 8(a)–8(d). The distance |k|
between these overlapping K (or K′) points and � therefore is
linear in the supercell size [see Fig. 8(e)]. Concretely, in the
case of TMDC homobilayers (with six atoms in the smallest
untwisted supercell), this means

|k| = 2π

a

2

3
s = 2π

a

2

3

√
Nat

6
, (A1)

with supercell size s = as
a and a number Nat of atoms in the

supercell. It should be mentioned here that this relies on the
fact that we always use the smallest possible supercell; in
principle using a 2×2 supercell of a twisted supercell would
always yield the same physics and same value for w, while
technically having a larger supercell size. Therefore, when we

refer to a supercell size, it means the smallest supercell size
possible at that specific twist angle.

Now, for the second relation, we refer to Ref. [39]. Since
the transfer integral T (r) between two atoms generally decays
with distance, it can also be assumed that its Fourier transform
t (q) decays in q = |q|. This, ultimately, is the reason why
the Umklapp process involving states far from � are very
weak and therefore the interlayer coupling w between these
K (or K′) points is very small. We estimate the interlayer
coupling to scale exponentially with q = |k| and therefore
have

w = a exp(−b|k|) = a exp

(
−b

2π

a

2

3
s

)
, (A2)

with fitting parameters a, b ∈ R. In Fig. 8(f) this function is
fitted using the data points from our calculations. The data
point at Nat = |k| = 0 corresponds to the bands at �, where
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TABLE II. Parameters of supercells with different interlayer distances d extracted from the band-structure calculations using the model
Hamiltonian.

NbSe2/NbSe2 Bands K bands � bands

d w |λR sin(�)| w |λR sin(�)|
� [◦] Case [Å] [meV] [meV Å] [meV] [meV Å]

−38.2 K ↔ K 2.5 15.266 12.819 506.730 1.846
−38.2 K ↔ K 2.75 7.766 4.548 410.184 0.703
−38.2 K ↔ K 3 3.441 2.439 327.569 0.260
−38.2 K ↔ K 3.25 1.415 1.263 261.612 0.095
−38.2 K ↔ K 3.5 0.551 0.648 210.038 0.035
−38.2 K ↔ K 4 0.078 0.167 136.559 0.004
−38.2 K ↔ K 4.5 0.012 0.041 88.967 0.0004
−38.2 K ↔ K 5 0.002 0.010 57.741 0.0
−38.2 K ↔ K 6 0.001 0.001 23.842 0.0
−38.2 K ↔ K 8 0.0 0.0 3.220 0.0

interaction takes place at |k| = 0 and where we consequently
find large values of w, rather than a real supercell.

Combining Figs. 8(f) and 1(e), we can present an estimate
of the twist-angle-dependent interlayer coupling between the
K (or K′) bands in Fig. 8(g). The peaks correspond to the pos-
sible commensurate supercells and decrease with increasing
size of the supercell. We assume the peaks for each commen-
surate supercell to have a certain width. In reality, the physics
around the commensurate case could include a lattice relax-
ation (favoring commensurate lattices) or flat bands occurring
as a “higher-order” magic angle effect. Also, the possible
deviation from the commensurate case will depend on the
Fermi level (i.e., the distance to the K point) at which we mea-
sure the spins. This plot clearly shows that the supercells we
chose for the DFT calculations (out of convenience of smaller
computational cost) are automatically those among all possi-
ble twisted cells with the strongest interlayer coupling. Now
another question arises: How small can the peak be before the
radial in-plane spin texture breaks down? According to our
model Hamiltonian, the radial Rashba appears at arbitrarily
small interaction strength. In reality, however, there will be a
limit at which interactions with other nearby bands and small
perturbations will destroy the radial Rashba. Ultimately, it is
likely that radial Rashba spin textures can also be found at
other twist angles than those we investigate. However, the
magnitude and stability of the effect are by far the strongest
for the commensurate cases shown in our paper.

APPENDIX B: INTERLAYER DISTANCE STUDY
AND ATOMIC RELAXATION

To further the understanding of the twisted homobilayers,
we additionally performed an interlayer-distance study for
NbSe2 bilayers with twist angle � = −38.2◦. The interlayer
distance is varied from d = 2.5 to d = 8 Å. We show the
extracted parameters in Table II and plot them in Fig. 9. We
find that the interlayer coupling w decays exponentially with
d for both the K and the � bands. Furthermore, the magnitude
of the radial Rashba |λR sin(�)| decays even faster. The total
energies of the systems seem to indicate that the equilibrium
interlayer distance is at about d = 3.25Å.

This is congruent with the relaxation calculations we
performed. Contrary to the other calculations throughout
the main paper, we performed one calculation with prior
atomic relaxation. The extracted parameters align rather well
with the unrelaxed case with a comparable interlayer dis-
tance. The radial form of the Rashba spin texture remains
untouched.

APPENDIX C: COMPUTATIONAL DETAILS

1. NbSe2

The electronic structure calculations on the NbSe2 homo-
bilayers were performed implementing density functional the-
ory (DFT) [51] using quantum espresso [52]. Self-consistent

FIG. 9. Interlayer distance study shows the dependence of several parameters on the interlayer distance d between the layers. (a) Total
energy Etot with respect to the smallest total energy found, Emin. (b) Extracted parameters for the interlayer coupling w and |λR sin(�)| for the
K bands. (c) Same as for panel (b), but considering the � bands.
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(a) 21.8° (b) 38.2°

-

FIG. 10. Comparison between model Hamiltonian fit and DFT. We compare energies E , magnitude of the radial in-plane spin textures
(in the form of the maximum in-plane spin expectation values 〈sx,y,max〉), and energy splittings Esplit against the distance k measured from the
K point for two cases (a) |�| = 21.8◦ and (b) |�| = 38.2◦. The two cases are representative of the two backfolding scenarios K ↔ K′ and
K ↔ K, respectively. In the band structures, the maximal energy of the “valence bands” Emax = EF + 632 meV is used as an offset. For the
spin expectation values, we use the offset 〈sx,y,max,avg〉 ≈ 0.00346 in case (a). The energy splitting for the 21.8◦ case is below the intended
numerical accuracy (meV), so the deviation between the model and DFT is not relevant.

calculations are carried out with a k-point sampling of 30×30
(for |�| = 21.8◦, 38.2◦), 9×9 (for |�| = 27.8◦, 32.2◦), or
3×3 (for |�| = 46.8◦, 13.2◦). We use charge density cut-
offs Eρ = 350 Ry and a wave-function kinetic cutoff Ewfc =
60 Ry for the fully relativistic pseudopotential with the
projector augmented wave method [53] with the Perdew-
Burke-Ernzerhof exchange correlation functional [54]. We
used Grimme D-2 van der Waals corrections [55–57]. The
used lattice constant is aNbSe2 = 3.26 Å and the used interlayer
distance is d = 3.5 Å. We added at least 19 Å of vacuum to
avoid interaction between the periodic images and, therefore,
establish a quasi-2D system.

2. WSe2

The ab initio calculations of twisted WSe2 homobilay-
ers for two complementary twist angles are performed using
wien2k [58]. We employ the Perdew-Burke-Ernzerhof [54]
exchange-correlation functional with van der Waals interac-
tions included via the D3 correction [56]. We used a k grid of

15×15×1, and convergence criteria of 10−6 e for the charge
and 10−6 Ry for the energy. The plane-wave cutoff multiplied
by the smallest atomic radius is set to 8. Spin–orbit coupling
was included fully relativistically for core electrons, while
valence electrons were treated within a second-variational
procedure [59] with the scalar-relativistic wave functions cal-
culated in an energy window up to 5 Ry. The lattice parameter
for the monolayer WSe2 is 3.282 Å, and the thickness is
3.34 Å [7]. The interlayer distance is 3.4 Å [60]. The vacuum
is 20 Å. To construct the twisted structures, we employed the
atomic simulation environment (ASE) [61], starting from two
WSe2 monolayers aligned at either 0◦ or 60◦ and subsequently
applying the twisting procedure described in Ref. [36].

3. 1T’-WTe2

The twisted WTe2 homobilayer structure is setup with the
ASE [61] and the CellMatch code [62], implementing the
coincidence lattice method [63,64]. The lattice constants of
pristine 1T’-WTe2 are a = 3.48 Å and b = 6.27 Å. Within
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the heterostructure, the top (bottom) 1T’-WTe2 layer has
lattice parameters of a = 3.48 Å (a = 3.479 Å) and b =
6.27 Å (b = 6.271 Å). The involved strains are below 0.1%
and the twist angle between the layers is about 31.14°.
To simulate quasi-2D systems, we add a vacuum of about
20 Å to avoid interactions between periodic images in our
bilayer geometry. The twisted 1T’-WTe2 homobilayer super-
cell has lattice vectors |a| = 24.36 Å, |b| = 13.0139 Å, and
|c| = 35.515 Å and an angle α = 105.51°. The supercell
contains 168 atoms, see Fig. 7(d). The electronic structure
calculations and structural relaxations of the heterostructure
are performed by DFT [51] with quantum espresso [52]. Self-
consistent calculations are carried out with a k-point sampling
of 2×2×1. We use an energy cutoff for charge density of
560 Ry, and the kinetic-energy cutoff for wave functions
is 70 Ry for the fully relativistic pseudopotentials with the
projector augmented wave method [53] with the Perdew-
Burke-Ernzerhof exchange correlation functional [54]. For the
self-consistent calculation, we employ a threshold of 1×10−7

Ry and Fermi-Dirac smearing of 5×10−4 Ry. For the relax-
ation of the heterostructures, we add DFT-D2 vdW corrections
[55–57] and use a quasi-Newton algorithm based on the trust
radius procedure. To get proper interlayer distances and to
capture possible moiré reconstructions, we allow all atoms
to move freely within the heterostructure geometry during
relaxation. Relaxation is performed until every component of

each force is reduced below 1×10−3 Ry/a0, where a0 is the
Bohr radius.

4. Fitting

In the main paper, we use a model Hamiltonian
[see Eq. (1)] to extract relevant parameters from the DFT data
by fitting. In Fig. 10, we compare the fit and DFT data for
two examples (K bands of NbSe2 21.8◦ and −38.2◦). To this
end, we plot energies, magnitude of the radial in-plane spin
textures, and energy splittings against the distance k measured
from the K point. We can see that, while the properties are
generally well-reproduced by the Hamiltonian, there are a few
problems. First, both the radial spin texture’s magnitude as
well as the energy splittings are slightly different for VB1,
VB2 and VB3, VB4, respectively. Therefore, the parame-
ters we extract present an average of them. Furthermore, for
K ↔ K′ backfolding (i.e., � = 21.8◦ case), although the en-
ergy splittings are linear in k (as predicted by the model), the
slope of the splitting with increasing k is not congruent with
the model predictions. One could focus the fit only on energies
rather than spin expectation values in order to reproduce the
splittings. However, the resulting parameters would not be
realistic. Hence, in order to reproduce the relevant physics
(in-plane spins), we neglect the (μeV) splittings in our fitting
procedure for these cases.
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