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ABSTRACT: We introduce a family of all-electron Gaussian basis sets,
augmented MOLOPT, optimized for excited-state calculations on large molecules.
We generate these basis sets by augmenting existing STO-3G, STO-6G, and
MOLOPT basis sets optimized for ground state energy calculations. The
augmented MOLOPT basis sets achieve fast convergence of GW gaps and
Bethe−Salpeter excitation energies, while maintaining low condition numbers of
the overlap matrix to ensure numerical stability. For GW HOMO−LUMO gaps,
the double-ζ augmented MOLOPT basis yields a mean absolute deviation of 60
meV to the complete basis set limit. The basis set convergence for excitation
energies from time-dependent density functional theory and the Bethe−Salpeter
equation is similar. We use our smallest generated augmented MOLOPT basis (aug-SZV-MOLOPT-ae-mini) to demonstrate GW
calculations on nanographenes with 9224 atoms requiring only 34300 core hours of computational resources.

1. INTRODUCTION
First-principles electronic structure calculations1 are now widely
employed across various fields, including the computation of
electronic band structures of crystals and the investigation of
reaction mechanisms in chemistry. A fundamental initial step in
nearly all such calculations is specifying the atomic geometry,
that is, the positions of the atomic nuclei. While this task is
relatively straightforward for small molecules with a few atoms in
the unit cell, it quickly becomes complex as the number of atoms
increases. For instance, determining the atomic geometry of a
liquid−solid interface can be a challenge. Recently, there has
been a transformative shift in how atomic geometries are
determined, driven by advances in machine learning. Techni-
ques such as machine-learned interatomic potentials2 and direct
structure prediction approaches, like those used in protein
folding,3 are rapidly becoming standard tools in the field.
As a result, increasingly complex atomic structures,

comprising 100,000 atoms or more,4 are now available as
starting points for first-principles calculations. A particularly
interesting branch of these calculations is the study of
electronically excited states.5−7 Understanding these excitations
is important for interpreting optical experiments, from conven-
tional optical absorption spectroscopy to ultrafast phenomena
induced by femtosecond laser pulses.8 On the theoretical side,
this poses a major challenge as first-principles methods for
excited-state calculations are significantly more computationally
demanding than those for ground-state properties.5,6 The most
widely used approaches for excited-state calculations include
time-dependent density functional theory (TDDFT),9,10 the
GW approximation for quasiparticle energies, i.e., electron
removal and addition energies,11−13 and the GW plus Bethe−
Salpeter equation (GW-BSE) for optical excitations.5,7 All of

these methods have in common that the computational cost can
quickly grow with the number of atoms in the molecule or unit
cell, depending on the specific algorithm.
One approach to restrict this growth in computation time is

the usage of low-scaling algorithms which often employ spatial
locality. As an example, we consider the irreducible density
response χ0(r, r′), which describes how the electron density at
position r changes in response to an external potential applied at
position r′. χ0(r, r′) neglects the Coulomb interaction of the
induced electron density and reflects the system’s intrinsic
nonlocal polarizability. In semiconductors and dielectrics,
χ0(r, r′) decays exponentially with increasing distance between
r and r′, i.e., χ0(r, r′) → 0 as |r − r′| → ∞, which is a sign of the
spatial locality of the electronic structure, the ”nearsighted-
ness”.14,15

Spatial locality can be exploited in the GW space-time
algorithm,16,17 which scales as O(N3) with the number of atoms
N, compared to the O(N4) scaling of conventional frequency-
based GW algorithms.13 The space-time algorithm uses a real-
space grid representation and switches between real-space and
plane-wave bases. To retain the favorable scaling, key steps must
be performed in real space; using plane waves throughout would
increase scaling again toO(N4). Fast Fourier transforms (FFTs)
enable efficient switching between representations but require
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an equidistant real-space grid. Such grids are not ideal for
electronic structure calculations, as they fail to exploit the
characteristic shapes of atomic orbitals, such as s-, p-, or d-type
functions. We do need to mention recent advancements in the
generation of nonequidistant real-space grids18−22 which have
reduced the number of grid points dramatically. Still, a compact
atomic-orbital basis set is required for the generation of these
real-space grids. Reformulating the GW space-time method in a
localized atomic-orbital basis can significantly reduce matrix
sizes, enabling efficient calculations for two-dimensional
crystals23 as well as large and complex systems.21,24−27

The computational effort of excited-state methods like GW,
TDDFT and GW-BSE depends sensitively on the size of the
atomic-orbital basis set. As an example, the computational cost
of space-time GW24,26,27 increases with the fourth power in the
number of basis functions per atom. It is thus highly desirable to
employ optimal atomic-orbital basis sets that provide converged
excitation energies with a small number of basis functions.
Atomic-orbital basis sets come in various forms, including
numeric atom-centered orbitals (NAOs),28,29 Slater-type
orbitals (STOs),30 and Gaussian-type orbitals (GTOs).31

NAOs offer high flexibility and accuracy with compact sets,
while STOs closely resemble atomic orbitals and also allow for
small basis sizes. GTOs achieve radial flexibility via super-
position of several Gaussians (“contractions”) and enable
efficient evaluation of Coulomb integrals through analytical
expressions.31−33 This efficiency has made GTOs a standard in
quantum chemistry software and motivates their use in this
work.
Most GTO basis sets have been optimized for the

computation of the ground state energy. However, when such
basis sets are used in excited-state methods like GW-BSE, they
yield a slow basis-set convergence. To cure this issue, one can
add further Gaussian functions to ground-state optimized basis
sets, as it is done in the aug-cc-pVXZ basis set family, X = D, T,
Q, 5.34 Here, the additional Gaussians are optimized to match
the LUMOwave function via optimization of the total energy of
charged atoms. In this way, the additional Gaussians describe
electronically excited states, which often involve the excitation
from occupied orbitals to LUMO. The aug-cc-pVXZ basis sets
yield good accuracy for excitation energies of small molecules,
but their application to large systems is severely limited by
numerical issues mainly related to the inclusion of very diffuse
Gaussian functions, i.e., those with very small exponents that
decay slowly. As a result, the condition number of the overlap
matrix is large,35 leading to numerical instability and
convergence problems in the self-consistent-field iterations of
large molecules. Consequently, the use of aug-cc-pVXZ is
typically prohibitive for large molecules. This presents a gap in
the current methodology: while Gaussian basis sets optimized
for excited-state calculations of small molecules exist, Gaussian
basis sets optimized for excited-state calculations of large,
complex molecular systems are lacking.
In contrast to excited states, Gaussian basis sets tailored for

computing the DFT ground-state energy in large molecular
systems already exist. A prominent class of such basis sets are the
MOLOPT-type basis sets, which were specifically designed to
balance accuracy of DFT ground-state energy calculations with
numerical stability. Not only the accuracy of ground-state
energies of molecules35−38 has been optimized, but also the
condition number of the overlap matrix has been minimized,
which is critical for ensuring numerically stable DFT calculations
in extended and complex systems.

Despite their success in ground-state calculations, the
currently available MOLOPT basis sets35−38 do not offer a
sufficiently accurate description of electronically excited states.
In this work, we address this limitation by augmenting existing
all-electron MOLOPT basis sets37,38 with additional diffuse
Gaussian functions, which are optimized to reproduce excitation
energies from GW-BSE calculations performed with a large
reference basis set (aug-cc-pV5Z). As a result, we introduce the
all-electron (ae) aug-MOLOPT-ae basis set family containing
aug-SZV-MOLOPT-ae, aug-DZVP-MOLOPT-ae, and aug-
TZVP-MOLOPT-ae. Our basis sets cover the elements of
periods I, II, and III (H to Cl) and are specifically designed for
accurate and efficient excited-state calculations in large
molecular systems.
The article is organized as follows: In Section 2.1, we give an

overview of Kohn−Sham DFT in a Gaussian basis, where
numerical instabilities due to the inverse overlap matrix can
arise, as discussed in detail in Section 2.2. A theoretical
perspective on basis set convergence for quasiparticle and
excitation energies is provided in Section 2.3.We further provide
the procedure for generating the augmented MOLOPT basis
sets in Section 2.4 .Benchmark results on HOMO−LUMO gaps
from PBE0 and GW as well as excitation energies from BSE and
TDDFT for the augmented MOLOPT basis sets are given in
Sections 2.5 and 2.6, respectively. The procedure to generate the
associated auxiliary RI basis sets is presented in Section 3.1. In
Section 3.2, we evaluate how auxiliary RI basis size and Coulomb
cutoff affect the accuracy in low-scaling GW calculations. Large-
scale applicability of the augmented MOLOPT basis sets is
demonstrated in Section 4, where we perform GW calculations
on nanographenes with over 9000 atoms. We describe the
molecular test set for our benchmark and the computational
details in App. A. In App. B, we describe a memory-saving
scheme for the computation of the self-energy using a repeated
calculation of three-center integrals. Finally, in App. C, we carry
out a test calculation of our new basis sets on a representative
system (9,10-Dihydroanthracene), in order to quantitatively
assess the quality of these basis sets with respect to their size.

2. ORBITAL BASIS SETS
2.1. Expansion of Kohn−Sham Orbitals in a Gaussian

Basis Set. Many excited-state calculations of large molecules
start from Kohn−Sham (KS) density functional theory (or
Hartree−Fock theory),39,40 where one needs to solve the KS
equations

+ =
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V r r r
2

( ) ( ) ( )n n n

2

eff
(1)

where ψn(r) are the KS orbitals and εn are the KS eigenvalues.
The effective potential Veff(r) includes the external potential
originating from the Coulomb potential of the nuclei, the
Hartree potential, and the exchange-correlation potential.
To solve the KS equations (1) numerically, each KS orbital is

expanded as a linear combination of predefined basis functions.
When a Gaussian basis set is used, each orbital ψn(r) is written as
a sum over basis functions ϕμ(r) of the molecule (or unit cell29)
with expansion coefficients Cμn,

=
=

Cr r( ) ( )n

N

n
1

bf

(2)

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.5c01386
J. Chem. Theory Comput. 2026, 22, 540−557

541

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c01386?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Nbf is the number of basis functions. The coefficients Cμn are
unknown and determined by solving the KS equations (1).More
specifically, the KS equations (1) are reformulated by inserting
the basis expansion (2) into the Kohn−Sham equations (1),
then multiplied with a basis function ϕν(r) and integrated over
the whole space to obtain the matrix equations

=h C S Cn n n
(3)

known as the Roothaan-Hall equations.40 Here, hμν is the
Kohn−Sham matrix and the overlap matrix is defined as

=S r r rd ( ) ( ) (4)

Equation 3 is a generalized eigenvalue problem because the basis
functions {ϕμ} are nonorthogonal for molecules with more than
a single atom, i.e., S ≠ Id. To solve eq 3 for Cνn and εn, one
usually transforms eq 3 into a standard eigenvalue problem

=h C Cn n n
(5)

by using the following transformations:

= =h S hS C S C,1/2 1/2 1/2 (6)

The procedure is to first compute h̃ = S−1/2 hS−1/2, followed by
the diagonalization of h̃ to obtain C̃ via eq 5, and C = S−1/2 C̃ to
obtain the expansion coefficients Cμn.
A Gaussian-type basis function ϕμ(r) used in eq 2 is centered

at an atom A and is a linear combination of Gaussian functions
multiplied with a spherical harmonic Ylm,

40,41

=
=

Y r rr( ) ( , ) exp( )l
m

A A A
l

i

N

i i A
1

, ,
2

prim

(7)

where rA= r−RA is the displacement vector to nucleus A located
at positionRA, (θA,φA) are the polar angles of rA and rA = |rA|. lμ is
the angular momentum quantum number and mμ the magnetic
quantum number of ϕμ. αμ,i are the contraction coefficients, βμ,i
the Gaussian exponents and Nprim the number of Gaussian
primitives. The parameters lμ, mμ, {αμ,i}i = 1

Nprim and {βμ,i}i = 1
Nprim

entering eq 7 are determined and fixed before the KS-DFT
calculation. A Gaussian basis set BA of atom A is defined as a
finite set

= { } =B r( )A N
1

A
bf

(8)

containingNbf
A Gaussian-type basis functionsϕμ(r) from eq 7, all

centered at atom A.
2.2. Numerical Instability Computing S−1/2 and the

Condition Number of S. While Gaussian basis sets offer
powerful flexibility by tuning contraction coefficients α and
exponents β, eq 7, the inclusion of diffuse Gaussian functions,
i.e., those with small exponents, can introduce serious numerical
challenges. These diffuse functions are often essential for
accurately capturing excited-state quantities, because empty KS
orbitals are usually more diffuse than occupied KS orbitals.
Diffuse Gaussians decay slowly and exhibit significant spatial
overlap even across distant atoms. As a result, the overlap matrix
S becomes increasingly ill-conditioned, with eigenvalues that
span several orders of magnitude. This poor conditioning leads
to numerical instability when computing S−1/2 for transforming
the generalized KS eigenvalue problem (3) into a standard one
(6). Such instabilities are particularly challenging in large

molecules which can lead to convergence issues of the self-
consistent-field (SCF) cycle. In the following, we analyze this
numerical instability in detail.
To illustrate the numerical instability of computing S−1/2

introduced by diffuse Gaussian basis functions, we consider the
minimal example of the hydrogen molecule, H2. Each atom has a
single s-type Gaussian basis function with identical exponent β,
i.e., the two basis functions of the molecule read

= [ ± + + ]x d y zr( ) (2 / ) exp( ( /2) )1,2
3/4 2 2 2

(9)

where d is the distance between both atoms. Both basis functions
ϕ1,2(r) are normalized, such that the diagonal elements of the
overlap matrix are equal to one, S11 = ∫ dr ϕ1

2(r) = S22 = ∫ dr
ϕ2
2(r) = 1. We further have S12 = S21 = ∫ dr ϕ1(r)ϕ2(r) = e−β dd

2/2.
The eigenvalues of the 2 × 2 overlap matrix S are then

= ±s e1 d
1,2

/22

(10)

For a very diffuse Gaussian with β = 10−3/a02 and bond distance d
= 1.4 a0, we have s1 = 1.9990 and s2 = 9.8· 10−4. Note that S of any
molecule is positive semidefinite, so si ≥ 0. The condition
number of S then is κ(S) = 2041, computed from

= s
s

S( )
max
min

i

i (11)

For computing S−1/2 required in eq 6, one needs to compute
s1/ i , which gets increasingly large for decreasing si. This

introduces numerical instability, which is quantified by the
condition number κ(S). The numerical example of κ(S) = 2041
for H2 with two diffuse Gaussians demonstrates how even a
small molecule with only two diffuse basis functions can lead to
poor conditioning.
Numerical instabilities arise if κ(S) hits the inverse machine

precision. For double precision arithmetic, machine precision is
2−52 ≈ 10−16 and thus numerical instabilities arise if κ(S) ≳ 1016.
Several numerical tricks have been used to circumvent these
instabilities related to large κ(S), for example the removal of
small eigenvalues of the overlap matrix.35 In our experience, we
have observed that this technique can help to certain extent, but
for too large condition numbers, the SCF cycle fails to converge
nevertheless. One of the possible reasons for this behavior is that
the eigendecomposition of the overlapmatrix can become highly
unstable for overcomplete basis sets,42 leading to an unreliable
regularization and thus SCF calculation.

κ(S) increases rapidly with additional diffuse functions per
atom and for systems with more atoms.We illustrate the effect of
the molecular size on the condition number (11) in Figure 1:
When adding more atoms to the system, κ(S) increases by
orders of magnitude for the commonly used Gaussian aug-cc-
pVDZ basis set (dark green curve),43,44 reaching values above
the inverse machine precision, κ(S) > 1016. In contrast, for all
four augmented MOLOPT basis sets presented later in this
work, the condition number remains well below this threshold,
even in the limit of infinite system size (bulk graphite).

2.3. Basis Set Convergence for Excitation Energies of
Charged and Neutral Excitations. As discussed in the last
Section 2.2, an essential requirement for basis sets used in
excited-state electronic structure methods is numerical stability,
ensured for example by keeping the condition number of the
overlap matrix S sufficiently low. Equally important is that the
basis sets enable fast convergence of excited-state energies with
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respect to the basis set size. In this section, we analyze the
convergence behavior of two types of excitations: (i) charged
excitations, corresponding to quasiparticle (QP) energies as
obtained from GW, and (ii) charge-neutral excitations, such as
those calculated from BSE or TDDFT.13

2.3.1. Charged Excitations: GWQuasiparticle Energies. It is
well established that absolute GW quasiparticle energies εn
converge slowly with increasing basis set size Nbf

45,46 and thus
require basis set extrapolation.47,48 However, energy differences
between QP states, such as the HOMO−LUMO gap, converge
much faster.26,46 We rationalize this behavior in this section,
starting by dividing the QP energies into ionization potentials
(IPs) and electron affinities (EAs):13

=

= >+

E E

E E

if (IPs)

if (EAs)

n N N
n

n

n N
n

N n

0
1 F

1
0

F (12)

Here, EN ± 1
n is the nth excited state energy of theN ± 1 electron

system and εF is the Fermi energy.
According to the second Hohenberg−Kohn theorem,49 the

ground state energy EN0 of KS-DFT converges from above
toward the complete-basis-set (CBS) limit as the basis size
increases, i.e.,

E E N E Nlim ( ) ( )N
N

N N
0 0

bf
0

bf
bf (13)

We make this assumption also for the excited-state energies ENn
and EN ± 1

n , following the Hylleraas-Undheim-MacDonald
theorem:50,51

E E N E Nlim ( ) ( )N
n

N
N
n

N
n

bf bf
bf (14)

We assume the deviation from the complete basis set limit is
extensive in the number of electrons, i.e., it scales linearly with
the number of electrons, and it is independent of excitation
index n. This behavior can be expressed as

= + ·E N E N f N( ) ( )N N
0

bf
0

bf (15)

= + ·E N E N f N( ) ( )N
n

N
n

bf bf (16)

= + ± ·± ±E N E N f N( ) ( 1) ( )N
n

N
n

1 bf 1 bf (17)

with

=f N f N( ) 0 and lim ( ) 0
N

bf bf
bf (18)

Combining eqs 12, 15, 17, and 18 implies that the absolute QP
energy levels (i.e., IPs and EAs) converge slowly from above with
increasing basis set size:

= +N f N N( ) ( ) lim ( )n n n
N

nbf bf bf
bf (19)

In contrast, when using the simplified model (19) for
differences of QP energy levels, εn (Nbf) − εm (Nbf), they are
independent of f(Nbf):

= [ ]N N N N( ) ( ) lim ( ) ( )n m n m
N

n mbf bf bf bf
bf

(20)

This analysis suggests that the convergence of QP energy
differences is significantly faster than that of absolute QP
energies, provided that the basis set error satisfies the
convergence forms given in eq 15−17, at least approximately.
Finally, we assume that GW QP energies are good approx-
imations to the QP energies (12) such that this analysis carries
over to GW QP energies.
2.3.2. Charge-Neutral Excitations: TDDFT and BSE

Excitation Energies. For charge-neutral excitations one
considers the energy difference ΔEn between the ground state
and the electronically excited state n, both with N electrons:

=E E En N
n

N
0

(21)

Again, assuming the convergence form (16), we see that the
function f(Nbf) cancels out for the basis set convergence of
excitation energies,

=E N E E N( ) lim ( )n n
N

nbf bf
bf (22)

where again ΔEn is the excitation energy in the CBS limit.
Summarizing, we can expect relatively fast convergence of

BSE excitation energies and GW QP energy differences like the
GW HOMO−LUMO gap with the basis set size, given that the
basis sets are well optimized, while absolute values of GW QP
energy levels are hard to converge with the basis set size.

2.4. Basis Set Generation Recipe. AGaussian basis set (8)
for an element A is constructed by specifying the total number of
basis functions Nbf

A , selecting the number of functions ϕμ(r) for
each angular momentum quantum number l. Each ϕμ(r)
consists of a linear combination (7) of primitive Gaussians
characterized by exponential decay parameters βμ,i and
contraction coefficients αμ,i. One motivation for this contraction
scheme is to better approximate Slater-type orbitals, which
decay exponentially as exp(−ζ r) and represent the shape of
atomic orbitals in the hydrogen-like model.31 The parameters of
each contracted function ϕμ(r) are then optimized to reproduce
one or more atomic or molecular properties. These may include,

Figure 1. Condition number κ(S) of the overlap matrix for a finite
graphite-like cutout computed from eq 11 using five different Gaussian
basis sets. The cutout with 1430 atoms is shown in the inset; we vary its
horizontal length, and the corresponding number of atoms is plotted on
the horizontal axis. For the aug-cc-pVDZ basis set,43,44 κ(S) exceeds the
inverse machine precision (∼1016) for cutouts with 750 atoms and
more, leading convergence issues in the SCF. We also show the
condition number of the four augmented MOLOPT basis sets (aug-
SZV-MOLOPT-ae-mini, aug-SZV-MOLOPT-ae-SR, aug-SZV-MO-
LOPT-ae, aug-DZVP-MOLOPT-ae) developed in this work, where
the condition number remains well below this threshold.
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for instance, the correlation energy of neutral atoms43 or
negatively charged atoms34 or the ground state energymolecules
from DFT with the PBE functional.35

By increasing the number of basis functions Nbf
A of the basis

set, one can construct hierarchical families of basis sets with
systematic improvements. The cc-pVXZ basis set family, X = D,
T, Q, ...43 is designed to systematically improve the correlation
energy of molecules obtained from post-Hartree−Fockmethods
like MP2,40 the random phase approximation52 or coupled
cluster.40 The aug-cc-pVXZ basis set family, X = D, T, Q, ...34 is
constructed to yield systematic improvements of electron
affinities of molecules computed from post-Hartree−Fock
methods. In contrast, the XZVP-MOLOPT basis set family, X
= S, D, T, Q35,37,38 is designed to obtain basis-set converged
groundstate DFT calculations of large molecules, crystals,
liquids and material interfaces. For a more complete review of
Gaussian basis sets, we refer to ref40

We recall the strategy behind the construction of Dunning’s
aug-cc-pVXZ basis sets34,56 as summarized in Table 1, to
motivate our approach of constructing basis sets. The aug-cc-
pVXZ basis sets are designed to compute electron affinities,
which requires accurate description of the lowest unoccupied
molecular orbital (LUMO) in KS-DFT. The LUMO is typically
much more diffuse than occupied orbitals as indicated by the
decay length | |m/ 2n n of a molecular orbital outside of
the molecule; εn is the orbital energy of a bound state and m the
electron mass. For occupied orbitals, we usually have |εn|< 5 eV
while |εLUMO| ≈ 0 eV leads to a long decay length ζLUMO,
indicating a diffuse LUMO. Standard cc-pVXZ basis sets lack the
necessary diffuse functions to describe such orbitals. To address
this, aug-cc-pVXZ adds an uncontracted diffuse Gaussian
ϕμ(r) = Ylm(θA,φA)rAl αl exp(−βl rA2) for each angular momentum
l present in cc-pVXZ. The exponent βl is optimized to match the

correlation energy of the corresponding anion at the complete-
basis-set limit. These augmented basis sets have proven effective
for excited-state properties, such as GW HOMO−LUMO gaps
and TDDFT or GW+BSE excitation energies.46,57,58

While aug-cc-pVXZ basis sets yield good accuracy for
excitation energies of small and medium-sized molecules, their
application to large systems is severely limited by numerical
issues. The inclusion of very diffuse Gaussians results in a large
condition number of the overlap matrix S, making the
computation (6) of S−1/2 numerically unstable, as discussed in
Section 2.2. This instability often leads to convergence problems
of the self-consistent-field cycle when treating large molecules.
Consequently, the use of aug-cc-pVXZ is usually prohibitive for
large molecules.
We develop a family of augmented all-electron (ae)

MOLOPT basis sets specifically targeted for excited-state
calculations of large molecules, following the analysis of
numerical stability from Section 2.2 and basis set convergence
from Section 2.3.We apply an augmentation strategy to the basis
sets STO-3G,31 STO-6G,31 SVP-MOLOPT-ae,37,38 and
TZVPP-MOLOPT-ae,37,38 resulting in the aug-SZV-MO-
LOPT-mini-ae, aug-SZV-MOLOPT-ae-SR, aug-SZV-MO-
LOPT-ae, aug-DZVP-MOLOPT-ae, and aug-TZVP-MO-
LOPT-ae basis sets, respectively, see Table 1. The ”mini”
bases correspond to smaller, more compact versions of the
corresponding regular basis sets, and are therefore well-suited
for intensive calculations in larger systems with a small cost in
accuracy, whereas the ”SR” (short-range) basis sets have been
generated with less diffuse primitives and are therefore intended
to reduce the computational cost in condensed phase systems at
a similar accuracy. As such, we expect the following accuracy
hierarchy to hold: aug-SZV-MOLOPT-ae-mini < aug-SZV-
MOLOPT-ae-SR < aug-DZVP-MOLOPT-ae < aug-TZVP-

Table 1. Composition of Gaussian Basis Sets: Dunning’s Augmented Correlation-consistent Basis Sets Include aug-cc-pVDZ,
aug-cc-pVTZ and aug-cc-pVQZa

basis composition Nbf root basis (rb) rb composition augmentation min exponent β (au)

H, He aug-cc-pVDZ 3s, 2p 9 cc-pVDZ43,44 2s, 1p 1s, 1p 0.030 (H), 0.072 (He)
Li−Ne aug-cc-pVDZ 4s, 3p, 2d 23 cc-pVDZ43,53 3s, 2p, 1d 1s, 1p, 1d 0.006 (Li)−0.106 (Ne)
Na−Cl aug-cc-pVDZ 5s, 4p, 2d 27 cc-pVDZ53,54 4s, 3p, 1d 1s, 1p, 1d 0.006 (Na)− 0.047 (Cl)
H, He aug-cc-pVTZ 4s, 3p, 2d 23 cc-pVTZ43,44 3s, 2p, 1d 1s, 1p, 1d 0.025 (H), 0.052 (He)
Li−Ne aug-cc-pVTZ 5s, 4p, 3d, 2f 46 cc-pVTZ43,53 4s, 3p, 2d, 1f 1s, 1p, 1d, 1f 0.008 (Li)−0.092 (Ne)
Na−Cl aug-cc-pVTZ 6s, 5p, 3d, 2f 50 cc-pVTZ53,54 5s, 4p, 2d, 1f 1s, 1p, 1d, 1f 0.007 (Na)−0.042 (Cl)
H, He aug-cc-pVQZ 5s, 4p, 3d, 2f 46 cc-pVQZ43,44 4s, 3p, 2d, 1f 1s, 1p, 1d, 1f 0.024 (H), 0.048 (He)
Li−Ne aug-cc-pVQZ 6s, 5p, 4d, 3f, 2g 80 cc-pVQZ43,53 5s, 4p, 3d, 2f, 1g 1s, 1p, 1d, 1f, 1g 0.006 (Li)−0.082 (Ne)
Na−Cl aug-cc-pVQZ 7s, 6p, 4d, 3f, 2g 84 cc-pVQZ53,54 6s, 5p, 3d, 2f, 1g 1s, 1p, 1d, 1f, 1g 0.005 (Na)−0.038 (Cl)
H, He aug-SZV-M.-ae-mini 3s, 1p 6 STO-3G31 1s 2s, 1p 0.065 (H), 0.090 (He)
Li−Ne aug-SZV-M.-ae-mini 3s, 2p 9 STO-3G31,55 2s, 1p 1s, 1p 0.048 (Li)−0.200 (Ne)
Na−Cl aug-SZV-M.-ae-mini 4s, 3p 13 STO-3G55 3s, 2p 1s, 1p 0.050 (Na)−0.080 (Cl)
H aug-SZV-M.-ae-SR 3s, 1p 6 STO-3G31 1s 2s, 1p 0.065 (H)
C, N, O aug-SZV-M.-ae-SR 3s, 2p, 1d 14 STO-3G31 2s, 1p 1s, 1p, 1d 0.115 (C)−0.162 (O)
H, He aug-SZV-M.-ae 3s, 1p 6 STO-6G31 1s 2s, 1p 0.065 (H), 0.090 (He)
Li−Ne aug-SZV-M.-ae 3s, 2p, 1d 14 STO-6G31,55 2s, 1p 1s, 1p, 1d 0.031 (Li)−0.200 (Ne)
Na−Cl aug-SZV-M.-ae 4s, 3p, 1d 18 STO-6G55 3s, 2p 1s, 1p, 1d 0.050 (Na)−0.077 (Cl)
H, He aug-DZVP-M.-ae 3s, 2p 9 SVP-M.-ae37,38 2s, 1p 1s, 1p 0.035 (H), 0.060 (He)
Li−Ne aug-DZVP-M.-ae 4s, 3p, 2d, 1f 30 SVP-M.-ae37,38 3s, 2p, 1d 1s, 1p, 1d, 1f 0.025 (Li)−0.100 (Ne)
Na−Cl aug-DZVP-M.-ae 5s, 4p, 2d, 1f 34 SVP-M.-ae37,38 4s, 3p, 1d 1s, 1p, 1d, 1f 0.045 (Na)−0.077 (Cl)
H, He aug-TZVP-M.-ae 4s, 3p, 2d 23 TZVPP-M.-ae37,38 3s, 2p, 1d 1s, 1p, 1d 0.030 (H), 0.050 (He)
Li−Ne aug-TZVP-M.-ae 6s, 4p, 3d, 2f, 1g 56 TZVPP-M.-ae37,38 5s, 2p, 2d, 1f 1s, 1p, 1d, 1f, 1g 0.025 (Li)−0.100 (Ne)
Na−Cl aug-TZVP-M.-ae 6s, 6p, 4d, 2f, 1g 67 TZVPP-M.-ae37,38 5s, 5p, 3d, 1f 1s, 1p, 1d, 1f, 1g 0.025 (Na)−0.130 (Cl)

aThe basis sets developed in this work are aug-SZV-MOLOPT-ae-mini, aug-SZV-MOLOPT-ae-SR, aug-SZV-MOLOPT-ae, aug-DZVP-MOLOPT-
ae and aug-TZVP-MOLOPT-ae.
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MOLOPT-ae. We add one additional angular momentum shell
beyond lmax of the root basis, and introduce one new diffuse
Gaussian primitive with a smaller exponent per angular
momentum to improve radial flexibility. One should therefore
note that we are using the term augmentation in a broader way
than the usual meaning that only involves diffuse functions.34

The name was chosen to obtain a compact and practical name
for the new family of basis sets and underline that these are built
on and retain the stability of the MOLOPT basis set, but with
better excited-state properties. We optimize the added basis
functions to reproduce the lowest five G0W0-BSE@PBE0
excitation energies calculated with the aug-cc-pV5Z basis set
for Thiel’s set59 (for elements H, C, N, O) and the available
molecular set from ref 35 for the other elements up to chlorine.
In the objective function, we also ensure that the condition
number of the basis set stays limited, as in previous
optimizations of Gaussian basis sets.35,36 In practice, the
optimization is performed using Powell’s algorithm,60 which is
a local optimizer and may therefore converge to a local
minimum. However, since the optimization in any case depends
on the choice of the rather small molecular training set, reaching
the global minimum is not a strict requirement to generate high-
quality basis sets. Instead, we carefully validate the resulting basis
functions on a much larger benchmark set containing 247
molecules, ensuring their general reliability.
As an example, the STO-3G basis set of carbon contains five

basis functions, two s-functions (l = 0,m = 0) and one p-function
(l = 1, m = − 1, 0, 1)
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where αi,j can be found in the literature31,56 and the exponents
are
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a0 = 0.529 Å is the Bohr radius.
To obtain the aug-SZV-MOLOPT-ae-SR basis set for carbon,

we use the STO-3G basis set (23) and add one s-function (l = 0,
m = 0), one p-function (l = 1,m = −1,0,1), and one d-function (l
= 2, m = −2, −1,0,1,2), each having the form
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The free parameters are γ4 and αi,j, i = 1,2,3,4, j = 4,5,6, which we
have optimized to match the lowest five BSE excitation energies
in the complete-basis set limit of the molecules of Thiel’s set.
The result of the optimization is γ4 = 0.115 and the optimized αi,j
are listed in Figure 2.
All generated aug-SZV-MOLOPT-ae-mini, aug-SZV-MO-

LOPT-ae-SR, aug-SZV-MOLOPT-ae, aug-DZVP-MOLOPT-
ae, and aug-TZVP-MOLOPT-ae basis sets are listed in the
Supporting Information (Section S5); the size, augmentation
procedure and minimum exponent of the basis sets are
summarized in Table 1.

2.5. PBE0 and GW HOMO−LUMO gaps. We compute
HOMO−LUMO gaps using PBE0 and G0W0@PBE0 for a
subset of 247 molecules from the GW5000 benchmark set (see
App. A for the description of the benchmark set and the
computational details). Figure 3a,b shows the results for the aug-
MOLOPT basis sets introduced in this work, together with the
aug-cc-pVXZ, cc-pVXZ, and MOLOPT basis sets.
Figure 3a compares PBE0 HOMO−LUMO gaps across the

four basis set families. We report the mean absolute deviation
(MAD)with respect to the complete basis set (CBS) limit, taken
here as aug-cc-pV5Z:

Figure 2. aug-SZV-MOLOPT-ae-mini, aug-SZV-MOLOPT-ae-SR, aug-SZV-MOLOPT-ae and aug-DZVP-MOLOPT-ae basis sets developed in this
work for carbon in CP2K basis set format.56,61 Numbers marked in red have been optimized to match BSE excitation energies of the molecules
contained in Thiel’s set. The black numbers are the parameters taken from STO-3G31 (for aug-SZV-MOLOPT-ae-SR), STO-6G31 (for aug-SZV-
MOLOPT-ae) and from SVP-MOLOPT-PBE-ae37,38 (for aug-DZVP-MOLOPT-ae). The basis sets for other atoms and all corresponding auxiliary RI
basis sets are listed in the Supporting Information S3, S4.
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Figure 3. Basis set convergence of excited-state energies for a subset of 247 molecules from theGW5000 benchmark set. We report the mean absolute
deviation (MAD) and 95th percentile error (95PE) relative to the aug-cc-pV5Z basis for the aug-MOLOPT basis sets developed in this work, aug-cc-
pVXZ,34 cc-pVXZ43 and all-electron MOLOPT basis sets.37,38 Panels show (a) PBE0 HOMO−LUMO gaps, (b) G0W0@PBE0 HOMO−LUMO
gaps, (c) first ten excitation energies computed from BSE@G0W0@PBE0, and (d) from TDDFT (PBE0). All benchmark molecules contain between
10 and 20 atoms. For results on smaller molecules containing all elements H−Cl, see the Supporting Information S2, S3.
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whereNmol= 247 is the number of molecules andΔi
B is the PBE0

HOMO−LUMO gap of molecule i computed with basis set B.
While MAD captures the average accuracy, we also report the
95th percentile error (95PE) to quantify the worst-case
deviations of the worst 5% of molecules. The aug-MOLOPT
basis sets show systematic improvement from aug-SZV-
MOLOPT-ae to aug-TZVP-MOLOPT-ae, with both MAD
and 95PE decreasing toward the CBS limit. The aug-TZVP-
MOLOPT basis has a MAD of just 14 meV. The aug-cc-pVXZ
basis sets generally show even smaller deviations at equivalent
basis size�e.g., aug-cc-pVTZ is closer to the CBS than aug-
TZVP-MOLOPT-ae. This is expected, as aug-cc-pVXZ are
specifically optimized for electron affinities and include very
diffuse functions well suited for describing the LUMO. In
contrast, the cc-pVXZ and MOLOPT families exhibit
significantly larger errors and slower convergence for the
HOMO−LUMO gap, reflecting their optimization for ground-
state energies rather than excited states. Overall, the aug-
MOLOPT basis sets provide fast convergence of HOMO−
LUMO gaps, while maintaining a well-conditioned overlap
matrix (see Figure 1).
Figure 3b shows the basis set convergence of the four basis set

families for G0W0@PBE0 HOMO−LUMO gaps, using aug-cc-
pV5Z as the CBS reference. The aug-MOLOPT basis sets
exhibit consistently small deviations from the CBS. Notably, the
MAD of the small aug-SZV-MOLOPT-ae basis is 160 meV,
better than the larger aug-cc-pVDZ basis, which yields aMAD of
220 meV. Likewise, aug-DZVP-MOLOPT-ae achieves a MAD
of just 60 meV, below the 80 meV deviation of the larger aug-cc-
pVTZ basis. This finding suggests that the aug-MOLOPT basis
sets are the ideal choice for GW HOMO−LUMO gap
calculations to ensure both fast basis set convergence of GW
HOMO−LUMO gaps and numerical stability for large
molecules. Again, the nonaugmented cc-pVXZ and MOLOPT
basis sets exhibit larger and more slowly converging errors for
G0W0@PBE0 HOMO−LUMO gaps. For example, the MAD of
the large cc-pV5Z basis is 240meV�only slightly lower than the
minimal aug-SZV-MOLOPT-ae-mini basis which has a MAD of
270 meV. When excluding molecules with diffuse LUMOs
(defined as LUMO eigenvalues above − 2 eV), the MAD for cc-
pV5Z decreases by an order of magnitude to 30 meV (Figure S2
in Supporting Information). This indicates that these basis sets
were optimized for ground-state properties, and lacking diffuse
functions, they are inadequate for accurately describingGW gaps
in systems with unoccupied states that significantly extend into
the vacuum.

2.6. GW+BSE and TDDFT Excitation Energies. Figure 3c
shows the basis set convergence of the four basis set families for
the first ten BSE@G0W0@PBE0 excitation energies, where the
deviation is again computed against aug-cc-pV5Z as the CBS
reference. As withGW calculations, the aug-MOLOPT basis sets
exhibit also consistently small deviations from the CBS in this
case. The MAD of the compact aug-SZV-MOLOPT-ae basis is
160meV, which is slightly below the 170meVMADof the larger
aug-cc-pVDZ basis. The aug-DZVP-MOLOPT-ae basis exhibits
a MAD of 80 meV, slightly worse than the 70 meV deviation of
the larger aug-cc-pVTZ basis. The nonaugmented cc-pVXZ and
MOLOPT basis sets show larger and more slowly converging
errors; for example, the MAD of the large cc-pV5Z basis is 290

meV; almost double the error of aug-SZV-MOLOPT-ae. In this
case, the aug-MOLOPT basis sets appear to be an excellent
choice for BSE calculations to ensure fast basis set convergence
of BSE excitation energies and numerical stability for large
molecules.
Figure 3d shows the basis set convergence of the first ten

excitation energies computed with TDDFT (PBE0). As before,
the aug-MOLOPT basis sets exhibit systematic improvement
with increasing basis size. However, in contrast to the BSE case,
the aug-cc-pVXZ basis sets outperform the aug-MOLOPT
family: for example, the MAD of aug-DZVP-MOLOPT-ae is
100 meV, whereas aug-cc-pVDZ achieves a significantly lower
MAD of 17 meV. Comparing with BSE results in Figure 3c, the
aug-cc-pVXZ basis sets converge more rapidly for TDDFT than
for BSE, while the aug-MOLOPT sets show similarly fast
convergence for both methods. We attribute this difference to
the design philosophy behind the basis sets: the aug-MOLOPT
sets were specifically optimized for BSE excitation energies
(albeit on a different training set, the Thiel’s set59), whereas the
aug-cc-pVXZ family was not. Nevertheless, aug-cc-pVXZ basis
sets feature ill-conditioned overlap matrices for large molecules,
making the aug-MOLOPT basis sets numerically more robust
for larger molecules. We report in App. C an example of a
calculation of these orbital basis sets on the 9,10-Dihydroan-
thracene molecule, showing the variation of the error for all the
test cases of Figure 3 with respect to the basis set size.

3. RI BASIS SETS
3.1. Auxiliary RI Basis Set Generation. The resolution-of-

the-identity (RI) technique is widely used to reduce the
computational cost of quantum chemical methods.62 In RI, four-
center integrals
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Here, we introduced the auxiliary RI basis set {φP}, which also
consists of Gaussians. m(r,r′) is the RI metric; convergence of
the RI expansion (28) depends onm. It has been shown that the
fastest convergence of the RI expansion is achieved using the
Coulomb metric, m(r, r′) = 1/|r − r′|.62
Early applications of RI include DFT63,64 andMP2,65 where it

became a standard technique by now. In random phase
approximation (RPA) calculations for the correlation energy,
RI reduces the scaling fromO(N6) in the canonical Casida-based
formulation to O(N4).66 However, RI is not universally
beneficial: in Hartree−Fock and hybrid functional calculations,
RI typically improves performance only when large orbital basis
sets are used.67 For small orbital basis sets, conventional four-
center formulations may remain more efficient. For the
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computation of charged excitations based on GW, RI has also
become a common tool, where it reduces the scaling from
O(N6) to O(N4),68−70 as well as for charge-neutral excitations
based on the BSE, where the screened Coulomb interaction is
computed using RI.
When using RI, an auxiliary RI basis set {φP} is required for

the factorization (28) of four-center integrals into two- and
three-center integrals. Although it is possible to generate
auxiliary RI basis sets on the fly during the calculation,71,72

this often results in large auxiliary RI basis sets. Recently, several
schemes have been proposed to tackle this issue, such as the
combined use of a contraction based on the singular value
decomposition and a high-momentum truncation of the
generated basis sets,73 or a newly suggested approach with
uncontracted, noneven-tempered sets that are truncated using
the 2-body energy as a metric.74 In this work, we instead
generate auxiliary RI basis sets by matching the RI-MP2
correlation energy of isolated atoms to the corresponding MP2
reference energies.75 For this purpose, as proposed in,75 we
generate auxiliary RI basis sets of different sizes by using the
(relative) ΔI metric as an optimization parameter:

= | || || |
+E

ij ab ij ab1
4 ijab i j a b

I
MP2

RI
2

(29)

where the (i,j) refer to occupied orbitals and (a,b) to empty
orbitals, EMP2 is theMP2 correlation energy and using a standard
notation for the double bar integral defined as76
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Larger auxiliary sets lead to consistently lower values ofΔI, see
Figure 4. Also, for smaller orbital basis sets, the required auxiliary

RI basis size to reach a given ΔI metric value is smaller. For the
smallest aug-SZV-MOLOPT-ae-mini basis, an auxiliary RI basis
set with only 25 basis functions is sufficient to reach a ΔI metric
value below 10−6. This highlights the potential for efficient
calculations using the aug-SZV-MOLOPT-ae-mini basis set.
For comparison, we computeΔI for the existing aug-cc-pVDZ

and aug-cc-pVTZ with corresponding RI basis sets,77 see
Figure 4. These basis sets have very small ΔI metric values below
10−6, but are relatively large in size (72 and 106 functions for
aug-cc-pVDZ-RIFIT and aug-cc-pVTZ-RIFIT, respectively).
We also create smaller auxiliary RI basis sets with lower accuracy,
which are still sufficient in applications as we demonstrate later
for nanographenes (Section 4). All generated auxiliary RI basis
sets are available in the Supporting Information (Section S6).
The optimization was performed using the auxiliary RI basis set
optimizer implemented in CP2K.78

3.2. RI Basis Set Convergence: GW HOMO−LUMO
Gaps from Low-Scaling O(N3) GW. For the GW and BSE
basis set benchmark presented in Figure 3, we employed the
largest available auxiliary RI basis sets (see Section 3.1 for
generation details). To enable large-scale GW and BSE
simulations, it is desirable to reduce the size of the auxiliary RI
basis set while maintaining high numerical accuracy. Smaller
auxiliary RI basis sets lead to lower computational cost and
improved scalability, particularly in low-scaling GW algorithms.
In this work, we employ the cubic-scaling GW implementa-

tion in CP2K for molecules,79 which uses the truncated
Coulomb metric80 for the RI approximation. While the fastest
convergence of RI-based methods is achieved when the cutoff
radius of the Coulomb operator is infinite, this also increases the
computational cost. Therefore, a balance must be found: the
cutoff radius should be small enough to reduce computational
requirements, yet large enough to ensure sufficiently fast
convergence of the auxiliary RI basis set.
To evaluate this trade-off, we benchmark G0W0@PBE0

HOMO−LUMO gaps for the aug-SZV-MOLOPT-ae, aug-
DZVP-MOLOPT-ae and aug-TZVP-MOLOPT-ae basis sets on
the same subset of 247 molecules from the GW5000 benchmark
set used in Figure 3. We consider four auxiliary RI basis sets of
increasing size, corresponding to decreasing the ΔI metric
threshold: 10−2, 10−3, 10−4, and 10−5. For each basis set, we
evaluate four different cutoff values for the truncated Coulomb
operator: rc = 3, 5, 7, and 9 Å.
Figure 5 summarizes the results. The color map shows the

absolute deviation of the G0W0 HOMO−LUMO gaps
(averaged over all 247 molecules) from the converged reference
obtained with the large aug-cc-pV5Z-RIFIT auxiliary RI basis
set81 and cutoff rc = 9Å. For the aug-SZV-MOLOPT basis set, at
the loosest RI threshold (10−2) and smallest cutoff (rc = 3 Å), the
average error exceeds 300 meV. However, increasing the cutoff
to rc = 9 Å reduces this error to ∼ 130 meV. For a larger auxiliary
RI basis (ΔI threshold of 10−4), numerical accuracy is
substantially improved: for rc = 7 Å, the deviation is 30 meV,
and drops to 20meV at rc = 9 Å. The best overall agreement with
aug-cc-pV5Z-RIFIT is obtained for an even larger auxiliary RI
basis (ΔI threshold of 10−5) with rc = 9 Å, where the average
absolute error is reduced to 13 meV. The results for the aug-
DZVP-MOLOPT and aug-TZVP-MOLOPT basis sets show
better convergence properties than the aug-SZV-MOLOPT
benchmark tests, which can be easily explained by the larger size
of these basis sets. However, the overall convergence trends are
very similar between all the basis sets. These results demonstrate
that accurate low-scaling GW calculations can be achieved using

Figure 4. ΔI metric for a carbon atom as a function of the auxiliary RI
basis set size, using various augmentedMOLOPT basis sets introduced
in this work. The auxiliary RI basis sets are optimized for the carbon
atom in a given basis set size to match the MP2 correlation energy.
Reference auxiliary RI basis set sizes and ΔI for aug-cc-pVDZ-RIFIT
and aug-cc-pVTZ-RIFIT are shown for comparison.
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relatively compact auxiliary RI basis sets when paired with a
sufficiently large Coulomb cutoff. For practical applications
aiming at high numerical precision, we recommend a ΔI
threshold of 10−4 and a cutoff radius of at least 7 Å, giving
excellent balance between efficiency and accuracy (∼ 30 meV).

4. LOW-SCALING O(N3) GW CALCULATIONS ON
NANOGRAPHENES

To demonstrate the suitability of the generated augmented
MOLOPT basis sets for large-scale applications, we perform
GW calculations on nanographenes of increasing size.
Representative geometries are shown in Figure 6a. For these
systems, we employ the PBE functional82 as the DFT starting
point and Hedin’s shift (34) to avoid the higher cost of hybrid
functionals during the SCF.
We use auxiliary RI basis sets with aΔI value below 1.5× 10−2.

The corresponding basis sizes are listed in Table 2. G0W0+H
HOMO−LUMO gaps for the nanographenes are shown in
Figure 6b. For L = 1 (9,10-Dihydroanthracene), basis set
convergence is challenging: the minimal aug-SZV-MOLOPT-
ae-mini basis underestimates the gap by approximately 1 eV.
This is partly due to the small auxiliary RI basis used (cf. Figure
5). For larger systems (L ≥ 8), convergence improves
significantly: all five basis sets agree within 50 meV (inset of
Figure 6b). This matches findings for two-dimensional
materials,23 where convergence within 100 meV was reached
using the aug-SZV-MOLOPT basis.
We attribute the improved basis set convergence for larger

structures to three factors: (i) larger systems offer more basis
functions, increasing flexibility; (ii) the PBE LUMO energy
decreases with L (Figure 6c), making the LUMO less diffuse in
vacuum and thus easier to represent (as discussed for the decay
length | |m/ 2n n in Section 2.4). For a benchmark of the
numerical precision of basis sets for G0W0 HOMO−LUMO
gaps as a function of the DFT LUMOenergy, see the Supporting
Information, Figures S1 and S2 (and Figure S3 for differences of
excitation energies).; (iii) there may be cancellation of errors
between an underconverged orbital and auxiliary RI basis set.
Notably, error cancellation does not distort the size dependence:
for L = 32, 64, 128, all aug-SZV-MOLOPT (SR, mini) basis sets
yield size-converged gaps consistently within 33 meV. This
indicates robustGW calculations for large systems. These results
support two conclusions: (i) basis set convergence for
nanostructures differs from that of small molecules and must
be analyzed accordingly; (ii) further optimization of Gaussian
basis sets for extended systems, in particular with pseudopoten-
tials,83 appears promising.
The condition number of the overlap matrix remains below

107 for all augmented MOLOPT basis sets (Figure 6d). In
contrast, it exceeds 1013 for aug-cc-pVDZ. The computational
cost is roughly reduced by a factor of 280 when using aug-SZV-
MOLOPT-ae-mini instead of aug-cc-pVDZ (Figure 6e). This
aligns with expected GW scaling of Nbf

2 NRI
2 : According to

Table 2, Nbf and NRI decrease by factors of about 2.4 and 6.8,
respectively, giving 2.42 × 6.82 ≈ 270. Despite this enormous
speedup, the gap difference between aug-SZV-MOLOPT-ae-
mini and aug-cc-pVDZ is less than 10 meV for L = 16.
The small size of the aug-SZV-MOLOPT-ae-mini basis set

enabled us to perform aGW calculation on a nanographene with
9224 atoms, requiring only 34,300 core hours.

5. CONCLUSION
We introduced the augmented MOLOPT family of all-electron
Gaussian basis sets optimized for accurate excited-state
calculations of large molecules for the elements H to Cl.
These basis sets achieve fast basis set convergence of GW
quasiparticle energy differences and BSE excitation energies
while ensuring low condition numbers of the overlap matrix S,

Figure 5.Convergence of low-scalingGW calculations79 with respect to
the cutoff radius of the truncated Coulomb metric and the auxiliary RI
basis set size (here quantified by the ΔI metric threshold). As orbital
basis set, we employ aug-SZV-MOLOPT-ae (top), aug-DZVP-
MOLOPT-ae (middle) and aug-TZVP-MOLOPT-ae (bottom). The
color map shows the mean absolute deviation of G0W0@PBE0
HOMO−LUMO gaps for the same subset of 247 molecules from the
GW5000 benchmark set used in Figure 3, relative to a reference
calculation using the aug-cc-pV5Z-RIFIT auxiliary RI basis set.81 Each
row corresponds to an auxiliary RI basis set generated with a given ΔI
metric threshold (from 10−2 to 10−5). Smaller errors are achieved with
tighter RI thresholds and larger Coulomb cutoffs. A practical
compromise is reached with a ΔI metric threshold of 10−4 and
rc ≥ 7 Å (error: 30 meV).
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thereby enabling numerically stable calculations. For G0W0@
PBE0 gaps, aug-DZVP-MOLOPT-ae yields a mean absolute
deviation (MAD) of 60 meV compared to the aug-cc-pV5Z
complete basis set, outperforming the larger aug-cc-pVTZ basis

set (MAD: 80 meV) for organic molecules. Similar MAD are
observed for BSE and TDDFT excitation energies. The
augmented MOLOPT basis sets exhibit excellent numerical
stability, with overlap matrix condition numbers below 107 even
for 9000-atom nanographenes. We also generate very compact
basis sets, aug-SZV-MOLOPT-ae-mini, which enable very
efficient large-scale G0W0 calculations, e.g., on a 9224-atom
nanographene consuming only 34300 core hours. This
demonstrates that the proposed augmented MOLOPT basis
sets enable routine GW and BSE calculations on large-scale
systems with several thousands of atoms, keeping good
numerical accuracy and reducing the computational cost by 2
orders of magnitude compared to previously used aug-cc-pVXZ
basis sets. All generated augmented MOLOPT basis sets are
freely available in the Supporting Information.

■ APP. A�COMPUTATIONAL DETAILS

Description of Molecular Test Set
For benchmarking excited-state energies with our generated
basis sets, we use the GW5000 dataset.87 We exclude all
molecules with less than ten atoms as small molecules tend to
have very diffuse unoccupied states; and the purpose of the
generated basis sets is to describe large molecules with less
diffuse unoccupied states. To reduce the computational cost, we
only use molecules with at most 20 atoms. We also remove all
molecules larger than 15 atoms in which carbon atoms
outnumber all other non-hydrogen elements by more than a
factor of two. Our aim is to ensure a balanced benchmark set
avoiding overrepresentation of unsubstituted or weakly
substituted hydrocarbons. The precise criterion for removal is
NC > 2(Ntot−NH−NC), where NC is the number of carbon
atoms, NH the number of hydrogen atoms and Ntot the total
number of atoms in the molecule.
Applying these criteria gives 247 molecules in the GW5000

benchmark set, where the majority of the molecules contain C
(98%), H (96%), N (76%), O (74%), while other elements are
less often present: S (31%), Cl (23%), F (10%), P (2%), B (1%)
and Si (1%). We also use a second molecular benchmark set that
focuses on other elements (Li, Be, B, Na, Ca, Al, Si, P); we show
the composition of this benchmark set and the calculations in
the Supporting Information SI1 and SI2, respectively. We
employ the CP2K package for all calculations.41,88 CP2K
employs a Gaussian basis set for representing KS orbitals [eq 2].
We use the Gaussian and augmented plane-waves scheme,89

which enables all-electron calculations in CP2K. We use
implementations in CP2K of conventional GW (Section 2.5)
in imaginary-frequency formulation with analytic continua-
tion,46 BSE90 and TDDFT91 (Section 2.6), as well as low-scaling
GW79 (Sections 3.2 and 4) based on the space-time method16

using minimax time-frequency grids.92−95 We visualized atomic
geometries using the VESTA program.96

Figure 6. GW calculations on nanographenes of increasing length
(defined by the number of stripes L = 1, 2, 4, ..., 512). (a)
Nanographene geometry for L = 1,2,4,8. Note that we put two
hydrogen atoms at the center carbon atom at the zigzag edge to prevent
for magnetic zigzag edge states. (b) Quasiparticle HOMO−LUMO
gaps computed with G0W0 + Hedin’s shift @ PBE using different basis
sets. Inset: deviation from the aug-DZVP-MOLOPT-ae basis set. (c)
PBE LUMO eigenvalue, serving as a measure of LUMOdiffuseness. (d)
Condition number κ(S) of the overlap matrix, computed from eq 11.
(e) Computation time (in core hours) of the G0W0 calculations on
Noctua2 (AMD Milan 7763) and Otus (AMD Turin 9655). The aug-
MOLOPT basis sets exhibit low condition numbers and reduced
computational cost, enabling stable and efficient calculations for
nanographenes exceeding 9000 atoms. Details on the number of nodes
used, wall time and memory consumption of the GW calculations are
listed in Table 3.

Table 2. Orbital Basis Set Size and Number of Auxiliary RI
Basis Functions H and C AtomUsed for theGWCalculations
Shown in Fig. 6 Across DifferentOrbital Basis Sets.(cf. Figure
4)

basis set Nbf
H Nbf

C NRI
H NRI

C ΔI
H ΔI

C

aug-SZV-M.-ae-mini 6 9 2 11 1.5 × 10−2 4.2 × 10−3

aug-SZV-M.-ae-SR 6 14 5 18 3.0 × 10−3 3.2 × 10−3

aug-SZV-M.-ae 6 14 6 23 1.3 × 10−4 6.7 × 10−4

aug-DZVP-M.-ae 9 30 9 35 4.4 × 10−5 4.2 × 10−4

aug-cc-pVDZ 9 23 23 72 7.3 × 10−8 9.7 × 10−8
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Numerical Aspects
We employ the PBE0 exchange-correlation functional97 as
starting point for our excited-state calculations. The usage of
PBE0 as starting point for GW and Bethe-Salpeter avoids
numerical instabilities due to multipole features of the self-
energy close to the quasiparticle solution,98,99 which can be
present when starting from the PBE functional.82 For the low−
scaling GW calculations on nanographenes (Section 4),
however, we use PBE for the SCF cycle to reduce computational
cost. As discussed in ref 99, G0W0@PBE can suffer from
numerical instabilities caused by poles in the self-energy Σn(ω)
close to the quasiparticle energy ω ≈ εn

G0W0, where

= + vRe ( )n
G W

n n n
G W

n
PBE xc0 0 0 0 (32)

Here, vnxc is the diagonal matrix element of the PBE exchange−
correlation potential. These instabilities can be eliminated either
by using eigenvalue self−consistent schemes (evGW0)

98,99 or,
more computationally efficient, by introducing a state-specific
Hedin shift,100,101

=H vRe ( )n n n n
PBE xc

(33)

leading to the modified quasiparticle equation

= ++ + H vRe ( )n
G W

n n n
G W

n n
H PBE H xc0 0 0 0 (34)

which we apply in Section 4 to obtain quasiparticle energies
using the G0W0 + Hedin’s shift (G0W0+H) method.

■ APP. B�MEMORY-SAVING SCHEME FOR
LOW-SCALING GW CALCULATIONS

In this appendix, we describe a memory saving scheme to reduce
the random access memory (RAM) of low-scaling GW
calculations27,79 substantially. The RAM bottleneck of the GW
algorithm27,79 appears in the computation of the self-energy Σ in
imaginary time iτ
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(35)

where μ, ν, λ, σ are atom-centered Gaussian basis functions for
expanding molecular orbitals (MO) and P,Q are auxiliary RI
basis functions for the screened Coulomb interaction W. G
denotes the Green’s function and

| =P Vr r r r r r r( ) d d ( ) ( ) ( , ) ( )r Pc (36)

are three-center integrals (3cI) of the truncated Coulomb
operator (rc: truncation radius)

=
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V
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0 else
r

c
c

(37)

The 3cIs (μν|P) are sparse, i.e., the numerical integral value (μν|
P) is large if and only if the three Gaussian functionsϕμ(r),ϕν(r)
and φP(r) are close together. The number of integrals (μν|P)
that need to be stored in the calculation is Nbf

2NRIα, where α is
the percentage of non-negligible (μν|P) elements kept in the
calculation. Each integral requires storage of 8 B in double-
precision arithmetic and thus the memory required to store all
(μν|P) is

= ·N N 8Bbf
2

RI (38)

The challenge regarding memory comes in the intermediate
tensor from eq 35

|M P W i( ) ( )Q
P

PQ
(39)

where the sparsity ofMνσQ in the index pairs ν-Q and σ-Q is lost
because the screened Coulomb interactionWPQ is long-ranged.
Therefore, a larger fraction β ≫ α of MνσQ elements are non-
negligible in the calculation.
We reduce the RAM consumption of eq 35 by a repeated

calculation of 3cIs. Specifically, we rewrite eq 35 as sum over
atomic contributions from atom A and atom B
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and we only keep the quantities on the right side of eq 40 in
memory if ν and Q belong to the atom-pair (A,B). The result of
the summation in eq 40 of the atom-pair (A,B) is added to
Σλσ(iτ) and we release then all quantities from the right side of
eq 40 belonging to atom pair (A,B) from the allocated memory.
For the next atom pair (A′,B′), we compute the 3cI (μν|P) from
eq 36. This repeated calculation of 3cIs allows us to only keep a
fraction of 3cIs and of intermediate tensors MνσQ (39) in
memory, reducing the RAM consumption drastically.

The repeated calculation of 3cIs comes with the drawback
that we need to compute the same integral (μν|P) several times.
Here, we make use of the properties of the Gaussian basis that
analytical integral expressions are available for (μν|P), such that
this additional computational load is small.102 In fact, the
computation of 3cIs for large systems exceeding 100 atoms only
takes <0.1% of the total execution time in the present GW
algorithm.27

We discuss now the numerical parameters of the GW
algorithm in relation to the generated augmented MOLOPT

Figure 7. Convergence of the G0W0 with Hedin’s shift HOMO−
LUMO gap with respect to the filter threshold parameter in the low-
scaling GW implementation for the nanographene with length L = 16.
Results are shown for five different basis sets. Deviations are decreasing
for tighter thresholds.
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basis sets. First, we discuss the filter threshold for sparse
operations like computing the self-energy, eq 40, see Figure 7 for
the nanographene with length L = 16. We observe that the GW
HOMO−LUMO gap computed with smaller basis sets
converges faster with the filter threshold; as an example, the
GW HOMO−LUMO gap only changes by less than 1 meV in
aug-SZV-MOLOPT-ae-mini when decreasing the filter thresh-
old for atomic blocks from 10−10 to 10−12. Instead, for the aug-
cc-pVDZ basis set, the GW HOMO−LUMO gap changes by 8
meV. This finding suggests that with the developed compact
augmented MOLOPT basis sets, larger filter thresholds can be
chosen in the calculation, which contributes to further improve
the computational efficiency and numerical stability.
Finally, we discuss the scaling of computation time with

number of employed cores. In Figure 8a, we report the
acceleration of the calculation for a nanographene of length L =
64 (1160 atoms) with increasing number of MPI ranks. We
observe almost perfect weak scaling from one node (16 MPI
ranks) to 64 nodes (1024 MPI ranks). Another handle for the
user to optimize the computation time, is the amount of RAM
available to every MPI rank. While we have fixed the available
RAM to 6 GB in Figure 8a, we report the acceleration with
respect to the available RAM in Figure 8b. For 4 nodes (64
ranks), we vary the available memory between 1 GB per MPI
rank and 40 GB per MPI rank (on large-memory nodes with

1024 GB per node). The calculation gets accelerated when
increasing the available memory from 1 to 8 GB perMPI rank by
a factor 2.8, because a smaller amount of three-center integrals
need to be recomputed when more memory is available.
Providing even more memory (20 or 40 GB per MPI rank), only
leads to a minor additional acceleration.
For all GW calculations reported in Figure 6b, we provide the

full details of basis sizes, memory requirements for storing three-
center integrals, their sparsity, available RAM and the execution
time in Table 3.

■ APP. C�BASIS SET CONVERGENCE FOR
9,10-DIHYDROANTHRACENE

In this appendix, we report DFT andGWHOMO−LUMO gaps
as well as GW+BSE and TDDFT excitation energies of 9,10-
Dihydroanthracene (L = 1 nanographene in Section 4) using
various basis sets to assess the quality of the basis sets as a
function of their basis set size. We plot in Figure 9 the error with
respect to the aug-cc-pV5Z calculation of the excitation energies
and band gaps for the 9,10-Dihydroanthracene molecule as a
function of the number of basis functions.
The results show similar trends as observed in Figure 3. Both

nonaugmented cc and MOLOPT basis sets show poor
convergence with respect to the number of basis function,
showing that these are not appropriate for the simulation of
excited state energies. For the cc-pVQZ basis set, the error
across all tests is around 150 meV on average, whereas it is
around 450 meV on average for the comparable QZVPP-
MOLOPT basis set, so that the cc basis sets perform better in
this case (but still very poorly in comparison to the reference
calculation, given the large size of the cc-pVQZ basis set).
The augmented basis sets show much better convergence

across all four tests in Figure 9 w.r.t. the basis set size. For the
aug-cc-pVTZ basis set, which is of comparable size as the
nonaugmented cc-pVQZ and QZVPP-MOLOPT basis sets, the
error is around 20 meV on average, and for the aug-TZVP-
MOLOPT basis set it is around 10 meV. Note that for the PBE0
HOMO−LUMO gap (Figure 9a) and TDDFT excitation
energies (Figure 9d), the aug-cc-pVXZ basis sets converge faster
with the basis set size than the aug-MOLOPT basis sets; still
aug-MOLOPT basis sets feature improved numerical stability
for large-scale calculations due to the reduced condition number
compared to aug-cc-pVXZ. For the GW HOMO−LUMO gap
(Figure 9b) and GW-BSE excitation energies (Figure 9c), our
aug-MOLOPT basis sets give faster convergence with the basis
set size than aug-cc-pVXZ basis sets.

■ ASSOCIATED CONTENT
Data Availability Statement
Inputs and outputs of all calculations reported in this work are
available in a Github repository85 and in a Zenodo repository.86

The augmented MOLOPT basis sets and corresponding
auxiliary RI basis sets generated in this work are available in
the Supporting Information S3, S4 and in the open-source
package CP2K.41,61 TheGW,GW+BSE and TDDFT algorithms
employed in this work are available in the open-source package
CP2K.41,61

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.5c01386.

Additional benchmark calculations to assess the numer-
ical precision of our developed all-electron augmented

Figure 8. MPI and memory scaling for G0W0 calculations on a
nanographene with length L = 64 using the aug-SZV-MOLOPT-ae
basis set. (a) Parallel acceleration with increasing number of nodes
(each node has 16MPI ranks; eachMPI rank has 8 OMP threads). The
calculation scales efficiently up to over 1000 MPI ranks, with near-ideal
scaling. (b) Acceleration when providing more available RAM per MPI
rank to the GW calculation (at fixed 64 MPI ranks, i.e., 4 nodes). The
runtime benefits from increased memory per MPI rank, with saturation
reached around 8 GB per MPI rank.
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MOLOPT basis sets. We define another benchmark set
containing 123 small molecules in Section S1 for
benchmarking the augmented MOLOPT basis sets of
Li, Be, B, Na, Ca, Al, Si, P, which are only rare in the
GW5000 subset used in the main text. We report PBE0
and GW HOMO−LUMO gap and Bethe-Salpeter and
TDDFT excitation energies in Section S2 computed with
the augmented MOLOPT basis sets and compared to the
complete basis set limit. We show additional results on the
GW5000 subset with molecules with a LUMO energy
below −2 eV (Section S3). We also list excitation gaps
obtained with BSE and TDDFT (Section S4).We provide
all the newly generated orbital (Section S5) and auxiliary
RI (Section S6) basis sets in the CP2K basis set file format
(PDF)
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Table 3. Basis Sizes, Memory Requirements for Storing Three-Center Integrals (μν|P), Eq 38, Their Sparsity, Available RAM and
the Execution Time for GW Calculations on Nanographenes from Figure 6a

L NC NH basis set Nbf NRI
H NRI

C NRI

Occ. of
(μν|P)

RAM (μν|P)
(GB) Nnodes

RAM of nodes
(GB)

GW execution
time (h)

1 14 12 aug-SZV-M.-ae-mini 198 2 11 178 100.00% 0 1 258 0.001
1 14 12 aug-SZV-M.-ae-SR 268 5 18 312 100.00% 0 1 258 0.003
1 14 12 aug-SZV-M.-ae 268 6 23 394 100.00% 0 1 258 0.006
1 14 12 aug-DZVP-M.-ae 528 9 35 598 100.00% 1 1 258 0.019
1 14 12 aug-cc-pVDZ 430 23 72 1284 100.00% 1 1 258 0.043
2 28 16 aug-SZV-M.-ae-mini 348 2 11 340 100.00% 0 1 258 0.004
2 28 16 aug-SZV-M.-ae-SR 488 5 18 584 100.00% 1 1 258 0.014
2 28 16 aug-SZV-M.-ae 488 6 23 740 100.00% 1 1 258 0.027
2 28 16 aug-DZVP-M.-ae 984 9 35 1124 100.00% 8 1 258 0.289
2 28 16 aug-cc-pVDZ 788 23 72 2384 100.00% 11 1 258 0.373
4 56 24 aug-SZV-M.-ae-mini 648 2 11 664 70.31% 1 1 258 0.030
4 56 24 aug-SZV-M.-ae-SR 928 5 18 1128 77.07% 5 1 258 0.141
4 56 24 aug-SZV-M.-ae 928 6 23 1432 91.05% 8 1 258 0.366
4 56 24 aug-DZVP-M.-ae 1896 9 35 2176 99.82% 62 1 258 4.204
4 56 24 aug-cc-pVDZ 1504 23 72 4584 99.97% 82 1 258 4.907
8 112 40 aug-SZV-M.-ae-mini 1248 2 11 1312 25.33% 4 1 258 0.151
8 112 40 aug-SZV-M.-ae-SR 1808 5 18 2216 28.62% 16 1 258 0.811
8 112 40 aug-SZV-M.-ae 1808 6 23 2816 38.33% 28 1 258 2.143
8 112 40 aug-DZVP-M.-ae 3720 9 35 4280 50.68% 240 1 258 33.487
8 112 40 aug-cc-pVDZ 2936 23 72 8984 55.16% 341 1 258 44.360
16 224 72 aug-SZV-M.-ae-mini 2448 2 11 2608 7.43% 9 1 258 0.662
16 224 72 aug-SZV-M.-ae-SR 3568 5 18 4392 8.45% 37 1 258 3.843
16 224 72 aug-SZV-M.-ae 3568 6 23 5584 11.73% 66 1 258 9.099
16 224 72 aug-DZVP-M.-ae 7368 9 35 8488 16.15% 595 10 2577 13.034
16 224 72 aug-cc-pVDZ 5800 23 72 17,784 18.01% 861 10 2577 18.726
32 448 136 aug-SZV-M.-ae-mini 4848 2 11 5200 2.00% 19 3 3060 0.808
32 448 136 aug-SZV-M.-ae-SR 7088 5 18 8744 2.28% 80 1 258 13.650
32 448 136 aug-SZV-M.-ae 7088 6 23 11,120 3.21% 143 5 5100 6.116
64 896 264 aug-SZV-M.-ae-mini 9648 2 11 103,84 0.52% 40 3 3060 2.611
64 896 264 aug-SZV-M.-ae-SR 14,128 5 18 17,448 0.59% 164 4 1031 12.398
64 896 264 aug-SZV-M.-ae 14,128 6 23 22,192 0.84% 297 5 5100 18.621
128 1792 520 aug-SZV-M.-ae-mini 19,248 2 11 20,752 0.13% 81 3 3060 9.080
128 1792 520 aug-SZV-M.-ae-SR 28,208 5 18 34,856 0.15% 334 4 4080 40.488
128 1792 520 aug-SZV-M.-ae 28,208 6 23 44,336 0.21% 605 5 5100 65.225
256 3584 1032 aug-SZV-M.-ae-mini 38,448 2 11 41,488 0.03% 163 10 16,287 4.636
512 7168 2056 aug-SZV-M.-ae-mini 76,848 2 11 82,960 0.01% 328 20 32,573 8.928
aThe available memory for the storage of 3cIs is 6 GB per MPI rank throughout all the listed calculations. Execution time has been measured on
the Noctua2 cluster at PC2 computing center in Paderborn, where each node is equipped with two AMD Milan 7763 processors, each providing 64
cores (128 cores per node). For L ≥ 256, the computations have been executed on the Otus cluster at the PC2 computing center, where one node
consists of two AMD Turin 9655 processors, each providing 96 cores (192 cores per node). In the basis set names, “M.” stands for “MOLOPT”.
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