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ABSTRACT: We introduce a family of all-electron Gaussian basis sets,
augmented MOLOPT, optimized for excited-state calculations on large molecules.

We generate these basis sets by augmenting existing STO-3G, STO-6G, and

MOLOPT basis sets optimized for ground state energy calculations. The ¢
augmented MOLOPT basis sets achieve fast convergence of GW gaps and
Bethe—Salpeter excitation energies, while maintaining low condition numbers of
the overlap matrix to ensure numerical stability. For GIW HOMO—-LUMO gaps,
the double-{ augmented MOLOPT basis yields a mean absolute deviation of 60
meV to the complete basis set limit. The basis set convergence for excitation
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energies from time-dependent density functional theory and the Bethe—Salpeter
equation is similar. We use our smallest generated augmented MOLOPT basis (aug-SZV-MOLOPT-ae-mini) to demonstrate GW
calculations on nanographenes with 9224 atoms requiring only 34300 core hours of computational resources.

1. INTRODUCTION

First-principles electronic structure calculations’ are now widely
employed across various fields, including the computation of
electronic band structures of crystals and the investigation of
reaction mechanisms in chemistry. A fundamental initial step in
nearly all such calculations is specifying the atomic geometry,
that is, the positions of the atomic nuclei. While this task is
relatively straightforward for small molecules with a few atoms in
the unit cell, it quickly becomes complex as the number of atoms
increases. For instance, determining the atomic geometry of a
liquid—solid interface can be a challenge. Recently, there has
been a transformative shift in how atomic geometries are
determined, driven by advances in machine learning. Techni-
ques such as machine-learned interatomic potentials” and direct
structure prediction approaches, like those used in protein
folding,” are rapidly becoming standard tools in the field.

As a result, increasingly complex atomic structures,
comprising 100,000 atoms or more,” are now available as
starting points for first-principles calculations. A particularly
interesting branch of these calculations is the study of
electronically excited states.”~” Understanding these excitations
is important for interpreting optical experiments, from conven-
tional optical absorption spectroscopy to ultrafast phenomena
induced by femtosecond laser pulses.8 On the theoretical side,
this poses a major challenge as first-principles methods for
excited-state calculations are significantly more computationally
demanding than those for ground-state properties.”® The most
widely used approaches for excited-state calculations include
time-dependent density functional theory (TDDET),”' the
GW approximation for quasiparticle energies, i.e., electron
removal and addition energies,11_13 and the GW plus Bethe—
Salpeter equation (GW-BSE) for optical excitations.”” All of
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these methods have in common that the computational cost can
quickly grow with the number of atoms in the molecule or unit
cell, depending on the specific algorithm.

One approach to restrict this growth in computation time is
the usage of low-scaling algorithms which often employ spatial
locality. As an example, we consider the irreducible density
response ¥°(r, r’), which describes how the electron density at
position r changes in response to an external potential applied at
position 1’. ¥°(r, r') neglects the Coulomb interaction of the
induced electron density and reflects the system’s intrinsic
nonlocal polarizability. In semiconductors and dielectrics,
2°(r, r') decays exponentially with increasing distance between
randr, ie, y°(r,r’) = 0 as Ir — r'l > oo, which is a sign of the
spatial locality of the electronic structure, the “nearsighted-

ess” 1415

Spatial locality can be exploited in the GW space-time
algorithm,lé’17 which scales as O(N®) with the number of atoms
N, compared to the O(N*) scaling of conventional frequency-
based GW algorithms.'® The space-time algorithm uses a real-
space grid representation and switches between real-space and
plane-wave bases. To retain the favorable scaling, key steps must
be performed in real space; using plane waves throughout would
increase scaling again to O(N*). Fast Fourier transforms (FFTs)
enable efficient switching between representations but require
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an equidistant real-space grid. Such grids are not ideal for
electronic structure calculations, as they fail to exploit the
characteristic shapes of atomic orbitals, such as s-, p-, or d-type
functions. We do need to mention recent advancements in the
generation of nonequidistant real-space grids'®~>* which have
reduced the number of grid points dramatically. Still, a compact
atomic-orbital basis set is required for the generation of these
real-space grids. Reformulating the GW space-time method in a
localized atomic-orbital basis can significantly reduce matrix
sizes, enabling efficient calculations for two-dimensional
crystals™ as well as large and complex systems.”**~>

The computational effort of excited-state methods like GW,
TDDFT and GW-BSE depends sensitively on the size of the
atomic-orbital basis set. As an example, the computational cost
of space-time GW*****” increases with the fourth power in the
number of basis functions per atom. It is thus highly desirable to
employ optimal atomic-orbital basis sets that provide converged
excitation energies with a small number of basis functions.
Atomic-orbital basis sets come in various forms, including
numeric atom-centered orbitals (NAOs),”**’ Slater-type
orbitals (STOs),* and Gaussian-type orbitals (GTOs).*!
NAOs offer high flexibility and accuracy with compact sets,
while STOs closely resemble atomic orbitals and also allow for
small basis sizes. GTOs achieve radial flexibility via super-
position of several Gaussians (“contractions”) and enable
efficient evaluation of Coulomb integrals through analytical
expressions.” > This efficiency has made GTOs a standard in
quantum chemistry software and motivates their use in this
work.

Most GTO basis sets have been optimized for the
computation of the ground state energy. However, when such
basis sets are used in excited-state methods like GW-BSE, they
yield a slow basis-set convergence. To cure this issue, one can
add further Gaussian functions to ground-state optimized basis
sets, as it is done in the aug-cc-pVXZ basis set family, X =D, T,
Q, 5.*" Here, the additional Gaussians are optimized to match
the LUMO wave function via optimization of the total energy of
charged atoms. In this way, the additional Gaussians describe
electronically excited states, which often involve the excitation
from occupied orbitals to LUMO. The aug-cc-pVXZ basis sets
yield good accuracy for excitation energies of small molecules,
but their application to large systems is severely limited by
numerical issues mainly related to the inclusion of very diffuse
Gaussian functions, i.e., those with very small exponents that
decay slowly. As a result, the condition number of the overlap
matrix is large,” leading to numerical instability and
convergence problems in the self-consistent-field iterations of
large molecules. Consequently, the use of aug-cc-pVXZ is
typically prohibitive for large molecules. This presents a gap in
the current methodology: while Gaussian basis sets optimized
for excited-state calculations of small molecules exist, Gaussian
basis sets optimized for excited-state calculations of large,
complex molecular systems are lacking.

In contrast to excited states, Gaussian basis sets tailored for
computing the DFT ground-state energy in large molecular
systems already exist. A prominent class of such basis sets are the
MOLOPT-type basis sets, which were specifically designed to
balance accuracy of DFT ground-state energy calculations with
numerical stability. Not only the accuracy of ground-state
energies of molecules’ " has been optimized, but also the
condition number of the overlap matrix has been minimized,
which is critical for ensuring numerically stable DFT calculations
in extended and complex systems.
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Despite their success in ground-state calculations, the
currently available MOLOPT basis sets””~** do not offer a
sufficiently accurate description of electronically excited states.
In this work, we address this limitation by augmenting existing
all-electron MOLOPT basis sets’””" with additional diffuse
Gaussian functions, which are optimized to reproduce excitation
energies from GW-BSE calculations performed with a large
reference basis set (aug-cc-pVSZ). As a result, we introduce the
all-electron (ae) aug-MOLOPT-ae basis set family containing
aug-SZV-MOLOPT-ae, aug-DZVP-MOLOPT-ae, and aug-
TZVP-MOLOPT-ae. Our basis sets cover the elements of
periods I, II, and III (H to Cl) and are specifically designed for
accurate and efficient excited-state calculations in large
molecular systems.

The article is organized as follows: In Section 2.1, we give an
overview of Kohn—Sham DFT in a Gaussian basis, where
numerical instabilities due to the inverse overlap matrix can
arise, as discussed in detail in Section 2.2. A theoretical
perspective on basis set convergence for quasiparticle and
excitation energies is provided in Section 2.3. We further provide
the procedure for generating the augmented MOLOPT basis
sets in Section 2.4 .Benchmark results on HOMO—-LUMO gaps
from PBEO and GW as well as excitation energies from BSE and
TDDFT for the augmented MOLOPT basis sets are given in
Sections 2.5 and 2.6, respectively. The procedure to generate the
associated auxiliary RI basis sets is presented in Section 3.1. In
Section 3.2, we evaluate how auxiliary RI basis size and Coulomb
cutoff affect the accuracy in low-scaling GW calculations. Large-
scale applicability of the augmented MOLOPT basis sets is
demonstrated in Section 4, where we perform GW calculations
on nanographenes with over 9000 atoms. We describe the
molecular test set for our benchmark and the computational
details in App. A. In App. B, we describe a memory-saving
scheme for the computation of the self-energy using a repeated
calculation of three-center integrals. Finally, in App. C, we carry
out a test calculation of our new basis sets on a representative
system (9,10-Dihydroanthracene), in order to quantitatively
assess the quality of these basis sets with respect to their size.

2. ORBITAL BASIS SETS

2.1. Expansion of Kohn—Sham Orbitals in a Gaussian
Basis Set. Many excited-state calculations of large molecules
start from Kohn—Sham (KS) density functional theory (or
Hartree—Fock theory),’”*" where one needs to solve the KS
equations

L%+mmMHHMH

(1)

where y,(r) are the KS orbitals and ¢, are the KS eigenvalues.
The effective potential V,4(r) includes the external potential
originating from the Coulomb potential of the nuclei, the
Hartree potential, and the exchange-correlation potential.

To solve the KS equations (1) numerically, each KS orbital is
expanded as a linear combination of predefined basis functions.
When a Gaussian basis set is used, each orbital y,(r) is written as
a sum over basis functions ¢, (r) of the molecule (or unit cell*”)
with expansion coefficients C,,,

Nyt
y(r) = ) Cugh (x)
pu=1 (2)
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Ny is the number of basis functions. The coefficients C,, are
unknown and determined by solving the KS equations (1). More
specifically, the KS equations (1) are reformulated by inserting
the basis expansion (2) into the Kohn—Sham equations (1),
then multiplied with a basis function ¢,(r) and integrated over
the whole space to obtain the matrix equations

Z Hy L/n Z S;wcl/ngn
v ©)
known as the Roothaan-Hall equations.*’ Here, h,, is the
Kohn—Sham matrix and the overlap matrix is defined as
= [argme® @

Equation 3 is a generalized eigenvalue problem because the basis
functions {¢,} are nonorthogonal for molecules with more than
a single atom, i.e, S # Id. To solve eq 3 for C,, and ¢,, one
usually transforms eq 3 into a standard eigenvalue problem

L= €

by using the following transformations:

h=8"7hs"* C=

©)

sV ¢ (6)

The procedure is to first compute h=S""2hs712 , followed by
the diagonalization of h to obtain C via eq 5, and C $2Cto
obtain the expansion coefficients C,,

A Gaussian-type basis function ¢M(r) used in eq 2 is centered
at an atom A and is a linear combination of Gaussian functions
multiplied with a spherical harmonic Y7*,***'

pnm

45/4(1') Yz (O, (PA)TA Z exp(—

2
birn)

)

where r,=r — R, is the displacement vector to nucleus A located
at position Ry, (64,¢,) are the polar angles of ry and r, = Ir,l. I, is
the angular momentum quantum number and m, the magnetic
quantum number of ¢,.. @, ; are the contraction coefficients, 3, ;
the Gaussian exponents and orim the number of Gaussmn
primitives. The parameters I, m,, {@,i}; - P“‘“ and {f, ,}, -
entering eq 7 are determined and fixed before the KS-DFT
calculation. A Gaussian basis set B* of atom A is defined as a

finite set

= {4,(0)10%, (8)

containing Ni; Gaussian-type basis functions ¢,(x) from eq 7, all
centered at atom A.

2.2. Numerical Instability Computing S™"2 and the
Condition Number of S. While Gaussian basis sets offer
powerful flexibility by tuning contraction coefficients @ and
exponents f, eq 7, the inclusion of diffuse Gaussian functions,
i.e., those with small exponents, can introduce serious numerical
challenges. These diffuse functions are often essential for
accurately capturing excited-state quantities, because empty KS
orbitals are usually more diffuse than occupied KS orbitals.
Diffuse Gaussians decay slowly and exhibit significant spatial
overlap even across distant atoms. As a result, the overlap matrix
S becomes increasingly ill-conditioned, with eigenvalues that
span several orders of magnitude. This poor conditioning leads
to numerical instability when computing $7'/2 for transforming
the generalized KS eigenvalue problem (3) into a standard one
(6). Such instabilities are particularly challenging in large
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molecules which can lead to convergence issues of the self-
consistent-field (SCF) cycle. In the following, we analyze this
numerical instability in detail.

To illustrate the numerical instability of computing S~/
introduced by diffuse Gaussian basis functions, we consider the
minimal example of the hydrogen molecule, H,. Each atom has a
single s-type Gaussian basis function with identical exponent 3,
i.e., the two basis functions of the molecule read

(1) = (2/n) *exp(—plx £ d/2)° +y* + 2°1)
9

where d is the distance between both atoms. Both basis functions
¢1,(r) are normalized, such that the dlagonal elements of the
overlap matrix are equal to one, S;; = f dr ¢3(xr) =Sy, = f dr

$3(r) = 1. We further have S, = S, = [ dr ¢, (x)p,(r) = ¢ i
The eigenvalues of the 2 X 2 overlap matrix S are then
=1+ P

(10)

For a very diffuse Gaussian with f = 1073/ a(z) and bond distance d
= 1.4 ap, we have s, = 1.9990 and s, = 9.8- 10™*. Note that S of any
molecule is positive semidefinite, so s; > 0. The condition
number of S then is x(S) = 2041, computed from

S1,2

i (11)

For computing $™'/2 required in eq 6, one needs to compute
1/ \/5_1 , which gets increasingly large for decreasing s, This
introduces numerical instability, which is quantified by the
condition number x(8). The numerical example of k(S) = 2041
for H, with two diffuse Gaussians demonstrates how even a
small molecule with only two diffuse basis functions can lead to
poor conditioning.

Numerical instabilities arise if x(S) hits the inverse machine
precision. For double precision arithmetic, machine precision is
2752 2 107'¢ and thus numerical instabilities arise if x(S) > 10'°.
Several numerical tricks have been used to circumvent these
instabilities related to large x(S), for example the removal of
small eigenvalues of the overlap matrix.”> In our experience, we
have observed that this technique can help to certain extent, but
for too large condition numbers, the SCF cycle fails to converge
nevertheless. One of the possible reasons for this behavior is that
the eigendecomposition of the overlap matrix can become highly
unstable for overcomplete basis sets, " leading to an unreliable
regularization and thus SCF calculation.

Kk(S) increases rapidly with additional diffuse functions per
atom and for systems with more atoms. We illustrate the effect of
the molecular size on the condition number (11) in Figure 1:
When adding more atoms to the system, x(S) increases by
orders of magnitude for the commonly used Gaussian aug-cc-
pVDZ basis set (dark green curve) J reaching values above
the inverse machine precision, k(S) > 10'. In contrast, for all
four augmented MOLOPT basis sets presented later in this
work, the condition number remains well below this threshold,
even in the limit of infinite system size (bulk graphite).

2.3. Basis Set Convergence for Excitation Energies of
Charged and Neutral Excitations. As discussed in the last
Section 2.2, an essential requirement for basis sets used in
excited-state electronic structure methods is numerical stability,
ensured for example by keeping the condition number of the
overlap matrix S sufficiently low. Equally important is that the
basis sets enable fast convergence of excited-state energies with

https://doi.org/10.1021/acs.jctc.5c01386
J. Chem. Theory Comput. 2026, 22, 540—557


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c01386?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

aug-SZV-M.-ae-mini ® aug-SZV-M.-ae-SR @ aug-SZV-M.-ae
aug-DZVP-M.-ae ® aug-cc-pVDZ
| |
>1016
2 o
= 5
Rl
E 108}
2 5
=) |
g 1010 =
=
o s 4
© 1wt :
 ————o————8 o ® |
104 - 1 1 1
240 410 750 1430 2790

Number of atoms Nagoms

Figure 1. Condition number x(S) of the overlap matrix for a finite
graphite-like cutout computed from eq 11 using five different Gaussian
basis sets. The cutout with 1430 atoms is shown in the inset; we vary its
horizontal length, and the corresponding number of atoms is plotted on
the horizontal axis. For the aug-cc-pVDZ basis set, """ k(S) exceeds the
inverse machine precision (~10'®) for cutouts with 750 atoms and
more, leading convergence issues in the SCF. We also show the
condition number of the four augmented MOLOPT basis sets (aug-
SZV-MOLOPT-ae-mini, aug-SZV-MOLOPT-ae-SR, aug-SZV-MO-
LOPT-ae, aug-DZVP-MOLOPT-ae) developed in this work, where
the condition number remains well below this threshold.

respect to the basis set size. In this section, we analyze the
convergence behavior of two types of excitations: (i) charged
excitations, corresponding to quasiparticle (QP) energies as
obtained from GW, and (ii) charge-neutral excitations, such as
those calculated from BSE or TDDFT."?

2.3.1. Charged Excitations: GW Quasipatrticle Energies. 1t is
well established that absolute GW quasiparticle energies ¢,
converge slowly with increasing basis set size Ny *>*° and thus
require basis set extrapolation.””*® However, energy differences
between QP states, such as the HOMO—-LUMO gap, converge
much faster.”®*® We rationalize this behavior in this section,
starting by dividing the QP energies into ionization potentials
(IPs) and electron affinities (EAs):"*

e, = Ey — Ep_, if €, < & (IPs)

e, = En,, — Ey if &, > & (EAs) (12)
Here, E}; , | is the nth excited state energy of the N + 1 electron
system and &, is the Fermi energy.

According to the second Hohenberg—Kohn theorem,”” the
ground state energy EY of KS-DFT converges from above
toward the complete-basis-set (CBS) limit as the basis size
increases, i.e.,

Ey = lim Ey(Ny) < Ex(Ny)

Np¢— 0o

(13)

We make this assumption also for the excited-state energies Ey
and Ey . ,, following the Hylleraas-Undheim-MacDonald

$0,51
theorem:”

Exy = lim Ey(Ny) < Ey(Ny)

Np— 0o

(14)
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We assume the deviation from the complete basis set limit is
extensive in the number of electrons, i.e,, it scales linearly with
the number of electrons, and it is independent of excitation
index n. This behavior can be expressed as

EX(Nye) = Ey + N-f(Ny) (15)
Ex(Nye) = Ey + N-f(Ny) (16)
Exa1(Nog) = Exey + (N & 1)+f (Nie) (17)
with

f(Ny) > 0 and Nifi’oo f(Ny) =0 i~

Combining eqs 12, 15, 17, and 18 implies that the absolute QP
energy levels (i.e., IPs and EAs) converge slowly from above with
increasing basis set size:

&,(Npp) = €, + f(Nye) 2 &, = lim ,(Nyp)

Ny— o0

(19)

In contrast, when using the simplified model (19) for
differences of QP energy levels, ¢, (Nyg) — &, (Ny), they are
independent of f(Ny):

&,(Nye) — &,(Nyp) = &, — &, = lim [g,(Nye) — &, (Nyp)]

Nyg— o0
(20)

This analysis suggests that the convergence of QP energy
differences is significantly faster than that of absolute QP
energies, provided that the basis set error satisfies the
convergence forms given in eq 15—17, at least approximately.
Finally, we assume that GW QP energies are good approx-
imations to the QP energies (12) such that this analysis carries
over to GW QP energies.

2.3.2. Charge-Neutral Excitations: TDDFT and BSE
Excitation Energies. For charge-neutral excitations one
considers the energy difference AE, between the ground state
and the electronically excited state n, both with N electrons:

(21)
Again, assuming the convergence form (16), we see that the
function f(N) cancels out for the basis set convergence of
excitation energies,

Nys— 00

AE, = E}, — Ey,

(22)

where again AE, is the excitation energy in the CBS limit.

Summarizing, we can expect relatively fast convergence of
BSE excitation energies and GW QP energy differences like the
GW HOMO-LUMO gap with the basis set size, given that the
basis sets are well optimized, while absolute values of GW QP
energy levels are hard to converge with the basis set size.

2.4. Basis Set Generation Recipe. A Gaussian basis set (8)
for an element A is constructed by specifying the total number of
basis functions Ni selecting the number of functions ¢, (x) for
each angular momentum quantum number I Each ¢,(r)
consists of a linear combination (7) of primitive Gaussians
characterized by exponential decay parameters f,; and
contraction coefficients @, ;. One motivation for this contraction
scheme is to better approximate Slater-type orbitals, which
decay exponentially as exp(—{ r) and represent the shape of
atomic orbitals in the hydrogen-like model.”" The parameters of
each contracted function ¢, (r) are then optimized to reproduce
one or more atomic or molecular properties. These may include,

https://doi.org/10.1021/acs.jctc.5c01386
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Table 1. Composition of Gaussian Basis Sets: Dunning’s Augmented Correlation-consistent Basis Sets Include aug-cc-pVDZ,
aug-cc-pVTZ and aug-cc-pVQZ*

basis composition Nyg root basis (rb) rb composition augmentation min exponent /3 (au)
H, He aug-cc-pVDZ 3s, 2p 9  ccpvDZ®H 2s, Ip Is, 1p 0.030 (H), 0.072 (He)
Li—Ne aug-cc-pVDZ 4s, 3p, 2d 23 cc-pvVDZ? 3s, 2p, 1d Is, 1p, 1d 0.006 (Li)—0.106 (Ne)
Na—Cl aug-cc-pVDZ 5s, 4p, 2d 27 cc-pvDZ™ 4s, 3p, 1d Is, 1p, 1d 0.006 (Na)— 0.047 (Cl)
H, He aug-cc-pVTZ 4s, 3p, 2d 23 cepVTZH* 3s, 2p, 1d Is, 1p, 1d 0.025 (H), 0.052 (He)
Li—Ne aug-cc-pVTZ Ss, 4p, 3d, 2f 46 ccpVTZ*™ 4s, 3p, 2d, 1f 1s, 1p, 1d, 1f 0.008 (Li)—0.092 (Ne)
Na—Cl aug-cc-pVTZ 6s, 5p, 3d, 2f 50 ce-pVTZ > Ss, 4p, 2d, 1f Is, 1p, 14, 1f 0.007 (Na)—0.042 (CI)
H, He aug-cc-pVQZ Ss, 4p, 3d, 2f 46 ccpvVQZ*PH 4s, 3p, 2d, If Is, 1p, 1d, 1f 0.024 (H), 0.048 (He)
Li—Ne aug-cc-pVQZ 6s, 5p, 4d, 3f, 2g 80 cepvQz Ss, 4p, 3d, 2f, 1g Is, 1p, 1d, 1f, 1g 0.006 (Li)—0.082 (Ne)
Na—Cl aug-cc-pVQZ 7s, 6p, 4d, 3f, 2g 84 cc-pvVQZ>* 6s, 5p, 3d, 2f, 1g Is, 1p, 14, 1f, 1g 0.005 (Na)—0.038 (Cl)
H, He aug-SZV-M.-ae-mini 3s, 1p STO-3G™ 1s 2s, 1p 0.065 (H), 0.090 (He)
Li—Ne aug-SZV-M.-ae-mini 3s, 2p 9 STO-3G*"** 2s, 1p Is, 1p 0.048 (Li)—0.200 (Ne)
Na—Cl aug-SZV-M.-ae-mini 4s, 3p 13 STO-3G* 3s, 2p Is, 1p 0.050 (Na)—0.080 (CI)
H aug-SZV-M.-ae-SR 3s, 1p 6 STO-3G™! 1s 2s, 1p 0.065 (H)
C N, O aug-SZV-M.-ae-SR 3s,2p, 1d 14 STO-3G*! 2s, 1p Is, 1p, 1d 0.115 (C)-0.162 (0)
H, He aug-SZV-M.-ae 3s, 1p 6 STO-6G>! Is 2s, 1p 0.065 (H), 0.090 (He)
Li—Ne aug-SZV-M.-ae 3s,2p, 1d 14 STO-6G*"*° 2s, 1p Is, 1p, 1d 0.031 (Li)—0.200 (Ne)
Na—Cl aug-SZV-M.-ae 4s, 3p, 1d 18 STO-6G>° 3s, 2p Is, 1p, 1d 0.050 (Na)—0.077 (Cl)
H, He aug-DZVP-M.-ae 3s, 2p 9 SVP-M.-ae"3® 2s, 1p Is, 1p 0.035 (H), 0.060 (He)
Li—Ne aug-DZVP-M.-ae 4s, 3p, 24, 1f 30 SVP-M.-ae>"?* 3s,2p, 1d Is, 1p, 1d, 1f 0.025 (Li)—0.100 (Ne)
Na—Cl aug-DZVP-M.-ae Ss, 4p, 2d, 1f 34 SVP-M.-ae>"** 4s, 3p, 1d Is, 1p, 14, 1f 0.045 (Na)—0.077 (CI)
H, He aug-TZVP-M.-ae 4s, 3p, 2d 23 TZVPP-M.-ae*"3® 3s, 2p, 1d Is, 1p, 1d 0.030 (H), 0.050 (He)
Li—Ne aug-TZVP-M.-ae 6s, 4p, 3d, 2f, 1g 56 TZVPP-M.-ae>">® 5s,2p, 2d, 1f Is, 1p, 1d, 1f, 1g 0.025 (Li)—0.100 (Ne)
Na—Cl aug-TZVP-M.-ae 6s, 6p, 4d, 2f, 1g 67  TZVPP-M.ae’™*®  Ss, 5p, 3d, If Is, 1p, 1d, 1f, g 0.025 (Na)—0.130 (Cl)

“The basis sets developed in this work are aug-SZV-MOLOPT-ae-mini, aug-SZV-MOLOPT-ae-SR, aug-SZV-MOLOPT -ae, aug-DZVP-MOLOPT-

ae and aug-TZVP-MOLOPT-ae.

for instance, the correlation energy of neutral atoms® or
negatively charged atoms’* or the ground state energy molecules
from DFT with the PBE functional.’

By increasing the number of basis functions Ni of the basis
set, one can construct hierarchical families of basis sets with
systematic improvements. The cc-pVXZ basis set family, X = D,
T, Q, .. is designed to systematically improve the correlation
energy of molecules obtained from post-Hartree—Fock methods
like MP2,*" the random phase approximation® or coupled
cluster.” The aug-cc-pVXZ basis set family, X =D, T, Q, Wohs
constructed to yield systematic improvements of electron
affinities of molecules computed from post-Hartree—Fock
methods. In contrast, the XZVP-MOLOPT basis set family, X
=S, D, T, Q% is designed to obtain basis-set converged
groundstate DFT calculations of large molecules, crystals,
liquids and material interfaces. For a more complete review of
Gaussian basis sets, we refer to ref*

We recall the strategy behind the construction of Dunning’s
aug-cc-pVXZ basis sets”*° as summarized in Table 1, to
motivate our approach of constructing basis sets. The aug-cc-
pVXZ basis sets are designed to compute electron affinities,
which requires accurate description of the lowest unoccupied
molecular orbital (LUMO) in KS-DFT. The LUMO is typically
much more diffuse than occupied orbitals as indicated by the
decay length §, ~ f1/./2mle,| of a molecular orbital outside of
the molecule; €, is the orbital energy of a bound state and m the
electron mass. For occupied orbitals, we usually have lg,|< 5 eV
while lepyyol ® 0 eV leads to a long decay length {;ywmo,
indicating a diffuse LUMO. Standard cc-pVXZ basis sets lack the
necessary diffuse functions to describe such orbitals. To address
this, aug-cc-pVXZ adds an uncontracted diffuse Gaussian
¢,(r) = Y7 (0,,04)7h @y exp(—p, %) for each angular momentum
I present in cc-pVXZ. The exponent f;is optimized to match the
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correlation energy of the corresponding anion at the complete-
basis-set limit. These augmented basis sets have proven effective
for excited-state properties, such as GIW HOMO—-LUMO gaps
and TDDFT or GW+BSE excitation energies.%’*w’58

While aug-cc-pVXZ basis sets yield good accuracy for
excitation energies of small and medium-sized molecules, their
application to large systems is severely limited by numerical
issues. The inclusion of very diffuse Gaussians results in a large
condition number of the overlap matrix S, making the
computation (6) of 7'/ numerically unstable, as discussed in
Section 2.2. This instability often leads to convergence problems
of the self-consistent-field cycle when treating large molecules.
Consequently, the use of aug-cc-pVXZ is usually prohibitive for
large molecules.

We develop a family of augmented all-electron (ae)
MOLOPT basis sets specifically targeted for excited-state
calculations of large molecules, following the analysis of
numerical stability from Section 2.2 and basis set convergence
from Section 2.3. We apply an augmentation strategy to the basis
sets STO-3G,”" STO-6G,”' SVP-MOLOPT-ae,””*" and
TZVPP-MOLOPT-ae,>”%® resulting in the aug-SZV-MO-
LOPT-mini-ae, aug-SZV-MOLOPT-ae-SR, aug-SZV-MO-
LOPT-ae, aug-DZVP-MOLOPT-ae, and aug-TZVP-MO-
LOPT-ae basis sets, respectively, see Table 1. The “mini”
bases correspond to smaller, more compact versions of the
corresponding regular basis sets, and are therefore well-suited
for intensive calculations in larger systems with a small cost in
accuracy, whereas the "SR” (short-range) basis sets have been
generated with less diffuse primitives and are therefore intended
to reduce the computational cost in condensed phase systems at
a similar accuracy. As such, we expect the following accuracy
hierarchy to hold: aug-SZV-MOLOPT-ae-mini < aug-SZV-
MOLOPT-ae-SR < aug-DZVP-MOLOPT-ae < aug-TZVP-

https://doi.org/10.1021/acs.jctc.5c01386
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Figure 2. aug-SZV-MOLOPT-ae-mini, aug-SZV-MOLOPT-ae-SR, aug-SZV-MOLOPT-ae and aug-DZVP-MOLOPT-ae basis sets developed in this
work for carbon in CP2K basis set format.*>®" Numbers marked in red have been optimized to match BSE excitation energies of the molecules
contained in Thiel’s set. The black numbers are the parameters taken from STO-3G>" (for aug-SZV-MOLOPT-ae-SR), STO-6G*" (for aug-SZV-
MOLOPT-ae) and from SVP-MOLOPT-PBE-ae”""** (for aug-DZVP-MOLOPT-ae). The basis sets for other atoms and all corresponding auxiliary R

basis sets are listed in the Supporting Information S3, S4.

MOLOPT-ae. We add one additional angular momentum shell
beyond I, of the root basis, and introduce one new diffuse
Gaussian primitive with a smaller exponent per angular
momentum to improve radial flexibility. One should therefore
note that we are using the term augmentation in a broader way
than the usual meaning that only involves diffuse functions.”
The name was chosen to obtain a compact and practical name
for the new family of basis sets and underline that these are built
on and retain the stability of the MOLOPT basis set, but with
better excited-state properties. We optimize the added basis
functions to reproduce the lowest five G,W,-BSE@PBEO
excitation energies calculated with the aug-cc-pVS5Z basis set
for Thiel’s set™ (for elements H, C, N, O) and the available
molecular set from ref 35 for the other elements up to chlorine.
In the objective function, we also ensure that the condition
number of the basis set stays limited, as in previous
optimizations of Gaussian basis sets.’”*® In practice, the
optimization is performed using Powell’s e11gorithm,60 which is
a local optimizer and may therefore converge to a local
minimum. However, since the optimization in any case depends
on the choice of the rather small molecular training set, reaching
the global minimum is not a strict requirement to generate high-
quality basis sets. Instead, we carefully validate the resulting basis
functions on a much larger benchmark set containing 247
molecules, ensuring their general reliability.

As an example, the STO-3G basis set of carbon contains five
basis functions, two s-functions (I = 0, m = 0) and one p-function
(I=1,m=-1,0,1)

3
¢1(1') = Z ;1 eXP(_ﬂi"é)

i=1

3
$,(1) = D a, exp(—yrd)

i=1

3
By 4,5(r) = Y6, g Z a3 exp(=77C)

i=1

(23)

. . 31,56
where @;; can be found in the literature®"”

i and the exponents
are
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B, =71.62/a; P, =13.05/a; f,=3.53/a;

n=1294/a; y,=068/a; y =022/a,

(24)
ag = 0.529 A is the Bohr radius.

To obtain the aug-SZV-MOLOPT-ae-SR basis set for carbon,
we use the STO-3G basis set (23) and add one s-function (I =0,
m = 0), one p-function (I =1, m = —1,0,1), and one d-function (!
=2, m = -2, —1,0,1,2), each having the form

4
¢(x) = Z @iy eXP(_}’,-Vé)
i=1
4
¢7,8,9(r) =Y, "N, P z Qs eXP(_KV(Z:)

i=1

4
4510_14(1') = Y{Z’_I'O’I'z(ﬁc, q)c)ré Z & 4 exp(—yiré)
i=1

(25)

The free parameters are y, and a;, i = 1,2,3,4, j = 4,5,6, which we
have optimized to match the lowest five BSE excitation energies
in the complete-basis set limit of the molecules of Thiel’s set.
The result of the optimization is , = 0.115 and the optimized a;;
are listed in Figure 2.

All generated aug-SZV-MOLOPT-ae-mini, aug-SZV-MO-
LOPT-ae-SR, aug-SZV-MOLOPT-ae, aug-DZVP-MOLOPT-
ae, and aug-TZVP-MOLOPT-ae basis sets are listed in the
Supporting Information (Section SS); the size, augmentation
procedure and minimum exponent of the basis sets are
summarized in Table 1.

2.5. PBEO and GW HOMO-LUMO gaps. We compute
HOMO-LUMO gaps using PBEO and G,W,@PBEO for a
subset of 247 molecules from the GWS000 benchmark set (see
App. A for the description of the benchmark set and the
computational details). Figure 3a,b shows the results for the aug-
MOLOPT basis sets introduced in this work, together with the
aug-cc-pVXZ, cc-pVXZ, and MOLOPT basis sets.

Figure 3a compares PBE0 HOMO—-LUMO gaps across the
four basis set families. We report the mean absolute deviation
(MAD) with respect to the complete basis set (CBS) limit, taken
here as aug-cc-pV5Z:

https://doi.org/10.1021/acs.jctc.5c01386
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Figure 3. Basis set convergence of excited-state energies for a subset of 247 molecules from the GW5000 benchmark set. We report the mean absolute
deviation (MAD) and 95th percentile error (9SPE) relative to the aug-cc-pVSZ basis for the aug-MOLOPT basis sets developed in this work, aug-cc-
pVXZ,** cc-pVXZ* and all-electron MOLOPT basis sets.””*® Panels show (a) PBE0 HOMO—-LUMO gaps, (b) G,W,@PBE0O HOMO—LUMO
gaps, (c) first ten excitation energies computed from BSE@G,W,@PBEO, and (d) from TDDFT (PBEO). All benchmark molecules contain between
10 and 20 atoms. For results on smaller molecules containing all elements H—Cl, see the Supporting Information S2, S3.

546

https://doi.org/10.1021/acs.jctc.5c01386

J. Chem. Theory Comput. 2026, 22, 540—557


https://pubs.acs.org/doi/10.1021/acs.jctc.5c01386?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c01386?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c01386?fig=fig3&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01386/suppl_file/ct5c01386_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c01386?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c01386?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

N,

‘mol

1 B aug—cc—pVSZ
N—ZlAi_AigCCP |

'mol

MAD” =
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where N, ;= 247 is the number of molecules and A ? is the PBEO
HOMO-LUMO gap of molecule i computed with basis set B.
While MAD captures the average accuracy, we also report the
95th percentile error (9SPE) to quantify the worst-case
deviations of the worst 5% of molecules. The aug-MOLOPT
basis sets show systematic improvement from aug-SZV-
MOLOPT-ae to aug-TZVP-MOLOPT-ae, with both MAD
and 9SPE decreasing toward the CBS limit. The aug-TZVP-
MOLOPT basis has a MAD of just 14 meV. The aug-cc-pVXZ
basis sets generally show even smaller deviations at equivalent
basis size—e.g,, aug-cc-pVTZ is closer to the CBS than aug-
TZVP-MOLOPT-ae. This is expected, as aug-cc-pVXZ are
specifically optimized for electron affinities and include very
diffuse functions well suited for describing the LUMO. In
contrast, the cc-pVXZ and MOLOPT families exhibit
significantly larger errors and slower convergence for the
HOMO-LUMO gap, reflecting their optimization for ground-
state energies rather than excited states. Overall, the aug-
MOLOPT basis sets provide fast convergence of HOMO—
LUMO gaps, while maintaining a well-conditioned overlap
matrix (see Figure 1).

Figure 3b shows the basis set convergence of the four basis set
families for GyW;@PBE0 HOMO—LUMO gaps, using aug-cc-
pVSZ as the CBS reference. The aug-MOLOPT basis sets
exhibit consistently small deviations from the CBS. Notably, the
MAD of the small aug-SZV-MOLOPT-ae basis is 160 meV,
better than the larger aug-cc-pVDZ basis, which yields a MAD of
220 meV. Likewise, aug-DZVP-MOLOPT-ae achieves a MAD
of just 60 meV, below the 80 meV deviation of the larger aug-cc-
pVTZ basis. This finding suggests that the aug-MOLOPT basis
sets are the ideal choice for GW HOMO-LUMO gap
calculations to ensure both fast basis set convergence of GIW
HOMO-LUMO gaps and numerical stability for large
molecules. Again, the nonaugmented cc-pVXZ and MOLOPT
basis sets exhibit larger and more slowly converging errors for
GoW,@PBE0O HOMO—-LUMO gaps. For example, the MAD of
the large cc-pVSZ basis is 240 meV—only slightly lower than the
minimal aug-SZV-MOLOPT-ae-mini basis which has a MAD of
270 meV. When excluding molecules with diffuse LUMOs
(defined as LUMO eigenvalues above — 2 eV), the MAD for cc-
pVSZ decreases by an order of magnitude to 30 meV (Figure S2
in Supporting Information). This indicates that these basis sets
were optimized for ground-state properties, and lacking diffuse
functions, they are inadequate for accurately describing GW gaps
in systems with unoccupied states that significantly extend into
the vacuum.

2.6. GW+BSE and TDDFT Excitation Energies. Figure 3¢
shows the basis set convergence of the four basis set families for
the first ten BSE@ G W,@PBEO excitation energies, where the
deviation is again computed against aug-cc-pVSZ as the CBS
reference. As with GW calculations, the aug-MOLOPT basis sets
exhibit also consistently small deviations from the CBS in this
case. The MAD of the compact aug-SZV-MOLOPT-ae basis is
160 meV, which is slightly below the 170 meV MAD of the larger
aug-cc-pVDZ basis. The aug-DZVP-MOLOPT-ae basis exhibits
a MAD of 80 meV, slightly worse than the 70 meV deviation of
the larger aug-cc-pVTZ basis. The nonaugmented cc-pVXZ and
MOLOPT basis sets show larger and more slowly converging
errors; for example, the MAD of the large cc-pVSZ basis is 290
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meV; almost double the error of aug-SZV-MOLOPT-ae. In this
case, the aug-MOLOPT basis sets appear to be an excellent
choice for BSE calculations to ensure fast basis set convergence
of BSE excitation energies and numerical stability for large
molecules.

Figure 3d shows the basis set convergence of the first ten
excitation energies computed with TDDFT (PBEO). As before,
the aug-MOLOPT basis sets exhibit systematic improvement
with increasing basis size. However, in contrast to the BSE case,
the aug-cc-pVXZ basis sets outperform the aug-MOLOPT
family: for example, the MAD of aug-DZVP-MOLOPT-ae is
100 meV, whereas aug-cc-pVDZ achieves a significantly lower
MAD of 17 meV. Comparing with BSE results in Figure 3c, the
aug-cc-pVXZ basis sets converge more rapidly for TDDFT than
for BSE, while the aug-MOLOPT sets show similarly fast
convergence for both methods. We attribute this difference to
the design philosophy behind the basis sets: the aug-MOLOPT
sets were specifically optimized for BSE excitation energies
(albeit on a different training set, the Thiel’s set59) , whereas the
aug-cc-pVXZ family was not. Nevertheless, aug-cc-pVXZ basis
sets feature ill-conditioned overlap matrices for large molecules,
making the aug-MOLOPT basis sets numerically more robust
for larger molecules. We report in App. C an example of a
calculation of these orbital basis sets on the 9,10-Dihydroan-
thracene molecule, showing the variation of the error for all the
test cases of Figure 3 with respect to the basis set size.

3. RI BASIS SETS

3.1. Auxiliary Rl Basis Set Generation. The resolution-of-
the-identity (RI) technique is widely used to reduce the
computational cost of quantum chemical methods.®” In RI, four-
center integrals

(iajp) = [ drde'y (e () ——y (I ()

lr —r'1"/ (27)

are expressed by products of two- and three-center integrals,
which can enable substantial reduction of computational effort:

(ialjb)gy = Y, (ialP),,(M™)pq Vor(M ™ ez (TIjb),,
PQRT

(ialP), = (Plia), = f drdr'h (£)gh (0)m(x, ¥)p, (x')
Mpq = /drdr’gbp(r)m(r, r’)an(r’)

Voo = f drde (0 ——0 ()
(28)

Here, we introduced the auxiliary RI basis set {¢p}, which also
consists of Gaussians. m(r,x’) is the RI metric; convergence of
the RI expansion (28) depends on m. It has been shown that the
fastest convergence of the RI expansion is achieved using the
Coulomb metric, m(r, r') = 1/Ir — r'1.%

Early applications of RI include DFT®*** and MP2,°* where it
became a standard technique by now. In random phase
approximation (RPA) calculations for the correlation energy,
RI reduces the scaling from O(N®) in the canonical Casida-based
formulation to O(N*).°° However, RI is not universally
beneficial: in Hartree—Fock and hybrid functional calculations,
RI typically im;)roves performance only when large orbital basis
sets are used.®” For small orbital basis sets, conventional four-
center formulations may remain more efficient. For the
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computation of charged excitations based on GW, RI has also
become a common tool, where it reduces the scaling from
O(N%) to O(N*),°*77° as well as for charge-neutral excitations
based on the BSE, where the screened Coulomb interaction is
computed using RI.

When using R], an auxiliary RI basis set {¢p} is required for
the factorization (28) of four-center integrals into two- and
three-center integrals. Although it is possible to generate
auxiliary RI basis sets on the fly during the calculation,”"”*
this often results in large auxiliary RI basis sets. Recently, several
schemes have been proposed to tackle this issue, such as the
combined use of a contraction based on the singular value
decomposition and a high-momentum truncation of the
generated basis sets,”” or a newly suggested approach with
uncontracted, noneven-tempered sets that are truncated using
the 2-body energy as a metric.”* In this work, we instead
generate auxiliary RI basis sets by matching the RI-MP2
correlation energy of isolated atoms to the corresponding MP2
reference energies.75 For this purpose, as proposed in,”> we
generate auxiliary RI basis sets of different sizes by using the
(relative) A; metric as an optimization parameter:

1 (ijllab) — (ijllabyg,*
g§te—6-§

4

4Enrr G (29)

where the (i)j) refer to occupied orbitals and (a,b) to empty
orbitals, Eyp, is the MP2 correlation energy and using a standard
notation for the double bar integral defined as’®

(ijfllab) = (ialjb) — (iblja) (30)
(ijllab)g; = (ialib)g; — (iblja)g, (31)

Larger auxiliary sets lead to consistently lower values of A}, see
Figure 4. Also, for smaller orbital basis sets, the required auxiliary

aug-SZV-M.-ae-SR @ aug-SZV-M.-ae
@ aug-TZVP-M.-ae

® aug-SZV-M.-ae-mini
aug-DZVP-M.-ae

107! T T I

e: aug-cc-pVDZ-RIFIT size: 72
®: aug-cc-pVTZ-RIFIT size: 106

Aj metric

1076

1077

10-8 I I I !
0 20 40 60 80

RI basis size of Carbon

|
100

Figure 4. A; metric for a carbon atom as a function of the auxiliary RI
basis set size, using various augmented MOLOPT basis sets introduced
in this work. The auxiliary RI basis sets are optimized for the carbon
atom in a given basis set size to match the MP2 correlation energy.
Reference auxiliary RI basis set sizes and A; for aug-cc-pVDZ-RIFIT
and aug-cc-pVTZ-RIFIT are shown for comparison.
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RI basis size to reach a given A} metric value is smaller. For the
smallest aug-SZV-MOLOPT-ae-mini basis, an auxiliary RI basis
set with only 25 basis functions is sufficient to reach a A} metric
value below 1075 This highlights the potential for efficient
calculations using the aug-SZV-MOLOPT-ae-mini basis set.

For comparison, we compute A for the existing aug-cc-;)VDZ
and aug-cc-pVITZ with corresponding RI basis sets, 7 see
Figure 4. These basis sets have very small A| metric values below
1075, but are relatively large in size (72 and 106 functions for
aug-cc-pVDZ-RIFIT and aug-cc-pVTZ-RIFIT, respectively).
We also create smaller auxiliary RI basis sets with lower accuracy,
which are still sufficient in applications as we demonstrate later
for nanographenes (Section 4). All generated auxiliary RI basis
sets are available in the Supporting Information (Section S6).
The optimization was performed using the auxiliary RI basis set
optimizer implemented in CP2K.”®

3.2. Rl Basis Set Convergence: GW HOMO-LUMO
Gaps from Low-Scaling O(N®) GW. For the GW and BSE
basis set benchmark presented in Figure 3, we employed the
largest available auxiliary RI basis sets (see Section 3.1 for
generation details). To enable large-scale GW and BSE
simulations, it is desirable to reduce the size of the auxiliary RI
basis set while maintaining high numerical accuracy. Smaller
auxiliary RI basis sets lead to lower computational cost and
improved scalability, particularly in low-scaling GW algorithms.

In this work, we employ the cubic-scaling GW implementa-
tion in CP2K for molecules,”” which uses the truncated
Coulomb metric*® for the RI approximation. While the fastest
convergence of RI-based methods is achieved when the cutoff
radius of the Coulomb operator is infinite, this also increases the
computational cost. Therefore, a balance must be found: the
cutoff radius should be small enough to reduce computational
requirements, yet large enough to ensure sufficiently fast
convergence of the auxiliary RI basis set.

To evaluate this trade-off, we benchmark G, ,W,@PBEO
HOMO-LUMO gaps for the aug-SZV-MOLOPT-ae, aug-
DZVP-MOLOPT-ae and aug-TZVP-MOLOPT-ae basis sets on
the same subset of 247 molecules from the GW5000 benchmark
set used in Figure 3. We consider four auxiliary RI basis sets of
increasing size, corresponding to decreasing the A; metric
threshold: 1072, 1073, 107 and 107°. For each basis set, we
evaluate four different cutoff values for the truncated Coulomb
operator: .= 3, 5,7,and 9 A.

Figure 5 summarizes the results. The color map shows the
absolute deviation of the G,W, HOMO-LUMO gaps
(averaged over all 247 molecules) from the converged reference
obtained with the large aug-cc-pVSZ-RIFIT auxiliary RI basis
set”! and cutoff r, = 9A. For the aug-SZV-MOLOPT beasis set, at
the loosest RI threshold (1072) and smallest cutoff (r,= 3 A), the
average error exceeds 300 meV. However, increasing the cutoff
to r.=9 A reduces this error to ~ 130 meV. For a larger auxiliary
RI basis (A; threshold of 107*), numerical accuracy is
substantially improved: for r. = 7 A, the deviation is 30 meV,
and drops to 20 meV at r, = 9 A. The best overall agreement with
aug-cc-pVSZ-RIFIT is obtained for an even larger auxiliary RI
basis (A, threshold of 107°) with r, = 9 A, where the average
absolute error is reduced to 13 meV. The results for the aug-
DZVP-MOLOPT and aug-TZVP-MOLOPT basis sets show
better convergence properties than the aug-SZV-MOLOPT
benchmark tests, which can be easily explained by the larger size
of these basis sets. However, the overall convergence trends are
very similar between all the basis sets. These results demonstrate
that accurate low-scaling GW calculations can be achieved using
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Figure 5. Convergence of low-scaling GW calculations’” with respect to
the cutoff radius of the truncated Coulomb metric and the auxiliary RI
basis set size (here quantified by the A| metric threshold). As orbital
basis set, we employ aug-SZV-MOLOPT-ae (top), aug-DZVP-
MOLOPT-2e (middle) and aug-TZVP-MOLOPT-ae (bottom). The
color map shows the mean absolute deviation of GyW,@PBEO
HOMO-LUMO gaps for the same subset of 247 molecules from the
GWS000 benchmark set used in Figure 3, relative to a reference
calculation using the aug-cc-pVSZ-RIFIT auxiliary RI basis set.”" Each
row corresponds to an auxiliary RI basis set generated with a given A;
metric threshold (from 1072 to 107°). Smaller errors are achieved with
tighter RI thresholds and larger Coulomb cutoffs. A practical
compromise is reached with a A; metric threshold of 107™* and
r. > 7 A (error: 30 meV).

relatively compact auxiliary RI basis sets when paired with a
sufficiently large Coulomb cutoff. For practical applications
aiming at high numerical precision, we recommend a A;
threshold of 107 and a cutoff radius of at least 7 A, giving
excellent balance between efficiency and accuracy (~ 30 meV).
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4. LOW-SCALING O(N*) GW CALCULATIONS ON
NANOGRAPHENES

To demonstrate the suitability of the generated augmented
MOLOPT basis sets for large-scale applications, we perform
GW calculations on nanographenes of increasing size.
Representative geometries are shown in Figure 6a. For these
systems, we employ the PBE functional® as the DFT starting
point and Hedin’s shift (34) to avoid the higher cost of hybrid
functionals during the SCF.

We use auxiliary RI basis sets with a A; value below 1.5 X 1072
The corresponding basis sizes are listed in Table 2. GoWy+H
HOMO-LUMO gaps for the nanographenes are shown in
Figure 6b. For L = 1 (9,10-Dihydroanthracene), basis set
convergence is challenging: the minimal aug-SZV-MOLOPT-
ae-mini basis underestimates the gap by approximately 1 eV.
This is partly due to the small auxiliary RI basis used (cf. Figure
S). For larger systems (L > 8), convergence improves
significantly: all five basis sets agree within SO meV (inset of
Figure 6b). This matches findings for two-dimensional
materials,”> where convergence within 100 meV was reached
using the aug-SZV-MOLOPT basis.

We attribute the improved basis set convergence for larger
structures to three factors: (i) larger systems offer more basis
functions, increasing flexibility; (ii) the PBE LUMO energy
decreases with L (Figure 6¢), making the LUMO less diffuse in
vacuum and thus easier to represent (as discussed for the decay

length &, ~ 7i/,/2mle,| in Section 2.4). For a benchmark of the

numerical precision of basis sets for GyW, HOMO—-LUMO
gaps as a function of the DFT LUMO energy, see the Supporting
Information, Figures S1 and S2 (and Figure S3 for differences of
excitation energies).; (iii) there may be cancellation of errors
between an underconverged orbital and auxiliary RI basis set.
Notably, error cancellation does not distort the size dependence:
for L = 32, 64, 128, all aug-SZV-MOLOPT (SR, mini) basis sets
yield size-converged gaps consistently within 33 meV. This
indicates robust GW calculations for large systems. These results
support two conclusions: (i) basis set convergence for
nanostructures differs from that of small molecules and must
be analyzed accordingly; (ii) further optimization of Gaussian
basis sets for extended systems, in particular with pseudopoten-
tials, appears promising.

The condition number of the overlap matrix remains below
107 for all augmented MOLOPT basis sets (Figure 6d). In
contrast, it exceeds 10" for aug-cc-pVDZ. The computational
cost is roughly reduced by a factor of 280 when using aug-SZV-
MOLOPT-ae-mini instead of aug-cc-pVDZ (Figure 6e). This
aligns with expected GW scaling of N Ni;: According to
Table 2, Ny¢ and Ng; decrease by factors of about 2.4 and 6.8,
respectively, giving 2.4> X 6.8> & 270. Despite this enormous
speedup, the gap difference between aug-SZV-MOLOPT-ae-
mini and aug-cc-pVDZ is less than 10 meV for L = 16.

The small size of the aug-SZV-MOLOPT-ae-mini basis set
enabled us to perform a GW calculation on a nanographene with
9224 atoms, requiring only 34,300 core hours.

5. CONCLUSION

We introduced the augmented MOLOPT family of all-electron
Gaussian basis sets optimized for accurate excited-state
calculations of large molecules for the elements H to CL
These basis sets achieve fast basis set convergence of GW
quasiparticle energy differences and BSE excitation energies
while ensuring low condition numbers of the overlap matrix §,
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Figure 6. GW calculations on nanographenes of increasing length
(defined by the number of stripes L = 1, 2, 4, .., S12). (a)
Nanographene geometry for L = 1,2,4,8. Note that we put two
hydrogen atoms at the center carbon atom at the zigzag edge to prevent
for magnetic zigzag edge states. (b) Quasiparticle HOMO—-LUMO
gaps computed with GyW,, + Hedin’s shift @ PBE using different basis
sets. Inset: deviation from the aug-DZVP-MOLOPT-ae basis set. (c)
PBE LUMO eigenvalue, serving as a measure of LUMO diffuseness. (d)
Condition number k(S) of the overlap matrix, computed from eq 11.
(e) Computation time (in core hours) of the G,W, calculations on
Noctua2 (AMD Milan 7763) and Otus (AMD Turin 9655). The aug-
MOLOPT basis sets exhibit low condition numbers and reduced
computational cost, enabling stable and efficient calculations for
nanographenes exceeding 9000 atoms. Details on the number of nodes
used, wall time and memory consumption of the GW calculations are
listed in Table 3.

thereby enabling numerically stable calculations. For GyW,@
PBEO gaps, aug-DZVP-MOLOPT-ae yields a mean absolute
deviation (MAD) of 60 meV compared to the aug-cc-pVSZ
complete basis set, outperforming the larger aug-cc-pVTZ basis
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Table 2. Orbital Basis Set Size and Number of Auxiliary RI
Basis Functions H and C Atom Used for the GW Calculations
Shown in Fig. 6 Across Different Orbital Basis Sets.(cf. Figure
4)

basis set NEONG  NEONG Al A€
aug-SZV-M.-ae-mini 6 9 2 11 15x107%  42x107°
aug-SZV-M.-ae-SR 6 14 5 18 30x107°  32x107°
aug-SZV-M.-ae 6 14 6 23 13x10* 67x107*
aug-DZVP-M.-ae 9 30 9 35 44x107° 42x107*
aug-cc-pVDZ 9 23 23 72 73%x107°* 97x10°®

set (MAD: 80 meV) for organic molecules. Similar MAD are
observed for BSE and TDDFT excitation energies. The
augmented MOLOPT basis sets exhibit excellent numerical
stability, with overlap matrix condition numbers below 107 even
for 9000-atom nanographenes. We also generate very compact
basis sets, aug-SZV-MOLOPT-ae-mini, which enable very
efficient large-scale GyW, calculations, e.g., on a 9224-atom
nanographene consuming only 34300 core hours. This
demonstrates that the proposed augmented MOLOPT basis
sets enable routine GW and BSE calculations on large-scale
systems with several thousands of atoms, keeping good
numerical accuracy and reducing the computational cost by 2
orders of magnitude compared to previously used aug-cc-pVXZ
basis sets. All generated augmented MOLOPT basis sets are
freely available in the Supporting Information.

B APP. A—COMPUTATIONAL DETAILS

Description of Molecular Test Set

For benchmarking excited-state energies w1th our generated
basis sets, we use the GWS000 dataset.”” We exclude all
molecules with less than ten atoms as small molecules tend to
have very diffuse unoccupied states; and the purpose of the
generated basis sets is to describe large molecules with less
diffuse unoccupied states. To reduce the computational cost, we
only use molecules with at most 20 atoms. We also remove all
molecules larger than 15 atoms in which carbon atoms
outnumber all other non-hydrogen elements by more than a
factor of two. Our aim is to ensure a balanced benchmark set
avoiding overrepresentation of unsubstituted or weakly
substituted hydrocarbons. The precise criterion for removal is
N¢ > 2(N,,,—Ny—N¢), where N is the number of carbon
atoms, Ny the number of hydrogen atoms and N, the total
number of atoms in the molecule.

Applying these criteria gives 247 molecules in the GW5000
benchmark set, where the majority of the molecules contain C
(98%), H (96%), N (76%), O (74%), while other elements are
less often present: S (31%), Cl (23%), F (10%), P (2%), B (1%)
and Si (1%). We also use a second molecular benchmark set that
focuses on other elements (Li, Be, B, Na, Ca, Al, Si, P); we show
the composition of this benchmark set and the calculations in
the Supporting Information SI1 and SI2, respectively. We
employ the CP2K package for all calculations.”"*® CP2K
employs a Gaussian basis set for representing KS orbitals [eq 2].
We use the Gaussian and augmented plane-waves scheme,”’
which enables all-electron calculations in CP2K. We use
implementations in CP2K of conventional GW (Section 2.5)
in imaginary-frequency formulation with analytic continua-
t10n,46 BSE” and TDDFT’" (Section 2.6), as well as Iow—scahng
GW’ (Sections 3.2 and 4) based on the space-time method'
using minimax time-frequency grids.””~”> We visualized atomic
geometries using the VESTA program. %
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Numerical Aspects

We employ the PBEO exchange-correlation functional”” as
starting point for our excited-state calculations. The usage of
PBEO as starting point for GW and Bethe-Salpeter avoids
numerical instabilities due to multipole features of the self-
energy close to the quasiparticle solution,”®”® which can be
present when starting from the PBE functional.”* For the low—
scaling GW calculations on nanographenes (Section 4),
however, we use PBE for the SCF cycle to reduce computational
cost. As discussed in ref 99, GyW,@PBE can suffer from
numerical instabilities caused by poles in the self-energy X, (w)
close to the quasiparticle energy @ = e2™ where

GoWy _ ,.PBE GoWp xc
g0 =¢,  + ReZ (&) — v

n

(32)

Here, v;’ is the diagonal matrix element of the PBE exchange—
correlation potential. These instabilities can be eliminated either
by using eigenvalue self—consistent schemes (evGW,)”*"” or,
more computationally efficient, by introducing a state-specific
Hedin shift, """

AH, = ReZ,(g,"") — v)° (33)
leading to the modified quasiparticle equation
SnG"W°+H = enPBE + ReZn(SnGUWUJrH — AH,)) — v (34)

which we apply in Section 4 to obtain quasiparticle energies
using the G,W, + Hedin’s shift (GoWy+H) method.

B APP. B—MEMORY-SAVING SCHEME FOR
LOW-SCALING GW CALCULATIONS

In this appendix, we describe a memory saving scheme to reduce
the random access memory (RAM) of low-scaling GW
calculations”””? substantially. The RAM bottleneck of the GW
algorithm”””? appears in the computation of the self-energy T in
imaginary time it

%,(i7) = 20| 2 (WIQ)G,, (i)

vQ | u

[z (volP) Wy (iT)

(3%)
where g, 1, 4, 6 are atom-centered Gaussian basis functions for
expanding molecular orbitals (MO) and P,Q are auxiliary RI
basis functions for the screened Coulomb interaction W. G
denotes the Green’s function and

(uP) = / drdr'h, (1) ()V, (x, ©)gr,(x') (36)
are three-center integrals (3cI) of the truncated Coulomb
operator (r.: truncation radius)

{I/Ir —rlifle—rl<r

rt

0 else

(37)

The 3cIs (uvIP) are sparse, i.e., the numerical integral value (u2l
P) islarge if and only if the three Gaussian functions ¢, (r), ¢,(r)
and @p(r) are close together. The number of integrals (uvIP)
that need to be stored in the calculation is N7 Ny, where a is
the percentage of non-negligible (uvIP) elements kept in the
calculation. Each integral requires storage of 8 B in double-
precision arithmetic and thus the memory required to store all

(urIP) is

M = NiNga-8B (38)
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The challenge regarding memory comes in the intermediate
tensor from eq 35

M,,q = Z (volP) Wy (it)
P (39)

where the sparsity of M, in the index pairs v-Q and 6-Q is lost
because the screened Coulomb interaction Wy, is long-ranged.
Therefore, a larger fraction # > a of M,,q elements are non-
negligible in the calculation.

We reduce the RAM consumption of eq 35 by a repeated
calculation of 3cls. Specifically, we rewrite eq 35 as sum over
atomic contributions from atom A and atom B

Se(0) =) D X |2 (wlQ)G,,(ir)

A,B v(atA) Q(atB) | u

ij (mp)wpq(if)}

X

(40)

and we only keep the quantities on the right side of eq 40 in
memory if v and Q belong to the atom-pair (A4,B). The result of
the summation in eq 40 of the atom-pair (A,B) is added to
3,,(it) and we release then all quantities from the right side of
eq 40 belonging to atom pair (A,B) from the allocated memory.
For the next atom pair (A’,B), we compute the 3cI (u2IP) from
eq 36. This repeated calculation of 3cIs allows us to only keep a
fraction of 3cls and of intermediate tensors M,,, (39) in
memory, reducing the RAM consumption drastically.
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Figure 7. Convergence of the G,W; with Hedin’s shift HOMO—
LUMO gap with respect to the filter threshold parameter in the low-
scaling GW implementation for the nanographene with length L = 16.
Results are shown for five different basis sets. Deviations are decreasing

for tighter thresholds.

The repeated calculation of 3cls comes with the drawback
that we need to compute the same integral (u2/IP) several times.
Here, we make use of the properties of the Gaussian basis that
analytical integral expressions are available for (uvIP), such that
this additional computational load is small. "% In fact, the
computation of 3cIs for large systems exceeding 100 atoms only
takes <0.1% of the total execution time in the present GW
algorithm.”’

We discuss now the numerical parameters of the GW
algorithm in relation to the generated augmented MOLOPT
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Figure 8. MPI and memory scaling for GyW, calculations on a
nanographene with length L = 64 using the aug-SZV-MOLOPT-ae
basis set. (a) Parallel acceleration with increasing number of nodes
(each node has 16 MPI ranks; each MPI rank has 8 OMP threads). The
calculation scales efficiently up to over 1000 MPI ranks, with near-ideal
scaling. (b) Acceleration when providing more available RAM per MPI
rank to the GW calculation (at fixed 64 MPI ranks, i.e., 4 nodes). The
runtime benefits from increased memory per MPI rank, with saturation
reached around 8 GB per MPI rank.

basis sets. First, we discuss the filter threshold for sparse
operations like computing the self-energy, eq 40, see Figure 7 for
the nanographene with length L = 16. We observe that the GIW
HOMO-LUMO gap computed with smaller basis sets
converges faster with the filter threshold; as an example, the
GW HOMO-LUMO gap only changes by less than 1 meV in
aug-SZV-MOLOPT-ae-mini when decreasing the filter thresh-
old for atomic blocks from 107'% to 107'2, Instead, for the aug-
cc-pVDZ basis set, the GIW HOMO~-LUMO gap changes by 8
meV. This finding suggests that with the developed compact
augmented MOLOPT beasis sets, larger filter thresholds can be
chosen in the calculation, which contributes to further improve
the computational efficiency and numerical stability.

Finally, we discuss the scaling of computation time with
number of employed cores. In Figure 8a, we report the
acceleration of the calculation for a nanographene of length L =
64 (1160 atoms) with increasing number of MPI ranks. We
observe almost perfect weak scaling from one node (16 MPI
ranks) to 64 nodes (1024 MPI ranks). Another handle for the
user to optimize the computation time, is the amount of RAM
available to every MPI rank. While we have fixed the available
RAM to 6 GB in Figure 8a, we report the acceleration with
respect to the available RAM in Figure 8b. For 4 nodes (64
ranks), we vary the available memory between 1 GB per MPI
rank and 40 GB per MPI rank (on large-memory nodes with
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1024 GB per node). The calculation gets accelerated when
increasing the available memory from 1 to 8 GB per MPI rank by
a factor 2.8, because a smaller amount of three-center integrals
need to be recomputed when more memory is available.
Providing even more memory (20 or 40 GB per MPI rank), only
leads to a minor additional acceleration.

For all GW calculations reported in Figure 6b, we provide the
full details of basis sizes, memory requirements for storing three-
center integrals, their sparsity, available RAM and the execution
time in Table 3.

B APP.C—BASIS SET CONVERGENCE FOR
9,10-DIHYDROANTHRACENE

In this appendix, we report DFT and GIW HOMO—-LUMO gaps
as well as GW+BSE and TDDFT excitation energies of 9,10-
Dihydroanthracene (L = 1 nanographene in Section 4) using
various basis sets to assess the quality of the basis sets as a
function of their basis set size. We plot in Figure 9 the error with
respect to the aug-cc-pVSZ calculation of the excitation energies
and band gaps for the 9,10-Dihydroanthracene molecule as a
function of the number of basis functions.

The results show similar trends as observed in Figure 3. Both
nonaugmented cc and MOLOPT basis sets show poor
convergence with respect to the number of basis function,
showing that these are not appropriate for the simulation of
excited state energies. For the cc-pVQZ basis set, the error
across all tests is around 150 meV on average, whereas it is
around 450 meV on average for the comparable QZVPP-
MOLOPT basis set, so that the cc basis sets perform better in
this case (but still very poorly in comparison to the reference
calculation, given the large size of the cc-pVQZ basis set).

The augmented basis sets show much better convergence
across all four tests in Figure 9 w.r.t. the basis set size. For the
aug-cc-pVTZ basis set, which is of comparable size as the
nonaugmented cc-pVQZ and QZVPP-MOLOPT basis sets, the
error is around 20 meV on average, and for the aug-TZVP-
MOLOPT basis set it is around 10 meV. Note that for the PBEO
HOMO-LUMO gap (Figure 9a) and TDDFT excitation
energies (Figure 9d), the aug-cc-pVXZ basis sets converge faster
with the basis set size than the aug-MOLOPT basis sets; still
aug-MOLOPT basis sets feature improved numerical stability
for large-scale calculations due to the reduced condition number
compared to aug-cc-pVXZ. For the GW HOMO—-LUMO gap
(Figure 9b) and GW-BSE excitation energies (Figure 9c), our
aug-MOLOPT basis sets give faster convergence with the basis
set size than aug-cc-pVXZ basis sets.
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Table 3. Basis Sizes, Memory Requirements for Storing Three-Center Integrals (uvIP), Eq 38, Their Sparsity, Available RAM and

the Execution Time for GW Calculations on Nanographenes from Figure 6

=

L == T N N N N N S N N N

— = N N N W W W e e e
PR R EDDS o000

128
256
512

N¢ Ny basis set Nig Ny Ny Ni;
14 12 aug-SZV-M.-ae-mini 198 2 11 178
14 12 aug-SZV-M.-ae-SR 268 N 18 312
14 12 aug-SZV-M.-ae 268 6 23 394
14 12 aug-DZVP-M.-ae 528 9 3§ 598
14 12 aug-cc-pVDZ 430 23 72 1284
28 16 aug-SZV-M.-ae-mini 348 2 11 340
28 16  aug-SZV-M.-ae-SR 488 S 18 584
28 16  aug-SZV-M.-ae 488 6 23 740
28 16  aug-DZVP-M.-ae 984 9 3§ 1124
28 16  aug-cc-pVDZ 788 23 72 2384
S6 24 aug-SZV-M.-ae-mini 648 2 11 664
56 24 aug-SZV-M.-ae-SR 928 S 18 1128
56 24 aug-SZV-M.-ae 928 6 23 1432
S6 24 aug-DZVP-M.-ae 1896 9 35 2176
56 24 aug-cc-pVDZ 1504 23 72 4584

112 40  aug-SZV-M.-ae-mini 1248 2 11 1312
112 40 aug-SZV-M.-ae-SR 1808 S 18 2216
112 40  aug-SZV-M.-ae 1808 6 23 2816
112 40  aug-DZVP-M.-ae 3720 9 35 4280
112 40  aug-cc-pVDZ 2936 23 72 8984

224 72 aug-SZV-M.-ae-mini 2448 2 11 2608

224 72 aug-SZV-M.-ae-SR 3568 S 18 4392

224 72 aug-SZV-M.-ae 3568 6 23 5584

224 72 aug-DZVP-M.-ae 7368 9 35 8488

224 72 aug-cc-pVDZ 5800 23 72 17,784

448 136 aug-SZV-M.-ae-mini 4848 2 11 5200

448 136 aug-SZV-M.-ae-SR 7088 S 18 8744

448 136  aug-SZV-M.-ae 7088 6 23 11,120

896 264 aug-SZV-M.-ae-mini 9648 2 11 103,84
896 264  aug-SZV-M.-ae-SR 14,128 S 18 17,448
896 264  aug-SZV-M.-ae 14,128 6 23 22,192
1792 520 aug-SZV-M.-ae-mini 19,248 2 11 20,752
1792 520 aug-SZV-M.-ae-SR 28,208 S 18 34,856
1792 520 aug-SZV-M.-ae 28,208 6 23 44,336
3584 1032 aug-SZV-M.-ae-mini 38,448 2 11 41488
7168 2056 aug-SZV-M.-ae-mini 76,848 2 11 82,960

Occ. of RAM (uv/P) RAM of nodes GW execution
(uvIP) (GB) Noodes (GB) time (h)
100.00% 0 1 258 0.001
100.00% 0 1 258 0.003
100.00% 0 1 258 0.006
100.00% 1 1 258 0.019
100.00% 1 1 258 0.043
100.00% 0 1 258 0.004
100.00% 1 1 258 0.014
100.00% 1 1 258 0.027
100.00% 8 1 258 0.289
100.00% 11 1 258 0.373
70.31% 1 1 258 0.030
77.07% S 1 258 0.141
91.05% 8 1 258 0.366
99.82% 62 1 258 4.204
99.97% 82 1 258 4.907
25.33% 4 1 258 0.151
28.62% 16 1 258 0.811
38.33% 28 1 258 2.143
50.68% 240 1 258 33.487
55.16% 341 1 258 44.360
7.43% 9 1 258 0.662
8.45% 37 1 258 3.843
11.73% 66 1 258 9.099
16.15% 595 10 2577 13.034
18.01% 861 10 2577 18.726
2.00% 19 3 3060 0.808
2.28% 80 1 258 13.650
3.21% 143 S 5100 6.116
0.52% 40 3 3060 2.611
0.59% 164 4 1031 12.398
0.84% 297 S 5100 18.621
0.13% 81 3 3060 9.080
0.15% 334 4 4080 40.488
0.21% 605 S 5100 65.225
0.03% 163 10 16,287 4.636
0.01% 328 20 32,573 8.928

“The available memory for the storage of 3cls is 6 GB per MPI rank throughout all the listed calculations. Execution time has been measured on
the Noctua2 cluster at PC2 computing center in Paderborn, where each node is equipped with two AMD Milan 7763 processors, each providing 64
cores (128 cores per node). For L > 256, the computations have been executed on the Otus cluster at the PC2 computing center, where one node
consists of two AMD Turin 9655 processors, each providing 96 cores (192 cores per node). In the basis set names, “M.” stands for “MOLOPT”.

MOLOPT basis sets. We define another benchmark set
containing 123 small molecules in Section S1 for
benchmarking the augmented MOLOPT basis sets of
Li, Be, B, Na, Ca, Al, Si, P, which are only rare in the
GWS5000 subset used in the main text. We report PBEO
and GIW HOMO—-LUMO gap and Bethe-Salpeter and
TDDFT excitation energies in Section S2 computed with
the augmented MOLOPT basis sets and compared to the
complete basis set limit. We show additional results on the
GWS5000 subset with molecules with a LUMO energy
below —2 eV (Section S3). We also list excitation gaps
obtained with BSE and TDDFT (Section S4). We provide
all the newly generated orbital (Section SS) and auxiliary
RI (Section S6) basis sets in the CP2K basis set file format
(PDF)

553

B AUTHOR INFORMATION

Corresponding Authors
Rémi Pasquier — Institute of Theoretical Physics and

Regensburg Center for Ultrafast Nanoscopy (RUN),
University of Regensburg, 93053 Regensburg, Germany;

orcid.org/0000-0003-0058-4125; Email: remi.pasquier@
physik.uni-regensburg.de

Maximilian Graml — Institute of Theoretical Physics and

Regensburg Center for Ultrafast Nanoscopy (RUN),

University of Regensburg, 93053 Regensburg, Germany;
orcid.org/0000-0002-4279-8511;

Email: maximilian.graml@physik.uni-regensburg.de

Jan Wilhelm — Institute of Theoretical Physics and Regensburg

Center for Ultrafast Nanoscopy (RUN), University of
Regensburg, 93053 Regensburg, Germany;
Email: jan.wilhelm@physik.uni-regensburg.de

Complete contact information is available at:

https://doi.org/10.1021/acs.jctc.5c01386
J. Chem. Theory Comput. 2026, 22, 540—557


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01386/suppl_file/ct5c01386_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Re%CC%81mi+Pasquier"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0058-4125
https://orcid.org/0000-0003-0058-4125
mailto:remi.pasquier@physik.uni-regensburg.de
mailto:remi.pasquier@physik.uni-regensburg.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maximilian+Graml"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4279-8511
https://orcid.org/0000-0002-4279-8511
mailto:maximilian.graml@physik.uni-regensburg.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jan+Wilhelm"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:jan.wilhelm@physik.uni-regensburg.de
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c01386?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

aug-MOLOPT O mini-SZV ®SZV @DZVP EMTZVP MOLOPT @SVP MTZVPP AQZVPP
aug-cc @ pVDZ HpVTZ ApvVQZ cc @pVDZ EpVIZ ApVQZ epV5Z

% 1 T T T T T T T T T T T T T

S 05 e | (a) PBEO HOMO-LUMO gap ||

7o) PP e A

2 02F 0 @117 1

8 0.1 \ — - = ' ———————

& 005} S R B E— R Ao 1

S oof S s L SEPS .|

% SO'OI 1 1 H 1 1 |. 1 . L 1 1 1 x 1

A 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Number of basis functions

% 1 T T T — i o T T T T Z Z = = = = I

Z os) R S S S »  [(®)GyW,@PBE0 HOMO-LUMO gap ||

v Te--ll

z 0.2 | N . ¥ .

g ol - - A

@ 005} o S N L . |

= ® AR

s 002} =i ‘\.___ .

gSO'O] 1 1 ~|\. 1 1 I 1 .I —_I-—_-—_-—I _____ 1 : 1

A 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Number of basis functions

> :

Nt 0.5 | I @=-:-" i o S S A I I I A

N SR

0 W S A S S .

o 0.2 | o\ [ y— 1

g 01 N =

gﬂ 0.05 | &--------- & - - . E - Bk | 1

s 002 ©BSE@GW,@PBEO | ] B BT S - i

& <0.01 first ten excitation energies . . . . . . . .

A 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Number of basis functions

> 1

(5} 1 1 | 1 1 1 1 1 ’ 1

N 0Sf 0T o a |

> o2} R e P T 1

; R e A A R A AR Rl Ml ¢

3 0.1 >

oo 0.05 | Rt = A

] -

g 0.02F . (d) TDDFT (PBEO)

. <0.01 . - . . e . . first ten excitation energies

a) 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Number of basis functions

Figure 9. Basis set convergence of excited-state energies for the 9,10-Dihydroanthracene molecule (L = 1 nanographene geometry sketched in Figure
6a), as a function of the number of orbital basis functions, relative to the aug-cc-pVSZ basis for the aug-MOLOPT basis sets developed in this work,
aug-cc-pVXZ,34 cc-pVXZ* and all-electron MOLOPT basis sets.>”** Panels show (a) PBE0 HOMO—-LUMO gaps, (b) GoW,@PBE0O HOMO—
LUMO gaps, (c) first ten excitation energies computed from BSE@G,W,@PBEO, and (d) from TDDFT (PBEO). For TDDFT, we use the results from
the aug-cc-pVQZ calculations as reference data due to numerical instabilities with aug-cc-pVSZ.
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