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 a b s t r a c t

This study explores the use of fine-tuned open source large language models (LLMs) for Aspect-based Sentiment 
Analysis (ABSA), comparing their performance with state-of-the-art (SOTA) methods on English and German 
datasets with focus on low-resource scenarios. Results on the four ABSA subtasks Aspect Category Detection 
(ACD), Aspect Category Sentiment Analysis (ACSA), End-To-End-ABSA (E2E), and Target Aspect Sentiment De-
tection (TASD) show that fine-tuned LLMs handle limited training data scenarios better than current SOTA ap-
proaches, achieving consistent performance across various dataset sizes. Prompt formulation and hyperparameter 
tuning influence performance, though concise prompts often suffice when combined with effective fine-tuning. 
To assess generalizability, we conduct an ablation study across multiple languages, domains, and LLM architec-
tures. The findings confirm that performance gains extend beyond the initial setting, supporting the robustness 
of fine-tuned LLMs over multiple different languages and domains. We establish new SOTA results on the Rest-16 
and GERestaurant datasets and highlight the practical viability of fine-tuning LLMs for ABSA applications under 
limited training material.

1.  Introduction

Aspect-based sentiment analysis (ABSA) is a crucial task in natural 
language processing (NLP) that focuses on identifying sentiments ex-
pressed towards specific aspects of entities within a text [1]. This granu-
lar approach to sentiment analysis provides more detailed insights com-
pared to traditional sentiment analysis, which often considers the senti-
ment of an entire text as a whole [2].

ABSA plays a critical role across multiple application areas, includ-
ing the analysis of customer feedback, product reviews, and social media 
data [3]. By extracting fine-grained sentiment information tied to spe-
cific aspects, ABSA enables businesses to better understand consumer 
opinions and identify areas for improvement [4,5]. Over the last years, 
the importance of ABSA in the business and industry domain has grown 
significantly [6], driven by its ability to provide valuable insights and 
enhance decision-making efficiency in increasingly competitive mar-
kets.

One significant challenge in ABSA is the availability of diverse, us-
able datasets for training robust models, especially in less researched 
languages such as German. While English benefits from numerous well-
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annotated datasets, progress in creating ABSA datasets for other lan-
guages has been much slower, with only a small number of new datasets 
emerging in recent years [7]. This limited availability poses challenges 
for both research, where it restricts the development and evaluation of 
advanced models, and practical applications, where it hinders the de-
ployment of effective models for tasks like customer feedback analysis 
and market research. Traditional models often struggle in these environ-
ments due to their reliance on large, annotated datasets to capture the 
nuances of language and sentiment accurately [8]. To address this data 
scarcity, transfer learning has shown promise by leveraging knowledge 
from large, diverse datasets and applying it to specific tasks with limited 
data [9].

In recent years, with the rise of available large language models 
(LLMs) such as ChatGPT [10], the NLP research community has shifted 
towards using these models for various NLP tasks [11,12]. These models, 
when given well-crafted prompts, have demonstrated a high degree of 
adaptability and effectiveness, and ABSA is no exception [13,14]. LLMs 
such as GPT-4 [15], LLaMA 3 [16], or Mixtral [17] have revolutionized 
the field by offering powerful, pre-trained models that can be prompted 
or fine-tuned for specific tasks. In case of ABSA, fine-tuning allows these 
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models to adapt more precisely to the specific aspects and sentiments 
within the target domain, enhancing their accuracy and effectiveness 
[18–20].

However, while commercially available LLMs such as ChatGPT offer 
robust performance and ease of use, they also come with several draw-
backs, including concerns about data privacy and the high costs associ-
ated with extensive usage. In contrast, locally hosted, open source LLMs 
offer compelling advantages: greater control over sensitive data, full cus-
tomization without external dependencies, and significantly lower long-
term costs [21]. These benefits are particularly relevant in enterprise
settings, where adaptability, cost efficiency, and data governance are 
critical. Recent work further highlights that open source LLMs (some-
times referred to as small language models when contrasted with 
commercial-scale systems)1 are becoming increasingly competitive for 
real-world applications. Nevertheless, their reliability as replacements 
for proprietary LLMs and the need for systematic evaluation remain ac-
tive areas of investigation [21]. While evaluations often focus on general 
NLP tasks [22,23], their performance in complex, structured problems 
like ABSA, remains largely underexplored.

Some recent studies have begun to address this gap: Šmíd et al. [20] 
fine-tuned LLaMA and Orca models for ABSA, focusing solely on the Tar-
get Aspect Sentiment Detection (TASD) task in English; Varia et al. [24] 
explored low-resource few-shot settings using a T5-based model; Gou 
et al. [25] proposed Multi-view-Prompting (MvP), a prompting-based 
method leveraging data augmentation and output template ordering for 
advanced ABSA (including low-resource scenarios); and Xu et al. [26] 
introduced DS2-ABSA, a dual-stream data LLM-based synthesis frame-
work with label refinement designed for few-shot ABSA. However, 
these studies are typically limited to English-language datasets and 
do not extend to cross-lingual or multilingual settings. Comprehensive 
evaluations of instruction-tuned open source LLMs for ABSA in gen-
uinely low-resource scenarios, especially beyond English, remain scarce. 
This raises the question whether LLMs, given their extensive pretrain-
ing and generalization capabilities, can effectively address ABSA in 
various data-availability scenarios across different languages and task
complexities.

Therefore, this means they could potentially transfer knowledge 
from their pre-training phase to new tasks and domains with even less 
additional data required. The ability of LLMs to understand and generate 
human-like text may make them more adaptable to different domains 
and languages, even with minimal fine-tuning data. This adaptability 
would be particularly advantageous in resource-scarce scenarios, where 
acquiring large, annotated datasets is impractical or impossible.

Motivated by these considerations, we aim to extend results of pre-
vious studies in fine-tuning LLMs by exploring how fine-tuning can en-
hance the performance of open source LLMs for ABSA, especially in less-
resourced languages like German. Moreover, we investigate whether 
fine-tuned LLMs are less sensitive to smaller training dataset sizes than 
existing state-of-the-art (SOTA) methods by comparing results across 
various scenarios with established baseline models. Additionally, given 
the influence of the content of a prompt on the output produced by an 
LLM [27,28], we investigate three different prompting styles to deter-
mine the optimal formulation for different tasks and training dataset 
sizes.

To thoroughly evaluate the capabilities of fine-tuned LLMs, we uti-
lize two datasets: SemEval-2016 restaurant reviews (EN-Rest) [29], a 
widely-used benchmark in ABSA research, and GERestaurant (DE-Rest) 
[30], which focuses on German-language restaurant reviews. These 
datasets provide annotations for aspect term, aspect category, and sen-
timent polarity, allowing us to focus on four widely recognized ABSA 
tasks: Aspect Category Detection (ACD), Aspect Category Sentiment 
Analysis (ACSA), End-To-End ABSA (E2E), and TASD [31]. By selecting 

1 Irugalbandara et al. [21] refer to models such as LLaMA as small language 
models (SLMs) relative to proprietary LLMs like GPT-4.

these tasks, we ensure that our investigation aligns with the most estab-
lished ABSA studies feasible with our datasets’ annotations. To analyze 
the models’ robustness under different resource conditions, we evaluate 
their performance across several data availability settings by limiting 
the total number of samples used during training and validation. Specif-
ically, we experiment with the full dataset as well as subsets of 1,000, 
500, and 50 labeled examples. These settings, especially the 50-samples 
condition, allow us to simulate data-scarce environments and assess the 
generalization ability of LLMs when supervision is minimal.

To further examine the generalizability and robustness of our find-
ings, we conduct a complementary ablation study based on the most 
challenging 50-sample setting. This study extends our core experiments 
to additional languages, domains, and LLM architectures, allowing us to 
assess whether the observed trends hold under more diverse conditions 
and system setups.

Our study contributes a systematic investigation of fine-tuned open 
source LLMs for ABSA across four subtasks, two languages, and vary-
ing levels of data availability, including an extreme low-resource set-
ting with only 50 labeled examples. We additionally compare perfor-
mance with several baseline methods, including a few-shot prompting 
approach, and analyze training and inference efficiency to assess their 
suitability for real-world applications.

To structure our work, we focus on three research questions to pro-
vide a comprehensive evaluation of fine-tuned open source LLMs for 
ABSA:

RQ1: How suitable are fine-tuned LLMs in solving the task of ABSA, and 
how can these results be placed in the context of current SOTA meth-
ods?

RQ2: Do fine-tuned LLMs adapt better to low-resource scenarios than ex-
isting SOTA methods?

RQ3: Does the type of prompt formulation have a significant impact on 
performance in fine-tuned LLMs?

Our evaluation demonstrates that fine-tuned open source LLMs can 
deliver strong and robust performance across a range of ABSA subtasks 
and low-resource scenarios. Our approach establishes new SOTA results 
on the EN-Rest (Rest-16) dataset for ACSA (F1: 82.48) and E2E (F1: 
81.77), and on the DE-Rest (GERestaurant) dataset for ACSA (F1: 85.45) 
and TASD (F1: 75.13). Through systematic hyperparameter tuning and 
prompt-style evaluation, we show that concise prompts are sufficient to 
reach high performance. In most settings, our approach delivers higher 
F1 scores than traditional and few-shot baselines and remains robust 
even under extreme data scarcity. These findings are further supported 
by an ablation study which focuses on extreme data scarcity and demon-
strates that the advantages of fine-tuned LLMs hold across domains, lan-
guages, and model architectures, particularly for complex tasks where 
they outperform strong in-context learning (ICL) baselines. Our analysis 
on resource efficiency shows that fine-tuned models require only moder-
ate resources for training and offer faster inference compared to baseline 
approaches, making them particularly suitable for real-time and high-
throughput ABSA applications.

2.  Related work

Recently, many LLMs like ChatGPT or Claude [32], along with 
open source alternatives such as LLaMA, Mixtral or Gemini [33] have 
emerged as powerful tools in NLP. The application of those LLMs 
across various NLP tasks has been a significant focus of recent research 
[11,12,34].

Commercial vs open source LLMs. A key distinction within the LLM land-
scape lies between commercial and open source models. Commercial 
models, such as OpenAI’s ChatGPT, benefit from extensive computa-
tional resources, proprietary data, and frequent updates, offering ease 
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of use and broad applicability across multiple fields [35,36]. However, 
these systems are often closed, limiting transparency, reproducibility, 
and customizability while also raising concerns about data privacy. In 
contrast, open source models like LLaMA or Mixtral provide greater ac-
cessibility and flexibility, allowing researchers to fine-tune and adapt 
these models for specific applications while maintaining control over 
data and training workflows [37,38]. These benefits have made open 
source models increasingly popular in academic and applied research 
[39–41].

Evaluation of ChatGPT for sentiment analysis. However, LLMs, in gen-
eral, both commercial and open source, have demonstrated broad
applicability across various fields of NLP. This trend extends to senti-
ment analysis, where numerous studies have investigated the perfor-
mance of these models across different scenarios, revealing both their 
potential and limitations. Several studies have evaluated ChatGPT for 
document-level sentiment analysis, finding that it achieves acceptable 
results but still lags behind SOTA methods [11,14,23,42]. Addition-
ally, Zhang et al. [43] evaluated ChatGPT’s sentiment extraction across 
six tasks, from document-level analysis to ABSA and Aspect Sentiment 
Quadruple Prediction (ASQP). They found that ChatGPT is effective in 
simpler tasks and resource-scarce scenarios due to their ICL capabili-
ties. However, for complex tasks, ChatGPT was less effective compared 
to specialized fine-tuned models.

Language models in advanced sentiment analysis tasks. For more special-
ized applications, Wu et al. [44] focused on enhancing ASQP for Chi-
nese by adapting English ASQP methodologies, achieving significant im-
provements. Similarly, Huang et al. [45] integrated multiple ABSA tasks 
into a unified generative framework, demonstrating robust performance 
across datasets in both fully supervised and few-shot learning settings. 
Additionally, Ding et al. [46] proposed a continual learning approach us-
ing LLMs for ABSA, achieving SOTA performance across 19 datasets by 
leveraging knowledge from multiple domains. Ahmed et al. [47] propose 
a DNN-driven Gradual Machine Learning (GML) approach for Aspect-
term Sentiment Analysis (ATSA), which clusters automatically extracted 
features by sentiment orientation using an unsupervised neural network 
and models these clusters as factors in a factor graph, achieving SOTA 
results in both supervised and unsupervised setups. In a separate work, 
the authors further improved implicit ABSA by guiding BERT through 
auxiliary sentences derived from corpus semantics, leading to consistent 
performance gains across various ABSA benchmarks [48].

Instruction fine-tuning LLMs for ABSA. For instruction fine-tuning of 
LLMs, where the text input is formulated as a natural language task 
prompt, works like Scaria et al. [13] and Varia et al. [24] applied in-
struction fine-tuning on a T5 model, achieving SOTA performance in 
various ABSA subtasks. Building on this, Simmering and Huoviala[18] 
were first to fine-tune ChatGPT for ABSA, surpassing previous SOTA 
models such as InstructABSA [13]. Their work demonstrated that fine-
tuning offers superior performance over few-shot approaches. They sug-
gested that while prompt engineering is crucial for few-shot learning, 
it plays a lesser role in fine-tuning. They also highlighted the poten-
tial benefits of fine-tuning open source LLMs and investigating the im-
pact of extended prompt engineering techniques like chain-of-thought 
(CoT) prompting. Extending this line of research, Šmíd et al. [20] evalu-
ated LLaMA-based models for instruction fine-tuning and zero-/few-shot 
learning across various ABSA subtasks. They concluded that fine-tuned 
open source LLMs are highly effective in ABSA, often surpassing current 
SOTA approaches. However, they recognized limitations in their study 
due to focusing solely on datasets in English.

ABSA in resource-scarce scenarios. While low-resource environments 
have been studied to some extent in NLP [9,49] and sentiment anal-
ysis [50,51], relatively few works have specifically focused on ABSA 
under data-scarce conditions. In the early stages of ABSA research, 

many approaches in low-resource environments focused on creating 
new manually-annotated datasets [52–54], addressing the scarcity of 
annotated data needed for training robust models. More recently, how-
ever, the focus has shifted towards developing methods that can effec-
tively operate with limited available data, leveraging advancements in 
generative models and prompting techniques. These include techniques 
such as self-consistency and the aggregation of multiple diverse prompts 
in few-shot learning scenarios [55,56], as well as data augmentation 
through varied output element orderings during fine-tuning [25,57]. 
For the fine-tuning of pre-trained models in low-resource settings, Hu 
et al. [57] explored the dynamic template orders Dataset-Level Order 
(DLO) and Instance-Level Order (ILO) for the ABSA elements of quadru-
plets (ASQP), demonstrating that diverse template configurations can 
significantly improve performance in resource-scarce scenarios. Simi-
larly, Gou et al. [25] proposed MvP, a technique leveraging human-like 
problem-solving by aggregating sentiment elements generated in differ-
ent orders, achieving SOTA performance across 10 ABSA datasets and 
excelling in low-resource conditions. Additionally, Hellwig et al. [58] 
utilized data augmentation and leveraged GPT-3.5-turbo and LLaMA-
3-70B to generate annotated data for ABSA in resource-scarce settings. 
Their approach achieved notable F1 scores of 81.33 for ACD and 71.71 
for ACSA in the restaurant domain, using only 25 human-annotated ex-
amples.

Summary. Recent advancements in generative approaches have 
brought significant improvements to sentiment analysis, showcasing the 
adaptability of LLMs across a range of tasks and scenarios. While these 
models perform well in simpler tasks and resource-scarce conditions, 
challenges persist for complex tasks like ABSA, where specialized fine-
tuned models often outperform general-purpose LLMs. However, with 
advanced prompt engineering and fine-tuning, their performance can be 
significantly enhanced, making them valuable, particularly in resource-
constrained environments. The recent success of fine-tuned open source 
models, such as those evaluated by Šmíd et al. [20], underscores the 
potential for LLMs to drive further advancements in ABSA, especially 
when expanded to include other languages, a broader range of tasks, 
and diverse application areas.

3.  Methodology

In the context of this work, we analyze the suitability of a fine-tuned 
open source LLM for ABSA, evaluate which type of prompt formula-
tion achieves the best performance, explore the impact of fine-tuning 
hyperparameters, and investigate the performance of LLMs under the 
conditions of limited training data, where the datasets are reduced to 
only 1,000, 500, or 50 examples using stratified sampling.

3.1.  Our method

To provide a transparent overview of our approach, Fig. 1 illustrates 
the conceptual structure of our method. Starting from a labeled ABSA 
dataset, we generate prompts from the training split for instruction-
based fine-tuning and prepare corresponding evaluation prompts from 
the evaluation split. Then, our approach, further referenced to as
LLaMA-FT-ABSA, applies instruction-fine-tuning [59] and leverages 
sequence-to-sequence text generation in order to train a LLM on solv-
ing different ABSA tasks formulated as natural language instructions. 
Once training is complete, the fine-tuned model is evaluated on held-
out data. Its output is parsed to extract task-specific ABSA elements, 
which are then compared against ground-truth annotations to compute 
performance metrics.

For fine-tuning, we employ Quantized Low-Rank Adaption (QLoRA) 
[60] using the python library unsloth.2 QLoRA is a technique designed to 

2 https://github.com/unslothai/unsloth
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Fig. 1. Conceptual overview of our fine-tuning and evaluation pipeline for ABSA using instruction-based prompts. For the technical execution and evaluation 
procedure, see Section 4.4.

adapt LLMs efficiently to specific tasks by leveraging quantization and 
Low-Rank Adaptation (LoRA) [61]. Quantization reduces the model’s 
precision, which significantly reduces the computational resources re-
quired, while LoRA introduces task-specific adaptation by adding low-
rank matrices to the model’s weights. This combination allows efficient 
and effective fine-tuning even with limited computational resources. For 
the evaluation of the fine-tuned models, quantization was no longer ap-
plied, instead, the LoRA adapters are merged with the original models 
during inference using the library vLLM [62]. We base our fine-tuning 
efforts on LLaMA 3 8B [63], which is motivated by the fact that the 
LLaMA model family serves as the foundation for a significant portion 
of public open source models, thereby covering the base architecture of 
the majority of available models. Fine-tuning and model evaluation are 
conducted on a workstation equipped with a Nvidia RTX A5000 GPU 
with 24 GB of VRAM.

3.2.  Prompting strategy

Considering the influence of a prompt’s content on the output pro-
duced by an LLM [27,28] and the recognition of prompt engineering as a 
critical technique for adapting LLMs to downstream tasks [64], we inves-
tigate three different prompting styles to determine the optimal formu-
lation for various tasks and training dataset sizes. The general structure 
of our prompts is based on experiments by Zhang et al. [43]. Our selec-
tion is further motivated by findings from Simmering and Huoviala[18], 
who compared different prompt formulations (ranging from minimal to 
detailed instructions) for GPT-based models in ABSA. Inspired by their 
setup, we extend this line of investigation to a broader range of ABSA 
tasks and datasets, using a fine-tuned open source LLM. The prompt-

ing styles are further referenced as Basic (short prompt), Context (Ba-
sic prompt with additional task-related context) and CoT (Context style 
prompt with CoT style output).

An example of the CoT prompt for the TASD task on the DE-Rest 
dataset can be seen in Fig. 2, and similar prompts for the ACD, ACSA, 
E2E and TASD tasks for both Basic and Context prompts are depicted in 
Appendix A.1. An additional example for the EN-Rest dataset is provided 
in Appendix A.2. The only difference between the task-specific prompts 
across datasets lies in the specific descriptions and explanations of the 
respective aspect categories, which are derived from the official anno-
tation guidelines of the respective datasets. Building upon the prompt 
design principles outlined by Amatriain[65], we structure our prompts 
in English using specific tags to create distinct sections: task description 
(### Instruction), text input (### Input) and expected output of the 
LLM (### Output). Furthermore, all instructions and descriptions of a 
prompt are adapted depending on the ABSA task. The contents of the 
prompts are as follows:

Basic An introduction to the task with task-specific information and a 
list of aspect categories and sentiment polarities which have to 
be extracted.

Context In addition to the contents from the Basic prompt, we provide 
brief explanations for each aspect and polarity label to improve 
the LLM’s understanding of the aspects’ context, similarly as 
Wang et al. [66] investigated in the context of sentiment phrases. 
Additionally, we specify the desired output of the model within 
the prompt.
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Fig. 2. Example of a Chain-of-Thought (CoT) prompt used in the TASD task for the sentence “For the food 5 out of 5 stars - was delicious and plentiful, slightly higher 
in price”. While CoT and Context prompts use the same input, they differ in the structure of the expected output. Additional prompt examples can be found in 
Appendix A.1.

Table 1 
Illustration of the ABSA subtasks used in this study, each with available input and expected output of the respective task. Example sentence is: "It has great sushi 
and even better service.. Abbr.: c = aspect category, p = sentiment polarity, a = aspect term."
 Subtask  Input  Output  Example
 Aspect Category Detection (ACD)  S  c1, c2  [FOOD#QUALITY, SERVICE#GENERAL]
 Aspect Category Sentiment Classification (ACSA)  S  (c1, p1), (c2, p2)  [(FOOD#QUALITY, POSITIVE), (SERVICE#GENERAL, POSITIVE)]
 End-To-End ABSA (E2E)  S  (a1, p1), (a2, p2)  [("sushi", POSITIVE), ("service", POSITIVE)]
 Target Aspect Sentiment Detection (TASD)  S  (a1, c1, p1), (a2, c2, p2)  [("sushi", FOOD#QUALITY, POSITIVE), ("service", SERVICE#GENERAL, POSITIVE)]

CoT We use the same instruction text as for the context prompt style, 
but reformulate the answer into a step-by-step solution to the task 
(c.f. Wei et al. [59] and Zhou et al. [67]). This method is designed 
to help the LLM logically break down the task, potentially leading 
to more accurate and thorough responses [14].3

In contrast to the CoT prompt, the outputs for the Basic and Context
prompt styles consist only of predefined lists of strings (see Table 1 for 
example outputs per task). Since both datasets contain implicit aspects 
without extractable phrases, we instructed the LLM to assign the phrase
‘NULL’ to these implicit aspects for the E2E and TASD tasks.

Considering that Simmering and Huoviala[18] have shown that the 
inclusion of few shot examples has no positive effect on the performance 
of fine-tuned LLMs in the field of ABSA, we have refrained from includ-
ing them in our prompts.

3 As the ACD task is sufficiently straightforward to be designed as a single-step 
task, we have not used the CoT prompt in this case.

4.  Experimental setup

4.1.  Datasets

To evaluate the effectiveness of LLMs for ABSA, we utilize two dif-
ferent datasets from the restaurant domain: SemEval 2016 (Task 5, 
restaurant domain; further referenced as EN-Rest) and GERestaurant 
(further referenced as DE-Rest). The EN-Rest dataset is a benchmark 
corpus extensively used in ABSA research [68]. It comprises 2295 En-
glish sentences (train: 1,708; test: 587) annotated across 12 aspect cate-
gories. This dataset has been pivotal in advancing ABSA methodologies, 
providing a standardized platform for evaluating model performance 
[13,25,43,57,69–74]. Complementing this, the GERestaurant dataset of-
fers a substantial resource for ABSA in the German language. It contains 
3078 sentences (train: 2,154; test: 924) annotated over 5 aspect cate-
gories. Utilizing both datasets allows for a comprehensive evaluation 
of LLMs’ capabilities in ABSA across different languages and resource 
settings. The Rest-16 dataset provides a well-established benchmark for 
English, while GERestaurant facilitates assessment in a resource-scarce, 
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non-English context. Both datasets include annotations for aspect cate-
gories, sentiment polarities, and aspect terms. They cover both explicit 
and implicit aspects, allowing for the investigation of a wide range of 
ABSA subtasks.

4.2.  Tasks

ABSA involves several subtasks that focus on different parts of 
aspect-based sentiments within texts. In this work, we investigate the 
four most common ABSA tasks feasible with the annotations of our 
datasets: Aspect Category Detection (ACD), Aspect Category Sentiment 
Analysis (ACSA), End-To-End ABSA (E2E), and Target Aspect Sentiment 
Detection (TASD)4 [31] - see Table 1 for an illustration of exemplary 
inputs and outputs of each task.

While ACD solely aims to extract all aspect categories of a given text, 
ACSA also captures the sentiment polarities expressed towards each as-
pect. Target Aspect Sentiment Detection (TASD) takes ACSA a step fur-
ther by also detecting the specific phrases or expressions that represent 
the identified aspects in the text. This involves identifying the aspect 
categories, analyzing the sentiment polarity for each category, and ex-
tracting the exact phrases in the text that correspond to each aspect 
and are the target of the expressed sentiment. End-To-End ABSA (E2E) 
represents the middle ground between ACSA and TASD, where senti-
ment is predicted toward a textual aspect phrase rather than a prede-
fined category. In existing literature, evaluation protocols vary for this 
task, some include implicit aspects (those not explicitly mentioned in 
the text), while others focus exclusively on explicit targets. To ensure 
broad applicability and align with recent generative approaches capa-
ble of modeling both types, we explicitly include implicit aspects in our 
dataset and evaluation. Specifically, models must predict when no as-
pect phrase is present (i.e., implicit targets) and correctly assign the 
corresponding sentiment. This setup is used consistently across all E2E 
evaluations unless otherwise stated.

4.3.  Parameters for fine-tuning

As with fine-tuning for a task in the context of transfer learning, 
there is also a large number of parameters that can influence the result 
when instruction-tuning LLMs [61,75]. We investigate four of these pa-
rameters in detail: LoRA rank, LoRA 𝛼, learning rate, and the number of 
training epochs.

LoRA 𝛼 and LoRA rank. LoRA rank controls the dimensionality reduc-
tion in the model’s weight matrices during adaptation, with higher 
ranks capturing more information but requiring more computational re-
sources. LoRA 𝛼 regulates the scaling of these low-rank matrices, influ-
encing their impact on the original model parameters [61]. While gen-
eral recommendations exist for LoRA 𝛼 and rank values [61,76], these 
parameters are less explored in the context of ABSA.

Ding et al. [46] found that a rank of 8 yielded the best results for fine-
tuning a LLaMA model on ABSA subtasks. Building on this, we use a rank 
of 8 as a starting point and explore different scaling factors, as higher 
scaling may enhance performance [76]. This leads to testing combina-
tions of rank = 8; 𝛼 = 8 and rank = 32; 𝛼 = 32 for standard scaling, 
and rank = 8; 𝛼 = 16 and rank = 32; 𝛼 = 64 for increased weighting 
on the LoRA adapters.

Learning rate and number of training Epochs. The learning rate deter-
mines the magnitude of adjustments to the model parameters during 
training and is closely influenced by the batch size and the number of 
training epochs, as these factors collectively impact the model’s behav-
ior and stability. Based on previous research, we test constant learning 

4 TASD is also referred to as Aspect Category Sentiment Detection (ACSD). To 
maintain consistency with recent literature, we use the term TASD.

rates of 3 × 10−4 and 3 × 10−5: Wu et al. [44] used 3 × 10−4 for fine-tuning 
an LLM with LoRA adapters on ABSA tasks in Chinese, while Huang 
et al. [45] applied 3 × 10−5 for instruction tuning an LLM for ABSA. By 
exploring these rates, we aim to identify effective learning rates for fine-
tuning LoRA adapters on our specific dataset and language contexts. To 
allow sufficient task adaption even in low-resource scenarios, all models 
are trained for up to 10 epochs. However, instead of relying on a fixed fi-
nal epoch, we evaluate task-specific performance after each epoch using 
the micro-averaged F1 score and select the checkpoint with the best val-
idation performance for all subsequent evaluations on the test set. This 
ensures that our results reflect the most optimal point during training.

Additional configurations used for LoRA fine-tuning are described in 
Appendix A.4.

4.4.  Evaluation procedure

Our study follows a systematic three-step process to fine-tune the 
LLM and evaluate its performance on ABSA tasks (see Fig. 3). To main-
tain comparability across multiple datasets and splits while ensuring 
reproducibility and robustness, we emphasize a structured evaluation 
design, reflecting best practices from prior ABSA and NLP research 
[77–79].

Step 1: hyperparameter optimization. First, we identify the optimal hy-
perparameters for each prompt style across different dataset sizes and 
ABSA tasks. Therefore, the training datasets are divided into six strat-
ified splits, with five used for training and one for validation (see Ta-
ble A.9 in the Appendix for the size of each split per setting). The valida-
tion split is used exclusively for model selection during hyperparameter 
optimization, with task-specific performance measured by the micro-
averaged F1 score serving as the primary selection criterion. This ap-
proach allows us to evaluate combinations of LoRA parameters (𝛼 and 
rank), learning rates, and training epochs, ensuring effective fine-tuning 
of the models across varying conditions.

For the hyperparameter optimization, we examine a total of 44 con-
figurations per dataset (4 ABSA tasks × 4 dataset sizes × 2/3 prompt 
styles) and investigate 8 different hyperparameter combinations for 
each scenario (comprising 4 LoRA settings × 2 learning rates).

Step 2: cross-validation for prompt selection and performance dependency on 
dataset size. Using the optimal hyperparameters from Step 1, we per-
form 5×5 cross-validation on the training subsets, excluding the vali-
dation split to avoid data contamination. This process provides a robust 
average performance across multiple runs. Our objectives are to identify 
the best prompt formulation for each dataset, size, and ABSA task and to 
compare the LLMs’ performance against baseline approaches in various 
resource-scarce scenarios. We also analyze how the dataset size avail-
able for training, validation and testing (full dataset, 1,000, 500, and 50 
examples) influence LLM performance, ensuring consistent evaluation 
by using the full dataset’s test splits across all sizes.

Step 3: comparative evaluation. Finally, we train the LLM on the entire 
DE-Rest and EN-Rest training splits using the best hyperparameters and 
prompting strategies from previous steps and evaluate the models on 
their respective original test splits. This final evaluation allows us to 
compare our results with other studies on the same datasets, providing 
a comprehensive assessment of our approaches’ performance for ABSA 
tasks.

Evaluation settings. We use greedy-search with temperature = 0 for 
model evaluation to ensure that the outputs remain deterministic and re-
producible. The output of the LLM is controlled with stop words, which 
prevents an uncontrolled continuation of the output as soon as unwanted 
parts of the prompt are repeated, such as the instructions or the input 
sentence. The aspect and sentiment outputs are then checked for valid-
ity and extracted using regex expressions to parse the ABSA elements 
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Fig. 3. Exemplary process of steps 1 (hyperparameter optimization for each prompt and dataset size) & 2 (cross-evaluation for prompt selection and baseline 
comparison) of the study design.

from the tuple-template formatted output (see Table 1) before evaluat-
ing model performance.

Limitations of the 50-sample setting. Since we cannot rely on a validation-
based selection strategy for the 50-samples setting, we adopt the con-
figuration of each approach as defined and evaluated in related work 
(see Appendix A.3). Splitting a meaningful validation set from such lim-
ited data (a potential validation set would consist of only ≈10 examples) 
is impractical, and hyperparameter tuning in this context would yield 
unreliable results.

Importantly, hyperparameter tuning is typically intended to maxi-
mize the final performance of individual models. However, for the 50-
samples setting, our aim is not to optimize each model’s performance, 
but to assess relative differences between methods under consistent and 
realistic low-resource conditions. We intentionally fix such factors to en-
sure comparability across tasks, languages, and domains, which is cru-
cial for drawing robust conclusions about generalization behavior.

This experimental design mirrors real-world low-resource scenarios, 
such as those reflected in the RAFT benchmark [80], where datasets 
are similarly small and lack validation splits. Therefore, to ensure fair-
ness and interpretability, we use fixed hyperparameter settings based 
on recommendations from the literature. This has proven to be more re-
liable than choosing arbitrary or insufficiently evaluated hyperparame-
ters [27].

Therefore, to ensure comparability across languages, domains, and 
model types, we adopt values from prior work [18,44,46,61]: LoRA rank 
and 𝛼 set to 8, learning rate to 3e-4, and a standard prompting template 
for ICL and fine-tuning methods (Basic template), while training for 10 
epochs due to the small dataset size.

4.5.  Metrics and empirical evaluation

Similar to previous studies, we rely our evaluation on the micro-
averaged F1 score [29]. We provide other metrics such as macro-
averaged F1 score, precision, recall and accuracy on GitHub.

We employ multiple statistical tests to assess the significance of ob-
served differences in parameter combinations, hyperparameter settings 
and dataset sizes (padj ≤ 0.05). For hyperparameter tuning, we use boot-
strapping [81] (n = 1,000) to estimate performance metrics and apply 
the Kruskal-Wallis test [82] with Bonferroni-Holm correction [83] for 
pairwise comparisons. In evaluating prompting styles and dataset sizes, 
we test for normality using the Shapiro-Wilk test [84]. For normally 
distributed data, we use repeated measures ANOVA followed by paired 
t-tests for pairwise comparisons [85]. When normality is not assumed, 
the Friedman test is applied, followed by Wilcoxon signed-rank tests 
[86], with Bonferroni-Holm correction ensuring reliability.

4.6.  Baselines

To assess the performance of our approach, we implement several 
baselines. We utilize various SOTA methods from the restaurant domain 
to obtain comparative results under our experimental conditions. The 
baseline methods are selected based on the results they achieved on 
the respective dataset they are used for, whereby we only considered 
approaches that are reproducible with provided code and can therefore 
be evaluated under our specific conditions.

For the ACD and ACSA subtasks, we implement two baseline models:
BERT-CLF A BERT-based multi-label classification approach, as used 

by Hellwig et al. [30], where one or more classes within a 
sentence are predicted. Each class represents either an aspect 
category, such as FOOD for ACD, or an aspect category com-
bined with its positive, neutral or negative sentiment, such as
FOOD:POSITIVE for ACSA.

Hier-GCN An approach based on hierarchical graph convolutional net-
works with BERT for sentence encoding by Cai et al. [87].

For the E2E task, we use the following baselines, which are able to han-
dle explicit and implicit opinion targets:
InstructABSA A combined approach based on generative models by 

Scaria et al. [13] which solves term extraction and sentiment clas-
sification in a unified way.

TAS-BERT A BERT-based approach for a combined extraction of both 
aspect terms and aspect categories for sentiment classification 
[72].

For the TASD task, we implement the following baseline models:
Paraphrase A sentence paraphrase approach proposed by Zhang 

et al. [70] and adapted for the TASD task in German by Hell-
wig et al. [30], which utilizes sequence-to-sequence modeling to 
convert sentences into a predefined template before aspect ex-
traction.

MvP Multi-View-Prompting (MvP) leverages element order prompts 
to generate sentiment tuples in multiple orders and aggregates 
results through a voting mechanism to capture interdependencies 
[25].

For all ABSA subtasks, we additionally include a baseline based on 
instruction-based in-context learning (ICL) without fine-tuning:
LLaMA Few-Shot A prompting-based approach using ICL without any 

gradient updates. Building upon prior research that success-
fully integrated task-relevant contextual information into few-
shot prompts [18,20], we re-use our Context prompt template 
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for few-shot experiments and embed 5, 10, or 25 few-shot exam-
ples directly into the prompt. The choice of 5 and 10 examples is 
motivated by prior work [43,55], which demonstrated improved 
performance on complex ABSA tasks such as TASD with more 
in-context examples. Moreover, we include a 25-shot variant to 
further investigate this assumption. This setup enables a direct 
comparison between our fine-tuned LLM approach and purely 
prompt-based inference.

Each method is reproduced using its original configuration, reusing 
the same hyperparameters, model variants, and sizes wherever possible 
to avoid relying on suboptimal or untuned settings. If a method relies 
on an underlying pre-trained model, we use the original model. In cases 
where the pre-trained model is language-specific and not suitable for 
German, we select an equivalent model in the appropriate language.

For our fine-tuning baselines, given that several of our experimen-
tal conditions involve training with reduced dataset sizes, we want to 
ensure fair comparisons with the baseline models without delving into 
extensive hyperparameter tuning. Therefore, to potentially improve the 
baselines methods performance on the reduced datasets, we implement 
two different configurations: First, we train the models using the default 
number of steps or epochs for all dataset sizes, thus the settings with ar-
tificially reduced dataset sizes are trained over a smaller amount of total 
samples. Second, we increase the number of training steps or epochs so 
that the settings with reduced training datasets are trained over the same 
total number of samples or steps as the full dataset. This approach allows 
us to assess whether extended training on smaller datasets can compen-
sate for the reduced amount of data and provides a more comprehensive 
comparison with our fine-tuned LLM approach for ABSA. The superior 
training approach for the baseline methods is chosen based on its results 
achieved on the separate validation set.

In the 50-samples setting, the same limitations apply to the base-
line approaches as outlined for our fine-tuned LLMs in Section 4.4. We 
therefore refrain from validation-based hyperparameter tuning and in-
stead adopt recommended configurations from prior literature to ensure 
fair and consistent comparisons in this extreme low-resource scenario.

5.  Results and discussion

For transparency and reproducibility, our GitHub repository5 pro-
vides detailed result tables for all experiments, including per-run statis-
tics and breakdowns by aspect category and sentiment polarity. Addi-
tional metrics such as macro F1, precision, recall, and accuracy are also 
included.

5.1.  Hyperparameter optimization

Detailed results and the optimal hyperparameter combinations for 
each experimental setting are reported in Table A.10 in the Appendix 
and are additionally available in our digital repository. The hyperpa-
rameters identified during this tuning phase are subsequently fixed and 
used for all following evaluations under comparable conditions (e.g., 
comparison of prompting styles and final performance evaluation). For 
the DE-Rest dataset, statistically significant hyperparameter combina-
tions were identified for 27 out of 33 configurations, with the remain-
ing 6 configurations significantly outperforming 6 out of 7 alternative 
setups. Similarly, for the EN-Rest dataset, statistically significant combi-
nations were found in 28 out of 33 configurations, while the remaining 
5 configurations also demonstrated superior performance compared to 
6 out of 7 alternatives. As an average across both datasets, all prompt 
styles and dataset sizes, the combination of a learning rate of 3 × 10−4, 
a LoRA rank of 8, and a LoRA 𝛼 of 8 consistently emerged as the best-
performing hyperparameter configuration. Additionally, the analysis re-
veals that configurations with a stronger weighting of the LoRA adapter, 

5 https://github.com/JakobFehle/Fine-Tuning-LLMs-for-ABSA

characterized by a higher LoRA 𝛼 than LoRA rank, perform worse on av-
erage compared to those with equal weighting.

5.2.  Prompt formulation

The results for the cross evaluation of the various prompt styles in 
their respective best parameter combination (see Table A.10 in the Ap-
pendix for best combinations) are shown in Table 2. Basic prompts per-
form comparably well on both datasets, especially in the ACD and TASD 
tasks, generally staying slightly ahead or sometimes slightly behind Con-
text prompts by a small margin. In two cases, a statistically significant 
best result is identified for the Basic prompt (marked with †). Prompts 
based on the CoT methodology usually perform worst, with one minor 
exception on the ACSA task. This weakness is likely related to the fact 
that CoT formulations elicit longer reasoning-style outputs, which mis-
align with the label-focused fine-tuning objective.

Impact of task complexity. Regardless of prompt formulation, the ob-
tained F1-micro values decrease with increasing task complexity (the 
more ABSA elements have to be jointly predicted), where performance 
peaks at 85.21 (ACD), 80.72 (ACSA), 80.07 (E2E), and 75.65 (TASD) 
on the EN-Rest dataset, and at 87.88, 84.40, 80.58, and 75.61 respec-
tively on the DE-Rest dataset. These findings are consistent with prior 
research, which has repeatedly shown that more complex ABSA tasks 
(such as E2E and TASD) introduce compounding challenges due to the 
need to jointly model multiple, interdependent subtasks like aspect ex-
traction and sentiment classification [13,43,72,88].

Impact of a prompt’s integrated information on performance. Similar to 
Bai et al. [55], we analyze performance at the level of individual ABSA 
elements to better understand how prompt formulations affect model 
behavior. The results show that adding more ABSA elements, such as 
aspect terms, into a prompt can improve the performance of predicting 
other ABSA components (e.g., aspect category). Although, this effect 
varies by task and dataset. For the classification of aspect categories, 
more informative prompts (e.g., prompts for ACSA or TASD) lead, on 
average, to higher F1 scores on EN-Rest (+1.75 for using TASD over 
ACD and +0.43 for using TASD over ACSA) and DE-Rest (+1.10 for 
using TASD over ACSA). In aspect + polarity classification, the effect 
of using TASD instead of ACSA prompts is smaller or inconsistent (-0.08 
on EN-Rest and +0.22 on DE-Rest).

Our results suggest that while richer prompts can improve perfor-
mance, especially in aspect classification, the benefits for more complex 
tasks like polarity classification are smaller and inconsistent. Since the 
role of additional prompt information is not yet fully understood, fu-
ture work should investigate under which conditions it meaningfully 
contributes to model performance.

Influence of prompt styles on hyperparameter tuning. Despite the variabil-
ity across different datasets and parameter combinations, we observe 
that for both datasets different prompt styles significantly influence the 
optimal hyperparameters, underlining the need for prompt and dataset-
specific tuning.

Prompt robustness and performance differences. Cross-evaluation with 
best-performing hyperparameters shows that differences between Ba-
sic and Context prompt styles are minimal, with significant differences 
occurring in only 2 out of 32 comparisons. This suggests that prompt 
formulation is less critical for the final performance outcomes of LLM 
fine-tuning in ABSA. At the same time, we note that prompt styles can 
still influence the choice of optimal hyperparameters, which underlines 
the importance of tuning, even if the relative ranking of prompts re-
mains unchanged. Overall, this advocates for short and concise prompts 
to enhance efficiency and reduce training times. A similar observation 
was made by Simmering and Huoviala[18], who systematically varied 
the contextual information included in prompts during LLM fine-tuning 
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Table 2 
Results for the cross-validation setting of prompt style and dataset size evaluation as a micro F1 
score averaged over five splits. Best results are in bold - results are marked with † if they are 
significantly better than both other prompts. Prompt styles include: Basic (minimal instruction), 
Context (additional task descriptions and label explanations), and CoT (step-by-step reasoning).

Task Method
 EN-Rest  DE-Rest

 Full  1,000  500  50  Full  1,000  500  50

ACD
 Basic  84.41  81.46  81.15  73.36  87.87  86.65  86.12†  80.86
 Context  85.21  79.74  78.72  73.37  87.83  86.45  83.24  82.24
 CoT  –  –  –  –  –  –  –  –

ACSA
 Basic  80.72  79.32  77.63  67.27  84.11  81.24  80.38  76.61
 Context  80.70  80.18  76.70  68.67  84.40  79.77  81.15  76.72
 CoT  79.14  79.64  75.18  67.04  82.22  80.20  81.38  73.33

E2E
 Basic  80.07  77.98  73.93  63.21  80.58  78.43  73.85†  63.34
 Context  79.95  76.60  73.39  63.71  78.86  78.42  71.09  62.81
 CoT  78.01  58.33  60.22  51.97  76.32  74.53  69.51  47.36

TASD
 Basic  75.65  73.10  71.46  54.10  75.12  74.03  70.60  59.54
 Context  74.95  72.99  70.40  52.86  75.61  73.75  72.86  58.11
 CoT  70.17  69.46  62.50  47.39  71.80  68.23  67.80  48.03

Table 3 
Mean and standard deviation (std) of performance differences 
in F1-micro scores between prompts across all hyperparam-
eter combinations. This aggregation controls for tuning vari-
ance and highlights the relative impact of prompt design on 
model performance across tasks. Basic and Context differ only 
marginally, while CoT consistently underperforms and ex-
hibits higher variance.
 Task  Basic→Context  Basic→CoT  Context→CoT

 Mean  Std  Mean  Std  Mean  Std
 ACD  +0.27  1.61  –  –  –  –
 ACSA  –0.21  4.96  –2.79  4.77  –2.58  5.88
 E2E  –1.36  6.10  –11.00  8.42  –9.63  10.03
 TASD  –0.15  3.76  –9.59  6.29  –9.44  6.95

and evaluated its effect on ABSA performance. Like our findings, their 
results indicate that minimal prompts tend to be particularly effective, 
suggesting that extensive contextualization is not necessarily beneficial 
in this setting.

During hyperparameter tuning, the relative ranking of prompts re-
mains consistent with the cross-evaluation results. Here, differences 
were computed pairwise for identical hyperparameter configurations, 
meaning that Table 3 reports averaged run-level deltas. This provides 
a more fine-grained view on prompt-hyperparameter interactions. As 
shown in Table 3, Basic and Context differ only marginally, with mean 
deltas close to zero and low variance. In contrast, CoT consistently un-
derperforms, with average differences of up to -11 F1-micro points com-
pared to Basic, and also exhibits higher variability across hyperparam-
eter settings. This indicates that while prompt-hyperparameter interac-
tions exist, they do not change the overall pattern: Basic and Context
remain the most reliable choices, whereas CoT introduces instability.

We attribute these discrepancies primarily to differences in output 
format, as already discussed above. While Context prompts elicit short, 
label-based answers aligned with the training objective, CoT prompts 
lead to longer, natural-language style outputs that reflect reasoning 
steps which misalign with the model’s fine-tuning objective. This con-
trasts with prior work reporting benefits of CoT in ICL scenarios [14,59], 
and suggests that CoT’s advantages do not necessarily transfer to full 
fine-tuning setups where models can internalize task logic without ex-
plicit step-by-step reasoning. All results are publicly available in our 
repository, enabling future work with further analysis and replication.

Our variance analysis further supports these findings by showing 
that performance within each prompt type remains relatively stable 
across hyperparameter configurations (see Table 4), particularly when 

Table 4 
Mean and standard deviation (Std) of F1-micro scores within each prompt across 
all hyperparameter combinations and both datasets. Basic is consistently the 
most stable prompt type, while Context and CoT exhibit higher variance in com-
plex tasks, with CoT reaching the highest values overall.
 Prompt  ACD  ACSA  E2E  TASD

 Mean  Std  Mean  Std  Mean  Std  Mean  Std
 Basic  82.49  5.15  77.80  8.36  73.65  6.06  69.69  7.98
 Context  82.85  4.96  77.71  9.73  72.29  11.91  69.50  8.10
 CoT  –  –  75.13  10.47  62.67  12.81  60.12  10.80

compared to the higher fluctuations of CoT prompts. Basic and Context
prompts are comparatively robust, with standard deviations typically in 
the range of 5 - 8 F1-micro points. In contrast, CoT prompts fluctuate 
more strongly, reaching up to 12.8 F1-micro points for E2E and 10.8 
for TASD. We also observe that variance increases across all prompt 
types as task complexity grows, from relatively low values in ACD to 
markedly higher values in E2E and TASD, suggesting that more com-
plex subtasks amplify the effect of hyperparameter choices. Taken to-
gether, these analyses reinforce the cross-evaluation results: Basic and 
Context provide consistently stable performance, whereas CoT remains 
less reliable, particularly in complex tasks.

Manual vs. automatic prompt design. All prompt templates in our study 
were manually created and adjusted based on the specific ABSA task 
and dataset. While this ensured precise task adaptation, it may limit re-
producibility and scalability to other languages, domains and datasets. 
Automatic prompt generation methods such as AutoPrompt [89] have 
already shown promising results in sentiment analysis with smaller lan-
guage models. More recent approaches leveraging LLMs for prompt gen-
eration [90,91] or reinforcement learning-based optimization [92] fur-
ther highlight the potential of automating prompt design. Exploring 
such techniques for ABSA could reduce manual effort and improve cross-
domain generalizability.

5.3.  Performance based on dataset size

The values achieved by the fine-tuned LLM remain relatively stable 
when the amount of training data is reduced (see Table 5). From the full 
dataset down to 500 examples, F1 scores typically decrease by only 2-4 
points, indicating strong robustness under moderate data scarcity. How-
ever, in the extreme low-resource setting of only 50 training samples, 
more substantial performance drops are observed. The most substan-
tial decrease occurs in the E2E task on EN-Rest, with a decline of 16.4 
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Table 5 
Results for the cross-validation of dataset sizes in comparison with baseline approaches as a F1-micro score averaged 
over five splits. Best results are in bold - results are marked with † if they are significantly better than all other ap-
proaches. Few-shot results (LLaMA Few-Shot) were obtained using 25 in-context examples with the Context prompt, while 
LLaMA-FT-ABSA refers to our fine-tuned model using fixed prompts and optimized hyperparameters. Other approaches 
are established SOTA baselines from the literature.

Task Method
 EN-Rest  DE-Rest

 Full  1,000  500  50  Full  1,000  500  50

ACD

 BERT-CLF  76.05  68.70  58.32  18.05  92.29†  91.22†  90.13†  19.43
 Hier-GCN  82.31  80.32  75.03  49.80  89.71  87.41  85.52  58.36
 LLaMA Few-Shot (25)  74.64  74.58  74.52  74.49  82.01  81.95  81.98  82.01
 LLaMA-FT-ABSA  85.21†  81.46  81.15  73.37  87.87  86.65  86.12  82.24

ACSA

 BERT-CLF  51.24  42.11  43.20  8.03  83.17  84.36  81.69  3.49
 Hier-GCN  72.41  71.08  63.59  35.76  82.49  79.25  73.83  42.36
 LLaMA Few-Shot (25)  71.46  71.19  71.14  71.56†  78.56  78.53  78.67  78.67
 LLaMA-FT-ABSA  80.72  80.18†  77.63†  68.67  84.40  81.24  81.38  76.72

E2E

 InstructABSA  75.63  74.95  74.87  43.97  71.50  69.96  67.94  34.18
 TAS-BERT  70.96  67.59  59.81  31.46  71.05  66.66  60.86  40.41
 LLaMA Few-Shot (25)  60.05  59.95  59.95  60.05  65.77  65.77  65.87  65.76 
 LLaMA-FT-ABSA  80.07†  77.98  73.93  63.71  80.58†  78.43†  73.85†  63.34

TASD

 MvP  70.12  68.14  64.63  43.11  70.06  65.94  63.62  42.09
 Paraphrase  71.84  68.38  63.76  38.57  70.39  66.58  62.81  34.85
 LLaMA Few-Shot (25)  45.45  45.41  45.51  45.62  49.30  49.59  49.91  49.72
 LLaMA-FT-ABSA  75.65†  73.10  71.46  54.10†  75.61†  74.03†  72.86†  59.54†

points (from 80.07 to 63.71). Similar drops are observed in the TASD 
task, particularly on DE-Rest, where performance falls by 16.1 points 
(from 75.61 to 59.54).

These results indicate that LLM fine-tuning is generally robust under 
moderate data scarcity, though applications in extremely low-resource 
settings should anticipate more noticeable performance losses.

Comparison with baseline methods in data-scarce conditions. Compared to 
our fine-tuned LLM, the baseline methods generally perform worse un-
der data-scarce conditions. For example, TAS-BERT’s F1 score on the 
E2E task drops by over 10 points when moving from full data to 500 ex-
amples. The classification-based baseline models, BERT-CLF and Hier-
GCN, show a considerable drop in performance under class-rich con-
ditions and low data availability, as seen in the ACD and ACSA tasks 
on EN-Rest, which contains 12 aspect categories, resulting in 12 classes 
for ACD and 36 classes (12 aspect categories x 3 polarities) for ACSA to 
predict. Although BERT-CLF outperforms our approach in a few isolated 
cases (e.g., in ACD and ACSA on DE-Rest), our approach consistently de-
livers the highest F1 scores across the majority of tasks and dataset sizes 
on both datasets.

Even under the extreme low-resource condition with only 50 sam-
ples, the fine-tuned LLM maintains strong and competitive performance 
across most tasks. While all methods experience noticeable performance 
drops when moving from 500- to 50-sample condition, the decline is 
least pronounced for our fine-tuned LLM. This is particularly evident in 
the more complex E2E and TASD tasks, where our approach continues 
to provide acceptable performance levels despite the severe data limita-
tions. Notably, in the TASD task on DE-Rest, all differences between our 
LLM approach and the baseline methods are statistically significant. Fur-
thermore, the baseline results we report are closely aligned with those 
from Gou et al. [25] in comparable low-resource ABSA settings, support-
ing the reliability and external validity of our experimental setup and 
findings.

Comparison with few-shot performance. Fine-tuning usually improves 
performance compared to few-shot ICL, particularly for more complex 
tasks like E2E and TASD, where the model must combine classification 
and term extraction. Across all moderate and resource-scarce dataset 
sizes (from full data to 500 examples), the fine-tuned models consis-
tently achieve better performance than few-shot prompting by a clear 
margin.

Only under extreme low-resource conditions (50 samples) does few-
shot prompting show isolated advantages. In specific tasks such as ACD 
and ACSA, it achieves performance close to or slightly above that of the 
fine-tuned model. However, this comes at the cost of longer input se-
quences, higher inference latency, and increased sensitivity to prompt 
design. These results highlight that while few-shot prompting may be 
useful when training is entirely infeasible, it does not match the robust-
ness and overall performance of fine-tuning in most scenarios.

As discussed in Section 5.2, we observe that prompt formulation 
has minimal impact on fine-tuning outcomes. This, in turn, allows for 
more compact inputs during inference, making fine-tuned models sig-
nificantly more efficient than few-shot prompting approaches, which 
require long prompts with many embedded examples. In contrast to 
ICL-based methods, fine-tuned models also deliver stable and com-
petitive performance across all data sizes, even under limited train-
ing conditions. While our results confirm previous findings that few-
shot prompting can serve as a useful fallback in training-constrained 
scenarios [43,69], fine-tuning remains the more cost-efficient and ro-
bust choice, particularly for high-throughput or production applications 
[93]. Moreover, few-shot prompting typically relies on general-purpose 
instruction-tuned models that may not generalize reliably across do-
mains or languages, an important consideration in extreme low-resource 
scenarios, where domain shifts and language constraints are common.

Furthermore, recent studies have shown that demonstration retrieval 
methods, where in-context examples are selected dynamically based on 
similarity to the input, can further enhance ICL performance, particu-
larly in low-resource and cross-domain settings [94–96]. For instance, 
Zheng et al. [97] and Wang et al. [98] present first retrieval-based ap-
proaches tailored for ABSA that rank or select in-context examples based 
on generation likelihood or multiple linguistic perspectives. While these 
studies show promising improvements in few-shot settings, they typi-
cally rely on access to representative and sufficiently large sets of ex-
amles for selection, an assumption that may not always hold in truly 
low-resource scenarios.

Summary: LLM advantages in handling limited data. Our results demon-
strate that fine-tuned LLMs are well suited to low-resource scenarios, 
particularly when task complexity increases. In fact, the performance 
remains relatively stable, even with severely limited data and for tasks 
like TASD and E2E, highlighting the adaptability of LLMs in extracting 
ABSA structures under suboptimal conditions. In several cases, the fine-
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tuned model achieves F1 scores in the 500-sample setting that match 
or exceed those of baseline models trained on the full dataset, empha-
sizing the effectiveness of fine-tuning for resource-poor domains. This 
suggests that our approach can achieve comparable or even superior re-
sults with substantially fewer training examples, thereby reducing the 
need for extensive and resource-intense annotation efforts, since, given 
the fine-grained and complex nature of ABSA, such annotations are of-
ten time-consuming, costly, and require considerable task- and domain-
specific expertise [99,100].

That said, fine-tuned LLMs are not universally superior. For in-
stance, the BERT-based BERT-CLF baseline achieves higher perfor-
mance than our LLM on the ACD task on DE-Rest, a setting with 
relatively low task complexity. This suggests that while LLMs ex-
cel in more demanding tasks like E2E and TASD, their advantage 
over simpler classification baselines may diminish in lower-complexity
scenarios.

5.4.  Ablation study: generalizability across models, languages, and domains

To build upon our previous findings and further investigate the ro-
bustness and generalizability of our fine-tuned LLM approach under ex-
treme low-resource conditions (50-samples setting), we conduct an ex-
tensive ablation study across multiple dimensions. We expand our eval-
uation beyond LLaMA 3 8B to include two additional LLMs, namely Mis-
tral 7B v0.3 [101] and Gemma 3 4B [102]. This extension allows us to 
investigate whether our previously observed advantages are specific to 
the LLaMA architecture or whether they are more generally applicable 
to instruction fine-tuned LLMs.

Furthermore, to assess language generalizability, we extend our ini-
tial evaluations from German and English in the restaurant review 
domain to four additional languages covered by the SemEval 2016 
datasets: Russian, Dutch, Spanish, and French [29]. This multilingual 
evaluation ensures that the observed trends are not language-dependent 
phenomena restricted to specific linguistic properties of German or En-
glish.

Additionally, we address domain generalizability by supplement-
ing the established restaurant domain datasets with two German-
language domains: user reviews focused on inclusion in public trans-
port (MobASA [103]) and hotel reviews [104]. While these datasets 
are fewer in number due to limited availability of annotated ABSA 
datasets, they nonetheless provide important insights into how ro-
bustly the fine-tuned LLM approach generalizes beyond well-established
domains.

Evaluation procedure and hyperparameters. Consistent with the analysis 
presented in Section 5.3, we again compare the performance of our fine-
tuned LLMs with established SOTA baseline methods (as described in 
Section 4.6). Similarly to German and English, to ensure optimal compa-
rability and representative baseline performance, we utilize specialized 
language-specific transformer models for each evaluated language, such 
as rubert-base6 [105] for BERT-based methods and ruT5-base7 [106] for 
T5-based approaches on the Russian-langauge dataset (see Appendix A.3 
for a full list of models).

The general evaluation procedure remains consistent with the proce-
dure outlined in Section 4.4. Therefore, for each condition (combination 
of language, domain, model, and method), we trained on five distinct 
training and test splits, reporting the average F1-micro score across these 
splits. Statistical significance between our fine-tuned LLM approach and 
baseline models was computed based on these averages with each lan-
gauge and domain treated as an individual sample.

As in our initial experiments (Sections 4.4 and 4.6), we fixed the 
hyperparameters across all configurations in the ablation study due to 
the lack of validation data in the 50-sample setting.

6 https://huggingface.co/DeepPavlov/rubert-base-cased
7 https://huggingface.co/ai-forever/ruT5-base

General performance across conditions. The results of our extended ab-
lation study (see Table 6) demonstrate that the core trends observed 
in our initial 50-sample experiments on German and English data gen-
eralize well across additional languages and domains. While the main 
part of this work already highlighted the benefits of fine-tuned LLMs un-
der extreme low-resource conditions, the ablation study confirms that 
these observations are not limited to the restaurant domain or to spe-
cific languages. Instead, similar performance patterns emerge consis-
tently across a broader multilingual and multi-domain evaluation. To 
support visual interpretation, Table 6 highlights settings (in blue) where 
fine-tuned LLMs outperform all baselines, including prompting. Con-
versely, settings where a baseline outperforms all fine-tuned LLMs are 
highlighted in orange, indicating task-specific strengths of prompting in 
simpler classification setups.

In particular, across both newly introduced German-language do-
mains, inclusion in public transport and hotel reviews, fine-tuned LLMs 
often achieve the best performance across all ABSA subtasks. This find-
ing highlights their robustness not only beyond the commonly studied 
restaurant domain but also across less explored and structurally differ-
ent domains. Even though absolute performance differs greatly accord-
ing to the applied language, relative performance and ranking between 
methods usually remains stable.

Strengths of fine-tuned LLMs in complex tasks. Generally, instruction-fine-
tuned LLMs (LLaMA 3 8B, Mistral 7B, Gemma 3 4B) continue to outper-
form baseline models in the more complex ABSA tasks such as E2E and 
TASD. For these tasks, at least two of the three LLMs consistently outper-
form all baseline approaches across nearly all domains and languages. 
Despite using the conservative Bonferroni-Holm correction in our signif-
icance testing, we identify specific LLMs that achieve statistically signif-
icant improvements over all baselines for both E2E and TASD (marked 
with † in Table 6 in the “Model Average”-column). These findings are 
in line with previous studies, which have shown that fine-tuning LLMs 
often yields better performance than prompting for structured or multi-
step tasks, as it allows the model to internalize task-specific reasoning 
patterns and output formats [107,108].

Limitations of baselines and prompting trade-offs. By contrast, most ex-
isting SOTA baseline methods struggle to produce competitive results 
in this severely data-scarce scenario. Similar to the findings by Zhang 
et al. [109], classifier-based approaches such as BERT-CLF, Hier-GCN 
and TAS-BERT exhibit particularly poor performance in downstream 
tasks such as ACD, ACSA and E2E due to their reliance on sufficient 
training examples for each label combination, a condition not always 
met under low-resource constraints. This stands in stark contrast to the 
strong performance reported in Section 5.3 for resource-rich environ-
ments, especially for simpler classification tasks like ACD and ACSA, 
where these models were often able to keep up with or even surpass 
fine-tuned LLMs.

For these simpler tasks, only few-shot prompting with LLaMA yields 
competitive or even superior results in low-resource scenarios, echo-
ing insights gained from analyzing performance on German and En-
glish restaurant reviews in Section 5.3. This also aligns with prior lit-
erature suggesting that large general-instruction pre-trained models can 
perform reasonably well in classification settings via ICL, even when 
training is not possible [110,111]. In fact, prompting often outperforms 
fully fine-tuned LLMs on ACD and ACSA, highlighting the task-specific 
trade-offs between fine-tuning and prompting under extreme data limi-
tations.

In summary, our results offer a conclusive picture: When operating 
under extreme low-resource constraints, ICL proves most effective in 
simpler classification tasks (ACD, ACSA), while instruction fine-tuned 
LLMs excel in more complex setups (E2E, TASD), where the joint ap-
plication of term extraction and aspect/sentiment classification adds an 
additional layer of difficulty that few-shot prompting and baseline clas-
sifiers struggle to solve.
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Table 6 
F1-micro scores for all ABSA tasks (ACD, ACSA, E2E, TASD) under extreme low-resource conditions (50 samples). Abbr.: 
FT = Fine-Tuned, FS (25) = Few-Shot with 25 examples. The table compares instruction-tuned LLMs, prompting, and 
SOTA baselines across eight domain-language pairs. Best scores per dataset are bolded; blue highlights settings where 
the best fine-tuned LLM outperforms all baselines; orange highlights settings where a baseline surpasses all fine-tuned 
models; † indicates significant improvements (padj ≤ 0.05).

 Aspect Category Detection (ACD)

Method
 Inclusion  Hotel  Restaurant  Model

 de  de  de  en  es  fr  nl  ru  Average
 LLaMA 3 8B FT 84.10 80.01 82.68  71.42  68.84  66.88  65.16  57.93  72.13
 Gemma 3 4B FT  76.11  75.04  81.55  71.76  69.53  63.36  69.16  61.06  70.95
 Mistral 7B FT 83.00  75.70  76.59  66.08  69.58  65.67  67.68  69.27  71.70
 LLaMA FS (25)  76.14  79.00  81.98 74.49 73.66 68.42 73.91 72.06 74.96
 BERT-CLF  50.49  64.32  19.43  18.05  55.42  43.00  39.02  42.12  41.48
 Hier-GCN  66.57  67.47  58.36  49.80  58.04  41.53  37.18  46.32  53.16

 Aspect Category Sentiment Analysis (ACSA)

Method
 Inclusion  Hotel  Restaurant  Model

 de  de  de  en  es  fr  nl  ru  Average
 LLaMA 3 8B FT 72.08  66.12  76.13  66.60  64.94  54.15  62.26  59.52  65.22
 Gemma 3 4B FT  65.06  65.11  55.12  62.90  62.40  58.67  61.01  51.36  60.20
 Mistral 7B FT 71.56  59.50  71.55  67.79  61.81  57.04  61.75  63.45  64.31
 LLaMA FS (25)  67.28 71.32 78.67 71.56 69.69 63.66 67.53 64.27 69.28†

 BERT-CLF  3.77  44.74  3.49  8.03  26.50  0.32  1.73  5.35  11.74
 Hier-GCN  48.39  51.14  42.36  35.76  49.45  30.48  28.12  34.69  40.05

 End-to-End ABSA (E2E)

Method
 Inclusion  Hotel  Restaurant  Model

 de  de  de  en  es  fr  nl  ru  Average
 LLaMA 3 8B FT 60.95  – 66.69 65.99 62.36 58.53 50.98 50.20 59.39†

 Gemma 3 4B FT  56.27  – 67.20 64.31 60.68 58.49 52.52 56.31 59.40
 Mistral 7B FT 59.86  – 64.35 66.10  51.79 58.84 53.82  46.55 57.33
 LLaMA FS (25)  57.78  –  65.76  60.05  60.04  54.29  49.83  48.95  56.67
 InstructABSA  40.23  –  34.18  43.97  31.31  25.28  17.47  14.20  29.52
 TAS-BERT  36.16  –  40.41  31.46  43.34  23.68  15.50  31.64  31.74

 Target Aspect Sentiment Detection (TASD)

Method
 Inclusion  Hotel  Restaurant  Model

 de  de  de  en  es  fr  nl  ru  Average
 LLaMA 3 8B FT 57.81  – 58.83 54.59 53.29 48.91 48.24  37.46 51.30†

 Gemma 3 4B FT  43.09  – 55.73 49.71 46.42  35.14 39.87 42.83 44.68

 Mistral 7B FT 62.21  – 57.94 57.14 48.56 48.11 44.58 45.69 52.03†

 LLaMA FS (25)  50.07  –  49.72  45.62  46.00  37.40  38.48  40.00  43.90
 MvP  52.16  –  42.09  43.11  30.50  29.51  34.37  30.84  37.51
 Paraphrase  47.81  –  34.85  38.57  28.24  20.17  27.58  16.33  30.51

5.5.  Comparative evaluation

We compare the results of our approach with those of current SOTA 
methods under identical conditions, including the same datasets, train-
ing/test splits, and ABSA tasks. For our approach, we report the per-
formance values for all available prompt styles, as we did not observe 
statistically significant performance differences between prompt styles 
during cross-evaluation.

For evaluations on the EN-Rest dataset we use the following ap-
proaches: for the ACD task, we consider the graph convolutional net-
work ECAN [112], for the ACSA task the T5-based approach LEGO-ABSA 
[88]; and for the ACD and ACSA tasks, the BERT-graph network mixture 
model Hier-GCN-Bert [87].

For the E2E task, to reflect the diversity of evaluation practices 
in prior work, we evaluate both on the full task (including explicit 
and implicit targets) and on an explicit-only subset. Specifically, In-
structABSA [13] and TAS-BERT [72] are compared on the full E2E task, 
while GRACE [113] and DTW-GCN [114] serve as baselines for explicit-

only extraction. This dual evaluation ensures fairness and compatibil-
ity with model-specific capabilities. Notably, many prior works employ 
modified or filtered versions of the EN-Rest dataset tailored to their 
specific task scope. To avoid introducing confounding variables from 
such preprocessing differences, we limit direct comparisons to mod-
els evaluated on subsets compatible with our configuration. Results for 
the explicit-only variant are reported in Table 7 within brackets. For 
the TASD task, we evaluate against four T5-based text generation ap-
proaches: MvP [25], LEGO-ABSA, TAS-BERT [72], and Paraphrase [70]. 
Additionally, we consider the results from Šmíd et al. [20], which fine-
tuned Orca 2 (7B/13B) and LLaMA 2 (7B/13B).

Since the DE-Rest dataset has not yet been extensively studied using 
SOTA approaches, we use the baseline methods from Hellwig et al. [30] 
as reference values. In their work, the ACD and ACSA tasks were 
treated as multi-label text classification problems and addressed using 
a pre-trained BERT model (BERT-CLF), based on the approach by Fehle 
et al. [104]. For the E2E task, they employed E2E-ABSA, a BERT-based 
token classification approach for explicit aspects based on Li et al. [115]. 
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Table 7 
F1-micro values achieved on both datasets. Best results are in bold. For 
the E2E task, values in parentheses are results for explicit opinion target 
phrases only. For the EN-Rest (Rest-16) dataset, values with "*" are taken 
from Cui et al. [112] and for the DE-Rest (GERestaurant), values with "*" 
are taken from Hellwig et al. [30]. Few-shot results were obtained using 25 
examples, which proved to be the best-performing configuration for each 
task during validation.

 EN-Rest (Rest-16)
 Method  ACD  ACSA  E2E  TASD
 LEGO-ABSA  –  76.20  –  71.80
 ECAN  88.75  –  –  –
 MvP  –  –  –  72.76
 Hier-GCN-BERT  86.54*  74.55  –  –
 InstructABSA  –  –  74.24  –
 TAS-BERT  –  –  72.92 (75.68)  65.89
 GRACE  –  –  (76.49)  –
 DTW-GCN  –  –  (79.03)  –
 Paraphrase  –  –  –  71.97
 FT-Orca 2 7B  –  –  –  76.10
 FT-Orca 2 13B  –  –  –  78.82
 FT-LLaMA 2 7B  –  –  –  71.39
 FT-LLaMA 2 13B  –  –  –  74.08
 LLaMA Few-Shot (25)  71.89  67.89  65.35 (76.04)  45.88
 LLaMA-FT-ABSA-Basic  83.33  78.00  80.49 (80.48)  72.50
 LLaMA-FT-ABSA-Context  81.09  81.61  81.77 (77.18)  76.72
 LLaMA-FT-ABSA-CoT  –  82.48  80.49 (80.70)  70.20

 DE-Rest (GERestaurant)
 Method  ACD  ACSA  E2E  TASD
 BERT-CLF  91.82*  85.14*  –  –
 E2E-ABSA  –  –  (81.61)*  –
 Paraphrase  –  –  –  68.86*
 LLaMA Few–Shot (25)  83.76  79.52  63.49 (73.35)  57.10
 LLaMA-FT-ABSA-Basic  88.43  85.45  75.44 (78.88)  75.13
 LLaMA-FT-ABSA-Context  87.67  84.70  77.44 (75.35)  72.97
 LLaMA-FT-ABSA-CoT  –  76.24  66.89 (78.22)  73.53

Additionally, for the TASD task, they used an implementation of the 
Paraphrase approach adapted for German.

In addition to that, for both datasets, we include results from ICL 
with Few-Shot Prompting with LLaMA-3-8B using the Context prompt 
and 25 few-shots, which achieved the best performance during cross 
evaluation.

The results for the four ABSA tasks on both datasets are presented 
in Table 7. For the EN-Rest (Rest-16) dataset, our LLM-based approach 
shows a noticeable performance gap for the ACD task, with a F1 score 
trailing the best-performing model (ECAN) by up to 5.4 points. How-
ever, in the ACSA task, our approach establishes a new SOTA with a 
F1 score of 82.48 using the CoT-style prompt, outperforming all previ-
ous methods. The E2E task further highlights the strengths of our ap-
proach, especially in scenarios requiring the detection of both explicit 
and implicit opinion targets. Using the Context prompt, our method sur-
passes the previous SOTA, InstructABSA, by approximately 8.5 points 
in F1 score. Similarly, for approaches focusing solely on explicit opin-
ion targets, our approach outperforms the current SOTA DTW-GCN, 
improving the F1-micro score by 1.7 points to achieve a result of
80.70.

In the TASD task, our LLM-based approach achieves a F1 score of 
76.72 using the Context prompt, surpassing previous SOTA methods 
such as MvP or Paraphrase. However, it ranks second to the fine-tuned 
Orca 2 13B model from Šmíd et al. [20], which has nearly double the 
parameter size. Notably, our approach, which is based on LLaMA 3 
8B, achieves higher F1 scores than other LLM-based models of com-
parable size, such as Orca 2 7B and LLaMA 2 7B. Given the signifi-
cant performance boost observed by Šmíd et al. [20] when increasing 
the parameter size of LLMs, we hypothesize that employing an equally 
large or larger LLM for our approach could result in similar perfor-

mance gains, potentially aligning our results with those achieved by
Orca 2 13B.

For the DE-Rest (GERestaurant) dataset our approach produces 
slightly worse F1 scores for the ACD task and the E2E task with focus 
on explicit opinion targets than the baselines implemented by Hellwig 
et al. [30]. However, for the ACSA and TASD tasks we can surpass the 
baselines, achieving a marginal improvement for ACSA and a consider-
able increase of nearly 6 points for TASD, with F1 scores of 85.45 and 
75.13, respectively.

5.6.  Resource requirements and efficiency analysis

To assess the resource demands of our approach, we compare train-
ing time, inference latency, and memory usage across all subtasks and 
both datasets, based on the cross-evaluation phase using the full dataset 
setting. All experiments were carried out on identical hardware (Nvidia 
RTX A5000 with 24GB VRAM) to ensure fair comparability. For con-
sistency, all methods were evaluated under the same conditions. The 
results of our LLaMA-based approach are reported using a fixed con-
figuration (learning rate: 3e-4, LoRA rank/𝛼 8, 10 epochs), which, on 
average, achieved the best results during our evaluations. Table 8 sum-
marizes the results. Runtimes reflect only actual training and inference 
durations, excluding overheads such as model initialization or prepro-
cessing. As expected, run-timee and memory usage scale roughly pro-
portionally with dataset size.

Training runtime and memory usage. Fine-tuning our LLaMA-based 
model QLoRA incurs moderate training costs. Depending on task com-
plexity and prompt length, training times range from 22 minutes (ACD 
on DE-Rest) to 36 minutes (TASD on both datasets), with consistent 
memory usage of around 7.6 GB. In contrast, traditional baselines like 
BERT-CLF and Hier-GCN require only seconds to minutes but deliver 
mixed performance, sometimes superior (e.g., ACD on DE-Rest), yet of-
ten weaker, especially under low-resource or class-rich conditions. Other 
baselines such as TAS-BERT and MvP demand substantially more re-
sources (e.g., TAS-BERT: >3h on DE-Rest, 6.5h on EN-Rest; MvP: ≥1h), 
with memory usage peaking at 18 GB for Paraphrase. These higher costs 
are not offset by superior performance, particularly in data-scarce set-
tings. MvP’s runtime is further increased by its data augmentation strat-
egy, which inflates the dataset fivefold but fails to deliver with signifi-
cantly superior performance.

Our results show that the advantages of larger, instruction-tuned 
LLMs, such as improved generalization and robustness, can be lever-
aged without suffering from excessive resource requirements, thanks to 
efficient fine-tuning techniques like QLoRA.

Inference efficiency. Few-shot prompting with 25-shot input leads to no-
ticeably longer inference times due to increased prompt length, e.g., 
13.9 s vs. 7.1 s (TASD on DE-Rest) and 12.8 s vs. 6.1 s (TASD on EN-
Rest). This aligns with prior findings by Zhou et al. [93], which highlight 
the impact of input length on inference time. In contrast, our fine-tuned 
models use short prompts, enabling significantly faster inference while 
maintaining strong performance, making them well suited for real-time 
and high-throughput applications, such as enterprise use cases. Tradi-
tional baselines like BERT-CLF and Hier-GCN are faster at inference due 
to their simpler architectures, but lack the robustness and task flexibility 
of LLMs, especially for more complex situations.

Both fine-tuned and few-shot models were executed using the vLLM 
framework [62], which supports high-throughput decoding via continu-
ous batching and other inference optimizations. For the remaining base-
lines (e.g., BERT- or T5-based models), we used the original implemen-
tations provided by their authors. While these do not inherently bene-
fit from inference-optimized backends, similar frameworks for encoder-
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Table 8 
Resource usage across models and tasks (training time, GPU memory, inference 
time) on DE-Rest and EN-Rest datasets. All values are based on the full-dataset 
setting used in the cross-evaluation phase. Training times and memory utiliza-
tion reflect average and peak values across five runs. For LLaMA-FT-ABSA, only 
training memory is reported; inference memory utilization is managed via model 
parameters in vLLM. In our experiments, gpu_memory_utilization was set to 
0.8, corresponding to approximately 20GB reserved VRAM.

 Aspect Category Detection (ACD)
 DE-Rest  EN-Rest

 Model  Train  Memory  Inference  Train  Memory  Inference
 BERT-CLF  33.2 s  6.7GB  0.5 s  25. 2s  6.9GB  0.5 s
 LLaMA-FT-ABSA  22m 10.3 s  7.6GB  4.0 s  25m 42.7 s  7.6GB  3.7 s
 LLaMA Few-Shot  –  –  11.4 s  –  –  3.7 s

 Aspect Category Sentiment Analysis (ACSA)
 DE-Rest  EN-Rest

 Model  Train  Memory  Inference  Train  Memory  Inference
 BERT-CLF  33.6 s  6.7GB  0.5s  25.2 s  6.9GB  0.5 s
 HIER-GCN  7m 50.8 s  3.2GB  1.3 s  7m 56.1 s  3.4GB  1.2 s
 LLaMA-FT-ABSA  25m 30.1 s  7.6GB  5.1 s  28m 23.0 s  7.6GB  4.6 s
 LLaMA Few-Shot  –  –  5.2 s  –  –  10.0 s

 End-to-End ABSA (E2E)
 DE-Rest  EN-Rest

 Model  Train  Memory  Inference  Train  Memory  Inference
 TAS-BERT  202m 31.0 s  5.6GB  35.5 s  388m 41.0 s  5.6GB  66.9 s
 InstructABSA  2m 39.8 s  9.9GB  6.6 s  2m 17.0 s  8.7GB  6.3 s
 LLaMA-FT-ABSA  32m 56.0 s  7.6GB  5.8 s  25m 11.0 s  7.6GB  4.1 s
 LLaMA Few-Shot  –  –  5.4 s  –  –  9.5 s

 Target Aspect Sentiment Detection (TASD)
 DE-Rest  EN-Rest

 Model  Train  Memory  Inference  Train  Memory  Inference
 Paraphrase  20m 44.7 s  18.4GB  30.4 s  16m 24.4 s  18.1GB  25.1 s
 MvP  72m 21.0 s  13.5GB  331.7 s  57m 48.0 s  13.5GB  281.5s
 LLaMA-FT-ABSA  36m 13.0 s  7.6GB  7.1 s  36m 43.5 s  7.6GB  6.1 s
 LLaMA Few-Shot  –  –  13.9 s  –  –  12.8 s

based models, such as ONNX Runtime8 or TensorRT,9 could further re-
duce latency and may improve their applicability in real-time scenarios.

6.  Conclusion

This study provides insights into the application of fine-tuned open 
source LLMs for ABSA across two datasets and languages. We showed 
that different prompt styles significantly influenced optimal hyperpa-
rameters, though minimal variations in performance were observed 
across prompts, suggesting concise prompts are sufficient for LLM fine-
tuning. Fine-tuned LLMs demonstrate superior performance over base-
line methods in data-scarce scenarios, particularly in more complex 
ABSA tasks like E2E and TASD, where they maintain relatively stable 
performance across varying dataset sizes and often achieve higher F1 
scores than baselines trained on full datasets. Evaluations on EN-Rest 
and DE-Rest datasets revealed competitive performance across the ABSA 
tasks ACD, ACSA, E2E, and TASD, while achieving a new SOTA F1 score 
of 82.48 for ACSA and 81.77 for E2E (F1: 80.70 for explicit opinion tar-
gets only) on Rest-16 as well as 85.45 for ACSA and 75.13 for TASD on 
GERestaurant. Our comprehensive evaluation solidifies the relevance 
of fine-tuned LLMs for ABSA research and applications in both well-
resourced and resource-scarce environments, showing that even a small 

8 https://github.com/microsoft/onnxruntime
9 https://github.com/NVIDIA/TensorRT

fine-tuning dataset can enable SOTA-like results for ABSA, without re-
quiring more computational resources than many traditional baselines.

These findings are further reinforced by our ablation study, which 
confirms that the advantages of fine-tuned LLMs generalize across dif-
ferent languages and domains, even under extreme low-resource con-
straints. In addition, our results show that, under such dataset limita-
tions, prompting-based methods remain a competitive choice for simpler 
classification tasks (e.g., ACD, ACSA), whereas instruction fine-tuned 
LLMs consistently outperform alternatives in more complex setups such 
as E2E and TASD, highlighting a task-specific trade-off between ease of 
deployment and performance.

Overall, our findings highlight the strong potential of fine-tuned 
open source LLMs for ABSA and provide a solid basis for further research 
into more efficient, generalizable, and domain-adaptive approaches.

7.  Limitations and future work

There are several limitations that may affect the results of our study. 
First, we only examined and fine-tuned one open source LLM (LLaMA 
3 8B) on one dataset per language, which affects the generalizability of 
the results about the fine-tuning of open source models in general. We 
partially address this concern through our ablation study, which evalu-
ates additional model architectures (Mistral 7B, Gemma 3 4B) as well as 
further domains and languages. These additional experiments confirm 
many of our core findings and increase confidence in the general ro-
bustness of fine-tuned LLMs under low-resource conditions. Similarly, 
we only examined the smallest model of the LLaMA-3 model family, 
whereas the possibility exists that our results and findings are not trans-
ferable to larger or different models. Additionally, locally hosted models 
also come with drawbacks which have to be considered, including the 
need for significant computational resources.

Another limitation concerns the choice of evaluation metrics. We 
primarily base our discussion on F1-micro, which is the predominant 
metric in ABSA research due to its sensitivity to frequent classes and 
widespread use in benchmark studies [29,116]. At the same time, we 
also report F1-macro scores in our repository, acknowledging that prior 
work has used this metric to account for class imbalance [117–119]. 
While F1-micro facilitates comparability with most existing studies, fu-
ture work could complement our findings with a stronger focus on 
macro-level evaluation to capture more nuanced performance differ-
ences across classes.

Moreover, while our study disentangles prompt design and hyper-
parameter tuning to some extent, we did not systematically investigate 
their interactions, which may further influence fine-tuning outcomes. 
Our variance analysis suggests that prompt-hyperparameter interactions 
are relatively stable across settings, with Basic and Context prompts 
showing low variance and CoT prompts introducing more fluctuation. 
However, a deeper investigation is required to fully understand under 
which conditions prompt styles interact with hyperparameters in mean-
ingful ways. Since all results and evaluation scripts are openly avail-
able in our repository, future work can directly build on our findings to 
replicate analyses of prompt-hyperparameter dynamics, extend them, or 
compare with results from similar studies.

Another promising direction lies in mechanistic or explainability 
analyses, which could provide deeper insights into why fine-tuned LLMs 
succeed in ABSA tasks and how they internalize task-specific knowledge. 
In addition, our evaluation is currently limited to established bench-
mark datasets; extending analyses to more diverse domains and noisy, 
real-world data would offer a stronger assessment of robustness. Finally, 
although we provide a basic discussion of computational requirements, 
a more systematic efficiency analysis is desirable. Future work should 
compare different training and inference frameworks, unify evaluation 
setups across methods, and more thoroughly investigate trade-offs be-
tween performance, cost, and accessibility.

Beyond these limitations, several avenues for future research arise di-
rectly from our findings. Prompt engineering, a rapidly advancing field, 
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could be further explored for ABSA, particularly with techniques be-
yond few-shot ICL [64]. Automatic prompt generation methods using 
LLMs may help reduce manual effort and improve generalizability across 
tasks, domains, and languages [89,91]. Furthermore, recent retrieval-
based methods for selecting in-context examples have shown promising 
results for ABSA and may offer complementary benefits in few-shot se-
tups [97,98]. While we used base models for fine-tuning, future work 
could explore the benefits of instruction-tuned variants, particularly in 
extreme low-resource scenarios where instruction-following behavior or 
pre-training might offer an advantage. Furthermore, evaluating the per-
formance of the fine-tuning model with as few as 5, 10, or 25 examples 
could provide deeper insights into the break-even point between ICL 
and fine-tuning. Lastly, exploring techniques for domain [120] or lan-
guage transferability [121] of fine-tuned LLMs could further enhance 
their practical applicability for unexplored domains.
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Appendix A. 

A.1.  Prompt examples for ACD, ACSA, E2E, and TASD for the DE-Rest 
dataset

See Fig. A.4, Fig. A.5, Fig. A.6, Fig. A.7, Fig. A.8, Fig. A.9, Fig. A.10, 
and Fig. A.11.

A.2.  Prompt examples for TASD for the EN-Rest dataset

See Fig. A.12.

A.3.  Model configurations for baseline approaches

For the LLaMA Few-Shot baseline, we use the instruction fine-tuned 
LLaMA-3-8B-instruct model. Prompting is applied to all four ABSA tasks 
(ACD, ACSA, E2E, and TASD) and evaluated using the Context prompt. 
Additionally, we explore different few-shot settings with 5, 10, and 25 
examples. For each cross-validation split, a random subset of examples 
is selected once and consistently reused across all prompt variants and 
dataset sizes within that split. For each configuration, the optimal few-
shot setting is determined based on the validation split. To ensure re-
producibility, we use a temperature of 0 during inference.

For our fine-tuned baseline approaches, we adhere to the configura-
tions specified in the respective papers for BERT-CLF [30], Hier-GCN 
[87], InstructABSA [24], TAS-BERT [72], MvP [25], and Paraphrase 
[30], ensuring consistency with previous work. Since these configura-
tions were primarily defined for the English language, we replace the 
underlying pre-trained models with German-language versions where 
applicable for the DE-Rest (GERestaurant) dataset. The resulting speci-
fications for each individual method are as follows:

For the ACD and ACSA tasks, BERT-CLF and Hier-GCN are imple-
mented based on pre-trained models suitable for the language of the 

dataset: bert-base10 and bert-large11 for the English dataset and gbert-
base12 and gbert-large13 for the German dataset. For the BERT-CLF ap-
proach on the DE-Rest dataset, we use a learning rate of 2 × 10−5, a batch 
size of 16, and train the model for 3 epochs in the basic configuration. 
As it was shown that the hyperparameters for a multi-label classifica-
tion are sensitive to a higher number of classes [104], we change the 
learning rate for the EN-Rest (Rest-16) dataset, which has a much larger 
number of classes than DE-Rest, and experiment with learning rates be-
tween 1 × 10−5 and 9 × 10−5. The final learning rate is determined based 
on the validation split. For the Hier-GCN approach, we use a learning 
rate of 5 × 10−5, a batch size of 8, and trained the model for 20 epochs.

For the E2E task, we use InstructABSA with the pre-trained tk-
instruct-base-def-pos14 model for the English dataset and T5-base15 for 
the German dataset. Tk-instruct-base-def-pos is an instruction-tuned ver-
sion of T5-base, which gets further adapted to the E2E task through In-
structABSA. However, since tk-instruct-base-def-pos is specifically fine-
tuned for English, we evaluated its non-fine-tuned base model, T5-base, 
on our DE-Rest validation split and observed better performance. As a 
result, T5-base was used for all subsequent evaluations with DE-Rest. 
Additionally, we employ TAS-BERT as a second baseline model, using 
bert-base-uncased for English and gbert-base for German, training both 
with a learning rate of 2 × 10−5, a batch size of 24, over 30 epochs.

For the TASD task, both approaches, MvP and Paraphrase, are based 
on the multilingual model T5. For MvP, we use T5-base with a learn-
ing rate of 1 × 10−4, a batch size of 16, and train the model for 20 
epochs. Following the hyperparameter configurations provided by Gou 
et al. [25] for different dataset sizes, we adjust our settings for the sub-
sets: for the 1,000-sample condition, we use a batch size of 8 and train 
for 30 epochs, for the 500-sample condition, we maintain the same batch 
size but increase the training to 50 epochs, while for the 50-sample con-
dition we increase the training to 100 epochs. Furthermore, given the 
importance of capitalization in the German language, we avoid lower-
casing text when working with the DE-Rest dataset. Following Hellwig 
et al. [30] for the Paraphrase approach, we use T5-large16 and set the 
learning rate to 3 × 10−4, use a batch size of 16, and train the model 
for 20 epochs. For Few-Shot Prompting, we set the context window to 
8192 tokens and, consistent with our fine-tuning setup, use greedy de-
coding with a temperature of 0 to ensure deterministic and reproducible 
outputs. For each data split, the same few-shot examples are used consis-
tently across all dataset size settings. The optimal combination of prompt 
style and few-shot configuration is selected based on validation results.

For the multilingual extension of our ablation study, we selected 
strong, language-specific transformer models for the Spanish, Dutch, 
Russian, and French datasets. For Spanish, we used bert-base-
spanish17 [122] and T5-base-spanish [123].18 For Dutch, we em-
ployed bert-base-dutch19 [124] and T5-base-dutch.20 For Russian, 
we used rubert-base21 [105] and ruT5-base [106].22 For French, we 
relied on bert-base-french23 and the T5-base24 model, since French 
is one of its core pre-trained languages. These models serve as competi-
tive language-specific baselines for BERT-based and T5-based baselines, 
respectively.

10 https://huggingface.co/google-bert/bert-base-uncased
11 https://huggingface.co/google-bert/bert-large-uncased
12 https://huggingface.co/deepset/gbert-base
13 https://huggingface.co/deepset/gbert-large
14 https://huggingface.co/allenai/tk-instruct-base-def-pos
15 https://huggingface.co/google-t5/t5-base
16 https://huggingface.co/google-t5/t5-large
17 https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
18 https://huggingface.co/vgaraujov/t5-base-spanish
19 https://huggingface.co/GroNLP/bert-base-dutch-cased
20 https://huggingface.co/yhavinga/t5-base-dutch
21 https://huggingface.co/DeepPavlov/rubert-base-cased
22 https://huggingface.co/ai-forever/ruT5-base
23 https://huggingface.co/dbmdz/bert-base-french-europeana-cased
24 https://huggingface.co/t5-base
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Fig. A.4. Prompt example for the Basic prompt of the ACD task for the DE-Rest (GERestaurant) dataset.

Fig. A.5. Prompt example for the Context prompt of the ACD task for the DE-Rest (GERestaurant) dataset.

Fig. A.6. Prompt example for the Basic prompt of the ACSA task for the DE-Rest (GERestaurant) dataset.

A.4.  Additional parameters used for LoRA fine-tuning

In addition to the previously discussed parameters, our LoRA fine-
tuning configurations include integrating FlashAttention-2 [125] to ac-
celerate attention computations. We use a LoRA dropout rate of 0.05 and 
a batch size of 8 due to computational constraints. For QLoRA, we uti-
lize 4-bit NormalFloat (NF4) with double quantization and the bfloat16 
floating-point format. We employ the AdamW optimizer [126] to fine-
tune all attention and multi-layer perceptron (MLP) layers using LoRA. 

Furthermore, we utilize Neftune [127] which has shown to positively in-
fluence instruction-based fine-tuning by adding noise to the embedding 
vectors during training.

A.5.  Dataset sizes for each step of the evaluation process

See Table A.9

A.6.  Best-performing hyperparameter combinations identified during 
hyperparameter tuning

See Table A.10
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Fig. A.7. Prompt example for the Context prompt of the ACSA task for the DE-Rest (GERestaurant) dataset.

Fig. A.8. Prompt example for the Basic prompt of the E2E task for the DE-Rest (GERestaurant) dataset.

Table A.9 
Dataset sizes for all steps of the evaluation process.

 Subset  HT Train-Size  HT Val-Size  CV Train-Size per run  CV Test Size per run  Original Train-Size  Original Test-Size 

DE-Rest

 Full  1795  359  1436  359  2154  924 
 1000  833  167  667  359 
 500  416  84  333  359 
 50  –  –  40  359 

EN-Rest

 Full  1423  285  1138  285  1708  587 
 1000  833  167  667  285 
 500  416  84  333  285 
 50  –  –  40  285 
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Fig. A.9. Prompt example for the Context prompt of the E2E task for the DE-Rest (GERestaurant) dataset.

Fig. A.10. Prompt example for the Basic prompt of the TASD task for the DE-Rest (GERestaurant) dataset.
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Fig. A.11. Prompt example for the Context prompt of the TASD task for the DE-Rest (GERestaurant) dataset.

Fig. A.12. Prompt example for the Context prompt of the TASD task for the EN-Rest (Rest-16) dataset.
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Table A.10 
Best-performing hyperparameter settings based on hyperparameter search, which are subsequently used for cross-evaluation. 
For the 50-examples setting, no hyperparameter search was performed, instead we relied on values from the literature as 
described in Section 4.4. Abbr.: LR = learning rate; r = LoRA rank; 𝛼 = LoRA 𝛼  #E = number of training epochs.

 EN-Rest
Setting Prompt

 ACD  ACSA  E2E  TASD
 LR  r 𝛼  #E  LR  r 𝛼  #E  LR  r 𝛼  #E  LR  r 𝛼  #E

Full
 Basic 3𝜖−4  8  16  8 3𝜖−5  32  64  7 3𝜖−5  32  64  8 3𝜖−4  8  8  9
 Context 3𝜖−4  8  8  6 3𝜖−5  32  32  7 3𝜖−5  32  64  8 3𝜖−4  8  8  7
 CoT  –  –  –  – 3𝜖−5  32  64  5 3𝜖−4  8  8  8 3𝜖−4  8  8  7

1000
 Basic 3𝜖−4  32  32  8 3𝜖−5  32  64  9 3𝜖−5  32  64  8 3𝜖−4  8  16  8
 Context 3𝜖−4  32  32  9 3𝜖−4  8  8  7 3𝜖−4  8  16  7 3𝜖−4  8  8  6
 CoT  –  –  –  – 3𝜖−4  8  8  10 3𝜖−4  8  16  9 3𝜖−4  8  16  8

500
 Basic 3𝜖−4  8  16  10 3𝜖−5  32  64  5 3𝜖−4  8  16  2 3𝜖−4  8  8  7
 Context 3𝜖−4  8  16  6 3𝜖−4  8  8  6 3𝜖−4  8  16  2 3𝜖−4  32  32  4
 CoT  –  –  –  – 3𝜖−4  8  8  7 3𝜖−4  32  64  10 3𝜖−4  8  16  6

 50  Basic 3𝜖−4  8  8  10 3𝜖−4  8  8  10 3𝜖−4  8  8  10 3𝜖−4  8  8  10
 DE-Rest

Setting Prompt
 ACD  ACSA  E2E  TASD

 LR  r 𝛼  #E  LR  r 𝛼  #E  LR  r 𝛼  #E  LR  r 𝛼  #E

Full
 Basic 3𝜖−5  32  64  10 3𝜖−5  8  16  8 3𝜖−5  32  64  10 3𝜖−4  8  8  4
 Context 3𝜖−4  8  16  10 3𝜖−5  32  32  9 3𝜖−4  8  8  5 3𝜖−5  32  32  9
 CoT  –  –  –  – 3𝜖−4  8  16  7 3𝜖−4  8  16  7 3𝜖−4  8  8  7

1000
 Basic 3𝜖−5  32  64  9 3𝜖−4  8  8  7 3𝜖−4  8  8  9 3𝜖−4  8  8  5
 Context 3𝜖−4  8  8  4 3𝜖−4  8  8  6 3𝜖−4  8  8  9 3𝜖−5  32  64  8
 CoT  –  –  –  – 3𝜖−5  32  32  9 3𝜖−4  8  16  9 3𝜖−5  32  64  7

500
 Basic 3𝜖−5  32  32  7 3𝜖−5  8  8  8 3𝜖−4  32  64  4 3𝜖−4  32  32  3
 Context 3𝜖−5  32  32  2 3𝜖−4  8  8  5 3𝜖−4  32  64  7 3𝜖−4  8  8  8
 CoT  –  –  –  – 3𝜖−4  8  8  10 3𝜖−4  8  8  6 3𝜖−4  32  32  7

 50  Basic 3𝜖−4  8  8  10 3𝜖−4  8  8  10 3𝜖−4  8  8  10 3𝜖−4  8  8  10
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Semeval-2016 task 5 : aspect based sentiment analysis, in: ProWorkshop on Seman-
tic Evaluation (SemEval-2016), Association for Computational Linguistics, 2016, 
pp. 19–30.

[30] N.C. Hellwig, J. Fehle, M. Bink, C. Wolff, GERestaurant: a german dataset of an-
notated restaurant reviews for aspect-based sentiment analysis, Proceedings of the 
20th Conference on Natural Language Processing (KONVENS 2024), Association 
for Computational Linguistics, 2024, p. 123-133.

[31] W. Zhang, X. Li, Y. Deng, L. Bing, W. Lam, A survey on aspect-based sentiment 
analysis: tasks, methods, and challenges, IEEE Trans. Knowl. Data Eng. 35 (11) 
(2023) 11019–11038.

[32] A.I. Anthropic, The claude 3 model family: opus, sonnet, haiku, Claude-3 Model 
Card 1 (2024).

[33] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A.M. 
Dai, A. Hauth, K. Millican, et al., Gemini: a family of highly capable multimodal 
models, 2024, (2024) arXiv:2312.11805

[34] Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, H. He, A. Li, M. He, Z. Liu, Z. Wu, 
L. Zhao, D. Zhu, X. Li, N. Qiang, D. Shen, T. Liu, B. Ge, Summary of chatGPT-related 
research and perspective towards the future of large language models, Meta-Radiol. 
1 (2) (2023) 100017.

[35] A. Bahrini, M. Khamoshifar, H. Abbasimehr, R.J. Riggs, M. Esmaeili, R.M. Ma-
jdabadkohne, M. Pasehvar, ChatGPT: applications, opportunities, and threats, in: 
2023 Systems and Information Engineering Design Symposium (SIEDS), IEEE, 
2023, pp. 274–279.

[36] T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, Y. Tang, A brief overview of chatGPT: 
the history, status quo and potential future development, IEEE/CAA J. Autom. Sin. 
10 (5) (2023) 1122–1136.

[37] S. Kukreja, T. Kumar, A. Purohit, A. Dasgupta, D. Guha, A literature survey on 
open source large language models, in: Proceedings of the 2024 7th International 
Conference on Computers in Management and Business, ACM, New York, NY, USA, 
2024.

[38] W.X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, 
Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang, Z. 
Liu, P. Liu, J.-Y. Nie, J.-R. Wen, A survey of large language models, 2024, (2024). 
arXiv:2303.18223

[39] S. Ateia, U. Kruschwitz, Can open-source LLMs compete with commercial models? 
exploring the few-shot performance of current GPT models in biomedical tasks, in: 
CEUR Workshop Proceedings,  3740, 2024.

[40] Z. Qin, R. Jagerman, K. Hui, H. Zhuang, J. Wu, L. Yan, J. Shen, T. Liu, J. Liu, D. 
Metzler, X. Wang, M. Bendersky, Large language models are effective text rankers 
with pairwise ranking prompting, in: K. Duh, H. Gomez, S. Bethard (Eds.), Find-
ings of the Association for Computational Linguistics: NAACL 2024, Association 
for Computational Linguistics, Stroudsburg, PA, USA, 2024, pp. 1504–1518.

[41] X. Ma, L. Wang, N. Yang, F. Wei, J. Lin, Fine-tuning LLaMA for multi-stage text 
retrieval, in: Proceedings of the 47th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,  1, ACM, New York, NY, USA, 
2024, pp. 2421–2425.

[42] M.M. Amin, E. Cambria, B.W. Schuller, Will affective computing emerge from foun-
dation models and general AI? a first evaluation on chatGPT, IEEE Intell. Syst. 38 
(2) (2023) 15–23.

[43] W. Zhang, Y. Deng, B. Liu, S. Pan, L. Bing, Sentiment analysis in the era of large 
language models: a reality check, in: Findings of the Association for Computational 
Linguistics: NAACL 2024, 2024, pp. 3881–3906.

[44] Z. Wu, Y. Wu, X. Feng, J. Zou, F. Yin, Improve chinese aspect sentiment quadruplet 
prediction via instruction learning based on large generate models, Comput. Mater. 
Contin. 0 (0) (2024) 1–10.

[45] J. Huang, Y. Cui, J. Liu, M. Liu, Supervised and few-shot learning for aspect-based 
sentiment analysis of instruction prompt, Electronics 13 (10) (2024) 1924.

[46] X. Ding, J. Zhou, L. Dou, Q. Chen, Y. Wu, C. Chen, L. He, Boosting large language 
models with continual learning for aspect-based sentiment analysis,  Findings of 
the Association for Computational Linguistics: EMNLP 2024, Association for Com-
putational Linguistics, 2024, p. 4367-4377.

[47] M. Ahmed, Q. Chen, Y. Wang, Y. Nafa, Z. Li, T. Duan, DNN-Driven gradual ma-
chine learning for aspect-term sentiment analysis, in: Findings of the Association 
for Computational Linguistics: ACL-IJCNLP 2021, Association for Computational 
Linguistics, Stroudsburg, PA, USA, 2021.

Knowledge-Based Systems 336 (2026) 115277 

21 

http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0001
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0001
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0002
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0002
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0003
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0003
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0004
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0004
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0004
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0005
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0005
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0005
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0006
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0006
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0006
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0007
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0007
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0007
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0007
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0007
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0008
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0008
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0009
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0009
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0009
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0009
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0009
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0009
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0009
https://chatgpt.com/
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0010
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0010
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0010
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0010
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0011
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0011
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0011
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0011
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0011
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0012
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0012
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0012
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0012
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0012
http://arxiv.org/abs/2302.10198
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2310.18025
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0014
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0014
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0014
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0014
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0014
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0015
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0015
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0015
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0015
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0015
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0016
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0016
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0016
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0016
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0016
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0017
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0017
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0017
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0017
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0017
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0017
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0018
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0018
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0018
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0018
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0019
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0019
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0019
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0019
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0019
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0019
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0020
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0020
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0020
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0021
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0021
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0022
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0022
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0022
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0022
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0022
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0023
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0023
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0023
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0023
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0023
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0023
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0024
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0024
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0024
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0024
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0025
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0025
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0025
http://arxiv.org/abs/2312.11805
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0027
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0027
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0027
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0027
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0028
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0028
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0028
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0028
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0029
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0029
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0029
http://arxiv.org/abs/2303.18223
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0031
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0031
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0031
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0032
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0032
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0032
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0032
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0032
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0033
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0033
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0033
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0033
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0034
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0034
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0034
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0035
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0035
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0035
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0036
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0036
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0036
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0037
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0037
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0038
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0038
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0038
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0038
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0039
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0039
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0039
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0039


J. Fehle et al.

[48] M. Ahmed, W. Bo, P. Shengfeng, S. Jianlin, A. Luo, L. Yunfeng, BERT-ASC: 
auxiliary-sentence construction for implicit aspect learning in sentiment analysis, 
Expert Syst. Appl. 258 (125195) (2024) 125195.

[49] A. Magueresse, V. Carles, E. Heetderks, Low-resource languages: a review of past 
work and future challenges, 2020, (2020). arXiv:2006.07264

[50] Y. Aliyu, A. Sarlan, K.U. Danyaro, A.S.B. Rahman, M. Abdullahi, Sentiment analysis 
in low-resource settings: a comprehensive review of approaches, languages, and 
data sources, IEEE Access 12 (2024) 66883–66909.

[51] A. Khattak, M.Z. Asghar, A. Saeed, I.A. Hameed, S. Asif Hassan, S. Ahmad, A survey 
on sentiment analysis in Urdu: a resource-poor language, Egypt. Inform. J. 22 (1) 
(2021) 53–74.

[52] M.S. Akhtar, A. Ekbal, P. Bhattacharyya, Aspect based sentiment analysis in hindi: 
resource creation and evaluation, in: N. Calzolari, K. Choukri, T. Declerck, S. Goggi, 
M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis 
(Eds.), Proceedings of the Tenth International Conference on Language Resources 
and Evaluation (LREC’16), European Language Resources Association (ELRA), Por-
torož, Slovenia, 2016, pp. 2703–2709.

[53] S. Rani, M.W. Anwar, Resource creation and evaluation of aspect based sentiment 
analysis in Urdu, in: B. Shmueli, Y.J. Huang (Eds.), Proceedings of the 1st Confer-
ence of the Asia-Pacific Chapter of the Association for Computational Linguistics 
and the 10th International Joint Conference on Natural Language Processing: Stu-
dent Research Workshop, Association for Computational Linguistics, Stroudsburg, 
PA, USA, 2020, pp. 79–84.

[54] Y.R. Regatte, R.R.R. Gangula, R. Mamidi, Dataset creation and evaluation of as-
pect based sentiment analysis in telugu, a low resource language, in: N. Calzolari, 
F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Mae-
gaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis (Eds.), Proceedings of 
the Twelfth Language Resources and Evaluation Conference, European Language 
Resources Association, Marseille, France, 2020, pp. 5017–5024.

[55] Y. Bai, Z. Han, Y. Zhao, H. Gao, Z. Zhang, X. Wang, M. Hu, Is compound aspect-
based sentiment analysis addressed by LLMs?, in: Y. Al-Onaizan, M. Bansal, Y.-N. 
Chen (Eds.), Findings of the Association for Computational Linguistics: EMNLP 
2024, Association for Computational Linguistics, Stroudsburg, PA, USA, 2024, pp. 
7836–7861.

[56] C. Wu, B. Ma, Z. Zhang, N. Deng, Y. He, Y. Xue, Evaluating zero-shot mul-
tilingual aspect-based sentiment analysis with large language models (2024). 
arXiv:2412.12564

[57] M. Hu, Y. Wu, H. Gao, Y. Bai, S. Zhao, Improving aspect sentiment quad pre-
diction via template-order data augmentation, in: Y. Goldberg, Z. Kozareva, Y. 
Zhang (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, Association for Computational Linguistics, Stroudsburg, 
PA, USA, 2022, pp. 7889–7900.

[58] N.C. Hellwig, J. Fehle, C. Wolff, Exploring large language models for the generation 
of synthetic training samples for aspect-based sentiment analysis in low resource 
settings, Expert Syst. Appl. 261 (125514) (2025) 125514.

[59] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, D. 
Zhou, Chain-of-thought prompting elicits reasoning in large language models, in: 
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), Proceedings 
of the 35th International Conference on Neural Information Processing Systems, 
35, Curran Associates, Inc., 2022, pp. 24824–24837.

[60] T. Dettmers, A. Pagnoni, A. Holtzman, L. Zettlemoyer, QLoRa: efficient finetun-
ing of quantized LLMs, in: Proceedings of the 36th International Conference on 
Neural Information Processing Systems,  36, Curran Associates Inc., 2023, pp. 
10088–10115.

[61] E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, LoRA: 
low-rank adaptation of large language models, 2022. https://openreview.net/pdf?
id=nZeVKeeFYf9.

[62] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C.H. Yu, J. Gonzalez, H. Zhang, I. 
Stoica, Efficient memory management for large language model serving with page-
dattention, in: Proceedings of the 29th Symposium on Operating Systems Princi-
ples, SOSP ’23, Association for Computing Machinery, New York, NY, USA, 2023, 
pp. 611–626.

[63] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, 
A. Schelten, A. Yang, A. Fan, et al., The llama 3 herd of models (2024). 
arXiv:2407.21783

[64] P. Sahoo, A.K. Singh, S. Saha, V. Jain, S. Mondal, A. Chadha, A systematic survey of 
prompt engineering in large language models: techniques and applications, 2024, 
(2024). arXiv:2402.07927

[65] X. Amatriain, Prompt design and engineering: introduction and advanced methods 
(2024). arXiv:2401.14423

[66] Q. Wang, K. Ding, B. Liang, M. Yang, R. Xu, Reducing spurious correlations in 
aspect-based sentiment analysis with explanation from large language models, in: 
H. Bouamor, J. Pino, K. Bali (Eds.), Findings of the Association for Computational 
Linguistics: EMNLP 2023, Association for Computational Linguistics, Singapore, 
2023, pp. 2930–2941.

[67] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. 
Bousquet, Q.V. Le, E.H. Chi, Least-to-most prompting enables complex reasoning 
in large language models, in: The Eleventh International Conference on Learning 
Representations, 2023.

[68] Y.C. Hua, P. Denny, K. Taskova, J. Wicker, A systematic review of aspect-based 
sentiment analysis (ABSA): domains, methods, and trends, arXiv [cs.CL] (2023).

[69] C. Wu, B. Ma, Z. Zhang, N. Deng, Y. He, Y. Xue, Evaluating zero-shot multilingual 
aspect-based sentiment analysis with large language models, arXiv [cs.CL] (2024).

[70] W. Zhang, Y. Deng, X. Li, Y. Yuan, L. Bing, W. Lam, Aspect sentiment quad pre-
diction as paraphrase generation, in: M.-F. Moens, X. Huang, L. Specia, S.W.-T. 
Yih (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural 

Language Processing, Association for Computational Linguistics, Online and Punta 
Cana, Dominican Republic, 2021, pp. 9209–9219.

[71] X. Xu, J.-D. Zhang, R. Xiao, L. Xiong, The limits of chatGPT in extracting aspect-
category-opinion-sentiment quadruples: a comparative analysis, arXiv [cs.CL] 
(2023).

[72] H. Wan, Y. Yang, J. Du, Y. Liu, K. Qi, J.Z. Pan, Target-aspect-sentiment joint detec-
tion for aspect-based sentiment analysis, AAAI Conf. Artif. Intell. 34 (05) (2020) 
9122–9129.

[73] Y. Lu, Q. Liu, D. Dai, X. Xiao, H. Lin, X. Han, L. Sun, H. Wu, Unified structure gen-
eration for universal information extraction, in: S. Muresan, P. Nakov, A. Villavi-
cencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 2022, pp. 5755–5772.

[74] W. Zhang, X. Li, Y. Deng, L. Bing, W. Lam, Towards generative aspect-Based 
sentiment analysis, in: C. Zong, F. Xia, W. Li, R. Navigli (Eds.), Proceedings of 
the 59th Annual Meeting of the Association for Computational Linguistics and 
the 11th International Joint Conference on Natural Language Processing (Vol-
ume 2: Short Papers), Association for Computational Linguistics, Online, 2021,
pp. 504–510.

[75] D. Biderman, J.G. Ortiz, J. Portes, M. Paul, P. Greengard, C. Jennings, D. King, S. 
Havens, V. Chiley, J. Frankle, C. Blakeney, J.P. Cunningham, LoRA learns less and 
forgets less, arXiv [cs.LG] (2024).

[76] D. Kalajdzievski, A rank stabilization scaling factor for fine-tuning with LoRA 
(2023). arXiv:2312.03732

[77] R. Mukherjee, S. Shetty, S. Chattopadhyay, S. Maji, S. Datta, P. Goyal, Reproducibil-
ity, replicability and beyond: assessing production readiness of aspect based senti-
ment analysis in the wild, in: Lecture Notes in Computer Science, Springer Inter-
national Publishing, Cham, 2021, pp. 92–106.

[78] A. Belz, S. Agarwal, A. Shimorina, E. Reiter, A systematic review of reproducibility 
research in natural language processing, in: P. Merlo, J. Tiedemann, R. Tsarfaty 
(Eds.), Proceedings of the 16th Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume, Association for Computational 
Linguistics, Stroudsburg, PA, USA, 2021, pp. 381–393.

[79] H. Yang, C. Zhang, K. Li, PyABSA: a modularized framework for reproducible 
aspect-based sentiment analysis, in: Proceedings of the 32nd ACM International 
Conference on Information and Knowledge Management, ACM, New York, NY, 
USA, 2023.

[80] N. Alex, E. Lifland, L. Tunstall, A. Thakur, P. Maham, C.J. Riedel, E. Hine, C. 
Ashurst, P. Sedille, A. Carlier, M. Noetel, A. Stuhlmüller, RAFT: a real-world few-
shot text classification benchmark, 2022.

[81] B. Efron, Bootstrap methods: another look at the jackknife, in: S. Kotz, N.L. Johnson 
(Eds.), Breakthroughs in Statistics: Methodology and Distribution, Springer New 
York, New York, NY, 1992, pp. 569–593.

[82] W.H. Kruskal, W.A. Wallis, Use of ranks in one-criterion variance analysis, J. Am. 
Statist. Assoc. 47 (260) (1952) 583–621.

[83] S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Stat. 6 
(2) (1979) 65–70.

[84] S.S. Shapiro, M.B. Wilk, An analysis of variance test for normality (complete sam-
ples), Biometrika 52 (3–4) (1965) 591–611.

[85] A. Field, J. Miles, Z. Field, Discovering Statistics Using R, SAGE, 2012.
[86] F. Wilcoxon, Individual comparisons by ranking methods, in: S. Kotz, N.L. Johnson 

(Eds.), Breakthroughs in Statistics: Methodology and Distribution, Springer New 
York, New York, NY, 1992, pp. 196–202.

[87] H. Cai, Y. Tu, X. Zhou, J. Yu, R. Xia, Aspect-category based sentiment analysis 
with hierarchical graph convolutional network, in: D. Scott, N. Bel, C. Zong (Eds.), 
Proceedings of the 28th International Conference on Computational Linguistics, 
International Committee on Computational Linguistics, Barcelona, Spain (Online), 
2020, pp. 833–843.

[88] T. Gao, J. Fang, H. Liu, Z. Liu, C. Liu, P. Liu, Y. Bao, W. Yan, LEGO-ABSA: a prompt-
based task assemblable unified generative framework for multi-task aspect-based 
sentiment analysis, in: N. Calzolari, C.-R. Huang, H. Kim, J. Pustejovsky, L. Wan-
ner, K.-S. Choi, P.-M. Ryu, H.-H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, 
N. Xue, S. Kim, Y. Hahm, Z. He, T.K. Lee, E. Santus, F. Bond, S.-H. Na (Eds.), Pro-
ceedings of the 29th International Conference on Computational Linguistics, Inter-
national Committee on Computational Linguistics, Gyeongju, Republic of Korea, 
2022, pp. 7002–7012.

[89] T. Shin, Y. Razeghi, R.L. Logan, IV, E. Wallace, S. Singh, Autoprompt: eliciting 
knowledge from language models with automatically generated prompts, in: B. 
Webber, T. Cohn, Y. He, Y. Liu (Eds.), Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, 2020, pp. 4222–4235.

[90] T. Gao, A. Fisch, D. Chen, Making pre-trained language models better few-shot 
learners, in: C. Zong, F. Xia, W. Li, R. Navigli (Eds.), Proceedings of the 59th An-
nual Meeting of the Association for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers), Association for Computational Linguistics, Stroudsburg, PA, USA, 2021, pp. 
3816–3830.

[91] Y. Zhou, A.I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, J. Ba, Large language 
models are human-level prompt engineers, in: The Eleventh International Confer-
ence on Learning Representations, 2023.

[92] M. Deng, J. Wang, C.-P. Hsieh, Y. Wang, H. Guo, T. Shu, M. Song, E. Xing, Z. 
Hu, RLPrompt: optimizing discrete text prompts with reinforcement learning, in: 
Y. Goldberg, Z. Kozareva, Y. Zhang (Eds.), Proceedings of the 2022 Conference on 
Empirical Methods in Natural Language Processing, Association for Computational 
Linguistics, Stroudsburg, PA, USA, 2022, pp. 3369–3391.

Knowledge-Based Systems 336 (2026) 115277 

22 

http://arxiv.org/abs/2006.07264
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0041
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0041
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0041
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0042
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0042
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0042
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0043
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0043
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0043
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0043
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0043
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0043
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0044
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0044
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0044
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0044
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0044
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0044
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0045
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0045
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0045
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0045
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0045
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0045
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0046
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0046
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0046
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0046
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0046
http://arxiv.org/abs/2412.12564
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0048
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0048
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0048
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0048
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0048
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0049
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0049
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0049
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0050
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0050
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0050
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0050
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0050
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0051
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0051
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0051
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0051
https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0052
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0052
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0052
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0052
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0052
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2402.07927
http://arxiv.org/abs/2401.14423
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0054
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0054
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0054
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0054
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0054
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0055
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0055
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0055
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0055
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0056
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0056
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0056
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0056
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0056
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0057
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0057
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0057
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0058
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0058
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0058
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0059
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0059
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0059
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0059
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0059
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0060
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0060
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0060
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0060
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0060
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0060
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0061
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0061
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0061
http://arxiv.org/abs/2312.03732
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0063
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0063
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0063
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0063
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0064
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0064
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0064
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0064
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0064
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0065
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0065
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0065
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0065
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0066
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0066
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0066
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0067
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0067
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0068
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0068
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0069
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0069
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0070
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0071
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0071
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0071
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0072
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0072
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0072
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0072
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0072
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0073
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0073
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0073
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0073
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0073
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0073
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0073
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0073
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0074
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0074
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0074
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0074
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0074
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0075
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0075
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0075
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0075
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0075
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0075
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0076
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0076
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0076
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0077
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0077
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0077
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0077
http://refhub.elsevier.com/S0950-7051(26)00021-3/sbref0077


J. Fehle et al.

[93] Z. Zhou, X. Ning, K. Hong, T. Fu, J. Xu, S. Li, Y. Lou, L. Wang, Z. Yuan, X. Li, S. 
Yan, G. Dai, X.-P. Zhang, Y. Dong, Y. Wang, A survey on efficient inference for 
large language models, arXiv [cs.CL] (2024).

[94] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, W. Chen, What makes good 
in-context examples for GPT-3?, in: E. Agirre, M. Apidianaki, I. Vulić (Eds.), 
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