

Hinich's model for Day convolution revisited

Christoph Winges

Fakultät für Mathematik, Universität
Regensburg, Regensburg, Germany

Correspondence

Christoph Winges, Fakultät für
Mathematik, Universität Regensburg,
93040 Regensburg, Germany.
Email: christoph.winges@ur.de

Funding information

CRC, Grant/Award Number: 1085;
Deutsche Forschungsgemeinschaft

Abstract

We prove that Hinich's construction of the Day convolution operad of two \mathcal{O} -monoidal ∞ -categories is an exponential in the ∞ -category of ∞ -operads over \mathcal{O} , and use this to give an explicit description of the formation of algebras in the Day convolution operad as a bivariant functor.

MSC 2020

18N70, 18N60

1 | INTRODUCTION

Let \mathcal{O}^\otimes be an ∞ -operad and consider operad maps $p : \mathcal{C}^\otimes \rightarrow \mathcal{O}^\otimes$ and $q : \mathcal{D}^\otimes \rightarrow \mathcal{O}^\otimes$. If it exists, the *Day convolution* of p and q is an exponential of q by p in the ∞ -category of ∞ -operads over \mathcal{O}^\otimes , ie a right adjoint object to q with respect to the product functor $-\times_{\mathcal{O}^\otimes} \mathcal{C}^\otimes : (\text{Op}_\infty)_{/\mathcal{O}^\otimes} \rightarrow (\text{Op}_\infty)_{/\mathcal{O}^\otimes}$. Using the combinatorial machinery of quasicategories, Lurie gives a very general construction of Day convolution operads in [8, Section 2.2.6]; see also [7, Section 2.8].

For practical purposes, it is often sufficient to know that the Day convolution operad exists in the case that \mathcal{C}^\otimes and \mathcal{D}^\otimes are \mathcal{O} -monoidal categories. Hinich provided in [7] a rather straightforward description of the Day convolution operad for arbitrary \mathcal{O} -monoidal ∞ -categories, and it is this model we will focus on in the following.

To facilitate Hinich's description, recall that there are equivalences of ∞ -categories

$$\text{Alg}_{\mathcal{O}}(\text{Cat}_\infty) \xrightarrow{\sim} \text{Mon}_{\mathcal{O}}(\text{Cat}_\infty) \simeq \text{Cocart}_\otimes(\mathcal{O}).$$

Here, $\text{Cocart}_\otimes(\mathcal{O})$ denotes the ∞ -category of cocartesian fibrations of ∞ -operads over \mathcal{O}^\otimes . The first equivalence is given by composition with the cartesian structure $\text{Cat}_\infty^\times \rightarrow \text{Cat}_\infty$ [8, Proposition 2.4.2.5] and the second equivalence is induced by (un)straightening; this is implicit in [8].

and explicitly spelled out in [6, Proposition A.2.1]. In the following, we will freely switch between these descriptions of \mathcal{O} -monoidal ∞ -categories as necessary.

Denote by Ar^{opl} the full subcategory of $(\text{Cat}_{\infty})_{/[1]}$ spanned by the cartesian fibrations and equip it with the cartesian symmetric monoidal structure. Restriction to $\{0\}$ and $\{1\}$ defines symmetric monoidal functors $t : \text{Ar}^{\text{opl}} \rightarrow \text{Cat}_{\infty}$ and $s : \text{Ar}^{\text{opl}} \rightarrow \text{Cat}_{\infty}$, where we also equip Cat_{∞} with the cartesian symmetric monoidal structure.

Theorem 1.1 [7, Section 2.8.9]. *Let C and D be \mathcal{O} -monoidal ∞ -categories and denote by $\text{Day}_{C,D}^{\otimes}$ the pullback*

$$\begin{array}{ccc} \text{Day}_{C,D}^{\otimes} & \longrightarrow & (\text{Ar}^{\text{opl}})^{\times} \\ \downarrow & & \downarrow (s,t) \\ \mathcal{O}^{\otimes} & \xrightarrow{(C,D)} & \text{Cat}_{\infty}^{\times} \times_{\text{Comm}^{\otimes}} \text{Cat}_{\infty}^{\times} \end{array}$$

Then, $\text{Day}_{C,D}^{\otimes} \rightarrow \mathcal{O}^{\otimes}$ is the Day convolution of C^{\otimes} and D^{\otimes} .

The goal of this note is to give an alternative proof of this theorem. Instead of identifying $\text{Day}_{C,D}^{\otimes}$ with another model for the Day convolution operad as in [7, Section 6.3.9], we verify directly that $\text{Day}_{C,D}^{\otimes}$ possesses the correct universal property, also on the level of categories of algebras. In fact, we show first that the construction of $\text{Day}_{C,D}^{\otimes}$ promotes the assignment $(C, D) \mapsto \text{Alg}_{/\mathcal{O}}(\text{Day}_{C,D})$ to a bivariant functor and exhibit a natural equivalence

$$\text{Alg}_{/\mathcal{O}}(\text{Day}_{C,D}) \simeq \text{Alg}_{C/\mathcal{O}}(D),$$

where the functoriality of the right-hand side is given by pre- and postcomposition with operad maps. The universal property of $\text{Day}_{C,D}^{\otimes}$ follows easily from this. This is done in Section 2.

Section 3 comments on some variations of these statements for \mathcal{O} -monoidal ∞ -categories living in certain suboperads of the cartesian symmetric monoidal structure on Cat_{∞} . Section 4 reproves the well-known statement that $\text{Day}_{C,D}^{\otimes} \rightarrow \mathcal{O}^{\otimes}$ defines an \mathcal{O} -monoidal ∞ -category under suitable cocompleteness assumptions on D .

Conventions

- (1) In the remainder of this note, the word “category” means “ ∞ -category”. We write Cat for the category of small categories.
- (2) The category of anima/spaces/ ∞ -groupoids is denoted by An . The groupoid core $\iota : \text{Cat} \rightarrow \text{An}$ is the right adjoint to the inclusion of An into Cat .
- (3) Given a category X , we denote by $\text{Cocart}(X)$ the subcategory of $\text{Cat}_{/X}$ given by the cocartesian fibrations over X and those functors over X which preserve cocartesian morphisms.
- (4) We also drop the prefix “ ∞ -” from related concepts. For example, “operad” means “ ∞ -operad” from now on, and we denote the category of operads by Op .
- (5) The notation concerning operads and categories of algebras follows the conventions of [8]. In particular, C^{\otimes} will denote an operad with underlying category C , but the category of \mathcal{O} -algebras in an operad C^{\otimes} will be denoted by $\text{Alg}_{/\mathcal{O}}(C)$, even though it depends on the

operads \mathcal{O}^\otimes and \mathcal{C}^\otimes , not only their underlying categories. The symbol Comm^\otimes denotes the commutative operad (i.e., the category of pointed finite sets).

(6) Given an operad \mathcal{A}^\otimes , we denote by $\text{Cocart}_\otimes(\mathcal{A})$ the subcategory of $\text{Op}_{/\mathcal{A}^\otimes}$ given by the cocartesian fibrations of operads over \mathcal{A}^\otimes , that is, \mathcal{A} -monoidal categories, and those functors over \mathcal{A}^\otimes which preserve cocartesian morphisms (corresponding to \mathcal{A} -monoidal functors).

2 | ALGEBRAS IN THE DAY CONVOLUTION OPERAD

Throughout this section, fix a base operad \mathcal{O}^\otimes as well as \mathcal{O} -monoidal categories \mathcal{C} and \mathcal{D} . Our goal is to prove the following strengthening of Theorem 1.1.

Theorem 2.1. *Let $\alpha: \mathcal{A}^\otimes \rightarrow \mathcal{O}^\otimes$ be an operad over \mathcal{O}^\otimes . Then, there exists a natural equivalence*

$$\text{Alg}_{\mathcal{A} \times_{\mathcal{O}} \mathcal{C} / \mathcal{O}}(\mathcal{D}) \simeq \text{Alg}_{\mathcal{A} / \mathcal{O}}(\text{Day}_{\mathcal{C}, \mathcal{D}}).$$

Note that Theorem 1.1 follows from this by passing to groupoid cores. The proof of this theorem is already implicit in [1, Remark 5.2.5], but it will be convenient to formulate the argument in terms of some concepts introduced in [3].

Definition 2.2 [3, Observation 2.3.2]. A functor $(p_1, p_2): X \rightarrow Y \times Z$ is a *curved orthofibration* if

- (1) $p_1: X \rightarrow Y$ is a cartesian fibration;
- (2) $p_2: X \rightarrow Z$ is a cocartesian fibration;
- (3) p_1 -cartesian lifts of morphisms project to equivalences under p_2 ;
- (4) p_2 -cocartesian lifts of morphisms project to equivalences under p_1 .

Denote by $\text{Cocart}^{\text{lax}}(Y)$ the full subcategory of $\text{Cat}_{/Y}$ spanned by the cocartesian fibrations, and by $\text{Cart}^{\text{opl}}(Z)$ the full subcategory of $\text{Cat}_{/Z}$ spanned by the cartesian fibrations. In addition, $\text{CurvOrtho}(Y, Z)$ denotes the subcategory of $\text{Cat}_{/Y \times Z}$ whose objects are curved orthofibrations and whose morphisms are functors over $Y \times Z$ preserving both p_1 -cartesian and p_2 -cocartesian morphisms. We will make use of the following description of $\text{CurvOrtho}(Y, Z)$.

Proposition 2.3 [3, Corollary 2.3.4]. *Unstraightening over Y and Z induces equivalences*

$$\text{Fun}(Y^{\text{op}}, \text{Cocart}^{\text{lax}}(Z))^{\text{cart}} \simeq \text{CurvOrtho}(Y, Z) \simeq \text{Fun}(Z, \text{Cart}^{\text{opl}}(Y))^{\text{cocart}}$$

which are natural in Y and Z ; the superscripts cocart and cart denote the wide subcategories on those natural transformations whose components all preserve (co)cartesian morphisms.

We will also require the following statement about the interaction of cartesian and cocartesian morphisms in curved orthofibrations.

Lemma 2.4. *Let $(p_1, p_2): X \rightarrow Y \times Z$ be a curved orthofibration, and let $g: y \rightarrow y'$ and $h: z \rightarrow z'$ be morphisms in Y and Z , respectively. Then, the following are equivalent:*

- (1) The cartesian transport $g^* : p_1^{-1}(a') \rightarrow p_1^{-1}(a)$ along g preserves p_2 -cocartesian lifts of h .
- (2) The cocartesian transport $h_! : p_2^{-1}(b) \rightarrow p_2^{-1}(b')$ along h preserves p_1 -cartesian lifts of g .

Proof. This follows by inspection of the proof of [3, Proposition 2.3.11]. \square

Given Lemma 2.4, we can make the following definition, see [3, Definition 2.3.10].

Definition 2.5. A curved orthofibration

$$p = (p_1, p_2) : X \rightarrow Y \times Z$$

is an *orthofibration* if it satisfies the following equivalent conditions:

- (1) the cartesian transport functor $g^* : p_1^{-1}(y') \rightarrow p_1^{-1}(y)$ preserves p_2 -cocartesian morphisms for every morphism $g : y \rightarrow y'$ in Y ;
- (2) the cocartesian transport functor $h_! : p_2^{-1}(z) \rightarrow p_2^{-1}(z')$ preserves p_1 -cartesian morphisms for every morphism $h : z \rightarrow z'$ in Z .

By [3, Corollary 2.5.6], the equivalences of Proposition 2.3 restrict to equivalences

$$\text{Fun}(Y^{\text{op}}, \text{Cocart}(Z)) \simeq \text{Ortho}(Y, Z) \simeq \text{Fun}(Z, \text{Cart}(Y)), \quad (2.6)$$

where $\text{Ortho}(Y, Z) \subseteq \text{CurvOrtho}(Y, Z)$ denotes the full subcategory of orthofibrations. Consequently, every orthofibration straightens to a functor $Y^{\text{op}} \times Z \rightarrow \text{Cat}$, either by cocartesian straightening over Z or by cartesian straightening over Y . The resulting straightening functors $\text{Ortho}(Y, Z) \rightarrow \text{Fun}(Y^{\text{op}} \times Z, \text{Cat})$ are equivalent, see [3, Remark 2.5.7].

Since $(s, t) : \text{Ar}^{\text{opl}} \rightarrow \text{Cat} \times \text{Cat}$ is an orthofibration by [4, Proposition 7.9], combining [3, Theorem E] and [4, Theorem 7.21] shows that (s, t) straightens to the functor

$$\text{Fun} : \text{Cat}^{\text{op}} \times \text{Cat} \rightarrow \text{Cat}.$$

In fact, we will reprove this statement without recourse to the 2-categorical machinery of [4].

Theorem 2.7. *The functor*

$$(s_*, t_*) : \text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}}) \rightarrow \text{Alg}_{\mathcal{O}}(\text{Cat}) \times \text{Alg}_{\mathcal{O}}(\text{Cat})$$

is an orthofibration which straightens to the obvious functor

$$(\mathcal{X}, \mathcal{Y}) \mapsto \text{Alg}_{\mathcal{X}/\mathcal{O}}(\mathcal{Y}).$$

Remark 2.8. By specializing Theorem 2.7 to the case that \mathcal{O}^{\otimes} is the trivial operad, we recover the claim that the orthofibration $(s, t) : \text{Ar}^{\text{opl}} \rightarrow \text{Cat} \times \text{Cat}$ straightens to the functor $\text{Fun} : \text{Cat}^{\text{op}} \times \text{Cat} \rightarrow \text{Cat}$.

Assuming this statement, we can prove Theorem 2.1.

Proof of Theorem 2.1. Let \mathcal{A}^\otimes be an operad and let \mathcal{X} and \mathcal{Y} be \mathcal{A} -monoidal categories. Writing $(\mathcal{X}, \mathcal{Y}) \in \text{Alg}_{\mathcal{A}}(\text{Cat}) \times \text{Alg}_{\mathcal{A}}(\text{Cat})$ as the composite functor $\ast \xrightarrow{\text{id}} \text{Alg}_{\mathcal{A}}(\mathcal{A}) \xrightarrow{(\mathcal{X}_*, \mathcal{Y}_*)} \text{Alg}_{\mathcal{A}}(\text{Cat}) \times \text{Alg}_{\mathcal{A}}(\text{Cat})$ and using that $\text{Alg}_{\mathcal{A}}(\text{--})$ preserves limits, we obtain the pullback square

$$\begin{array}{ccc} \text{Alg}_{/\mathcal{A}}(\text{Day}_{\mathcal{X}, \mathcal{Y}}) & \longrightarrow & \text{Alg}_{\mathcal{A}}(\text{Ar}^{\text{opl}}) \\ \downarrow & & \downarrow (s_*, t_*) \\ \ast & \xrightarrow{(\mathcal{X}, \mathcal{Y})} & \text{Alg}_{\mathcal{A}}(\text{Cat}) \times \text{Alg}_{\mathcal{A}}(\text{Cat}) \end{array}$$

exhibiting $\text{Alg}_{/\mathcal{A}}(\text{Day}_{\mathcal{X}, \mathcal{Y}})$ as the fiber of (s_*, t_*) over $(\mathcal{X}, \mathcal{Y})$. Then, Theorem 2.7 yields an equivalence

$$\text{Alg}_{/\mathcal{A}}(\text{Day}_{\mathcal{X}, \mathcal{Y}}) \simeq \text{Alg}_{\mathcal{X}/\mathcal{A}}(\mathcal{Y}).$$

Therefore, we obtain equivalences

$$\begin{aligned} \text{Alg}_{\mathcal{A}/\mathcal{O}}(\text{Day}_{\mathcal{C}, \mathcal{D}}) &\simeq \text{Alg}_{/\mathcal{A}}(\mathcal{A} \times_{\mathcal{O}} \text{Day}_{\mathcal{C}, \mathcal{D}}) \\ &\simeq \text{Alg}_{/\mathcal{A}}(\text{Day}_{\mathcal{A} \times_{\mathcal{O}} \mathcal{C}, \mathcal{A} \times_{\mathcal{O}} \mathcal{D}}) \\ &\simeq \text{Alg}_{\mathcal{A} \times_{\mathcal{O}} \mathcal{C}/\mathcal{A}}(\mathcal{A} \times_{\mathcal{O}} \mathcal{D}) \\ &\simeq \text{Alg}_{\mathcal{A} \times_{\mathcal{O}} \mathcal{C}/\mathcal{O}}(\mathcal{D}). \end{aligned}$$

Specializing to the case $\mathcal{A}^\otimes = \text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes$, this provides an evaluation map

$$\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes \times_{\mathcal{O}^\otimes} \mathcal{C}^\otimes \rightarrow \mathcal{D}^\otimes$$

over \mathcal{O}^\otimes which induces the above equivalence, making it clear that this identification is natural. \square

Before embarking on the proof of Theorem 2.7, let us record another easy consequence. We require some additional notation.

Definition 2.9. Define the operads $\text{Cat}_{\mathcal{C}/\mathcal{D}}^\otimes$ and $\text{Cat}_{/\mathcal{D}}^\otimes$ by the pullbacks

$$\begin{array}{ccc} \text{Cat}_{\mathcal{C}/\mathcal{D}}^\otimes & \longrightarrow & (\text{Ar}^{\text{opl}})^\times \\ \downarrow & & \downarrow (s, t) \\ \mathcal{O}^\otimes \times_{\text{Comm}^\otimes} \text{Cat}^\times & \xrightarrow{\mathcal{C} \times \text{id}} & \text{Cat}^\times \times_{\text{Comm}^\otimes} \text{Cat}^\times \end{array}$$

and

$$\begin{array}{ccc} \text{Cat}_{/\mathcal{D}}^\otimes & \longrightarrow & (\text{Ar}^{\text{opl}})^\times \\ \downarrow & & \downarrow (s, t) \\ \text{Cat}^\times \times_{\text{Comm}^\otimes} \mathcal{O}^\otimes & \xrightarrow{\text{id} \times \mathcal{D}} & \text{Cat}^\times \times_{\text{Comm}^\otimes} \text{Cat}^\times \end{array}$$

Corollary 2.10. Let $\alpha : \mathcal{A}^\otimes \rightarrow \mathcal{O}^\otimes$ be an operad over \mathcal{O}^\otimes .

(1) *The functor*

$$t_C : \mathrm{Alg}_{\mathcal{A}/\mathcal{O}}(\mathrm{Cat}_{C//}) \rightarrow \mathrm{Alg}_{\mathcal{A}/\mathcal{O}}(\mathcal{O} \times \mathrm{Cat}) \simeq \mathrm{Alg}_{\mathcal{A}}(\mathrm{Cat})$$

is a cocartesian fibration which straightens to the functor

$$\mathrm{Alg}_{\mathcal{A}}(\mathrm{Cat}) \rightarrow \mathrm{Cat}, \quad \mathcal{Y} \mapsto \mathrm{Alg}_{\mathcal{A} \times_{\mathcal{O}} C/A}(\mathcal{Y})$$

whose functoriality is given by postcomposition with \mathcal{A} -monoidal functors.

(2) *The functor*

$$s_D : \mathrm{Alg}_{\mathcal{A}/\mathcal{O}}(\mathrm{Cat}_{//D}) \rightarrow \mathrm{Alg}_{\mathcal{A}/\mathcal{O}}(\mathrm{Cat} \times \mathcal{O}) \simeq \mathrm{Alg}_{\mathcal{A}}(\mathrm{Cat})$$

is a cartesian fibration which straightens to the functor

$$\mathrm{Alg}_{\mathcal{A}}(\mathrm{Cat})^{\mathrm{op}} \rightarrow \mathrm{Cat}, \quad \mathcal{X} \mapsto \mathrm{Alg}_{\mathcal{X}/\mathcal{O}}(D)$$

whose functoriality is given by precomposition with \mathcal{A} -monoidal functors.

Proof. This follows immediately from Theorem 2.7 applied to the base operad \mathcal{A}^\otimes together with the naturality of unstraightening. \square

The remainder of this section is concerned with the proof of Theorem 2.7. The key input for our argument is the existence of free cartesian fibrations.

Construction 2.11. Let I be a small category and let $f : X \rightarrow I$ be a functor. Define the *free cartesian fibration* $\mathrm{Fr}(f)$ on f as the pullback

$$\begin{array}{ccc} \mathrm{Fr}_{\mathrm{cart}}(f) & \longrightarrow & \mathrm{Fun}([1], I) \\ \downarrow & & \downarrow \mathrm{ev}_1 \\ X & \xrightarrow{f} & I \end{array}$$

together with the evaluation map

$$\mathrm{Fr}_{\mathrm{cart}}(f) \rightarrow \mathrm{Fun}([1], I) \xrightarrow{\mathrm{ev}_0} I.$$

Proposition 2.12 [2, Theorem 4.5]. Let I be a category. The functor $\mathrm{Cart}(I) \rightarrow \mathrm{Cat}_{/I}$ admits a left adjoint

$$\mathrm{Fr}_{\mathrm{cart}} : \mathrm{Cat}_{/I} \rightarrow \mathrm{Cart}(I)$$

which sends $f : X \rightarrow I$ to $\mathrm{Fr}_{\mathrm{cart}}(f)$.

Remark 2.13. Dualizing Proposition 2.12 shows that the pullback

$$\begin{array}{ccc} \text{Fr}_{\text{cocart}}(f) & \longrightarrow & \text{Fun}([1], I) \\ \downarrow & & \downarrow \text{ev}_0 \\ X & \xrightarrow{f} & I \end{array}$$

together with the evaluation map

$$\text{Fr}_{\text{cocart}}(f) \rightarrow \text{Fun}([1], I) \xrightarrow{\text{ev}_1} I$$

is the free cocartesian fibration on f .

Proposition 2.14.

(1) *The functor*

$$(s, t) : \text{Cart}([1]) \rightarrow \text{Cat} \times \text{Cat}$$

is an orthofibration. A morphism $f : p \rightarrow q$ in $\text{Cart}([1])$ is s -cartesian if and only if $t(f)$ is an equivalence, and f is t -cocartesian if and only if $s(f)$ is an equivalence.

(2) *The functor*

$$(s, t) : \text{Ar}^{\text{op}} \rightarrow \text{Cat} \times \text{Cat}$$

is an orthofibration. Moreover, the functor $\text{Cart}([1]) \rightarrow \text{Ar}^{\text{op}}$ preserves both s -cartesian and t -cocartesian morphisms.

Proof. By unstraightening, $\text{Cart}([1]) \simeq \text{Fun}([1]^{\text{op}}, \text{Cat})$, with s and t corresponding to evaluation at 1 and 0, respectively. By [9, Corollary 2.4.7.11], the evaluation functor at 0 is a cartesian fibration and the evaluation functor at 1 is a cocartesian fibration, and the characterisation of s -cartesian and t -cocartesian morphisms follows from [9, Lemma 2.4.7.5]. The explicit description of s -cartesian and t -cocartesian morphisms also implies that (s, t) is an orthofibration.

For assertion (2), it suffices to show that s -cartesian morphisms in $\text{Cart}([1])$ are also s -cartesian in Ar^{op} , and that the same holds true for t -cocartesian morphisms.

So, let $f : p \rightarrow q$ be an s -cartesian morphism in $\text{Cart}([1])$, where $p : X \rightarrow [1]$ and $q : Y \rightarrow [1]$ are cartesian fibrations. For every cartesian fibration $r : Z \rightarrow [1]$, we have to show that the commutative square

$$\begin{array}{ccc} \text{Hom}_{\text{Cat}_{/[1]}}(r, p) & \xrightarrow{f \circ -} & \text{Hom}_{\text{Cat}_{/[1]}}(r, q) \\ \downarrow & & \downarrow \\ \text{Hom}_{\text{Cat}}(s(r), s(p)) & \xrightarrow{s(f) \circ -} & \text{Hom}_{\text{Cat}}(s(r), s(q)) \end{array}$$

is a pullback. Observing that $s(\text{Fr}_{\text{cart}}(r)) \simeq [1]_{1/} \times s(r) \simeq s(r)$, this square is identified via Proposition 2.12 with the commutative square

$$\begin{array}{ccc} \text{Hom}_{\text{Cart}([1])}(\text{Fr}_{\text{cart}}(r), p) & \longrightarrow & \text{Hom}_{\text{Cart}([1])}(\text{Fr}_{\text{cart}}(r), q) \\ \downarrow & & \downarrow \\ \text{Hom}_{\text{Cat}}(s(r), s(p)) & \xrightarrow{s(f) \circ -} & \text{Hom}_{\text{Cat}}(s(r), s(q)) \end{array}$$

which is a pullback by assumption.

Let now $f : p \rightarrow q$ be a t -cocartesian morphism in $\text{Cart}([1])$. Let $r : Z \rightarrow [1]$ be an arbitrary cartesian fibration. Note that $t(\text{Fr}_{\text{cart}}(p)) \simeq X$ and $t(\text{Fr}_{\text{cart}}(q)) \simeq Y$. Using Proposition 2.12 once more, it suffices to show that the outer square in the commutative diagram

$$\begin{array}{ccc}
 \text{Hom}_{\text{Cart}([1])}(\text{Fr}_{\text{cart}}(q), r) & \xrightarrow{- \circ \text{Fr}(f)} & \text{Hom}_{\text{Cart}([1])}(\text{Fr}_{\text{cart}}(p), r) \\
 \downarrow t & & \downarrow t \\
 \text{Hom}_{\text{Cat}}(Y, t(r)) & \xrightarrow{- \circ f} & \text{Hom}_{\text{Cat}}(X, t(r)) \\
 \downarrow & & \downarrow \\
 \text{Hom}_{\text{Cat}}(t(q), t(r)) & \xrightarrow{- \circ t(f)} & \text{Hom}_{\text{Cat}}(t(p), t(r))
 \end{array} \tag{2.15}$$

is a pullback. Since $s(\text{Fr}_{\text{cart}}(f)) \simeq s(f)$ is an equivalence, the morphism $\text{Fr}_{\text{cart}}(f)$ is t -cocartesian, which means that the top square is a pullback. For the lower square, we use the explicit formula for cartesian unstraightening over $[1]^{\text{op}}$ from [2, Proposition 3.1]: since the left square and outer square in the commutative diagram

$$\begin{array}{ccccc}
 s(p) & \xrightarrow{\text{St}(p)} & t(p) & \xrightarrow{t(f)} & t(q) \\
 \downarrow 1 \times \text{id} & & \downarrow & & \downarrow \\
 [1]^{\text{op}} \times s(p) & \longrightarrow & X & \xrightarrow{f} & Y
 \end{array}$$

are pushouts, so is the right square. This implies that the bottom square in (2.15) is a pullback. Consequently, the outer square in (2.15) is a pullback as required. \square

Since we are considering the cartesian symmetric monoidal structures on Ar^{op} and Cat , we can bootstrap the analogous statements for categories of \mathcal{O} -algebras from this.

Lemma 2.16. *Let $p = (p_1, p_2) : X \rightarrow Y \times Z$ be a curved orthofibration/an orthofibration and let I be a small category. Then*

$$p_* = ((p_1)_*, (p_2)_*) : \text{Fun}(I, X) \rightarrow \text{Fun}(I, Y) \times \text{Fun}(I, Z)$$

is also a curved orthofibration/an orthofibration. The relevant cartesian and cocartesian morphisms are given by those natural transformations, whose components are all cartesian or cocartesian, respectively.

Proof. This is immediate from [9, Corollary 3.2.2.12]. \square

Lemma 2.17. *Let X , Y , and Z be categories with finite products. Suppose that $p = (p_1, p_2) : X \rightarrow Y \times Z$ is a functor such that*

- (1) p is a curved orthofibration;
- (2) p preserves finite products;
- (3) finite products of p_1 -cartesian morphisms are p_1 -cartesian;
- (4) finite products of p_2 -cocartesian morphisms are p_2 -cocartesian.

Then, the induced functor $p_* : \text{Mon}_{\mathcal{O}}(X) \rightarrow \text{Mon}_{\mathcal{O}}(Y) \times \text{Mon}_{\mathcal{O}}(Z)$ is a curved orthofibration. A morphism in $\text{Mon}_{\mathcal{O}}(X)$ is $(p_1)_*$ -cartesian or $(p_2)_*$ -cocartesian if and only if it is $(p_1)_*$ -cartesian or $(p_2)_*$ -cocartesian in $\text{Fun}(\mathcal{O}^\otimes, X)$.

In particular, if p is an orthofibration satisfying conditions (1)–(4), then p_* is an orthofibration.

Proof. By Lemma 2.16, the induced functor

$$p_* = ((p_1)_*, (p_2)_*) : \text{Fun}(\mathcal{O}^\otimes, X) \rightarrow \text{Fun}(\mathcal{O}^\otimes, Y) \times \text{Fun}(\mathcal{O}^\otimes, Z)$$

also satisfies properties (1)–(4).

Let $g : N \rightarrow N'$ be a morphism in $\text{Mon}_{\mathcal{O}}(Y)$ and let M' be an \mathcal{O} -monoid in X lifting N' . Considering g as a morphism in $\text{Fun}(\mathcal{O}^\otimes, Y)$, there exists a cartesian lift $f : M \rightarrow M'$ in $\text{Fun}(\mathcal{O}^\otimes, X)$. We claim that M is also an \mathcal{O} -monoid in X . For $x = x_1 \boxtimes \cdots \boxtimes x_n$ in $\mathcal{O}_{\langle n \rangle}^\otimes$, the Segal maps of M and M' fit into a commutative square

$$\begin{array}{ccc} M(x) & \longrightarrow & \prod_{i=1}^n M(x_i) \\ \downarrow & & \downarrow \\ M'(x) & \xrightarrow{\simeq} & \prod_{i=1}^n M'(x_i) \end{array}$$

Since products of cartesian morphisms in X are cartesian, both vertical arrows are cartesian morphisms. By [9, Lemma 2.4.2.7], it follows that the top horizontal morphism is also cartesian. Since N is an \mathcal{O} -monoid, this morphism is a cartesian lift of an equivalence, and therefore itself an equivalence. It follows that $(p_1)_* : \text{Mon}_{\mathcal{O}}(X) \rightarrow \text{Mon}_{\mathcal{O}}(Y)$ is a cartesian fibration.

Since $(p_1)_*$ -cartesian lifts in $\text{Fun}(\mathcal{O}^\otimes, X)$ are characterized by being pointwise p_1 -cartesian, it also follows that $(p_1)_*$ -cartesian morphisms project to equivalences under $(p_2)_*$.

The argument for $(p_2)_*$ is completely analogous.

Since $(p_1)_*$ -cartesian and $(p_2)_*$ -cocartesian morphisms are detected in $\text{Fun}(\mathcal{O}^\otimes, X)$, it follows from Lemma 2.16 that p_* is an orthofibration if p is additionally assumed to be an orthofibration. \square

In particular, we obtain the following.

Proposition 2.18. *The functor*

$$(s_*, t_*) : \text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}}) \rightarrow \text{Alg}_{\mathcal{O}}(\text{Cat}) \times \text{Alg}_{\mathcal{O}}(\text{Cat})$$

is an orthofibration. Both s_* -cartesian and t_* -cocartesian morphisms are detected by the functor

$$\text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}}) \xrightarrow{\sim} \text{Mon}_{\mathcal{O}}(\text{Ar}^{\text{opl}}) \rightarrow \text{Fun}(\mathcal{O}^\otimes, \text{Ar}^{\text{opl}}).$$

Proof. Due to Proposition 2.14, the functor $(s, t) : \text{Ar}^{\text{opl}} \rightarrow \text{Cat} \times \text{Cat}$ is an orthofibration satisfying the assumptions of Lemma 2.17. The proposition follows. \square

To determine the straightening of (s_*, t_*) , we require some additional preparation. First, we observe that the existence of free (co)cartesian fibrations implies the existence of free orthofibrations.

Corollary 2.19. *The inclusion functor $\text{Ortho}(Y, Z) \rightarrow \text{Cat}_{/Y \times Z}$ admits a left adjoint*

$$\text{Fr} : \text{Cat}_{/Y \times Z} \rightarrow \text{Ortho}(Y, Z).$$

Proof. We write $p_Z : Y \times Z \rightarrow Z$ for the projection functor. Since p_Z is a cartesian fibration, the equivalence $\text{Cat}_{/Y \times Z} \simeq (\text{Cat}_{/Y})/p_Z$ and Proposition 2.12 induce an adjunction

$$\text{Cat}_{/Y \times Z} \rightleftarrows \text{Cart}(Y)/p_Z.$$

After identifying

$$\text{Cart}(Y)/p_Z \simeq \text{Fun}(Y^{\text{op}}, \text{Cat})_{/\text{const}_Z} \simeq \text{Fun}(Y^{\text{op}}, \text{Cat}_{/Z}),$$

the existence of free cocartesian fibrations induces an adjunction

$$\text{Cart}(Y)/p_Z \rightleftarrows \text{Fun}(Y^{\text{op}}, \text{Cocart}(Z)) \simeq \text{Ortho}(Y, Z).$$

□

Remark 2.20. Unwinding the proof of Corollary 2.19, one finds that the free orthofibration on a functor $f : X \rightarrow Y \times Z$ is given by the pullback

$$\begin{array}{ccc} \text{Fr}(f) & \longrightarrow & \text{Fun}([1], Y) \times \text{Fun}([1], Z) \\ \downarrow & & \downarrow \text{ev}_1 \times \text{ev}_0 \\ X & \xrightarrow{f} & Y \times Z \end{array}$$

together with the evaluation map

$$\text{Fr}(f) \rightarrow \text{Fun}([1], Y) \times \text{Fun}([1], Z) \xrightarrow{\text{ev}_0 \times \text{ev}_1} Y \times Z.$$

One can adapt the proof of [2, Theorem 4.5] to show directly that this yields a left adjoint to the functor $\text{Ortho}(Y, Z) \rightarrow \text{Cat}_{/Y \times Z}$.

We can apply this statement to identify the straightenings of cotensors of orthofibrations.

Lemma 2.21. *Let $p : X \rightarrow Y \times Z$ be an orthofibration. Consider the pullback*

$$\begin{array}{ccc} X^I & \longrightarrow & \text{Fun}(I, X) \\ p^I \downarrow & & \downarrow p_* \\ Y \times Z & \xrightarrow{\text{const}} & \text{Fun}(I, Y \times Z) \end{array}$$

Then, $p^I = (p_1^I, p_2^I)$ is an orthofibration such that both p_1^I -cartesian and p_2^I -cocartesian morphisms are detected componentwise in $\text{Fun}(I, X)$. Moreover, p^I straightens to the functor

$$\text{Fun}(I, \text{St}(p)) : Y^{\text{op}} \times Z \rightarrow \text{Cat}.$$

Proof. The first part of the lemma is precisely Lemma 2.16, so we only have to prove the assertion about the straightening of p^I . For every functor $f : T \rightarrow Y \times Z$, there exist by Corollary 2.19 natural equivalences

$$\begin{aligned} \text{Hom}_{Y \times Z}(T, X^I) &\simeq \text{Hom}_{Y \times Z}(T \times I, X) \\ &\simeq \text{Hom}_{\text{Ortho}(Y, Z)}(\text{Fr}(T \times I \rightarrow Y \times Z), X) \\ &\simeq \text{Hom}_{\text{Ortho}(Y, Z)}(\text{Fr}(f) \times I, X) \\ &\simeq \text{Nat}(\text{St}(\text{Fr}(f)) \times I, \text{St}(p)) \\ &\simeq \text{Nat}(\text{St}(\text{Fr}(f)), \text{Fun}(I, \text{St}(p))) \\ &\simeq \text{Hom}_{\text{Ortho}(Y, Z)}(\text{Fr}(f), \text{Un}(\text{Fun}(I, \text{St}(p)))) \\ &\simeq \text{Hom}_{Y \times Z}(T, \text{Un}(\text{Fun}(I, \text{St}(p)))), \end{aligned}$$

which implies the lemma. \square

Recall the following definition from [3, Proposition 2.3.13].

Definition 2.22. A functor $p = (p_1, p_2) : X \rightarrow Y \times Z$ is a *bifibration* if the following conditions are satisfied:

- (1) p_1 is a cartesian fibration such that a morphism in X is p_1 -cartesian if and only if it projects to an equivalence under p_2 ;
- (2) p_2 is a cocartesian fibration such that a morphism in X is p_2 -cocartesian if and only if it projects to an equivalence under p_1 .

By [3, Corollary 2.3.15], the equivalences from (2.6) restrict to equivalences

$$\text{Fun}(Y^{\text{op}}, \text{LFib}(Z)) \simeq \text{Bifib}(Y, Z) \simeq \text{Fun}(Z, \text{RFib}(Y)),$$

where $\text{Bifib}(Y, Z) \subseteq \text{Ortho}(Y, Z)$ denotes the full subcategory of bifibrations, and $\text{LFib}(Z)$ and $\text{RFib}(Y)$ denote the categories of left fibrations over Z and right fibrations over Y , respectively.

Example 2.23. The functor $(\text{ev}_1, \text{ev}_0) : \text{Fun}([1]^{\text{op}}, X) \rightarrow X$ is a bifibration for every category X —the special case $X = \text{Cat}$ was covered in Proposition 2.14. Moreover, this functor straightens to the functor

$$\text{Hom}_X : X^{\text{op}} \times X \rightarrow \text{An}.$$

This follows for example from [5, Corollary A.2.5] because the cartesian unstraightening of Hom_X is the twisted arrow category.

Definition 2.24. Let $p = (p_1, p_2) : X \rightarrow Y \times Z$ be an orthofibration. Define X_{bicart} as the wide subcategory of X generated by the collections of p_1 -cartesian and p_2 -cocartesian morphisms.

Lemma 2.25. Let $p = (p_1, p_2) : X \rightarrow Y \times Z$ be an orthofibration.

- (1) The following are equivalent for a morphism f in X :
 - (a) f lies in X_{bicart} ;
 - (b) f is the composition of a p_1 -cartesian morphism followed by a p_2 -cocartesian morphism;
 - (c) f is the composition of a p_2 -cocartesian morphism followed by a p_1 -cartesian morphism.
- (2) The restriction $p_{\text{bicart}} : X_{\text{bicart}} \rightarrow Y \times Z$ of p is a bifibration. The inclusion functors $X_{\text{bicart}} \rightarrow X$ assemble to the counit transformation of an adjunction

$$\text{inc} : \text{Bifib}(Y, Z) \rightleftarrows \text{Ortho}(Y, Z) : (-)_{\text{bicart}}.$$

- (3) The bifibration p_{bicart} straightens to the functor

$$Y^{\text{op}} \times Z \xrightarrow{\text{St}(p)} \text{Cat} \xrightarrow{\iota} \text{An}.$$

Proof. By [3, Definition 2.3.10], p_1 -cartesian morphisms canonically commute with p_2 -cocartesian morphisms, which shows assertion (1).

For assertion (2), let us first check that $(p_{\text{bicart}})_1 : X_{\text{bicart}} \rightarrow Y$ is a cartesian fibration. Every morphism in Y admits a p_1 -cartesian lift, so this reduces to checking that for a p_1 -cartesian morphism $\xi : x \rightarrow x'$ in X , an arbitrary morphism $\alpha : a \rightarrow x$ lies in X_{bicart} if and only if $\xi \circ \alpha$ lies in X_{bicart} . Writing α as the composite of a p_2 -cocartesian morphism followed by a p_1 -cartesian morphism, this is immediate from [9, Lemma 2.4.2.7]. In particular, every $(p_{\text{bicart}})_1$ -cartesian morphism projects to an equivalence under $(p_{\text{bicart}})_2$.

Suppose now that $\xi : x \rightarrow x'$ is a morphism in X_{bicart} such that $p_2(\xi)$ is an equivalence. Writing $\xi = \xi_{\text{cocart}} \circ \xi_{\text{cart}}$ as a composition of a p_1 -cartesian morphism followed by a p_2 -cocartesian morphism, it follows that $p_2(\xi_{\text{cocart}})$ is an equivalence. Hence, ξ_{cocart} is a p_2 -cocartesian lift of an equivalence, and thus an equivalence. It follows that ξ is p_1 -cartesian, and therefore also $(p_{\text{bicart}})_1$ -cartesian.

By dualizing, we see that $(p_{\text{bicart}})_2 : X \rightarrow Z$ is a cocartesian fibration such that a morphism is $(p_{\text{bicart}})_2$ -cocartesian if and only if it projects to an equivalence under $(p_{\text{bicart}})_1$. Hence, p_{bicart} is a bifibration.

Now, let $T \rightarrow Y \times Z$ be a bifibration. Note that $T_{\text{bicart}} = T$ because every morphism (g, h) in $Y \times Z$ factors as $(g, \text{id}) \circ (\text{id}, h)$. Since morphisms in $\text{Ortho}(Y, Z)$ preserve all relevant cartesian and cocartesian morphisms, it is now immediate that the inclusion $X_{\text{bicart}} \rightarrow X$ induces an equivalence

$$\text{Hom}_{\text{Bifib}(Y, Z)}(T, X_{\text{bicart}}) \xrightarrow{\sim} \text{Hom}_{\text{Ortho}(Y, Z)}(T, X).$$

Assertion (3) follows from the commutative diagram:

$$\begin{array}{ccccc}
 \text{Bifib}(Y, Z) & \xrightarrow{\sim} & \text{Fun}(Z, \text{RFib}(Y)) & \xrightarrow{\sim} & \text{Fun}(Z, \text{Fun}(Y^{\text{op}}, \text{An})) \\
 \downarrow \text{inc} & & \downarrow \text{inc} & & \downarrow \text{inc} \\
 \text{Ortho}(Y, Z) & \xrightarrow{\sim} & \text{Fun}(Z, \text{Cart}(Y)) & \xrightarrow{\sim} & \text{Fun}(Z, \text{Fun}(Y^{\text{op}}, \text{Cat}))
 \end{array}$$

by passing to right adjoints. \square

Finally, recall that slice categories of Op are cotensored over Cat as follows. For I a small category and $\varphi : \mathcal{X}^{\otimes} \rightarrow \mathcal{B}^{\otimes}$ an operad map, define $\text{Fun}(I, \mathcal{X})^{\otimes}$ as the pullback

$$\begin{array}{ccc}
 \text{Fun}(I, \mathcal{X})^{\otimes} & \longrightarrow & \text{Fun}(I, \mathcal{X}^{\otimes}) \\
 \downarrow & & \downarrow \phi_* \\
 \mathcal{B}^{\otimes} & \xrightarrow{\text{const}} & \text{Fun}(I, \mathcal{B}^{\otimes})
 \end{array}$$

This operad has the universal property that

$$\text{Alg}_{\mathcal{A}/\mathcal{B}}(\text{Fun}(I, \mathcal{X})) \simeq \text{Fun}(I, \text{Alg}_{\mathcal{A}/\mathcal{B}}(\mathcal{X}))$$

for every operad $\mathcal{A}^{\otimes} \rightarrow \mathcal{B}^{\otimes}$ over \mathcal{B}^{\otimes} [8, Remark 2.1.3.4].

If $\pi : \mathcal{X}^{\otimes} \rightarrow \mathcal{X}$ is a cartesian structure, one checks directly that

$$\text{Fun}(I, \mathcal{X})^{\otimes} \rightarrow \text{Fun}(I, \mathcal{X}^{\otimes}) \xrightarrow{\pi \circ -} \text{Fun}(I, \mathcal{X})$$

exhibits $\text{Fun}(I, \mathcal{X})^{\otimes}$ as a cartesian structure on $\text{Fun}(I, \mathcal{X})$. In particular, one obtains the cartesian symmetric monoidal structure

$$\text{Fun}(I, \text{Ar}^{\text{opl}})^{\times} \rightarrow \text{Comm}^{\otimes}$$

by applying this construction to the operad $(\text{Ar}^{\text{opl}})^{\times} \rightarrow \text{Comm}^{\otimes}$.

Proof of Theorem 2.7

We can now finish the proof of our main result. By Proposition 2.18, the functor

$$(s_*, t_*) : \text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}}) \rightarrow \text{Alg}_{\mathcal{O}}(\text{Cat}) \times \text{Alg}_{\mathcal{O}}(\text{Cat})$$

is an orthofibration. In combination with Proposition 2.14, we obtain a characterisation of the s_* -cartesian morphisms as those morphisms which map under

$$\text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}}) \rightarrow \text{Fun}(\mathcal{O}^{\otimes}, \text{Ar}^{\text{opl}})$$

to a natural transformation whose components all preserve cartesian morphisms and project to an equivalence under $t : \text{Ar}^{\text{opl}} \rightarrow \text{Cat}$. Analogously for t_* -cocartesian morphisms.

We will identify the composite of the straightening of (s_*, t_*) with the Yoneda embedding $\mathfrak{Y} : \text{Cat} \rightarrow \mathcal{P}(\text{Cat})$. By Lemma 2.21, the composite

$$\begin{aligned} \text{Cat}^{\text{op}} &\xrightarrow{(s_*, t_*)^{(-)}} \text{Ortho}(\text{Alg}_{\mathcal{O}}(\text{Cat}), \text{Alg}_{\mathcal{O}}(\text{Cat})) \\ &\xrightarrow{\text{St}} \text{Fun}(\text{Alg}_{\mathcal{O}}(\text{Cat})^{\text{op}} \times \text{Alg}_{\mathcal{O}}(\text{Cat}), \text{Cat}) \\ &\xrightarrow{\iota \circ -} \text{Fun}(\text{Alg}_{\mathcal{O}}(\text{Cat})^{\text{op}}, \text{An}) \end{aligned}$$

corresponds to $\mathfrak{Y} \circ \text{St}(s_*, t_*)$ after currying. By virtue of Lemma 2.25, the composite $(\iota \circ -) \circ \text{St}$ is equivalent to the functor that first applies $(-)^{\text{bicart}}$ and then straightens the resulting bifibration. This leaves us with identifying the bifibrations $(s_*, t_*)^I_{\text{bicart}}$.

Consider the natural fully faithful functor

$$\begin{aligned} \Psi' : \text{Fun}(I, \text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}})) &\simeq \text{Alg}_{\mathcal{O}}(\text{Fun}(I, \text{Ar}^{\text{opl}})) \\ &\xrightarrow{\sim} \text{Mon}_{\mathcal{O}}(\text{Fun}(I, \text{Ar}^{\text{opl}})) \\ &\subseteq \text{Fun}(\mathcal{O}^{\otimes}, \text{Fun}(I, \text{Ar}^{\text{opl}})) \simeq \text{Fun}(\mathcal{O}^{\otimes} \times I, \text{Ar}^{\text{opl}}). \end{aligned}$$

Then $\text{Fun}(I, s_*)$ -cartesian morphisms in the domain correspond precisely to those natural transformations τ in the target with the property that for all $x \in \mathcal{O}^{\otimes}$ and $i \in I$, the functor $\tau(x, i)$ preserves cartesian morphisms over $[1]$ and $t(\tau(x, i))$ is an equivalence. From the analogous assertion for $\text{Fun}(I, t_*)$ -cocartesian morphisms, it follows that Ψ' restricts to a fully faithful functor

$$\text{Fun}(I, \text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}}))_{\text{bicart}} \rightarrow \text{Fun}(\mathcal{O}^{\otimes} \times I, \text{Ar}^{\text{opl}})^{\text{cart}}.$$

Composing with the natural equivalence of Proposition 2.3, we obtain a fully faithful functor

$$\Psi : \text{Fun}(I, \text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}}))_{\text{bicart}} \rightarrow \text{Fun}([1]^{\text{op}}, \text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I))^{\text{cocart}}.$$

Lemma 2.26. *The essential image of Ψ comprises of those functors*

$$E : [1]^{\text{op}} \rightarrow \text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I)$$

satisfying the following conditions:

- (1) *for $k = 0, 1$ and $i \in I$, the functor $E(k)_i \rightarrow \mathcal{O}^{\otimes} \times \{i\}$ is a cocartesian fibration of operads;*
- (2) *the functor $E(1)_i \rightarrow E(0)_i$ preserves inert morphisms for every $i \in I$.*

Proof. A functor $M : \mathcal{O}^{\otimes} \rightarrow \text{Fun}(I, \text{Ar}^{\text{opl}})$ is an \mathcal{O} -monoid if and only if the evaluation $M_i : \mathcal{O}^{\otimes} \rightarrow \text{Ar}^{\text{opl}}$ is an \mathcal{O} -monoid for all $i \in I$. Recall that M_i being an \mathcal{O} -monoid means that for every $x = x_1 \boxtimes \cdots \boxtimes x_n \in \mathcal{O}_{\langle n \rangle}^{\otimes}$, the appropriate inert morphisms induce equivalences

$$\rho : M_i(x) \xrightarrow{\sim} M_i(x_1) \underset{[1]}{\times} \cdots \underset{[1]}{\times} M_i(x_n)$$

of cartesian fibrations over $[1]$. This is the case if and only if each ρ preserves cartesian morphisms and induces fiberwise equivalences.

Denote by $E : [1]^{\text{op}} \rightarrow \text{Cocart}(\mathcal{O}^{\otimes} \times I)$ the image of M under Ψ , and let $E(k)_i$ be the restriction of $E(k)$ to $\mathcal{O}^{\otimes} \times \{i\}$. The cocartesian fibration $E(k)_i \rightarrow \mathcal{O}^{\otimes}$ is given by the unstraightening of the composite $\mathcal{O}^{\otimes} \rightarrow \text{Fun}(I, \text{Ar}^{\text{opl}}) \xrightarrow{\text{ev}_i} \text{Ar}^{\text{opl}} \xrightarrow{(-)|_{\{k\}}} \text{Cat}$, which is an \mathcal{O} -monoid because ev_i preserves products. Consequently, each map ρ is a fiberwise equivalence if and only if both $E(0)_i$ and $E(1)_i$ are cocartesian fibrations of operads [8, Example 2.4.2.4]. Since inert morphisms in $E(k)_i$ are precisely the cocartesian lifts of inert morphisms in $\mathcal{O}^{\otimes} \times \{i\}$, Lemma 2.4 shows that ρ preserves all cartesian morphisms if and only if $E(1)_i \rightarrow E(0)_i$ preserves all inert morphisms. \square

Note that Ψ fits into a natural commutative diagram

$$\begin{array}{ccc} \text{Fun}(I, \text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}}))_{\text{cart}} & \xrightarrow{\Psi} & \text{Fun}([1]^{\text{op}}, \text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I))^{\text{cocart}} \\ \downarrow (s,t) & & \downarrow (\text{ev}_1, \text{ev}_0) \\ \text{Fun}(I, \text{Alg}_{\mathcal{O}}(\text{Cat})) \times \text{Fun}(I, \text{Alg}_{\mathcal{O}}(\text{Cat})) & \xrightarrow{\Phi} & \text{Cocart}(\mathcal{O}^{\otimes} \times I) \times \text{Cocart}(\mathcal{O}^{\otimes} \times I) \end{array}$$

with both Φ and Ψ fully faithful. The essential image of Φ comprises precisely of those pairs of functors whose restriction to $\mathcal{O}^{\otimes} \times \{i\}$ is a cocartesian fibration of operads for every $i \in I$. In particular, this induces a natural fully faithful functor Ψ_I from $\text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}})^I_{\text{bicart}}$ to the pullback of

$$\begin{array}{ccc} & & \text{Fun}([1]^{\text{op}}, \text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I))^{\text{cocart}} \\ & & \downarrow (\text{ev}_1, \text{ev}_0) =: \varepsilon \\ \text{Cocart}(\mathcal{O}^{\otimes}) \times \text{Cocart}(\mathcal{O}^{\otimes}) & \xrightarrow{(- \times I) \times (- \times I)} & \text{Cocart}(\mathcal{O}^{\otimes} \times I) \times \text{Cocart}(\mathcal{O}^{\otimes} \times I) \end{array}$$

The right vertical evaluation functor is the pullback of

$$(\text{ev}_1, \text{ev}_0) : \text{Fun}([1]^{\text{op}}, \text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I)) \rightarrow \text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I) \times \text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I),$$

along the inclusion functor

$$\text{Cocart}(\mathcal{O}^{\otimes} \times I) \times \text{Cocart}(\mathcal{O}^{\otimes} \times I) \rightarrow \text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I) \times \text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I).$$

Consequently, the naturality of unstraightening together with Example 2.23 implies that this pullback of ε straightens to the functor

$$\text{Hom}_{\text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I)}(- \times I, - \times I) : \text{Cocart}(\mathcal{O}^{\otimes}) \times \text{Cocart}(\mathcal{O}^{\otimes}) \rightarrow \text{An}.$$

Observe in addition that

$$\text{Hom}_{\text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes} \times I)}(- \times I, - \times I) \simeq \text{Hom}_{\text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes})}(- \times I, -).$$

It follows from Lemma 2.26 that Ψ_I identifies the straightening of $\text{Alg}_{\mathcal{O}}(\text{Ar}^{\text{opl}})^I_{\text{bicart}}$ with the full subfunctor of $\text{Hom}_{\text{Cocart}^{\text{lax}}(\mathcal{O}^{\otimes})}(- \times I, -)$ given by those functors $\mathcal{X}^{\otimes} \times I \rightarrow \mathcal{Y}^{\otimes}$ such that $\mathcal{X}^{\otimes} \times$

$\{i\} \rightarrow \mathcal{Y}^\otimes$ is an operad map for all $i \in I$. After currying, we obtain a natural equivalence

$$\text{St}((s_*, t_*)_{\text{bicart}}^I) \simeq \text{Hom}_{\text{Cat}}(I, \text{Alg}_{\mathcal{X}/\mathcal{O}}(\mathcal{Y})),$$

which is precisely what we needed to show. Theorem 2.7 is now proved.

3 | VARIATION: DAY CONVOLUTION IN SUBOPERADS OF Cat^\times

From the preceding results, one can deduce analogous assertions for certain symmetric monoidal categories which arise as suboperads of Cat^\times . Consider a subcategory \mathcal{U} of Cat which is closed under finite products. If U_1, U_2 and T are objects in \mathcal{U} , call a functor $F : U_1 \times U_2 \rightarrow T$ \mathcal{U} -biexact if both $F(u_1, -) : U_2 \rightarrow T$ and $F(-, u_2) : U_1 \rightarrow T$ are morphisms in \mathcal{U} for all $u_1 \in U_1$ and $u_2 \in U_2$. There is an evident notion of a \mathcal{U} -multiexact functor for functors in more than two variables.

Assume that

- (1) for each pair U_1 and U_2 of objects in \mathcal{U} , there exists an initial \mathcal{U} -biexact functor $U_1 \times U_2 \rightarrow U_1 \otimes U_2$;
- (2) there exists a category $U \in \mathcal{U}$ and an object $u \in U$ such that evaluation at u induces an equivalence $\text{Hom}_{\mathcal{U}}(U, T) \xrightarrow{\sim} \iota T$.

One example of a subcategory satisfying these conditions is the category Cat^{st} of stable categories and exact functors.

Under these assumptions, \mathcal{U} refines to a symmetric monoidal category by considering the suboperad \mathcal{U}^\otimes of Cat^\times determined by the following conditions:

- (1) the underlying category of \mathcal{U}^\otimes is \mathcal{U} ;
- (2) morphisms $U_1 \boxtimes \cdots \boxtimes U_n \rightarrow T$ over the active map $\langle n \rangle \rightarrow \langle 1 \rangle$ correspond to \mathcal{U} -multiexact functors $U_1 \times \cdots \times U_n \rightarrow T$.

Observe that \mathcal{O} -algebras in \mathcal{U}^\otimes correspond under unstraightening to cocartesian fibrations of operads over \mathcal{O}^\otimes whose fibers lie in \mathcal{U} and whose cocartesian transport functors are \mathcal{U} -multiexact.

Consider now the suboperad $(\text{Ar}_{\mathcal{U}}^{\text{opl}})^\otimes$ of $(\text{Ar}_{\mathcal{U}}^{\text{opl}})^\times$ determined by the following properties:

- (1) objects in the underlying category $\text{Ar}_{\mathcal{U}}^{\text{opl}}$ are given by cartesian fibrations $X \rightarrow [1]$ which straighten to functors $[1]^{\text{op}} \rightarrow \mathcal{U}$;
- (2) morphisms are precisely those morphisms in $(\text{Ar}_{\mathcal{U}}^{\text{opl}})^\times$ which map to the suboperad $\mathcal{U}^\otimes \times_{\text{Comm}^\otimes} \mathcal{U}^\otimes$ under (s, t) .

As before, given \mathcal{O} -algebras C and D in \mathcal{U} , we let $\mathcal{U}_{C//}^\otimes$ and $\mathcal{U}_{//D}^\otimes$ be given by the following pullbacks:

$$\begin{array}{ccc} \mathcal{U}_{C//}^\otimes & \longrightarrow & (\text{Ar}_{\mathcal{U}}^{\text{opl}})^\otimes \\ \downarrow & & \downarrow (s,t) \\ \mathcal{O}^\otimes \times_{\text{Comm}^\otimes} \mathcal{U}^\otimes & \xrightarrow{C \times \text{id}} & \mathcal{U}^\otimes \times_{\text{Comm}^\otimes} \mathcal{U}^\otimes \end{array} \quad \begin{array}{ccc} \mathcal{U}_{//D}^\otimes & \longrightarrow & (\text{Ar}_{\mathcal{U}}^{\text{opl}})^\otimes \\ \downarrow & & \downarrow (s,t) \\ \mathcal{U}^\otimes \times_{\text{Comm}^\otimes} \mathcal{O}^\otimes & \xrightarrow{\text{id} \times D} & \mathcal{U}^\otimes \times_{\text{Comm}^\otimes} \mathcal{U}^\otimes \end{array}$$

As a final piece of notation, denote by $\text{Alg}_{\mathcal{C}/\mathcal{O}}^{\mathcal{U}}(\mathcal{D})$ the full subcategory of $\text{Alg}_{\mathcal{C}/\mathcal{O}}(\mathcal{D})$ spanned by those operad maps $\mathcal{C}^{\otimes} \rightarrow \mathcal{D}^{\otimes}$ over \mathcal{O}^{\otimes} such that $\mathcal{C}_x^{\otimes} \rightarrow \mathcal{D}_x^{\otimes}$ is a morphism in \mathcal{U} for every $x \in \mathcal{O}^{\otimes}$.

Proposition 3.1. *Let $p: \mathcal{C}^{\otimes} \rightarrow \mathcal{O}^{\otimes}$ and $q: \mathcal{D}^{\otimes} \rightarrow \mathcal{O}^{\otimes}$ be cocartesian fibrations of operads corresponding to \mathcal{O} -algebras in \mathcal{U} .*

(1) *The functor*

$$(s_*, t_*): \text{Alg}_{\mathcal{O}}(\text{Ar}_{\mathcal{U}}^{\text{opl}}) \rightarrow \text{Alg}_{\mathcal{O}}(\mathcal{U}) \times \text{Alg}_{\mathcal{O}}(\mathcal{U})$$

is an orthofibration which straightens to the functor

$$(\mathcal{X}, \mathcal{Y}) \mapsto \text{Alg}_{\mathcal{X}/\mathcal{O}}^{\mathcal{U}}(\mathcal{Y}).$$

(2) *For every operad $\mathcal{A}^{\otimes} \rightarrow \mathcal{O}^{\otimes}$ over \mathcal{O}^{\otimes} , the functor*

$$t_{\mathcal{C}}: \text{Alg}_{\mathcal{A}/\mathcal{O}}(\mathcal{U}_{\mathcal{C}/\mathcal{A}}) \rightarrow \text{Alg}_{\mathcal{A}}(\mathcal{U})$$

is a cocartesian fibration which straightens to the functor

$$\mathcal{Y} \mapsto \text{Alg}_{\mathcal{A} \times_{\mathcal{O}} \mathcal{C}/\mathcal{A}}^{\mathcal{U}}(\mathcal{Y}).$$

(3) *For every operad $\mathcal{A}^{\otimes} \rightarrow \mathcal{O}^{\otimes}$ over \mathcal{O}^{\otimes} , the functor*

$$s_{\mathcal{D}}: \text{Alg}_{\mathcal{A}/\mathcal{O}}(\mathcal{U}_{/\mathcal{D}}) \rightarrow \text{Alg}_{\mathcal{A}}(\mathcal{U})$$

is a cartesian fibration which straightens to the functor

$$\mathcal{X} \mapsto \text{Alg}_{\mathcal{X}/\mathcal{O}}^{\mathcal{U}}(\mathcal{D}).$$

Proof. The operad $(\text{Ar}_{\mathcal{U}}^{\text{opl}})^{\otimes}$ can be constructed in two steps. Consider first the pullback

$$\begin{array}{ccc} \widetilde{(\text{Ar}_{\mathcal{U}}^{\text{opl}})^{\otimes}} & \longrightarrow & (\text{Ar}_{\mathcal{U}}^{\text{opl}})^{\times} \\ \downarrow & & \downarrow (s,t) \\ \mathcal{U}^{\otimes} \times_{\text{Comm}^{\otimes}} \mathcal{U}^{\otimes} & \longrightarrow & \text{Cat}^{\times} \times_{\text{Comm}^{\otimes}} \text{Cat}^{\times} \end{array}$$

Then, $(\text{Ar}_{\mathcal{U}}^{\text{opl}})^{\otimes}$ is the full subcategory of $\widetilde{(\text{Ar}_{\mathcal{U}}^{\text{opl}})^{\otimes}}$ spanned by objects corresponding to tuples of cartesian fibrations over $[1]$, each of which straightens to a functor $[1]^{\text{op}} \rightarrow \mathcal{U}$. Consequently, Theorem 2.7 implies that

$$(\tilde{s}_*, \tilde{t}_*): \text{Alg}_{\mathcal{O}}\left(\widetilde{\text{Ar}_{\mathcal{U}}^{\text{opl}}}\right) \rightarrow \text{Alg}_{\mathcal{O}}(\mathcal{U}) \times \text{Alg}_{\mathcal{O}}(\mathcal{U})$$

is an orthofibration which straightens to the functor

$$(\mathcal{X}, \mathcal{Y}) \mapsto \text{Alg}_{\mathcal{X}/\mathcal{O}}(\mathcal{D}).$$

By construction, the fiber of $(\text{Ar}_U^{\text{opl}})^\otimes$ over $(\mathcal{X}, \mathcal{Y})$ is precisely the full subcategory $\text{Alg}_{\mathcal{X}/\mathcal{A}}^U(\mathcal{Y})$, and both the \tilde{s}_* -cartesian and \tilde{t}_* -cocartesian transport functors along morphisms in $\text{Alg}_{\mathcal{O}}(U)$ preserve these full subcategories. This identifies $\text{St}(s_*, t_*)$ as the correct subfunctor.

Assertions (2) and (3) follow as before from (1). \square

4 | DAY CONVOLUTION AS AN \mathcal{O} -MONOIDAL CATEGORY

Fix a base operad \mathcal{O}^\otimes as well as \mathcal{O} -monoidal categories \mathcal{C} and \mathcal{D} . In this section, we reprove a well-known statement, see [8, Proposition 2.2.6.16], which is key for working with the Day convolution operad. We include a proof to demonstrate that $\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes$ is a feasible description of Day convolution.

For every operation $\varphi \in \text{Mul}_{\mathcal{O}}(\{x_i\}_i, y)$, denote the associated tensor functors by $\otimes_\varphi^{\mathcal{C}}: \prod_i \mathcal{C}(x_i) \rightarrow \mathcal{C}(y)$ and $\otimes_\varphi^{\mathcal{D}}: \prod_i \mathcal{D}(x_i) \rightarrow \mathcal{D}(y)$.

Proposition 4.1. *For each $y \in \mathcal{O}$, consider the following collection of slice categories:*

$$\mathcal{K}(y) := \left\{ \otimes_\psi^{\mathcal{C}}/c \mid \psi \in \text{Mul}_{\mathcal{O}}(\{x_i\}_i, y), c \in \mathcal{C}(y) \right\}$$

Assume the following is true:

- (1) for all $y \in \mathcal{O}$, the category $\mathcal{D}(y)$ admits all $\mathcal{K}(y)$ -shaped colimits;
- (2) for every operation $\varphi \in \text{Mul}_{\mathcal{O}}(\{x_i\}_i, y)$ and every j , the associated tensor functor $\otimes_\varphi^{\mathcal{D}}: \prod_i \mathcal{D}(x_i) \rightarrow \mathcal{D}(y)$ preserves all $\mathcal{K}(x_j)$ -shaped colimits in the j th component.

Then, $\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes \rightarrow \mathcal{O}^\otimes$ is a cocartesian fibration of operads.

Remark 4.2. The assumptions of Proposition 4.1 are for example satisfied if there exists some regular cardinal κ with the property that each $\mathcal{D}(y)$ is κ -cocomplete, every tensor functor of \mathcal{D} preserves κ -small colimits in each variable, and each $\mathcal{C}(y)$ is κ -small, reproducing [8, Proposition 2.2.6.16].

Proof of Proposition 4.1. By construction, $\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes$ is an operad, so [8, Proposition 2.1.2.12] shows that we only have to check that $\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes \rightarrow \mathcal{O}^\otimes$ is a cocartesian fibration. As in [8, Section 2.2.6], the crucial part of the argument lies in identifying mapping anima in $\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes$.

We require some notation. Let $\pi: \text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes \rightarrow \mathcal{O}^\otimes$ and $u: \text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes \rightarrow (\text{Ar}^{\text{opl}})^\otimes$ denote the projection functors, and abbreviate $\mathcal{X}^\times := \text{Cat}^\times \times_{\text{Comm}^\otimes} \text{Cat}^\times$. Note that then $\mathcal{X} = \text{Cat} \times \text{Cat}$. Let $\varphi: x \rightarrow y$ be a morphism in \mathcal{O}^\otimes , let $F \in \pi^{-1}(x)$ and $G \in \pi^{-1}(y)$, and denote by $\text{Hom}_{\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes}^\varphi(F, G)$ the anima of morphisms lying over φ . Since $\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes$ is defined as a pullback, we have a natural pullback square

$$\begin{array}{ccc} \text{Hom}_{\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes}^\varphi(F, G) & \longrightarrow & \text{Hom}_{(\text{Ar}^{\text{opl}})^\otimes}(uF, uG) \\ \downarrow & & \downarrow \\ * & \xrightarrow{(C,D) \circ \varphi} & \text{Hom}_{\mathcal{X}^\times}((s, t)F, (s, t)G) \end{array}$$

In particular, the objects sF , tF , sG , and tG are identified with $\mathcal{C}(x)$, $\mathcal{D}(x)$, $\mathcal{C}(y)$, and $\mathcal{D}(y)$, respectively. Denoting by $\alpha : \langle k \rangle \rightarrow \langle l \rangle$ the image of φ in Comm^\otimes , the anima $\text{Hom}_{\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes}^\varphi(F, G)$ sits in a natural fiber square

$$\begin{array}{ccc} \text{Hom}_{\text{Day}_{\mathcal{C}, \mathcal{D}}^\otimes}^\varphi(F, G) & \longrightarrow & \text{Hom}_{(\text{Ar}^{\text{opl}})^\times}^\alpha(uF, uG) \\ \downarrow & & \downarrow \\ * & \xrightarrow{(C, D) \circ \phi} & \text{Hom}_{\mathcal{X}^\times}^\alpha((s, t)F, (s, t)G) \end{array}$$

Since both $(s, t) : (\text{Ar}^{\text{opl}})^\times \rightarrow \mathcal{X}^\times$ and $\mathcal{X}^\times \rightarrow \text{Comm}^\otimes$ are cocartesian fibrations, the right vertical map is identified with the map

$$\text{Hom}_{(\text{Ar}^{\text{opl}})_{\langle l \rangle}^\times}^{\text{id}_{\langle l \rangle}}(\alpha_!(uF), uG) \rightarrow \text{Hom}_{\mathcal{X}_{\langle l \rangle}^\times}^{\text{id}_{\langle l \rangle}}(\alpha_!((s, t)F), (s, t)G)$$

induced by (s, t) . Write $F = F_1 \boxtimes \dots \boxtimes F_k$ and $G = G_1 \boxtimes \dots \boxtimes G_l$. As both Ar^{opl} and \mathcal{X} carry the cartesian symmetric monoidal structure, this map is in turn identified with the map

$$\prod_{j=1}^l \text{Hom}_{\text{Ar}^{\text{opl}}} \left(\prod_{i \in \alpha^{-1}(j)} F_i, G_j \right) \rightarrow \prod_{j=1}^l \text{Hom}_{\mathcal{X}} \left(\prod_{i \in \alpha^{-1}(j)} (s, t)F_i, (s, t)G_j \right) \quad (4.3)$$

induced by (s, t) . Consequently, it suffices to consider the case that $\alpha : \langle k \rangle \rightarrow \langle l \rangle$ is an active morphism so that $\varphi \in \text{Mul}_{\mathcal{O}}(\{x_i\}_i, y)$.

With respect to the given identifications, the base point $(\mathcal{C}, \mathcal{D}) \circ \varphi$ now becomes the point in

$$\begin{aligned} & \text{Hom}_{\mathcal{X}} \left(\prod_{i=1}^k (\mathcal{C}(x_i), \mathcal{D}(x_i)), (\mathcal{C}(y), \mathcal{D}(y)) \right) \\ & \simeq \text{Hom}_{\text{Cat}} \left(\prod_{i=1}^k \mathcal{C}(x_i), \mathcal{C}(y) \right) \times \text{Hom}_{\text{Cat}} \left(\prod_{i=1}^k \mathcal{D}(x_i), \mathcal{D}(y) \right) \end{aligned}$$

corresponding to the pair of multiplication functors $(\otimes_\varphi^{\mathcal{C}}, \otimes_\varphi^{\mathcal{D}})$ of \mathcal{C} and \mathcal{D} .

By Theorem 2.7 and Remark 2.8, the fiber of (4.3) is identified with the anima of natural transformations

$$\text{Nat} \left(\otimes_\varphi^{\mathcal{D}} \circ \prod_{i=1}^k \text{St}(F_i), \text{St}(G) \circ \otimes_\varphi^{\mathcal{C}} \right).$$

Fix now $\varphi : x \rightarrow y$ and $F \in \pi^{-1}(x)$. As before, let $\alpha : \langle k \rangle \rightarrow \langle l \rangle$ be the image of φ in Comm^\otimes and let $F = F_1 \boxtimes \dots \boxtimes F_k$ be the canonical decomposition of F with $F_i \in \text{Ar}^{\text{opl}}$. Denote by $\varphi_j \in \text{Mul}_{\mathcal{O}}(\{x_i\}_{i \in \alpha^{-1}(j)}, y_j)$ the active morphisms determined by φ and α . Using assumption (1) and the

pointwise formula for left Kan extensions, the composite

$$\prod_{i \in \alpha^{-1}(j)} C(x_i) \xrightarrow{\prod_i \text{St}(F_i)} \prod_{i \in \alpha^{-1}(j)} D(x_i) \xrightarrow{\otimes_{\varphi_j}^D} D(y_j)$$

admits a left Kan extension G_j along $\otimes_{\varphi_j}^C : \prod_{i \in \alpha^{-1}(j)} C(x_i) \rightarrow C(y_j)$ for each $j \in \langle l \rangle$. As we have seen, the unit transformations

$$\eta_j : \otimes_{\varphi_j}^D \circ \prod_{i \in \alpha^{-1}(j)} \text{St}(F_i) \Rightarrow \text{St}(G_j) \circ \otimes_{\varphi_j}^C$$

determine a point $\eta \in \text{Hom}_{\text{Day}_{C,D}^{\otimes}}^{\varphi}(F, G)$, where $G := G_1 \boxtimes \dots \boxtimes G_l$. We claim that η is a cocartesian lift of φ .

This amounts to checking that for each $H \in \text{Day}_{C,D}^{\otimes}$, the induced commutative square

$$\begin{array}{ccc} \text{Hom}_{\text{Day}_{C,D}^{\otimes}}(G, H) & \xrightarrow{- \circ \eta} & \text{Hom}_{\text{Day}_{C,D}^{\otimes}}(F, H) \\ \downarrow & & \downarrow \\ \text{Hom}_{\mathcal{O}^{\otimes}}(y, z) & \xrightarrow{- \circ \phi} & \text{Hom}_{\mathcal{O}^{\otimes}}(x, z) \end{array}$$

is a pullback, where we set $z := \pi(H)$. This is equivalent to the assertion that for each $\psi \in \text{Hom}_{\mathcal{O}^{\otimes}}(y, z)$, the induced map on vertical fibers

$$- \circ \eta : \text{Hom}_{\text{Day}_{C,D}^{\otimes}}^{\psi}(G, H) \rightarrow \text{Hom}_{\text{Day}_{C,D}^{\otimes}}^{\psi\varphi}(F, H) \quad (4.4)$$

is an equivalence. Letting $\beta : \langle l \rangle \rightarrow \langle n \rangle$ denote the image of ψ in Comm^{\otimes} , the preliminary discussion and Theorem 2.7 identify this map with the product of the maps

$$\begin{aligned} & \text{Nat} \left(\otimes_{\psi_m}^D \circ \prod_{j \in \beta^{-1}(m)} \left(\text{St}(G_j) \circ \otimes_{\varphi_j}^C \right), \text{St}(H_m) \circ \otimes_{\psi_m}^C \circ \prod_{j \in \beta^{-1}(m)} \otimes_{\varphi_j}^C \right) \\ & \xrightarrow{\eta_j^*} \text{Nat} \left(\otimes_{\psi_m}^D \circ \prod_{j \in \beta^{-1}(m)} \left(\otimes_{\varphi_j}^D \circ \prod_{i \in \alpha^{-1}(j)} \text{St}(F_i) \right), \text{St}(H_m) \circ \otimes_{(\psi\varphi)_m}^C \right) \\ & \simeq \text{Nat} \left(\otimes_{(\varphi\psi)_m}^D \circ \prod_{i \in (\beta\alpha)^{-1}(m)} \text{St}(F_i), \text{St}(H_m) \circ \otimes_{(\psi\varphi)_m}^C \right). \end{aligned}$$

Using assumption (2), the pointwise formula for left Kan extensions implies that the transformation

$$\otimes_{\psi_m}^D \circ \prod_{j \in \beta^{-1}(m)} \left(\otimes_{\varphi_j}^D \circ \prod_{i \in \alpha^{-1}(j)} \text{St}(F_i) \right) \Rightarrow \otimes_{\psi_m}^D \circ \prod_{j \in \beta^{-1}(m)} \left(\text{St}(G_j) \circ \otimes_{\varphi_j}^C \right)$$

induced by η_j also exhibits $\otimes_{\psi_m}^D \circ \prod_{j \in \beta^{-1}(m)} \text{St}(G_j)$ as a left Kan extension, so (4.4) is an equivalence. \square

Remark 4.5. In the situation of Proposition 4.1, assume that \mathcal{O} is a symmetric monoidal category, so that \mathcal{C} and \mathcal{D} correspond to lax symmetric monoidal functors $\mathcal{O} \rightarrow \text{Cat}$. Unwinding the proof of Proposition 4.1, one obtains the following description of the lax symmetric monoidal functor $\mathcal{O} \rightarrow \text{Cat}$ given by the straightening of $\text{Day}_{\mathcal{C}, \mathcal{D}}^{\otimes} \rightarrow \mathcal{O}^{\otimes}$:

- (1) The underlying functor $\mathcal{O} \rightarrow \text{Cat}$ sends $x \in \mathcal{O}$ to $\text{Fun}(\mathcal{C}(x), \mathcal{D}(x))$ and a morphism $f : x \rightarrow x'$ to the composite

$$\text{Fun}(\mathcal{C}(x), \mathcal{D}(x)) \xrightarrow{f \circ -} \text{Fun}(\mathcal{C}(x), \mathcal{D}(x')) \xrightarrow{f_!} \text{Fun}(\mathcal{C}(x'), \mathcal{D}(x')),$$

where $f_!$ denotes the left Kan extension functor.

- (2) For $x, x' \in \mathcal{O}$, the lax monoidal structure map is given by the composite

$$\begin{aligned} \text{Fun}(\mathcal{C}(x), \mathcal{D}(x)) \times \text{Fun}(\mathcal{C}(x'), \mathcal{D}(x')) &\rightarrow \text{Fun}(\mathcal{C}(x) \times \mathcal{C}(x'), \mathcal{D}(x) \times \mathcal{D}(x')) \\ &\xrightarrow{\otimes_{\mathcal{D}} \circ -} \text{Fun}(\mathcal{C}(x) \times \mathcal{C}(x'), \mathcal{D}(x \otimes x')) \\ &\xrightarrow{(\otimes_{\mathcal{C}})_!} \text{Fun}(\mathcal{C}(x \otimes x'), \mathcal{D}(x \otimes x')), \end{aligned}$$

where the first arrow arises from the lax symmetric monoidal structure on $\text{Fun} : \text{Cat}^{\text{op}} \times \text{Cat} \rightarrow \text{Cat}$, and $\otimes_{\mathcal{C}}$ and $\otimes_{\mathcal{D}}$ denote the tensor operations in \mathcal{C} and \mathcal{D} , respectively.

- (3) The structure map associated with the monoidal unit is given by the object in $\text{Fun}(\mathcal{C}(\mathbf{1}_{\mathcal{O}}), \mathcal{D}(\mathbf{1}_{\mathcal{O}}))$ which arises as the left Kan extension of $* \xrightarrow{1_{\mathcal{D}}} \mathcal{D}(\mathbf{1}_{\mathcal{O}})$ along $* \xrightarrow{1_{\mathcal{C}}} \mathcal{C}(\mathbf{1}_{\mathcal{O}})$.

ACKNOWLEDGMENTS

I am grateful to Bastiaan Cnossen, Fabian Hebestreit, and Sil Linskens for discussions and comments on earlier versions of this document.

The author was supported by CRC 1085 “Higher Invariants” funded by the Deutsche Forschungsgemeinschaft (DFG).

Open access funding enabled and organized by Projekt DEAL.

DATA AVAILABILITY STATEMENT

No new data has been generated in this work.

JOURNAL INFORMATION

The *Bulletin of the London Mathematical Society* is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

ORCID

Christoph Winges <https://orcid.org/0000-0002-4465-9873>

REFERENCES

1. B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, M. Land, K. Moi, D. Nardin, T. Nikolaus, and W. Steimle, *Hermitian K-theory for stable ∞ -categories. I: Foundations*, Sel. Math. New Ser. **29** (2023), no. 1, 269.
2. D. Gepner, R. Haugseng, and T. Nikolaus, *Lax colimits and free fibrations in ∞ -categories*, Doc. Math. **22** (2017), 1225–1266.
3. R. Haugseng, F. Hebestreit, S. Linskens, and J. Nuiten, *Lax monoidal adjunctions, two-variable fibrations and the calculus of mates*, Proc. Lond. Math. Soc. (3) **127** (2023), no. 4, 889–957.
4. R. Haugseng, F. Hebestreit, S. Linskens, and J. Nuiten, *Two-variable fibrations, factorisation systems and ∞ -categories of spans*, Forum Math. Sigma. **11** (2023), 70.
5. R. Haugseng, V. Melani, and P. Safronov, *Shifted coisotropic correspondences*, J. Inst. Math. Jussieu. **21** (2022), no. 3, 785–849.
6. V. Hinich, *Rectification of algebras and modules*, Doc. Math. **20** (2015), 879–926.
7. V. Hinich, *Yoneda lemma for enriched ∞ -categories*, Adv. Math. **367** (2020), 119.
8. J. Lurie, *Higher algebra*, <https://www.math.ias.edu/~lurie/papers/HA.pdf>.
9. J. Lurie, *Higher topos theory*, vol. 170, Princeton University Press, Princeton, NJ, 2009.