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1 | INTRODUCTION

Let O® be an oo-operad and consider operad maps p: C® — O® and q: D® — O®. If it exists,
the Day convolution of p and q is an exponential of g by p in the co-category of co-operads over
O%, ie a right adjoint object to g with respect to the product functor — Xpe C® : (Op,,) Jo® =
(Opg)/e@- Using the combinatorial machinery of quasicategories, Lurie gives a very general
construction of Day convolution operads in [8, Section 2.2.6]; see also [7, Section 2.8].

For practical purposes, it is often sufficient to know that the Day convolution operad exists in the
case that C® and D® are ©@-monoidal categories. Hinich provided in [7] a rather straightforward
description of the Day convolution operad for arbitrary ©-monoidal co-categories, and it is this
model we will focus on in the following.

To facilitate Hinich’s description, recall that there are equivalences of co-categories

Algy(Caty,) 5 Mon(Cat,,) ~ Cocartg(O).

Here, Cocartg(O) denotes the co-category of cocartesian fibrations of co-operads over ©%®. The
first equivalence is given by composition with the cartesian structure Cat — Cat, [8, Propo-
sition 2.4.2.5] and the second equivalence is induced by (un)straightening; this is implicit in [8]
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and explicitly spelled out in [6, Proposition A.2.1]. In the following, we will freely switch between
these descriptions of @-monoidal co-categories as necessary.

Denote by Ar°P! the full subcategory of (Cat_,) /(1] Spanned by the cartesian fibrations and equip
it with the cartesian symmetric monoidal structure. Restriction to {0} and {1} defines symmetric
monoidal functors ¢ : Ar°"! — Cat_ and s: Ar°®' — Cat_, where we also equip Cat, with the
cartesian symmetric monoidal structure.

Theorem 1.1 [7, Section 2.8.9]. Let C and D be O-monoidal co-categories and denote by Day?D the
pullback

Day®, —— (A"

\L(s,t)
(€,D)

O® ——3 Catl, Xcomm® Cath
Then, Day?D — 0% is the Day convolution of C® and D®.

The goal of this note is to give an alternative proof of this theorem. Instead of identifying Day‘?D
with another model for the Day convolution operad as in [7, Section 6.3.9], we verify directly that
Day?D possesses the correct universal property, also on the level of categories of algebras. In fact,

we show first that the construction of Day?D promotes the assignment (C, D) — Alg /O(DayC,D)
to a bivariant functor and exhibit a natural equivalence

Alg/O(DayC’D) ~ Algc/O(D),

where the functoriality of the right-hand side is given by pre- and postcomposition with operad
maps. The universal property of Day?D follows easily from this. This is done in Section 2.

Section 3 comments on some variations of these statements for 9-monoidal co-categories living
in certain suboperads of the cartesian symmetric monoidal structure on Cat_,. Section 4 reproves
the well-known statement that Day?D — O® defines an @-monoidal co-category under suitable
cocompleteness assumptions on D.

Conventions

(1) Inthe remainder of this note, the word “category” means “co-category”. We write Cat for the
category of small categories.

(2) The category of anima/spaces/oco-groupoids is denoted by An. The groupoid core ¢: Cat —
An is the right adjoint to the inclusion of An into Cat.

(3) Given a category X, we denote by Cocart(X) the subcategory of Cat /y given by the cocartesian
fibrations over X and those functors over X which preserve cocartesian morphisms.

(4) We also drop the prefix “co-” from related concepts. For example, “operad” means “oo-operad”
from now on, and we denote the category of operads by Op.

(5) The notation concerning operads and categories of algebras follows the conventions of [8].
In particular, C® will denote an operad with underlying category C, but the category of
O@-algebras in an operad C® will be denoted by Alg,(C), even though it depends on the
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED | 3 0f22

operads O® and C®, not only their underlying categories. The symbol Comm® denotes the
commutative operad (i.e., the category of pointed finite sets).

(6) Given an operad A®, we denote by Cocartg(A) the subcategory of Op /4 given by the
cocartesian fibrations of operads over .A®, that is, .A-monoidal categories, and those functors
over A® which preserve cocartesian morphisms (corresponding to .4-monoidal functors).

2 | ALGEBRAS IN THE DAY CONVOLUTION OPERAD

Throughout this section, fix a base operad O® as well as @-monoidal categories C and D. Our goal
is to prove the following strengthening of Theorem 1.1.

Theorem 2.1. Leta: A® — O be an operad over O®. Then, there exists a natural equivalence

Alg 4y c/0(D) = Alg 4 jo(Day ¢ p).

Note that Theorem 1.1 follows from this by passing to groupoid cores. The proof of this theorem
is already implicit in [1, Remark 5.2.5], but it will be convenient to formulate the argument in
terms of some concepts introduced in [3].

Definition 2.2 [3, Observation 2.3.2]. A functor (p;, p,): X — Y X Z is a curved orthofibration
if

(1) p;: X — Y isacartesian fibration;

(2) p,: X — Zisacocartesian fibration;

(3) p;-cartesian lifts of morphisms project to equivalences under p,;
(4) p,-cocartesian lifts of morphisms project to equivalences under p;.

Denote by Cocart®(Y) the full subcategory of Cat /v spanned by the cocartesian fibrations,
and by Cart?'(Z) the full subcategory of Cat /7 spanned by the cartesian fibrations. In addition,
CurvOrtho(Y, Z) denotes the subcategory of Cat,y,, whose objects are curved orthofibrations
and whose morphisms are functors over Y X Z preserving both p,-cartesian and p,-cocartesian
morphisms. We will make use of the following description of CurvOrtho(Y, Z).

Proposition 2.3 [3, Corollary 2.3.4]. Unstraightening over Y and Z induces equivalences
Fun(Y°P, Cocart®(Z2))" ~ CurvOrtho(Y, Z) ~ Fun(Z, Cart°P(Y))®c

which are naturalin'Y and Z; the superscripts cocart and cart denote the wide subcategories on those
natural transformations whose components all preserve (co)cartesian morphisms.

We will also require the following statement about the interaction of cartesian and cocartesian
morphisms in curved orthofibrations.

Lemma 2.4. Let (py,p,): X — Y X Z be a curved orthofibration, andletg: y - y' and h: z -
z' be morphisms in'Y and Z, respectively. Then, the following are equivalent:
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40f22 | WINGES

(1) The cartesian transport g* : py a) - pl_l(a) along g preserves p,-cocartesian lifts of h.
(2) The cocartesian transport h, : p; (b)) - o L(b") along h preserves p,-cartesian lifts of g.

Proof. This follows by inspection of the proof of [3, Proposition 2.3.11]. O
Given Lemma 2.4, we can make the following definition, see [3, Definition 2.3.10].
Definition 2.5. A curved orthofibration
p=((PLp): X—>YXZ

is an orthofibration if it satisfies the following equivalent conditions:
(1) the cartesian transport functor ¢g* : pl_l(y’ ) — pl_l(y) preserves p,-cocartesian morphisms
for every morphism g: y -y’ inY;
(2) thecocartesian transport functor h, : p3 I(z) = p; 1(x’) preserves p,-cartesian morphisms for
every morphism h: z — z’' in Z.
By [3, Corollary 2.5.6], the equivalences of Proposition 2.3 restrict to equivalences
Fun(Y°P, Cocart(Z)) ~ Ortho(Y, Z) ~ Fun(Z, Cart(Y)), (2.6)
where Ortho(Y,Z) C CurvOrtho(Y, Z) denotes the full subcategory of orthofibrations. Con-
sequently, every orthofibration straightens to a functor Y°P X Z — Cat, either by cocartesian
straightening over Z or by cartesian straightening over Y. The resulting straightening functors
Ortho(Y,Z) — Fun(Y°P x Z, Cat) are equivalent, see [3, Remark 2.5.7].
Since (s,t): Ar°! — Catx Cat is an orthofibration by [4, Proposition 7.9], combining [3,
Theorem E] and [4, Theorem 7.21] shows that (s, t) straightens to the functor
Fun : Cat’® x Cat — Cat.
In fact, we will reprove this statement without recourse to the 2-categorical machinery of [4].
Theorem 2.7. The functor
(S.rt,) 1 Algo(Ar®) - Alg,(Cat) x Alg,(Cat)

is an orthofibration which straightens to the obvious functor

(X, ) = Algy /o(Y).
Remark 2.8. By specializing Theorem 2.7 to the case that O® is the trivial operad, we recover the
claim that the orthofibration (s,t): Ar°"' — Cat x Cat straightens to the functor Fun: Cat’P x

Cat — Cat.

Assuming this statement, we can prove Theorem 2.1.
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED | 50f22

Proof of Theorem 2.1. Let A® be an operad and let X and Y be A-monoidal categories. Writ-

id X Vs
ing (X, ) € Alg 4(Cat) x Alg ,(Cat) as the composite functor s Alg 4(A) ; Alg 4(Cat) x

Alg 4(Cat) and using that Alg ,(—) preserves limits, we obtain the pullback square

Alg/A(DayX,y) 4) AlgA(Aropl)

\L \l/(s*,t*)

(X.7)

* —————— Alg ,(Cat) x Alg ,(Cat)

exhibiting Alg / 4(Day X,)?) as the fiber of (s,,t,) over (X,Y). Then, Theorem 2.7 yields an
equivalence

Alg, ,(Dayy y) = Algy, 4(I).
Therefore, we obtain equivalences
Alg 4 o(Dayc p) ~ Alg, (A Xo Day¢ p)
=~ Alg) 4(Day 4y, ¢, Ax,D)
~ Alg 4y ,c/4(A Xo D)
~ AlgAXOC/O(D).
Specializing to the case A® = Day?D, this provides an evaluation map

Day?D Xeo C® — D®

over O® which induces the above equivalence, making it clear that this identification is
natural. O

Before embarking on the proof of Theorem 2.7, let us record another easy consequence. We
require some additional notation.

. . Cat® Cat®
Definition 2.9. Define the operads ~ ¢/ and ~ /P by the pullbacks

Cat®, — 5 (ArP)*

| Jo

O Xeomme Cat* 25 Cat® xqme Cat*

and

Catf, ——————> (AP

| Jo

Cat™ Xgypme O 2B Cat® Xy e Cat”
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6 0f 22 | WINGES

Corollary 2.10. Leta : A® — O be an operad over O3,

(1) The functor

te: AlgA/O(CatC//) - AlgA/O(O x Cat) ~ Alg ,(Cat)
is a cocartesian fibration which straightens to the functor

Alg (Cat) —» Cat, Y+ AlgAxoc/A(y )

whose functoriality is given by postcomposition with A-monoidal functors.
(2) The functor

Sp: AlgA/O(Cat//D) - AlgA/O(Cat x 0) ~ Alg ,(Cat)
is a cartesian fibration which straightens to the functor
Alg ,(Cat)®? — Cat, X — Algy 10(D)
whose functoriality is given by precomposition with A-monoidal functors.

Proof. This follows immediately from Theorem 2.7 applied to the base operad A® together with
the naturality of unstraightening. O

The remainder of this section is concerned with the proof of Theorem 2.7. The key input for
our argument is the existence of free cartesian fibrations.

Construction 2.11. Let I be a small category and let f : X — I be a functor. Define the free
cartesian fibration Fr(f) on f as the pullback

Freg(f) — Fun([1],1)

T

X ;) I
together with the evaluation map
evy
Frcart(f) - Fun([l], I) — 1.

Proposition 2.12 [2, Theorem 4.5]. Let I be a category. The functor Cart(I) — Cat/; admits a left
adjoint

Fre,, @ Cat); — Cart(I)

which sends f : X — I to Fr ().
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 7 of 22

Remark 2.13. Dualizing Proposition 2.12 shows that the pullback

Frcocart(f) H Fun([lL I)

T

x— 1
together with the evaluation map

Frcocart(f) - Fun([l],I) i 1

is the free cocartesian fibration on f.

Proposition 2.14.

(1) The functor
(s,t): Cart([1]) — Cat x Cat

is an orthofibration. A morphism f . p — q in Cart([1]) is s-cartesian if and only if t(f) is an
equivalence, and f is t-cocartesian if and only if s(f) is an equivalence.
(2) The functor

(s,t): Ar® - Cat x Cat

is an orthofibration. Moreover, the functor Cart([1]) — Ar°! preserves both s-cartesian and t-
cocartesian morphisms.

Proof. By unstraightening, Cart([1]) ~ Fun([1]°P, Cat), with s and ¢ corresponding to evalua-
tion at 1 and 0, respectively. By [9, Corollary 2.4.7.11], the evaluation functor at O is a cartesian
fibration and the evaluation functor at 1 is a cocartesian fibration, and the characterisation of s-
cartesian and t-cocartesian morphisms follows from [9, Lemma 2.4.7.5]. The explicit description
of s-cartesian and ¢-cocartesian morphisms also implies that (s, t) is an orthofibration.

For assertion (2), it suffices to show that s-cartesian morphisms in Cart([1]) are also s-cartesian
in Ar°!, and that the same holds true for t-cocartesian morphisms.

So, let f: p — g be an s-cartesian morphism in Cart([1]), where p: X - [1]and q: Y —
[1] are cartesian fibrations. For every cartesian fibration  : Z — [1], we have to show that the
commutative square

fo—
Homey,, (. p) ———% Homg,y,, (r.q)

1 1

Hom ey (s(r), (p)) “L25 Hom ey (s(r). 5(q))

is a pullback. Observing that s(Fr.,.(r)) =~ [1]; / X s(r) ~ s(r), this square is identified via
Proposition 2.12 with the commutative square

HomCart([l])(Frcart(r)’ P) H HomCart([l])(Frcart(r)’ ‘J)

! !

Homca (1), S(p)) —" % Homia(s(r). s(q))
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8 of 22 | WINGES

which is a pullback by assumption.

Let now f: p — g be a t-cocartesian morphism in Cart([1]). Let r : Z — [1] be an arbitrary
cartesian fibration. Note that ¢(Fr.,(p)) ~ X and ¢(Fr.,(q)) ~ Y. Using Proposition 2.12 once
more, it suffices to show that the outer square in the commutative diagram

—o Fr(f,
HomCart([l])(Frcart(q)’r) —g HomCart([l])(Frcart(p): }’)

| L

Homey (Y, ((r)) ———2——% Homey(X, £(r)) (2.15)

! i

Hom e (£(q). t(r)) — 223 Homey (t(p). t(r))

is a pullback. Since s(Fr.,(f)) =~ s(f) is an equivalence, the morphism Fr_,(f) is t-cocartesian,
which means that the top square is a pullback. For the lower square, we use the explicit formula
for cartesian unstraightening over [1]°P from [2, Proposition 3.1]: since the left square and outer
square in the commutative diagram

St(p) t(f)

s(p) > t(p) > 1(q)
beia| Il
(11" x s(p) > X > Y

are pushouts, so is the right square. This implies that the bottom square in (2.15) is a pullback.
Consequently, the outer square in (2.15) is a pullback as required. O

Since we are considering the cartesian symmetric monoidal structures on Ar°?! and Cat, we
can bootstrap the analogous statements for categories of (-algebras from this.

Lemma 2.16. Let p = (p;, p,) : X = Y X Z be a curved orthofibration/an orthofibration and let
be a small category. Then

P, = (P (P3).) 1 Fun(I,X) —» Fun(l,Y) X Fun(l, Z)

is also a curved orthofibration/an orthofibration. The relevant cartesian and cocartesian mor-
phisms are given by those natural transformations, whose components are all cartesian or
cocartesian, respectively.

Proof. This is immediate from [9, Corollary 3.2.2.12]. O

Lemma 2.17. Let X, Y, and Z be categories with finite products. Suppose that p = (p;,p,): X —
Y X Z is a functor such that

(1) pisa curved orthofibration;

(2) p preserves finite products;

(3) finite products of p,-cartesian morphisms are p,-cartesian;

(4) finite products of p,-cocartesian morphisms are p,-cocartesian.
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED | 9 of 22

Then, the induced functor p, : Mony(X) - Mon(Y) X Mony(Z) is a curved orthofibration. A
morphism in Mon(X) is (p; ).-cartesian or (p,)..-cocartesian if and only if it is (p,),.-cartesian or
(p,).-cocartesian in Fun(©®, X).

In particular, if p is an orthofibration satisfying conditions (1)-(4), then p,, is an orthofibration.

Proof. By Lemma 2.16, the induced functor
b, = ((pl)*’ (pZ)x) . Fun((9®’X) d Fun((9®’ Y) X Fun(0®’ Z)

also satisfies properties (1)-(4).

Let g : N — N’ be a morphism in Mon(Y) and let M’ be an ©-monoid in X lifting N’. Con-
sidering g as a morphism in Fun(©®, Y), there exists a cartesian lift f : M — M’ in Fun(0®, X).
We claim that M is also an ©@-monoid in X. For x = x; X -+ X x,, in (9?%, the Segal maps of M
and M’ fit into a commutative square

M(x) — [, M(x)

| !

M'(x) — I, M'(x)

Since products of cartesian morphisms in X are cartesian, both vertical arrows are carte-
sian morphisms. By [9, Lemma 2.4.2.7], it follows that the top horizontal morphism is also
cartesian. Since N is an O-monoid, this morphism is a cartesian lift of an equivalence, and
therefore itself an equivalence. It follows that (p;),: Mongy(X) - Mony(Y) is a cartesian
fibration.

Since (p,),-cartesian lifts in Fun(©®, X) are characterized by being pointwise p,-cartesian, it
also follows that (p, ), -cartesian morphisms project to equivalences under (p,),.

The argument for (p,),. is completely analogous.

Since (p,),-cartesian and (p,),-cocartesian morphisms are detected in Fun(©®,X), it fol-
lows from Lemma 2.16 that p, is an orthofibration if p is additionally assumed to be an
orthofibration. O

In particular, we obtain the following.
Proposition 2.18. The functor
(5,0 t,): Algo(Ar°P) — Alg,(Cat) x Alg,(Cat)
is an orthofibration. Both s,-cartesian and t-cocartesian morphisms are detected by the functor
Algo(Ar°P) 5 Mony(Ar®?) — Fun(©®, ArP).

Proof. Due to Proposition 2.14, the functor (s, t) : Ar°?' — Cat x Catis an orthofibration satisfying
the assumptions of Lemma 2.17. The proposition follows. O
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10 of 22 | WINGES

To determine the straightening of (s,,t,), we require some additional preparation. First,
we observe that the existence of free (co)cartesian fibrations implies the existence of free
orthofibrations.

Corollary 2.19. The inclusion functor Ortho(Y, Z) — Cat,y,, admits a left adjoint

Fr: Cat/y,, — Ortho(Y,Z).

Proof. We write p, : Y X Z — Z for the projection functor. Since p is a cartesian fibration, the
equivalence Cat v, =~ (Cat,y)/p, and Proposition 2.12 induce an adjunction

Cat )y, 2 Cart(Y)/py.
After identifying
Cart(Y)/p; =~ Fun(Y*?, Cat) ) cons, = Fun(Y?, Cat ),
the existence of free cocartesian fibrations induces an adjunction
Cart(Y)/p, 2 Fun(Y°P, Cocart(Z)) ~ Ortho(Y, Z).
]

Remark 2.20. Unwinding the proof of Corollary 2.19, one finds that the free orthofibration on a
functor f : X — Y X Z is given by the pullback

Fr(f) —— Fun([1],Y) x Fun([1], Z)

\L l/ev1 Xev,

X S YXZ

together with the evaluation map

Vo X evy

Fr(f) — Fun([1],Y) x Fun([1], Z) —2"% ¥ x Z.

One can adapt the proof of [2, Theorem 4.5] to show directly that this yields a left adjoint to the
functor Ortho(Y, Z) — Caty .

We can apply this statement to identify the straightenings of cotensors of orthofibrations.
Lemma 2.21. Let p: X — Y X Z be an orthofibration. Consider the pullback

X' ——% Fun(I,X)

v] 1»

Y xZ =% Fun(l,Y X Z)
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 11 of 22

Then, p' = (p!, pl) is an orthofibration such that both p!-cartesian and p!-cocartesian mor-
phisms are detected componentwise in Fun(I, X). Moreover, p! straightens to the functor

Fun(I, St(p)) : Y°P x Z — Cat.

Proof. The first part of the lemma is precisely Lemma 2.16, so we only have to prove the asser-
tion about the straightening of p’. For every functor f : T — Y x Z, there exist by Corollary 2.19
natural equivalences

Homy, 7 (T, X") = Homy, z(T X I,X)
~ Homg, oy 2 Fr(T X I = Y X Z),X)
=~ Homo, (v z)(Fr(f) X ,X)
=~ Nat(St(Fr(f)) x I, St(p))
~ Nat(St(Fr(f)), Fun(Z, St(p)))
=~ Homo,po(y z)(Fr(f), Un(Fun(Z, St(p))))

~ Homy, (T, Un(Fun(Z, St(p)))),
which implies the lemma. [l
Recall the following definition from [3, Proposition 2.3.13].

Definition 2.22. A functor p = (p;, p,): X — Y X Z is a bifibration if the following conditions
are satisfied:

(1) p, is a cartesian fibration such that a morphism in X is p;-cartesian if and only if it projects
to an equivalence under p,;

(2) p, is a cocartesian fibration such that a morphism in X is p,-cocartesian if and only if it
projects to an equivalence under p;.

By [3, Corollary 2.3.15], the equivalences from (2.6) restrict to equivalences
Fun(Y°P, LFib(Z)) ~ Bifib(Y, Z) ~ Fun(Z, RFib(Y)),
where Bifib(Y,Z) C Ortho(Y,Z) denotes the full subcategory of bifibrations, and LFib(Z)
and RFib(Y) denote the categories of left fibrations over Z and right fibrations over Y,
respectively.
Example 2.23. The functor (ev,,ev,) : Fun([1]°?,X) — X is a bifibration for every category X—
the special case X = Cat was covered in Proposition 2.14. Moreover, this functor straightens to the

functor

Homy : X XX — An.
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12 of 22 | WINGES

This follows for example from [5, Corollary A.2.5] because the cartesian unstraightening of Homy
is the twisted arrow category.

Definition 2.24. Let p =(p;,p,): X — Y X Z be an orthofibration. Define Xy;.,; as the
wide subcategory of X generated by the collections of p,-cartesian and p,-cocartesian
morphisms.

Lemma 2.25. Let p = (p;, p,): X = Y X Z be an orthofibration.

(1) The following are equivalent for a morphism f in X:
(@) fliesin Xyicares
(b) f is the composition of a p,-cartesian morphism followed by a p,-cocartesian morphism;
(c) f isthe composition of a p,-cocartesian morphism followed by a p,-cartesian morphism.
(2) The restriction pyicart - Xpicart = Y X Z of p is a bifibration. The inclusion functors Xy, = X
assemble to the counit transformation of an adjunction

inc : Bifib(Y,Z) 2 Ortho(Y,Z) : (—)picart-

(3) The bifibration py;.,. Straightens to the functor

St(p)
YPxZ o Cat—t> An.

Proof. By [3, Definition 2.3.10], p,-cartesian morphisms canonically commute with p,-cocartesian
morphisms, which shows assertion (1).

For assertion (2), let us first check that (ppicart)1 @ Xpicarr = Y is a cartesian fibration. Every
morphism in Y admits a p;-cartesian lift, so this reduces to checking that for a p,-cartesian mor-
phism & : x — x/ in X, an arbitrary morphism a : a — x lies in Xy, if and only if {oa lies
in Xp;care- Writing o as the composite of a p,-cocartesian morphism followed by a p,-cartesian
morphism, this is immediate from [9, Lemma 2.4.2.7]. In particular, every (Pp;cqrt);-Cartesian
morphism projects to an equivalence under (pp;cart)2-

Suppose now that £ : x — x’ is a morphism in X, such that p,(£) is an equivalence. Writ-
ing & = &.cart98cart @S @ composition of a p,-cartesian morphism followed by a p,-cocartesian
morphism, it follows that p,(&.,..rt) IS an equivalence. Hence, &, iS @ p,-cocartesian lift of
an equivalence, and thus an equivalence. It follows that & is p,-cartesian, and therefore also
(pbicart)l'carteSian'

By dualizing, we see that (pp;cari)s © X — Z is a cocartesian fibration such that a morphism is
(Pricart)o-cocartesian if and only if it projects to an equivalence under (Pp;care);- Hence, pyicare i
a bifibration.

Now, let T — Y X Z be a bifibration. Note that Ty, = T because every morphism (g, h)
in Y X Z factors as (g,id)o(id, k). Since morphisms in Ortho(Y, Z) preserve all relevant carte-
sian and cocartesian morphisms, it is now immediate that the inclusion Xy;,,; = X induces an
equivalence

Homg;giny 2) (T Xpicart) — Homg oy 2)(T5 X).
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 13 of 22

Assertion (3) follows from the commutative diagram:

Bifib(Y,Z) —— Fun(Z,RFib(Y)) ——> Fun(Z, Fun(Y°?, An))

Ortho(Y,Z) —— Fun(Z, Cart(Y)) ——> Fun(Z, Fun(Y°?, Cat))
by passing to right adjoints. O

Finally, recall that slice categories of Op are cotensored over Cat as follows. For I a small
category and ¢ : X® — B® an operad map, define Fun(I, X)® as the pullback

Fun(I, X)® — Fun(l, ¥®)

! I

B® — '\ pun(1, B®)
This operad has the universal property that
AlgA/B(Fun(I’ X)) = Fun(19 AlgA/B(X))

for every operad A® — B® over B® [8, Remark 2.1.3.4].
If 7 : X® - X isa cartesian structure, one checks directly that

Fun(l, X)® — Fun(l, ¥®) == Fun(l, X)

exhibits Fun(I, X)® as a cartesian structure on Fun(I, X). In particular, one obtains the cartesian
symmetric monoidal structure

Fun(Z, Ar°?)* - Comm®

by applying this construction to the operad (Ar°?')* — Comm®.

Proof of Theorem 2.7
We can now finish the proof of our main result. By Proposition 2.18, the functor
(84, t,): Alg@(Ar"pl) — Alg,(Cat) X Algy(Cat)

is an orthofibration. In combination with Proposition 2.14, we obtain a characterisation of the
s,-cartesian morphisms as those morphisms which map under

Algo(Ar°P") — Fun(©®, Ar°P")

to a natural transformation whose components all preserve cartesian morphisms and project to
an equivalence under ¢ : Ar°"' — Cat. Analogously for ¢, -cocartesian morphisms.
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14 of 22 | WINGES

We will identify the composite of the straightening of (s,,t,) with the Yoneda embedding
& : Cat — P(Cat), By Lemma 2.21, the composite

(541,07
Cat® —"", Ortho(Alg,(Cat), Alg,(Cat))

S
2 Fun(Alg,(Cat)°P x Alg(Cat), Cat)

. Fun(Alg,(Cat)°?, An)

corresponds to o St(s., t.) after currying. By virtue of Lemma 2.25, the composite (to—)o St is
equivalent to the functor that first applies (—);.arc and then straightens the resulting bifibration.
This leaves us with identifying the bifibrations (s,, t, ){)icm.

Consider the natural fully faithful functor

¥ : Fun(l, Alg,(Ar°P)) ~ Alg,(Fun(l, Ar°?))
S Mony(Fun(l, Ar°P'))
C Fun(O®, Fun(l, Ar°"")) ~ Fun(O® x I, Ar°P)).

Then Fun(l, s, )-cartesian morphisms in the domain correspond precisely to those natural trans-
formations 7 in the target with the property that for all x € O® and i € I, the functor 7(x, i)
preserves cartesian morphisms over [1] and t(z(x,i)) is an equivalence. From the analogous
assertion for Fun(l, t,)-cocartesian morphisms, it follows that W’ restricts to a fully faithful
functor

Fun(l, Algo(Ar°""))yicare = Fun(O® x I, AroPhycart,
Composing with the natural equivalence of Proposition 2.3, we obtain a fully faithful functor
¥ Fun(l, Alge(Ar°®))yicare — Fun([1]°, Cocart®™(©® x r))cocart,
Lemma 2.26. The essential image of ¥ comprises of those functors
E: [1]°° > Cocart™(O® x I)

satisfying the following conditions:

(1) fork =0,1andi € I, the functor E(k); — O® x {i} is a cocartesian fibration of operads;
(2) the functor E(1); — E(0); preserves inert morphisms for everyi € I.

Proof. A functor M : ©® — Fun(I, Ar°"") is an ©@-monoid if and only if the evaluation M;: O%® -
Ar°! is an @-monoid for all i € I. Recall that M; being an ®-monoid means that for every x =

X Xx, € (9?;1), the appropriate inert morphisms induce equivalences

P Ml-(x) ; Mi(xl) [>1<] [>1<] Mi(xn)
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of cartesian fibrations over [1]. This is the case if and only if each p preserves cartesian morphisms
and induces fiberwise equivalences.

Denote by E : [1]°P — Cocart(O® x I) the image of M under ¥, and let E(k); be the restriction
of E(k) to O® X {i}. The cocartesian fibration E(k); - O® is given by the unstraightening of the

. ev; gy L .
composite ©® — Fun(l, Ar°pl) —5 APl Cat, which is an @-monoid because ev; preserves

products. Consequently, each map p is a fiberwise equivalence if and only if both E(0); and E(1),
are cocartesian fibrations of operads [8, Example 2.4.2.4]. Since inert morphisms in E(k); are pre-
cisely the cocartesian lifts of inert morphisms in O® x {i}, Lemma 2.4 shows that p preserves all
cartesian morphisms if and only if E(1); — E(0); preserves all inert morphisms. O

Note that W fits into a natural commutative diagram

Fun(I, Alg@(Aropl))cart % Fun([l]Op, Cocartlax ((9® X I))cocart

(s,t)\L \L(cvl,cvo)

Fun(J, Alg,(Cat)) X Fun(I, Alg,(Cat)) —2 % Cocart(©® x I) x Cocart(O® x I)

with both @ and W fully faithful. The essential image of ® comprises precisely of those pairs
of functors whose restriction to O® x {i} is a cocartesian fibration of operads for every i € I. In

particular, this induces a natural fully faithful functor ¥; from AIgO(ArOPl){)icart to the pullback
of

Fun([1]°P, Cocartlax((9® x I))cocart

l/(ev1 evy)=:¢
Cocart(©®) x Cocart(O®) M} Cocart(O® x I) x Cocart(©O® x I)

The right vertical evaluation functor is the pullback of
(evy,evy) 1 Fun([1]°P, Cocart'™(O® x I)) — Cocart™(O® x I) x Cocart'™(O® x I),
along the inclusion functor
Cocart(O® x I) x Cocart(O® x I) — Cocart™(©O® x I) x Cocart'™(O® x I).

Consequently, the naturality of unstraightening together with Example 2.23 implies that this
pullback of ¢ straightens to the functor

HOm o lax @y (— X I, = X I) : Cocart(©O®) x Cocart(©O®) — An.
Observe in addition that
HomCOleaX(O@XI)(— XI,—X I) ~ HomcocartlaX((g@)(— X1, —).

It follows from Lemma 2.26 that ¥; identifies the straightening of AlgO(ArOpl){jicart with the full
subfunctor of Hom,,iax o) (— X I, =) given by those functors X® x I — Y® such that X® x
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{i} — Y® is an operad map for all i € I. After currying, we obtain a natural equivalence

St((S*, t*){)icart) ~ HomCat(I’ Algr\’/@(y))’

which is precisely what we needed to show. Theorem 2.7 is now proved.

3 | VARIATION: DAY CONVOLUTION IN SUBOPERADS OF Cat”™

From the preceding results, one can deduce analogous assertions for certain symmetric monoidal

categories which arise as suboperads of Cat*. Consider a subcategory U of Cat which is closed

under finite products. If U, U, and T are objectsin U/, callafunctor F : U; X U, — T U'-biexact if

both F(u;,—): U, - T and F(—,u,) : U; — T are morphismsin U forallu; € U, and u, € U,.

There is an evident notion of a U"-multiexact functor for functors in more than two variables.
Assume that

(1) for each pair U; and U, of objects in U, there exists an initial V"-biexact functor U; X U, —
U, ®U,;

(2) there exists a category U € U" and an object u € U such that evaluation at u induces an
equivalence Hom,(U,T) — T.

One example of a subcategory satisfying these conditions is the category Cat™ of stable categories
and exact functors.

Under these assumptions, U" refines to a symmetric monoidal category by considering the
suboperad U'® of Cat* determined by the following conditions:

(1) the underlying category of U'® is U;
(2) morphisms U; X - K U,, = T over the active map (n) — (1) correspond to U -multiexact
functors Uy X --- X U,, - T.

Observe that @-algebras in U"® correspond under unstraightening to cocartesian fibrations of
operads over O® whose fibers lie in " and whose cocartesian transport functors are /-multiexact.
Consider now the suboperad (Ar?ﬁl)® of (Ar°P')* determined by the following properties:

(1) objects in the underlying category AI'%)I are given by cartesian fibrations X — [1] which
straighten to functors [1]°P — U;
(2) morphisms are precisely those morphisms in (Ar°?)* which map to the suboperad
U® Xeomme U'® under (s, t).
ve ve
As before, given @-algebras C and D in U, we let ¢/ and ~ /P be given by the following
pullbacks:

® orl\® ® opl\®
Uc// _ (Arv) U'//D > (ArU)

! b Jo

Cxid id
O® Xeomme U® 25 U@ % s U®  U®Xgme O° 25 U® Xpyme U'®
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As afinal piece of notation, denote by Algéf/ (D) the full subcategory of Alg. (D) spanned by
those operad maps C® — D® over O® such that C® — D® is a morphism in " for every x € 0.

Proposition 3.1. Let p: C® — O® and q: D® — O%® be cocartesian fibrations of operads
corresponding to O-algebras in U".

(1) The functor
(5,.1,) 1 Algo(Ar) — Algo(1) X Algo(V)
is an orthofibration which straightens to the functor

(X, ) = Algl (V).

(2) For every operad A® — O® over O%, the functor

[C . AlgA/@(UC//) e AlgA(U)
is a cocartesian fibration which straightens to the functor

e Angx@C/A(y )-

(3) For every operad A® — O® over O, the functor
Sp: AlgA/@(U//D) - Alg (V)
is a cartesian fibration which straightens to the functor
X - Algg/O(D).

Proof. The operad (Ar?ﬁl)® can be constructed in two steps. Consider first the pullback

ArP)® s (ArP)

i Jo

U® Xeomme U® —> Cat™ Xymme Cat™

Then, (Ar?ﬁl)‘g’ is the full subcategory of (Argﬁ’l)@’ spanned by objects corresponding to tuples
of cartesian fibrations over [1], each of which straightens to a functor [1]°P — U". Consequently,
Theorem 2.7 implies that

(5. 1) Algy <Ar?})1> — Algo (V) X Algo(V)
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18 of 22 | WINGES

is an orthofibration which straightens to the functor
(X, Y) — Algy /o(D).

By construction, the fiber of (Ar({fl)‘g’ over (X, Y) is precisely the full subcategory Alg}\,// 4(Y), and

both the 5, -cartesian and 7, -cocartesian transport functors along morphisms in Alg, (V") preserve
these full subcategories. This identifies St(s,, t,.) as the correct subfunctor.
Assertions (2) and (3) follow as before from (1). O

4 | DAY CONVOLUTION AS AN O-MONOIDAL CATEGORY

Fix a base operad O® as well as O-monoidal categories C and D. In this section, we reprove a well-
known statement, see [8, Proposition 2.2.6.16], which is key for working with the Day convolution
operad. We include a proof to demonstrate that Day is a feasible description of Day convolution.

For every operation ¢ € Mulp({x;};,¥), denote the associated tensor functors by

: 1 ¢ = € and ®F - [T D(x;) — D).
Proposition 4.1. Foreachy € O, consider the following collection of slice categories:

k) = {8 /c | € Mulo({xi}. ). ¢ € CO) |
Assume the following is true:

(1) forally € O, the category D(y) admits all K(y)-shaped colimits;
(2) for every operation ¢ € Mulp({x;};,¥) and every j, the associated tensor functor
®g : I1; D(x;) = D(y) preserves all K(x j)—shaped colimits in the jth component.

Then, Day?D — O% is a cocartesian fibration of operads.

Remark 4.2. The assumptions of Proposition 4.1 are for example satisfied if there exists some regu-
lar cardinal x with the property that each D(y) is x-cocomplete, every tensor functor of D preserves
x-small colimits in each variable, and each C(y) is x-small, reproducing [8, Proposition 2.2.6.16].

Proof of Proposition 4.1. By construction, Day?D is an operad, so [8, Proposition 2.1.2.12] shows
that we only have to check that Day‘?D — 9 is a cocartesian fibration. As in [8, Section 2.2.6],
the crucial part of the argument lies in identifying mapping anima in Day?D.

We require some notation. Let 77 : Day® cp O® and u: Day® cp ™ — (Ar°Phy* denote the pro-
jection functors, and abbreviate X* := Cat* Xcomm® Cat*. Note that then X = Cat x Cat. Let
@: x — ybeamorphismin ©®,letF € 7~!(x) and G € 7~1(y), and denote by HomD o (F.G)

ay

¢,D
the anima of morphisms lying over ¢. Since Day?D is defined as a pullback, we have a natural
pullback square

Hom{ , (F.G) —— Homyum).(uF,uG)
C,D

\L (C.D)o¢ \L

x* —————% Hom((s, )F, (s, t)G)
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In particular, the objects sF, tF, sG, and tG are identified with C(x), D(x), C(y), and D(y),

respectively. Denoting by a : (k) — (I) the image of ¢ in Comm®, the anima Hom(]‘; o (F,G)
Ye
sits in a natural fiber square

¢ a
HomDay?D(F, G) —— Hom(Arnp,)x(uF, uG)

\L (C,D)og

* ——————% Hom5((s, t)F, (s, 1)G)

Since both (s,t): (Ar°?)* - X% and X* - Comm® are cocartesian fibrations, the right
vertical map is identified with the map
id,

(a,(uF), uG) — Hom" % (ct,((s, H)F), (5, £)G)

Hom
1yX
(Ar°P )<1> X7,

induced by (s,t). Write F=F,;[X..XF, and G =G, [X - X G, As both Ar°?! and X
carry the cartesian symmetric monoidal structure, this map is in turn identified with the
map

1 l
[[Hompen| [T FuGj|- [[Homx| [] G.0F: (06, (4.3)
j=1 J=1

iea=1(j) iea=1(j)

induced by (s, t). Consequently, it suffices to consider the case that a: (k) — (1) is an active
morphism so that ¢ € Muly({x;};, ¥).
With respect to the given identifications, the base point (C, D)og now becomes the point in

k
Hom, (H(C(xi), D(x;)), (C(y), D()’))
i=1

k k
~ Homgy, <H C(xy), C(y)> x Homy, (H D(xy), D()’))

i=1 i=1

corresponding to the pair of multiplication functors (®g, ®5) of C and D.
By Theorem 2.7 and Remark 2.8, the fiber of (4.3) is identified with the anima of natural
transformations

k
Nat <®go H St(F,), St(G)o®g >
i=1

Fix now ¢ : x = y and F € 7~ !(x). As before, let « : (k) — (I) be the image of ¢ in Comm®
and let F = F; [X ... X F;, be the canonical decomposition of F with F; € Ar°?', Denote by ¢ ;i €
Mulp({X;}icq-1(j)> ¥ ;) the active morphisms determined by ¢ and a. Using assumption (1) and the
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pointwise formula for left Kan extensions, the composite

D

®g.
I cco——= T] D(x) —> D(y,)

iea=1(j) iea=1(j)

admits a left Kan extension G; along ®gj : Hiea—l(j) C(x;) — C(yj) for each j € (l). As we have
seen, the unit transformations

n;: o [] stF)=stG)o ®,

i€a=1(j)

determine a point 5 € Homi o (F,G), where G :=G,[X X G;. We claim that 7 is a
Yep
cocartesian lift of ¢.

This amounts to checking that for each H € Day?D, the induced commutative square

—op
HomDay?D(G,H) s HomDay?D(F ,H)

y !

Homgs (y, Z) -—o¢> Homgs (x, 2)

is a pullback, where we set z := w(H). This is equivalent to the assertion that for each ¢ €
Homye (¥, 2), the induced map on vertical fibers

—on : HomD ay® D(G JH) — HomD

C,

(F,H) (4.4)

(‘

is an equivalence. Letting 8: (I) — (n) denote the image of 1 in Comm®, the preliminary
discussion and Theorem 2.7 identify this map with the product of the maps

Nat ®$mo H (St(Gj)o®gj>’St(Hm)°®g H ®C

J€B~(m) J€B~(m)

%

n;
— Nat ®5mo H ®r o H St(F) |, St(Hm)o®(¢)
jep=1(m) ica1())

~ Nat ®3’¢) ) H St(F,), St(Hm)o®(¢ ¥
"By (m)

Using assumption (2), the pointwise formula for left Kan extensions implies that the transforma-
tion

®Zb)mo H H St(F;) =>®¢ H (St(Gj)o®gj)

jeﬁ—l(m) iea=1(j) JjEB~Y(m)
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induced by 7; also exhibits ®Zp)mo 11 jeg-10m) St(G;) as a left Kan extension, so (4.4) is an
equivalence. O

Remark 4.5. In the situation of Proposition 4.1, assume that O is a symmetric monoidal category,
so that C and D correspond to lax symmetric monoidal functors @ — Cat. Unwinding the proof
of Proposition 4.1, one obtains the following description of the lax symmetric monoidal functor
O — Cat given by the straightening of Day?D - 0%:

(1) The underlying functor @ — Catsends x € O to Fun(C(x), D(x)) and a morphism f : x — x’
to the composite

Fun(C(x), D(x)) ﬁ) Fun(C(x), D(x")) L Fun(C(x"), D(x")),

where f denotes the left Kan extension functor.
(2) For x,x’ € O, the lax monoidal structure map is given by the composite

Fun(C(x), D(x)) x Fun(C(x"), D(x")) = Fun(C(x) x C(x"), D(x) x D(x"))

227, Fun(C(x) x ¢, D(x ® x'))

L9 pun(c(x @ x), D(x @ X)),

where the first arrow arises from the lax symmetric monoidal structure on Fun: Cat°? X
Cat — Cat, and ®. and ®p, denote the tensor operations in C and D, respectively.
(3) The structure map associated with the monoidal unit is given by the object in

1 1
Fun(C(1p), D(1p)) which arises as the left Kan extension of *— D(1,) along N C(1p).
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