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Abstract
We prove that Hinich’s construction of the Day con-
volution operad of two -monoidal ∞-categories is an
exponential in the ∞-category of ∞-operads over ,
and use this to give an explicit description of the for-
mation of algebras in the Day convolution operad as a
bivariant functor.
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1 INTRODUCTION

Let ⊗ be an∞-operad and consider operad maps 𝑝∶ ⊗ → ⊗ and 𝑞∶ ⊗ → ⊗. If it exists,
the Day convolution of 𝑝 and 𝑞 is an exponential of 𝑞 by 𝑝 in the∞-category of∞-operads over
⊗, ie a right adjoint object to 𝑞 with respect to the product functor − ×⊗ ⊗∶ (Op∞)∕⊗ →

(Op∞)∕⊗ . Using the combinatorial machinery of quasicategories, Lurie gives a very general
construction of Day convolution operads in [8, Section 2.2.6]; see also [7, Section 2.8].
For practical purposes, it is often sufficient to know that theDay convolution operad exists in the

case that ⊗ and ⊗ are -monoidal categories. Hinich provided in [7] a rather straightforward
description of the Day convolution operad for arbitrary -monoidal ∞-categories, and it is this
model we will focus on in the following.
To facilitate Hinich’s description, recall that there are equivalences of∞-categories

Alg(Cat∞)
∼
�→ Mon(Cat∞) ≃ Cocart⊗().

Here, Cocart⊗() denotes the ∞-category of cocartesian fibrations of ∞-operads over ⊗. The
first equivalence is given by composition with the cartesian structure Cat×∞ → Cat∞ [8, Propo-
sition 2.4.2.5] and the second equivalence is induced by (un)straightening; this is implicit in [8]
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and explicitly spelled out in [6, Proposition A.2.1]. In the following, we will freely switch between
these descriptions of -monoidal∞-categories as necessary.
Denote byAropl the full subcategory of (Cat∞)∕[1] spanned by the cartesian fibrations and equip

it with the cartesian symmetric monoidal structure. Restriction to {0} and {1} defines symmetric
monoidal functors 𝑡 ∶ Aropl → Cat∞ and 𝑠 ∶ Aropl → Cat∞, where we also equip Cat∞ with the
cartesian symmetric monoidal structure.

Theorem 1.1 [7, Section 2.8.9]. Let  and be-monoidal∞-categories and denote byDay⊗
,

the
pullback

Then, Day⊗
,

→ ⊗ is the Day convolution of ⊗ and⊗.

The goal of this note is to give an alternative proof of this theorem. Instead of identifyingDay⊗
,

with another model for the Day convolution operad as in [7, Section 6.3.9], we verify directly that
Day⊗

,
possesses the correct universal property, also on the level of categories of algebras. In fact,

we show first that the construction of Day⊗
,

promotes the assignment (,) ↦ Alg∕(Day,)

to a bivariant functor and exhibit a natural equivalence

Alg∕(Day,) ≃ Alg∕(),

where the functoriality of the right-hand side is given by pre- and postcomposition with operad
maps. The universal property of Day⊗

,
follows easily from this. This is done in Section 2.

Section 3 comments on some variations of these statements for-monoidal∞-categories living
in certain suboperads of the cartesian symmetric monoidal structure on Cat∞. Section 4 reproves
the well-known statement that Day⊗

,
→ ⊗ defines an -monoidal∞-category under suitable

cocompleteness assumptions on.

Conventions

(1) In the remainder of this note, the word “category” means “∞-category”. We write Cat for the
category of small categories.

(2) The category of anima/spaces/∞-groupoids is denoted by An. The groupoid core 𝜄 ∶ Cat →

An is the right adjoint to the inclusion of An into Cat.
(3) Given a category𝑋, we denote byCocart(𝑋) the subcategory ofCat∕𝑋 given by the cocartesian

fibrations over 𝑋 and those functors over 𝑋 which preserve cocartesian morphisms.
(4) We also drop the prefix “∞-” from related concepts. For example, “operad”means “∞-operad”

from now on, and we denote the category of operads by Op.
(5) The notation concerning operads and categories of algebras follows the conventions of [8].

In particular, ⊗ will denote an operad with underlying category , but the category of
-algebras in an operad ⊗ will be denoted by Alg(), even though it depends on the
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 3 of 22

operads ⊗ and ⊗, not only their underlying categories. The symbol Comm⊗ denotes the
commutative operad (i.e., the category of pointed finite sets).

(6) Given an operad ⊗, we denote by Cocart⊗() the subcategory of Op∕⊗ given by the
cocartesian fibrations of operads over⊗, that is,-monoidal categories, and those functors
over⊗ which preserve cocartesian morphisms (corresponding to-monoidal functors).

2 ALGEBRAS IN THE DAY CONVOLUTION OPERAD

Throughout this section, fix a base operad⊗ as well as-monoidal categories  and. Our goal
is to prove the following strengthening of Theorem 1.1.

Theorem 2.1. Let 𝛼∶ ⊗ → ⊗ be an operad over ⊗. Then, there exists a natural equivalence

Alg×∕
() ≃ Alg∕(Day,).

Note that Theorem 1.1 follows from this by passing to groupoid cores. The proof of this theorem
is already implicit in [1, Remark 5.2.5], but it will be convenient to formulate the argument in
terms of some concepts introduced in [3].

Definition 2.2 [3, Observation 2.3.2]. A functor (𝑝1, 𝑝2)∶ 𝑋 → 𝑌 × 𝑍 is a curved orthofibration
if

(1) 𝑝1 ∶ 𝑋 → 𝑌 is a cartesian fibration;
(2) 𝑝2 ∶ 𝑋 → 𝑍 is a cocartesian fibration;
(3) 𝑝1-cartesian lifts of morphisms project to equivalences under 𝑝2;
(4) 𝑝2-cocartesian lifts of morphisms project to equivalences under 𝑝1.

Denote by Cocartlax(𝑌) the full subcategory of Cat∕𝑌 spanned by the cocartesian fibrations,
and by Cartopl(𝑍) the full subcategory of Cat∕𝑍 spanned by the cartesian fibrations. In addition,
CurvOrtho(𝑌, 𝑍) denotes the subcategory of Cat∕𝑌×𝑍 whose objects are curved orthofibrations
and whose morphisms are functors over 𝑌 × 𝑍 preserving both 𝑝1-cartesian and 𝑝2-cocartesian
morphisms. We will make use of the following description of CurvOrtho(𝑌, 𝑍).

Proposition 2.3 [3, Corollary 2.3.4]. Unstraightening over 𝑌 and 𝑍 induces equivalences

Fun(𝑌op, Cocartlax(𝑍))cart ≃ CurvOrtho(𝑌, 𝑍) ≃ Fun(𝑍, Cartopl(𝑌))cocart

which are natural in𝑌 and𝑍; the superscripts cocart and cart denote the wide subcategories on those
natural transformations whose components all preserve (co)cartesian morphisms.

We will also require the following statement about the interaction of cartesian and cocartesian
morphisms in curved orthofibrations.

Lemma 2.4. Let (𝑝1, 𝑝2)∶ 𝑋 → 𝑌 × 𝑍 be a curved orthofibration, and let g ∶ 𝑦 → 𝑦′ and ℎ∶ 𝑧 →
𝑧′ be morphisms in 𝑌 and 𝑍, respectively. Then, the following are equivalent:
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4 of 22 WINGES

(1) The cartesian transport g∗ ∶ 𝑝−1
1
(𝑎′) → 𝑝−1

1
(𝑎) along g preserves 𝑝2-cocartesian lifts of ℎ.

(2) The cocartesian transport ℎ! ∶ 𝑝−12 (𝑏) → 𝑝−1
2
(𝑏′) along ℎ preserves 𝑝1-cartesian lifts of g .

Proof. This follows by inspection of the proof of [3, Proposition 2.3.11]. □

Given Lemma 2.4, we can make the following definition, see [3, Definition 2.3.10].

Definition 2.5. A curved orthofibration

𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝑌 × 𝑍

is an orthofibration if it satisfies the following equivalent conditions:

(1) the cartesian transport functor g∗ ∶ 𝑝−1
1
(𝑦′) → 𝑝−1

1
(𝑦) preserves 𝑝2-cocartesian morphisms

for every morphism g ∶ 𝑦 → 𝑦′ in 𝑌;
(2) the cocartesian transport functorℎ! ∶ 𝑝−12 (𝑧) → 𝑝−1

2
(𝑥′) preserves𝑝1-cartesianmorphisms for

every morphism ℎ∶ 𝑧 → 𝑧′ in 𝑍.

By [3, Corollary 2.5.6], the equivalences of Proposition 2.3 restrict to equivalences

Fun(𝑌op, Cocart(𝑍)) ≃ Ortho(𝑌, 𝑍) ≃ Fun(𝑍, Cart(𝑌)), (2.6)

where Ortho(𝑌, 𝑍) ⊆ CurvOrtho(𝑌, 𝑍) denotes the full subcategory of orthofibrations. Con-
sequently, every orthofibration straightens to a functor 𝑌op × 𝑍 → Cat, either by cocartesian
straightening over 𝑍 or by cartesian straightening over 𝑌. The resulting straightening functors
Ortho(𝑌, 𝑍) → Fun(𝑌op × 𝑍, Cat) are equivalent, see [3, Remark 2.5.7].
Since (𝑠, 𝑡)∶ Aropl → Cat × Cat is an orthofibration by [4, Proposition 7.9], combining [3,

Theorem E] and [4, Theorem 7.21] shows that (𝑠, 𝑡) straightens to the functor

Fun∶ Catop × Cat → Cat.

In fact, we will reprove this statement without recourse to the 2-categorical machinery of [4].

Theorem 2.7. The functor

(𝑠∗, 𝑡∗)∶ Alg(Ar
opl) → Alg(Cat) × Alg(Cat)

is an orthofibration which straightens to the obvious functor

( ,) ↦ Alg∕().

Remark 2.8. By specializing Theorem 2.7 to the case that ⊗ is the trivial operad, we recover the
claim that the orthofibration (𝑠, 𝑡)∶ Aropl → Cat × Cat straightens to the functor Fun∶ Catop ×
Cat → Cat.

Assuming this statement, we can prove Theorem 2.1.
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 5 of 22

Proof of Theorem 2.1. Let ⊗ be an operad and let  and  be -monoidal categories. Writ-

ing ( ,) ∈ Alg(Cat) × Alg(Cat) as the composite functor ∗
id
��→ Alg()

(∗,∗)
�������→ Alg(Cat) ×

Alg(Cat) and using that Alg(−) preserves limits, we obtain the pullback square

exhibiting Alg∕(Day , ) as the fiber of (𝑠∗, 𝑡∗) over ( ,). Then, Theorem 2.7 yields an
equivalence

Alg∕(Day , ) ≃ Alg∕().

Therefore, we obtain equivalences

Alg∕(Day,) ≃ Alg∕( × Day,)

≃ Alg∕(Day×,×
)

≃ Alg×∕
( × )

≃ Alg×∕
().

Specializing to the case⊗ = Day⊗
,

, this provides an evaluation map

Day⊗
,

×⊗ ⊗ → ⊗

over ⊗ which induces the above equivalence, making it clear that this identification is
natural. □

Before embarking on the proof of Theorem 2.7, let us record another easy consequence. We
require some additional notation.

Definition 2.9. Define the operads and by the pullbacks

and
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6 of 22 WINGES

Corollary 2.10. Let 𝛼∶ ⊗ → ⊗ be an operad over ⊗.

(1) The functor

is a cocartesian fibration which straightens to the functor

Alg(Cat) → Cat,  ↦ Alg×∕
()

whose functoriality is given by postcomposition with-monoidal functors.
(2) The functor

is a cartesian fibration which straightens to the functor

Alg(Cat)
op → Cat,  ↦ Alg∕()

whose functoriality is given by precomposition with-monoidal functors.

Proof. This follows immediately from Theorem 2.7 applied to the base operad⊗ together with
the naturality of unstraightening. □

The remainder of this section is concerned with the proof of Theorem 2.7. The key input for
our argument is the existence of free cartesian fibrations.

Construction 2.11. Let 𝐼 be a small category and let 𝑓∶ 𝑋 → 𝐼 be a functor. Define the free
cartesian fibration Fr(𝑓) on 𝑓 as the pullback

together with the evaluation map

Frcart(𝑓) → Fun([1], 𝐼)
ev0
���→ 𝐼.

Proposition 2.12 [2, Theorem 4.5]. Let 𝐼 be a category. The functor Cart(𝐼) → Cat∕𝐼 admits a left
adjoint

Frcart ∶ Cat∕𝐼 → Cart(𝐼)

which sends 𝑓∶ 𝑋 → 𝐼 to Frcart(𝑓).
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 7 of 22

Remark 2.13. Dualizing Proposition 2.12 shows that the pullback

together with the evaluation map

Frcocart(𝑓) → Fun([1], 𝐼)
ev1
���→ 𝐼

is the free cocartesian fibration on 𝑓.

Proposition 2.14.

(1) The functor
(𝑠, 𝑡)∶ Cart([1]) → Cat × Cat

is an orthofibration. A morphism 𝑓∶ 𝑝 → 𝑞 in Cart([1]) is 𝑠-cartesian if and only if 𝑡(𝑓) is an
equivalence, and 𝑓 is 𝑡-cocartesian if and only if 𝑠(𝑓) is an equivalence.

(2) The functor
(𝑠, 𝑡)∶ Aropl → Cat × Cat

is an orthofibration. Moreover, the functor Cart([1]) → Aropl preserves both 𝑠-cartesian and 𝑡-
cocartesian morphisms.

Proof. By unstraightening, Cart([1]) ≃ Fun([1]op, Cat), with 𝑠 and 𝑡 corresponding to evalua-
tion at 1 and 0, respectively. By [9, Corollary 2.4.7.11], the evaluation functor at 0 is a cartesian
fibration and the evaluation functor at 1 is a cocartesian fibration, and the characterisation of 𝑠-
cartesian and 𝑡-cocartesian morphisms follows from [9, Lemma 2.4.7.5]. The explicit description
of 𝑠-cartesian and 𝑡-cocartesian morphisms also implies that (𝑠, 𝑡) is an orthofibration.
For assertion (2), it suffices to show that 𝑠-cartesianmorphisms in Cart([1]) are also 𝑠-cartesian

in Aropl, and that the same holds true for 𝑡-cocartesian morphisms.
So, let 𝑓∶ 𝑝 → 𝑞 be an 𝑠-cartesian morphism in Cart([1]), where 𝑝∶ 𝑋 → [1] and 𝑞∶ 𝑌 →

[1] are cartesian fibrations. For every cartesian fibration 𝑟∶ 𝑍 → [1], we have to show that the
commutative square

is a pullback. Observing that 𝑠(Frcart(𝑟)) ≃ [1]1∕ × 𝑠(𝑟) ≃ 𝑠(𝑟), this square is identified via
Proposition 2.12 with the commutative square
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8 of 22 WINGES

which is a pullback by assumption.
Let now 𝑓∶ 𝑝 → 𝑞 be a 𝑡-cocartesian morphism in Cart([1]). Let 𝑟∶ 𝑍 → [1] be an arbitrary

cartesian fibration. Note that 𝑡(Frcart(𝑝)) ≃ 𝑋 and 𝑡(Frcart(𝑞)) ≃ 𝑌. Using Proposition 2.12 once
more, it suffices to show that the outer square in the commutative diagram

(2.15)

is a pullback. Since 𝑠(Frcart(𝑓)) ≃ 𝑠(𝑓) is an equivalence, the morphism Frcart(𝑓) is 𝑡-cocartesian,
which means that the top square is a pullback. For the lower square, we use the explicit formula
for cartesian unstraightening over [1]op from [2, Proposition 3.1]: since the left square and outer
square in the commutative diagram

are pushouts, so is the right square. This implies that the bottom square in (2.15) is a pullback.
Consequently, the outer square in (2.15) is a pullback as required. □

Since we are considering the cartesian symmetric monoidal structures on Aropl and Cat, we
can bootstrap the analogous statements for categories of -algebras from this.

Lemma 2.16. Let 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝑌 × 𝑍 be a curved orthofibration/an orthofibration and let 𝐼
be a small category. Then

𝑝∗ = ((𝑝1)∗, (𝑝2)∗)∶ Fun(𝐼, 𝑋) → Fun(𝐼, 𝑌) × Fun(𝐼, 𝑍)

is also a curved orthofibration/an orthofibration. The relevant cartesian and cocartesian mor-
phisms are given by those natural transformations, whose components are all cartesian or
cocartesian, respectively.

Proof. This is immediate from [9, Corollary 3.2.2.12]. □

Lemma 2.17. Let 𝑋, 𝑌, and 𝑍 be categories with finite products. Suppose that 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 →

𝑌 × 𝑍 is a functor such that

(1) 𝑝 is a curved orthofibration;
(2) 𝑝 preserves finite products;
(3) finite products of 𝑝1-cartesian morphisms are 𝑝1-cartesian;
(4) finite products of 𝑝2-cocartesian morphisms are 𝑝2-cocartesian.
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 9 of 22

Then, the induced functor 𝑝∗ ∶ Mon(𝑋) → Mon(𝑌) × Mon(𝑍) is a curved orthofibration. A
morphism inMon(𝑋) is (𝑝1)∗-cartesian or (𝑝2)∗-cocartesian if and only if it is (𝑝1)∗-cartesian or
(𝑝2)∗-cocartesian in Fun(⊗,𝑋).
In particular, if 𝑝 is an orthofibration satisfying conditions (1)–(4), then 𝑝∗ is an orthofibration.

Proof. By Lemma 2.16, the induced functor

𝑝∗ = ((𝑝1)∗, (𝑝2)∗)∶ Fun(⊗,𝑋) → Fun(⊗,𝑌) × Fun(⊗, 𝑍)

also satisfies properties (1)–(4).
Let g ∶ 𝑁 → 𝑁′ be a morphism inMon(𝑌) and let𝑀′ be an -monoid in 𝑋 lifting 𝑁′. Con-

sidering g as a morphism in Fun(⊗,𝑌), there exists a cartesian lift 𝑓∶ 𝑀 → 𝑀′ in Fun(⊗,𝑋).
We claim that𝑀 is also an -monoid in 𝑋. For 𝑥 = 𝑥1 ⊠⋯ ⊠𝑥𝑛 in 

⊗⟨𝑛⟩, the Segal maps of𝑀
and𝑀′ fit into a commutative square

Since products of cartesian morphisms in 𝑋 are cartesian, both vertical arrows are carte-
sian morphisms. By [9, Lemma 2.4.2.7], it follows that the top horizontal morphism is also
cartesian. Since 𝑁 is an -monoid, this morphism is a cartesian lift of an equivalence, and
therefore itself an equivalence. It follows that (𝑝1)∗ ∶ Mon(𝑋) → Mon(𝑌) is a cartesian
fibration.
Since (𝑝1)∗-cartesian lifts in Fun(⊗,𝑋) are characterized by being pointwise 𝑝1-cartesian, it

also follows that (𝑝1)∗-cartesian morphisms project to equivalences under (𝑝2)∗.
The argument for (𝑝2)∗ is completely analogous.
Since (𝑝1)∗-cartesian and (𝑝2)∗-cocartesian morphisms are detected in Fun(⊗,𝑋), it fol-

lows from Lemma 2.16 that 𝑝∗ is an orthofibration if 𝑝 is additionally assumed to be an
orthofibration. □

In particular, we obtain the following.

Proposition 2.18. The functor

(𝑠∗, 𝑡∗)∶ Alg(Ar
opl) → Alg(Cat) × Alg(Cat)

is an orthofibration. Both 𝑠∗-cartesian and 𝑡∗-cocartesian morphisms are detected by the functor

Alg(Ar
opl)

∼
�→ Mon(Ar

opl) → Fun(⊗,Aropl).

Proof. Due to Proposition 2.14, the functor (𝑠, 𝑡)∶ Aropl → Cat × Cat is an orthofibration satisfying
the assumptions of Lemma 2.17. The proposition follows. □
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10 of 22 WINGES

To determine the straightening of (𝑠∗, 𝑡∗), we require some additional preparation. First,
we observe that the existence of free (co)cartesian fibrations implies the existence of free
orthofibrations.

Corollary 2.19. The inclusion functor Ortho(𝑌, 𝑍) → Cat∕𝑌×𝑍 admits a left adjoint

Fr∶ Cat∕𝑌×𝑍 → Ortho(𝑌, 𝑍).

Proof. We write 𝑝𝑍 ∶ 𝑌 × 𝑍 → 𝑍 for the projection functor. Since 𝑝𝑍 is a cartesian fibration, the
equivalence Cat∕𝑌×𝑍 ≃ (Cat∕𝑌)∕𝑝𝑍 and Proposition 2.12 induce an adjunction

Cat∕𝑌×𝑍 ⇄ Cart(𝑌)∕𝑝𝑍.

After identifying

Cart(𝑌)∕𝑝𝑍 ≃ Fun(𝑌op, Cat)∕ const𝑍 ≃ Fun(𝑌op, Cat∕𝑍),

the existence of free cocartesian fibrations induces an adjunction

Cart(𝑌)∕𝑝𝑍 ⇄ Fun(𝑌op, Cocart(𝑍)) ≃ Ortho(𝑌, 𝑍).

□

Remark 2.20. Unwinding the proof of Corollary 2.19, one finds that the free orthofibration on a
functor 𝑓∶ 𝑋 → 𝑌 × 𝑍 is given by the pullback

together with the evaluation map

Fr(𝑓) → Fun([1], 𝑌) × Fun([1], 𝑍)
ev0 × ev1
��������→ 𝑌 × 𝑍.

One can adapt the proof of [2, Theorem 4.5] to show directly that this yields a left adjoint to the
functor Ortho(𝑌, 𝑍) → Cat∕𝑌×𝑍 .

We can apply this statement to identify the straightenings of cotensors of orthofibrations.

Lemma 2.21. Let 𝑝∶ 𝑋 → 𝑌 × 𝑍 be an orthofibration. Consider the pullback
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 11 of 22

Then, 𝑝𝐼 = (𝑝𝐼
1
, 𝑝𝐼

2
) is an orthofibration such that both 𝑝𝐼

1
-cartesian and 𝑝𝐼

2
-cocartesian mor-

phisms are detected componentwise in Fun(𝐼, 𝑋). Moreover, 𝑝𝐼 straightens to the functor

Fun(𝐼, St(𝑝))∶ 𝑌op × 𝑍 → Cat.

Proof. The first part of the lemma is precisely Lemma 2.16, so we only have to prove the asser-
tion about the straightening of 𝑝𝐼 . For every functor 𝑓∶ 𝑇 → 𝑌 × 𝑍, there exist by Corollary 2.19
natural equivalences

Hom𝑌×𝑍(𝑇, 𝑋
𝐼) ≃ Hom𝑌×𝑍(𝑇 × 𝐼, 𝑋)

≃ HomOrtho(𝑌,𝑍)(Fr(𝑇 × 𝐼 → 𝑌 × 𝑍), 𝑋)

≃ HomOrtho(𝑌,𝑍)(Fr(𝑓) × 𝐼, 𝑋)

≃ Nat(St(Fr(𝑓)) × 𝐼, St(𝑝))

≃ Nat(St(Fr(𝑓)), Fun(𝐼, St(𝑝)))

≃ HomOrtho(𝑌,𝑍)(Fr(𝑓), Un(Fun(𝐼, St(𝑝))))

≃ Hom𝑌×𝑍(𝑇,Un(Fun(𝐼, St(𝑝)))),

which implies the lemma. □

Recall the following definition from [3, Proposition 2.3.13].

Definition 2.22. A functor 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝑌 × 𝑍 is a bifibration if the following conditions
are satisfied:

(1) 𝑝1 is a cartesian fibration such that a morphism in 𝑋 is 𝑝1-cartesian if and only if it projects
to an equivalence under 𝑝2;

(2) 𝑝2 is a cocartesian fibration such that a morphism in 𝑋 is 𝑝2-cocartesian if and only if it
projects to an equivalence under 𝑝1.

By [3, Corollary 2.3.15], the equivalences from (2.6) restrict to equivalences

Fun(𝑌op, LFib(𝑍)) ≃ Bif ib(𝑌, 𝑍) ≃ Fun(𝑍, RFib(𝑌)),

where Bif ib(𝑌, 𝑍) ⊆ Ortho(𝑌, 𝑍) denotes the full subcategory of bifibrations, and LFib(𝑍)

and RFib(𝑌) denote the categories of left fibrations over 𝑍 and right fibrations over 𝑌,
respectively.

Example 2.23. The functor (ev1, ev0)∶ Fun([1]op, 𝑋) → 𝑋 is a bifibration for every category𝑋—
the special case𝑋 = Catwas covered in Proposition 2.14. Moreover, this functor straightens to the
functor

Hom𝑋 ∶ 𝑋
op × 𝑋 → An.
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12 of 22 WINGES

This follows for example from [5, Corollary A.2.5] because the cartesian unstraightening ofHom𝑋

is the twisted arrow category.

Definition 2.24. Let 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝑌 × 𝑍 be an orthofibration. Define 𝑋bicart as the
wide subcategory of 𝑋 generated by the collections of 𝑝1-cartesian and 𝑝2-cocartesian
morphisms.

Lemma 2.25. Let 𝑝 = (𝑝1, 𝑝2)∶ 𝑋 → 𝑌 × 𝑍 be an orthofibration.

(1) The following are equivalent for a morphism 𝑓 in 𝑋:
(a) 𝑓 lies in 𝑋bicart;
(b) 𝑓 is the composition of a 𝑝1-cartesian morphism followed by a 𝑝2-cocartesian morphism;
(c) 𝑓 is the composition of a 𝑝2-cocartesian morphism followed by a 𝑝1-cartesian morphism.

(2) The restriction 𝑝bicart ∶ 𝑋bicart → 𝑌 × 𝑍 of 𝑝 is a bifibration. The inclusion functors 𝑋bicart → 𝑋

assemble to the counit transformation of an adjunction

inc∶ Bif ib(𝑌, 𝑍) ⇄ Ortho(𝑌, 𝑍) ∶ (−)bicart.

(3) The bifibration 𝑝bicart straightens to the functor

𝑌op × 𝑍
St(𝑝)
����→ Cat

𝜄
�→ An.

Proof. By [3, Definition 2.3.10],𝑝1-cartesianmorphisms canonically commutewith𝑝2-cocartesian
morphisms, which shows assertion (1).
For assertion (2), let us first check that (𝑝bicart)1 ∶ 𝑋bicart → 𝑌 is a cartesian fibration. Every

morphism in 𝑌 admits a 𝑝1-cartesian lift, so this reduces to checking that for a 𝑝1-cartesian mor-
phism 𝜉 ∶ 𝑥 → 𝑥′ in 𝑋, an arbitrary morphism 𝛼∶ 𝑎 → 𝑥 lies in 𝑋bicart if and only if 𝜉◦𝛼 lies
in 𝑋bicart. Writing 𝛼 as the composite of a 𝑝2-cocartesian morphism followed by a 𝑝1-cartesian
morphism, this is immediate from [9, Lemma 2.4.2.7]. In particular, every (𝑝bicart)1-cartesian
morphism projects to an equivalence under (𝑝bicart)2.
Suppose now that 𝜉 ∶ 𝑥 → 𝑥′ is a morphism in 𝑋bicart such that 𝑝2(𝜉) is an equivalence. Writ-

ing 𝜉 = 𝜉cocart◦𝜉cart as a composition of a 𝑝1-cartesian morphism followed by a 𝑝2-cocartesian
morphism, it follows that 𝑝2(𝜉cocart) is an equivalence. Hence, 𝜉cocart is a 𝑝2-cocartesian lift of
an equivalence, and thus an equivalence. It follows that 𝜉 is 𝑝1-cartesian, and therefore also
(𝑝bicart)1-cartesian.
By dualizing, we see that (𝑝bicart)2 ∶ 𝑋 → 𝑍 is a cocartesian fibration such that a morphism is

(𝑝bicart)2-cocartesian if and only if it projects to an equivalence under (𝑝bicart)1. Hence, 𝑝bicart is
a bifibration.
Now, let 𝑇 → 𝑌 × 𝑍 be a bifibration. Note that 𝑇bicart = 𝑇 because every morphism (g , ℎ)

in 𝑌 × 𝑍 factors as (g , id)◦(id, ℎ). Since morphisms in Ortho(𝑌, 𝑍) preserve all relevant carte-
sian and cocartesian morphisms, it is now immediate that the inclusion 𝑋bicart → 𝑋 induces an
equivalence

HomBif ib(𝑌,𝑍)(𝑇, 𝑋bicart)
∼
�→ HomOrtho(𝑌,𝑍)(𝑇, 𝑋).
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 13 of 22

Assertion (3) follows from the commutative diagram:

by passing to right adjoints. □

Finally, recall that slice categories of Op are cotensored over Cat as follows. For 𝐼 a small
category and 𝜑∶ ⊗ → ⊗ an operad map, define Fun(𝐼,)⊗ as the pullback

This operad has the universal property that

Alg∕(Fun(𝐼,)) ≃ Fun(𝐼, Alg∕())

for every operad⊗ → ⊗ over ⊗ [8, Remark 2.1.3.4].
If 𝜋∶ ⊗ →  is a cartesian structure, one checks directly that

Fun(𝐼,)⊗ → Fun(𝐼,⊗)
𝜋◦−
����→ Fun(𝐼,)

exhibits Fun(𝐼,)⊗ as a cartesian structure on Fun(𝐼,). In particular, one obtains the cartesian
symmetric monoidal structure

Fun(𝐼, Aropl)× → Comm⊗

by applying this construction to the operad (Aropl)× → Comm⊗.

Proof of Theorem 2.7

We can now finish the proof of our main result. By Proposition 2.18, the functor

(𝑠∗, 𝑡∗)∶ Alg(Ar
opl) → Alg(Cat) × Alg(Cat)

is an orthofibration. In combination with Proposition 2.14, we obtain a characterisation of the
𝑠∗-cartesian morphisms as those morphisms which map under

Alg(Ar
opl) → Fun(⊗,Aropl)

to a natural transformation whose components all preserve cartesian morphisms and project to
an equivalence under 𝑡 ∶ Aropl → Cat. Analogously for 𝑡∗-cocartesian morphisms.
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14 of 22 WINGES

We will identify the composite of the straightening of (𝑠∗, 𝑡∗) with the Yoneda embedding
. By Lemma 2.21, the composite

Catop
(𝑠∗,𝑡∗)

(−)

��������→ Ortho(Alg(Cat), Alg(Cat))

St
��→ Fun(Alg(Cat)

op × Alg(Cat), Cat)

𝜄◦−
���→ Fun(Alg(Cat)

op, An)

corresponds to after currying. By virtue of Lemma 2.25, the composite (𝜄◦−)◦ St is
equivalent to the functor that first applies (−)bicart and then straightens the resulting bifibration.
This leaves us with identifying the bifibrations (𝑠∗, 𝑡∗)𝐼bicart.
Consider the natural fully faithful functor

Ψ′ ∶ Fun(𝐼, Alg(Ar
opl)) ≃ Alg(Fun(𝐼, Ar

opl))

∼
�→ Mon(Fun(𝐼, Ar

opl))

⊆ Fun(⊗, Fun(𝐼, Aropl)) ≃ Fun(⊗ × 𝐼, Aropl).

Then Fun(𝐼, 𝑠∗)-cartesian morphisms in the domain correspond precisely to those natural trans-
formations 𝜏 in the target with the property that for all 𝑥 ∈ ⊗ and 𝑖 ∈ 𝐼, the functor 𝜏(𝑥, 𝑖)
preserves cartesian morphisms over [1] and 𝑡(𝜏(𝑥, 𝑖)) is an equivalence. From the analogous
assertion for Fun(𝐼, 𝑡∗)-cocartesian morphisms, it follows that Ψ′ restricts to a fully faithful
functor

Fun(𝐼, Alg(Ar
opl))bicart → Fun(⊗ × 𝐼, Aropl)cart.

Composing with the natural equivalence of Proposition 2.3, we obtain a fully faithful functor

Ψ∶ Fun(𝐼, Alg(Ar
opl))bicart → Fun([1]op, Cocartlax(⊗ × 𝐼))cocart.

Lemma 2.26. The essential image of Ψ comprises of those functors

𝐸∶ [1]op → Cocartlax(⊗ × 𝐼)

satisfying the following conditions:

(1) for 𝑘 = 0, 1 and 𝑖 ∈ 𝐼, the functor 𝐸(𝑘)𝑖 → ⊗ × {𝑖} is a cocartesian fibration of operads;
(2) the functor 𝐸(1)𝑖 → 𝐸(0)𝑖 preserves inert morphisms for every 𝑖 ∈ 𝐼.

Proof. A functor𝑀∶ ⊗ → Fun(𝐼, Aropl) is an-monoid if and only if the evaluation𝑀𝑖 ∶ ⊗ →

Aropl is an -monoid for all 𝑖 ∈ 𝐼. Recall that 𝑀𝑖 being an -monoid means that for every 𝑥 =
𝑥1 ⊠⋯ ⊠𝑥𝑛 ∈ 

⊗⟨𝑛⟩, the appropriate inert morphisms induce equivalences
𝜌∶ 𝑀𝑖(𝑥)

∼
�→ 𝑀𝑖(𝑥1) ×

[1]
⋯ ×

[1]
𝑀𝑖(𝑥𝑛)
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 15 of 22

of cartesian fibrations over [1]. This is the case if and only if each 𝜌 preserves cartesianmorphisms
and induces fiberwise equivalences.
Denote by 𝐸∶ [1]op → Cocart(⊗ × 𝐼) the image of𝑀 underΨ, and let 𝐸(𝑘)𝑖 be the restriction

of 𝐸(𝑘) to ⊗ × {𝑖}. The cocartesian fibration 𝐸(𝑘)𝑖 → ⊗ is given by the unstraightening of the

composite⊗ → Fun(𝐼, Aropl)
𝑒𝑣𝑖
���→ Aropl

(−)|{𝑘}
������→ Cat, which is an-monoid because ev𝑖 preserves

products. Consequently, each map 𝜌 is a fiberwise equivalence if and only if both 𝐸(0)𝑖 and 𝐸(1)𝑖
are cocartesian fibrations of operads [8, Example 2.4.2.4]. Since inert morphisms in 𝐸(𝑘)𝑖 are pre-
cisely the cocartesian lifts of inert morphisms in ⊗ × {𝑖}, Lemma 2.4 shows that 𝜌 preserves all
cartesian morphisms if and only if 𝐸(1)𝑖 → 𝐸(0)𝑖 preserves all inert morphisms. □

Note that Ψ fits into a natural commutative diagram

with both Φ and Ψ fully faithful. The essential image of Φ comprises precisely of those pairs
of functors whose restriction to ⊗ × {𝑖} is a cocartesian fibration of operads for every 𝑖 ∈ 𝐼. In
particular, this induces a natural fully faithful functor Ψ𝐼 from Alg(Ar

opl)𝐼
bicart

to the pullback
of

The right vertical evaluation functor is the pullback of

(ev1, ev0)∶ Fun([1]op, Cocartlax(⊗ × 𝐼)) → Cocartlax(⊗ × 𝐼) × Cocartlax(⊗ × 𝐼),

along the inclusion functor

Cocart(⊗ × 𝐼) × Cocart(⊗ × 𝐼) → Cocartlax(⊗ × 𝐼) × Cocartlax(⊗ × 𝐼).

Consequently, the naturality of unstraightening together with Example 2.23 implies that this
pullback of 𝜀 straightens to the functor

HomCocartlax(⊗×𝐼)(− × 𝐼, − × 𝐼)∶ Cocart(⊗) × Cocart(⊗) → An.

Observe in addition that

HomCocartlax(⊗×𝐼)(− × 𝐼, − × 𝐼) ≃ HomCocartlax(⊗)(− × 𝐼, −).

It follows from Lemma 2.26 that Ψ𝐼 identifies the straightening of Alg(Aropl)𝐼bicart with the full
subfunctor of HomCocartlax(⊗)(− × 𝐼, −) given by those functors ⊗ × 𝐼 → ⊗ such that ⊗ ×
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16 of 22 WINGES

{𝑖} → ⊗ is an operad map for all 𝑖 ∈ 𝐼. After currying, we obtain a natural equivalence

St((𝑠∗, 𝑡∗)
𝐼
bicart

) ≃ HomCat(𝐼, Alg∕()),

which is precisely what we needed to show. Theorem 2.7 is now proved.

3 VARIATION: DAY CONVOLUTION IN SUBOPERADS OF 𝐂𝐚𝐭×

From the preceding results, one can deduce analogous assertions for certain symmetric monoidal
categories which arise as suboperads of Cat×. Consider a subcategory  of Cat which is closed
under finite products. If𝑈1,𝑈2 and𝑇 are objects in , call a functor𝐹∶ 𝑈1 × 𝑈2 → 𝑇 -biexact if
both 𝐹(𝑢1, −)∶ 𝑈2 → 𝑇 and 𝐹(−, 𝑢2)∶ 𝑈1 → 𝑇 are morphisms in for all 𝑢1 ∈ 𝑈1 and 𝑢2 ∈ 𝑈2.
There is an evident notion of a -multiexact functor for functors in more than two variables.
Assume that

(1) for each pair 𝑈1 and 𝑈2 of objects in  , there exists an initial  -biexact functor 𝑈1 × 𝑈2 →

𝑈1 ⊗ 𝑈2;
(2) there exists a category 𝑈 ∈  and an object 𝑢 ∈ 𝑈 such that evaluation at 𝑢 induces an

equivalence Hom (𝑈, 𝑇)
∼
�→ 𝜄𝑇.

One example of a subcategory satisfying these conditions is the category Catst of stable categories
and exact functors.
Under these assumptions,  refines to a symmetric monoidal category by considering the

suboperad⊗ of Cat× determined by the following conditions:

(1) the underlying category of⊗ is ;
(2) morphisms 𝑈1 ⊠⋯⊠𝑈𝑛 → 𝑇 over the active map ⟨𝑛⟩ → ⟨1⟩ correspond to  -multiexact

functors 𝑈1 ×⋯ × 𝑈𝑛 → 𝑇.

Observe that -algebras in ⊗ correspond under unstraightening to cocartesian fibrations of
operads over⊗whose fibers lie in andwhose cocartesian transport functors are -multiexact.
Consider now the suboperad (Aropl


)⊗ of (Aropl)× determined by the following properties:

(1) objects in the underlying category Aropl


are given by cartesian fibrations 𝑋 → [1] which
straighten to functors [1]op →  ;

(2) morphisms are precisely those morphisms in (Aropl)× which map to the suboperad
⊗ ×Comm⊗ ⊗ under (𝑠, 𝑡).

As before, given -algebras  and  in  , we let and be given by the following
pullbacks:
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 17 of 22

As a final piece of notation, denote byAlg
∕

() the full subcategory ofAlg∕() spanned by
those operadmaps ⊗ → ⊗ over⊗ such that ⊗𝑥 → 

⊗
𝑥 is a morphism in for every 𝑥 ∈ ⊗.

Proposition 3.1. Let 𝑝∶ ⊗ → ⊗ and 𝑞∶ ⊗ → ⊗ be cocartesian fibrations of operads
corresponding to -algebras in .

(1) The functor

(𝑠∗, 𝑡∗)∶ Alg(Ar
opl

) → Alg( ) × Alg( )

is an orthofibration which straightens to the functor

( ,) ↦ Alg
∕

().

(2) For every operad⊗ → ⊗ over ⊗, the functor

is a cocartesian fibration which straightens to the functor

 ↦ Alg
×∕

().

(3) For every operad⊗ → ⊗ over ⊗, the functor

is a cartesian fibration which straightens to the functor

 ↦ Alg
∕

().

Proof. The operad (Aropl

)⊗ can be constructed in two steps. Consider first the pullback

Then, (Aropl

)⊗ is the full subcategory of (˜Aropl


)⊗ spanned by objects corresponding to tuples

of cartesian fibrations over [1], each of which straightens to a functor [1]op →  . Consequently,
Theorem 2.7 implies that

(𝑠̃∗, 𝑡̃∗)∶ Alg

(
˜
Ar

opl


)
→ Alg( ) × Alg( )
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18 of 22 WINGES

is an orthofibration which straightens to the functor

( ,) ↦ Alg∕().

By construction, the fiber of (Aropl

)⊗ over ( ,) is precisely the full subcategoryAlg

∕
(), and

both the 𝑠̃∗-cartesian and 𝑡̃∗-cocartesian transport functors alongmorphisms inAlg( ) preserve
these full subcategories. This identifies St(𝑠∗, 𝑡∗) as the correct subfunctor.
Assertions (2) and (3) follow as before from (1). □

4 DAY CONVOLUTION AS AN -MONOIDAL CATEGORY

Fix a base operad⊗ as well as-monoidal categories  and. In this section, we reprove a well-
known statement, see [8, Proposition 2.2.6.16], which is key for working with the Day convolution
operad.We include a proof to demonstrate thatDay⊗

,
is a feasible description ofDay convolution.

For every operation 𝜑 ∈ Mul({𝑥𝑖}𝑖, 𝑦), denote the associated tensor functors by
⊗
𝜑 ∶

∏
𝑖 (𝑥𝑖) → (𝑦) and⊗

𝜑 ∶
∏

𝑖 (𝑥𝑖) → (𝑦).

Proposition 4.1. For each 𝑦 ∈ , consider the following collection of slice categories:

(𝑦) ∶=
{
⊗

𝜓
∕𝑐 ∣ 𝜓 ∈ Mul({𝑥𝑖}𝑖, 𝑦), 𝑐 ∈ (𝑦)

}
Assume the following is true:

(1) for all 𝑦 ∈ , the category(𝑦) admits all(𝑦)-shaped colimits;
(2) for every operation 𝜑 ∈ Mul({𝑥𝑖}𝑖, 𝑦) and every 𝑗, the associated tensor functor

⊗
𝜑 ∶

∏
𝑖 (𝑥𝑖) → (𝑦) preserves all(𝑥𝑗)-shaped colimits in the 𝑗th component.

Then, Day⊗
,

→ ⊗ is a cocartesian fibration of operads.

Remark 4.2. The assumptions of Proposition 4.1 are for example satisfied if there exists some regu-
lar cardinal 𝜅with the property that each(𝑦) is 𝜅-cocomplete, every tensor functor of preserves
𝜅-small colimits in each variable, and each (𝑦) is 𝜅-small, reproducing [8, Proposition 2.2.6.16].

Proof of Proposition 4.1. By construction, Day⊗
,

is an operad, so [8, Proposition 2.1.2.12] shows
that we only have to check that Day⊗

,
→ ⊗ is a cocartesian fibration. As in [8, Section 2.2.6],

the crucial part of the argument lies in identifying mapping anima in Day⊗
,

.
We require some notation. Let 𝜋∶ Day⊗

,
→ ⊗ and 𝑢∶ Day⊗

,
→ (Aropl)× denote the pro-

jection functors, and abbreviate × ∶= Cat× ×Comm⊗ Cat×. Note that then  = Cat × Cat. Let
𝜑∶ 𝑥 → 𝑦 be a morphism in⊗, let 𝐹 ∈ 𝜋−1(𝑥) and 𝐺 ∈ 𝜋−1(𝑦), and denote byHom𝜑

Day⊗
,

(𝐹, 𝐺)

the anima of morphisms lying over 𝜑. Since Day⊗
,

is defined as a pullback, we have a natural
pullback square
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 19 of 22

In particular, the objects 𝑠𝐹, 𝑡𝐹, 𝑠𝐺, and 𝑡𝐺 are identified with (𝑥), (𝑥), (𝑦), and (𝑦),
respectively. Denoting by 𝛼∶ ⟨𝑘⟩ → ⟨𝑙⟩ the image of 𝜑 in Comm⊗, the anima Hom𝜑

Day⊗
,

(𝐹, 𝐺)

sits in a natural fiber square

Since both (𝑠, 𝑡)∶ (Aropl)× → × and × → Comm⊗ are cocartesian fibrations, the right
vertical map is identified with the map

Hom
id⟨𝑙⟩
(Aropl)×⟨𝑙⟩(𝛼!(𝑢𝐹), 𝑢𝐺) → Hom

id⟨𝑙⟩
×⟨𝑙⟩ (𝛼!((𝑠, 𝑡)𝐹), (𝑠, 𝑡)𝐺)

induced by (𝑠, 𝑡). Write 𝐹 = 𝐹1 ⊠ …⊠ 𝐹𝑘 and 𝐺 = 𝐺1 ⊠⋯⊠𝐺𝑙. As both Aropl and 

carry the cartesian symmetric monoidal structure, this map is in turn identified with the
map

𝑙∏
𝑗=1

HomAropl

⎛⎜⎜⎝
∏

𝑖∈𝛼−1(𝑗)

𝐹𝑖, 𝐺𝑗

⎞⎟⎟⎠ →
𝑙∏

𝑗=1

Hom

⎛⎜⎜⎝
∏

𝑖∈𝛼−1(𝑗)

(𝑠, 𝑡)𝐹𝑖, (𝑠, 𝑡)𝐺𝑗

⎞⎟⎟⎠ (4.3)

induced by (𝑠, 𝑡). Consequently, it suffices to consider the case that 𝛼∶ ⟨𝑘⟩ → ⟨1⟩ is an active
morphism so that 𝜑 ∈ Mul({𝑥𝑖}𝑖, 𝑦).
With respect to the given identifications, the base point (,)◦𝜑 now becomes the point in

Hom

(
𝑘∏
𝑖=1

((𝑥𝑖),(𝑥𝑖)), ((𝑦),(𝑦)

)

≃ HomCat

(
𝑘∏
𝑖=1

(𝑥𝑖),(𝑦)

)
× HomCat

(
𝑘∏
𝑖=1

(𝑥𝑖),(𝑦)

)

corresponding to the pair of multiplication functors (⊗
𝜑,⊗


𝜑 ) of  and.

By Theorem 2.7 and Remark 2.8, the fiber of (4.3) is identified with the anima of natural
transformations

Nat

(
⊗
𝜑 ◦

𝑘∏
𝑖=1

St(𝐹𝑖), St(𝐺)◦⊗

𝜑

)
.

Fix now 𝜑∶ 𝑥 → 𝑦 and 𝐹 ∈ 𝜋−1(𝑥). As before, let 𝛼∶ ⟨𝑘⟩ → ⟨𝑙⟩ be the image of 𝜑 in Comm⊗

and let 𝐹 = 𝐹1 ⊠ …⊠ 𝐹𝑘 be the canonical decomposition of 𝐹 with 𝐹𝑖 ∈ Aropl. Denote by 𝜑𝑗 ∈
Mul({𝑥𝑖}𝑖∈𝛼−1(𝑗), 𝑦𝑗) the active morphisms determined by 𝜑 and 𝛼. Using assumption (1) and the
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20 of 22 WINGES

pointwise formula for left Kan extensions, the composite

∏
𝑖∈𝛼−1(𝑗)

(𝑥𝑖)

∏
𝑖 St(𝐹𝑖)

��������→
∏

𝑖∈𝛼−1(𝑗)

(𝑥𝑖)
⊗
𝜑𝑗

����→ (𝑦𝑗)

admits a left Kan extension 𝐺𝑗 along⊗
𝜑𝑗
∶

∏
𝑖∈𝛼−1(𝑗) (𝑥𝑖) → (𝑦𝑗) for each 𝑗 ∈ ⟨𝑙⟩. As we have

seen, the unit transformations

𝜂𝑗 ∶ ⊗
𝜑𝑗

◦
∏

𝑖∈𝛼−1(𝑗)

St(𝐹𝑖) ⇒ St(𝐺𝑗)◦⊗

𝜑𝑗

determine a point 𝜂 ∈ Hom
𝜑

Day⊗
,

(𝐹, 𝐺), where 𝐺 ∶= 𝐺1 ⊠⋯⊠𝐺𝑙. We claim that 𝜂 is a

cocartesian lift of 𝜑.
This amounts to checking that for each𝐻 ∈ Day⊗

,
, the induced commutative square

is a pullback, where we set 𝑧 ∶= 𝜋(𝐻). This is equivalent to the assertion that for each 𝜓 ∈

Hom⊗(𝑦, 𝑧), the induced map on vertical fibers

−◦𝜂∶ Hom
𝜓

Day⊗
,

(𝐺,𝐻) → Hom
𝜓𝜑

Day⊗
,

(𝐹,𝐻) (4.4)

is an equivalence. Letting 𝛽∶ ⟨𝑙⟩ → ⟨𝑛⟩ denote the image of 𝜓 in Comm⊗, the preliminary
discussion and Theorem 2.7 identify this map with the product of the maps

Nat
⎛⎜⎜⎝⊗

𝜓𝑚
◦

∏
𝑗∈𝛽−1(𝑚)

(
St(𝐺𝑗)◦⊗


𝜑𝑗

)
, St(𝐻𝑚)◦⊗



𝜓𝑚
◦

∏
𝑗∈𝛽−1(𝑚)

⊗
𝜑𝑗

⎞⎟⎟⎠
𝜂∗
𝑗

��→ Nat
⎛⎜⎜⎝⊗

𝜓𝑚
◦

∏
𝑗∈𝛽−1(𝑚)

⎛⎜⎜⎝⊗
𝜑𝑗
◦

∏
𝑖∈𝛼−1(𝑗)

St(𝐹𝑖)
⎞⎟⎟⎠, St(𝐻𝑚)◦⊗



(𝜓𝜑)𝑚

⎞⎟⎟⎠
≃ Nat

⎛⎜⎜⎝⊗

(𝜑𝜓)𝑚
◦

∏
𝑖∈(𝛽𝛼)−1(𝑚)

St(𝐹𝑖), St(𝐻𝑚)◦⊗


(𝜓𝜑)𝑚

⎞⎟⎟⎠.
Using assumption (2), the pointwise formula for left Kan extensions implies that the transforma-
tion

⊗

𝜓𝑚
◦

∏
𝑗∈𝛽−1(𝑚)

⎛⎜⎜⎝⊗
𝜑𝑗
◦

∏
𝑖∈𝛼−1(𝑗)

St(𝐹𝑖)
⎞⎟⎟⎠ ⇒ ⊗

𝜓𝑚
◦

∏
𝑗∈𝛽−1(𝑚)

(
St(𝐺𝑗)◦⊗


𝜑𝑗

)
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HINICH’S MODEL FOR DAY CONVOLUTION REVISITED 21 of 22

induced by 𝜂𝑗 also exhibits ⊗

𝜓𝑚
◦
∏

𝑗∈𝛽−1(𝑚) St(𝐺𝑗) as a left Kan extension, so (4.4) is an
equivalence. □

Remark 4.5. In the situation of Proposition 4.1, assume that  is a symmetric monoidal category,
so that  and  correspond to lax symmetric monoidal functors  → Cat. Unwinding the proof
of Proposition 4.1, one obtains the following description of the lax symmetric monoidal functor
 → Cat given by the straightening of Day⊗

,
→ ⊗:

(1) The underlying functor → Cat sends 𝑥 ∈  to Fun((𝑥),(𝑥)) and amorphism 𝑓∶ 𝑥 → 𝑥′

to the composite

Fun((𝑥),(𝑥))
𝑓◦−
����→ Fun((𝑥),(𝑥′))

𝑓!
��→ Fun((𝑥′),(𝑥′)),

where 𝑓! denotes the left Kan extension functor.
(2) For 𝑥, 𝑥′ ∈ , the lax monoidal structure map is given by the composite

Fun((𝑥),(𝑥)) × Fun((𝑥′),(𝑥′)) → Fun((𝑥) × (𝑥′),(𝑥) ×(𝑥′))

⊗◦−
������→ Fun((𝑥) × (𝑥′),(𝑥 ⊗ 𝑥′))

(⊗ )!
�����→ Fun((𝑥 ⊗ 𝑥′),(𝑥 ⊗ 𝑥′)),

where the first arrow arises from the lax symmetric monoidal structure on Fun∶ Catop ×

Cat → Cat, and⊗ and⊗ denote the tensor operations in  and, respectively.
(3) The structure map associated with the monoidal unit is given by the object in

Fun((𝟏),(𝟏)) which arises as the left Kan extension of ∗
𝟏
��→ (𝟏) along ∗

𝟏
��→ (𝟏).
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