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ABSTRACT: Boron−ligand cooperation (BLC) has emerged as a powerful principle of bond activation with main-group elements,
yet pyridine-based systems have so far eluded experimental evidence of CO2 activation. We show here that four-membered pyridyl−
boracycles activate CO2 through a dearomatizing boron−carbon bond cleavage, unambiguously proceeding by a BLC rather than a
B/N-FLP-type mechanism, as confirmed by density functional theory (DFT) studies, in contrast to previously predicted
computational pathways. This process furnishes boryl silyl ketene acetals, a hitherto unknown class of enolate equivalents in which
the two oxygen atoms are differentiated by boryl and silyl substituents. These intermediates exhibit remarkable follow-up reactivity,
eventually leading to a mild, one-step C�C double-bond cleavage that delivers fulvene derivatives under additive-free conditions,
thereby constituting an unprecedented form of metathesis. Overall, our findings establish boryl silyl ketene acetals derived from CO2
as a novel class of main-group systems that unlock a reactivity platform with far-reaching synthetic implications.

■ INTRODUCTION
Element−ligand cooperation has recently emerged as a
powerful paradigm for bond activation and catalysis with
main-group element compounds.1−11 In such systems, the
main-group element and the surrounding molecular framework
(ligand) act in genuine synergy, with the ligand actively
engaging in bond activation.1−3 In analogy to metal−ligand
cooperation via aromatization/dearomatization in Milstein’s
pyridine-based pincer complexes,12−17 boron−ligand coopera-
tion (BLC) is more specifically defined as the intramolecular
interplay of a Lewis-acidic boron center with an aromatic
backbone.2 This unique manifestation of intramolecular
frustrated Lewis pairs (FLPs)18−21 involves a dynamic
reorganization of π-electron density within the cooperative
motif and a switch from covalent to dative B−X interactions
during bond activation.2

Following pioneering contributions on cooperative boron−
ligand systems,22−24 pyridine-based boranes have attracted
increasing attention as promising metal-free analogues of
transition-metal pincer complexes for applications in bond
activation processes (Figure 1,A−C).25 van der Vlugt
demonstrated the stabilization of a dearomatized boron−
pyridyl complex by intramolecular donor coordination (Figure
1,A),26 while Milstein and co-workers expanded this concept

to explicitly involve the boron center in cooperative bond
activation (Figure 1,B).27 The additional donor side arm
essentially “locks” the dearomatized form in both examples A
and B. Gellrich subsequently showcased the reversible
activation of dihydrogen by pyridonate boranes (Figure
1,C),28 firmly establishing BLC as part of the catalytic
toolbox.29−33 In parallel, substantial progress has been made
in the capture, activation, and chemical utilization of CO2
using main-group element systems.34−47 Yet, despite its clear
potential also in this area,48−52 ligand cooperation with main-
group elements remains in its infancy. While pyridine-based
transition-metal complexes readily mediate small-molecule
activation, including CO2,53−56 analogous pyridine-based
main-group systems have not been realized.

Here, we disclose the first experimental evidence that four-
membered pyridyl−boracycles activate CO2 via a boron−
ligand cooperation mechanism. In stark contrast to theoretical
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predictions of a B/N-FLP-type pathway (Figure 1,D),57 the
activation proceeds unambiguously via a dearomatizing
boron−carbon bond cleavage (Figure 1,E). Complementary
density functional theory (DFT) studies reveal that the BLC
pathway is strongly favored, both kinetically and thermody-
namically, over any conceivable FLP-type mechanism. This

unprecedented mode of CO2 fixation directly furnishes boryl
silyl ketene acetals (which can also be viewed as boryl silyl
ester enolates), a novel class of enolate equivalents that display
a reactivity pattern far beyond that of classical enol or enolate
chemistry. Remarkably, these intermediates not only undergo
transformations such as Michael- and aldol-type reactions, but

Figure 1. Conceptual development of boron−ligand cooperation (BLC): (A) van der Vlugt’s stabilized dearomatized boron−pyridyl complex;26

(B) Milstein’s cooperative boron−ligand system;27 (C) Gellrich’s reversible H2 activation with pyridonate boranes;28 (D) Alkorta’s theoretical
prediction of a B/N-FLP pathway for CO2 activation;57 (E) this work: CO2 activation via dearomatizing B−C bond cleavage furnishes boryl silyl
ketene acetals as a new class of enolate equivalents, unlocking exceptional reactivity, including mild and direct C�C double bond cleavage to
dihydrofulvenes.
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ultimately enable a mild, direct cleavage of a C�C double
bond, providing straightforward access to fulvene derivatives.

Taken together, our findings illustrate how BLC drives the
formation of unprecedented intermediates. In particular, they
establish boryl silyl ketene acetals derived from CO2 as a novel
class of main-group systems that unlock a previously
inaccessible reactivity platform.

■ RESULTS AND DISCUSSION
Evidence of Boron−Ligand Cooperation and For-

mation of Boryl Silyl Ketene Acetals from CO2. Building
on the potential of small-ring systems58 and our previous
contributions in this field,59−62 we have now extended our
investigations to four-membered pyridine-based boracycles
(Figure 1,E). The conjugated π-system in these scaffolds
displays striking electronic parallels to the much-discussed
bonding motifs in 2-picolyllithium63−65 and its 2-silylmethyl
derivatives,66−70 to alkali-metal dihydropyridines,71−75 and to
the pyridine backbone of pincer-type complexes.12−18,25

Reaction pathways in such boracycles, whether following a
frustrated Lewis pair (FLP) or a boron−ligand cooperation
(BLC) mechanism, have long been debated, and are known to
be highly sensitive to the substitution pattern.76−79

The synthesis of the target pyridyl−boracycles commenced
from 2-(triphenylsilyl)lutidine (1) (for the X-ray structural
analysis of 1, see the Supporting Information, SI), which, after
lithiation with n-butyllithium in tetrahydrofuran (THF),
afforded the solvated enamide 2 as single crystals suitable for
X-ray diffraction analysis (Scheme 1).

The molecular structure of 2 clearly demonstrates the
pronounced disruption of the aromatic π-system (Figure 2). In
contrast to previously reported 2-picolyl alkali-metal com-
plexes,63−70 the lithium cation exhibits no interaction with the

aromatic π-system, neither in a carbanionic nor an azaallyl-type
fashion. Instead, the coordination is exclusively through the
enamide functionality, accompanied by shortened C19−C20
bond lengths [1.395 Å and 1.397 Å (2) versus 1.505 Å (1)],
which are much closer to typical C(sp2)�C(sp2) double
bonds.80 The alternating C−C bond lengths in the pyridine
ring of 2 (values between 1.361 and 1.443 Å) further
corroborate a loss of aromaticity (for comparison, the average
C−C bond length in 1 is 1.383 Å). These features already
point to a strong predisposition of the ligand framework
toward the formation of dearomatized, highly reactive species.

Subsequent reaction of 2 with chlorodiphenyl- or chlor-
odi(−)-iso-pinocampheylborane directly afforded monomeric
cyclic pyridyl boranes 3 and 4 (Scheme 1), both of which were
structurally characterized by single-crystal X-ray diffraction
analysis (Figure 3). Compounds 3 and 4 adopt almost
perfectly planar four-membered ring geometries, and the
boron atoms exhibit a pronounced tetrahedral character, with
THCs of 80% (3) and 77% (4), respectively. The C19−C20
bond lengths of 1.499 Å (3) and 1.495 Å (4) are in the
expected range of C(sp3)−C(aryl) single bonds80 [C19−C20
(1): 1.505 Å], while the C19−B1 distances are nearly identical
across both species (1.705−1.709 Å). Notably, the dative B1−
N1 bond in 4 (1.703 and 1.720 Å) is elongated compared to
that in 3 (1.643 Å), a consequence of the steric demand
imposed by the chiral (−)-iso-pinocampheyl substituents.

At room temperature, neither 3 nor 4 showed any reactivity
toward CO2 (3 bar). Upon heating to 90−120 °C in toluene,
however, both underwent clean conversion to crystalline
products 5 and 6 (Scheme 2), which were unequivocally
identified by single-crystal X-ray diffraction analysis as
unsaturated six-membered heterocycles (Figure 4). To the
best of our knowledge, this transformation represents the first
direct entry into boryl silyl ketene acetals, a previously
unknown class of compounds. Mechanistically, their formation
requires a three-step sequence: (i) dearomatizing cleavage of
the B−C bond with formation of intermediates 3′ and 4′, (ii)
CO2 capture via boron−ligand cooperation, and (iii) an
olefination of the α-silyl carboxyl intermediates 7 and 8
triggered by a [1,3]-silyl migration,81,82 which provides a
substantial thermodynamic driving force for the process
(Scheme 2).

The structural parameters of 5 and 6 are fully consistent
with their assignment as boryl silyl ketene acetals (Figure 4).
Their C19−C20 bonds [1.353 Å (5), 1.356 Å (6)] clearly fall
within the range of C(sp2)�C(sp2) double bonds of enol
esters,80 corroborating the enolate-like character of these
species. In both compounds, the C19−O2 bond [1.303 Å (5),
1.290 Å (6)] is shorter than the corresponding C19−O1 bond
[1.333 Å (5), 1.337 Å (6)], providing clear structural evidence

Scheme 1. Synthesis of the Four-Membered Pyridyl−Boracycles 3 and 4 via the Fully Dearomatized Lithium Enamide 2. Ipc =
(−)-iso-Pinocampheyl

Figure 2. Molecular structure of compound 2 in the crystal
(displacement ellipsoids at 50% probability). One molecule of the
asymmetric unit is shown. Hydrogen atoms, except H at C19, are
omitted for clarity.
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that O2 exerts the stronger +M effect.83 This differentiation
can be rationalized by negative hyperconjugation of the O1
lone pairs with vicinal, antibonding σ*(Si−C) orbitals,84−86

which stabilizes electron density at O1, whereas such an
interaction is negligible for the tetracoordinate second-row
element boron, rendering O2 the more effective electron-pair
donor in enolate-type reactivity. Notably, the B1−N1 bond in
6 (1.679 Å) is again elongated relative to that in 3 (1.623 Å),
highlighting the structural flexibility of the boracyclic frame-
work and its capacity to adapt its bonding interactions in
response to reaction demands.

Mechanistic Investigations: BLC Versus B/N-FLP
Pathway. To gain deeper insight into the reaction pathway,
which our experimental data had already indicated to follow a
boron−ligand cooperation (BLC) mechanism, we performed
detailed DFT calculations at the M06-2X/6−311+G(d,p) level
of theory87−91 with solvation modeled by the polarizable
continuum model (PCM) (solvent: toluene) (Figure 5).92

Previous theoretical work by Alkorta et al. had suggested an
alternative FLP-type pathway, initiated by opening of the B−N
bond in the boracycle and followed by exergonic adduct
formation between the boron/nitrogen Lewis pair and CO2.57

We therefore examined both scenarios (BLC and FLP) in
parallel.

Figure 3. Molecular structures of the pyridyl−boracycles 3 and 4 in the crystal (displacement ellipsoids at 50% probability). One molecule of the
asymmetric unit of 4 is shown. Solvent molecules (diethyl ether in 3) and hydrogen atoms, except H at C19, are omitted for clarity.

Scheme 2. Reaction of Pyridyl−Boracycles 3 and 4 with
CO2 to Give Boryl Silyl Ketene Acetals 5 and 6 via a BLC
Mechanism Followed by an Immediate [1,3]-Silyl Migration

Figure 4. Molecular structures of the boryl silyl ketene acetals 5 and 6 in the crystal (displacement ellipsoids at 50% probability). Solvent molecules
(benzene in 5) and hydrogen atoms, except H at C20, are omitted for clarity.
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Calculations were carried out for a simplified 2-picolylbor-
ane model system (A: R, R′ = Me, X = H) as well as for the
experimentally studied 2-lutidylborane (B: R = Ph, R′ =
(−)-Ipc, and X = Me). In the BLC pathway (red and blue
traces, Figure 5), CO2 activation is initiated by dearomatizing
cleavage of the B−C bond, giving the open enamide I1 via
transition state TS1. The activation barriers (ΔΔG‡) are
modest and comparable for both systems (TS1A: 16.3 kcal
mol−1; TS1B: 13.9 kcal mol−1). However, the relative stabilities
of the dearomatized intermediates I1 depend sensitively on the
substitution pattern: effective nN → pB conjugation lowers the
energy of I1A (4.8 kcal mol−1), whereas steric congestion from
the bulky (−)-iso-pinocampheyl substituents destabilizes I1B
(10.8 kcal mol−1).

Subsequent attack of CO2 at open boryl enamide I1
proceeds through TS2A (ΔΔG‡ = 19.1 kcal mol−1) or TS2B
(ΔΔG‡ = 16.7 kcal mol−1), forming a six-membered cyclic
boryl ester intermediate (I2). Although I2 is only transient, its
formation is highly exergonic (ΔΔG = −25.1 kcal mol−1 for A;
ΔΔG = −20.6 kcal mol−1 for B), driven by the restoration of
aromaticity. The overall process gains its large thermodynamic
driving force (PA: ΔG = −31.3 kcal mol−1; PB: ΔG = −22.0
kcal mol−1) from the final, rate-determining olefination (I2A/B
→ PA/B). This step involves a concerted [1,3]-silyl migration
proceeding through a four-membered cyclic transition state
(TS3A: ΔΔG‡ = 25.1 kcal mol−1; TS3B: ΔΔG‡ = 22.7 kcal
mol−1), thereby confirming Kira’s findings,93 which is driven
by Si−O bond formation and accompanied by the generation
of a synthetically valuable, electron-rich ketene-like C�C

Figure 5. Computed mechanism of CO2 activation at the M06-2X/6−311+G(d,p) level of theory (PCM, toluene).87−92 Comparison of the BLC
pathway (red/blue) with the B/N-FLP pathway (gray/green). Gibbs energies (ΔG) in kcal mol−1.

Scheme 3. Reaction of Boryl Silyl Ketene Acetal 5 with Acrolein to Give Product 9: Michael-Type Addition Facilitated by the
C−O−B Fragmenta

aMolecular structure of compound 9 in the crystal (displacement ellipsoids at 50% probability). One molecule of the asymmetric unit is shown.
Hydrogen atoms are omitted for clarity.
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double bond (Figure 5). Notably, examples of C−C bond
formation with CO2 in boron/carbon FLP systems are rare,
emphasizing the distinctive reactivity of the present BLC
system.34,35,51

In stark contrast, the alternative FLP pathway (gray and
green traces; Figure 5) yields no feasible solution. According to
our calculations, formation of a CO2 adduct from a putative
frustrated B/N Lewis pair (I′A/B → P′A/B) is strongly
endergonic (ΔΔG = 23.1 and 10.5 kcal mol−1 for A and B,
respectively) and does not produce a thermodynamically stable
species. The transition states (TS′A: ΔΔG‡ = 16.0 kcal mol−1;
TS′B: ΔΔG‡ = 25.3 kcal mol−1) are even higher in energy or at
least in a similar range than the corresponding BLC transition
states, rendering the FLP scenario highly unlikely (computa-
tional results for the bis-silyl-substituted model system are
provided in Figure S84 of the SI).

Overall, these computational results are in full agreement
with the experiment and demonstrate that CO2 activation in

pyridyl−boracycles proceeds unequivocally via a BLC
mechanism. Importantly, this holds true irrespective of the
specific substituents present at the 6-position of the pyridine
ring or within the silyl and boryl groups, indicating the
generality and robustness of this cooperative activation mode.

Follow-Up Reactions (Michael and Aldol Reactions)
of the Boryl Silyl Ketene Acetals. The products of CO2
activation constitute a previously unknown class of enolate
equivalents, distinguished by a unique bifunctional motif in
which one oxygen atom is bound to a silyl group and the other
to a boryl substituent. Owing to the embedding of the
electron-rich olefinic unit within a rigid cyclic framework, we
next probed their dienophilicity. As electron-deficient reaction
partners for a potential inverse-electron-demand hetero-Diels−
Alder (iEDHDA) reaction,94−99 acrolein and cinnamaldehyde
were selected (Schemes 3 and 4). Reaction with acrolein
(Scheme 3) did not proceed via a concerted [4 + 2]
cycloaddition but instead followed a stepwise pathway. The

Scheme 4. Reaction of Boryl Silyl Ketene Acetal 5 with Cinnamaldehyde: Mukaiyama-Type Aldol Addition Followed by
Condensation to the Diastereomers Z-11 and E-11a

aMolecular structure of boryl ester Z-11 in the crystal (displacement ellipsoids at 50% probability). Hydrogen atoms are omitted for clarity.

Scheme 5. C�C Bond Cleavage of Z/E-11 (2:1) (Only the Z Isomer is Shown) with 1-(1-Cyclopent-1-enyl)pyrrolidine:
Formation of Reduced Boryl Ester 12 and 3,4-Dihydrofulvene 13a

aMolecular structure of compound 12 in the crystal (displacement ellipsoids at 50% probability). Hydrogen atoms, except H at C14, are omitted
for clarity. Gibbs energies (ΔG, in kcal mol−1) for key species along the reaction pathway were computed at the M06-2X/6−311+G(d,p) level of
theory.
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initial Michael-type 1,4-addition is facilitated by the C−O−B
fragment, which acts as a noninnocent cooperative motif, with
its pronounced +M effect playing a decisive role.83 The
resulting zwitterionic intermediate 10-i is stabilized through
proton abstraction and subsequent keto−enol tautomerization
(Scheme 3, bottom). Steric constraints render a ring closure
via intramolecular attack of the alkoxide at the activated
carboxyl carbon atom of 10-i implausible. Remarkably, the
transformation does not follow a Mukaiyama−Michael path-
way either;100−103 instead, the ketene acetal functionality in 9
remains entirely intact.

In sharp contrast, the reaction of 5 with cinnamaldehyde
follows a different trajectory (Scheme 4). Here, a C�C
coupling reaction occurs that can be interpreted as a Lewis-
acid-free, Mukaiyama-type aldol addition104−106 followed by
condensation under mild conditions, affording the two
diastereomers Z-11 and E-11 in a 2:1 ratio. We attribute this
unusually mild, additive-free reactivity to the unique dual
character of our boryl silyl ketene acetals, which merge key
features of both boron and silicon enolates.107−109 In contrast
to classical Lewis-acid-promoted Mukaiyama aldol reactions,
which are generally assumed to proceed via an open transition
state,110−112 the present addition most plausibly follows a
closed, Zimmerman−Traxler-type chairlike transition state,113

in which a pentacoordinate silicon atom constitutes an integral
part of the cyclic transition-state framework (for mechanistic
details supported by DFT calculations, see Figure S85 in the
SI). Subsequent elimination of Ph3SiOH likely occurs from the
enol form via a hydrogen-bonded transition state. The
observed Z:E ratio can be rationalized by differences in the
activation barriers of the two diastereomeric transition states,
arising after rotation around the C(α)−C(β) bond in the
enolic intermediate (see Section S5 in the SI).

Mild, Direct C�C Bond Cleavage Enabling Access to
Fulvene Derivatives. The selective scission of C�C double
bonds is of fundamental importance in synthetic organic
chemistry.114,115 In addition to olefin metathesis,116,117 the
oxidative cleavage of alkenes into valuable carbonyl com-
pounds represents one of the most widely applied and most
actively explored transformations.118−125 Against this back-
drop, the discovery of a mild approach to C�C bond cleavage,
providing direct access to previously inaccessible classes of
compounds, is highly significant.

Given that the α,β,γ,δ-unsaturated boryl esters Z-11 and E-
11 possess an electron-deficient diene framework, we next
explored their reactivity in the context of a hetero-Diels−Alder
reaction with inverse electron demand, employing an enamine
as an electron-rich dienophile. Strikingly, rather than
proceeding through an iEDHDA pathway, the reaction follows
an entirely unanticipated course, resulting in novel, mild, and
direct C�C bond cleavage (Scheme 5).

Treatment of the Z/E-11 isomer mixture (2:1) with 1-(1-
cyclopent-1-enyl)pyrrolidine at room temperature resulted in
complete conversion (99%) and afforded reduced cyclic boryl
ester 12 in 62% isolated yield, which was fully characterized by
single-crystal X-ray diffraction analysis. Retrosynthetic analysis
a priori suggested the concomitant formation of a 3,4-
dihydrofulvene (13) (Scheme 5, bottom), which was indeed
confirmed by NMR spectroscopy and high-resolution mass
spectrometry (HRMS), even though isolation proved unfea-
sible owing to its pronounced tendency toward polymerization.

The mechanistic sequence begins with the formation of the
zwitterionic iminium intermediate 14, which undergoes proton

elimination followed by keto−enol tautomerization rather than
ring closure. The resulting enamine intermediate 15 promotes
C−C bond cleavage, and subsequent proton transfer reactions
furnish products 12 and 13. In this process, a new C�C bond
is formed as the exocyclic double bond of 3,4-dihydrofulvene,
bearing an electron-donating substituent at its 1-position.
Accordingly, this transformation can be regarded as a new type
of metathesis reaction.

Moreover, the facile recovery of compound 5, directly
accessible from compound 12, underlines its potential as a
sustainable auxiliary in preparative chemistry (for details, see
Section S3 in the SI).

In sum, these findings establish cyclopentenylamines as
hitherto unknown cleavage reagents that enable direct access
to fulvene derivatives, a synthetically valuable class of
compounds with a uniquely rich reactivity profile, whose
preparation has always been challenging.126−130 This discovery
not only expands the scope of boron−ligand cooperation
chemistry but also highlights a conceptually new strategy for
selective C�C bond scission under remarkably mild
conditions. Ongoing studies are directed toward probing the
synthetic potential and extending this methodology to diverse
substitution patterns.

■ CONCLUSIONS
This work establishes boryl silyl ketene acetals derived from
CO2 as a previously unexplored class of main-group
intermediates with unique reactivity. We provide the first
experimental evidence that pyridyl−boracycles activate CO2
through a boron−ligand cooperation (BLC) mechanism rather
than via a B/N-FLP-type pathway. Crucially, CO2 is not
merely sequestered but initiates a reaction cascade, leading to
boryl silyl ketene acetals. These intermediates display a
strikingly broad spectrum of unforeseen follow-up reactivity,
including Michael- and aldol-type reactions, and ultimately
leading to a mild, one-step cleavage of C�C double bonds
that affords fulvene derivatives under additive-free conditions.
Collectively, CO2 capture by pyridyl−boracycles enables
entirely new reactivity patterns and synthetic strategies far
beyond classical enolate or enol chemistry, thereby opening
new conceptual and synthetic perspectives for main-group
element chemistry. All transformations of the boryl silyl ketene
acetals proceed under mild conditions, in the absence of
additives, and with high chemoselectivity, which are features
that underscore the robustness and versatility of this platform.
We attribute this behavior to the unusual combination of a
rigid yet electronically adaptive cyclic framework with the
cooperative interplay between the keto and enolate forms of
the C−O−B functionality.
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