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Abstract

Background Molecular tumor boards (MTBs) are essential for selecting therapies for patients with rare and advanced
cancers. We hypothesized that integrating biomarkers beyond targeted DNA/RNA next-generation sequencing

(NGS) could increase actionable findings. Human epidermal growth factor receptor 2 (HER2)-low status has emerged
as a critical biomarker in breast cancer, with potential relevance across other tumor types. Homologous recombi-
nation deficiency (HRD) is pivotal for the application of Poly(ADP-Ribose)-Polymerase (PARP) inhibitors in ovarian

and breast cancer, although its role in other malignancies remains unclear. Antibody-drug conjugates (ADCs) are
expanding precision oncology, with promising biomarkers like Trop-2, Nectin-4, and folate receptor alpha (FRa) show-
ing potential across multiple tumor entities.

Methods Tumors were analyzed using the TSO500® panel, enabling tumor mutational burden (TMB) readout. HER2
status was assessed via immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), alongside anti-
body-drug conjugate (ADC) IHC, microsatellite instability (MSI) polymerase chain reaction (PCR), mismatch repair
(MMR) IHC, programmed death-ligand 1 (PD-L1) IHC, and HRD analysis. Cases were discussed weekly, and outcomes
were systematically tracked. Data analysis evaluated the benefit of additional biomarker assessments.
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Results Among 658 patients, 329 received therapy recommendations, 182 based on supplementary biomarker
analyses. One hundred recommendations were implemented, with 37% attributed to supplementary diagnostics.
Among 64 response-evaluable patients, the clinical benefit rate (complete response + partial response + stable dis-
ease) was 45.3%. HER2-low status notably expanded targeted therapy options across tumor types, with similar imple-
mentation rates for HER2-low and HER2-amplified tumors. HRD analysis refined stratification in tumors with mutations
in homologous recombination repair (HRR) genes beyond BRCA1/2, including PALB2, ATM, and CHEK2. ADC IHC
supported 20 recommendations and two therapy implementations.

Conclusions The integration of additional biomarker assessments into MTB workflows enhances precision oncology
by expanding the pool of patients eligible for targeted therapies.

Keywords Precision oncology, Molecular tumor board (MTB), Biomarkers, Next-generation sequencing (NGS),
Homologous recombination deficiency (HRD), Antibody—drug conjugates (ADC), Microsatellite instability (MSI), Tumor

mutational burden (TMB), HER2-low, PD-L1

Background

Precision oncology, the tailored application of thera-
peutic strategies based on molecular and genetic profil-
ing, has revolutionized cancer treatment [1]. Molecular
tumor boards (MTBs) are central to this approach, pro-
viding a multidisciplinary framework for the integration
of genomic, sometimes transcriptomic, and immunohis-
tochemical data to guide individualized therapy decisions
[2]. While conventional genetic panel diagnostics have
become the cornerstone of MTB decision-making, the
addition of supplementary diagnostic methods holds the
potential to further enhance the utility of MTBs beyond
the upcoming integration of exome and whole-genome
sequencing.

BRCA1/2 mutations and homologous recombina-
tion deficiency (HRD), for example, is a well-established
bio-marker for the application of PARP inhibitors in
ovarian [3] and breast cancer [4]; however, its utility in
other malignancies is less defined, as is the relevance of
mutations in other homologous recombination repair
(HRR) genes such as PALB2, etc. Similarly, the advent
of antibody—drug conjugates (ADCs) has introduced a
new dimension to precision oncology, with bio-markers
such as Trop-2, Nectin-4, and FRa showing promise
across an increasing varity of tumor types [5-8]. Further-
more, the assessment of microsatellite instability (MSI)
through PCR-based methods and IHC for mismatch
repair (MMR) proteins represent key approaches to iden-
tification of potential candidates for immune checkpoint
inhibitors (ICI), particularly in gastrointestinal and endo-
metrial cancers [9]. However, the reliability of MSI scores
obtained from sequencing panels, particularly regarding
the definition of cut-off values, remains a topic of active
discussion [10]. Another well-recognized bio-marker
for immuno-oncological therapies is PD-L1, which has
proven its utility in various cancer types [11-13] which
was consequently also integrated into our diagnostic
workflow.

Moreover, HER2 expression, evaluated via IHC and
FISH, has expanded beyond HER2-positive, i.e., HER2-
amplified tumors to include HER2-low as a relevant
subgroup. The introduction of Trastuzumab Deruxtecan
(T-DXd) has shown efficacy in HER2-low breast cancer
[14], with emerging data suggesting potential benefits in
other malignancies [15].

Studies evaluating the impact of supplemental diag-
nostics in the MTB setting are scarce [16, 17]. While the
incorporation of biomarkers such as HRD analysis and
ADC-specific IHC into MTBs seams promising, their
incremental value in expanding actionable findings and
influencing clinical recommendations has yet to be com-
prehensively evaluated.

To address this question, we conducted an extensive
analysis of 658 patients presented at our institutional
MTB from January 2022 to November 2024, focusing on
the incorporation of supplemental diagnostic modalities
alongside standard panel sequencing. The study aimed to
evaluate whether incorporating HRD analysis, HER2 IHC
and FISH, ADC IHC, MSI-PCR, and PD-L1 IHC would
improve the number and quality of actionable recom-
mendations. Additionally, the study sought to assess the
feasibility of integrating these diagnostics into routine
MTB workflows. Feasibility was assessed in terms of the
proportion of patients for whom these assays generated
additional recommendations, the rate of implementation
of such recommendations in clinical practice, and the
associated patient outcomes.

Methods

Study design and patient population

This prospective registry study was conducted at the
University Hospital Regensburg under the approval of
the institutional ethics committee (Protocol Number:
20-1682-101). Patient recruitment began in 2019, with
the current evaluation focusing on patients included
between 2022 and 2024. The earlier cohort (2019-2021)
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has already been reported previously [17], and the pre-
sent study was resticted to 2022-2024 because sup-
plementary biomarker testing was systematically
implemented into the MTB workflow only from 2022
onwards. The study targeted individuals with advanced
malignancies meeting specific inclusion criteria. These
criteria included (1) exhaustion or near exhaustion of
guideline-based therapies, (2) initiation of the last line
of therapy with limited expected efficacy, (3) rare tumor
entities without standard-of-care treatment options, and
(4) sufficient life expectancy, estimated at a minimum of
6 months, to enable sufficient time for molecular testing
and individual treatment authorization processes.

Patients also needed to provide informed consent, have
tissue or DNA samples readily available for analysis, and
demonstrate openness to experimental and off-label ther-
apies, which was checked during pre-MTB counseling
by the treating physician and recorded in the MTB case
form as part of the inclusion process. Procedural require-
ments included written consent, referral from the organ-
specific tumor board for extended molecular analysis, a
comprehensive medical record for therapy documenta-
tion, and an assessment of the defined inclusion criteria.

Molecular findings were first reported to the treating
physician as molecular pathology report without thera-
peutic interpretation. Prior to the MTB, alterations were
jointly annotated by pathologists and clinicians based
on literature review from our institutional database.
The annotated reports were then shared with the treat-
ing physicians, particularly with designated ‘bridgeheads’
responsible for preparing and presenting cases at the
MTB.

The MTB convened weekly and involved a core team
composed of a clinical geneticist, pathologist, medi-
cal oncologist, molecular pathologist/biologist, and a
rotating affiliated clinician collaboratively evaluating
the cases. The Centers of Personalized Medicine (ZPM)
scheme was used to assign evidence levels [18], which is
based on the MD Anderson Cancer Center classification
and stratifies biomarkers according to their level of clini-
cal and scientific validation. Tier m1 and m2 categorize
biomarkers based on clinical evidence within the same
tumor type (m1) or a different tumor type (m2), ranging
from prospective studies (A), retrospective studies (B),
and case reports (C). Tier m3 and m4 refer to preclinical
evidence (m3) and theoretical biological rationale (m4)
without supporting biomarker-stratified clinical data.
Initially, the m4 rating was only occasionally assigned.
Through the subsequent clinical reassessment, cases with
with a clear underlying biological rationale for treatment
recommendations were assigned this category retrospec-
tively, including recommendations of clinical trials with
an underlying biomarker dependency. Recommendations
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for genetic counseling were made based on the evalua-
tion of the molecular test results by a geneticist. Excep-
tions to this workflow were predominantly lung cancer
cases, where routine in-house panel diagnostics had
yielded uncommon or ambiguous alterations. For these
“consult” cases only ADC-IHC was supplemented to the
already available panel diagnostics. Moreover, within
the period of evaluation, cholangiocarcinoma (CCA)
obtained several newly approved and molecularly guided
treatment options, such as the use of FGFR inhibitors
based on FGFR2-fusions [19]. Nonetheless, CCA patients
were continuously enrolled directly with the start of first-
line therapies to allow for a cost-efficient testing without
the need for repeated genetic evaluations in due course.
Moreover, the recently updated German guidelines rein-
force the strategy of early referral of CCA patients to the
MTB after failure of first-line therapy [20].

Analysis methods by tumor entities

The standard analytical framework included the TruSight
Oncology 500® panel (TSO500®; Illumina Inc., San
Diego, CA, USA), whose diagnostic reliability in clinical
practice has just recently been confirmed [21], PD-L1
IHC, MMR protein analysis via IHC for PMS2 and
MSH®6 (we shifted from an initial assessment of MSH2,
MSH6, PMS2, and MLH1 to only these two markers out
of economic considerations). HER2 diagnostics using
IHC, supplemented by fluorescence in situ hybridiza-
tion (FISH) when necessary, were also standard. Gener-
ally, the Riischoff score was used in analogy to gastric
cancer [22]. Cases with a score of 2+ were sent for FISH
analysis taking into consideration that other entities have
a less established diagnostic framework for HER2 IHC
diagnostics.

For certain tumor entities, additional assays were
incorporated, such as ADC-targeted IHCs introduced
in early 2024 and HRD assessments. Before 2024, these
supplementary parameters were not routinely evaluated.
An overview of the standard allocation of diagnostics
by entity in our MTB is presented in Additional file 1:
Table S1. All additional biomarkers beyond mutation and
gene fusion analysis by targeted DNA/RNA-NGS were
considered as “supplementary” diagnostics.

Clinical reassessments

Patient data and therapeutic recommendations were sys-
tematically documented in standardized MTB case docu-
ments. We extracted data from these documents using
a custom Python script, incorporating various modules
for processing. Different data tables (e.g., mutations,
fusions, PD-L1) were identified, structured, and stored
in an SQLite database (Hipp, Wyrick & Company, Inc.,
Charlotte, North Carolina, USA), requiring adaptations
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for consistent parsing. Free text outside tables was gener-
ally ignored, except for specific cases such as searching
for references to genetic counseling in recommendation
texts. Implementations of recommendations was deter-
mined through systematic review of follow-up documen-
tation, including treatment protocols, discharge letters,
and physician notes. Only therapies that could be clearly
matched to the MTB recommentation were classified as
implemented. In cases where no matching therapy was
documented, recommendations were considered not
implemented. Clinical follow-up data were collected
at 1, 3, 6, 12, 18, and 24 months post-therapy by send-
ing standardized follow-up documentation files to the
treating physicians. Challenges in follow-up compliance
led to supplementary approaches, including contact-
ing patients, physicians, and local cancer registries, and
reviewing publicly available death notices. For survival
analysis, censoring was applied at the last documented
contact date if no subsequent data were available. The
final data cut-off was August 16, 2025.

Therapeutic responses were categorized based on clini-
cal and radiological assessments as progressive disease
(PD), stable disease (SD), partial response (PR), mixed
response (MR), or complete response (CR). Progres-
sion-free survival (PFS) was defined as the time from
treatment initiation to disease progression. Progression
events were determined based on radiological criteria. If
no progression event was recorded, the end of therapy or
the end of the observation period was considered a cen-
sored event. PFS was calculated for both pre- and post-
MTB therapy lines, with intra-patient benefit assessed by
PFS ratio (PFS2/PFS1), where values above 1.3 were con-
sidered indicative of therapeutic benefit [23].

For comparison purposes, we also analyzed treatments
implemented after the molecular tumor board, which
do not represent targeted therapies and were independ-
ent of MTB recommendations with the same methodol-
ogy as we analyzed MTB therapies. This group is referred
to as Non-MTB therapy group and comprises patients
irrespective of given MTB recommendations. In addi-
tion, we defined a no additional therapy cohort com-
prising patients who, following MTB discussion, either
continued their existing treatment without modification
or received no subsequent systemic therapy. This group
again includes both patients with and without MTB rec-
ommendations. PFS could not be assessed in patients
who did not receive further systemic therapy, as disease
progression was not systematically evaluated in this

group.

HRD analyses
HRD assessments were performed using two distinct
panels: the TSO-500 with integrated HRD analysis
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(Ilumina, cut-off for positivity: GIS>42), which has
proven concordance with the FDA-approved companion
diagnostics MyChoice®CDx PLUS assay (Myriad assay)
[24, 25], and the QIAseq Targeted DNA Custom Panel
(96) (QIAGEN N.V,, Venlo, Netherlands, cut-off for posi-
tivity: GIS>56). The TSO-500 HRD panel was generally
preferred, while the Qiagen panel was employed for cases
with prior TSO-500 analysis lacking HRD evaluation or
when HRD analysis hat already been performed in con-
siliary cases.

ADCIHC

ADC-related THC analyses included the markers Nec-
tin-4, Trop-2, Tissue Factor (TF), FRa, and Claudin18.2.
It should be noted that the drug Zolbetuximab targeting
Claudin18.2 is not an ADC by definition. Instead, it elic-
its antibody-dependent cell- and complement-dependent
cytotoxicity to eliminate cancer cells [26]. Nonetheless, it
is subsumed as ADC in this publication. The IHC assess-
ment of the abovementioned targets was implemented
starting in 2024 and adhered to the H-score [27], which
quantifies the staining intensity (0, 1+, 2+, or 3+) of
positive tumor cells as a percentage of the total tumor cell
count. The H-score ranges from 0 (all tumor cells nega-
tive) to 300 (all tumor cells strongly positive). Examples
of H-Score assessments for various ADC antibodies are
presented in Additional file 1: Fig. S1_1 and Fig. S1_2. At
least one board-certified pathologist reviewed each sam-
ple, utilizing standardized positive controls. Additional
file 1: Table S2 lists the antibodies and technical param-
eters. Until August 2024, the FRa antibody clone from
Novocastra was used; thereafter, the one from Ventana
was adopted.

The choice of ADC-IHC was based on the follow-
ing detailed rationale: TROP-2 is frequently expressed
in urothelial carcinoma and breast cancer, particularly
in triple-negative breast cancer (TNBC) [28]. In the
ASCENT study, a biomarker analysis of TROP-2 was
conducted [29]. Here, 80% of patients with metastatic
TNBC had high or medium TROP-2 expression. In this
subgroup, Sacituzumab Govitecan showed improved
survival outcomes and response rates compared to treat-
ment of physician’s choice. Due to the small number of
patients with low TROP-2 expression, no definitive con-
clusions could be drawn, though a trend toward lower
response rates and overall survival was observed.

Regarding urothelial carcinoma, in cohorts 1-3 of
the Phase II TROPHY-U-01 study (mUC after plati-
num-based chemotherapy and checkpoint inhibitors),
tumor samples were collected from 192 patients, and
evaluable TROP-2 data were available for 146 patients
(76%). The median H-score was 215 (scale 0-300),
with a median percentage of membrane-stained cells
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of 91% (range 80-98%). TROP-2 was expressed in 98%
of patients, and SG demonstrated efficacy across all
levels of expression—objective response rate (ORR),
progression-free survival (PFS), and overall survival
(OS) were similar across the cohort [30, 31]. In sum-
mary SG showed somewhat reduced activity in low
TROP-2-expressing TNBC, while efficacy in urothelial
carcinoma was similar across all expression groups.
At present, TROP-2 is not yet a validated predictive
biomarker. Nevertheless, we have chosen to assess
TROP-2 expression in certain tumor entities, such
as breast cancer, urothelial carcinoma, and cancer of
unknown primary (CUP), in order to evaluate whether
expression levels are indeed as high as reported in
clinical trials.

In the Phase I trial of enfortumab vedotin (EV) in
urothelial carcinoma, evaluation of Nectin-4 expression
by immunohistochemistry (IHC) was initially required
for enrollment. For each patient, Nectin-4 expression
was quantified using a histochemical scoring system
based on staining intensity multiplied by the percent-
age of positively stained cells (H-score, range 0—300).
Nectin-4 was detected in 97% of patients, with a
median H-score of 290 (range 14—300). Due to the con-
sistently high expression, positive Nectin-4 testing was
later removed as an eligibility criterion [32].

In a larger retrospective study involving 137 matched
primary tumor-metastasis pairs and a separate EV-
treated cohort, it was shown that Nectin-4 expression
frequently decreased in metastases—in 39% of metasta-
ses, expression was absent or markedly reduced. Weak
or absent membranous expression (H-score 0-99) was
associated with shorter PFS following EV treatment
(log-rank p <0.001). The authors concluded that low or
absent expression may predict resistance to EV, sup-
porting the strategy of biopsying metastases and test-
ing for Nectin-4 expression before initiating EV therapy
[33]. High Nectin-4 expression has also been described
in other entities such as lung cancer and squamous
cell carcinomas, which is why we tested these entities
alongside CUP.

Tissue factor (TF) is also expressed in a range of
tumor types, including cervical cancer, non-small cell
lung cancer (NSCLC), and head and neck squamous
cell carcinoma (HNSCC). Tisotumab Vedotin, an anti-
body—drug conjugate targeting TF, was approved based
on the results of the randomized Phase III innovaTV
301 study (NCT04697628) in metastatic cervical can-
cer [34]. Unfortunately, no biomarker analyses were
published for this study. However, a generally high TF
expression is assumed for this tumor entity. Given the
limited available data, we decided to restrict TF testing
to squamous cell carcinomas of the head and neck.
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Statistical analyses and software

Descriptive statistics were conducted using Microsoft
Excel (Version 16, Microsoft Corporation, Redmond,
WA). GraphPad Prism version 9 (Graphpad Software,
LLC, San Diego, CA, USA) was utilized for survival anal-
yses. Kaplan—Meier curves and Log-rank tests were used
to compare OS between the groups with no therapy and
MTB therapy.

Genomic, FISH, MSI, and general IHC protocol

The exact procedure for genomic analyses, PCR fragment
sizing MSI analysis, FISH, and the general IHC procedure
including HER2-THC (while the specifical parameters for
ADC-IHC are reported here) has been published previ-
ously by us and was continuously used in an unaltered
manner [17]. MSI testing was defined as MMR IHC and/
or MSI PCR.

MSI status was assessed using the Illumina TruSight
Oncology 500 (TSO500) panel. A cutoff of > 10% unstable
loci was applied, reflecting established consensus among
German molecular pathology expert groups for this assay.
Although this specific threshold has not yet been for-
mally published, it has been validated in our laboratory
through benchmarking and inter-laboratory exchange.
This threshold has also been employed by Pestinger et al.
[35]. To ensure accuracy, all cases with>10% unstable
loci also underwent PCR and fragment-length analysis,
which served as the gold standard for final MSI classifi-
cation. This approach was chosen to maximize sensitiv-
ity and to avoid missing borderline cases, for example in
samples with low tumor cell content. Recommendations
were never made on TSO500 MSI analysis alone, but had
to be confirmed by either MMR IHC or PCR and frag-
ment-length analysis (when normal tissue was available
for comparison).

In rare instances, androgen receptor or estrogen recep-
tor IHC was carried out and used as rationale for therapy
recommendation.

Results
Patient population and molecular genetic analyses (Fig. 1,
Table 1)
We first describe the study cohort and the scope of
molecular and supplementary diagnostics performed. Of
the 820 patients initially discussed at our MTB between
2022 and 2024, 100 did not provide research consent and
62 were excluded as part of a separately analyzed sarcoma
cohort, leaving 658 patients for inclusion in this study.
The overall study cohort had a median age of 60.0 years
(SD+13.2), while the MTB-guided therapy subgroup
exhibiting a slightly lower median age of 58.3 years
(SD+12.9). Men comprised 59.1% (1= 389) of the cohort.
ECOG performance status was reported for 370 patients
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Fig. 1 Study overview and supplementary analyses. The flow chart illustrates the diagnostic workflow focusing on supplementary diagnostics
alongside the panel diagnostics, as well as the resulting recommendations and their clinical follow-up. Percentages in the flow chart are relative
to the previous hierarchical level. The included bar chart (top) illustrates the number of recommendations provided for each diagnostic category.
The stacked bar plot (bottom) depicts the distribution of evidence levels (m1A-m4) across different supplementary diagnostic parameters. One
hundred eighty-two patients received therapy recommendations based on the defined supplementary diagnostic methods, while the remainder
of patients (147) had recommendations derived only from next-generation sequencing analyses (with rare exceptions of androgen receptor

and estrogen receptor immunohistochemistry)

(56.2%), with most having an ECOG score of 0 (46%) or
1 (41.9%). Among all groups, cancers included were pri-
marily of advanced stage (UICC IV,~90%), while only
occasionally lower stage cancers were admitted to the
MTB.

Comprehensive molecular diagnostics were performed
using targeted sequencing panels in 646 cases (TSO 500:

n=631; NNGM v2 and v3.2: n=13) and a fusion panel in
two cases (Archer FusionPlex Lung V2). In the remain-
ing 12 cases, sequencing was not conducted for various
reasons, including insufficient tumor tissue or an unex-
pected clinical deterioration of the patient, leading to a
transition to best supportive care (BSC).TMB assessment
by NGS was available for 577 patients, HRD testing was
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Table 1 Patient characteristics
All patients MTB therapy Non-MTB therapy No additional therapy

Population 658 100 89 469

Mean age, standard deviation (years) 60.0+13.2 583+129 5824151 60.7+129

Sex
Male (n, %) 389 (59.1%) 55 (55.0%) 55 (61.8%) 279 (59.5%)
Female (n, %) 269 (40.9%) 45 (45.0%) 34 (38.2%) 190 (40.5%)

ECOG PS (total, remaining unknown) 370 38 59 273

0 170 21 38 11

1 155 15 15 125

2 31 1 6 24

3 12 1 0 I

4 1 0 0 1

5 1 0 0 1

Stage of cancer
| 2 (0.4%) 0 1(1.6%) 1(0.2%)
I 13 (2.7%) 5(6.7%) (1.6%) 7 (1.5%)
I 28 (5.9%) 4(5.3%) 4 (6.3%) 20 (4.3%)
vV 432 (90.9%) 66 (88%) 57 (90.5%) 309 (65.9%)

Total (remaining unknown) 475 75 63 337

MTB Recommendations (n, %) 329 (50%) 100 (100%) 39 (43.8%) 190 (40.5%)

Evidence level primary recommendation (n,
m1A 88 (26.8%) 34 (34%) 9(23.1%) 45 (9.6%)
m1B 70 (21.3%) 21 (21%) 8(20.5%) 41 (8.7%)
m1C 45 (13.7%) 19 (19%) 4(10.3%) 22 (4.7%)
m2A 37 (11.3%) 9 (9%) 8 (20.5%) 20 (4.3%)
m2B 6 (1.8%) 6 (6%) 1(2.6%) 0
m2C 12 (3.7%) 2 (2%) 1(2.6%) 9 (1.9%)
m3 4 (1.2%) 3(3%) 0 1(0.2%)
mé4 2(0.6%) 0 0 2(0.4%)
Clinical trial 64 (19.5%) 6 (6%) 8 (20.5%) 50 (10.7%)
human genetic counseling 146 (22.2%) 32 (32%) 20 (22.5%) 94 (20.0%)

Entity (n, %)
CCA 120 (18.2%) 16 (16%) 20 (22.5%) 84 (17.9%)
CRC (H .9%) 9 (9%) 16 (18%) 3(11.3%)
Pancreatic cancer 6 (8.5%) 5 (5%) 5 (5.6%) 46 (9.8%)
cup 45 (6.8%) 9 (9%) 9(10.1%) 7 (5.8%)
Prostate cancer (5 8%) 1 (1%) 3(3.4%) (7 2%)
Breast cancer 5(5.3%) 10 (10%) 7 (7.9%) 8 (3.8%)
NSCLC ( 3%) 11 (11%) 6 (6.7%) ( 8%)
Esophagogastric cancer 2 (4.9%) 5 (5%) 1(1.1%) 6 (5.5%)
Bladder cancer 28 (4.3%) 1 (1%) 2 (2.2%) 25 (5 3%)
Head and neck cancer 24 (3.7%) 1 (1%) 2 (2.2%) 21 (4.5%)
Ovarian cancer 8 (2.8%) 3 (3%) 1(1.1%) 4 (3.0%)
Melanoma 7 (2.6%) 5 (5%) 3(3.4%) 9( 9%)
Salivary gland cancer 5(2.3%) 4 (4%) 2 (2.2%) 9 (1.9%)
Mature T and NK neoplasms 2(1.8%) 3(3%) 0 9(1.9%)
Small bowel cancer 1(1.7%) 0 1(1.1%) 10 (2.1%)
Renal cell carcinoma 0(1.5%) 0 0 10 (2.1%)
HCC (1 1%) 0 0 7 (1.5%)
Penile cancer 7 (1.1%) 1 (1%) 1(1.1%) 5(1.1%)
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Table 1 (continued)
All patients MTB therapy Non-MTB therapy No additional therapy

Thyroid cancer 6 (0.9%) 3 (3%) 1(1.1%) 2 (0.4%)

Appendiceal cancer 5(0.8%) 0 1(1.1%) 4 (0.9%)

Bowel cancer 4 (0.6%) 1 (1%) 0 3(0.6%)

Cervical cancer 4(0.6%) 0 0 4(0.9%)

Endometrial cancer 4 (0.6%) 2 (2%) 0 2 (0.4%)

Thymic tumor 4 (0.6%) 0 0 4 (0.9%)

Others (n< 3 in all patients) 43 (6.5%) 10 (10%) 8 (9%) 25 (5.3%)

performed in 137 cases, ADC IHC in 163, PD-L1 status
in 515, and HER2 IHC in 612, with 52 cases undergo-
ing an additional FISH analysis. Microsatellite instability
(MSI) testing by PCR was performed in 415 cases, and
MMR protein IHC in 589.

To characterize the tissue used for biomarker analyses,
we assessed the tissue and sample types employed for
both IHC and next-generation sequencing (Additional
file 1: Fig. S2). The majority of samples were biopsies
(n=380), followed by resection specimens (n=221). In a
few instances, cytological samples (n=4) or liquid biop-
sies (n=3) were used for molecular analysis. Regarding
tumor origin, the most frequent sample type was dis-
tant metastasis (n=262), closely followed by primary
tumors (n=248). Additional samples included lymph
node metastases (n=44), local recurrences (n=43), and
in rare cases, blood samples. In general, we aimed to ana-
lyze tissue that was less than 6 months old. Nevertheless,
exceptions were made in cases where obtaining fresh or
repeat biopsies would have posed a significant risk to the
patient. In such situations, older tissue was used (median
sample age: 103 days).

Actionable targets that could be identified varied
across different diagnostic approaches, with ADC-IHC
leading to 20 recommendations (of 163 analyses; 12.3%),
HRD analyses to 15 (of 137 analyses; 10.9%), MSI test-
ing to 9 (of 600 analyses, 1.5%), TMB assessment to 24
(of 577 analyses; 4.2%), and PD-L1 expression analysis
to 39 (of 515 analyses; 7.6%). HER2 IHC resulted in 75
actionable recommendations (of 612 analyses; 12.3%),
of which 19 were based on HER2-amplified and 56 on
HER2-low status. The evidence supporting these recom-
mendations varied, with ADC-IHC findings predomi-
nantly based on m1A (35%) and m4 (40%) evidence. The
evidence was unevenly distributed between the different
ADC targets. Claudin 18.2, for instance, achieved m1A-
level evidence in 80% (4/5 cases with recommendation)
of cases, whereas TF and Trop-2 recommendations were
only supported by m4-level evidence. HRD recommen-
dations were largely supported by m2A (53.3%), based

on evidence primarily derived from breast and ovarian
cancer, while MSI findings had strong tumor-specific
evidence, with 44.4% classified as m1A. TMB-based rec-
ommendations were distributed across m1C (29.2%) and
m2A (33.3%), whereas PD-Ll-derived recommenda-
tions were most frequently supported by m1A (28.2%),
mlB (25.6%) and m2A (20.5%) evidence. Recommenda-
tions based on HER2-amplified cases were mainly m1A
(42.1%) and m1B (36.8%), while the strength of HER2-low
recommendations was more diverse, with m1B (37.5%)
and m2A (33.9%) being most common.

From the overall cohort (658 patients), 329 patients
(50.0%) received a therapy recommendation based on
molecular and additional biomarker results. In 329
patients, no therapy recommendation was issued.
The predominant reason was the absence of action-
able molecular alterations or prior administration of tar-
geted therapies addressing the identified alterations. In
a subset of patients, clinical deterioration, comorbidities
limiting treatment options, or patient preference pre-
cluded further therapeutic intervention. A total of 182
patients received therapy recommendations based on the
defined supplementary diagnostics, while 147 patients
received recommendations derived from next-generation
sequencing results alone. One hundred patients (30.4%)
received MTB-guided therapies. Documented outcomes
were available for 64 patients (64%).

Recommendations across tumor entities and underlying
alterations

Next, we report the distribution of recommendations
across tumor entities (Additional file 1: Fig. S3). The
proportion of cases receiving MTB-guided therapy rec-
ommendations varied across tumor entities, reflecting
differences in the suitability of molecular diagnostics.
CCA (n=120) exhibited a recommendation rate of 56.7%,
supported by both tumor-specific and cross-entity bio-
marker-stratified evidence. Breast cancer (n=35) dem-
onstrated the highest recommendation rate among the
5 most prevalent entities at 77.1%. In contrast, colorectal
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cancer (CRC) (n=78) had a markedly lower recom-
mendation rate of 23.1%. Pancreatic cancer (n=>56) and
prostate cancer (n=38) also showed comparatively low
recommendation rates (28.6% and 36.8%), due to limited
high-evidence biomarkers or available targeted therapies.

Apart from the most prevalent entities, some cancers
exhibited particularly high recommendation rates. Thy-
roid cancer received MTB-guided therapy recommen-
dations in 100% of cases (4/4) as a consequence of the
high prevalence of PD-L1 expression. Cervical cancer
(3/4, 75%), bladder cancer (19/28, 67.9%), and salivary
gland cancer (10/15, 66.7%) also demonstrated a strong
alignment between molecular diagnostics and actionable
findings.

The distribution of evidence levels further reflected
variation between entities. Breast and bladder cancer
recommendations were predominantly supported by
high-evidence biomarkers (m1A and m1B). Thyroid can-
cer relied heavily on m1B evidence (83.3%). In contrast,
pancreatic cancer and cancer of unknown primary (CUP)
depended largely on cross-entity evidence (m2A and
m2C).

Differences between the tumor entities were also noted
regarding the number of recommendations per case.
Salivary gland cancer (80%) and CRC (72.2%) frequently
yielded multiple actionable targets. Breast cancer also
showed a high proportion of multiple recommendations
(59.3%), consistent with its strong molecular subtyping.
Conversely, renal cell carcinoma and small bowel cancer
exclusively received single recommendations.

Overall, this analysis highlights the strong suitability
of molecular diagnostics for CCA, breast cancer, thyroid
cancer, and bladder cancer due to their high recommen-
dation rates and robust supporting evidence. Conversely,
entities such as pancreatic cancer and CRC may ben-
efit from a different and expanded molecular testing
approach, to identify candidates for targeted therapy.

Next, we analyzed the genetic alterations underly-
ing treatment recommendations (Additional file 1: Fig.
S4). KRAS and BRAF alterations supported 23 therapy
recommendations each (8.3% each). BRAF alterations
underlying recommendations included 16 mutations and
7 fusions, whereas KRAS changes were exclusively muta-
tions. PIK3CA mutations were associated with 17 recom-
mendations (6.1%), followed by FGFR2 alterations with
16 (11 fusions, 4 mutations, and 1 combined alteration,
5.8%). EGFR alterations led to a recommendation in 13
cases (11 mutations, 2 amplifications, 4.7%), along with
MET (11 amplifications, 1 fusion, 1 combination, 4.7%).
ALK alterations were the basis of 12 recommendations (3
fusions, 9 mutations, 4.3%), matching the amount of rec-
ommendations based on IDHI mutations (12, 4.3%).
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In CCA, KRAS mutations were the most frequent
alterations underlying treatment recommendations (19
recommendations, 28.4%), followed by FGFR2 (15 rec-
ommendations, 22.4%, predominantly fusions), IDHI (9
recommendations, 13.4%), and BAPI (5 recommenda-
tions, 7.5%). Among non-small cell lung cancer (NSCLC)
cases, ALK and BRAF to 4 (12.1%), while ROS1 altera-
tions (2 fusions, 1 combination of alterations, 9.1%) were
less common. In breast cancer, actionable alterations
included PIK3CA (4 recommendations, 19.0%), ESRI (3
recommendations, 14.3%), PTEN (3 recommendations,
14.3%), as well as BRCA1, PALB2, and FGFRI (all muta-
tions except one FGFR1 fusion) with 1 recommenda-
tion (4.8%) each. Five cases involved recommendations
based on individual combinations of biomarkers (23.8%).
In CRC, the most frequently detected alterations used
as basis for therapeutic recommendation were BRAF (4
recommendations, 28.6%), PIK3CA (4 recommenda-
tions, 28.6%), and KRAS (3 recommendations, 21.4%)
mutations.

As expected, CUP exhibited a diverse recommendation
profile, with ALK fusions (3 recommendations, 17.6%)
and combination-based targets (3 recommendations,
17.6%) being the most common. Single cases with action-
able mutations included AKTI, ATM, BRAF, BRCA2,
EGFR, and NRAS, as well as FGFR3 fusion and a VHL
(5.9% each) mutation.

Detailed evaluation of HER2 low and amplification status
(Fig. 2)

The distribution of HER2 expression varied across dif-
ferent tumor types. In CCA, 55 out of 118 (46.6%) cases
were HER2-negative, 61 (51.7%) were classified as HER2-
low, and 2 (1.7%) showed amplification. A similar pattern
was observed in CRC, with 33 out of 73 (45.2%) cases
classified as HER2-negative, 35 (47.9%) as HER2-low,
and 5 (of 73, 6.8%) as amplified. In contrast, CUP had
a higher proportion of HER2-negative cases (33 of 44,
75%). In breast cancer, 12 out of 33 (36.4%) cases were
HER2-negative, 19 (57.6%) were HER2-low, and 1 (6.1%)
exhibited amplification. Ovarian cancer had the highest
proportion of HER2-low status, observed in 12 out of 18
cases (66.7%). At the same time, it had the lowest HER2-
negative rate, with only 5 out of 18 cases (27.8%) classi-
fied as negative.

Among HER2-based recommendations, HER2-low sta-
tus was the primary underlying alteration in CCA (11/12
recommendations, 91.7%), breast cancer (11/13 recom-
mendations, 84.6%), and prostate cancer (7/7 recommen-
dations, 100%). In contrast, CRC recommendations were
exclusively based on HER2 amplification (5/5 recom-
mendations). Esophagogastric and bladder cancers had
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a Her2 status across entities
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b Recommendations based on Her2
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Fig. 2 Supplementary diagnostics: HER2. a Distribution of HER2 status across various tumor types. Cases are classified as amplified, low expression,
and negative. Tumor types are ranked by frequency of HER?2 alterations. Scores are indicated as either DAKO-score (breast cancer) or Ruschoff-Score
(other entities). b Comparison of recommendations based on low versus high HER2 expression levels across different tumor types. c The
contingency table illustrates HER2-positive and HER2-negative cases based on two independent diagnostic methods (CNV analysis and HER2
IHC+FISH). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) are provided

recommendations based on HER2-low status in 66.7%
and 57.1% of cases, respectively.

When comparing HER2 (ERBB2) copy number varia-
tion (CNV) detected by sequencing (a CNV ERBB2 value
of >2 was considered positive) with IHC/FISH results,
sequencing demonstrated high specificity (99.2%) but
only moderate sensitivity (60%) as well as high positive
(85.7%) and negative (96.9%) predictive values. This indi-
cates that CN'V assessment is reliable for ruling out HER2
positivity but may miss some amplified cases, probably
due to focal amplification or technical limitations due to
insufficient tumor cell content. The high positive (85.7%)
and negative (96.9%) predictive values confirm that most

amplified CNVs correspond to true HER2-positive cases.
Given the limited sensitivity of sequencing, IHC and
FISH remain essential for accurately classifying HER2
status, particularly in cases where CNV results are incon-
clusive, sequencing quality is suboptimal or tumor cell
content is low. Integrating these methods ensures a com-
prehensive assessment and supports correct treatment
selection.

Assessing ADC-IHC diagnostics in the MTB framework (Fig. 3)
The evaluation of ADC-IHC testing revealed significant
differences in therapy recommendation rates across bio-
markers. Claudin-18.2-targeted therapy (Zolbetuximab)
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Fig. 3 Supplementary diagnostics: ADC-IHC. The graph shows the number of ADC IHC assessments conducted for individual targets. The
proportion of recommendations based on each marker is highlighted in purple. In the upper part, the corresponding H-scores (ranging from 0
to 300) are plotted. The color of the data points represents different tumor entities

had the highest recommendation rate (5/8 tested cancers,
62.5%), followed by c-Met-targeted therapy (Telisotu-
zumab-vedotin) (3/9 tested cancers, 33.3%), TF-directed
therapy (Tisotumab-vedotin) (4/19 tested cancers,
21.1%), FRa-based therapy (Mirvetuximab-soravtansine)
(1/11 tested cancers, 9.1%), Nectin-4-directed therapy
(Enfortumab-vedotin) (5/63 tested cancers, 7.9%), and
Trop-2-based therapy (Sacituzumab-govitecan) (2/49
tested cancers, 4.1%). Claudin-18.2-directed therapy was
predominantly recommended in esophagogastric cancer

(4/5, 80%), while TF-based therapy was primarily consid-
ered for cervical cancer (2/4, 50% of recommendations).
FRa testing was limited to ovarian cancer by preset test-
ing criteria. Nectin-4- and Trop-2-targeted therapies
were recommended across different tumor types, but
without a clear trend. c-Met-directed therapy, tested only
in NSCLC, showed a moderate recommendation rate
(33.3%).

Higher H-scores were typically associated with
ADC therapy recommendations, particularly for
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Claudin-18.2, where 4/5 cases with recommendations
had an H-score of 300, and one had 160. In contrast,
one tumor with low expression (H-score 100) was not
given a recommendation. FRa-targeted therapy was
only recommended for a single case of ovarian can-
cer with an H-score of 245, while lower-expressing
tumors (H-score 0-70) did not receive recommenda-
tions for Mirvetuximab-soravtansine. Nectin-4- and
Trop-2-based therapies followed similar trends, with
recommendations at H-scores>190. c-Met-targeted
therapy was consistently recommended for NSCLC
with H-scores of 260-300. TF-based therapy was
recommended for tumors with H-scores 205-300,
though one tumor with H-score 280 did not receive
recommendations.

Evaluation of the metagenomic parameter HRD (Fig. 4)

HRD testing revealed significant variability across
tumor types. Using the TSO500-HRD (GIS>42) and
Qiaseq Targeted DNA IO (GIS >56) panels, HRD posi-
tivity was highest in CRC at 50% (1 of 2 tested, limited
interpretability), followed by ovarian cancer at 40% (4
of 10 tested) and breast cancer at 38% (8 of 21 tested).
Prostate cancer and salivary gland cancer both exhib-
ited HRD positivity rates of 16.7% (2 of 12 prostate can-
cers were positive, and 1 of 6 salivary gland cancers was
positive).

Among frequently tested entities, CCA (n=39) and
pancreatic cancer (n=14) showed low (1/39 CCA, 2.6%)
to none (0/14 pancreatic cancers) HRD-positive cases.
Rarely tested cancers, such as head and neck (n=2),
small bowel (z=1), bowl (n=1), HCC (n=1), and SCLC
(n=1), also showed no HRD positivity.

HRR gene mutations were sometimes associated with
HRD, particularly BRCA1/2 in ovarian and breast can-
cers. A case of ovarian cancer with a BRCA2 truncating
mutation (GIS 45, TSO500) and a case of breast cancer
with a BRCA1 fusion (GIS 104, Qiaseq) were HRD-pos-
itive. However, a case of CUP with a pathogenic BRCA2
S$1970* truncation mutation was HRD-negative (GIS 25,
TSO500), which we hypothesized to be possibly due to
monoallelic occurrence.

Another HRR gene, PALB2, exhibited variable HRD
scores in two cases. One case (prostate cancer, GI score
TSO500: 43) received a recommendation based on its
HRD status, whereas the other (salivary gland cancer, GI
score TSO500: 7) did not receive a recommendation tak-
ing into account its negative HRD-status.

Other HRR genes, including ARIDIA (n=8), ATM
(n=6), BAP1 (n=5), BARDI1 (n=1), BLM (n=1),
FANCC (n=1) FANCL (n=1), NBN (n=1), and RAD50
(n=1) showed consitently negative HRD association.
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Assessment of MMR-IHC, MSI-PCR and TMB (Fig. 5a+b)
MSI-PCR identified MSI-high (MSI-H) status in 8 of 415
cases (1.9%), with 87.5% (7/8) receiving ICI recommen-
dations. MMRd IHC in 589 cases detected 15 MMR-defi-
cient tumors (2.5%), including 8 not investigated by PCR
due to unavailable normal tissue; 2 of these received ICI
recommendations.

TMB-H (>10 mutations/megabase) was found in 61
of 577 cases (10.6%), with 13 overlapping with MSI-H/
MMRd and 48 in MSS/MMRp tumors. Among the lat-
ter, 24 received ICI recommendations. TMB varied by
tumor type, with bladder cancer (9.7 (mean)+8,9 (SD)),
melanoma (22.7+46.9), and CRC (7.4+10.1) showing
TMB, while ovarian (3.3 £2.2), pancreatic (3.9 +2.5), and
prostate cancers (3.0+£2.1) had lower values. Endome-
trial cancer displayed the highest variability (39.8 + 58.8)
(Additional file 1: Fig. S5).

In addition, we compared the different methods
regarding their diagnostic overlap. MSI analysis by PCR
and/or MMR protein IHC assessment were defined
as the ground truth. Given this assumption, MSI-PCR
remained the most specific biomarker for ICI selec-
tion, while MMR-testing identified additional cases, and
TMB-H provided additional information in MSI/MMRd-
negative tumors. Panel-based MSI assessment showed
high specificity (98.7%) and NPV (99.6%) but had moder-
ate PPV (60%) and 81.8% sensitivity, leading to false posi-
tive results. A tiered approach using panel diagnostics as
a screening tool, with MSI-PCR confirmation for panel-
positive cases, ensures accurate classification and pre-
vents misclassification in MTB-guided therapy selection.

Examination of PD-L1 in the MTB context (Fig. 5¢)

The analysis of PD-L1 expression showed significant
variability across cancer types, influencing ICI rec-
ommendations. Thyroid cancer (TPS=58 (mean)+40.9
(SD), ICS=89+87, CPS=68+36.8) and penile cancer
(TPS=10.7£24, ICS=8+14.2, CPS=21.9+28.2) had the high-
est PD-L1 scores, correlating with the highest ICI recommen-
dation rates. Bladder cancer (TPS=13.2+30.2, ICS=3.8+5.6,
CPS=174+31.3), CUP (TPS=119+263, ICS=6.6+157,
CPS=17.8+31.9), Melanoma (TPS=2.7+4.1, ICS=5.8+11.9,
CPS=9.4+17.5),and NSCLC (TPS=20.7+32.7, ICS=4.1+4.9,
CPS=15.4+28.8) exhibited moderate-to-high PD-L1 expres-
sion, while breast cancer (TPS=2.1+10.4, ICS=3.1+57,
CPS=5.7+12.1) and pancreatic cancer (TPS=2.119.7,
ICS=1.6+3.3, CPS=4.9+12.3) had low levels.

ICI recommendations were highest in thyroid can-
cer (83.3%) and penile cancer (57.1%), moderate in CUP
(22.5%) and head and neck cancer (18.2%), but low in
bladder cancer (12%) despite high PD-L1 expression,
mostly due to prior ICI. Melanoma and NSCLC received
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Results and derived recommendations of HRD-testing
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Fig. 4 Supplementary diagnostics: HRD. This Oncoprint visualization presents all conducted HRD assessments, ranked according to their HRD
status. HRD-positive cases are displayed on the left, while HRD-negative cases are positioned on the right. Two distinct testing methods were
applied: TSO 500 (blue) and QIA (red). Additionally, the tumor entity and the resulting molecular tumor board (MTB) recommendations are depicted.
The lower section illustrates the corresponding genetic alterations in key homologous recombination repair (HRR) genes, highlighting relevant
genomic variations associated with HRD status

no ICI recommendations despite elevated PD-L1 scores, Implemented treatments (Fig. 6, Table 2, and Additional
primarily because it had already been used in prior file 1:Fig. S6)

treatment.

Finally, we describe the therapies implemented and the
corresponding clinical outcomes.
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MSI-H (or MMRd) MSS (or MMRp) sum:
5 :
m w/o recommendation (overlap) RanelE0zelUnstable Ioc! 9 6 15
- Panel <10% unstable loci 2 465 467
MSI-H (PCR) 8/415 positive (1.93%) [ w/o recommendation (no overlap)
h sum: 11 471
% w4 w/ recommendation (no overlap)
Sensitivity |81.82%
ExclMSIPCR
— Specificity |98.73%
PPV 60.00%
MMRd 15/589 positive (2.55%) NPV 99.57%
Excl MSI PCR and MURd
1
TMB-H // 61/577 positive (10.57%)
_
T T T T T T T 1
0 10 20 30 40 50 60 70
n patients

C PD-L1 scores across entities, count of analyses and fraction of derived recommendations

Thyroid CancerE— El TPS [%] Thyroid Cancer B wio rec.

Thymic Tumor£—————— B3 ICS[%] Thymic Tumor B with rec.
Small Bowel Cancer- Il CPS Small Bowel Cancer
Salivary Gland Cancer— Salivary Gland Cancer-
Renal Cell Carcinomas——— Renal Cell Carcinoma
Prostate Cancer—— Prostate Cancer
Penile Cancer f——— Penile Cancer
Pancreatic Cancer—— Pancreatic Cancer
Ovarian Cancer—— Ovarian Cancer
Others ——— Others
Non-Small Cell Lung Cancer-io— Non-Small Cell Lung Cancer
Melanoma——— Melanoma
Mature T and NK Neopl —+ Mature T and NK Neoplasms
Head and Neck Cancerf,———— Head and Neck Cancer-
HCCH— HCC
Esophagogastric Cancer—— Esophagogastric Cancer-
End ial Cancer—2— Endometrial Cancer
Colorectal Cancer——— Colorectal Cancer:
Cervical CancerA:l: Cervical Cancer
Cancer of Unk 1 Primary Cancer of Unknown Primary
CCA+—— CCA
Breast Cancer—M Breast Cancer
Bowel Cancer————————————— Bowel Cancer
Bladder Cancer-—— Bladder Cancer
Appendiceal Cancer—. Appendiceal Cancer

o T e T e o e e

Score .
(TPS[%])/ICS[%]/CPS[no dimension]) n patients

Fig.5 Supplementary diagnostics: MSI-High, MMRd, TMB-High, and PD-L1. a lllustrates the results of supplementary molecular diagnostics,
including microsatellite instability high (MSI-High), mismatch repair deficiency (MMRd), and tumor mutational burden-high (TMB-H) assessments.
The bar plot depicts the number of positive cases detected for each category: MSI-H, MMRd, and TMB-H, with the proportion of cases receiving
molecular tumor board (MTB) recommendations indicated in hatched purple. The solid purple and hatched purple bars represent cases that were
exclusively positive for a given parameter (e.g.,, MSI-H, MMRd, or TMB-H, i.e., no overlap or redundancy between testing methods was present)
while hatched purple means a therapy recommendation was based on that specific non-overlapping and therefore non-redundant biomarker. b
The contingency table illustrates MSI-H (or MMRd) and MSS (or MMRp) cases, assessed using two independent diagnostic methods (standard MSI
PCR or MMR immunohistochemistry (MMR-IHC) and the percentage of unstable loci identified in panel-based diagnostics). Sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) are provided. ¢ This figure presents PD-L1 expression levels across different
tumor types, categorized by tumor proportion score (TPS, black), immune cell score (ICS, dark gray), and combined positive score (CPS, light gray),
from top to bottom each. The left panel displays the distribution of PD-L1 scores for each tumor entity (median and maximum), while the right
panel shows the number of cases assessed, stratified by the presence or absence of a MTB recommendation. The blue bars represent patients
without therapy recommendation based on PD-L1 expression, whereas the purple segments indicate cases where PD-L1 positivity led to an MTB
recommendation
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Therapies were implemented based on heterogenous
biomarkers, most frequently HER2, PD-L1, MSI/MMR,
FGFR2, and TMB. In total 64 MTB-guided tretment
courses were evaluable. Among these, 1 (1.6%) achieved
a complete remission (CR; here it needs to be added
that the patient received radiotherapy in addition to the
molecularly targeted drug), 18 (28.1%) a partial remission
(PR), 7 (10.9%) a mixed response (MR), 10 (15.6%) sta-
ble disease (SD), and 28 (43.8%) progressive disease (PD),
resulting in a clinical benefit rate (CBR=CR+PR+SD)
of 45.3% (29 out of 64 response evaluable cases). In com-
parison, patients who received non-MTB recommended
therapies achieved a CBR of 48.2% (26 out of 54 response
evaluable cases), with 3 complete responses (5.6%), 9
partial remissions (16.7%), 4 mixed reponses (7.4%), 14
cases of stable disease (25.9%), and 24 cases of progres-
sive disease (44.4%). Of the MTB-implemented therapies,
44% were initiated based on supplementary biomarkers
diagnostics, while the remaining 56% were derived from
conventional panel sequencing results.

Most MTB-guided therpies were recommended at
high levels of evidence (m1A, m1B) and were associated
with higher response rates, although responses were also
observed in cases with lower-evidence recommendations.

Median progression-free survival (PFS) was 8.4 months
(257 days) in the MTB-guided cohort and 5.4 months in
the patients treated with Non-MTB therapies (165 days).
Median overall survival (OS) was 6.4 months in patients
who either continued their existing therapy or received
no additional therapy (“no therapy”-group), 13.6 months
in patients who received MTB-guided therapies, and
15.6 months in patients treated with alternative, non-
MTB-directed regimes. These findings represent descrip-
tive associations within the cohort and should not be
interpreted as causal effects.

Adverse drug reactions (ADR) were documented in
14% of the implemented MTB therapies, most frequently
in patients treated with immune checkpoint inhibitors
(ICI) and antibody drug conjugates (ADC). ADR were
recorded if reported in discharge letters or clinical docu-
mentation, irrespective of grade, and did not necessarily
lead to treatment discontinuation.

(See figure on next page.)
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Discussion

The findings of this study emphasize the evolving role
of supplementary diagnostic methodologies in preci-
sion oncology and their impact on MTB-guided therapy
recommendations. Our results demonstrate that the
integration of HRD testing, ADC-IHC, HER2 IHC and
FISH, MSI assessment via PCR and IHC, and PD-L1
IHC contributed to a broader spectrum of actionable
findings. While conventional next-generation sequenc-
ing (NGS) panel diagnostics remain the foundation of
MTB decision-making, the addition of these diagnostic
tools enhanced the overall rate of clinically relevant rec-
ommendations. In absolute numbers 37 implemented
therapies were either fully or partially based on the test-
ing and evaluation criteria defined as “supplementary” in
this study, making up a significant proportion of 37% of
all given therapies.

The clinical value of HRD testing was most evident
in ovarian and breast cancer, where HRD positivity was
observed at rates of 38.5% and 25.0%, respectively, con-
sistent with literature [36]. However, HRD testing also
identified potentially actionable cases in CUP and blad-
der cancer, leading to off-label treatment recommenda-
tions. The scarcity of HRD-positive cases in CCA aligns
with the existing literature [36], reinforcing the limited
relevance of HRD testing in this entity. Importantly, dis-
crepancies between HRD positivity and HRR gene muta-
tions, such as BRCA1/2 and PALB2, suggest that these
genomic alterations alone may not entirely reflect HRD
status, highlighting the need for functional HRD assess-
ments in these cases besides ovarian and breast cancer.
This discrepancy underscores that not all HRR gene
mutations lead to HRD and that further investigation
is required to determine their exact relevance. Notably
some mutations, though detected by NGS, may not have
functional impact despite being detected in sequencing
assays, leaving their pathogenicity uncertain. Addition-
ally, HRD status may not be affected if these mutations
are present in a monoallelic state rather than biallelic
inactivation, which is often necessary to completely abol-
ish HRR.

It should also be considered that our study was based
on panel diagnostics rather than whole-genome or

Fig. 6 Employed treatments. a The alluvial plot on the left illustrates the biomarker used for therapy recommendation, with the clinically
observed response displayed in the middle, and the corresponding evidence level on the right. b The swimmer plot on the right provides

a detailed breakdown of individual therapy courses, illustrating treatment duration, response, and key clinical events. Patients with insufficient
therapy data were excluded from this visualization. Each patient is assigned an anonymized ID. The white bars represent the duration of therapy,
while the colored bars indicate the observed response: complete remission (CR) in yellow, mixed response (MR) in orange, partial response (PR)

in blue, and stable disease (SD) in red. Additionally clinical events, including disease progression (PD), adverse drug reactions (ADR), and death are
plotted. ¢ Stacked bar charts of responses MTB therapy versus Non-MTB therapy
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whole-exome sequencing, where HRD assessment is not
routinely included. Currently, from economic, practical,
and technical perspectives, panel diagnostics remain the
more feasible approach [37], as also applied by MTBs.
Consequently, HRD analysis is gaining furher relevance
within this framework, at least until more advanced
methods become widely adopted.

The incorporation of ADC-IHC across various cancer
entities further enhanced the spectrum of discussed tar-
gets. Claudin-18.2 testing yielded the highest recommen-
dation rate (62.5%), predominantly in esophagogastric
cancer. Similarly, Nectin-4 and TF showed selective util-
ity in bladder, salivary gland, cervical, and head and neck
cancers, supporting the rationale for ADC biomarker
testing in these entities. However, the Trop-2 and FRa
biomarkers provided comparatively low recommenda-
tion rates. It should be noted that for some ADC-targets
the predictive value of IHC has yet to be fully deter-
mined. For example, in case of Sacituzumab govitecan in
the first-in-human trial in various solid tumors Trop-2
expression was only available in few cases, where partial
remissions were observed in tumors with weak, moder-
ate, and high Trop-2 expression, while a stable disease
was also documented in a tumor negative for Trop-2
IHC [38]. In addition, in the indication of triple-nega-
tive breast cancer, for which Sacituzumab govitecan was
approved, most archival tumor specimens tested in a clin-
ical trial were moderately to strongly positive [39], hence
precluding a definitive evaluation of the biomarkers. For
this purpose, the recommendations for Trop-2 targeted
therapies in our MTB were cautiously based on a biologi-
cal rationale only (m4). The same restriction applied to
Enfortumab vedotin, whose approval for urothelial can-
cer was also not biomarker dependent, since the major-
ity of tumors exhibited a strong staining of Nectin-4
[32]. This demonstrates the need of an ongoing evalua-
tion of the corresponding biomarkers which is mirrored
by low recommendation rates in our study. In contrast,
Telisotuzumab-vedotin, Mirvetuximab-soravtansine, and
Zolbetuximab with a proven record of strong biomarker
dependency [26, 40, 41] were employed consistently in
the respective entities and resulted in higher evidence
levels. Therefore, especially c-Met, FRa, and Claudin18.2
should be given priority in NSCLC, ovarian cancer, and
esophagogastric cancer, respectively, in an MTB if not
already tested previously.

The next addition to panel diagnostics we focused on
was MSIL. Our comparative analysis of MSI detection
methods underscores the complementary nature of MSI-
PCR, MMR IHC, and sequencing-based MSI inference.
While MSI-PCR remains the gold standard, primarily in
CRC, we demonstrate that MMR IHC identifies addi-
tional cases that may not be captured by PCR-based

Page 22 of 26

methods, particularly in situations where normal tis-
sue comparison is unavailable. Conversely, panel-based
MSI detection (cut-off 10% unstable loci) exhibited high
specificity (98.7%) and a strong negative predictive value
(99.6%), making it a useful tool for ruling out MSI-high
cases. However, its moderate positive predictive value
(60%) indicates that confirmatory testing is essential for
panel-positive cases to avoid false-positive MSI classifi-
cations. Moreover, the panel-based method also missed
positive cases in view of its sensitivity of 80%. These
findings support a tiered MSI testing approach, wherein
panel diagnostics serve as a screening tool, with MSI-
PCR and MMR IHC providing confirmatory validation in
cases of uncertainty.

TMB analysis revealed significant variability across
tumor entities, with high TMB values observed in blad-
der cancer, melanoma, and MSI-H CRC, consistent with
their established immunogenic profiles [42]. However,
the clinical utility of TMB as an independent biomarker
remains complex, as evidenced by the fact that half of the
TMB-high cases (>10 mut/Mb) in our cohort did not
receive ICI recommendations. This discrepancy can be
explained by additional clinical considerations, such as
tumor histology, prior treatment history, and the pres-
ence of co-occurring MSI influencing ICI eligibility.
Among those patients who received therapy, three had
documented clinical benefit (2 PR and 1 SD), while two
progressed. Despite the entity-agnostic approval by the
Food and Drug Administration in the USA based on the
KEYNOTE-158 trial [43], the exact cut-off value remains
an area of investigation and some tumor types may ben-
efit less, necessitating an ongoing investigation of achiev-
able real-world outcomes [44]. Altogether, an evaluation
of TMB should be incorporated into MTB discussions to
enhance access to ICI for select patients.

The same also applies to PD-L1-IHC. Notably, thyroid
and penile cancers as well as CUP and head and neck
squamous cell carcinomas achieved particularly high
ICI recommendation rates based on this biomarker. Less
frequently, recommendations were also given to cases of
CCA, bladder cancer, and esophagogastric cancer ( the
latter two often with previous ICI). However, only a few
therapies were implemented with available follow-up.

The evaluation of HER2 alterations highlights the
expanding role of HER2-low status in treatment selec-
tion. While both HER2-low and amplified cases were pri-
marily recommended for trastuzumab- and ADC-based
therapies, HER2-low findings constituted the majority of
recommendations in cancers such as CCA, breast, and
prostate cancer. This shift reflects the emerging recogni-
tion of HER2-low as a distinct therapeutic category even
in tumors beyond breast and gastric cancer, and this is
also the subject of current research (NCT04482309).
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The comparison of HER2 (ERBB2) copy high specificity
(99.2%) but moderate sensitivity (60.0%), underlining the
necessity of at least additional IHC in every case because
40% of HER2 amplified cases are missed by current NGS
testing. The most likely reason for the low sensitivity is
that sequencing-based CNV assessment can be affected
by tumor heterogeneity and low tumor purity. The
addition of IHC and FISH testing provides critical sen-
sitivity enhancements to ensure accurate HER2 classifi-
cation. Moreover, the definition of a HER2 low category
has made HER2 IHC indispensable, since it cannot be
inferred from panel sequencing and FISH analysis.

From a therapeutic standpoint, our analysis of MTB-
guided therapies stresses the value of integrating high-
evidence biomarker-driven treatments, while remaining
open to lower-evidence strategies in select cases. Thera-
pies based on m1A and m1B evidence levels dominated
the recommendations, and high-evidence-level recom-
mendations tended to be associated with favorable clini-
cal outcomes.

Although the findings are promising, the study has sig-
nificant limitations. First, the real-world nature of MTB
decision-making introduces variability in treatment
implementation, influenced by factors such as patient
comorbidities, prior treatment failures, and access to
off-label therapies. Additionally, the retrospective nature
of some analyses may limit causal inferences between
biomarker findings and therapeutic outcomes. Future
studies should incorporate prospective validation of sup-
plementary diagnostics and evaluate their impact on
long-term survival outcomes. Furthermore, while this
study analyzed the incremental utility of supplementary
diagnostics, it remains unclear whether their widespread
adoption would significantly alter standard-of-care
approaches in a cost-effective manner. The financial and
logistical feasibility of integrating these biomarkers into
routine MTB workflows warrants further exploration.

Given the high rate of implemented therapies based
on supplementary diagnostics, it is worthwhile to com-
pare other potential extensions of MTBs, such as WGS.
While WGS enables comprehensive genomic analysis,
its additional clinical utility compared to more tar-
geted and cost-efficient methods remains uncertain.
Many therapeutically relevant mutations are already
covered by panel sequencing, and studies suggest that
WGS rarely leads to changes in clinical management.
Higher costs, longer turnaround times, and the associ-
ated resource demands may further limit its widespread
implementation, although WGS could be beneficial in
specific cases, such as the detection of complex struc-
tural rearrangements [45—47].

Based on our findings, we propose a pragmatic work-
flow for integrating supplementary diagnostics into
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MTB practice. HER2 and PD-L1 IHC should be rou-
tinely performed, as they are inexpensive, feasible on
limited tissue, and can identify therapeutic opportuni-
ties not captured by NGS alone (e.g., HER2-low). The
feasibility in this study is also evidenced by the number
of samples that could be successfully analyzed using the
defined supplementary methods in a real-world setting.
HER2 amplification inferred from copy number gains
should be confirmed by IHC and, if needed, FISH. TMB
should be routinely assessed as part of NGS analysis,
as it provides actionable information independent of
MSI. MSI testing is best performed through a combi-
nation of MMR IHC and NGS, if necessary with PCR
confirmation in positive cases to ensure accuracy. HRD
testing should be restricted to entities where clinical
relevance is established (e.g., breast, ovarian, pancreatic
cancer), given that BRCA mutations may occur without
HRD. Finally, ADC biomarker testing by IHC should be
applied selectively in tumor types with clinical evidence
or approvals, including Claudin-18.2 in gastric cancer,
FRa in ovarian cancer, C-MET and Nectin-4 in non-
squamous NSCLC, Nectin-4 and tissue factor in head
and neck SCC, Nectin-4 and TROP-2 in urothelial can-
cer, and Nectin-4 and TROP-2 in CUP.

In conclusion, our study demonstrates that supple-
mentary diagnostics—including HRD testing, ADC-
IHC, HER2 IHC and FISH, MSI assessment via PCR/
IHC, and PD-L1 IHC—enhance the spectrum of action-
able findings and therapeutic recommendations in
precision oncology. These methods complement con-
ventional NGS panel diagnostics and provide additional
stratification tools for patient selection, particularly in
rare and under-characterized tumor types. Incorpo-
rating these biomarkers into MTB workflows marks a
step toward a more comprehensive precision oncology
framework, where multiple diagnostic modalities con-
verge to optimize individualized cancer treatment.

Beyond outcome assessment, this study also serves as
an internal evaluation of newly implemented modifica-
tions, allowing for a structured review of our evolving
diagnostic strategies. By integrating novel biomark-
ers and refining analytical approaches, we aim to fur-
ther optimize our MTB framework to enhance the
precision and clinical relevance of off-label therapy
recommendations.

Conclusions

The integration of additional biomarker assessments into
MTB workflows enhances precision oncology by expand-
ing the pool of patients eligible for targeted therapies. Sup-
plementary diagnostics such as HRD testing, ADC-IHC,
HER2 IHC/FISH (including the reporting of Her2 low sta-
tus), MSI, and PD-L1 analysis increased actionable findings
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beyond standard panel sequencing. These mostly cost-effec-
tive methods enabled additional treatment recommenda-
tions. Their routine use supports a broader, more adaptable,
and patient-centered approach to individualized cancer
care. Thus, rather than focusing solely on more compre-
hensive sequencing technologies such as whole-genome or
whole-exome sequencing, the strategic implementation of
additional techniques—particularly predictive IHC—should
be considered a core component of modern MTB practice.
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